Home
Tektronix Logic Analyzer Family Version 4.2 Software User Manual
Contents
1. Figure 1 4 Benchtop mainframe and one expansion mainframe 4 Place the EXPANSION 1 label in the outlined area on the upper right side of the expansion mainframe Tektronix Logic Analyzer Family User Manual Version 4 2 Software Getting Started Expansion mainframes Benchtop mainframe Expansion mainframes oMocho O Figure 1 5 Benchtop mainframe and two expansion mainframes Installing in a TLA714 715 Mainframe A When yo
2. o tes A720 Logie Aaalyer Skeem PEL Epee e pe pael M Dp o f E Oo LE GRRR EET S T OY TESE E a soy of O f JO f Jo fj 0000 O O 3555 oU joUlUjoUlj jo 0000 g E i a 2 0000 O O 0000 00000 DJi l p D000000000 aad AADS EET GPs ee e Cats Figure 1 16 On Standby switch locations Powering On the Mainframes The expansion mainframe automatically powers on when the connected benchtop or portable mainframe powers on If everything is properly connected and operational you will see the expansion mainframe and the installed modules in the System window If the expansion mainframe and the installed modules do not display in the System window see Table H 1 beginning on page H 10 for troubleshooting suggestions NOTE You must have a module installed in the expansion mainframe before the expansion mainframe is recognized by the resource manager and appears in the System window Turning Off the TLA700 Series Mainframe 1 20 Both the TLA714 715 portable mainframe and the TLA720 721 benchtop mainframe have a built in soft power down function that safely powers down the mainfram
3. Probe Channels Names Probe Gee 5 4 3 2 CLKQual AB a cKO z e Ag ej a e wj gi re e e x Aal CKI AD pa an D2 DI cke bo E E E E m See U m E io ckKa ce E ja mj E m El a C mi m x In selected group E Not grouped Table Shows Channel Polarity Channel Compare j In other group s For Help press F1 Tektronix Figure 2 12 LA Setup window Tektronix Logic Analyzer Family User Manual Version 4 2 Software 2 11 Approaching the TLA Application Windows Trigger Windows 2 12 LA Trigger Window Use the DSO Setup window to define the channel and horizontal setups for the DSO module An example of a DSO Setup window is shown in Figure 2 13 We Setup DSO 1 Bll Channel 1 Channel 2 Channel 3 Channel 4 Horizontal Trigger Vertical Input Voltage Range m aak Maximum 6 5 pk pk volts i z i i X L Difset av H ee Minimum B00 gt Termination idth x Autoset Bandwidth Full esa Coupling pe IMQ Frobe Cal Signal Name Channen Probe Type 1X Figure 2 13 DSO Setup window Logic analyzer and DSO modules have their own Trigger windows Use the Trigger window to define the conditions when the instrument acquires and stores data This version of the TLA600 700 logic analyze
4. Joont ai O TI QOS Y Power Fuse AC Power Switch 2 required Dii Figure 1 13 Line fuse and power cord connector locations 4 Turn on the logic analyzer as follows a Press the On Standby switch to turn on the logic analyzer see Figure 1 14 for the switch location b Wait for the logic analyzer to complete power on self tests start Windows and start the TLA application Tektronix Logic Analyzer Family User Manual Version 4 2 Software 1 17 Getting Started S E O SB o oo oo oo000000000000 oo000000000000 o0000000000000 o0000000000000 o0o0000000000 OoOoC 700000000 On Stand S by switch i Figure 1 14 On Standby switch locations Turning On the TLA700 Series Logic Analyzer Follow these steps to turn on the logic analyzer for the first time 1 18 A CAUTION To avoid damaging the accessories connect the keyboard mouse and other accessories before applying power to the mainframe 1 Check that the line fuse is correct for your application See Table 1 3 monitor Connect the power cord See Figure 1 15 Table 1 3 TLA700 series line fuses If you have an external monitor connect the power cord and turn on t
5. Figure G 2 Flash programming pins 8 Reconnect the power cord and then power on the mainframe 9 Wait for the pattern generator application to start NOTE Any modules with the flash programming jumper installed will not display in the System window 10 Exit the pattern generator application and the TLA application Tektronix Logic Analyzer Family User Manual Version 4 2 Software Appendix G Installing Software 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 Click Start Programs Tektronix Logic Analyzer TLA Firmware Loader Select the modules that you want to update from the list of modules displayed in the Supported list box near the top of the window This selects the modules for the upgrade If you are upgrading more than one module at a time note the slot location of the module in the selection box Select Load Firmware from the Execute menu Select the tla7pg2 lod file for the selected module if necessary navigate to the C Program Files Tektronix Pattern Generator Firmware folder Click OK You will be prompted to confirm your action click Yes The program will load the firmware for each module one at a time The process may take several minutes per module When the upgrade is complete exit the program Power down the mainframe and disconnect the power cord Remove the
6. Chassis ground LI n 2 Safety ground C y screw Benchtop mainframe onl i y J O Figure 2 8 Location of ground connections Tektronix Logic Analyzer Family User Manual Version 4 2 Software 0 foL _ gt O Awarnna OO A a a A rA 000000000 o m o a egge wr 000000000 o oo O Hon iro ara arash 9g oooo0oor0oo0r0o00 IER O Functional Overview 2 8 Tektronix Logic Analyzer Family User Manual Version 4 2 Software rr 7 Approaching the TLA Application Windows The Tektronix Logic Analyzer application interface consists of Setup and Data windows as shown in Figure 2 9 1 Go to the System window This is the main access point to the other windows 2 Use the Setup windows to configure the modules CJC Jj m mn B e 5 View data in the data windows 3 From the LA Trigger window load a trigger program from the library and customize it for your application 4 Click the Run toolbar Ea button to acquire data pe A Figure 2 9 Window usage control flow System Window The System window is your point of entry into the logic analyzer and functions as the overall control center The System window on a TLA600 series logic analyzer Figure 2 10 is almost identical to the System window on the TLA700 series logic analyz
7. Oy B l Flash programming pins Figure G 1 Flash programming pins 8 Reconnect the power cord and then power on the logic analyzer 9 Wait for the TLA application to start Tektronix Logic Analyzer Family User Manual Version 4 2 Software G 23 Appendix G Installing Software G 24 NOTE Any modules with the flash programming jumper installed will not display in the System window 10 Exit the TLA application and pattern generator application if you have it installed on your instrument 11 Click Start gt Programs Tektronix Logic Analyzer TLA Firmware Loader 12 Select the modules that you want to update from the list of modules displayed in the Supported list box near the top of the window This selects the modules for the upgrade 13 If you are upgrading more than one module at a time note the slot location of the module in the selection box 14 Select Load Firmware from the Execute menu 15 Click the proper lod file for the selected module refer to Table G 6 if necessary The lod files are located in the C Program Files TLA 700 Firm ware directory NOTE Be sure to select the proper lod file for each module Note the slot number in the title bar so that you select the correct module for the lod file Table G 6 TLA firmware files Module t
8. 0000 Installing Modules in the Benchtop or Expansion Mainframes Module Keying socorrer ee eee ek bee tee beeen ene bd a Gb Demet e Covering Empty Slots meree En E eee cee eee eae Appendix E Merging Modules cccceceecececeeee Logic Analyzer Module Merging Rules 0 0 e ee ee eee eee eee Merge Procedure eorr pireneana in EPEA DEA decid PE ean es Pattern Generator Module Merging Rules 00 eee eee eee TLA7Axx Logic Analyzer Merge Procedures 0 0 0000 e eee TLA7Lx TLA7Mx TLA7Nx TLA7Px and TLA7Qx mm m m amp vvyvyyy Qnnws VUNA ANWWNF A U N m Logic Analyzer Merge Procedures 0 0 cece eee eee eee ee E 8 Appendix F Power Cord and Line Fuse Requirements for the Benchtop and Expansion Mainframes eee005 F 1 Appendix G Installing Software ccc cece eee renee G 1 Restoring the Hard Disk Image 00 c cece eee eee eee G 2 Flashing the BIOS 240 66 0 steu a a eee eee ee eee G 3 Reinstalling the Hard Disk Image 0 00 c eee eee eee eee G 11 Reinstalling the TLA Application Software 0 0 00 eee eee G 16 Reinstalling the Pattern Generator Application Software G 17 Installing the Remote Operation Software 00 0 e eee eee G 18 Installing the TLAVu Software 0 eee cece eee eens G 19 Installing the PatGenVu Software 1 eee ee ee eee G 20 Upgrading or Resto
9. Figure 3 19 Route from LA dialog box The Route from LA dialog box displays the currently defined inter probing connection and its feed for the oscilloscope channel This item cannot be selected and is displayed for information purposes only If no inter probing connection is defined for the oscilloscope channel the field is empty Click the System Inter probing button to change the contents of the scroll list by adding or changing the connection to the logic analyzer Click the Select Channel button to select a new logic analyzer channel to feed the inter probe connection to the oscilloscope channel This button is made available when an inter probe connection is defined Signal routing to the oscilloscope You can specify the inter probe connector and DSO channel through which to route probe data from the specified logic analyzer channel using the Route to DSO dialog box To display the Route to DSO dialog box select Route to DSO from the context menu associated with a selected LA channel waveform The Route to DSO context menu item is enabled only if the selected waveform is a TLA7Axx channel 3 24 Tektronix Logic Analyzer Family User Manual Version 4 2 Software Setup 22 0 TE B a Gh Time Diw 50ns IHE E C1 50ns Ce 50ns Delta Time 100ns F Lock Delta Time LA 1 CKO LA 1 Sample 1 1 i LAT LAT besa Senne DS01 CKO eT Mom mt IO I rT Route t
10. eeeeeee A 58 Table A 60 LA module input parameters with probes A 59 Table A 61 LA module mechanical cece ee eeeees A 60 Table A 62 DSO module signal acquisition system A 61 Table A 63 DSO module timebase system 0000 A 64 Table A 64 DSO module trigger system eeeeee A 64 Table A 65 DSO module front panel connectors A 66 Table A 66 DSO module mechanical eee evens A 66 Table A 67 PG module electrical specification Operational mode cece cece cece cence eave ereceees A 67 Table A 68 PG module clocking cc cece cece eee eeee A 68 Table A 69 PG module event processing eeeeeeee A 68 Table A 70 PG module inter module interactions A 69 Table A 71 PG module merged PG modules A 69 Table A 72 PG module mechanical sce eeeeeeee A 69 Table A 73 External oscilloscope Integrated View or iView characteristics 5 5 s2s2556y5 c o a0 bs 95 So eee Sooo oes EE See See ae A 70 Table C 1 For Signal 1 2 and 3 4 logical function AND C 1 Table C 2 For Signal 3 4 logical function OR C 1 Table F 1 Power for instrument modules 000 F 1 Tektronix Logic Analyzer Family User Manual Version 4 2 Software XV Table of Contents xvi Table G 1 TLA600 Controller BIOS setup essssesonseson G 4 Table G 2 TLA714 and TLA720 C
11. 3 146 Tektronix Logic Analyzer Family User Manual Version 4 2 Software EE 5 Histogram Window Use the Histogram window to set up capture and display performance analysis data from an LA module channel group counter or timer You can use the Histogram window to determine the level of activity within various functions or subroutines analyze how memory is used or determine the relative execution time of subroutines or program modules Histogram data is presented as a list of ranges and corresponding histogram bars showing the distribution of the ranges See Figure 3 103 for an example H Histogram 2 ile ES cs AJA a OF Percentages Based On Matched Samples 4 516 stopLite enqueue dequeue queueFul queueEmpty lightLeds rear front LEDwrite fputc _ uprint Figure 3 103 Histogram window The histogram data is based on all acquisition data All Samples or on the data within a defined set of ranges Matched Samples Tektronix Logic Analyzer Family User Manual Version 4 2 Software 3 147 Histogram Window Measuring Histogram Data Viewing Address Activity 3 148 for Channel Groups Range Overview There are two basic ways of using the Histogram window to analyze data One is to provide a graphic overview of the address activity of software execution The other is to use counters or timers to measure specific events If you want to use counters or timers to measure events you must set
12. Probe Channels Names 6 5 4 3 2 1 0 CLKQual yas ivi vl lvl iw wiv cko xj a2 ivi iv iv iv ii i xla vi iv iv lvl iv lvl CK v 40 Ww v x vi i x v a x v Compare electe TOI tou ampare a a Table Shows ae v6 Bon aj Partial Compare EE vial Compare Figure 3 6 Selecting channels for memory compare Defining Memory Compare Parameters To enable the Define Compare dialog box controls select the Enable Data Compare check box as shown in Figure 3 7 Select the reference data source in the list box if the data source that you are interested in does not appear in the list click Add Data Source to browse for the data source in the file system Define Compare LA 1 BE M Enable Data Compare Reference Data Source JLaModt tla LA 1 Add Data Source m Compare Data Region Partial Data around Ref Begin Start fi Samples atter Ref Begin And Compare s Samples r Data Source Alignment j Using Begin or end Offset Acq Begin fi Samples fatter Ref Begin z m Overview Module Properties 4cg Source Ref Source Memory Depth 32768 32768 About Data 5amples 2000 2000 Start Compare Sample 0 1 End Compare ample 24 25 3 Cancel Apple Figure 3 7 Enabling data compare Tektronix Logic Analyzer Family User Manual Version 4 2 Software Setup After you select the data source define the amou
13. O Qaccessed QaccesseD E5 i a 5 S 4 TO O o OL el jen TLA7Dx TLA7XM TLA7XM TLA7Nx DSO Module Exp Module Exp Module LA Module oojoo Figure D 3 Module keying If you have any unused empty slots in your mainframe you must install blank slot panel covers to meet EMC specifications Install a blank slot panel cover for each empty slot as shown in Figure D 4 or D 5 Make sure that the EMI shielding is in contact with the adjacent panel or module cover and that the airflow shutter activation arms protrude through the holes in the blank shield Tektronix Logic Analyzer Family User Manual Version 4 2 Software D 5 Appendix D TLA700 Module Installation D 6 A CAUTION Use only Tektronix TLA slot panel covers on the benchtop mainframe Otherwise the mainframe may not meet cooling and EMC requirements EMI shielding strip oS I WZ SN c yy ee Bye 2 ee x Z Double slot X em panel cover Ske Figure D 4 Installing panel covers on the portable mainframe EMI shielding strip lt Single slot panel cover Ela ee Pam Double slot panel cover Figure D 5 Installing panel covers on the benchtop mainframes Tektronix Logic Analyzer Family User Manual Version 4 2 Software SSS Sy eee Appendix E Merging Modules This appendix
14. Histogram window A data window used to observe the performance of software routines IEEE695 file format This object file format refers to the IEEE695 specification This format is used primarily by compilers for a wide variety of Motorola microprocessors and compatible microprocessors from other vendors This format provides for the inclusion of column information in source symbols but not all compilers use this capability Internal clock A clock mode in which the sampling of input logic signals occurs asynchro nously to the activity of the system under test Interpolation Display method used to connect the sample points acquired and display them as a continuous waveform The logic analyzer uses sin x x interpolation to display DSO signals Linear generation A Histogram window term The histogram ranges are evenly distributed from the highest range boundary to the lowest range boundary Listing window A data window used to observe the data flow in the system under test The acquired data is displayed in a listing tabular text format Log generation A Histogram window term The histogram ranges are distributed over a logarithmic scale MagniVu An acquisition technology enabled by the logic analyzers provides up to 1000 picosecond timing resolution on all channels and requires no additional probing MagniVu data High speed data stored in a special memory Tektronix Logic Analyzer Family User Manual Version 4 2 Software
15. 50 of 512 256 Triggers if the number of function entries exceeds the max allowable value or if the number of exits exceeds the number of entries Note This program requires the use of two counters to keep track of the upper and lower stack limits Triggers if Event A is absent for a duration longer than the specified time Triggers if Event A is absent for any duration within the specified time Triggers if the event is present for greater than the specified time Triggers if Event A is present for any duration within the specified time Trigger on pulse width gt specified time Triggers when the selected channel has pulse width greater than the specified time Trigger on pulse width lt specified time Triggers when the selected channel has pulse width less than or equal to specified time Trigger on the Nth occurrence of edge Triggers on the Nth occurrence of rising edge or falling edge of the desired channel Trigger on the Nth occurrence of group value Triggers on the Nth occurrence of group value Trigger on the Nth occurrence of word value Triggers on the Nth occurrence of word value Sequence of Events Trigger on A followed by B Trigger on Event B if Event B follows Event A eventually Trigger on A followed by B reset onC Trigger on Event B if Event C does not occur between Event A and Event B Tektronix Logic Analyzer Family User Manual Versi
16. Characteristic Operating System Microprocessor Main Memory Style Speed Installed Configurations Cache Memory Flash BIOS Real Time Clock and CMOS Setups NVRAM Bootable Replaceable Hard Disk Drive Description Microsoft Windows Intel Pentium PC AT configuration with a 266 MHz Intel Pentium MMX microprocessor SDRAM 144 pin SO DIMM 2 Sockets 66 MHz Minimum 64 MB loaded in one socket Maximum 128 MB with both sockets loaded 512 KB Level 2 L2 write back cache 512 KB Provides PC plug and play services with and without Microsoft Windows operating system Flash based BIOS field upgradable via a floppy disk Real Time clock calendar with typical 10 year life Standard and advanced PC CMOS setups Standard PC compatible IDE Integrated device Electronics hard disk drive residing on an EIDE interface Size Minimum 10 GByte Maximum 30 GByte Continually subject to change due to the fast moving PC component environment These storage capacities valid at product introduction Interface ATA 4 Enhanced IDE EIDE Average seek time Read 13 ms I O data transfer rate 33 3 MB s max U DMA mode 2 ATA33 CD RW Drive Standard PC compatible IDE Integrated device Electronics 8x 8x 24x CD RW drive residing on an IDE interface Continually subject to change due to the fast moving PC component environment Floppy Disk Drive Standard 3 5 inch 1 44 MB PC compatible high density double sided floppy disk dr
17. Insufficient DSO module sampling resolution can result in aliasing For information about aliasing see page 2 42 Tektronix Logic Analyzer Family User Manual Version 4 2 Software Operating Basics Example 1 Slow sample clock Original waveform _ l Sample clock a ee ee i i Displayed waveform l Example 2 Fast sample clock Original waveform U m j Sample clock PEEKE EAE EEEE _ Displayed waveform l T Figure 2 39 LA module sampling resolution Signal Resolutionand There is an important trade off between the resolution of the recorded signal and Signal Duration its duration in terms of elapsed time Because the total number of samples that can be recorded by the logic analyzer is fixed by the depth of the logic analyzer s acquisition memory increasing the sample clock rate provides better signal resolution at the expense of reducing the duration of the captured signal That is a faster sample clock rate will record a smaller portion of the signal but with better resolution or you can trade channels or depth to maintain higher resolution It is important to remember that you have two additional tools for the TLA7Lx Mx Nx Px Qx modules and three additional tools for the TLA7Axx modules to offset the signal resolution signal duration relationship m By using the MagniV
18. Power Watts 100 TLA721 Benchtop Controller TLA720 Benchtop Controller TLA7XM Expansion Module TLA7AA1 TLA7AA2 TLA7AA3 TLA7AA4 TLA7AB2 TLA7AB4 TLA7Q2 TLA7Q4 Tektronix Logic Analyzer Family User Manual Version 4 2 Software F 1 Appendix F Power Cord and Line Fuse Requirements for the Benchtop and Expansion Mainframes Table F 1 Power for instrument modules Cont Module type TLA7P2 TLA7P4 TLA7N1 TLA7N2 TLA7N3 TLA7N4 TLA7L1 TLA7L2 TLA7L3 TLA7L4 TLA7M1 TLA7M2 TLA7M3 TLA7M4 TLA7D1 TLA7D2 TLA7E1 TLA7E2 TLA7PG2 Power Watts 50 74 45 58 71 82 55 73 94 109 57 76 99 116 80 111 90 121 110 1 Power for benchtop mainframe and expansion mainframe with fans operating at maximum speed For power usage in the unshaded region of Figure F 1 use either the power cord with the 15 A plug two parallel prongs and ground or the power cord with the 20 A plug two perpendicular prongs and ground F 2 Tektronix Logic Analyzer Family User Manual Version 4 2 Software Appendix F Power Cord and Line Fuse Requirements for the Benchtop and Expansion Mainframes For high power usage combined with low input line voltages shaded region use only the power cord with the 20 A plug Select the proper fuse based on the ranges shown in Figure F 1 Power Cord with 20A plug NEMA 5 20P ONLY Power Cord with 15A plug NEMA 5 15P Powe
19. Tektronix Logic Analyzer Family User Manual Version 4 2 Software Setup Table 3 3 EasyTrigger program list Cont File name Trigger on the Nth sample after A Trigger time T after A Trigger main and trigger MagniVu onA Trigger main followed by trigger MagniVu within time T Trigger main followed by trigger MagniVu on event sequence Description Triggers on the Nth Sample following Event A This program is not designed to work with Timer or Counter event types for user selectable events Triggers after acquiring the samples for the specified time after the Event A This program is not designed to work with Timer or Counter event types for user selectable events Timer values are adjusted to the module timing resolution which can be 2nS or 4nS depending on the module type Upon recognition of Event A the module will trigger and fill both main and MagniVu acquisition buffers Counter and timer events should not be used Main trigger position is set to 100 and Force Main Prefill is checked to capture the maximum number of samples after the main trigger MagniVu trigger position is set to 0 to capture the maximum number of samples after MagniVu trigger Upon recognition of Event A the module will trigger and start a timer When the specified time has elapsed MagniVu will trigger Counter and timer events should not be selected Main trigger position is set to 100 and Force Main Prefill is checked to capture the
20. Use the Patten Generator Waveform window to edit the vector data This method may be useful when you want to see the timing relationship between the pattern generator channels Figure 2 23 shows an example of a Waveform window iix a i zA ps PEs Reference 1 1 Reference 2 10 Delta 90 0000000 ns UserGrp2 B1 B1 6 B1 5 Bi 4 B1i 3 B1 2 B1 1 B1 0 BO Row 21 vector i 7 Figure 2 23 Waveform window PG Run Properties Dialog Box 2 26 The Pattern Generator PG Run Properties dialog box selections determine if the logic analyzer Run button will start and stop the pattern generator PG modules Access the dialog box by clicking PG Run Properties from the System menu under the TLA application See Figure 2 24 PG Run Properties HE f Pattern Generator is installed and enabled When the TLA Runs Start PG after TLA If repetitive run restart at each itteration Cancel Help Figure 2 24 Pattern Generator Run Properties dialog box Tektronix Logic Analyzer Family User Manual Version 4 2 Software Se 7 Operating Basics This section provides an overview of logic analyzer concepts and some of the features of the Tektronix Logic Analyzer To acquire and display signals from the target system the logic analyzer must perform a complex series of actions For the most part these actions are transparent However it can be helpful to understand how the logic analyzer
21. derated 1 C per 1000 ft above 5000 foot altitude Nonoperating no media in floppy disk drive or CD ROM drive 20 C to 60 C 15 C hr maximum gradient non condensing Relative Humidity Operating no media in floppy disk drive or CD ROM drive Operating and nonoperating 20 to 80 relative humidity non condensing Maximum wet bulb temperature 29 C derates relative humidity to approximately 22 at 50 C Nonoperating no media in floppy disk drive or CD ROM drive 8 to 80 relative humidity non condensing Maximum wet bulb temperature 29 C derates relative humidity to approximately 22 at 50 C Altitude Operating Operating and nonoperating To 10 000 ft 3040 m derated 1 C per 1000 ft 305 m above 5000 ft 1524 m altitude Nonoperating 40 000 ft 12190 m 1 TLA7Axx series module operating temperature is 40 C maximum 2 TLA7Axx series module operating humidity is 45 at 40 C A 2 Tektronix Logic Analyzer Family User Manual Version 4 2 Software Appendix A Specifications Certifications and Compliances Table A 2 lists the certifications and compliances of the Tektronix Logic Analyzer family The certifications and compliances apply to all components of the Tektronix Logic Analyzer family unless noted otherwise Table A 2 Certifications and compliances Category EC Declaration of Conformity EMC Australia New Zealand Declaration of Conformity EMC EC De
22. 3 109 Waveform Window and is displayed for information purposes only If no inter probe connection is defined for the oscilloscope channel the field is empty Click the System Inter probing button to change the contents of the scroll list by adding or changing the connection to the logic analyzer Click the Select Channel button to select a new logic analyzer channel to feed the inter probe connection to the oscilloscope channel This button is available when the inter probe connection is defined Route from LA Waveform 1 2 x To D50 1 Channel From Feed Through Inter probe Connector CH 1 Slots 3 4 LA 1 Select Channel System Inter probing OK Apply Cancel Help Figure 3 77 Route from LA dialog box To display the Route from LA dialog box from the Waveform window select Route to LA from the context menu associated with a selected oscilloscope channel waveform see Figure 3 76 on page 3 109 Comparing Waveform Data 3 110 When comparing data against reference data you can highlight data that is equal to or not equal to the reference data NOTE Before you can display compare data you must define the compare parameters in the Define Compare Dialog box in the LA Setup window Refer to Data Compare beginning on page 3 5 for information on setting up the compare parameters Tektronix Logic Analyzer Family User Manual Version 4 2 Software Waveform Window The fol
23. Delta Time fi Bins Lock Delta Time QSTART QSTART Q Start Q Stz G Start Address Data Mnemonic Timestamp 2037142 OOFSF6F6 Fore RESET 2097143 2097145 EErEE S FOFS Frees LC BUS ERROR o 2097146 LOOFAFAFA FAFA BACKGROUND WRITE CUD 2097147 OOFBFBFB FETE BACKGROUND READ 3 i 2097148 OOFCFCFE FEFE L HALT 2097149 OOFDFOFD FOFD C BUS ERROR J _ _ _ _ 2097150 DOFEFEFE FEFE BACKGROUND WRITE Lo M oo ROUND ni aoar 0003000 omo IG RESET 7 q soared 00020202 0202 C RESET J 2037155 2097156 2097157 20971538 2097159 2097160 2097161 4 Figure 3 84 Listing window Reading the Listing Window Indicators Data marks cursors and other indicators help you navigate and identify the data Figure 3 85 and Table 3 20 identify and describe data window marks To move cursors or marks drag the cursor and mark handles Trigger marks and Begin End data marks cannot be moved Tektronix Logic Analyzer Family User Manual Version 4 2 Software 3 119 Listing Window ox nn ey IDE Ala ale 4 Cal Fal C1 2097150 C2 2097154 Delta Time 16ns I Lock Delta Time QSTART QSTART Q Start Q Sti Q Start Sample Address Data Mnemonic Timestamp 2097144 OOFSFSFs Fors C HALT 3 2097145 OOFSFSFS FOF 2037146 LOOFAFAFA FAFA 2097147 OOFBFBFB FBF 2097148 OOFCFCFC FEFE 2097149 OOFDFDFD FOFO 2097150 OOFEFEFE 05 oo 2097152
24. Depth 26 5 in 673 1 mm Rackmount Height 13 25 in 336 6 mm Width 18 9 in 480 1 mm Depth 28 9 in to 33 9 in 734 1 mm to 861 1 mm in 0 5 in increments user selectable Benchtop controller dimensions Height 10 32 in 262 1 mm Width 2 39 in 60 7 mm Depth 14 75 in 373 4 mm Expansion module dimensions Height 10 32 in 262 1 mm Width 1 25 in 31 75 mm Depth 14 75 in 373 4 mm Weight Mainframe with benchtop controller and 58 Ibs 11 oz 26 7 kg slot fillers Typical A 36 Tektronix Logic Analyzer Family User Manual Version 4 2 Software Appendix A Specifications for the Benchtop and Expansion Mainframe Table A 41 Benchtop and expansion mainframe mechanical Cont Characteristic Shipping configuration Typical Benchtop controller Expansion module Maximum per slot Rackmount kit adder Size Benchtop controller Expansion module Acoustic noise level Typical Variable fan speed at 860 RPM Full speed fan switched at rear Construction materials Finish type Description 60 Ibs 11 oz 26 7 kg minimum configuration with controller only and all standard accessories two manuals five dual wide and one single wide slot filler panels power cord empty pouch front cover keyboard software and cables 187 lbs 85 kg fully configured same as above with the addition of five LA modules four TLA7P4 modules one TLA7N4 module and all module standard accessories probes and clips 6 lbs 10 oz
25. H 12 The following information is intended to provide troubleshooting hints in case the logic analyzer fails to complete the startup sequence Refer to Figure H 1 on page H 14 while reading the following paragraphs Tektronix Logic Analyzer Family User Manual Version 4 2 Software Appendix H User Service At power on the mainframe software starts the mainframe and module kernel tests If the mainframe passes the kernel tests it begins to boot the Windows operating system If the mainframe fails the kernel tests it displays the error code s beeps and terminates the startup sequence The Windows operating system starts the resource manager The resource manager ResMan32 performs the following tasks Runs mainframe power on self tests Runs expansion mainframe power on self tests Verifies the power on self test status Inhibits any failed modules Records the power on self test failures Determines the logic analyzer configuration Executes the system controller power on diagnostics Tektronix Logic Analyzer Family User Manual Version 4 2 Software H 13 Appendix H User Service After completing all of the preceding tasks the logic analyzer starts the TLA application which performs the following tasks m Runs power on diagnostics on all installed modules m Runs power on diagnostics on the TLA system m Records the Pass Fail status in the Calibration and Diagnostics property sheet If no failures occur th
26. If the firmware versions do not match power down the mainframe remove the module from the mainframe and update the label Complete the following steps to upgrade the module firmware on the TLA7Lx TLA7Mx TLA7Nx TLA7Px or TLA7Qx logic analyzer modules and the TLA7Dx or TLA7Ex DSO modules These modules require you to install a jumper on the rear of the module before you can upgrade the firmware 1 Note which of the modules that may require new firmware If any modules are missing from the System window you can verify the status of the modules by doing the following steps a Select System Properties in the System menu b Click the Modules tab c Note the information under the Messages column for any installed modules If any modules indicate invalid or similar messages you must update the firmware for those modules Turn off the logic analyzer and disconnect the power cord Tektronix Logic Analyzer Family User Manual Version 4 2 Software Appendix G Installing Software 3 Disconnect any probes connected to the modules that you want to upgrade 4 Remove the modules from the logic analyzer 5 Refer to Figure G 1 and locate the flash programming pins on the rear of each module 6 Install a jumper on the flash programming pins use one of the spare jumpers that came with your logic analyzer 7 Reinstall the module s in the logic analyzer
27. Table 3 15 Automatic waveform measurements Measurement Description High The value used as 100 whenever high reference mid reference or low reference values are needed such as in fall time or rise time measurements This value can be calculated using either the min max or histogram method Low The value used as 0 whenever high reference mid reference or low reference values are needed such as in fall time or rise time measurements This value can be calculated using either the min max or histogram method Amplitude This voltage measurement is the high value less the low value measured over the entire waveform or gated region Maximum This voltage measurement is the maximum amplitude It is typically the most positive peak voltage and is measured over the entire waveform or gated region Minimum This voltage measurement is the minimum amplitude It is typically the most negative peak voltage and is measured over the entire waveform or gated region Peak to Peak This voltage measurement is the absolute difference between the maximum and minimum amplitude in the entire waveform or gated region Positive Overshoot This voltage measurement is measured over the entire waveform or gated region and is expressed as Positive Overshoot Maximum High Amplitude x 100 Negative Overshoot This voltage measurement is measured over the entire waveform or gated region and is expressed as Negative Overshoot Low Mi
28. Tektronix Logic Analyzer Family User Manual Version 4 2 Software 3 51 Setup Setting Up the DSO Module DSO Probe Calibration 3 52 Before acquiring and displaying an analog waveform you must first set up the DSO using the DSO Setup window You can set the vertical horizontal and trigger parameters manually or you can use Autoset for a quick automatic setup based on the input signal NOTE The setup and data windows operate independently you cannot change setup parameters by changing the data display Once you acquire data you can manipulate the display but that will not change the input settings used to acquire the data You must return to the DSO Setup window to change input settings which take effect with the next acquisition To open the DSO Setup window go to the System window and click the DSO Setup button TF Setup DSO 1 Sei Channel 1 Channel 2 Channel 3 Channel 4 Horizontal Trigger Vertical Input Voltage Range vo zal peecereceoroeecceeecier ila pfu neh pk pk volts ba Z i f Dttset 3v H ee Minimum 500m s Termination EE Bandwidth Fui C g 4 Coupling for EIME Frobe Cal Signal Name Channen Probe Type 1 Figure 3 33 DSO Setup window Probe calibration optimizes the signal path for this probe channel module combination For maximum accuracy execute Probe Cal if either of these conditions have occurred m The ambient temperature has changed more t
29. To check the P68xx probes connect the probes to a signal source start an acquisition and verify that the acquired data is displayed in either the listing or waveform windows If available use the TLACAL2 fixture to run the performance verification For further details refer to the performance verification procedure in the TLA7Axx Logic Analyzer Module Service Manual Back up your user files on a regular basis Use the Windows back up tools or copy the files to floppy disks to a network drive or to another media Always keep a backup copy of files that you access on a regular basis Tektronix Logic Analyzer Family User Manual Version 4 2 Software Getting Started Removing the Replaceable Hard Disk Drive TLA700 Series Only while the instrument is powered on Always power down the instrument before N CAUTION To avoid permanently damaging the hard disk drive do not remove it removing the hard disk drive 1 Verify that the instrument is turned off 2 Remove the replaceable hard disk drive cartridge by depressing it to release the latch 3 Pull on the replaceable hard disk drive cartridge to remove it from the chassis Figures 1 17 1 18 and 1 19 show the procedures for removing the hard disk drive for the benchtop controller and for the portable mainframe NOTE The TLA600 series logic analyzers do not have replaceable hard disk drives ffi Se Ve CQ GS PAPAS A aS ASAD SA S
30. Trigger when A to B is gt time T Trigger when A to B is lt time T Trigger when the system under test hangs Description Triggers if Event A occurs up to N times in the duration between Event B and the specified time following B This program is not designed to work with Timer or Counter event types for user selectable events Timer values are adjusted to the module timing resolution which can be 2nS or 4nS depending on the module type Triggers on Event C if Event A occurs N times between Event B and Event C This program is not designed to work with Timer or Counter event types for user selectable events Triggers if Event A occurs N times between Event B and the specified time after Event B This program is not designed to work with Timer or Counter event types for user selectable events Timer values are adjusted to the module timing resolution which can be 2nS or 4nS depending on the module type Triggers on Event B if Event B follows Event A after a specific amount of time This program is not designed to work with Timer or Counter event types for user selectable events Timer values are adjusted to the module timing resolution which can be 2nS or 4nS depending on the module type Triggers on Event B if Event B follows Event A within a specific amount of time This program is not designed to work with Timer or Counter event types for user selectable events Timer values are adjusted to the module timing resolut
31. across all channels Channel to channel skew sample uncertainty Example for a P6860 high density probe and a 2 ns sample period 400 ps 2 ns 2 4 ns Tektronix Logic Analyzer Family User Manual Version 4 2 Software A 45 Appendix A Specifications for the TLA7Axx Logic Analzyer Modules Table A 49 Clocking Cont Characteristic Synchronous clocking Master clock channels Unused clock channels can be used as qualifier channels Merged slave clock channels 64 4 channel modules and 32 2 channel modules cannot be merged Qualifier channels Setup and hold window size data and qualifiers Setup and hold window size data and qualifiers Typical Setup and hold window range Description Product Clock channels 32 2 module 2 64 4 module 4 96 6 module 4 128 8 module 4 Product Clock channels 96 6 module 4 128 8 module 4 Product Qualifier channels 32 2 module 0 64 4 module 96 6 module A N O 128 8 module P6860 high density probe 750 ps P6860 high density probe 625 ps The setup and hold window can be moved for each channel group from 8 0 ns Ts typical to 8 0 ns Ts typical in 0 125 ns steps setup time The setup and hold window can be shifted toward the setup region by 0 ns 4 ns or 8 ns With a 0 ns shift the range is 8 ns to 8 ns with a 4 ns shift the range is 12 ns to 4 ns with an 8 ns shift the range is 16 ns to 0 ns The sample point selection
32. m iView Integrated View of Your TDS Data on Your TLA Display Introduced as part of Version 4 1 TLA Application Software iView has now been enhanced to include support for the TDS3000 3000B TDS5000 TDS6000 TDS7000 CSA7000 TDS600C and TDS700 Series oscillo scopes m EasyTrigger Introduced as part of Version 4 1 of the TLA Application Software EasyTrigger has now been enhanced to include support for the TLA7Axx logic analyzer module and its new triggering capabilities Examples include snapshot recognizer demux 2X 4X decrement counter 16 transition edge recognizers and independent MagniVu trigger m Version 4 2 TLA Application Software Newest version of TLA600 700 application software has been enhanced to support the TLA7Axx logic analyzer module and requires Windows 2000 Professional Windows 2000 Service Pack 2 is now standard Your existing TLA60x 61x 62x instrument or TLA715 721 mainframe can easily be upgraded to Version 4 2 with the appropriate TLA6UP or TLA7UP Field Upgrade Kits All existing TLA setup and data files are fully forward compatible with Version 4 2 TLA application software Version 1 3 of the PatGen Application software and PatGenVu are also included Tektronix Logic Analyzer Family User Manual Version 4 2 Software xxiii Preface Contacting Tektronix xxiv Phone 1 800 833 9200 Address Tektronix Inc Department or name if known 14200 SW Karl Braun Drive P O Box 500 Beaverton OR 97077
33. 3 0 kg 3 Ibs 1 4 kg 5 Ibs 2 27 kg 20 Ibs 9 1 kg Three slots wide Single slot wide 43 2 dBA weighted front 43 8 dBA weighted back 66 2 dBA weighted front 66 2 dBA weighted back Chassis parts aluminum alloy Front panel and trim pieces plastic Circuit boards glass laminate Mainframes are Tektronix silver gray with dark gray trim on fan pack and bottom feet support rails Benchtop controllers are Tektronix silver gray on front lexan and injector ejector assemblies with a black FDD and PC card ejector buttons Tektronix Logic Analyzer Family User Manual Version 4 2 Software A 37 Appendix A Specifications for the Benchtop and Expansion Mainframe 16 7 in le 26 5 in ea 42 4 cm 67 cm j 1 E pE EOE TE 13 7 in Fr mi E E 85 cm o Fo Ae 13 3 in 34 cm y y Figure A 4 Dimensions of the benchtop and expansion mainframe 18 9 in 28 9 in 73 4 cm Min to 48 cm 33 9 in 86 1 cm Max g o 13 25 in 33 66 cm yo Figure A 5 Dimensions o
34. Figure 2 26 Acquiring an analog signal DSO module LA Module Block Diagram The LA module is the key element of the instrument Functionally the LA mod ule can be divided into several blocks as shown in Figure 2 27 Refer to the figure as you read about the functional blocks Comparator Data from target system Threshold Trigger voltage Clock Internal asynchronous or External synchronous Figure 2 27 Block diagram of the LA module acquisition and storage Clocking Clocks control when data is sampled The point at which you sample data has a great deal to do with the type and quality of data you acquire For the LA module there are two primary approaches to clocking external synchronous clocking and internal asynchronous clocking Generally you use external clocking for listing data and internal clocking for waveform data 2 28 Tektronix Logic Analyzer Family User Manual Version 4 2 Software Operating Basics External Synchronous Clocking This clocking mode is called an external or synchronous clock because the clock is external to the logic analyzer and is synchronized to the target system External clocking is the best choice when you are primarily interested in state aspects of the data The signal you chose as the external clock to the logic analyzer should be the signal that controls the activity of the other signals you want to observe For example to observe the output states of a counter ch
35. Figure 3 67 Measurement Setup dialog box 0005 3 99 Figure 3 68 Sawtooth waveform with automatic measurements 3 102 Figure 3 69 Using the Go To dialog box to jump to the SYSTEM NIGGER yri sic See eS he ace EARNAN E FERRE eee bs hee eee 3 103 Figure 3 70 Using the Overview Mark bar to jump to a data location ss sessies isma t cece cece cece ee eee erase eens 3 103 Figure 3 71 Defining search criteria 0 ccc cece eee eee 3 104 Figure 3 72 Suppressed samples in a Waveform window 3 105 Figure 3 73 Lock Windows dialog box 0eeceeeeees 3 105 Figure 3 74 MagniVu data cece cece cece e cere ree eees 3 106 Figure 3 75 Route to DSO dialog box cece ee eeees 3 109 Figure 3 76 Changing analog multiplex data from the Waveform window cece ccc cee cece eee eeeeeevees 3 109 Figure 3 77 Route from LA dialog box e cece evens 3 110 Figure 3 78 Selecting compare data colors in the Waveform Window property page ec cee eeeevees 3 112 Figure 3 79 Add Waveform dialog box eceeeeeeeees 3 113 Figure 3 80 Waveform with a glitch 0 cece cece ween 3 114 Figure 3 81 Waveform tab of the Waveform Properties dialog DOX srera tsnena EE oe opens Ae es de 3 115 Figure 3 82 Example of an overlay waveform 6 3 117 Figure 3 83 Waveform properties tab ccc eee ee ence 3 117 Figure 3 84 Listing window cece
36. Figure 3 81 Waveform tab of the Waveform Properties dialog box Exporting Waveform Data You cannot export waveform data directly However you can add DSO waveform information as a column in a Listing window and then export the data as a listing file Refer to Exporting Listing Data on page 3 130 for more information on exporting data Tektronix Logic Analyzer Family User Manual Version 4 2 Software 3 115 Waveform Window Waveform Window Shortcut Keys You can use the general purpose shortcut keys listed in Table 3 19 to move data and cursors in the Waveform window You should also refer to the discussions of short cut keys in the online help or under the section for the individual data windows The shortcut keys also known as accelerator keys or hot keys abide by the following rules m Arrow keys with no modifier keys scroll data m Arrow keys with the Control CTRL key move the active cursor m The Shift key increases movement by a factor of 10 Table 3 19 Waveform window shortcut keys Desired action Key combination Go to next trigger CTRL T Display Go To dialog box CTRL G Move Cursor 1 to the center of the window CTRL 1 Move Cursor 2 to the center of the window CTRL 2 Zoom in CTRL Zoom out CTRL U Add a mark CTRL K Add a waveform CTRL W Scroll data left 50 pixels Shift Left arrow Scroll data right 50 pixels Shift Right arrow Move active cursor left five pixels CTRL Left
37. Front panel characteristics Characteristic Description SVGA output port SVGA Two 15 pin sub D SVGA connectors Dual USB ports Two USB Universal Serial Bus compliant ports Mouse port Front panel mounted PS2 compatible mouse port utilizing a mini DIN connector Keyboard port Front panel mounted PS2 compatible keyboard port utilizing a mini DIN connector Parallel interface port LPT 36 pin high density connector supports standard Centronics mode Enhanced Parallel Port EPP or Microsoft high speed mode ECP Serial interface port COM 9 pin male sub D connector to support an RS232 serial port PC CardBus32 port Standard Type and II PC compatible PC card slot Type I Il and Ill PC Card Port Standard Type I Il and III PC compatible PC card slot Tektronix Logic Analyzer Family User Manual Version 4 2 Software A 41 Appendix A Specifications for the TLA720 Benchtop Controller TLA720 Benchtop Controller Characteristics Tables A 44 through A 45 list the specifications for the TLA720 Benchtop Controller Table A 44 TLA720 benchtop controller characteristics Characteristic Description Operating System Microsoft Windows Microprocessor Intel Pentium 266 MHz PC AT configuration with an Intel chip set Main Memory SDRAM Style Two 144 pin SODIMM sockets support one or two SDRAM modules Installed Configuration 128 MB Two 64 MB SDRAM modules installed Speed
38. Loading Saved Data You can load saved data using the Load Data Window selection in the Window menu See Opening a Saved Data Window on page 3 89 for more information Loading a Saved Trigger You can load an LA module trigger without loading a full setup Saved system and module files contain trigger program information When you load a trigger from the LA Trigger window you can select a saved system or module file as the source When you do so the logic analyzer extracts only the trigger information from the file and loads it to the module NOTE An error message displays when you are loading a setup file that contains a module self trigger that will overwrite the existing system trigger setup If you want to keep your current system level triggering click Yes Otherwise click No Tektronix Logic Analyzer Family User Manual Version 4 2 Software Setup Creating a Personalized Trigger folder To create your own list of trigger programs follow these steps par Sk ON a ee ES Create a folder in a convenient location Go to the Trigger window containing the trigger program you want to save Go to the File menu and select Save Module As In the Save As dialog box navigate to your trigger program folder Name the new file and use the Comment box to enter descriptive comments Make sure that Save Acquired Data is not selected Click Save Loading Default Settings To return the logic analyzer to its default condition go t
39. Move active cursor down 10 samples CTRL Shift Down arrow Tektronix Logic Analyzer Family User Manual Version 4 2 Software 3 133 Listing Window 3 134 Tektronix Logic Analyzer Family User Manual Version 4 2 Software ees Source Window Use the Source window to display the high level language HLL source code as it is executed by your target system and acquired by the logic analyzer The logic analyzer links the Source and Listing windows and provides additional tools to help you view the tools and data See Figure 3 95 for an example of a Source window The data area of the Source window lists the content of the source file including line numbers for each source code statement The path name of the file displays immediately above the source data if front rear 5 return TRUE else return FALSEs eRe e Meee ead ated a eee a eae aaa teen e aaa iaaatadatadacinae Routine to check if queue is full POT Hi queveF ul if rear 1 QUEUE SIGE front return TENE return FALSE Figure 3 95 Source window You can use controls to step through data move between user defined marks and scroll through data These controls directly affect the active cursor in the associated Listing window and indirectly affect the active cursor in the Source window Tektronix Logic Analyzer Family User Manual Version 4 2 Software 3 135 Source Window Creating a Source Window Bef
40. SMPL inverted logic on backplane 364 ns SMPL All system trigger and external signal input latencies are measured from a falling edge transition active true low with signals measured in the wired OR configuration In the Waveform window triggers are always marked immediately except when delayed to the first sample In the Listing window triggers are always marked on the next sample period following their occurrence Clk represents the time to the next master clock at the destination logic analyzer In the asynchronous or internal clock mode this represents the delta time to the next sample clock beyond the minimum asynchronous rate of 4 ns In the synchronous or external clock mode this represents the time to the next master clock generated by the setup of the clocking state machine and the supplied system under test clocks and qualification data Signals 1 and 2 ECLTRGO 1 are limited to a broadcast mode of operation where only one source is allowed to drive the signal node at any one time That single source may be utilized to drive any combination of destinations SMPL represents the time from the event at the probe tip inputs to the next valid data sample In the Normal Internal clock mode this represents the delta time to the next sample clock In the MagniVu Internal clock mode this represents 500 ps or less In the External clock mode this represents the time to the next master clock generated by the setup of th
41. Saving and Loading Setups Triggers and Data 08 3 75 System Options rae soils gs seas aaea aAA a TE ed Ges O SRG aes Mada deal 3 79 Menu Shortcut Keys n isis sees sod i de seek ote Bids EAE wed a T ER ees aad dea 3 80 ACQUISITION serea oes Sih Hace FAS Bs Seas ba Mae elation Sues aes 2 3 81 Starting and Stopping Acquisition 0 0c eee eee eee eee 3 81 Viewing Acquisition Activity 0 eee cee eee eee eee nee 3 83 If the Logic Analyzer Does Not Trigger 0 0 00 cee eee eee 3 84 Display EEEN E Arete E EE 3 87 Opening an Existing Data WINdOW roereier ees Miwa AA 3 88 Opening a Saved Data Window 0 ccc ce eee eee 3 89 Aligning Saved Data with Current Data 000 0000 eee 3 89 Creating a New Data Window 0 0 cece cee eee eens 3 90 General Purpose Data Window Shortcut Keys 0 00 000 3 91 Waveform Window is sisi cee Nees te eee causes sete de estes 3 93 Types of Waveforms 0 cee ee ee eee eens 3 94 Reading the Waveform Indicators 0 cece cee eee ee eee 3 96 ZOOM BOX bested EA elder boast dea Gh A N A E ol A a E A A AAA 3 97 ii Tektronix Logic Analyzer Family User Manual Version 4 2 Software Table of Contents Taking Cursor Measurements 0 0 0 0 eee cece ee eee eens 3 98 Automatic Waveform Measurements 0 0000 cece eee ee eee 3 99 Jumping to Specific Data Locations 0 cece eee e
42. THIS BET WINKOWS aition aro naie aia rondate Kaa oari eio dal arn ils Dita WINDOWS os 5 sb te sede secs Seeley onan ee ae Sal e r eh nR Magni V Data cis sccrdige cee salarcligs oiii Kaai oii eia alana ions Saving and Loading Setups and Data 0 eee eee eee eee Customizing the Display 0 eee eee cee eee eens Programmatic Control sese rieni oni eee eee eee een E Approaching the Pattern Generator Application Windows System Window ses x5 nes cowie Yea ed Genes Hie eee Relat ee eRe ets Tektronix Logic Analyzer Family User Manual Version 4 2 Software xvii xix Pe reat a abs arteries esa WNNNNNNRP RP PR PONWNFRFTOTAADADNOONAABRWNPFR NY NNNNNN l PRR i 1 1 m Nm OmAANIAANFPOM M ANNA re m wy NS NNN NNN PD m I NN Table of Contents Setup WIndows beryar iento reai bea ge Ge aad o ae nd Bea ieee ee 2 22 Pi giam Wind OW a esre neien tarena aT Shei aches ae E Sali aceon ara 2 23 PG Run Properties Dialog Box 0 0 ce eee ee ti kanen terat 2 26 Operating Basics ccc ccc c cece cece reece reece T 2 27 Sampling and Digitizing a Signal 0 0 eee eee ee eee 2 27 LA Module Block Diagram 0 0 cee cece eee 2 28 DSO Module Block Diagram 00 0 cece eee eee ene 2 30 Pattern Generator Module Block Diagram 0 00000000 2 31 Logic Analyzer Physical Model 0 0 0 ccc cee eee ee eee 2 33 Logic Analyzer Conceptua
43. Width Depth 10 32 in 262 mm 3 6 in 83 mm 14 7 in 373 mm Tektronix Logic Analyzer Family User Manual Version 4 2 Software A 43 Appendix A Specifications for the TLA7Axx Logic Analzyer Modules TLA7Axx Series Logic Analyzer Module Characteristics Tables A 46 though A 54 list the specifications of the TLA7Axx Series Logic Analyzer modules Table A 46 TLA7Axx input parameters with probes Characteristic Threshold accuracy Certifiable parameter Threshold range and step size Threshold channel selection Channel to channel skew Channel to channel skew Typical Sample uncertainty Asynchronous Synchronous Minimum slew rate Typical Input voltage range Maximum operating voltage swing Probe overdrive Single ended probes Differential probes Description 25 mV 1 of the threshold voltage setting Setable from 4 5 V to 2 0 V in 5 mV steps 16 threshold groups assigned to channels Each probe has four threshold settings one for each of the clock qualifier channels and one per group of 16 data channels 400 ps 300 ps Sample period 125 ps 0 2 Vins 2 5 V to 5 V 6 0 V peak to peak 150 mV or 25 of signal swing minimum required beyond threshold whichever one is greater Vpos Vneg is 150mV gt p Maximum nondestructive input signal to probe 15 V Minimum input pulse width single channel Typical P6860 and P6880 probes 500 ps P6810 probes 750 ps
44. aE A EEA ERI e anle 0 Timerdiv 450ps SE gl Add mark f Properties Zoom to selection Add waveform Go To Moving Waveforms Select the waveform labels and drag them to their new location 3 112 Tektronix Logic Analyzer Family User Manual Version 4 2 Software Waveform Window Adding a New Waveform Click the tool bar Add Waveform button to open the Add Waveform dialog box or a Data Source Then select the data source and its associated group or channel to add it to the display To select a group first click By Group See Figure 3 79 Then from the list select a group name indicated by the symbol Default groups are displayed as busforms You can also choose to display a group as a magnitude waveform Double click the waveform label From the waveform properties page click Options and select Magnitude To select individual channels first click By Probe Then from the list select the channel s If you have named individual channels in the LA Setup window you can click By Name to list just those channels If the data source you want is not listed click Add Data Source and find and select the source The data source can be any logic analyzer data from a saved module file See Figure 3 79 New waveforms are added after the selected waveforms or after all waveforms if none are selected Add Waveform HE m Data Source flat Maognivu 7 Select Close amp ByGroup By Probe By Name Help Group
45. lod file for each module Note the slot number in the title bar so that you select the correct module for the lod file 9 Click OK You will be prompted to confirm your action click Yes Tektronix Logic Analyzer Family User Manual Version 4 2 Software G 21 Appendix G Installing Software Upgrading the TLA7Lx TLA7Mx TLA7Nx TLA7Px TLA7Qx or DSO Firmware G 22 NOTE The program will not allow you to load firmware to an incompatible module For example the program will not load DSO firmware to a logic analyzer module 10 11 12 13 14 15 16 17 18 The program will load the firmware for each module one at a time The process may take several minutes per module Exit the firmware loader program and power down the logic analyzer You must power down the logic analyzer to allow the TLA application to start up properly Remove the logic analyzer module from the mainframe Locate the big label on the side of the module Record the firmware version that is printed on the label You will need this information to see that the firmware version matches the label Reinstall the module in the mainframe and power on the mainframe After the logic analyzer completes the power on diagnostics select System Properties from the System menu Click the module tab for example LA1 Verify that the firmware version for the selected module matches the version on the label that you recorded in step 13
46. logic analyzer when it exports symbol files The logic analyzer can also read files in this format TLA symbol files consist of alphanumeric symbol names and associated data values The files contain a header line and lines defining the symbol names and values Fields on a line are separated with white space blank spaces or tabs The formats for the pattern symbol files and the various range symbol files differ if you need to use pattern symbols and range symbols use separate files Both TLA range and pattern symbol files have a tsf file name extension filename tsf The first few lines of a TSF symbol file are typically comment lines describing when and how the file was generated TLA Symbol File Created on Friday May 29 1998 at 09 52 03 From file c quickstart tla7qs x All lines in a TSF file that begin with a number sign character are treated as comments unless the very next character is a plus sign The plus sign signifies a file reader directive An example of a file reader directive can be seen in the TSF header definition on the next page The number sign character can also initiate a comment on the end of a symbol definition or other uncommented lines All text between the number sign and the end of the line is treated as a comment and ignored Tektronix Logic Analyzer Family User Manual Version 4 2 Software B 1 Appendix B TLA Symbol File Format TSF Headers B 2 A TSF header identi
47. m Saved data from the module accomplished by opening a saved data window see Opening a Saved Data Window on page 3 89 From a saved system file you can load any of the following m Any of the previous module related choices m Full system setup including data windows m Saved data from one or more modules You execute Load operations from the File menu For module Load operations you must first go to the module Setup or Trigger window before accessing the File menu Loading a System When you load a system you load the full system setup which includes setup data and trigger information for the logic analyzer and all installed modules If the saved system file included data the data windows and saved data are also loaded Tektronix Logic Analyzer Family User Manual Version 4 2 Software Setup When you try to load a saved system with a different module configuration than your current system the logic analyzer displays a dialog box see Figure 3 54 giving you the option of using a suggested configuration The suggested configuration is listed at the bottom of the dialog box Click OK to accept the suggested configuration NOTE If you load a setup that you saved with suppressed samples the sup pressed samples are not present in the setup TLA Ej The saved system configuration does not match the current system configuration Modules in the saved system will be mapped to modules in the current system as shown be
48. select a trigger program that is close to what you require and then use the functionality contained in the PowerTrigger tab to alter the program as necessary Once you have customized the trigger you can save it in a trigger folder that you create You can later retrieve the saved trigger program alone or with the related saved module or system information For information on loading trigger programs refer to the online help Table 3 3 lists the programs in the EasyTrigger list and a brief description of each trigger program Table 3 3 EasyTrigger program list File name Description Simple Events Trigger immediately Triggers on the very first sample irrespective of the event type Wait for system trigger The LA module is triggered when some other module sends a system trigger or the Run Stop button is pressed Tektronix Logic Analyzer Family User Manual Version 4 2 Software Setup Table 3 3 EasyTrigger program list Cont File name Run until the Stop button is pressed Trigger on channel low high level Trigger on channel transition edge Trigger on current sample using snapshot Trigger on 2X clocking group match Trigger on 2X clocking channel match Trigger on 4X clocking group match Trigger on 4X clocking channel match Trigger on glitch Description Acquires samples until Run Stop button is pressed Triggers when the desired channel satisfies the specified condition
49. selected waveform i S JOC JE OD i EE R Changes Time Div in Waveform window only the Waveform window Figure 2 2 TLA715 Portable mainframe front panel Keyboard For the portable mainframe you can use the front panel keys as an alternative to an external keyboard Most keys and key combinations are available using the front panel For key combinations it is not necessary to hold down more than one key at a time For example you can press the SHIFT key in the hexadecimal keypad and then press a keypad key to accomplish a Shift key combination The same is true for other key combinations such as CTRL and ALT keys GlidePoint Pad The TLA714 Portable Mainframe has a GlidePoint pad as an alternative to the mouse To move the pointer slide your finger lightly over the surface of the pad Tap the surface to simulate a click of the left mouse button or use the control buttons to select the type of operation __ sevect LEFT C Jmenu RIGHT a _ prac 6 Figure 2 3 GlidePoint pad Tektronix Logic Analyzer Family User Manual Version 4 2 Software Functional Overview Trackball The TLA715 portable mainframe has a Trackball as an alternative to the mouse To move the pointer roll the trackball in the direction that you want the pointer to go Press the Select button to simulate a click of the left mouse button or use the control buttons to select the type of operation Press the Menu button to simulate
50. the Search Progress dialog box shows the status of the search You can let the search continue or you can click Abort to stop the search Adjusting the Source Window There are a number of actions you can perform in the Source window to get the exact view of the data that you want You can access most of the shortcuts from the Source window tool bar Add mark Copy A lal l Scan Listing Later Xu IN 2 v v Go To Font Size Search Cut Paste Properties Changing the Display Font Size Cut Copy Paste Turning Line Numbers On or Off Click the Font Size tool bar buttons shown in the previous figure You can continue to click the tool bar buttons until the text reaches the desired size You can also set the font to a specific size using Source window properties You can cut copy and paste columns and marks You can also copy text data to the clipboard From there you can paste it to other areas such as the Define Search dialog box or the Clause Definition dialog box in the Trigger window Turn source line numbers on or off by clicking Line Number Column in the View menu Customizing the Source Window Data Area 3 142 Use the Source properties dialog box to customize data in the Source window The related properties tabs control aspects of the source display such as source files text size colors tab spacing and source file locations Click the Properties tool bar button to open the Sou
51. txt Tektronix TLA data exchange format files Once you find the files copy or drag them to the external storage device Use this procedure to find any files or applications that you may want to save If you purchased any microprocessor support packages you need to reinstall the application after you reinstall the hard disk image If you don t have a copy of the microprocessor support software contract your Tektronix Account Manager to order a replacement copy If you cannot contact the account manager contact the Tektronix Support Center refer to Contacting Tektronix on page xxiv at the beginning of this document Tektronix Logic Analyzer Family User Manual Version 4 2 Software Appendix G Installing Software NOTE You can reinstall Windows 2000 Professional SnagIt CheckIt Utilities and other software only from the Hard Disk Image CD that came with your instrument These software applications are licensed and cannot be reinstalled by any other method without violating the license agreements Installing Windows 2000 This procedure reformats the hard disk installs the Windows 2000 Professional Professionalandthe TLA Operating system software and installs the Tektronix Logic Analyzer application Application Software software Because this procedure reformats the hard disk drive be sure to back up any files or software that you want to preserve by following the steps in the previous section CAUTION To avoid losing
52. 00000000 0000 e RESET 3 os cOOLOLOL 7 2057154 00020202 0202 3 i 2037155 00030303 0303 RESET wo 2097156 00040404 0404 2097157 o0050505 C RESET CS3 2 C RESET J 2097159 00070707 RESET s 2097160 00080808 0808 Hiie u aeh Data mark bar gt Begin data mark fine control BUS ERROR Ceos ERROR OO O BACKGROUND WRITE J W BACKGROUND READ QU SS Sse BUS SBUSRERR OR T I BACKGROUND IRITE ES ROU Overview mark bar 1 Cursor 1 gt coarse control System trigger ly Cursor 2 User mark gt orie FOAD oaa t BACKGROUND EITE J 09 End data mark 097163 OOOBOBOB OBOB BACKGROUND READ Split box Figure 3 85 Listing window cursors and marks Table 3 20 Listing window cursor and mark summary Mark Name Description T System trigger The system trigger is the reference point for the acquisition Timing and location information is relative to the system trigger Trigger marks cannot be moved Under some conditions the system trigger associated with a module s data might not be displayed in the data window If the system trigger was caused by another module whose data is not included in the current display then the system trigger is not shown Nevertheless all time measurements still relate to that system trigger even if it is not shown The system trigger associated wi
53. 137 Table 3 23 Source window shortcut keys eeeeeeeee 3 145 Table 3 24 Histogram window shortcut keys 000 3 153 Table A 1 Atmospheric characteristics ce cee eeeees A 2 Table A 2 Certifications and compliances eee00e A 3 Table A 3 TLA600 input parameters with probes A 5 Table A 4 TLA600 timing latencies 2 eee e eee A 6 Tektronix Logic Analyzer Family User Manual Version 4 2 Software xiii Table of Contents xiv Table A 5 TLA600 external signal interface A 7 Table A 6 TLA600 channel width and depth A 8 Table A 7 TLA600 clocking 0 cc cece cece ee ee eee A 9 Table A 8 TLA600 trigger system cece eee e eee eee A 10 Table A 9 TLA600 MagniVut feature cece eee eee A 13 Table A 10 TLA600 Data handling cece eee ewes A 13 Table A 11 TLA600 internal controller eee e wees A 13 Table A 12 TLA600 display system cece ee eee eens A 14 Table A 13 TLA600 front panel interface 000 A 14 Table A 14 TLA600 rear panel interface 0e eens A 15 Table A 15 TLA600 AC power source cee eeeeeees A 15 Table A 16 TLAG600 cooling ccc cece eee eee A 15 Table A 17 TLA600 mechanical characteristics A 16 Table A 18 TLA700 Backplane interface 0e 000s A 17 Table A 19 TLA700 Backplane
54. 15 Getting Started Figure 1 12 Connecting the pattern generator probes First Time Operation The first time your logic analyzer is turned on you will see a TLA Final Setup icon on your desktop Double click the icon to launch the application for the first time The TLA application will automatically start every time you power on the instrument If you have a TLA700 series logic analyzer with a pattern generator software and module installed the pattern generator application will also automatically start Turning On the TLA600 Series Logic Analyzer Follow these steps to turn on the logic analyzer for the first time CAUTION Connect the keyboard mouse and other accessories before applying power to the logic analyzer Connecting the accessories after turning on the logic analyzer can damage the accessories 1 Check that the line fuses are correct for your application The instrument uses two fuses both fuses must be the same See Table 1 2 1 16 Tektronix Logic Analyzer Family User Manual Version 4 2 Software Getting Started Table 1 2 TLA600 series line fuses Line voltage Rating Tektronix part number 90 V to 132 V operation 8 A fast blow 250 V 159 0046 xx 207 V to 250 V operation 6 3 A fast blow 250 V 159 0381 xx 2 Connect the power cord See Figure 1 13 3 Ifyou have an external monitor connect the power cord and turn on the monitor TD fee al e Nal de aE 0 0 460 C O00
55. 2 Software xxi Preface xxii and a Snapshot Recognizer In the External 2X 4X modes events up to the maximum data rate of 1 25 Gb s can be used for triggering 128 KB to 64 MB Memory Depth Increased memory depth enables triggering on the symptom of a problem and capturing the cause when they are widely separated in time Memory depth configurations of 128 KB 512 KB 2 MB 8 MB and 64 MB are available Another benefit of the MagniVu acquisition technology is the separate 51 bit 125 ps resolution time stamp memory that provides automatic and accurate time correlation over a 3 25 day duration with data from any other module with a typical correlation accuracy of 2 ns 2 0 GHz Analog Multiplexer Routes the analog signal of any four logic analyzer channels to either an internal or external DSO eliminating the need to double probe signals Using iView data from an external DSO can be correlated on the TLA display to quickly track down elusive digital signal quality problems Low Capacitance Connectorless Smart Probing System This system combines analog and digital measurements through a single probe connec tion providing immediate analog measurements access to all digital signals Both high density and general purpose probes are available and feature an ultra low 0 7 pF 1 0 pF for GP probes in group configuration and 1 0 pF total probe input capacitance respectively Single ended and differential logic signals are supported as w
56. 3 9 Truth Table for the COMMAND group 3 12 Figure 3 10 Typical DDR SDRAM consecutive WRITE to WRITE 2 0 ccc ccc ccc ce cece cee eee e eens 3 13 Figure 3 11 Edge Detector assignments cece eeeee 3 14 Figure 3 12 Clock Groups selection csc eeceeeeees 3 14 Figure 3 13 Sample Clocks equations ceeceeeeees 3 15 Figure 3 14 Group Clocking programming 0005 3 16 Figure 3 15 Probe Demux channel selections 62 3 16 Figure 3 16 Source and destination probe channels in Internal 2X Clocking mode cece cece ce ceeeeee 3 20 Figure 3 17 Channel grouping table in the Setup window 3 21 Figure 3 18 Analog Feeds dialog box ceeeeeeeees 3 21 Figure 3 19 Route from LA dialog box e cece eeees 3 24 Figure 3 20 Route to DSO dialog box cece eee eeee 3 25 Figure 3 21 Activity Indicators dialog box eee0e 3 26 Figure 3 22 Probe Thresholds dialog box e0eeeeee 3 27 Figure 3 23 Probe Info dialog box cece cece eee eee 3 28 Figure 3 24 Sample EasyTrigger program 0eeee0e 3 29 Figure 3 25 Sample PowerTrigger program 0 000 3 30 viii Tektronix Logic Analyzer Family User Manual Version 4 2 Software Table of Contents Figure 3 26 EasyTrigger tab structure ce cece wees 3 31 Figure 3 27 PowerTrigger tab structure cece eeeee 3
57. 4 2 Software Appendix A Specifications for the External Oscilloscope iView Table A 73 External oscilloscope Integrated View or iView characteristics Cont Characteristic Description Time correlation uncertainty Typical at system trigger Logic analyzer triggers external oscilloscope 2 ns logic analyzer sample period external oscilloscope sample period External oscilloscope triggers logic analyzer 4 ns logic analyzer sample period external oscilloscope sample period 1 If DRAM is less than 256 MB the record length of the external oscilloscope may be limited to 1 M 2 Includes sampling uncertainty typical jitter slot to slot skew and probe to probe variations to provide a typical number for the measurement Tektronix Logic Analyzer Family User Manual Version 4 2 Software A 71 Appendix A Specifications for the External Oscilloscope iView A 72 Tektronix Logic Analyzer Family User Manual Version 4 2 Software A Appendix B TLA Symbol File Format The logic analyzer can extract range symbol information directly from object files The following are some of the formats Check with your Tektronix representative for a complete listing of available formats OMF51 OMF86 OMF166 OMF286 OMF386 IEEE695 COFF ELF DWARF1 and DWARF2 and ELF STABS Users whose code generation tools do not generate these file formats can use TLA Symbol File TSF format a text format The TSF format is used by the
58. 42 Figure 3 28 Overview portion of LA Trigger window 3 43 Figure 3 29 Trigger detail portion of LA Trigger window 3 43 Figure 3 30 Clause Definition dialog box Trigger Resources list box cc cece ecw cece ec eeceees 3 44 Figure 3 31 Clause Definition dialog box Trigger Actions list box cece cece cece cece ee eee 3 47 Figure 3 32 Using trigger storage sce eee cere eens 3 49 Figure 3 33 DSO Setup window ccceceeccceececes 3 52 Figure 3 34 DSO Setup window vertical input settings 3 54 Figure 3 35 DSO Setup window Horizontal settings 3 55 Figure 3 36 External Oscilloscope Setup tab 006 3 58 Figure 3 37 External oscilloscope trigger tab 00005 3 59 Figure 3 38 External Oscilloscope Connections tab 3 60 Figure 3 39 Module Setup window ceseeeeceeceees 3 61 Figure 3 40 Channel Setup window scceceeceees 3 62 Figure 3 41 Probe Setup window ceceececeecvces 3 62 Figure 3 42 Signals Setup window cecececeeeees 3 63 Figure 3 43 Block Definition window eeeeeeeees 3 64 Figure 3 44 Sequence Definition window 0eeeee 3 65 Figure 3 45 Drag the vertical bar to the left to display the sequence flow graphic 0 cece cece cece c cence ecees 3 66 Figure 3 46 Sequence flow graphic ce cece eeeees 3 66 Figure 3 47 Subsequence Defi
59. 66 Tektronix Logic Analyzer Family User Manual Version 4 2 Software Setup Subsequence Definition Use the Subsequence Definition window to define macros to use in the Sequence Window Definition window Subsequences are useful for defining tasks that you may not want to appear directly in the Sequence Definition window Assign a name for the subsequence in the left side of the window This name will appear in the Sequence Definition window Define the actual tasks data blocks in the right side of the window The block names are the ones you defined in the Block Definition window Figure 3 47 shows an example of the Subsequence Definition window H Tektronix Pattern Generator Program PG 1 BEE Fel File Edit System View Window Help x Saj a R Status_ ide Run x i le m Block Sequence Subsequence Event Subsequence List r Subsequence Definition alpha beta ff aipheeta Linetto Block Hame Repeat O int E E For Help press F1 Tektronix Figure 3 47 Subsequence Definition window Event Definition Window Use the Event Definition window to define events that you can use in the Sequence Definition window Enter an event name in the left side of the window and then define events in the right side of the window Signal events refer to the input backplane input signal that you defined in the Signal Setups window The Probe events refer to the input signals on each
60. Analyzer cross reference TLA7Lx Mx TLA7Nx Px Qx TLA600 TLA7AXx General Purpose Probe P6417 P6418 P6417 P6418 P6417 P6418 P6810 High Density Probe P6434 P6434 P6434 P6860 High Density N A N A N A P68802 Differential Probe 1 Differential clocks with single ended data 2 Differential clocks with differential data General Purpose The P6417 P6418 and P6810 probes provide a means of connecting to the Connections target system for most applications P6417 and P6418 17 Channel Probes Figure 1 20 shows different ways to connect the P6417 and P6418 probes to the target system To provide a secure connection to the LA module you can optionally use the probe retainer bracket with the probe connector Note the location of the ground connections for the probe m The individual podlets have the ground GND engraved on the podlet m When you use the 8 channel leadsets the ground lead is a single black connector Make sure you connect the ground side of the 8 channel leadset to the ground side of the 8 channel podlet holder Refer to the P6417 amp P6418 Logic Analyzer Probe Instructions for information on dimensions for the P6417 and P6418 probes Tektronix Logic Analyzer Family User Manual Version 4 2 Software 1 25 Getting Started P6810 34 Channel Probe The P6810 probe is a 34 channel general purpose logic analyzer probe that is used with the TLA7Axx Logic Analyzer series Figure 1 21 shows how to connect the
61. Clk Signal 1 2156 DSO to TLA7Axx inter module via Signal 1 256 598ns Clk 577 ns Clk TLA7Lx Mx Nx Px Qx to TLA7Axx inter module via 294 ns SMPL Clk 258 ns SMPL Clk Signal 3 415 DSO to TLA7Lx Mx Nx Px Qx inter module via 184 ns Clk 148 ns Clk Signal 3 45 DSO to TLA7Axx inter module via Signal 3 4 598 ns Clk 562 ns Clk SMPL represents the time from the event at the probe tip inputs to the next valid data sample of the LA module In the Normal Internal clock mode this represents the delta time to the next sample clock In the MagniVu Internal clock mode this represents 500 ps or less In the External clock mode this represents the time to the next master clock generated by the setup of the clocking state machine the system under test supplied clocks and the qualification data All system trigger and external signal input latencies are measured from a falling edge transition active true low with signals measured in the wired OR configuration All signal output latencies are validated to the rising edge of an active true high output In the Waveform window triggers are always marked immediately except when delayed to the first sample In the Listing window triggers are always marked on the next sample period following their occurrence Clk represents the time to the next master clock at the destination logic analyzer In the asynchronous or internal clock mode this represents the delta time to the
62. Configuration With dynamic logical address auto configuration selected the instrument automatical ly sets the address to an unused value For example if there are modules set to addresses 01 and 02 already in your system the resource manager will automati cally assign the module an address other than 01 or 02 This allows you to freely move the modules around without reconfiguring the logical address Static logical address selections set the address to a fixed static logical address value You can select any static addresses between 01 and FE hexadecimal 1 to 254 decimal If you set the logical address switches to any other setting than FF you must verify that no two modules or devices share the same address Tektronix Logic Analyzer Family User Manual Version 4 2 Software D 1 Appendix D TLA700 Module Installation Module Address Problems Merging Modules D 2 Least significant digit Most significant digit Figure D 1 Logical address switches All modules are shipped with the logical address switch set to FF This includes the the enhanced monitor board located in the benchtop mainframe which also requires a unique logical address If two modules including the fan controller board are set to the same address the system will not work pr
63. D 1 logical address switch location D 2 merge cable location E 8 merging E 1 merging guidelines E 1 not appearing in the System window D 2 power requirements F 1 expansion mainframe F 1 self calibration 3 73 H 5 static logical address D 1 three way merge procedure E 13 time correlation 2 34 turning on off 3 2 two way merge procedure E 8 Module Setup window Pattern Generator module 3 60 Module trigger Glossary 6 Multiple phase clocking 3 9 Multiplexing analog 3 21 Naming channel groups 3 20 columns 3 129 merged module probe names 3 74 waveforms 3 114 windows 3 2 New Data Window wizard 3 90 Next Mark and Previous Mark buttons 3 139 Normal acquisition mode 3 17 0 Object file format COFF Glossary 2 IEEE695 Glossary 5 OMF166 Glossary 6 OMF286 Glossary 6 OMF386 Glossary 6 OMFS1 Glossary 6 OMF86 Glossary 6 Offset DSO module 3 54 range symbols 2 53 B 2 OMF166 file format Glossary 6 OMF286 386 file formats Glossary 6 OMFS 1 file format Glossary 6 OMF86 file format Glossary 6 On Standby switch benchtop mainframe 1 19 portable mainframe 1 19 TLA600 series 1 17 Online help 1 31 help topics 1 31 Pattern Generator help 1 32 PPI help 1 32 TLAScript 1 32 TPI online help 1 32 What s This help 1 32 Windows online help 1 32 Options system 3 79 Overlay waveforms 3 116 P Panel cover installation D 5 Pattern Generation physical logical conversion C 1 Pattern Genera
64. DSO 1 And Trigger Else lt Arpthing Then GoTo1 Figure 3 29 Trigger detail portion of LA Trigger window The Clause Definition dialog box contains both events and actions that you define to specify the behavior of a given trigger clause Click the If Then button located in the Trigger detail portion of the PowerTrigger tab to display the Clause Definition dialog box Tektronix Logic Analyzer Family User Manual Version 4 2 Software 3 43 Setup Trigger Events Use trigger events to define the If portion of the event clause in the trigger program Figure 3 30 displays the Clause Definition dialog box with the trigger event list box selected Table 3 4 lists the available trigger events and provides a description of each Clause Definition LA 1 State 1 1 x 2x Then Group Radix arm Module D501 had Hex kai And Trigger es Event Name optional Cancel Add Delete Help Figure 3 30 Clause Definition dialog box Trigger Resources list box Table 3 4 Trigger events Event Description Word Tests the channel groups for the word values defined in the Word definition dialog box Group Tests a specified channel group for a specific value a range of values or a value change Channel Tests the specified channel for a value or a value change Snapshot Available only in TLA7Axx modules compares the current acquisition sample with a previously loaded sample in the snapshot recogn
65. Family User Manual Version 4 2 Software Appendix G Installing Software Reinstalling the Pattern Generator Application Software Complete the following steps to reinstall the latest version of the pattern generator application software Use these steps as a first resort to recovering from application software problems If you still experience problems with the software after completing these steps follow the instructions under Restoring the Hard Disk Image beginning on page G 2 While using this procedure you will be asked to log on as Administrator The instrument is initially set up to automatically log on as Administrator with no password so you may not see the login prompt If the network setups have been changed on your instrument make sure that you log on as Administrator or as a user who has administrator privileges Failure to do so can prevent the software upgrade from completing successfully 1 Log on to the instrument as Administrator 2 Install Disc 1 of the Tektronix Logic Analyzer Family Application Software in the CD ROM drive of the logic analyzer 3 Click Run in the Windows Start menu to display the Run dialog box 4 Enter D Pattern Generator Application SW Disk1 Setup exe in the Run dialog box if your CD ROM drive is not the D drive enter the appropriate letter for your drive 5 Click OK to perform the installation If you have an existing version of the software on the hard disk the installation p
66. Figure 2 50 Load Symbol Options dialog box Tektronix Logic Analyzer Family User Manual Version 4 2 Software Operating Basics Select one or more of the symbols types to load If you want to use the symbol file with the Source window you should click the Source Code check box You can enter a decimal number for the maximum number of symbols to load The maximum number of symbols that you can load is limited only by the amount of memory available The file loads symbols until the specified maximum number of symbols is reached Additional symbols are ignored even if they fall within the Bound 1 and Bound 2 range limits The Bound 1 and Bound 2 fields define the range of symbol addresses that will be loaded You can enter any hexadecimal values from 0 through FFFFFFFF Symbols with values outside of these limits are ignored and will not be loaded NOTE If the lower bound of the range symbol is within the Bound 1 and Bound 2 limits and the higher bound is not the entire symbol will be valid However if the higher bound is within the Bound 1 and Bound 2 limits and the lower bound is not the entire symbol will be ignored Select either Default Offset or Custom Offset to apply an offset to the symbol values If you select Default Offset the default offset is read from the source file and applied to each symbol in the file as it is loaded If you select Custom Offset you can add or subtract the specified offset value to each symbol
67. Glossary 5 Glossary Glossary 6 Matched samples A Histogram window term The total number of data samples analyzed that matched a defined range These samples exclude any samples outside of the defined ranges Merge modules To physically or logically join LA modules together to form a single module with greater channel width Microprocessor support Optional microprocessor support software that allows the logic analyzer to disassemble data acquired from microprocessors Mnemonic disassembly A display format for data acquired from a microprocessor or a data bus A logic analyzer decodes bus activity and displays it in formats such as cycle types instruction names and interrupt levels Advanced forms of mnemonic disassembly can detect queue flushes and provide a display that resembles the original assembly language source code listing Module The unit that plugs into a mainframe providing instrument capabilities such as logic analysis Module trigger trigger A trigger specific to a single module When a module trigger occurs the module continues to acquire data until the specified amount of posttrigger data is acquired and then stops OMES1 file format This format holds symbolic information and executable images for a 8051 or equivalent microprocessor OME 86 file format A file format that holds symbolic information and executable images for an 8086 or equivalent microprocessor It is also used for code intended to r
68. Help Topics from the Help menu in the TLA7PG2 application The online release notes provide last minute product and software informa tion not included in this manual Refer to Release Notes on page 1 33 for information on viewing the release notes A series of microprocessor support instruction manuals provide operating and service instructions for the individual microprocessor support packages The TLA7QS QuickStart Training Manual provides training exercises to help you learn key features of the logic analyzer The training manual is designed to be used with the TLA7QS QuickStart training board A series of service manuals provide board level service information for the logic analyzer modules and mainframes A series of probe manuals provide detailed instructions for using individual logic analyzer and pattern generator probes A series of probe labeling instructions provide detailed instructions for labeling the P6810 P6860 and P6880 logic analyzer probes Terms Used in this Manual The following terms are used throughout this manual Refer to the Glossary for information on other logic analyzer terminology LA Module An abbreviation and generic term for the logic analyzer module DSO Module An abbreviation and generic term for the oscilloscope module PG Module An abbreviation and generic term for the pattern generator module Tektronix Logic Analyzer Family User Manual Version 4 2 Software Preface What s
69. J lt COM port a EXTERNAL SIG IN gt 4 EXTERNAL SIGIN gt fj py printer port lt lt LPT printer port EXTERNAL SIG OUT EXTERNAL SIG OUT E TLA715 Portable mainframe rear view TLA714 o LO EPE EPEL Indicator gt i 8 ELL acca 2 sean eea 2 Floppy drive f CD ROM Disc Floppy drive a 1 CD ROM Disc 3 COM port z Secondary video TTi SVGA OUT port anija a Primary video mEn L HARD DRIVE COM port ale ee HARD DRIVE USB gt R ec SYSTEM TRIG IN USB lo SYSTEM TRIG IN Mee Te ie SYSTEM TRIG OUT Mouse 0 SYSTEM TRIG OUT Je oS LO Keyboard bil EXTERNAL SIG IN Keyboard 7 tfe EXTERNAL SIG IN EXTERNAL SIG OUT EXTERNAL SIG OUT Lj LPT printer port LPT printer port TLA721 Benchtop mainframe front view TLA720 Figure 2 7 TLA700 series external connectors TLA700 Series Chassis Ground Connections Figure 2 8 shows chassis ground connections Use the chassis ground connec tions to connect the grounds of one or more instruments to the mainframe to ensure a common ground connection between instruments A WARNING To reduce the risk of an electrical shock do not remove the safety ground screw from the benchtop mainframe The safety ground screw must always be in place to ensure proper grounding of the power supply to the mainframe Tektronix Logic Analyzer Family User Manual Version 4 2 Software Functional Overview
70. Logic Analyzer Family User Manual Version 4 2 Software 1 1 Getting Started TLA700 Series Logic Analyzers The TLA700 series logic analyzers combine a high performance logic analyzer module with an optional digitizing storage oscilloscope DSO module and pattern generator module There are two styles of mainframes portable and benchtop Each mainframe can also include an expansion mainframe that looks similar to the benchtop mainframe and is compatible with both the portable and benchtop mainframes The portable mainframe and the benchtop mainframe are shown in Figure 1 2 and Figure 1 3 Several logic analyzer modules are available in various combinations of channel width and memory depth All of the logic analyzer modules provide simulta neous state and timing measurements through a single probe MagniVu an acquisition technology enabled by the logic analyzers provides a sampling rate of 500 ps on TLA7Lx Mx Px Qx modules and 125 ps on TLA7Axx modules on all channels without additional probing Figure 1 2 TLA700 portable mainframe 1 2 Tektronix Logic Analyzer Family User Manual Version 4 2 Software Getting Started Accessories Expansion mainframe Benchtop mainframe Figure 1 3 TLA700 benchtop mainframe with an expansion mainframe The DSO module enables digital real time signal acquisition Data acquired using this module is time correlated with data from other
71. Logic Analyzer Release Notes click Start gt Programs gt Tektronix Logic Analyzer gt TLA Release Notes To access the Pattern Generator Release Notes click Start gt Programs gt Tektronix Pattern Generator gt Pattern Generator Release Notes Tektronix Logic Analyzer Family User Manual Version 4 2 Software 1 33 Getting Started 1 34 Tektronix Logic Analyzer Family User Manual Version 4 2 Software Da as Operating Basics SS ae aaa Functional Overview This chapter is divided into the following sections Functional Overview Provides an overview of the front panel controls of the logic analyzer and the location of external connectors m Approaching the Tektronix Logic Analyzer Windows Provides a high level overview of the basic logic analyzer and DSO windows m Approaching the Pattern Generator Application Windows Provides a high level overview of the basic pattern generator windows m Operating Basics Provides an overview of the logic analyzer operation Front Panel Controls This section introduces you to the front panel controls of the TLA600 series logic analyzer and the portable mainframe It provides a brief overview on how to use the front panel controls In addition to the front panel controls you can also control the logic analyzer from an attached keyboard and mouse TLA600 Front Panel For the TLA61x and TLA62x you can use the front panel keys as an alternative Controls to an external keyboar
72. P6417 or a P6418 Probe and a 4 ns sample period Synchronous clocking Number of clock channels Product Clock channels TLA7N1 TLA7L1 TLA7M1 TLA7N3 TLA7L3 TLA7M3 TLA7N2 TLA7P2 TLA7Q2 TLA7L2 TLA7M2 TLA7N4 TLA7P4 TLA7Q4 TLA7L4 TLA7M4 2 4 4 4 A 54 Tektronix Logic Analyzer Family User Manual Version 4 2 Software Appendix A Specifications for the TLA7Lx Mx Nx Px Qx Logic Analzyer Modules Table A 56 LA module clocking Cont Characteristic Number of qualifier channels i Setup and hold window size data and qualifiers Setup and hold window size data and qualifiers Typical Setup and hold window range 1 Maximum synchronous clock ratet Description Product Qualifier channels TLA7N1 TLA7L1 TLA7M1 0 TLA7N2 TLA7P2 TLA7Q2 TLA7L2 TLA7M2 0 TLA7N3 TLA7L3 TLA7M3 2 TLA7N4 TLA7P4 TLA7Q4 TLA7L4 TLA7M4 4 Maximum window size Maximum channel to channel skew 2 x sample uncertainty 0 4 ns Maximum setup time User interface setup time 0 8 ns Maximum hold time User interface hold time 0 2 ns Maximum setup time for slave module of merged pair User Interface setup time 0 8 ns Maximum hold time for slave module of merged pair User Interface hold time 0 7 ns Examples for a P6417 P6418 or P6434 probe and user interface setup and hold of 2 0 0 0 typical Maximum window size 1 6 ns 2 x 500 ps 0 4ns 3 0 ns Maximum setu
73. PowerTrigger program to include checks for more edges Triggers on the 16th transition of any of the selected groups that are specified in the Define Transition dialog box This program demonstrates that up to 16 edge transition detectors can be specified and used Triggers on Event B if there are at least N samples between Events A and B Trigger when A followed by B within N samples Triggers on Event B if Event B follows Event A within N samples Trigger on A followed by glitch within time T Triggers if a glitch occurs within the specified time after Event A Glitches can be stored in Internal Clocking mode Glitch storage is not available in Internal 2X mode though glitch detection is possible This program is not designed to work with Timer or Counter event types for user selectable events Timer values are adjusted to the module timing resolution which can be 2nS or 4nS depending on the module type Trigger on A not followed by B within N samples Triggers on the Nth sample following event A if Event B does not follow Event A within N samples This program is not designed to work with Timer or Counter event types for user selectable events Trigger on the Nth channel transition within time T Triggers on the Nth transition of the desired channel if it occurs within the specified time Timer values are adjusted to the module timing resolution which can be 2ns or 4nS depending on the module type
74. Probe Name Add Data Source Figure 3 79 Add Waveform dialog box Deleting Waveforms Select the waveform labels and then click the Cut button on the tool bar Tektronix Logic Analyzer Family User Manual Version 4 2 Software 3 113 Waveform Window Changing Waveform Label Width Changing Waveform Height Changing the Displayed 3 114 Time Div Cut Copy and Paste Viewing Glitches Naming Waveforms To change the width of a waveform label select and drag the waveform label border To change the height of a waveform double click the waveform label to open the Waveform tab Enter a new value or use the spinbox controls to change the value in the Height box In addition to adjusting the height using the Waveform tab you can select the waveform and adjust the waveform from the front panel Size control on the portable mainframe Change the displayed time per division using the Time Div tool bar control You can also use the Zoom In and Zoom Out tool bar buttons You can cut copy and paste waveforms and marks Both glitches and setup and hold violations are indicated in the display by highlighted text of the complete sample for all radixes except binary octal and hexidecimal In those radixes only the violation bits are highlighted Turn the glitch or setup and hold display on or off from the Waveform window tab available from the Waveform Properties dialog box N
75. Software E 9 Appendix E Merging Modules Remove screws 2 Merge cable bracket Merge cable Figure E 6 Feeding the merge cable through the cover 10 Turn the merge cable bracket over so that the guide pins point up 11 Place the bracket over the merge cable connector 12 Install the two screws that hold the merge cable bracket in place CAUTION To prevent damage to the module during the installation process reinstall the cover exactly as described in steps 14 through 19 If the cover is not properly seated the module can be damaged when you install it in the mainframe and it will not meet EMC requirements E 10 Tektronix Logic Analyzer Family User Manual Version 4 2 Software Appendix E Merging Modules 13 Replace the logic analyzer module cover 14 Push forward on the cover so the tab on the front edge of the cover inserts into the rear of the front subpanel Make sure that the cover is fully seated no gaps against the front and rear chassis flanges Make sure tab inserts into slot on rear of front panel Leave no vertical gap Figure E 7 Seating the cover on the chassis 15 While holding the cover in place install the screws nearest the front of the module two on the top and two on the bottom to secure the cover to the chassis 16 Install the screws near the front of the module 17 Slide the rear panel on the chassis and install the rear panel screws Tektronix Logic Anal
76. Source Synchronous Clocking LA 1 x Edge Detectors Clock Groups Sample Clocks Group Clocking Probe Demus Setup Hold Window Clock Use Max Sync Speed 16 125ns Os 8375ns Sync Speed 450 MHz Default A Gb ttatateata 625ps Os EdgeDetector Setup Hold Window Clock Group Pipeline Delay Sample Clock Edge Detector 0 Os 625 ps Clock Group Q O clocks Sample Clock 0 Edge Detector 0 375ps 7 250ps Clock Group 0 3 clocks Sample Clock 0 Edge Detector 0 375ps 7 250ps Clock Group 0 1 clocks Sample Clock 0 Edge Detector 375ps 250ps Clock Group u 3 clocks Sample Clock 0 v Detaut E dge Detector 0 625ps Os 0 clocks Sample Clock 0 E Close Help Figure 3 14 Group Clocking programming Use the Probe Demux tab to select which groups of channels are to be demulti plexed You have the choice of a two way or four way demultiplex In addition you have the option to select all channels or clear all channels Figure 3 15 shows which channel groups are selected for a two way demultiplex Source Synchronous Clocking LA 1 7 x Edge Detectors Clock Groups Sample Clocks Group Clocking Probe Demux Select Probe Channel E361 E2 gt EQ 43 gt D3 A2 gt De Al gt D1 D gt DO C3 gt Ci C2 gt C0 v CK3 gt G2 v CK2 gt 03 CK1 gt Q0 Demux Type 2X demux 4 demux Select All Clear A
77. The following figure shows two of the available trigger event selections event Te A Even Tyee AAA Polarity Source Channel 1 7 Polarity Source Channel 1 7 tf JL Trigger When f JIA C Ui C JUL Trigger hen ft gt Width fe lt width Ur Any Aunt C Runt gt Width Upper Threshold as y Lower Threshold ede fe dee x rsamv lie f to ey a width 2ns width 2ns Threshold 3 56 Tektronix Logic Analyzer Family User Manual Version 4 2 Software Setup Mode Mode selects whether the DSO waits for a trigger Normal or forces a trigger after a set length of time has passed without a trigger Auto Action Action selects what happens when a trigger is recognized Choose from a list of actions Actions include triggering the DSO triggering all modules or triggering and arming another module Trigger Position Trigger position sets the amount of data in the data record that occurs before the trigger To set the Trigger Position use the slider or enter a numeric value as shown below Trigger Position J ax Event Based Selections Depending on the trigger event you choose other selections may become available Refer to the online help for further informa tion Setting Up the External Oscilloscope The iView External Oscilloscope Cable allows you to connect your logic analyzer to an external oscil
78. User Manual Version 4 2 Software Operating Basics Symbol Files To use symbols you must first load or create one or more symbol files that define the symbols Symbol files contain symbol names and their associated data values You can use symbol files created by another application edit symbol files from other applications or you can create your own symbol files using a text editor Each entry in a symbol file consists of an alphanumeric symbol name with its associated numeric value or range of values After you create a symbol file you can specify the symbol file for the appropriate channel group in the Waveform or Listing window use symbolic names as a substitute for numeric values in the Trigger and data windows and use symbols for tracing source code in a Source window Symbol files perform like look up tables For example if the address of a printer I O port is at address F734BC you can define a symbol printer port that corresponds to that value Then in the Trigger window you can specify the symbol name as an event in the trigger program and cause the module to trigger when printer port F734BC appears on the address bus You can also specify the symbolic display radix for the address channel group and the symbol name printer port will show in the Listing window every time F734BC appears on the address bus Symbol Types Two main types of symbol files are possible pattern symbol files and range symbol files Range sym
79. User Manual Version 4 2 Software 3 93 Waveform Window Types of Waveforms Several types of waveforms can be displayed in the Waveform window as shown in Figure 3 62 RE 2p 4 Ba Gi Timez Sons BIER I C1 50ns C2 Ons Delta Time ficors T Lock Delta Time DSO 1 Channel C1 2 927 C2 346 4m Delta 2 581 Sample clock waveform Single channel LA waveform Busform LA waveform DSO waveform DS0 1 Channen Figure 3 62 Waveform types Sample Clock Waveforms Fach module that contributes current data to the window has its own sample clock waveform The sample clock waveform consists of a row of short vertical tick marks placed along the time axis at each display point that represents an actual acquired sample for the module Single Channel LA Digital timing diagrams that represent a single LA channel Waveforms Busforms Busforms display the value of an LA module channel group Magnitude Waveforms Magnitude waveforms plot the numeric value of a channel group on a vertical axis over a period of time For example you can use magnitude waveforms with A D and D A applications for viewing the RGB components of a digitized video signal Figure 3 63 shows such a component 3 94 Tektronix Logic Analyzer Family User Manual Version 4 2 Software Waveform Window lolx 2 6 ri FE S ra fh gt TimerDiv ius es al C1 50 64us C2 59 96us Delta Time 19 32us H I Lock Delta Timi Figur
80. a click of the right mouse button SELECT LEFT MENU RIGHT Figure 2 4 Trackball Tektronix Logic Analyzer Family User Manual Version 4 2 Software 2 3 Functional Overview TLA600 Series External Connectors The external connectors on the rear panel of the TLA600 series logic analyzer are shown in Figure 2 5 Description Icon Label Locations Monitor SVGA OUT PLintel cscsecsessesseeee LPT E RS 232 cccceccsoe COM 1 Network ao dig O l ic vet C a cy we Sb a Z isa o o5 COM1 sveaour L OO LI oo d ooo PC CARD TYPE 2 TYPE 3 Mooc L JIO A EXTERNAL SIG OUT EXTERNAL SIG IN SYSTEM TRIG OUT SYSTEM TRIG IN PC CARD Card Slot TYPE 2 TYPE3 Figure 2 5 TLA600 series external connectors 2 4 Tektronix Logic Analyzer Family User Manual Version 4 2 Software Functional Overview TLA600 Series Chassis Ground Connections Figure 2 6 shows the chassis ground connection Use the chassis ground connections to connect the grounds of the target system system under test to the logic analyzer to ensure a
81. analyzers Color range symbols Color range symbols define the beginning and ending group values where color is displayed Compression Footprint A connectorless solderless contact between the customer PCB and the Tektronix Logic Analyzer Family User Manual Version 4 2 Software Glossary P6860 and P6880 Probes Connection is obtained by applying pressure between the customer s PCB and the probe through a Z axis elastomer Counter A trigger program device that records occurrences of an event Cursors Paired markers that you can use to make measurements between two data locations Custom clocking Custom clocking is used only with microprocessor support packages Custom clocking can enable and disable a variety of microprocessor specific clock cycle types such as DMA cycles Data differences Highlighted data in a Listing or Waveform window that indicate that there are differences between the acquired data and saved data during a compare operation Data equalities Highlighted data in a Listing or Waveform window that indicate that there are no differences between the acquired data and saved data during a compare operation Data sample The data logged in during one occurrence or one cycle of the acquisition clock A data sample contains one bit for every channel Data window A window used to display acquired data There are two types of data windows Listing windows and Waveform windows DC coupling A DSO mode th
82. and Listen for the Expansion Mainframe Power On Sequence There are certain signs that the expansion mainframe is not powering up correctly By looking at and listening to these signs you can determine if the expansion mainframe is not powering up due to missing signals from the expansion module Upon powering up the benchtop mainframe the expansion module sends a signal from the benchtop mainframe to the expansion module in the expansion mainframe via the three expansion cables If the expansion mainframe does not receive this signal the expansion mainframe will not power up If the poweron signal is received by the expansion mainframe the fan starts and the lamp on the mainframe lights Further indications that the mainframe receives signals from the expansion module are blinking lights on the expansion module and on other installed modules Substitute a Known Good Expansion Module If you have a known good expansion module try the following procedure 1 Verify that the expansion module is installed in slot 0 and that the logical address switches on the back of the module are set to FF 2 Try swapping the expansion module from the benchtop mainframe with the expansion module from the expansion mainframe This sometimes works because one module is a sender while the other module is a receiver CAUTION To ensure expansion module full seats in the mainframe do not use the mounting screws to engage the module into the backplane of th
83. arrow Move active cursor right five pixels CTRL Right arrow Move active cursor left 50 pixels CTRL Shift Left arrow Move active cursor right 50 pixels CTRL Shift Right arrow Overlay Waveforms Overlay waveforms provide you with the ability to visually compare two or more waveforms by dragging one waveform over the other The overlay waveform can contain LA single channel DSO external and sample clock waveforms 3 116 Tektronix Logic Analyzer Family User Manual Version 4 2 Software Waveform Window Overlay Waveform Properties Tektronix Logic Analyzer Family User Manual Version 4 2 Software 151 gt w al 7 Lock Delta Time waveform aale Gh TimeDiv 100ns EZ 180s E Delta Time 41 0ns 4 Delta 1 C1 230ns LA 1 A3 3 Overlay fro TDS3012 Channeli i LA 1 433 Figure 3 82 Example of an overlay waveform The waveform properties tab displays overlay waveform properties when you double click the label of an overlay waveform group in the Waveform properties tab Properties Waveform 1 alx About Data Waveform window Waveform Marks Waveform Overlay tral ad Overlay Waveform Name JOverlaywint Waveforms Available LA 1 Mag_Sample LA 1 Mag_CKO LA 1 Mag_A3 4 LA 1 Mag ASS LA 1 Mag_AJ E LA 1 Mag _A3 7 L4 1 Mag_A2 TD53012 Sample Height fi 20 Overlay Waveforms Overlay w tm1 Overlaywtm LA 1 Mag_ amp 3 3 Overay wtm1 TDS3012 Chan
84. as a standard feature MagniVu data acquisition for TLA7Lx Mx Nx Px Qx modules offers 500 picosecond high speed timing simultaneous with 100 MHz or 200 MHz state on all channels through the same probe MagniVu memory depth is set to a fixed 2K MagniVu data acquisition for TLA7Axx modules offers 125 picosecond high speed timing simultaneous with 120 MHz 235 MHz or 450 MHz state on all channels through the same probe The record length for MagniVu data is 2015 samples MagniVu memory depth is set to a fixed 16K MagniVu data is centered on the LA module trigger Figure 3 74 shows an example of MagniVu data You can view MagniVu data in both Listing and Waveform windows Waveform 1 1e bile ales lt Ah foo 2 Test 1 2 7 LA 1 A217 A a a a S a a Tes 1 2 7 LA1 A2 5 a a a a a a a Tes i27 Lai AaS Ma Test 1 2 7 LA 1 Acs A a Test 1 2 7 LA Mag Sample fiis thti te KI DEE EEE E Figure 3 74 MagniVu data In Figure 3 74 the top waveforms were acquired at the fastest normal sample rate The MagniVu waveforms in the lower part of the display were acquired through the same probe channels at the same time as the top waveforms Take a close look at the difference in the acquired data First view the regular data acquisition which was sampled at 4 ns The regular acquisition captured the address bus as it made the transition from 34 to 44 The data shows an invalid address of 74 and indicates that the inv
85. bus event that causes the target system to write to a memory location Then if you want to trigger when a write cycle occurs enter WRITE in the trigger program in place of the actual data value You can also choose to have WRITE appear in the Listing window for quick identification of the instruction In Figure 2 46 the example shows a trigger program that uses the symbol BUS_ERROR as part of the trigger clause fp Trigger OSTART a o D r L 5 rao amp 83 Storage Jal bd Trigger Pos i PowerTrigger State 1 IFEvent A Increment Counter 1 If Group Address BUS_ERROR Then GoTo2 Figure 2 46 Using symbols in a trigger program You can use symbol files with a Source window and an associated Listing window to track the execution of source code The symbol file provides the information to associate a line of source code to an address in a Listing window When you move a cursor in one window the symbol file provides the necessary information to move the cursor to the correct location in the other window Often the application software will define symbols for you For example when you load a microprocessor support package symbols are also loaded typically to the control group These symbols represent data values that correspond to bus cycle types Other software applications produce range symbol files which you can load typically these files are loaded to the address group Tektronix Logic Analyzer Family
86. cece eee eeeceees 3 119 Figure 3 85 Listing window cursors and marks 3 120 Figure 3 86 Using the Go To dialog box to jump to the Systemi trigger cece eee cece ere eee cece eee ee eenee 3 122 Figure 3 87 Using the Overview Mark bar to jump to a data locations coes ies cece ce ccc cece cree eee e reser a 3 122 Figure 3 88 Defining search criteria 0 cece eee eee 3 123 Figure 3 89 Lock Windows dialog box eeeeeeeees 3 124 Figure 3 90 Selecting compare data colors in the Listing Window tab 0 cece ccc cree e cece eee evens 3 125 Figure 3 91 Viewing LA compare data in a Listing window 3 126 Figure 3 92 Add Column dialog box c cece eeeees 3 128 Tektronix Logic Analyzer Family User Manual Version 4 2 Software Table of Contents Figure 3 93 Export Data dialog box cece eee e eee eee 3 130 Figure 3 94 Export Data Options dialog box 06 3 131 Figure 3 95 Source Window cece cece eee eceeeeeees 3 135 Figure 3 96 Accessing the New Data Window wizard 3 136 Figure 3 97 Source window cursors and marks 2 3 136 Figure 3 98 Using the Go To dialog box to jump to the c rsor location sco 8 iis i icers eae shears SHALES area ee eee Las 3 137 Figure 3 99 Source window controls ceeecececeees 3 138 Figure 3 100 Defining source search criteria 0005 3 141 Figure 3 101 Source Files prop
87. columns describe the lower and upper bounds The bounds are expressed as 32 bit values the radix is specified in the header The bounds are inclusive the specified range includes both bound values as well as all values between the bounds There is a different TSF symbol file syntax for adding color to range and pattern symbol files For pattern symbol files color is an attribute of existing pattern symbols It is placed on the same line as the rest of the symbol and to the right of the pattern definition For range symbol files color symbols are added in a separate section of the symbol file just like Function Variable and Source Tektronix Logic Analyzer Family User Manual Version 4 2 Software Appendix B TLA Symbol File Format symbols This allows the color information to be independent of the other defined range symbols A partial TSF Pattern Symbols file is shown below Symbol Name Pattern Color a eee ee ee ee ee et e Se ee et ee me p ae mee mk oe fg mt me me mh NUL X000 0000 SOH X000 0001 blue STX X000 0010 G white red SBZ X000 0100 default teal Each Pattern symbol in a TSF Pattern file consists of three fields The first field is the Symbol Name the second is the Symbol Pattern and the third is Symbol Color The Symbol Color specification may contain zero one or two color keywords If only one color is given it specifies the foreground color of the data If two colors are given they specify the f
88. ddi 27 X ddr 24 Xda 25 Xidd 2 cko 4 x a2 Xfi 21 I scdr_22 I cc_27 XI dd_ 20K Sdc_ 19K Sddr_ 16M dd_ 11 Xlo 1h LKOUT At Xod 15 Xidd 1 X 1 X idar 11X sda 11X ddr 11X Ada_a gt Addig CKI x an xlAdd_7 gt Addr_6 X Ada 3 X lAddr 4 X Adar 3 Xl Addr 3 x Addr Add d J 7_BUS 5 n n n n ahia ae I a 4 X In selected group Ej Not grouped Table Shows Channel Polarity j haksami Channel Compare Figure 3 4 Setup window with the QSTART support package For information about microprocessor support packages refer to the online help and to the instruction manual that came with your microprocessor support package If you intend to do performance analysis with your LA module you may want to load a microprocessor support package that contains the predefined channel setups and clocking setups You can also define the channel and clocking setups in the Setup window if you are not using a microprocessor support package You can use sample suppression to suppress or hide samples in the display windows This can help you focus on the data that you want to see When you suppress data samples the suppressed samples are still in the acquisition memory you can turn the sample suppression off to view all the data Tektronix Logic Analyzer Family User Manual Version 4 2 Software Setup Click the Suppress button in the upper portion of the Setup window to display the Sample Suppression dialog box see Figure 3 5 Select one of the optio
89. describes how to merge TLA700 series logic analyzer and pattern generator modules to form wider modules A merged logic analyzer module set consists of a master logic analyzer module and up to four slave logic analyzer modules that are physically connected together by a merge cable and are merged in software Review the guidelines under Logic Analyzer Module Merging Rules and then follow the steps to physically connect the modules together before installing the modules in the mainframe A merged pattern generator module set consists of a master pattern generator module and up to four slave pattern generator modules merged in software Review the guidelines under Pattern Generator Module Merging Rules on page E 3 before installing the modules in the mainframe Logic Analyzer Module Merging Rules The following logic analyzer module merging rules must be followed m Only modules with 102 channels or more can be merged m Logic analyzer modules must be in adjacent slots and physically connected m Logic analyzer modules cannot be merged across mainframes between the benchtop mainframe and one or more expansion mainframes because the modules must be physically adjacent and physically connected m Logic analyzer modules with unequal synchronous clock rates cannot be merged m Merging logic analyzer modules with unequal memory depths will result in the merged modules assuming the depth of the shallowest module m When merging logic analyzer m
90. edge Trigger on glitch Trigger on group value Select the group and the pattern Click the Radix button to choose a different radix Group z A3 7 z gt Hex Triggers when the specified group pattern occurs OC X02 XXK XXK XK X OOK A Events Figure 3 26 EasyTrigger tab structure Tektronix Logic Analyzer Family User Manual Version 4 2 Software 3 31 Setup 3 32 EasyTrigger Programs One advantage of a logic analyzer is that you can create sophisticated trigger programs so that you can carefully qualify and store only the relevant data This process is simplified by using predefined EasyTrigger programs The programs in the EasyTrigger program list can be used as they are designed or as a framework upon which to build more complex programs With this in mind the trigger programs should be viewed as a starting point to your program development or as programming examples EasyTrigger programs are designed to accept data across predefined channels using a specific clocking mode Therefore you must specify the required channel grouping and clocking mode using the LA Setup window before using these trigger programs The EasyTrigger programs are listed below In the trigger program descriptions the following symbols are used Symbol Meaning A B C Replaces events Range A A range value N A count counter T A time If you choose to modify a trigger program to more closely fit your data requirements
91. ee PE Been meee EE EE EAA C1 fi 8 82us a C2 18 8215us Channelt C1 1 5907 Channel Figure 2 42 DSO module triggering on a glitch 2 44 Tektronix Logic Analyzer Family User Manual Version 4 2 Software Operating Basics Performance Analysis Concepts For performance analysis applications you can use the Histogram window to view the performance of your software The actual data is displayed as horizontal bars in a histogram You may want to use the Histogram window to see which one of your software routines is taking up most of the CPU time Or you can use the Histogram window to measure the amount of time used by a particular subroutine You can use a symbol file to view each of the routines by name Figure 2 43 shows an example of the Histogram window where the StopLite routine is taking up most of the computer resources H Histogram 2 OL x cs alaj il OF Percentages Based On Matched Samples 4 516 stopLite enqueue dequeue queueFul queueEmpty lightLeds rear front LEDwrite fputc _ uprint Figure 2 43 Viewing the performance of code with a Histogram window Tektronix Logic Analyzer Family User Manual Version 4 2 Software 2 45 Operating Basics Comparing Acquired Data Against Saved Data You can use the LA module to compare acquired data against saved reference data Use the LA Setup menu to define the data channels that you want to use during the compare operation
92. expansion mainframe secondary power Characteristic DC Voltage Regulation Combined System voltage avail able at each slot Description Voltage Minimum Nominal Maximum 24 V 23 28 V 24 24 V 25 20 V 12 V 11 64 V 12 12 V 12 60 V 5V 4 875 V 5 063 V 5 250 V 2 V 2 10 V 2 00 V 1 90 V 5 2 V 5 460 V 5 252 V 5 044 V 12 V 12 60 V 12 12 V 11 64 V 24 V 25 20 V 24 24 V 23 28 V Table A 39 Benchtop and expansion mainframe cooling Characteristic Cooling system Fan speed control Slot activation Pressurization Description Forced air circulation system positive pressurization using a single low noise centripetal squirrel cage fan configuration with no filters for the power supply and 13 module slots Rear panel switch selects between full speed and variable speed Slot exhaust temperature and ambient air temperature are monitored such that a constant delta temperature is maintained Installing a module activates the cooling for the corresponding occupied slots by opening the air flow shutter mechanism Optimizes cooling efficiency by only applying airflow to modules that are installed Positive pressurization system all chambers including modules Slot airflow direction P2 to P1 bottom of module to top of module Mainframe air intake Lower fan pack rear face and bottom Mainframe air exhaust Top sides and top rear back Top rear back exhaust redirected to the sides by the fan pack h
93. files or applications on your hard disk back them up before proceeding After installing the hard disk image you must reset the BIOS boot settings to the Tektronix defaults Change the BIOS Boot Settings Before installing the Hard Disk Image you must change the BIOS settings 1 Restart the logic analyzer and then press function key F2 to enter the BIOS setup 2 Inthe BIOS setup go to the Boot menu 3 Set the Boot devices for your instrument as shown in Table G 4 follow the on screen instructions to change the settings Table G 4 Bios Boot settings for reinstalling software Instrument Setting TLA715 or TLA721 ATAPI CD ROM Drive Removable Devices Hard Drive TLA714 or TLA720 First Boot Device ATAPI CDROM Drive Second Boot Device Diskette Drive Third Boot Device Hard Drive TLA600 series First Boot Device ATAPI CDROM Drive Second Boot Device Floppy Third Boot Device IDE HDD Tektronix Logic Analyzer Family User Manual Version 4 2 Software G 13 Appendix G Installing Software G 14 4 Save the settings by pressing function key F10 and confirm that you want to save the new settings Load the Hard Disk Image Complete the following steps to load the Hard Disk Image 1 Insert the Hard Disk Image CD in the CD ROM drive 2 Reboot the logic analyzer 3 Review the license agreement If you agree to the terms of the license agreement proceed with the next s
94. for Setup Hold mode to be available Setup Hold mode limits memory depth to half of the maximum depth and limits the maximum synchronous speed to half its normal maximum value Blocks Mode Blocks mode stores a block of approximately 60 samples around each qualified sample In Blocks mode only channel data is stored If you store blocks they will override other forms of data qualification All samples in the block are always stored Block size is fixed in the hardware and cannot be changed Use Memory Depth to specify the total number of samples acquired by the LA module If you do not require full memory depth select a lesser value because you will have less data to search to find the data of interest For a given memory depth there is a tradeoff between the clock sample rate and data record length A faster sample rate provides a shorter time window but with higher resolution NOTE If you select Glitch or Setup Hold mode the maximum memory depth is limited to one half the normal value Misena ioii Clocking finena 7 ans 7 Memory Depth ai 94304 Acquire IN ormal Support None Use channel grouping to organize the LA probe channels to match the configura tion of the target system Depending on your application match the channel groups to the address and data buses or other channels of interest Then name the channel groups for easy identification Tektronix Logic Analyzer Family User Manual Version 4 2 S
95. for the SDRAM signals contained in Figure 3 8 Table 3 1 Channel assignments SDRAM signal Logic Analyzer channel DQS CK1 CK CKO CAS CK3 WE CK2 CS C2 3 RAS C2 2 Tektronix Logic Analyzer Family User Manual Version 4 2 Software 3 11 Setup 3 12 Table 3 2 Group definitions Group name Channels CLK CK CMD_R CS RAS CAS WE Control cmp w CS RAS CAS WE ADD R E3 7 0 E2 7 5 Address ADD_W E1 7 0 E0 7 5 As indicated in Figure 3 8 DQS is used as the strobe and the data is edge aligned with the strobe For the read cycle the setup hold window must be set to sample the data after the strobe edge occurs rising and falling edge In the example the CAS latency is three clock cycles so the pipeline delays for the common clock signals need to be adjusted to three in order to put all the information on the same clock sample The signals that comprise the COMMAND group are CS RAS CAS and WEz A truth table for these signals is shown in Figure 3 9 To simplify the example two of the four signals are used as qualifiers to enable the read data to be captured at the correct time CAS is assigned as QUAL2 and WE is assigned as QUAL3 Because only two qualifiers are used a few AUTO REFRESH SELF REFRESH or LOAD MODE REGISTER cycles may be in the acquisition data TRUTH TABLE 1 COMMANDS Note 1 NAME FUNCTION cs RA
96. for your application from the System menu click System Configuration and then click the Signals tab System Configuration d aixi Signals Merge Modules m External Signal lh r intemal Signals Connect External Signal input to internal signal Select logic function for internal signals wired OR wired AND None X Signal 1 High Speed One source only Low TRUE enaA Signal 2 High Speed One source only Connect External Signal output to 5 internal signal Signal 3 z gt N a Signal 4 z I Low TRUE m System Trigger In Out Connectors System Trigger Out Enabled Note The System Trigger In Out connectors can be enabled or disabled from the System Trigger System TriggerIn Enabled item of the System menu Cancel Help Figure 3 50 Signals property page Tektronix Logic Analyzer Family User Manual Version 4 2 Software 3 71 Setup 3 72 Internal Signals Only one module in the system can drive Signal 1 and only one module can drive Signal 2 When used with the expansion mainframe all modules that drive Signal 3 should be in the same mainframe and all modules that drive Signal 4 should be in the same mainframe The logic analyzer and DSO modules use a logical expression True False for Signals 1 2 3 and 4 However the pattern generator module uses a physical expression High Low for these signals Figure 3 44 shows an example of the Sequence Definition w
97. from another module When the trigger event is found the DSO module enables its post trigger delay counter to allow the post trigger portion of the acquisition memory to fill before stopping acquisition When triggered the DSO module performs its specified trigger action for example triggering all modules Storing Data in Memory The acquisition memory works like a circular buffer storing data samples until the entire memory is full After that each new data sample overwrites the oldest existing sample This process continues until the trigger occurs and the post trigger delay counter reaches the specified value based on the trigger position selection which stops acquisition During acquisition you can monitor the progress of the data storage process using the Status Monitor After storing the data you can display the acquired data in the data windows In the Waveform window the data is shown as analog waveforms In the Listing window the data is shown as a series of voltage values Pattern Generator Module Block Diagram The pattern generator module adds pattern generator capability to the logic analyzer You can generate specific data patterns to a target system and then use the logic analyzer to evaluate the resultant data from the target system The pattern generator module functionality can be divided into blocks as shown in Figure 2 29 Refer to the figure as you read about the functional blocks System clock Event amp
98. in a waveform record Choose a sample period that is fast enough that the waveform will not be aliased and slow enough to provide the waveform record length that you need For repetitive waveforms you should set the sample period to at least five times faster than that of the waveform Memory Depth The Memory Depth sets the total number of data samples to be acquired If you do not need to use the full memory depth to acquire the data of interest select a smaller memory depth to get faster acquisitions Tektronix Logic Analyzer Family User Manual Version 4 2 Software 3 55 Setup Trigger The DSO Trigger page contains all controls for setting DSO trigger events and actions Threshold changes are recognized and executed immediately during acquisitions Execution of all other controls are delayed until the next acquisi tion To display the Trigger setups from the System window click the DSO Trigger button and then click the Trigger tab Select a trigger event from the list of event types and then modify it for your application Wi Setup DSO 1 Bee Channel 1 Channel 2 Channel 3 Channel 4 Horizontal Trigger p Event Type Source Channel 1 7 Mode tuto r Trigger When Action C s Width fe lt width Threshold fy fase H widhi me Trigger Position Event Type Event Type selects the type of event the DSO will recognize as a trigger Choose from the list of trigger event types
99. in the Trigger window If you want to measure an event you should define the trigger events and set up the appropriate counter and timer actions If you want to use symbols make sure that you load the symbol file Create a new Histogram window with the New Data Window wizard You can access the New Data Window wizard from the tool bar in the System window For help on using the New Data Window wizard refer to the online help TLA 700 FF Analysis File Edit View Data System Window Help g m h Status 1de Run gt Tektronix Logic Analyzer Family User Manual Version 4 2 Software 3 149 Histogram Window Adjusting the Histogram Window J Histogram 2 There are a number of actions you can perform in the Histogram window to get the exact view of the data that you want Use the buttons in the tool bar to access short cuts to adjust the data Ml x JA Font Size Ky Properties Changing the Display Font Size Clearing Histogram Counts Stopping Analysis Sizing Columns Sorting Data within Columns Changing Histogram Magnification Defining Histogram Ranges 3 150 Clear Counts Stop Analyzing Click the Font Size tool bar buttons shown in the previous figure Continue to click the tool bar buttons until the text reaches the desired size You can also set the font to a specific size using the Histogram Window properties tab Click the Clear Counts tool bar button to rese
100. inch 1 44 MB PC compatible high density double sided floppy disk drive Tektronix Logic Analyzer Family User Manual Version 4 2 Software A 13 Appendix A Specifications for the TLA600 Series Logic Analyzer Table A 12 TLA600 display system Characteristic Classification Display Memory Size Display Selection External Display Drive Display Size Internal Display Classification Resolution Color Scale Description Standard PC graphics accelerator technology bitBLT based capable of supporting both internal color LCD display and external color SVGA XGA monitor DRAM based frame buffer memory 2 MB Both front panel and external displays can be used simultaneously each with independent resolutions Supports Windows dual monitor capability One SVGA XGA compatible analog output port Selected via Windows Plug and Play support for DDC1 and DDC2 A and B Resolution Pixels Colors 640 x 480 256 64 K 16 8 M 800 x 600 256 64 K 16 8 M 1024 x 768 256 64 K 8 M 1280 x 1024 256 64 K 8 M Thin Film Transistor TFT 10 4 inch active matrix color LCD display CCFL backlight intensity controllable via software 800 x 600 pixels 262 144 colors 6 bit RGB Table A 13 TLA600 front panel interface Characteristic QWERTY Keypad Description ASCII keypad to support naming of files traces and keyboard equivalents of pointing device inputs for menus Special Function Knobs Various func
101. installed LA modules are not compatible TLA7Nx and TLA7Px LA modules may not be merged with TLA 7Lx and TLA7Mx LA modules Refer to the Merge Rules on page E 1 Instrument not set up to start the TLA application at power on Start application from the desktop by double clicking on the TLA Final Setup icon located on your desktop Faulty or corrupt software Reinstall the application software Windows comes up in Safe mode Exit the Safe mode and restart the instrument Incompatible hardware and hardware driver software Either install hardware driver or remove the incompatible hardware Application starts but modules do not display in System win dow Module firmware has not been updated The flash jumper was not removed after the module firmware was updated Turn off instrument off and check that all modules are fully inserted Module address switches not set correctly Turn the instrument off and remove module Set address switches to FF and reinstall module Module failure replace with known good module or contact your local Tektronix service center Instrument failure contact your local Tektronix service center Automatic merging sometimes looks like a missing module Tektronix Logic Analyzer Family User Manual Version 4 2 Software Appendix H User Service Table H 1 Failure symptoms and possible causes Cont Symptom Expansion mainframe is not recognized by the system Expansion mainfr
102. is available on the instrument Click Start gt Programs gt Tektronix Pattern Generator gt Pattern Generator Documentation gt PPI Manual To access the Logic Analyzer Release Notes select Start gt Programs gt Tektronix Logic Analyzer gt TLA Release Notes Microsoft Windows Online Help Information about Microsoft Windows features is available through the Windows help system Access Microsoft Windows help as you would with any Microsoft Windows application PV Adjust Online Help Available only on the TLA7Axx modules online help is available from the TLA7Axx PVAdjust program To access the TLA7Axx PVAdjust program select Start gt Programs gt Tektronix Logic Analyzer gt TLA7Axx PVAdjust Click the Help button to access the online help TLAVu and PatGenVu software applications provide you with the ability to view your TLA data offline on your own Microsoft Windows based PC Both TLAVu and PatGenVu are versions of the TLA software and Pattern Generator Software that contain online help content identical to the help provided in the respective applications Tektronix Logic Analyzer Family User Manual Version 4 2 Software Getting Started Release Notes The online Release Notes contain information about this release of the logic analyzer application and pattern generator application Check the Release Notes for information such as software compatibility and software version differences from earlier releases To access the
103. maximum number of samples after main trigger MagniVu trigger position is set to 0 to capture the maximum number of samples after MagniVu trigger Upon recognition of Event A the module will proceed to look for Event B The module will trigger when Event B is detected and then proceed to look for Event C When Event C is detected MagniVu will trigger Counter and timer events should not be selected Main trigger position is set to 100 and Force Main Prefill is checked to capture the maximum number of samples after main trigger MagniVu trigger position is set to 0 to capture the maximum number of samples after MagniVu trigger Trigger when A not followed by B within time T Triggers if Event B does not follow Event A within the specific amount of time This program is not designed to work with Timer or Counter event types for user selectable events Timer values are adjusted to the module timing resolution which can be 2nS or 4nS depending on the module type Trigger when A occurs lt N times between B and C Triggers on Event C if Event A occurs up to N times between Events B and C Tektronix Logic Analyzer Family User Manual Version 4 2 Software 3 37 Setup 3 38 Table 3 3 EasyTrigger program list Cont File name Trigger when A occurs lt N times between B and atime T after B Trigger when A occurs N times be tween B and C Trigger when A occurs N times be tween B and Time T after B
104. module 2 31 Blocks mode 3 18 Busforms 2 39 3 94 Tektronix Logic Analyzer Family User Manual Version 4 2 Software Index 1 Index C Calibration DSO probe 3 52 service H 1 Change detectors 3 45 Changing analog multiplex data 3 108 Channel activity 3 26 group 3 18 adding removing channels 3 20 hardware order 3 19 name 3 20 3 129 polarity of channels 3 20 probe thresholds 3 27 Setup window Pattern Generator module 3 61 Channel group name 3 114 Characteristics iView A 70 TLA714 portable mainframe A 29 TLA715 portable mainframe A 23 TLA720 benchtop controller A 42 TLA721 benchtop controller A 39 TLA7Axx logic analyzer module A 44 TLA7Dx DSO module A 61 TLA7Ex DSO module A 61 TLA7L x logic analyzer module A 54 TLA7Mx logic analyzer module A 54 TLA7Nx logic analyzer module A 54 TLA7PG2 pattern generator module A 67 TLA7Px logic analyzer module A 54 Chassis Glossary 2 Chassis ground location TLA600 series 2 5 TLA700 series 2 6 Checking the shipping list 1 4 Clause 3 30 Glossary 2 Clause Definition dialog box 3 48 3 70 PowerTrigger 3 43 Cleaning H 7 LCD display H 6 Clock 2 28 cycle Glossary 2 DSO module 3 55 equation 3 9 Glossary 2 external 2 28 Glossary 4 internal 2 29 Glossary 5 problems 3 84 qualification Glossary 2 qualifier Glossary 2 sample clock 3 7 3 55 Glossary 7 sample clock waveform 3 94 sample rate vs memory depth 3 18 source synchronous Glo
105. module relationship 2 34 synchronous 2 28 Glossary 8 Active Cursor readout 3 140 Active module Glossary 1 Activity Indicators dialog box 3 26 Add Column dialog box 3 127 Add Waveform dialog box 3 113 Address Tektronix xxiv Advanced clocking 3 9 Aliasing 2 42 Glossary 1 bandwidth filters 3 54 Aligning data 3 89 All samples Glossary 1 Analog Feeds dialog box 3 22 Analog Multiplex changing data 3 108 changing data from the Waveform window 3 108 Analog multiplexing 3 21 selecting groups of channels 3 22 selecting individual channels 3 22 signal routing from the logic analyzer 3 23 signal routing to the oscilloscope 3 24 Application PatGenVu 1 32 starting 1 16 TLAVu 1 32 Applying power TLA600 series 1 16 TLA700 series 1 18 Arm Glossary 1 arming modules 3 70 indicator 3 1 Assert Glossary 1 Asynchronous acquisition 2 29 Glossary 1 Attenuation 2 30 Glossary 2 Autoconfiguration module D 1 Autoset 3 53 Bandwidth DSO module setup 3 54 Basic installation 1 4 Battery real time clock A 13 Benchtop chassis Glossary 2 Benchtop mainframe AC power source A 34 cooling A 35 dimensions A 38 mechanical A 36 secondary power A 35 Binary data exporting 3 132 BIOS configuring G 3 G 7 Controller BIOS setup TLA600 series G 4 TLA714 and TLA720 G 8 flashing G 3 Block Definition window Pattern Generator module 3 64 Block diagram DSO module 2 30 2 30 LA module 2 28 pattern generator
106. modules for displays and intermodule triggering and signalling The pattern generator module provides multi channel signals for use in applica tions such as simulation of missing system elements erroneous signals for stress testing and extended analysis for stimulating a device under test The Windows operating system allows you to install any PC compatible third party hardware and software on the instrument For a complete list of accessories refer to the online help Select the Contents tab and click the Standard and Optional Accessories icon Then select one of the topics for more information Tektronix Logic Analyzer Family User Manual Version 4 2 Software 1 3 Getting Started Installation Check the Shipping List 1 4 Site Considerations A This section describes the steps needed to install your Tektronix logic analyzer Verify that you have received all of the parts of your logic analyzer using the shipping list You should also verify the following m Verify that you have the correct power cords for your geographical area m Verify that you have backup copies of the installed software Store the backup software in a safe location where you can easily retrieve the software for maintenance purposes m Verify that you have the correct probes and adapters and modules if you have a TLA700 series logic analyzer m Verify that you have all the standard and optional accessories that you ordered NOTE Kee
107. modules in a merged set E 5 Figure E 4 Installing the merged module set in the mainframe E 6 Figure E 5 Removing the cover cc ccc eee ce eee ceecee E 9 Figure E 6 Feeding the merge cable through the cover E 10 Figure E 7 Seating the cover on the chassis 0eeeees E 11 Tektronix Logic Analyzer Family User Manual Version 4 2 Software xi Table of Contents xii Figure E 8 Lining up the two modules eeeeees E 12 Figure E 9 Positioning the merge cable before installing ChE COVER 3s i955 5020 a s aeasele na tre oars HOES Reb ae Saree Bae Se ew E 14 Figure F 1 Power cord identification chart 00005 F 3 Figure G 1 Flash programming pins ce cece eeeee G 23 Figure G 2 Flash programming pins eceeceeeeees G 26 Figure H 1 TLA startup sequence cece e cee eeceees H 14 Figure H 2 Example ResMan32 program output H 17 Tektronix Logic Analyzer Family User Manual Version 4 2 Software Table of Contents List of Tables Table 1 1 Additional accessory connection information 1 12 Table 1 2 TLA600 series line fuses cece eee eee eee eee 1 17 Table 1 3 TLA700 series line fuses cece cece eee eee 1 18 Table 1 4 Probe Logic Analyzer cross reference 0 1 25 Table 2 1 Using symbols in logic analyzer windows 2 49 Table 3 1 Channel assignments
108. next sample clock beyond the minimum asynchronous rate of 4 ns In the synchronous or external clock mode this represents the time to the next master clock generated by the setup of the clocking state machine and the supplied system under test clocks and qualification data 6 Signals 1 and 2 are limited to a broadcast mode of operation where only one source is allowed to drive the signal node at any one time That single source may be utilized to drive any combination of destinations A 20 Tektronix Logic Analyzer Family User Manual Version 4 2 Software Appendix A Specifications for the TLA700 System Table A 20 TLA700 External signal interface Characteristic Description System Trigger Input TTL compatible input via rear panel mounted BNC connectors portable mainframe or front Input Levels Vin ViL Input destination Input Mode Minimum Pulse Width Active Period Maximum Input Voltage External Signal Input Input Destination Input Levels Vin ViL Input Mode Input Bandwidth Signal 1 2 Signal 3 4 Active Period Maximum Input Voltage panel mounted SMB connectors benchtop mainframe TTL compatible input 2 0V lt 0 8 V System trigger Falling edge sensitive latched active low 12 ns Accepts system triggers during valid acquisition periods via real time gating resets system trigger input latch between valid acquisition periods 0 to 5 V peak TTL compatible input via rear panel mou
109. not Possible causes and recommended action lf the instrument is a TLA700 series turn off the instrument and check that all of the modules are fully inserted If the mainframe is a benchtop mainframe check the status of the SYSTEM FAIL and TEST LEDs on the benchtop controller If either LED stays on contact your local Tektronix service center Check the status of the READY and ACCESSED LEDs on the front panel of the application modules The READY LED turns on when the module passes the power on diagnostics and when the module is ready to communicate with the controller The ACCESSED LED turns on any time the controller accesses the module Check for disk in floppy disk drive make sure mainframe boots from the hard disk drive Check for faulty module Remove modules one at a time and turn on the instrument If the instrument completes the power on sequence replace the faulty module Possible software failure or corrupted hard disk see Software Problems at the beginning of this chapter Isolate problem to a faulty mainframe or to a faulty module Multiple diagnostic failures across modules indicate a faulty mainframe Diagnostic failures confined to an single module most likely indicate a faulty module Contact your local Tektronix service center Check that accessories are properly connected or installed Try connecting other standard PC accessories or contact your local Tektronix service center Merge cable between LA modules not
110. of the table lists the number of channels in a group where a zero refers to bit 0 For example in Figure 3 17 the Address group is made up of 32 channels with channel 31 as the most significant bit A3 7 and channel 0 as the least significant bit A0 0 Probe Channels Names Table Use the Probe Channels Names Table to enter names for individual channels add and remove channels from a group or change polarity of individual channels Tektronix Logic Analyzer Family User Manual Version 4 2 Software Setup fii Setup QSTART aia Clocking Custom z More Memory Depth naoa gt Acquire Noma gt Support QSTART Probes Suppress Define Compare Group Name MSB Probe Channels Di DON RESET FREEZE AVEC IRQ_ANY_D BG_D BGACK_L BERR HALT RMC F_ FC3 FC2 FC1 FCO DSACK1 DSACKO SIZ1 SIZO BKPT BR_D TSTME _TSC CSB00T CLKOUT Probe Channels 7 Names 7 f 3 X AS XNddr_37 XI ddr_30 Xio 25 Xidd 28 Xda 21 Xda 24 X dd_ 25 HM dddr_2 T e X 42 X ddr 2 X lddi 21 X 27 Xli 20 Xda 14 Xda 11X sdd 11X sda 16 _ LKOUT X AL Xs 15 X 14 X 11X 11X Add ddi 10X Addr_9 X Add_S CKI ao X ada_7 x da G X fda 5 X Ada 4 Xl Add 4X Ada 2 X Addr 1X Ada 0 __ T_BUS o il il ri ri ae m m mn m ail ai x In selected group El Not grouped Table Shows Channel Polarity In other groupfs Channel C
111. of the target symbol Tektronix Logic Analyzer Family User Manual Version 4 2 Software B 3 Appendix B TLA Symbol File Format TSF Range Symbols B 4 There are four different types of range symbols m Function m Variable m Source m Color Each of these types define a range of 32 bit addresses associated with some entity Function range symbols define the beginning and ending addresses where instructions that implement a function are located in memory Variable range symbols define the beginning and ending addresses where the value of a variable is located in memory Source range symbols are similar to function range symbols except that the address range for a source symbol describes the location of the instructions that implement just one source statement Source symbols also contain file name line number and an optional column range that define the location of the source code associated with the symbol Color range symbols define a display color for any value that falls within a range Each of the types of range symbols appear in a separate section of the file Each section begins with a file directive indicating the type of symbols that follow The sections may appear in any order and can be broken up and separated by other sections if necessary The first section might be variables followed by functions then followed by another variable section Each section is also optional however some logic analyzer app
112. off only the current sample can be stored The event storage control overrides any global storage commands When enabled 31 samples are stored before and after the valid sample Not allowed when glitch storage or setup and hold violation is enabled The acquisition memory can be enabled to store glitch violation information with each data sample when asynchronous clocking is used The probe data storage size is reduced by one half the other half holds the violation information The fastest asynchronous clocking rate is reduced to 10 ns The acquisition memory can be enabled to store setup and hold violation information with each data sample when synchronous clocking is used The probe data storage size is reduced by one half the other half holds the violation information The maximum clock rate is reduced by half Each use of External Signal In glitch detector setup and hold violation detector or transition detector requires a trade off Any glitch is subject to pulse width variation of up to the channel to channel skew specification 0 5 ns Any setup value is subject to variation of up to 1 8 ns any hold value is subject to variation of up to 1 2 ns Tektronix Logic Analyzer Family User Manual Version 4 2 Software Appendix A Specifications for the TLA600 Series Logic Analyzer Table A 9 TLA600 MagniVu feature Characteristic MagniVu memory depth MagniVu sampling period Table A 10 TLA600 Data handling Chara
113. operates This knowledge can influence how you approach a logic analysis problem Sampling and Digitizing a Signal Acquisition is the process of sampling the input signal digitizing it to convert it into digital data and assembling it into a waveform record The order and method of accomplishing these functions is different between the LA and DSO modules The LA module converts incoming data into ones and zeros using a comparator with a user selectable threshold voltage If the incoming signal is above the threshold voltage it is converted to a one if it is below the threshold voltage it is converted to a zero After digitizing the data the LA module samples it at regular time intervals The sampled and digitized points are stored in memory along with corresponding timing information See Figure 2 25 111 1 1 1 14 1 Digital values Threshold voltage L f Input signal 0 0 000 000 Sample clock C a a S S D O S S S O Figure 2 25 Acquiring a digital signal LA module Tektronix Logic Analyzer Family User Manual Version 4 2 Software 2 27 Operating Basics The DSO module samples the voltage level of the signal at regular intervals and then converts the sampled analog data into 8 bit digital values see Figure 2 26 The sampled and digitized points are stored in memory along with corresponding timing information 6 0 V i 5 5 V 45 0V Digital values Analog signal cee ov OV OV Sample clock I I I I I I I I
114. operating limits described in these specifications m The logic analyzer must have had a warm up period of at least 30 minutes For modules the performance limits in this specification are valid with these conditions m The modules must be installed in a Logic Analyzer Mainframe m The module must have been calibrated adjusted at an ambient temperature between 20 C and 30 C m The DSO module must have had its signal path compensation routine self calibration or self cal last executed after at least a 30 minute warm up period m After the warm up period the DSO module must have had its signal path compensation routine last executed at an ambient temperature within 5 C of the current ambient temperature For optimum performance using an external oscilloscope please consult the documentation for any external oscilloscopes used with your Tektronix Logic Analyzer to determine the warm up period and signal path compensation requirements Tektronix Logic Analyzer Family User Manual Version 4 2 Software A 1 Appendix A Specifications Atmospheric Characteristics for the Tektronix Logic Analyzer Family Table A 1 lists the Atmospheric characteristics of all components in the Tektronix Logic Analyzer family Table A 1 Atmospheric characteristics Characteristic Description Temperature Operating no media in floppy disk drive Operating and nonoperating 5 C to 50 C 15 C hr maximum gradient non condensing
115. over a greater span of time providing a lower resolution data sample from a greater time period MagniVu memory depth is set to a fixed 16K The example in Figure 2 16 shows regular data and MagniVu data for the same channels The MagniVu channels have the Mag _ prefix associated with each channel and with group names You can add MagniVu data with the Add Waveform toolbar button Tektronix Logic Analyzer Family User Manual Version 4 2 Software Approaching the TLA Application Windows Waveform 1 B b BE E dh time mM 22 54 PERSA MESTA Rene POSAS RO EAT NOR ESR SS ae wo est 1 27 L 1 Mag Sample fiidar ishak tea KI a e O 0A o y ooo y A Figure 2 16 Comparing regular and MagniVu data Saving and Loading Setups and Data Once you set up the logic analyzer to your satisfaction you will probably want to save the setup for future use You can save setup information as a saved system file or as a saved module file You can also independently save LA module trigger information Saved system files contain setup and trigger information for each module as well as system level information such as repetitive properties and data windows for the logic analyzer Saved module files contain setup and trigger information for only the specified module In both cases you have the option of saving acquired data with the files Saved LA module trigger files contain trigger state informa tion as well as in
116. path C MySources the MySources directory and all directories one level deep within MySources will be searched However you cannot use the asterisk as a general purpose wild card character For example the use of an asterisk in C MySources or C MySources abc is invalid You must specify the complete absolute not relative path name for the file in the Search Path List Otherwise the Source window will not locate the source file Make sure that the source file you are looking for has a unique file name When searching for source files it is possible to load the wrong file if there is another file with the same name in the directories specified by the search path The Source window always loads the first file that matches the search criteria Because some compilers do not include a source file suffix in the symbol file you may also need to specify the correct file suffixes in the file suffix list examples of correct file suffixes are c cpp and s The Source window will always load the first file that matches the criteria in the file suffix list The logic analyzer searches for files using both lists from top to bottom Therefore you should place the most likely search path or file suffix at the beginning of the lists Tektronix Logic Analyzer Family User Manual Version 4 2 Software Source Window The search path lists and the suffix lists in the Source Files properties tab are valid only for the current Source windo
117. position the cursor on a non executable statement such as a comment or white space the address of the next executable statement is displayed Use the active cursor readout to jump to a new location in the source file Enter an address in this field and the active cursor moves to the corresponding statement If you enter an address that does not correspond directly to the address of a source statement the next statement will be used and the address is adjusted You can copy and paste the readout value into other locations such as in the event portion of the Clause Definition dialog in the LA Trigger window Sometimes you can move the cursor in the Listing window to a location where there is no corresponding source statement The cursor in the Source window remains at the current location and changes the color of the Source window to signify that an uncorrelated state exists between the Source and Listing windows When this happens you can click the Step Forward or the Step Backward buttons to search for an executable source line in the Listing window this correlates the active cursors in both windows Tektronix Logic Analyzer Family User Manual Version 4 2 Software Source Window Clicking the buttons forces the Listing window to search for a data sample that corresponds to the next or previous line of executed source code The line of executed code may be in a different source file If this happens the Source window displays the requi
118. probe each probe can have two event lines Figure 3 48 shows an example of the Event Definition window The events in each row are logically ANDed together while the rows are logically ORed together Tektronix Logic Analyzer Family User Manual Version 4 2 Software 3 67 Setup System Trigger 3 68 LT i 2 x 14 Hae Gi ml Block Sequence Subsequence Event Event List m Ewent Definition Event Signa Prope n Protec Prone B Probe E Figure 3 48 Event Definition window The system trigger is a global trigger event that forces all untriggered modules to arm immediately and trigger Only one system trigger occurs per acquisition When displaying data the logic analyzer uses the system trigger as the primary reference point for the acquisition The data windows show the system trigger and all module triggers Module triggers can be forced by the system trigger or specified by module trigger programs The system trigger can be generated from any of several sources Often the system trigger is specified in a module s trigger program Any module can specify the system trigger as a trigger action Trigger All Modules However modules can specify trigger actions other than system triggers and the system trigger does not have to originate from a module The logic analyzer can also accept a system trigger generated by an external source External system trigge
119. probe to the target system LEZ Ground Figure 1 20 Connecting the 17 channel general purpose probe to the target system 1 26 Tektronix Logic Analyzer Family User Manual Version 4 2 Software Getting Started 1 Connect 8 podlets in the podlet holder directly to square pins on the PCB with 0 100 in pin spacing 2 Connect 1 podlet directly to the square pins on the PCB with 2 mm 0 039 in or 2 54 mm 0 100 in pin spacing 3 Connect 1 podlet with 1 channel leadset to the square pin on the PCB with 2 mm 0 039 in or 2 54 mm 0 100 in pin spacing The negative lead half white half black housing that contains a damping resistor is connected to ground in a single ended application lead or the minus in a differential application 4 Connect 8 podlets in the podlet holder with an 8 channel differential leadset to the square pins on the PCB with 2 mm 0 039 in or 2 54 mm 0 100 in pin spacing The negative lead half white half black housing that contains a damping resistor is connected to the minus in a differential application 5 Connect 8 podlets in the podlet holder with an 8 channel single ended leadset to the square pins on the PCB with 2 mm 0 039 in or 2 54 mm 0 100 in pin spacing The negative lead total black housing that contains no damping resistor however the leadset housing contains a damping resistor in ground path for each channel is connected to ground in a single ended application lead Figure 1 21 Con
120. probes to a TLA600 logic analyzer 0 ccc cece cece ee eee eeee Figure 1 10 Connecting the logic analyzer probes to the TLA7Lx TLA7Mx TLA7Nx TLA7Px and TLA7Qx modules Figure 1 11 Connecting the logic analyzer probes to the TEATAXX mod le 00403 wiasiees Shales cos EAR KAA CS ae Figure 1 12 Connecting the pattern generator probes Figure 1 13 Line fuse and power cord connector locations Figure 1 14 On Standby switch locations 0eeeeee Figure 1 15 Line fuse and power cord connector locations Figure 1 16 On Standby switch locations eee eens Figure 1 17 Depress the hard disk drive latch Figure 1 18 Unlatching the hard disk drive cartridge Figure 1 19 Removing the hard disk drive cartridge Figure 1 20 Connecting the 17 channel general purpose probe to the target system ccc cece cece rece cree eee eee Figure 1 21 Connecting the 34 channel P6810 general purpose probe to the target system 0005 Figure 1 22 P6434 High Density Probe connections Figure 1 23 P6860 High Density Probe and P6880 Differential Probe connections cccccccccceesccces Figure 2 1 TLA61x 62x Logic analyzer front panel Figure 2 2 TLA715 Portable mainframe front panel Figure 2 3 GlidePoint pad 0 cece cece cece cere ee eeee Figure 2 4 Trackball sc 6sieaie oa alek
121. region is the same setup and hold window Setup times are specified as typical figures Hold time follows the setup time by the setup and hold window size Sample point selection window range The setup and hold window can be moved for each channel group from 8 0 ns to 8 0 ns in 0 125 ns steps This window can be shifted toward the positive region by 0 ns 4 ns or 8 ns With a 0 ns shift the range is 8 ns to 8 ns with a 4 ns shift the range is 12 ns to 4 ns with an 8 ns shift the range is 16 ns to 0 ns The sample point selection region is the same setup and hold window Maximum synchronous clock rate 450 MHz in full speed mode 2 2 ns minimum between active clock edges 235 MHZ in half speed mode 4 25 ns minimum between active clock edges 120 MHZ in quarter speed mode 8 3 ns minimum between active clock edges 800 MHz on half channels Software controls the selection between full speed and half speed modes A 46 Tektronix Logic Analyzer Family User Manual Version 4 2 Software Appendix A Specifications for the TLA7Axx Logic Analzyer Modules Table A 49 Clocking Cont Characteristic Description Demultiplex clocking two clock edges required Demultiplex channels 2 1 TLA7AAS TLA7AA4 TLA7AB4 modules TLA7AA1 TLA7AA2 TLA7AB2 modules Demultiplex channels 4 1 TLA7AA3 TLA7AA4 TLA7AB4 modules Any individual channel can be demultiplexed with its partner channel If multiplexin
122. rub the display surface Avoid using excess force or you may damage the plastic display surface Exterior Surfaces Clean the exterior surfaces with a dry lint free cloth or a soft bristle brush If dirt remains use a cloth or swab dampened with a 75 isopropyl alcohol solution A swab is useful for cleaning in narrow spaces around the controls and connectors Do not use abrasive compounds on any part of the instrument N CAUTION To avoid damaging the instrument follow these precautions Avoid getting moisture inside the instrument during external cleaning and use only enough solution to dampen the cloth or swab Do not wash the front panel On Standby switch Cover the switch while washing the instrument Use only deionized water when cleaning Use a 75 isopropyl alcohol solution as a cleanser and rinse with deionized water Do not use chemical cleaning agents they may damage the instrument Avoid chemicals that contain benzene toluene xylene acetone or similar solvents Floppy Disk Drive The floppy disk drive requires routine maintenance to operate at maximum efficiency The disks can be damaged if dirt and dust accumulate on the recording surfaces To prevent damage the disks should be properly stored in their protective containers where they will not be exposed to dust or dirt In addition the head should be cleaned periodically You will need a 3 5 inch floppy disk head cleaning kit for routine maintenance Perform th
123. set from within the TLA application without physically separating modules there will be times when you have to physically unmerge the modules The following procedures provide the steps for unmerging the modules 1 Power off the mainframe before removing the modules from the mainframe 2 Use the ejector handles to disengage each module in the merged module set from the mainframe 3 With the assistance of another individual slide all of the merged modules out of the mainframe and place them on a static free working surface 4 Gently separate the modules one at a time from the merged module set 5 Lay the modules on their right sides 6 Remove the two Torx T 10 screws that hold the merge cable assembly to the module 7 Place the merge cable assembly into the recessed position 8 Install the two Torx T 10 screws onto the assembly and tighten the screws to 4 in lbs 9 Repeat steps 6 through 8 for the other modules You can now reinstall the modules in the mainframe as needed Tektronix Logic Analyzer Family User Manual Version 4 2 Software E 7 Appendix E Merging Modules TLA7Lx TLA7Mx TLA7Nx TLA7Px and TLA7Qx Logic Analyzer Merge Procedures Use the following procedures to physically merge the logic analyzer modules together Two Way Logic Analyzer The following procedure is used for merging two logic analyzer modules to form Merge Procedure a merged set with a higher logic analyzer channel count For infor
124. sides and rear unit should be operated on a flat unobstructed surface Slot Activation Installing a module activates the cooling for the corresponding occupied slots by opening the air flow shutter mechanism Optimizes cooling efficiency by only applying airflow to modules that are installed A 32 Tektronix Logic Analyzer Family User Manual Version 4 2 Software Appendix A Specifications for the TLA714 Portable Mainframe Table A 36 TLA714 mechanical Characteristic Description Overall Dimensions See Figure A 3 for overall chassis dimensions Height with feet 9 25 in 235 mm Width 17 0 in 432 mm Depth 17 5 in 445 mm Weight 30 Ibs 12 oz 13 9 kg with no modules installed 2 dual wide slot covers and empty pouch Typical Shipping configuration 88 Ibs 26 3 kg minimum configuration no modules or probes with all standard accessories clypical 87 b mg kg tull configuration with 2 TLA7P4 modules and standard accessories including probes 17 in 17 5 in 43 18 cm i r 44 45 cm i 9 25 in 23 5 cm lt a o00o0000000 DOOOCCO0O00 oo00000000D Figure A 3 Dimensions of TLA714 portable mainframe Tektronix Logic Analyzer Family User Manual Version 4 2 Software A 33 Appendix A Specifications for the Benchtop and Expansion Mainframe Benchtop and Expansion Mainframe Characteristics Tables A 37
125. slot order by the application This window functions as the main application window and provides a familiar starting point for Tektronix logic analyzer users TLA 700 Pattern Generator lgj x Fil System View Window Help GE M212 staus Ide Run Hal System Patern Pattern Patlern Generator rer Generator E D Generator ahi 12 Ba Ea a Prog al Z Za a Bi z PaT PG 2 Po 4 Fo Help press F1 Tektronb Figure 2 19 System window You can perform the following tasks in the System window m Enable and disable modules by clicking their On Off buttons m Open Setup and Pattern windows by clicking the module icons To select a module without opening its window click inside the icon m Save and load files containing setup and pattern information from the File menu Before you can generate data you must first configure the modules using the module Setup windows Each pattern generator module has its own set of Setup windows Click the Setup icon to open the Module Setup window and then select the individual setup windows from tabs at the top of the windows Tektronix Logic Analyzer Family User Manual Version 4 2 Software Approaching the Pattern Generator Application Windows Module Setup Tab Channel Setup tab Probe Setup tab Signal Setup tab Program Window Use the Module Setup tab to set various parameters pertaining to the current pattern generator module such as clocking and the run mode
126. stopped state that it was in prior to the reset Signal out A signal sent to the backplane to be used by other modules Trigger out A trigger out signal sent to the backplane to trigger other modules Tektronix Logic Analyzer Family User Manual Version 4 2 Software A 57 Appendix A Specifications for the TLA7Lx Mx Nx Px Qx Logic Analzyer Modules Table A 57 LA module trigger system Cont Characteristic Description Storage Control Global storage Storage is allowed only when a specific condition is met This condition can use any of the trigger machine resources except for the counter timers Storage commands defined in the current trigger state will override the global storage control Global storage can be used to start the acquisition with storage initially turned on default or turned off By event Storage can be turned on or off only the current sample can be stored The event storage control overrides any global storage commands Block storage When enabled 31 samples are stored before and after the valid sample Block storage is disallowed when glitch storage or setup and hold violation is enabled Glitch violation storage The acquisition memory can be enabled to store glitch violation information with each data sample when asynchronous clocking is used The probe data storage size is reduced by one half the other half holds the violation information The fastest asynchronous clocking rate is reduced
127. the LA module probe tip without having to acquire data The activity symbols indicate whether the signals at the probe tip are high low or changing See Figure 3 21 Probe Properties LA 1 Activity Thresholds Info Clk Qual CKO CKI ei CK m CK3 QI Q3 Probe HETANA EE Alga STS 7 Seca D3 0 f DI D m tF ean TOn TETT Ra A AIE EVAN Suge tt eS Probe PAI ST a aaa UES ST 7 TETE R OR ee DO 0 ttt C27 0 ttit 20 a TT EGS S747 Sas omnu nno a slots 3 4 E1 7 0 E0 0 m fttt Si Help Figure 3 21 Activity Indicators dialog box If the activity indicators show no activity the problem could be that there is no signal voltage the voltage threshold level is incorrect or the channel lead is not connected If all the channels associated with a probe are inactive check the probe connections to the LA module You can leave the Probe Properties dialog box open while you set up other windows This dialog box is useful for verifying that clocks are active in external clocking and for troubleshooting complex clock setups Tektronix Logic Analyzer Family User Manual Version 4 2 Software Setup Setting Probe Thresholds Use the Thresholds tab located in the Probe Properties dialog box to set the input threshold voltage settings for probe channels clocks and qualifiers of the LA module Changes are immediately executed even dur
128. the Tektronix Service Options page following the title page of this manual Tektronix Logic Analyzer Family User Manual Version 4 2 Software H 1 Appendix H User Service Service Options Service Agreements If service options are not added to the instrument purchase then service agreements are available on an annual basis to provide calibration services or post warranty repair coverage for the TLA logic analyzers Service agreements may be customized to meet special turn around time and or on site requirements Service on Demand Tektronix also offers calibration and repair services on a per incident basis that is available with standard prices for many products Self Service Tektronix supports repair to the replaceable part level by providing for circuit board module exchange Use this service to reduce down time for repair by exchanging faulty circuit boards for remanufactured ones Tektronix ships updated and tested exchange boards Each board comes with a 90 day service warranty For More Information Contact your local Tektronix service center or sales engineer for more information on any of the calibration and repair services Tektronix offers the following service options These options are modular flexible and easy to order with your instrument Designed to ease installation and startup to support tracking of calibration to requirements of ISO9000 and to provide for extended repair coverage these options help
129. the appropriate window type and click the Next button NOTE The contents of the New Data Window wizard will vary depending on the type of data window that you are creating 3 For each page in the wizard enter the required information and click the Next button Tektronix Logic Analyzer Family User Manual Version 4 2 Software Display 4 On the last page enter the name for the data window or use the default name and then click the Finish button General Purpose Data Window Shortcut Keys You can use the general purpose shortcut keys listed in Table 3 13 to move data and cursors in data windows You should also refer to the discussions of shortcut keys in the online help or under the section for the individual data windows The shortcut keys also known as accelerator keys or hot keys abide by the following rules m Arrow keys with no modifier keys scroll data m Arrow keys with the Control CTRL key move the active cursor m The Shift key increases movement by a factor of 10 Table 3 13 General purpose data window shortcut keys Desired action Key combination Scroll data up 10 pages Shift Page Up Scroll data down 10 pages Shift Page Down Scroll data to the top of the window Home Scroll data to the end of the window End Move active cursor up one page CTRL Page Up Move active cursor down one page CTRL Page Down Move active cursor to the top of the data CTRL Home Move a
130. the first cycle in the gated region Cycle RMS This voltage measurement is the true Root Mean Square voltage over the first cycle in the waveform or the first cycle in the gated region Burst Width This timing measurement is the duration of a burst and is measured over the entire waveform or gated region Tektronix Logic Analyzer Family User Manual Version 4 2 Software 3 101 Waveform Window Table 3 16 Waveform Reference Levels Reference Level Description High Reference This defines the high reference level of a waveform the default level is 90 This reference level is used with the Low Reference level in the calculation of rise and fall times Mid Reference This defines the middle reference level of a waveform the default value is 50 This reference value is primarily used for making measurements between edges such as pulse widths Low Reference This defines the low reference level of a waveform the default level is 10 This reference level is used with the High Reference level in the calculation of rise and fall times The waveform shown in Figure 3 68 illustrates automatic waveform measure ments that display within the Waveform window lolx a a MES E amp Gola a e 200ns mE aj C2 2 12us Delta Time ja 52us I Lock Delta Time DSO 1 Channel1 C1 2 557 C2 1 900 Delta 4 457 DSO 1 Channel Figure 3 68 Sawtooth waveform with automatic measurements Jumping to Spec
131. the rate at which data changes When this happens misleading data is displayed because the instrument misses the changes in data that occurred between sample points Data pulses that fall between samples meet the technical definition of a glitch and are stored and displayed as glitches See also asynchronous acquisition and glitch For DSO data the displayed waveform may appear to be untriggered and much lower in frequency For complex waveforms distortion occurs due to the impact of aliasing on the high order harmonics All samples A Histogram window term The total number of data samples analyzed Arm To specify when the module should begin looking for a trigger Assert To cause a signal or line to change from its logic false state to its logic true state Asynchronous acquisition An acquisition that is made using a clock signal generated internally by the logic analyzer This clock is unrelated to the clock in the system under test and you can set it to a different rate You should use an asynchronous clock rate that is five to ten times faster than your data rate to avoid aliasing See also Aliasing Tektronix Logic Analyzer Family User Manual Version 4 2 Software Glossary 1 Glossary Glossary 2 Attenuation The degree the amplitude of a signal is reduced when it passes through an attenuating device such as a DSO probe or attenuator the ratio of the input measure to the output measure For example a 10X probe attenu
132. through A 41 list the specifications for the TLA720 721 Benchtop mainframe and the TLA7XM expansion mainframe Table A 37 Benchtop and expansion mainframe AC power source Characteristic Description Source Voltage 90 250 Vams 45 66 Hz continuous range CAT II 100 132 Vrms 360 440 Hz continuous range CAT II Maximum Power Consumption 1450 W line power the maximum power consumed by a fully loaded 13 slot instrument Fuse Rating Current and voltage ratings and type of fuse used to fuse the source line voltage 90 V 132 VACpms Operation Safety UL198G CSA C22 2 High power Low Line 159 0379 00 Size 0 25 in x 1 25 in Style Slow acting Rating 20 A 250 V 103 V 250 VACprms Operation Safety UL198G CSA C22 2 159 0256 00 Size 0 25 in x 1 25 in Style No 59 Fast acting Rating 15 A 250 V 207 V 250 VACrms Operation Safety IEC 127 Sheet 1 159 0381 00 Size 5 mm x 20 mm Style Fast acting F high breaking capacity Rating 6 3 A 250 V Inrush Surge Current 70 A maximum Steady State Input Current 16 5 Arms maximum at 90 VACRms 6 3 Arms maximum at 207 VACams Power Factor Correction Typical 0 99 at 60 Hz operation and 0 95 at 400 Hz operation ON Standby Switch and Indicator Front Panel On Standby switch with integral power indicator A 34 Tektronix Logic Analyzer Family User Manual Version 4 2 Software Appendix A Specifications for the Benchtop and Expansion Mainframe Table A 38 Benchtop and
133. tip to input probe 7 33 ns connector Typical Tektronix Logic Analyzer Family User Manual Version 4 2 Software A 59 Appendix A Specifications for the TLA7Lx Mx Nx Px Qx Logic Analzyer Modules Table A 61 LA module mechanical Characteristic Slot width Weight Typical Overall dimensions Height Width Depth Probe cables P6417 length P6418 length P6434 length Mainframe interlock A 60 Description Requires 2 mainframe slots 5 Ibs 10 oz 2 55 kg for TLA7N4 and TLA7P4 8 Ibs 3 63 kg for TLA7N4 and TLA7P4 packaged for domestic shipping 262 mm 10 32 in 61 mm 2 39 in 373 mm 14 7 in 1 8m 6 ft 1 93 m 6 ft 4 in 1 6m 5 ft 2 in 1 4 ECL keying is implemented Tektronix Logic Analyzer Family User Manual Version 4 2 Software Appendix A Specifications for the DSO Module DSO Module Characteristics Tables A 62 through A 66 list the specifications for the DSO Module Table A 62 DSO module signal acquisition system Characteristic Description Accuracy DC gain 1 5 for full scale ranges from 20 mV to 100 V 2 0 for full scale ranges lt 19 9 mV Accuracy internal offset Full scale range setting Offset accuracy 10mV 1V 0 2 x offset 1 5 mV 6 x full scale range 1 01V 10V 0 25 x offset 15 mV 6 x full scale range 10 1 V 100 V 0 25 x offset 150 mV 6 x full scale range Analog bandwidth DC 50 S2 couple
134. to save setups and all data m Click the Save only Unsuppressed Data option button to save the setups and unsuppressed data only the data displayed in the Listing or Waveform window Be aware that if you select this option the suppressed samples are lost If you want to save the suppressed samples select Save all Acquired Data m Click the Don t Save Acquired Data option button to save the setups without any acquired data Saved system and module file names have a tla file name extension file name tla The initial default location for saved files is C My Documents Tektronix Logic Analyzer Family User Manual Version 4 2 Software 3 75 Setup Loading Saved System 3 76 and Module Files Save As HE Save in 5 My Docs E El faa My Pictures File name Systemt Save as type tts Files gt Cancel Comment m Hell Help Save Options Save all Acquired Data File Size 106673 C Save only Unsuppressed Data File Size 106671K Don t Save Acquired Data File Size 133K Figure 3 53 Saving a system with data The logic analyzer stores all the setup trigger and data information in just two types of files saved module and saved system However the logic analyzer can extract different types of information individually from these files From a saved module file you have the option of loading any of the following m An LA module trigger program m A module setup and trigger program
135. trigger the system System triggered by the first module that triggers Trigger actions in all programs are changed to Trigger All Modules If the system has an external oscilloscope it is set up to wait for the system trigger Modules trigger using the current custom setup Enabled by default when your trigger setups do not match one of the previous system trigger options Enable System Trigger Out Check box that enables or disables the System Trigger Out connector Enable System Trigger In Check box that enables or disables the System Trigger In connector Tektronix Logic Analyzer Family User Manual Version 4 2 Software 3 69 Setup Arming Modules 3 70 NOTE When you apply a system trigger option your choice will only affect those modules that currently have a trigger action Logic analyzer trigger actions include Trigger Trigger All Modules and Wait for System Trigger DSO and external oscilloscope modules are always affected because all of their actions result in triggering the module It is not uncommon to have a condition in which the acquisition completed but an explicit system trigger did not occur This means that there was neither an external system trigger nor a system trigger generated internally by a module trigger program To ensure that a time reference exists for the acquisition the logic analyzer must designate a system trigger If no system trigger
136. window the corresponding cursor in the other window also moves Use the Step Forward or Step Backward buttons see Figure 3 99 to step through source statements in execution order in the Source window You can also use the Next Mark or Previous Mark buttons to jump to the next or previous executed source statement that has a user defined mark Use the cursor controls in either window to move the cursors You can also move the cursors in either window by clicking and dragging the cursor handles or by adjusting the cursor spin box controls Scan Listing Later eo453c 3 r 2 Step Next Backward Mark Step Active Previous Forward Cursor Mark Figure 3 99 Source window controls Source relative cursor positioning refers to updating the Listing window cursor position as a result of changing the position of the active cursor in the Source window When you move the Source window cursor to a new statement the Source window determines the address range of the source statement based on informa tion from the loaded symbol file The Source window uses the setting of the Scan Listing mode to determine the search direction in the Listing window The Listing window searches the acquisition data for a matching address When the matching address is found the active cursor in the Listing window is moved to the matching sample If the Source window cursor is moved to a non executable statement such as a comment the addres
137. window and data window controls act independently of one another Controls in the Setup windows affect how the modules acquire data Controls in the data windows affect how the acquired data is displayed NOTE Logic analyzer Listing and Waveform windows are different from pattern generator Listing and Waveform windows LA Listing and Waveform windows display acquired data from the target system while pattern generator Listing and Waveform windows are used to set up data to send to the target system Tektronix Logic Analyzer Family User Manual Version 4 2 Software 3 87 Display Opening an Existing Data Window The System window shows the relationship between the modules and the data windows m To open a data window go to the System window and select a data window button See Figure 3 59 m To see which modules supply data to a data window go to the System window and click the data window label HEJ System lel Ea Digital PNG Logic Oscilloscope Analyzer 80n m Ooft Sake y ps0 On SE OOff Setu z p gt al RERI waveform 1l Listing 1 Source 1 l Figure 3 59 Opening a data window 3 88 Tektronix Logic Analyzer Family User Manual Version 4 2 Software Display Opening a Saved Data Window To open a window displaying data from a saved system file do the following 1 From the Window menu click Load Data Window 2 Click the Browse button to search for the file or enter a path
138. you can have up to eight clauses and one counter or timer per state If you use a snapshot recognizer and two or more additional events you can have up to two clauses and one counter or timer per state Clauses are made up of two parts an If statement which defines the data event of interest and a Then statement which specifies the action taken when the If statement is true You can define up to eight events per If statement and up to eight trigger actions per Then statement During each sample clock cycle all clauses within the active state simultaneous ly evaluate each data sample Clauses are evaluated from top State 1 IF Then Clause 1 to bottom When one of the clauses goes true the event defined in the If statement occurs then the logic analyzer performs the action s specified in the Then statement There are several actions to choose from including triggering the system and transferring control of the trigger program to another state Tektronix Logic Analyzer Family User Manual Version 4 2 Software Setup NOTE The clauses within a given state are hierarchical and are evaluated in real time from top down If multiple clauses are true in the same clock cycle the earliest clause in the state that is evaluated as true will have its action s execute all other clauses will be ignored Add clause statements that are unconditionally true at the bottom of your If Then list Otherwise no other If Then clauses will be
139. you have a portable mainframe you can also change the column width by selecting the column label and using the front panel Scale control to set the width You can cut copy and paste columns and marks You can also copy textual data from the listing to the clipboard From there you can paste it to other areas such as the Define Search dialog box or the Clause Definition dialog box in the Trigger window To change a column radix in the Listing window double click the column label to open the Column properties tab Select a new radix To use the Symbolic radix select Symbolic from the list click the Symbol File button and then browse the file system for a symbol file See Symbol Support beginning on page 2 48 for information about using symbols and symbol table files Qualification gaps indicate that data samples were not stored due to storage qualification or Don t Store trigger actions Qualification gaps are indicated with a horizontal gray line above the first data after the gap Turn qualification gaps on or off from the Listing Window property page Tektronix Logic Analyzer Family User Manual Version 4 2 Software Listing Window Viewing Violations Glitches and setup and hold violations are indicated in the display by highlighted text of the complete sample for all radixes except binary octal and hexadecimal In those radixes only the violation bits are highlighted Turn violations on or off from the Listing Window prop
140. your code as it was executed on your target system and acquired by the logic analyzer The correlation is based on symbolic information that is extracted from your object file or load module You configure the logic analyzer to access your source files You can step through each executed source statement in the Source window and view the results in a correlated Listing window You can also set user defined marks as break points within the code and then trace the execution of the code between the marks Figure 2 35 shows an example of viewing source code in a Source window while Figure 2 36 on page 2 38 shows the actual acquired data in an associated Listing window ee Q Diiver Sire Es JE El ajA laj Scan Listing Later x eh inch a i ch Ox0d ch Oxta fputet sh stdin return ch PFA AAAAEEEEREALAAE LA EERE RRAELEA EE ELEEERRELEAE EE EEEEEREAEEEELEEEREERE AH Description gets get a null terminated character string Input is terminated by a carriage return Returns LEAALALKLAAAALALA LL LALLA ALAAL ALLL AKAAATA LALLA LL LELAAALATA LL LEEK AA TLS int getsichar buf int n char ch m 0 Figure 2 35 High level source code Tektronix Logic Analyzer Family User Manual Version 4 2 Software 2 37 Operating Basics 2 38 E LED Error iolx C1 GZ pee START START Sos Delta Time 12 25us Q Start Q Start Sample Address Data OQEDALCA MEG B D1 oneo4lec A
141. 0 c ee eee eee eee eee Installing TLA700 Modules 2 0 eee cee ee nee een eee Connecting Accessories 2 6 eee cece eee eee ene eens Connecting Probess a dyes ee Moe eee aaah oA NG AA Ee A eR First Time Operation 0 eee eee eee ence eens Turning On the TLA600 Series Logic Analyzer 0 000 00 Turning On the TLA700 Series Logic Analyzer 000000 Powering On the Mainframes 0 0 0 eee cece eee eee ee eee Turning Off the TLA700 Series Mainframe 000 0008 Performing the Incoming Inspection 0 0 0c eee eee eee eee eee Backing Up User Files eiten nadane a i aa ce een eee ee eee Removing the Replaceable Hard Disk Drive TLA700 Series Only Connecting Probes to the Target System 0 0 e eee eee eee eee Additional Information sestorica 0 0 cece ccc eee eee eee Functional Overview ccccccccccccccccceescesceeeeees Front Panel Controls seere 0 adaa u ce cen ene nnee TLA600 Series External Connectors 0 cece cece eens TLA600 Series Chassis Ground Connections 00 e eee eae TLA700 Series External Connectors 0 cece eee ee eens TLA700 Series Chassis Ground Connections 0 00000 ce eee eee Approaching the TLA Application Windows 06 System WINDOW Faa tensien oc dye edge aval tele ple ara ies bub ae a o Setup WINDOWS rodet aie Syst wan reds eao dpa tient ce eda aia bya a E
142. 0n 5S onr Setup y Soff 7 OOF Setup g a m 1 ros3m2 zi Listing 1 Waveform 1 Data source indicator Figure 3 1 System window Tektronix Logic Analyzer Family User Manual Version 4 2 Software 3 1 Setup Opening Other Windows from the System Window Disabling Modules Renaming Windows Identifying Modules 3 2 You can use the System window as a quick navigation tool To open a module Setup Trigger or Program window from the System window click the Setup or Trigger button in the module icon m To open a data window from the System window click the data window button See Figure 3 2 EJ System Bl xi Digital ANN Logic F Oscilloscope Analyzer 0n ga 20n aS enff Setup z Off Setu H Joso 1 fa START fwfawefoum 1 L Listing 1 Histogram 1 f Source 1 Figure 3 2 Opening a Waveform window from the System window If you are not using a module you can disable it by clicking the module On Off button When you disable a module make sure that no other trigger programs depend on that module output You can rename the windows by selecting the current window labels and overtyping Names must be unique and are limited to the space available If you are unsure which physical module is represented by an icon double click the icon to open its System Properties tab This property tab lists information about the module including the mainframe slot numbers in which it is installed Slot numbers are indicated o
143. 2 00 V 1 90 V 5 2 V 5 460 V 5 252 V 5 044 V 12 V 12 60 V 12 12 V 11 64 V 24 V 25 20 V 24 24 V 23 28 V A 26 Tektronix Logic Analyzer Family User Manual Version 4 2 Software Appendix A Specifications for the TLA715 Dual Monitor Portable Mainframe Table A 27 TLA715 cooling Characteristic Description Cooling system Forced air circulation system with no removable filters using six fans operating in parallel Pressurization Negative pressurization system in all chambers including modules Slot activation Installing a module activates the cooling for the corresponding occupied slots by opening the airflow shutter mechanism Optimizes cooling efficiency by only applying airflow to installed modules Air intake Front sides and bottom Air exhaust Back rear Cooling clearance 2 inches 51 mm front sides top and rear Prevent blockage of airflow to bottom of instrument by placing on a solid noncompressable surface can be operated on rear feet Fan speed and operation All fans operational at half their rated potential and speed 12 VDC Table A 28 TLA715 mechanical Characteristic Description Overall dimensions See Figure A 3 for overall chassis dimensions Dimensions are without front feet extended front cover attached pouch attached nor power cord attached Height with feet 9 25 in 23 5 cm Width 17 in 43 18 cm Depth 17 5 in 44 45 cm Weight 30 Ibs 12 oz 13 9 kg with no modules installed two du
144. 2 41 LA module triggering on a glitch 6 2 44 Tektronix Logic Analyzer Family User Manual Version 4 2 Software vii Table of Contents Figure 2 42 DSO module triggering on a glitch 2 44 Figure 2 43 Viewing the performance of code with a Histogram window ccee ce cc cece eee e ec eceeeeeees 2 45 Figure 2 44 Using color to show memory differences in a Listing window 4 2 oscesdisele ja ere ba Saeed ee Se eed was Bare 2 46 Figure 2 45 Defining repetitive setups 0 0 cece e cece 2 47 Figure 2 46 Using symbols in a trigger program 2 48 Figure 2 47 Waveforms using pattern symbols 2 2 50 Figure 2 48 Listing data using range symbols 2 2 50 Figure 2 49 Symbols dialog box ccc eee e reece eeee 2 51 Figure 2 50 Load Symbol Options dialog box 2 52 Figure 3 1 System window cc cece cece eee cececeees 3 1 Figure 3 2 Opening a Waveform window from the System WING OW essessossssesesssossosssossseossosso 3 2 Figure 3 3 LA module Setup window eeceeeeees 3 3 Figure 3 4 Setup window with the QSTART support package 3 4 Figure 3 5 Sample Suppression dialog box 006 3 5 Figure 3 6 Selecting channels for memory compare 3 6 Figure 3 7 Enabling data compare cece cece eeeee 3 6 Figure 3 8 Typical DDR SDRAM consecutive READ bursts 3 11 Figure
145. 2 KBytes 10GB CD RW drive Standard PC compatible IDE Integrated device Electronics 8x 8x 24x CD RW drive residing on an IDE interface Continually subject to change due to the fast moving PC component environment Tektronix Logic Analyzer Family User Manual Version 4 2 Software A 23 Appendix A Specifications for the TLA715 Dual Monitor Portable Mainframe Table A 22 TLA715 display system Characteristic Classification Display memory Display selection External display drive Display Size Primary video port with Silicon motion chip Secondary video port with 815E chip set Description Standard PC graphics accelerator technology capable of supporting both internal color LCD display and two external color VGA SVGA or XGA monitors 4 MB SDRAM clocked up to 100 MHz no external video memory Hardware sense of external SVGA monitor during BIOS boot sequence defaults to internal color LCD display indicated by two beeps automatically switches to external SVGA monitor if attached indicated by one beep Dual simultaneous display of external SVGA monitor and internal color LCD is possible via special CMOS simulscan setup as long as internal and external displays operate at same resolution limited to 800x600 on current LCD and display rates simulscan mode indicated by three beeps Four beeps during the BIOS boot indicates a monochrome LCD was found not supported Five beeps indi
146. 2 No 1010 1 Safety requirements for electrical equipment for measurement control and laboratory use Additional Compliance IEC61010 1 A2 1995 Safety requirements for electrical equipment for measurement control and laboratory use Installation Overvoltage Category Terminals on this product may have different installation overvoltage category designations The installation categories are CAT Il Local level mains wall sockets Equipment at this level includes appliances portable tools and similar products Equipment is usually cord connected 1 Emissions which exceed the levels required by this standard may occur when this equipment is connected to a test object Tektronix Logic Analyzer Family User Manual Version 4 2 Software A 3 Appendix A Specifications Table A 2 Certifications and compliances Cont Category Pollution Degree Safety Certification Compliance Equipment Type Safety Class Overvoltage Category Pollution Degree A 4 Standards or description A measure of the contaminates that could occur in the environment around and within a product Typically the internal environment inside a product is considered to be the same as the external Products should be used only in the environment for which they are rated Pollution Degree 2 Normally only dry nonconductive pollution occurs Occasionally a temporary conductivity that is caused by condensation must be expected
147. 230 ns probe tipt External system trigger input to TLA7Axx probe tip 653 ns 617 ns External signal input to TLA7Lx Mx Nx Px Qx probe tip 212 ns Clk 176 ns Clk via Signal 3 45 External signal input to TLA7Axx probe tip via 212 ns Clk 176 ns Clk Signal 3 4 External signal input to TLA7Lx Mx Nx Px Qx probe tip 634 ns Clk 596 ns Clk via Signal 1 25 6 External signal input to TLA7Axx probe tip via 636 ns Clk 615 ns Clk Signal 1 2 6 External system trigger input to DSO probe tipt 25 ns 11 ns System trigger and external signal output latencies Typical TLA7Lx Mx Nx Px Qx probe tip to external system trigger 376 ns SMPL 412 ns SMPL out TLA7Axx probe tip to external system trigger out 794 ns SMPL 830 ns SMPL TLA7Lx Mx Nx Px Qx probe tip to external signal out via Signal 3 43 OR function 366 ns SMPL 402 ns SMPL AND function 379 ns SMPL 415 ns SMPL TLA7Axx probe tip to external signal out via Signal 3 4 OR function 792 ns SMPL 828 ns SMPL AND function 800 ns SMPL 836 ns SMPL TLA7Lx Mx Nx Px Qx probe tip to external signal out via Signal 1 23 6 normal function 364 ns SMPL 385 ns SMPL inverted logic on backplane 364 ns SMPL 385 ns SMPL TLA7Axx probe tip to external signal out via Signal 1 23 6 normal function 796 ns SMPL 817 ns SMPL inverted logic on backplane 796 ns SMPL 817 ns SMPL A 18 Tektronix Logic Analyzer Family User Manual Version 4 2 Software Append
148. 3 2 TLA604 TLA614 TLA624 4 i Setup and hold window size Maximum window size Maximum channel to channel skew 2 x sample data and qualifiers uncertainty 0 4 ns Maximum setup time User interface setup time 0 8 ns Maximum hold time User interface hold time 0 2 ns Examples for a P6417 or a P6418 probe and user interface setup and hold of 2 0 0 0 typical Maximum window size 1 6 ns 2 x 500 ps 0 4ns 3 0 ns Maximum setup time 2 0 ns 0 8 ns 2 8 ns Maximum hold time 0 0 ns 0 2 ns 0 2ns Setup and hold window size data and qualifiers Typical Channel to channel skew typical 2 x sample uncertainty Example for P6417 or P6418 Probe 1 ns 2 x 500 ps 2 ns Setup and hold window range The setup and hold window can be moved for each channel group from 8 5 ns Ts to 7 0 ns Ts in 0 5 ns steps setup time Hold time follows the setup time by the setup and hold window size Maximum synchronous clock ratet 200 MHZ in full speed mode 5 ns minimum between active clock edges 100 MHz 10 ns minimum between active clock edges Demux clocking TLA603 TLA613 TLA623 TLA604 TLA614 TLA624 Channels multiplex as follows A3 7 0 to D3 7 0 A2 7 0 to D2 7 0 A1 7 0 to D1 7 0 A0 7 0 to D0 7 0 Tektronix Logic Analyzer Family User Manual Version 4 2 Software A 9 Appendix A Specifications for the TLA600 Series Logic Analyzer Table A 7 T
149. 3 97 Tektronix Logic Analyzer Family User Manual Version 4 2 Software
150. 5 Appendix A Specifications for the TLA7Lx Mx Nx Px Qx Logic Analzyer Modules Table A 56 LA module clocking Cont Characteristic Description 400 MHz 200 MHz option required half channel Data Rate Typical TLA7N1 TLA7N2 TLA7P2 TLA7Q2 TLA7N3 TLA7N4 TLA7P4 TLA7Q4 Clocking state machine Pipeline delays Requires channels to be multiplexed These multiplexed channels double the memory depth Each channel group can be programmed with a pipeline delay of 0 through 3 active clock edges 1 Itis possible to use storage control and only store data when it has changed transitional storage 2 Applies to asynchronous clocking only Setup and hold window specification applies to synchronous clocking only 3 Any or all of the clock channels may be enabled For an enabled clock channel the rising edge falling edge or both edges can be selected as the active clock edges The clock channels are stored 4 Full and half speed modes are controlled by PowerFlex options and upgrade kits Table A 57 LA module trigger system Characteristic Description Triggering Resources OO Word Range recognizers 16 word recognizers The word recognizers can be combined to form full width double bounded range recognizers The following selections are available 16 word recognizers 0 range recognizers 13 word recognizers 1 range recognizer 10 word recognizers 2 range recognizers 7 word recognizers 3 range recognize
151. 6 Variable symbols consist of three fields the symbol name the lower bound and the upper bound Variable symbols are just like function symbols except that they define the address range occupied by a variable instead of function The lower and upper bound values of a variable symbol are inclusive meaning that they are themselves a part of the range For variables occupying only a single byte in memory the lower and upper bound values are equal Tektronix Logic Analyzer Family User Manual Version 4 2 Software B 5 Appendix B TLA Symbol File Format TSF Source Symbols The file directive Source introduces the source symbol section of a TSF range file The file directive tells the file reader that the following symbols represent source statements as opposed to functions or variables The source file directive must be followed by a file name which specifies the name of the source file containing the following source statements Each new set of symbols for a unique source file must be introduced with an additional source file directive to specify the file name for those symbols If no symbol type file directive is given the function symbol type is assumed Source stoplite Line Low High Beg End Symbol Name 27 006043ec 006043ef 35 006043f0 0060435 47 006043f6 006043ff 48 00604400 00604409 49 0060440a 00604413 50 00604414 0060441d 51 0060441e 00604427 52 00604428 00604431 56 00604432 00604437 59 00604438 00604439 60 00
152. 60 ns Cache Memory 256 K level 2 L2 write back cache Flash BIOS 512 KB Provides PC plug and play services with and without Microsoft Windows operating system Flash based BIOS field upgradable via a floppy disk Real Time Clock and CMOS Setups NVRAM Typical Real time clock calendar with typical 7 year life Standard and advanced PC CMOS setups see BIOS specification Floppy Disk Drive Standard 3 5 inch 1 44 MB double sided PC compatible high density floppy disk drive Bootable Replaceable Hard Disk Drive Standard PC compatible IDE Integrated device Electronics hard disk drive residing on an EIDE interface Size Maximum 30 GByte Continually subject to change due to the fast moving PC component environment These storage capacities valid at product introduction Interface ATA 4 Enhanced IDE EIDE Average seek time Read 13 ms I O data transfer rate 33 3 MB s maximum U DMA mode 2 CD RW Drive Standard PC compatible IDE Integrated device Electronics 8x 8x 24x CD RW drive residing on an IDE interface Continually subject to change due to the fast moving PC component environment A 42 Tektronix Logic Analyzer Family User Manual Version 4 2 Software Appendix A Specifications for the TLA720 Benchtop Controller Table A 44 TLA720 benchtop controller characteristics Cont Characteristic Display Classification Description Standard PC graphics accelerator technology bit
153. 60443a 00604445 61 00604446 0060444d 59 0060444e 0060444f 59 00604450 00604455 71 00604456 00604457 74 00604458 0060445f 77 00604460 00604467 80 00604468 0060446f 83 00604470 0060447b 87 0060447c 00604483 71 00604484 0060448d 84 0060448e 00604490 stoplite 27 25 stoplite 35 23 stoplite 47 30 stoplite 48 30 stoplite 49 30 stoplite 50 30 stoplite 51 30 stoplite 52 30 stoplite 56 17 stoplite 59 18 stoplite 60 37 stoplite 61 33 stoplite 59 35 stoplite 59 19 stoplite 71 37 stoplite 74 35 stoplite 77 36 stoplite 80 36 stoplite 83 43 stoplite 87 34 stoplite 71 37 stoplite 84 29 Re WwW cooocooocoocoocoounmnoacaoacaoacaCaCaCaCaCo O w N n a a n The source symbols section consists of five fields for each source statement line number lower address bound upper address bound beginning column value and ending column value Source symbols do not have a name in the same sense as function or variable symbols because there is no name associated with each of the executable statements in a source file Instead a source symbol has a file name specified in the source directive and a line number The line number specifies the line of the source file that contains the source statement Line numbers are always in decimal regardless of the file radix in the header B 6 Tektronix Logic Analyzer Family User Manual Version 4 2 Software Appendix B TLA Symbol File Format The lower and upper bound values for a source symbol are si
154. 658 ns 555 4mv 6 310 ns 6 653 ns 500 4m 7 658 nas 375 3mV Figure 2 33 Listing window with analog data Microprocessor Support For microprocessor applications the acquired data can be disassembled back into the assembly language mnemonics used by a particular microprocessor Figure 2 34 shows an example of the disassembled mnemonic display format Microprocessor support usually requires a special input probe dedicated to a specific microprocessor Hint Syr code CE in eae alal tlala z i a My 68340 Delta Time 8 625us ooog1so6 37 529 000 u OOO0130E 37_154 000 00604315 36 773 000 L n a 36 404 000 On so4322 BGT_B 00604312 36 029 000 Oo b0a224 i TLYSH 35 654 500 on604a21z2 CUPI L 00000007 0000120C 235 279 500 000a l4 EXTENSION 34 904 000 00502 l EXTENSION 24 529 000 00604216 EXTENSION 24 154 500 O50 1s EXTENSION 22 779 500 u Figure 2 34 Listing data using a microprocessor support package S EN a A PB 1 3 4 5 6 7 6 3 o H 2 36 Tektronix Logic Analyzer Family User Manual Version 4 2 Software Operating Basics The logic analyzer provides support for a wide variety of different microproces sors Microprocessor support packages include the software probe adapters and documentation High Level Language Source Code Support You can correlate the high level language HLL source code that you wrote with
155. A Firmware Loader You will be prompted to cycle the power on the mainframe after completing the upgrade operation Click Yes to continue Select the module from the Supported list box near the top of the window Select Load Firmware from the Execute menu Click the TLA6xx lod file Click OK You will be prompted to confirm your action click Yes Exit the firmware loader program and power down the logic analyzer You must power down the logic analyzer to allow the TLA application to start up properly Locate the big label on the back of the instrument Record the firmware version that is printed on the label You will need this information to see that the firmware version matches the label Power on the instrument After the logic analyzers completes the power on diagnostics select System Properties from the System menu Click the LA1 tab Verify that the firmware version matches the version on the label that you recorded in step 11 If the firmware versions do not match update the label on the back of the instrument Tektronix Logic Analyzer Family User Manual Version 4 2 Software T Appendix H User Service Service Offerings Warranty Repair Service Calibration and Repair Service This appendix describes service information and procedures for the Tektronix logic analyzers Mainframe and module service troubleshooting procedures are located in the service manuals Tektronix provides service to cover repai
156. Attributes la 1 slot 1 device_class 2 manf_id Oxffd model_code 0x7eb addr_spc 0 la 2 slot 3 device_class 2 manf_id Oxffd model_code 0x7f4 addr_spc 0 Setting VISA Address Maps A24 device la 1 reqmem 7 A24 device la 1 starting address 200000x size 65536 A24 device la 2 reqmem 7 A24 device la 2 starting address 210000x size 65536 Enabling Events amp Responses Default IRQ for system 4 la 1 Int ID 1 assigned to IRQ 4 Enabling Events 8 9 16 32 47 63 124 125 127 la 1 Asynchronous Enable succeeded Responses are unsupported by this device la 2 Int ID 1 assigned to IRQ 4 Enabling Events 16 32 124 125 127 la 2 Asynchronous Enable succeeded Responses are unsupported by this device Begin Normal Operation slot 1 LA 1 started successfully slot 3 LA 2 started successfully VISA Data Frame 0 Slot 01 la_1 1 1 4093 2027 2 0 1 7 2097152 Frame 0 Slot 03 la_2 2 3 4093 2036 2 0 1 7 2162688 Figure H 2 Example ResMan32 program output Tektronix Logic Analyzer Family User Manual Version 4 2 Software H 17 Appendix H User Service H 18 Expansion Mainframe Problems Because the expansion mainframe adds a level of complexity to troubleshooting problems this section will concentrate on tips to aid you in troubleshooting expansion mainframe related problems If you have exhausted all of the failure symptoms and possible causes listed in Table H 1 beginning on page H 10 try some of the following tips Look
157. BLT based capable of driving external color VGA SVGA or XGA monitors Display Memory DRAM based frame buffer memory Size 2 MB Display Drive One VGA SVGA or XGA compatible analog output port Display Size User selected via Microsoft Windows Plug and Play support for DDC1 and DDC2 A and B Resolution Pixels Colors 640 x 480 256 640 x 480 64 000 640 x 480 16 800 000 800 x 600 256 800 x 600 64 000 800 x 600 16 800 000 1024 x768 256 1280 x 1024 256 1600 x 1200 256 SVGA Output Port SVGA The SVGA port utilizing a 15 pin sub D SVGA connector Dual USB Ports Two USB Universal Serial Bus compliant ports Mouse Port Front panel mounted PS2 compatible mouse port utilizing a mini DIN connector Keyboard Port Front panel mounted PS2 compatible keyboard port utilizing a mini DIN connector Parallel Interface Port LPT 36 pin high density connector supports standard Centronics mode Enhanced Parallel Port EPP or Microsoft high speed mode ECP Serial Interface Port COM 9 pin male sub D connector to support an RS232 serial port Type and II PC Card Port Standard Type and II PC compatible PC card slot Type I Il and Ill PC Card Port Standard Type I Il and III PC compatible PC card slot Table A 45 TLA720 benchtop controller mechanical characteristics Characteristic Weight Typical Description 6 Ib 10 oz 2 9 kg Size Three slots wide Overall dimensions Height
158. CKO C1 al 2 J G i Data mark bar fine control E a ee ems lt Split box I NAN ATA Lock Delta Time cs z 511 500 ns ea a Te EY bo o See lt Overview mark bar coarse control Figure 3 65 Waveform window cursors and marks Table 3 14 Waveform window cursor and mark summary Mark Name Description T System trigger The system trigger is the reference point for the acquisition Timing and location information is relative to the system trigger Trigger marks cannot be moved Under some conditions the system trigger associated with a module s data might not be displayed in the data window If the system trigger was caused by another module whose data is not included in the current display then the system trigger is not shown Nevertheless all time measurements still relate to that system trigger even if it is not shown The system trigger associated with the current data is called the active system trigger The system trigger associated with saved data is called the reference system trigger The active system trigger is indicated by a yellow T the reference system trigger is indicated by a gray T F Module trigger The point at which the module triggered Trigger marks cannot be moved 3 96 Tektronix Logic Analyzer Family User Manual Version 4 2 Softwar
159. Change detector Operator Is Not Is Not lt lt gt gt Is In Is Not In Changes Restrictions and resources One trigger resource across all defined channel groups One trigger resource per channel group Three trigger resources per channel group One trigger resource per group event one change detector allowed in a trigger program not available when transitional storage is used Channel Word recognizer One trigger resource per channel group Change detector Goes Doesn t go One trigger resource one change detector allowed in a trigger program not available when transitional storage is used Snapshot Is Not Is Loaded Is Not Two trigger resources and one timer event Loaded Transition Occurs Doesn t Occur One trigger resource Glitch One trigger resource only available with internal asynchronous clocking S amp H Fault One trigger resource only available with external synchronous or custom clocking Tektronix Logic Analyzer Family User Manual Version 4 2 Software 3 45 Setup Table 3 5 Trigger resources Cont Event Operator Restrictions and resources Counter gt lt 0 trigger resources 2 counters or 2 timers Maximum width 51 bits Maximum clocking 250 MHz Maximum count 251 1 Counter 1 and 2 events conflict with Timer 1 and 2 events respectively Timer gt lt 0 trigger resources 2 counters or 2 timers Maximum wi
160. DDI B 09 D1 oneo4lpa LSL W D1 DL oo6041Dz OR W D1 D6 o06041p4 ADDQ W 1 D7 oo6041D6 CHPI W 000B D7 oo6041DAa BCS B O000000F oo6041DC MOVE W D7 D0 O06041DE NOT W D1 oOo6041E0 MOVE W D1 00000001 O06041E6 MOVEM L A7 D0567 O06041EA MOVEA L A7 A0 ONGO4LEC ADDQ L 4 47 Figure 2 36 Source code viewed as acquired data The LA module supports a wide variety of object files including IEEE695 OMF51 OMF86 OMF286 OMF386 OMF166 COFF Elf Dwarfl and Dwarf2 Elf Stabs and the TLA Symbol File TSF format a text format Refer to Appendix B TLA Symbol File Format Tektronix Logic Analyzer Family User Manual Version 4 2 Software Operating Basics Waveform Data Concepts You can use the logic analyzer to observe the timing relationships between signals by displaying the recorded signal activity as a series of waveforms in the Waveform window Figure 2 37 shows waveform data from an LA module 23 Waveform 1 _ oy x n Ele ak 0 gt TimesDiv ins Sea c1 50ns C2 50ns Delta Time 100ns I Lock Delta Time tae aeyaaerews ISTART Mac Sampie lea mA ISTART Mag Adress I OSTART Maa Data OSTAFT Mag Conall START Maa DataSize OSTAFT Mag Mic iJ OSTART Sample al Figure 2 37 Waveform data Each waveform is initially displayed in a separate track but all waveforms are time aligned horizontally and displayed in the same time per division Again the incl
161. Delay time from probe tip to input probe connector Typical For P6880 High Density Probe 7 7 ns 60 ps A 44 Tektronix Logic Analyzer Family User Manual Version 4 2 Software Appendix A Specifications for the TLA7Axx Logic Analzyer Modules Table A 47 Analog output Characteristic Number of outputs Attenuation Bandwidth Typical Accuracy gain and offset Typical Table A 48 Channel width and depth Characteristic Number of channels TLA7AA4 TLA7AB4 TLA7AA3 TLA7AA2 TLA7AB2 TLA7AA1 Acquisition memory depth TLA7AAX series TLA7ABxX series Table A 49 Clocking Characteristic Asynchronous clocking Description Four analog outputs regardless of the module channel width Any four of the module s channels can be mapped to the four analog outputs 10X mode for normal operation 5X mode for small signals 1 5 V to 2 5 V 2 GHz 50 mV 2 of signal amplitude Description 128 data 8 clock qualifier 96 data 6 clock qualifier 64 data 4 clock qualifier 32 data 2 clock qualifier 32 M per channel 64 M per channel Description Internal sampling period 500 ps to 50 ms in a 1 2 5 sequence Storage control can be used to only store data when it has changed transitional storage 2 ns minimum for all channels 1 ns minimum for half channels using 2 1 Demultiplex mode 0 5 ns minimum for quarter channels using 4 1 Demultiplex mode Minimum recognizable word
162. Each channel group can be enabled to detect a setup and hold violation The range is from 8 ns before the clock edge to 8 ns after the clock edge The range can be selected in 0 5 ns increments The setup and hold violation of each window can be individually programmed Each channel group can be enabled or disabled to detect a transition between the current valid data sample and the previous valid data sample This mode can be used to create transitional storage selections where all channels are enabled 2 counter timers 51 bits wide can be clocked up to 250 MHz Maximum count is 257 Maximum time is 9 007 X 10 seconds or 104 days Counters and timers can be set reset or tested and have zero reset latency A backplane input signal A backplane input signal that causes the main acquisition and the MagniVu acquisition to trigger if they are not already triggered 16 maximum excluding counter timers Word recognizers are traded off one by one as External Signal In glitch detection setup and hold detection or transition detection resources are added 16 Same rate as valid data samples received 250 MHz maximum Main acquisition trigger Triggers the main acquisition memory Main trigger position Trigger position is programmable to any data sample 4 ns boundaries MagniVu acquisition trigger Triggering of MagniV memory is controlled by the main acquisition trigger MagniVu trigger position The Magn
163. Family User Manual Version 4 2 Software H 15 Appendix H User Service H 16 Table H 2 Command line options for ResMan32 Cont Option Description t T ResMan32 will not display the text window and the tests will terminate after executing regardless of the error conditions m M ResMan32 displays in a minimized window Complete the following steps to start the ResMan32 software 1 2 3 Exit all applications Click the Windows Start button and select Run In the dialog box enter the following path C Program Files TLA700 System ResMan32 exe Click OK The ResMan32 resource manager program will check all of the installed modules and their address locations The program will print out data similar to that in Figure H 2 In this example the mainframe has two logic analyzer modules installed If resource manager encounters any errors such as an unsupported module the resource manager will stop further communications and display information on why or at what point the module was disabled Tektronix Logic Analyzer Family User Manual Version 4 2 Software Appendix H User Service Auto Exit Off Identify Static Configure Devices Found a device at LA 1 Found a device at LA 2 Identify Dynamic Configure Devices Finding expansion devices Matching Devices to Slots Configuring slots for 2 instruments match la 1 to slot 1 in frame 0 match la 2 to slot 3 in frame 0 Checking device self test Setting VISA
164. Floppy 2 d Boot Device IDE HDD 3 Boot Device ATAPI CDROM 4 Boot Device Intel UNDI PXE 2 0 b 5th Boot Device Disabled p gt IDE Drive Configuration p gt Primary IDE Master 1S IDE p gt Primary IDE Slave 2 IDE p gt Secondary IDE Master 37 IDE p gt Secondary IDE Slave 4 IDE p gt Exit p gt Exit Saving Changes Yes or No p gt Exit Discarding Changes Yes or No p gt Load Setup Defaults Yes or No p gt Load Custom Defaults Yes or No gt Save Custom Defaults Yes or No p gt Discard Changes Yes or No G 6 Tektronix Logic Analyzer Family User Manual Version 4 2 Software Appendix G Installing Software Flashing the BIOS onthe This procedure is only necessary if you need to update the latest flash image To TLA700 Logic Analyzers flash the BIOS complete the following steps use the TLA700 BIOS floppy disk that came with your instrument or with the TLA7UP Upgrade kit 1 Gi ee ah Power on the logic analyzer and press function key F2 before the Windows operating system starts The BIOS Setup menu displays From the BIOS Setup menu go to the Exit menu Insert the TLA700 BIOS disk in the floppy disk drive From the Exit menu choose Exit amp Update BIOS When the system displays a dialog box asking if you want to proceed with the Flash update confirm your choice The display goes blank during the flash operation which lasts about one minute When the BIOS update is complete the l
165. Histogram Options dialog The data is saved in a text file with the txt file name extension Use the Export Data Options dialog to customize the data for a text file You can specify the field delimiter to separate the columns To export the bounds as a text string select Label 00 FF To export the bounds as two delimited numbers select Numbers To export Histogram data follow these steps 1 Inthe System window select a Histogram window 2 From the File menu click Export Histogram 3 Inthe Export Histogram dialog box select the folder to which you want to export data Otherwise leave the default of My Documents 4 Click Options to specify any export options for the text data and then click OK 5 Enter a name for the exported file 3 152 Tektronix Logic Analyzer Family User Manual Version 4 2 Software Histogram Window 6 Specify the export range 7 Click Save Figure 3 107 shows an example of an exported histogram file Histogram 1 txt WordPad OP x File Edit Wiew Insert Format Help isla SIR a naen w Range Count 0 0 gt 1 1 z z 3 3 rng g roo g 6 nooge ob H I Hees aor ie AOuUaananrnaaann pa Be nannat room oo 8 8 9 9 a a B B c c p p E E F F For Help press F1 i Figure 3 107 ASCII histogram data file Histogram Window Shortcut Keys You can use the general purpose shortcut keys listed in Table 3 24 to move data and
166. LA600 clocking Cont Characteristic TLA601 TLA611 TLA621 TLA602 TLA612 TLA622 Time between DeMux clock edges Typical Time between DeMux store clock edges Typical Data Rate Typical Clocking state machine Pipeline delays 1 2 3 Description Channels multiplex as follows A3 7 0 to C3 7 0 A2 7 0 to C2 7 0 A1 7 0 to D1 7 0 TLA602 TLA612 TLA622 A0 7 0 to DO 7 0 TLA602 TLA612 TLA622 5 ns minimum between Demux clock edges in full speed mode 10 ns minimum between Demux clock edges in half speed mode 10 ns minimum between Demux master clock edges in full speed mode 20 ns minimum between Demux master clock edges in half speed mode 400 MHz 200 MHz option required half channel Requires channels to be multiplexed These multiplexed channels double the memory depth Each channel group can be programmed with a pipeline delay of 0 through 3 active clock edges It is possible to use storage control and only store data when it has changed transitional storage Applies to asynchronous clocking only Setup and hold window specification applies to synchronous clocking only Any or all of the clock channels may be enabled For an enabled clock channel either the rising falling or both edges can be selected as the active clock edges The clock channels are stored 4 Full and half speed modes are controlled by PowerFlex options and upgrade kits channel width Table A 8 TLA600 trigg
167. LA600 series accessories connections 1 10 Tektronix Logic Analyzer Family User Manual Version 4 2 Software Getting Started Connecting Accessories The accessory connections are the same as those you would make on a personal to the TLA700 Series computer The connection points are shown in Figure 1 8 Use the icons that appear in the circled areas as a guide Icon Description CJ Primary video BY Secondary video TAA O O RS 232 MN WLLL Printer USB t 5 Mouse assess Keyboard Floppy da disk drive F PC card a LAN or other J SS Figure 1 8 TLA700 series accessories connections NOTE Only TLA715 721 instruments have both primary and secondary video outputs TLA714 720 instruments are equipped with only one video output Tektronix Logic Analyzer Family User Manual Version 4 2 Software 1 11 Getting Started Additional Accessory Table 1 1 provides additional information on accessories Connection Information Table 1 1 Additional accessory connection information Item Monitor Printer Connecting Probes Description If you use a non standard monitor you may need to change the the Windows display settings to achieve the proper resolution Connect the printer to the ECP enhanced parallel port connector directly If your printer has a DB 25 connector use the adapter cable that came with y
168. LA720 Controller BIOS setup Cont Parameter Boot 1 2 3 4 Hard Drive gt p gt Removable Devices Exit p gt CMOS Save amp Restore Factory setting Diskette Drive Removable Devices Hard Drive ATAPI CD ROM Drive Reinstalling the Hard Disk Image A Submenu parameter CMOS Restore Condition Factory setting Currently installed drive ID Bootable Add in Card Never The Tektronix Logic Analyzer comes with a CD containing Microsoft Win dows 2000 Professional operating system and the latest application software All software required to run the logic analyzer comes with the CD with the exception of any Microprocessor support packages or non logic analyzer application software The process of reloading the software on the hard disk will destroy any files or programs installed on the hard disk Use the appropriate CD for your application m For TLA715 or TLA721 instruments or upgraded TLA714 and TLA720 instruments with new controllers use the CD labeled TLA715 amp TLA721 Hard Disk Image Upgraded TLA714 and TLA721 instruments can be identified by a TLA7UP Option 16 or Option 17 label on the instrument m For TLA714 or TLA720 instruments use the CD labeled TLA714 amp TLA720 Hard Disk Image m For TLA600 instruments use the CD labeled TLA600 Hard Disk Image CAUTION To avoid destroying the entire contents of your hard disk save any files or applications by backing them up
169. Logic Analyzer Family User Manual Version 4 2 Software 1 7 Getting Started Expansion mainframe Expansion mainframe Portable mainframe Figure 1 6 Portable mainframe shown with two expansion mainframes Installing the Expansion Cables 1 8 Software determines which expansion chassis is expansion 1 and which is expansion 2 by the order in which the expansion modules are installed The expansion module in the lower numbered slot will be expansion 1 and the expansion module in the higher slot will be expansion 2 For the setup in Figure 1 6 place the EXPANSION 1 label in the outlined area on the upper right side of the expansion mainframe to the left of the portable mainframe Place the EXPANSION 2 label in the outlined area on the upper right side of the expansion mainframe to the right of the portable mainframe For information on installing modules see TLA700 Module Installation beginning on page D 1 There are three cables that connect the expansion modules together To connect the expansion modules together perform the following procedure 1 Examine the gray expansion cable to determine if the connectors have labels If the connectors are not labeled apply the C labels t
170. Manual Version 4 2 Software 3 73 Setup 3 74 To open the Merge Modules tab from the System menu click System Configura tion and then click the Merge Modules tab To merge or unmerge modules click the merge button between the module icons You can unmerge the modules at any time for independent operation NOTE After the LA modules have been physically merged you should run the self calibration procedure on the modules as a merged pair To run the self cal ibration procedure from the System menu click Calibration and Diagnostics and then click the Self Calibration tab Merged pattern generator modules do not need to be calibrated as a merged pair In setup and data windows merged module probe names use the following convention master module probe names are displayed normally and slave module probe names are prepended with an S If you have more than two merged modules the probe names are prepended with an additional number such as S2 If the module is part of a five way merge S S2 S3 and S4 are prepended to probe based names No text is displayed for multiple waveform selections System Configuration ie j Fie Signals Merge Modules Mainframe See ee ee oe F a a ye J g j j D i TLA S4 TLA 754 TLA 754 TLA 754 Slots 3 4 Slots 5 6 Slots 7 8 Slots 9 10 Slots 11 12 Slawe 4 Slave 2 Master Slave 1 Slave 3 OK Cancel Apply Help Figure 3 51 Merging modules Tektronix Logic Analyze
171. New in This Manual The Tektronix Logic Analyzer family consists of the TLA600 and TLA700 series logic analyzers and all of the accessories and supports that can be used with them This manual includes information on product enhancements new features and information on using these to improve your instrument performance and reliability Specifically this manual has been updated to include information on the new TLA7Axx logic analyzer modules for the TLA700 series which have 8 GHz MagniVu Timing acquisition You now have 8 GHz MagniVu timing acquisition available on all channels with 16 Kb memory depth per channel You can view any channel with 125 ps timing resolution to verify digital signal timing Additional capabilities include adjustable sample rate 125 ps to 1 ns movable trigger position and a separate MagniVu trigger action that can be triggered independent of the main module trigger Minimum detectable pulse widths of 750 ps can be acquired and triggered upon using the MagniVu acquisition technology m 2 GHz deep Transitional Timing acquisition To capture elusive digital signal timing problems over long time spans 2 GHz deep time acquisition is available with up to 256 MB memory depth on quarter channels 1 GHz deep timing is available on half channels and 500 MHz deep timing is provided on all channels Transitional storage is used to only store when data changes and is timestamped with 125 ps resolution 120 to 800 MHz Sta
172. OOFeFCFe FeFe HALT Jo 2097149 OOFDFOFD FOFD C BUS ERROR J _ _ _ _ m 2097150 DOFEFEFE FEFE L BACKGROUND WRITE Qt oo nT me oer ee 0003000 amoo G RESET yE 4 2 pos7isa 00020202 0202 C RESET J 2097161 4 Figure 3 87 Using the Overview Mark bar to jump to a data location Tektronix Logic Analyzer Family User Manual Version 4 2 Software Listing Window Searching Data Use the Define Search dialog box see Figure 3 88 to search for specific data within the current Listing window Searches are specific to the selected data source and begin from the active cursor Click the search icon to open the dialog box and then fill out the search conditions The active cursor moves to the location of a successful search in e alc Al A 4 th 2 You can search any data source available to the current data window but you can only search one data source at a time For additional searches of the same event click the Search Forward and Search Back arrow buttons in the tool bar Hidden data cannot be found by the search function For example if you turn off a column display in the Column properties page by deselecting Show Column you cannot search for data in that column Similarly suppressed data cannot be found by the search function suppressed data in the listing window can be identified by gaps in sequence numbers You can unsuppress data and then use the search function as lo
173. OTE To view glitches in a data window you must enable Glitch storage in the LA Setup window before acquiring data To view setup and hold violations you must enable Setup Hold storage in the Acquire box of the LA Setup window before acquiring data Glitch tL e Figure 3 80 Waveform with a glitch Rename a waveform by returning to the Setup window and changing the channel or channel group name Tektronix Logic Analyzer Family User Manual Version 4 2 Software Waveform Window Splitting the Data Area You can split the data area to compare waveforms that are far away from each other within the display Drag the split box from the top end of the vertical scroll bar Customizing the Waveform Window Data Use properties to customize data windows Properties control aspects of the display such as size color and in some cases enabling or disabling whether an element is shown Click the Properties tool bar button in the Waveform window to display the data window properties Figure 3 81 shows the Waveform tab which is available from the Waveform Properties dialog box Properties Waveform 1 2 x About Data Waveform Window Waveform Marks Wavetorm ESI Pai Source Curent TDS301 2 Channel Height fo GPIB 1 Extemal m Color D ial i z M Show Waveform CsemeAs m Measurements m Readouts M Show Readouts Measurement Setup Readout Color E Cancel Apply Options Help
174. PIB address 1 Channel fi 7 is named Channelt PD Synchronize TLA and External Oscillose ope clock Start sequence Automatic badd samples TDS3012 Enabled Note 5 pecily the extemal oscilloscope s horizontal and vertical settings using the oscilloscope s awn user interface If the oscilloscope is triggering the TLA specify oscilloscope trigger settings using the oscilloscope s user interface Figure 3 36 External Oscilloscope Setup tab You can view and modify the following external oscilloscope setups Table 3 9 External Oscilloscope Setups Setup Channel Description Lists the available external oscilloscope channels is named The name associated with the waveform channel This name is used to identify external oscilloscope channels in the data windows Synchronize TLA and External Oscilloscope clocks Check box that indicates whether the logic analyzer and external oscilloscope clocks are synchronized This functionality is not available for all external oscilloscopes Start sequence Indicates which instrument will start first Depth limit The data depth limit that the logic analyzer uses to store external oscilloscope samples 3 58 Tektronix Logic Analyzer Family User Manual Version 4 2 Software Setup External Oscilloscope Trigger Settings Tektronix Logic Analyzer Family User Manual Version 4 2 Software The Trigger tab contains controls for view
175. Program Inhibit Data Probes gt Hes to target system External Clock Figure 2 29 Block diagram of the pattern generator module Tektronix Logic Analyzer Family User Manual Version 4 2 Software 2 31 Operating Basics 2 32 Probes Pattern Generator Program The probe interface serves two purposes to detect event and inhibit information and to output data to a target system In addition to sending pattern generator data to the target system the probe also sends clock and strobe information You can connect up to four probes to a single module Each probe supports either 8 or 16 channels The pattern generator program is the heart of the pattern generator module You can create blocks of data vectors to work together to create complex pattern generator programs The program uses external and internal events to determine specific actions such as loops and branches to other data blocks The program can be controlled by an internally selected clock or by an external clock through a front panel BNC connector Use the Sequence Definition page of the Program window to set up and define a sequence events that make up the pattern generator program Each sequence line determines how the pattern generator will use blocks of data that you define in the Pattern Generator Listing or Waveform window You can set up the program to wait for specific events or signals and then jump to a different sequence when an event is either true or
176. RRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE TEKTRONIX RESPONSIBILITY TO REPAIR OR REPLACE DEFECTIVE PRODUCTS IS THE SOLE AND EXCLUSIVE REMEDY PROVIDED TO THE CUSTOMER FOR BREACH OF THIS WARRANTY TEKTRONIX AND ITS VENDORS WILL NOT BE LIABLE FOR ANY INDIRECT SPECIAL INCIDENTAL OR CONSEQUENTIAL DAMAGES IRRESPECTIVE OF WHETHER TEKTRONIX OR THE VENDOR HAS ADVANCE NOTICE OF THE POSSIBILITY OF SUCH DAMAGES SOFTWARE WARRANTY Tektronix warrants that the media on which this software product is furnished and the encoding of the programs on the media will be free from defects in materials and workmanship for a period of three 3 months from the date of shipment If a medium or encoding proves defective during the warranty period Tektronix will provide a replacement in exchange for the defective medium Except as to the media on which this software product is furnished this software product is provided as is without warranty of any kind either express or implied Tektronix does not warrant that the functions contained in this software product will meet Customer s requirements or that the operation of the programs will be uninterrupted or error free In order to obtain service under this warranty Customer must notify Tektronix of the defect before the expiration of the warranty period If Tektronix is unable to provide a replacement that is free from defects in materials and workmanship within a reasonable time thereafter Cu
177. S CAs WE ADDR NOTES DESELECT NOP H x X X XxX 9 NO OPERATION NOP L H H H x ACTIVE Select bank and activate row E H H Bank Row 3 READ Select bank and column and start READ burst p H L H Bank Col 4 WRITE Select bank and column and start WRITE burst L H L E Bank Col 4 BURST TERMINATE L H H l X 8 PRECHARGE Deactivate row in bank or banks L k H L Code 5 AUTO REFRESH or SELF REFRESH E L LE H Xx 6 7 Enter self refresh mode LOAD MODE REGISTER L L L L Op Code 2 Figure 3 9 Truth Table for the COMMAND group Tektronix Logic Analyzer Family User Manual Version 4 2 Software Setup A typical DDR SDRAM write data transfer is shown in Figure 3 10 The DQS signal is again used as the data strobe but this time the data is center aligned with the strobe For the write cycle the setup hold window must be set to sample the data centered around the strobe edge rising and falling edge The same set of COMMAND group signals are used to determine the write cycle see Figure 3 9 The qualifier assignments are the same for capturing the write data TO 11 T2 T2n T3 T3n T4 T4n TS COMMAND X WRITE XX se WX at IK lt r XX Nr W or A ADDRESS tDQSS NOM o T DQ 4 MLL DM DON T CARE TRANSITIONING DATA Figure 3 10 Typical DDR SDRAM consecutive WRITE to WRITE In order to capture the DDR read and write data use the Source Sync clocking capabil
178. Searches are specific to the selected data source and begin from the active cursor Click the search icon to open the dialog box and fill out the search conditions Cursor 1 marks the first occurrence of the item you searched for RRE or geje ae e j Time Div 200ns pa fr aj i You can search any data source available to the current data window but you can only search one data source at a time For additional searches of the same event click the Search Forward and Search Back arrow buttons in the tool bar on either side of the search icon Define Search 2 xi Search Data Source System tla CPU32 x Starting At Active Cursor Waveform Column Name Condition Value s Symbolic CPU32 Address x Jisin foooosaca x And Control x F WRITE gt 00006000 lt lt Search Back Search Fwd gt gt i i Cancel Add Help Figure 3 71 Defining search criteria Hidden data or suppressed samples cannot be found by the search function For example if you turn off a waveform in the Waveform properties tab by deselect ing Show Waveform the search function cannot search for that waveform data Figure 3 72 shows a waveform window with suppressed samples indicated by dashes If you try to search for suppressed data the instrument will skip over the suppressed area and search for visible data If the suppressed data is still in memory you can unsuppress the data right click the mouse click D
179. TLA7Axx to TLA7Axx inter module via Signal 1 2156 113 ns SMPL Clk 134 ns SMPL Clk TLA7Axx to TLA7Lx Mx Nx Px Qx inter module via 534 ns SMPL Clk 555 ns SMPL Clk Signal 1 2156 TLA7Lx Mx Nx Px Q to TLA7Lx Mx Nx Px Qx 116 ns SMPL Clk 152 ns SMPL Clk inter module via Signal 3 41 5 TLA7Axx to TLA7Axx inter module via Signal 3 415 124 ns SMPL Clk 160 ns SMPL Clk TLA7Axx to TLA7Lx Mx Nx Px Qx inter module via 545 ns SMPL Clk 581 ns SMPL Clk Signal 3 415 TLA7Lx Mx Nx Px Qx to TLA7Axx inter module System 287 ns SMPL 251 ns SMPL Trigger 4 Tektronix Logic Analyzer Family User Manual Version 4 2 Software A 19 Appendix A Specifications for the TLA700 System Table A 19 TLA700 Backplane latencies Cont Characteristic Portable mainframe and Expansion benchtop mainframe mainframe DSO to TLA7Lx Mx Nx Px Qx inter module System 240 ns 204 ns Trigger DSO to TLA7Axx inter module System Trigger 598 ns 562 ns DSO to DSO inter module System Trigger 50 ns 86 ns TLA7Lx Mx Nx Px Qx to TLA7Axx inter module ARM 300 ns SMPL Clk 264 ns SMPL Clk DSO to TLA7Lx Mx Nx Px Qx inter module ARM 192 ns Clk 156 ns Clk DSO to TLA7Axx inter module ARM 600 ns Clk 564 ns Clk DSO to DSO inter module ARM 59 ns 95 ns DSO to TLA7Lx Mx Nx Px Qx inter module via 179 ns Clk 158 ns Clk Signal 1 256 TLA7Lx Mx Nx Px Qx to TLA7Axx inter module via 294 ns SMPL Clk 273 ns SMPL
180. This location is a typical officefhome environment Temporary condensation occurs only when the product is out of service Test and measuring Class 1 as defined in IEC61010 1 Annex H grounded product Overvoltage Category II as defined in IEC61010 1 Annex J Pollution Degree 2 as defined in IEC61010 1 Note Rated for indoor use only Tektronix Logic Analyzer Family User Manual Version 4 2 Software Appendix A Specifications for the TLA600 Series Logic Analyzer TLA600 Series Logic Analyzer Specifications Tables A 3 through A 17 list the specifications for the TLA600 series logic analyzer Table A 3 TLA600 input parameters with probes Characteristic y Threshold Accuracy Threshold range and step size Threshold channel selection 4 Channel to channel skew Channel to channel skew Typical Sample uncertainty Asynchronous Synchronous Probe input resistance Typical Probe input capacitance P6417 P6434 Typical Probe input capacitance P6418 Description 100 mV Settable from 5 V to 2 V in 50 mV steps 16 threshold groups assigned to channels P6417 and P6418 probes have two threshold settings one for the clock qualifier channel and one for the data channels P6434 probes have four threshold settings one for each of the clock qualifier channels and two for the data channels one per 16 data channels lt 1 6 ns maximum lt 1 0ns Sample period 500 ps 20 KQ 2 pF 1 4 pF data c
181. Triggers if the desired channel satisfies the transition condition You may choose Low for falling edge or High for rising edge or High or Low for any edge When the specified word is matched in Event A take a snapshot of all data lines Trigger when a sample is found that matches the defined snapshot data in Event B Triggers when the 2X demux source group or the corresponding 2X demux destination group matches the specified value Triggers when the 2X demux source channel or the corresponding 2X demux destination channel matches the specified value Triggers when the 4X demux source group or any of the three corresponding 4X demux destination groups match the specified value Triggers when the 4X demux source channel or any of the three corresponding 4X demux destination channels match the specified value Triggers when a glitch occurs in any of the selected groups Glitches can be stored in Internal Clocking mode Glitch storage is not available in Internal 2X mode although glitch detection is possible Trigger on group setup hold violation Triggers when a setup or hold violation occurs in any of the selected groups Instances of setup and hold fault can be acquired in External or Custom clocking The sum of the setup and hold times must be equal to or greater than 1 ns Trigger on group transition Triggers when the value of the selected group changes Trigger on group value Trigger when
182. U window to define the data blocks and the vectors in each block 2 U the pattern generator program 3 U You can call these subsequences in the Sequence Definition window 4 U se the Block Definition window together with the Listing or Waveform se the Sequence Definition window to define a high level sequence flow of se the Subsequence Definition window to define subsequences or macros se the Event Definition window to define how events are used with the pattern generator program Tektronix Logic Analyzer Family User Manual Version 4 2 Software 3 63 Setup Block Definition Window Use the Block definition window to define blocks of output data You can define the size of each block and assign each block a meaningful name such as Init Read Cycle Interrupt Each block has its own associated Listing or Waveform window Figure 3 43 shows an example of the Block Definition window Ag Tektronix Pattern Generator Program PG 1 _ Oy x File Edit System View Window Help e x gjuj R Stus Idle TF 2 x Ay le el Block Sequence Subsequence Event Block List Block No Block Name Block Size For Help press F1 Tektronix Figure 3 43 Block Definition window Use the Listing and Waveform windows to enter the data vectors Click the Listing window icon to open the Listing window for the current block and enter the vector data You can edit the vector
183. USA Web site www tektronix com Sales support 1 800 833 9200 select option 1 Service support 1 800 833 9200 select option 2 Technical support Email techsupport tektronix com 1 800 833 9200 select option 3 6 00 a m 5 00 p m Pacific time This phone number is toll free in North America After office hours please leave a voice mail message Outside North America contact a Tektronix sales office or distributor see the Tektronix web site for a list of offices Tektronix Logic Analyzer Family User Manual Version 4 2 Software Di 2 Getting Started SS ee Getting Started The Tektronix Logic Analyzer family consists of the TLA600 and TLA700 series logic analyzers and all of the accessories and supports that can be used with them For more information about availability contact your Tektronix representative and view the Tektronix website at www tektronix com TLA600 Series Logic Analyzers The TLA600 logic analyzers are a high performance line of logic analyzers There are two basic styles one contains an internal display and the other uses an external display as shown in Figure 1 1 The TLA600 logic analyzers offer a variety of channel widths and memory depths Internal and external display External display only Figure 1 1 TLA600 series logic analyzers MagniVu is an acquisition technology that provides up to 1000 picosecond timing resolution on all channels and requires no additional probing Tektronix
184. User Manual Tektronix Tektronix Logic Analyzer Family Version 4 2 Software 071 0863 02 www tektronix com Copyright Tektronix Inc All rights reserved Licensed software products are owned by Tektronix or its suppliers and are protected by United States copyright laws and international treaty provisions Use duplication or disclosure by the Government is subject to restrictions as set forth in subparagraph c 1 ii of the Rights in Technical Data and Computer Software clause at DFARS 252 227 7013 or subparagraphs c 1 and 2 of the Commercial Computer Software Restricted Rights clause at FAR 52 227 19 as applicable Tektronix products are covered by U S and foreign patents issued and pending Information in this publication supercedes that in all previously published material Specifications and price change privileges reserved Tektronix Inc 14200 SW Karl Braun Drive Beaverton OR 97077 TEKTRONIX TEK and MagniVu are registered trademarks of Tektronix Inc HARDWARE WARRANTY Tektronix warrants that the products that it manufactures and sells will be free from defects in materials and workmanship for a period of one 1 year from the date of shipment If a product proves defective during this warranty period Tektronix at its option either will repair the defective product without charge for parts and labor or will provide a replacement in exchange for the defective product In order to obtain service under t
185. Width 2 ns to 1 s Triggering Range Trigger Level Source Range Any Channel 100 of full scale range Range Trigger Point Position Minimum 0 Maximum 100 Resolution Trigger Level 0 2 of full scale for any Channel source Resolution Trigger Position One Sample Interval at any Sample Rate Sensitivities Pulse Type Runt Trigger Typical 10 of full scale from DC to 500 MHz for vertical settings gt 100 mV full scale and lt 10 V full scale at the BNC input Sensitivities Pulse Type Trigger Width and Glitch Typical 10 of full scale for vertical settings gt 100 mV full scale and lt 10 V full scale at the BNC input Tektronix Logic Analyzer Family User Manual Version 4 2 Software Appendix A Specifications for the DSO Module Table A 64 DSO module trigger system Cont Characteristic Sensitivity Edge Type Trigger DC Coupled Sensitivity Edge Type Trigger Not DC Coupled Typical Time Minimum Pulse or Rearm and Minimum Transition Time for Pulse Type Triggering Description The minimum signal levels required for stable edge triggering of an acquisition when the trigger source is DC coupled Products Trigger Source Sensitivity TLA7E1 and TLA7E2 Any Channel 3 5 of Full Scale Range from DC to 50 MHz in creasing to 10 of Full Scale Range at 1 GHz TLA7D1 and TLA7D2 Any Channel 3 5 of Full Scale Range from DC to 50 MHz in creasing to 10 of Full Scale Range
186. accept information from other modules or send signals external to the logic analyzer TSF TLA Symbol File TSF format a text format The TSF format is used by the logic analyzer when it exports symbol files Unassert To cause a signal or line to change from its logic true state to its logic false state Tektronix Logic Analyzer Family User Manual Version 4 2 Software Glossary 9 Glossary Waveform window A data window used to observe timing relationships in the system under test The acquired data is displayed as a series of waveforms Way station An intermediate probe part used to connect the heads of the P6810 and P6880 Probes to a single ribbon cable Word recognizer A trigger term Word recognizers are specific patterns of data or words Use word recognizers to trigger the logic analyzer on specific data combinations Glossary 10 Tektronix Logic Analyzer Family User Manual Version 4 2 Software Index Index Symbols tbf format DSO module data 3 132 LA module data 3 132 Numbers 2X Clocking 2 41 4X Clocking 2 41 A AC coupling Glossary 1 Accelerator keys general purpose data window 3 91 Histogram window 3 153 Listing window 3 133 menu keys 3 80 Source window 3 145 Waveform window 3 116 Accessories connecting TLA600 series 1 10 TLA700 series 1 11 Acquisition 2 27 3 81 Glossary 1 asynchronous 2 29 Glossary 1 DSO module 2 28 LA module 2 27 MagniVu data 3 106 3 124 mode 3 17
187. ainframe 2 2 TLA600 series 2 1 L LA module See Logic analyzer Linear generation 3 150 Glossary 5 Listing window 2 14 Glossary 5 accelerator keys 3 133 changing font size 3 127 columns 3 127 cursors 3 121 customizing the display 3 129 disassembly format 3 129 exporting binary data 3 132 exporting data 3 130 exporting text data 3 131 hot keys 3 133 jumping to specific data locations 3 121 LA module 3 119 locking data windows together 3 124 pattern generator 2 25 qualification gaps 3 128 searching data 3 123 shortcut keys 3 133 viewing DSO data 2 35 Listing data concepts 2 35 Load Symbol Options dialog box 2 52 Load System Options dialog box 3 77 Loading symbol files 2 52 Locking windows 3 105 3 124 Log generation 3 150 Glossary 5 Logic analyzer acquisition 2 27 block diagram 2 28 chassis ground connections TLA600 series 2 5 conceptual model 2 33 description 1 2 Tektronix Logic Analyzer Family User Manual Version 4 2 Software Index 5 Index export binary data 3 132 installing software G 1 merge cable location E 8 merging E 1 merging rules E 1 overlay waveforms 2 39 physical model 2 33 power cord location TLA600 series 1 17 powering on TLA600 series 1 16 probes connecting LA probes TLA600 series 1 13 connecting LA probes TLA700 series 1 14 connecting Pattern Generator probes TLA 700 series 1 15 self calibration H 5 Setup window 3 3 shipping list 1 4 site con
188. ainframe all modules that drive Signal 3 should be in the same mainframe and all modules that drive Signal 4 should be in the same mainframe Tektronix Logic Analyzer Family User Manual Version 4 2 Software C 1 Appendix C Pattern Generator Physical Logical Conversion C 2 Tektronix Logic Analyzer Family User Manual Version 4 2 Software SSS eee eae Appendix D TLA700 Module Installation A This section describes the steps to install modules in your TLA700 Series Logic Analyzer for the first time It is written from the perspective that you purchased most of the items uninstalled and you intend to install all of the different items CAUTION To avoid damaging the instrument do not install or remove any modules while the instrument is powered on Always power down the instrument before removing or inserting modules Setting the Logical Address Dynamic Logical Address Auto Configuration Static Logical Address Every module in the instrument must have a unique logical address no two modules can have the same address Two rotary switches on the rear panel select the logical address Although Figure D 1 shows an LA module the address switches are identical for all TLA modules Read the following descriptions before changing the logical address NOTE Do not set any module to logical address 00 Logical address 00 is reserved exclusively for the controller The factory default switch setting is FF Dynamic Auto
189. aioe so oe Sie a oe SNe Figure 2 5 TLA600 series external connectors 2005 1 1 1 2 1 3 1 6 1 7 1 8 1 10 1 11 1 13 1 14 1 15 1 16 1 17 1 18 1 19 1 20 1 23 1 24 1 24 1 26 1 27 1 28 1 30 2 1 2 2 2 2 2 3 2 4 Tektronix Logic Analyzer Family User Manual Version 4 2 Software Table of Contents Figure 2 6 Location of ground connection 0eeee0 2 5 Figure 2 7 TLA700 series external connectors 00005 2 6 Figure 2 8 Location of ground connections 0e005 2 7 Figure 2 9 Window usage control flow 0ceceeeeeees 2 9 Figure 2 10 System window on a TLA600 series 2 10 Figure 2 11 System window on a TLA700 series 2 10 Figure 2 12 LA Setup window ccc ceeeececeececes 2 11 Figure 2 13 DSO Setup window cece cee eeceeceees 2 12 Figure 2 14 LA Trigger window cceeececececeees 2 13 Figure 2 15 DSO Trigger window ececececeeeees 2 13 Figure 2 16 Comparing regular and MagniVu data 2 17 Figure 2 17 Using a property sheet to customize the display 2 18 Figure 2 18 Window usage control flow ceeeeeeeees 2 21 Figure 2 19 System window ccecec ec ececececeeeees 2 22 Figure 2 20 Module Setup tab cc cece cece eee eeeee 2 23 Figure 2 21 Block tab oi ses wie chek eee CA ee ee wees 2 24 Figure 2 22 Listing window cc cee ee
190. al wide slot covers and empty pouch Shipping configuration 60 Ibs 13 oz 27 58 kg minimum configuration no modules with all standard accessories 86 Ibs 9 oz 39 26 kg full configuration with two TLA 7P4 modules and standard accessories including probes and clips Acoustic noise level typical 42 7 dBA weighted operator 37 0 dBA weighted bystander Construction materials Chassis parts are constructed of aluminum alloy front panel and trim peaces are constructed of plastic circuit boards are constructed of glass Finish type Tektronix blue body and Tektronix silver gray trim and front with black pouch FDD feet handle and miscellaneous trim pieces Tektronix Logic Analyzer Family User Manual Version 4 2 Software A 27 Appendix A Specifications for the TLA715 Dual Monitor Portable Mainframe 9 25 in 23 5 cm nx TLA 715 Logic Analyer 17 5 in f 44 45 cm f OO oo000 O O mimiem o0o00000000 pooooo0ogoo0o000 ooooo0o00o0 Figure A 2 Dimensions of TLA715 portable mainframe A 28 Tektronix Logic Analyzer Family User Manual Version 4 2 Software Appendix A Specifications for the TLA714 Portable Mainframe TLA714 Portable Mainframe Characteristics Tables A 29 through A 36 describe the specifications for the TLA714 Portable Mainframe Table A 29 TLA714 Internal controller
191. alid address lasts for the entire 4 ns sample period At the next sample the address is shown correctly as 44 Tektronix Logic Analyzer Family User Manual Version 4 2 Software Waveform Window MagniVu Storage Rate MagniVu Trigger Position Now view the MagniVu data acquisition which was sampled at 500 ps The MagniVu data shows the same address bus transition from 34 to the invalid address of 74 before settling to the correct address of 44 Note however that the indicated settling time is different The MagniVu data shows that the address bus took approximately 500 ps to complete the transition and shows the address bus as 44 approximately 3 5 ns earlier than the regular acquisition data With TLA7Axx modules you can adjust the MagniVu storage rate downward from the sample rate allowing for a lower resolution of data samples from a longer time period The MagniVu storage rate cannot be set slower than the effective main memory rate according to 1X 2X or 4X modes The available rates are m 8 GHz lt gt 125 ps m 4 GHz lt gt 250 ps m 2 GHz lt gt 500 ps m 1 GHz lt gt 1 ns The MagniVu storage rates are limited by PowerFlex as well as by the fastest storage rate of the main memory under 1X 2X and 4X modes The slowest MagniVu storage rate is half of the fastest storage rate of the main memory Table 3 17 MagniVu storage rates 1X MagniVu Storage 2X MagniVu Storage 4X MagniVu Storage Selections Selections S
192. ame as well as the modules in the expansion mainframe s You can use the extended diagnostics to isolate problems to an individual module Before running the extended diagnostics disconnect any attached probes NOTE Some items in the extended diagnostics menu will fail if a module is running Stop all modules before performing the extended diagnostics TLA Mainframe Diagnostics The TLA mainframe diagnostics program is a stand alone Windows application These diagnostics check operation of the mainframe beyond the basic PC circuitry These diagnostics also check the front panel knobs of the portable mainframe Expansion Mainframe Diagnostics At power on the expansion mainframe runs two power on diagnostics Power Cables A amp B and config and Cable C Connection Test If either of these power on diagnostics fail none of the modules associated with the expansion mainframe and the expansion mainframe will be recognized The result will be as if the expansion mainframe were not connected H 8 Tektronix Logic Analyzer Family User Manual Version 4 2 Software Appendix H User Service Turn off the mainframes Remove the two blue expansion cables and the gray expansion cable Examine the connectors for bent or missing pins Reconnect the two blue expansion cables and the expansion cable and tighten the two connector screws Turn on the mainframes and run the diagnostics again Checkit Utilities The CheckIt Ut
193. ame does not show up in the system window Expansion mainframe is recognized by the system but installed modules are not Possible causes and recommended action Note If there is no DSO or LA module installed in the expansion mainframe the expansion mainframe will not show up in the System window If modules are installed follow these instructions Turn off the mainframe s Check that both of the TLA7XM expansion modules are firmly seated and that the mounting screws on the TLA7XM expansion modules are tightened Remove the two blue expansion cables and the gray expansion cable Examine the connectors on the cables for bent or broken pins Examine the connectors on the expansion mainframe Reconnect the two blue expansion cables and the gray expansion cable and tighten the screws on the connectors Verify that the cables are not crossed verify that the cables are connected A A B B and C gt C Power on the benchtop mainframe and the expansion mainframe s The mainframe power must be recycled in order for the ResMan32 resource manager application to correctly configure Expansion mainframe failure contact your local Tektronix service center Turn off the benchtop mainframe Turn on the benchtop mainframe The mainframe power must be recycled in order for the ResMan32 resource manager application to correctly configure Module address switches not set correctly Turn off the benchtop mainframe and remove th
194. and line number and then updates the active Source cursor position to the corre sponding source statement The statement may be located in a source file that is different than the original displayed file In this case the new file is displayed and the cursor is placed on the proper statement A single line in the Source window may consist of more than one statement for example for i 0 i lt NUM_STATES i The next executed statement in the Listing window may appear on the same line in the Source window as the current statement However the next executed statement may also appear on a different line before or after the current statement or in a different file Click the Step Forward and Step Backward buttons to move the cursor between statements in execution order The ability of the Source window to discriminate between multiple statements on the same line depends on the amount of information provided by the code generation tools If there is enough information to identify multiple statements per line the Source window cursors will include character highlighting to identify individual statements on a line Next Mark and Previous Use the Next Mark and Previous Mark buttons to move the active cursor in the Mark Buttons Source window to the next or previous executed user defined mark position if any marks have been defined Next and previous refer to the execution sequence and not to the position of the mark in the window Tek
195. and counting events 3 34 sequence of events 3 35 sequence of events and time or count 3 36 simple events 3 32 simple events and time or count 3 35 storage 3 39 programs 3 28 3 32 properties 3 31 using programs 3 41 window 2 12 ECOFF See COFF file formats Edge Glossary 4 Edge trigger Glossary 4 Equalities See Data equalities Event condition Glossary 4 Event Definition window Pattern Generator module 3 67 Event trigger Glossary 9 Expansion cables installing 1 8 Expansion chassis Glossary 4 mechanical A 36 Expansion mainframe AC power source A 34 cooling A 35 diagnostics H 8 dimensions A 38 installing 1 5 secondary power A 35 specifications A 34 troubleshooting H 18 Expansion module installing in a benchtop mainframe 1 5 Tektronix Logic Analyzer Family User Manual Version 4 2 Software Index 3 Index in a TLA714 1 7 in a TLA715 1 7 Exporting binary data 3 132 data 3 130 histogram data 3 152 listing data 3 130 text data 3 131 Exporting waveform data 3 115 Extended diagnostics H 8 External clock 2 28 Glossary 4 clocking 3 8 signal connectors 3 68 TLA600 series 2 4 TLA700 series 2 5 signals 3 68 3 71 3 73 External 2X clocking 3 9 External 2X DDR clocking 3 9 External 4X clocking 3 10 External connectors 2 6 External Oscilloscope connections 3 60 setup 3 57 setup wizard 3 57 trigger settings 3 59 External oscilloscope specifications A 70 Pe
196. ange Trigger on group value within a range Trigger on word transition Trigger on word value W Measuring Time and Counting Events Simple Events Time or Count Sequence of Events Sequence of Events Time or Count Combinations of Events Trigger on group value Selectthe desired group and enter the value EventA Group A3 Ed p px Hex Description Triggers when the desired group has the specified value Figure 3 24 Sample EasyTrigger program Tektronix Logic Analyzer Family User Manual Version 4 2 Software 3 29 Setup Trigger Program Structure 3 30 I Trigger LA 1 d ol x Force Main Prefill Magni u fiz5ps Magni u Trigger Pos r 50 H re overview State 1 Trigger on occurrence of A Run Then Trigger All Modules tw If Aje Figure 3 25 Sample PowerTrigger program A Trigger program consists of one or more states up to 16 Only one state is active at a time Each state is made up of one or more clauses If you use no more than four trigger event resources in a state you can have up to four clauses per state If you have less than four trigger event resources in a state you can define up to 16 clauses per state However when you use a snapshot recognizer as an event in your clause definition your use of clauses per state is restricted If you use a snapshot recognizer and no more than one additional event
197. any modules always power off the mainframe before removing or installing modules Determine which modules will reside in the higher numbered slots in a single mainframe Place the merge connector of these modules in the extended position The module in the lowest numbered slot must have the merge connector in the recessed position Use Figure E 1 as a guide for determining the location of the master module with the merged module set Even though Figure E 1 shows a five module set you can still use the illustration to position the master module with respect to the slave module For example if you have a two module set the master module is located in the lower numbered slot and the slave module is in the higher numbered slot Tektronix Logic Analyzer Family User Manual Version 4 2 Software Appendix E Merging Modules O ou ou O le O 2 O 2 O AmM lt gt To yNm lt c bro DmiadaiOope m lt c gt To omc gt To UO O UO O Figure E 1 Location of modules in a merged system Pattern Generator Module Merging Rules The following pattern generator module merging rules must be followed Pattern generator modules are merged through software Pattern generator modules must be physically adjacent Pat
198. ar buffer Unlike the acquisition memory the MagniVu memory does not qualify data storage through the trigger function block Tektronix Logic Analyzer Family User Manual Version 4 2 Software Operating Basics MagniVu data is continuously acquired on all channels at the fastest sample rate of 500 ps for TLA7Lx Mx Nx Px Qx modules and 125 ps for TLA7Axx modules Like normal acquisition data MagniVu data can be displayed in the Listing or Waveform data windows For TLA7Lx Mx Nx Px Qx modules the MagniVu data is centered on the LA module trigger in the data window For TLA7Axx modules the trigger position for MagniVu data is variable you control the MagniVu trigger position by a set of controls in the advanced toolbar See MagniVu Data on page 3 106 for additional information Detecting Violations One of the logic analyzer s most useful features is its ability to detect and trigger on both signal glitches and setup and hold violations A glitch is a signal that makes a transition through the threshold voltage two or more times between successive acquisition samples Because glitches are often signal transitions that occur intermittently they can cause circuit malfunctions that are extremely difficult to diagnose Although you could try using a very fast sample clock rate to ensure that you never miss any glitches a better solution is to use the glitch detection feature The logic analyzer can trigger on a glitch either alone or in com
199. are Appendix G Installing Software Reset the BIOS Boot Settings After you have successfully installed the hard disk image you should reset the BIOS boot settings so that your logic analyzer boots properly 1 Restart the logic analyzer and then press function key F2 to enter the BIOS setup 2 Inthe BIOS setup go to the Boot menu 3 Set the Boot devices for your instrument as shown in Table G 5 follow the on screen instructions to change the settings Table G 5 Bios Boot settings for reinstalling software Instrument Setting TLA715 or TLA721 Removable Devices ttti i s S Hard Drive ATAPI CD ROM Drive TLA714 or TLA720 First Boot Device Diskette Drive Second Boot Device Removable Devices Third Boot Device Hard Drive Third Boot Device ATAPI CDROM Drive TLA600 series First Boot Device Floppy Second Boot Device Removable Devices Third Boot Device IDE HDD Fourth Boot Device ATAPI CDROM Drive 4 Save the settings by pressing function key F10 and confirm that you want to save the new settings Tektronix Logic Analyzer Family User Manual Version 4 2 Software G 15 Appendix G Installing Software Reinstalling the TLA Application Software Complete the following steps to reinstall the latest version of the TLA applica tion software Use these steps as a first resort to recovering from application software problems If you still experience problems with the software after
200. arking on the product Consult the product manual for further ratings information before making connections to the product The common terminal is at ground potential Do not connect the common terminal to elevated voltages Do not apply a potential to any terminal including the common terminal that exceeds the maximum rating of that terminal Use Proper AC Adapter Use only the AC adapter specified for this product Do Not Operate Without Covers Do not operate this product with covers or panels removed Use Proper Fuse Use only the fuse type and rating specified for this product Avoid Exposed Circuitry Do not touch exposed connections and components when power is present Do Not Operate With Suspected Failures If you suspect there is damage to this product have it inspected by qualified service personnel Do Not Operate in Wet Damp Conditions Do Not Operate in an Explosive Atmosphere Keep Product Surfaces Clean and Dry Provide Proper Ventilation Refer to the manual s installation instructions for details on installing the product so it has proper ventilation Tektronix Logic Analyzer Family User Manual Version 4 2 Software xvii General Safety Summary xviii Symbols and Terms A A Terms in this Manual These terms may appear in this manual WARNING Warning statements identify conditions or practices that could result in injury or loss of life CAUTION Caution statements identify condition
201. at 500 MHz Trigger Coupling Typical Signal Level for Stable Triggering AC Same as the DC coupled limits for frequencies above 60 Hz attenuates signals below 60 Hz High Frequency Reject One and one half times the DC coupled limits from DC to 30 kHz attenuates signals above 30 kHz Low Frequency Reject One and one half times the DC coupled limits for frequencies above 80 kHz attenuates signals below 80 kHz Noise Reject Three times the DC coupled limits For vertical settings gt 100 mV and lt 10 V at the BNC input Typical Pulse Class Minimum Pulse Width Minimum Rearm Width Glitch 1ns 2 ns 5 of Glitch Width Setting Width 1ns 2 ns 5 of Width Upper Limit Setting Trigger Position Error Edge Triggering Acquisition Mode Trigger Position Error Typical Sample 1 Sample Interval 1 ns 1 The trigger position errors are typically less than the values given here These values are for triggering signals having a slew rate at the trigger point of 5 of full scale ns Tektronix Logic Analyzer Family User Manual Version 4 2 Software A 65 Appendix A Specifications for the DSO Module Table A 65 DSO module front panel connectors Characteristic Probe Compensator Output Voltage The Probe Compensator output voltage in peak to peak Volts Table A 66 DSO module mechanical Characteristic Slot width Weight Typical Shipping Weight Typical Overall Dimensions A 66 Descriptio
202. at came with your logic analyzer will overwrite the entire contents of your hard disk If you want to save any files or software applications on the hard disk back them up to another media a second hard drive floppy disks or a network drive before continuing with this procedure N CAUTION The software installation procedure using the Hard Disk Image CD TLA600 TLA714 or TLA720 Instruments Before restoring the software on your instrument you are encouraged to update the BIOS settings To update the BIOS or to verify the BIOS settings follow the procedures under Flashing the BIOS before restoring the software on your hard disk If you feel that your BIOS settings do not need updating continue with the steps under Reinstalling the Hard Disk Image beginning on page G 11 TLA715 or TLA721 Instruments If you have a TLA715 or TLA721 logic analyzer there is no need to update the BIOS settings Continue with the steps under Reinstalling the Hard Disk Image beginning on page G 11 G 2 Tektronix Logic Analyzer Family User Manual Version 4 2 Software Appendix G Installing Software Flashing the BIOS You may need to flash the controller BIOS on your logic analyzer to update the controller with the latest flash image before reinstalling software on the hard disk The procedures for flashing the BIOS differ between the TLA600 logic analyzers and the TLA700 logic analyzers Refer to the proper procedure before flashing the BIOS
203. at passes both AC and DC signal components to the DSO circuit Available for both the trigger system and the vertical system Delta measurement The difference between two points in memory For example the voltage difference between the two cursors in a selected waveform Demultiplex To identify and separate multiplexed signals for instance some signals from a microprocessor To separate different signals sharing the same line and organize those signals into useful information Tektronix Logic Analyzer Family User Manual Version 4 2 Software Glossary 3 Glossary Glossary 4 Digital real time signal acquisition A digitizing technique that samples the input signal with a sample frequency of four to five times the DSO bandwidth Combined with sin x x interpola tion all frequency components of the input up to the bandwidth are accurately displayed Digitizing The process of converting a continuous analog signal such as a waveform to a set of discrete numbers representing the amplitude of the signal at specific points in time Don t care A symbol X used in place of a numeric character to indicate that the value of a channel or character is to be ignored EasyTrigger program list A collection of predefined trigger programs for the LA module You can load an individual program into the Trigger window and modify it for your requirements Edge A signal transition from low to high or high to low Edge trigger Triggering
204. ata samples that do not interest you You can use the storage selections to disqualify the unwanted data samples and fill memory only with the desired data Use the Storage box to select the default data storage rules for the module Use one of the storage actions in the Then statement of the clause definition to override the default storage setting The example shown in Figure 3 32 is using conditional storage Data is stored only when the specified event is true Tektronix Logic Analyzer Family User Manual Version 4 2 Software Setup k Trioger La tn aioli paleas alal Serge orra z megre y HH I Force Main Prefill Magnivu 125ps Magnivu Trigger Pos 50 I EasyTrigger I PowerTrigger l Storage Run State 1 u Storage Glitch Store Sample State 1 Trigger on the very first sample Anything GoTo2 State 2 Bes lt Signal 1 Is True Then Trigger All Modules Figure 3 32 Using trigger storage Table 3 7 Trigger storage Storage option All None Transitional Description Stores all samples You can exclude a sample from being stored by selecting the Don t Store action in the Then statement of the trigger clause The trigger sample is always stored Does not store samples You can explicitly store a sample by selecting the Store Sample action in the Then statement of the trigger clause Stores samples only if one of th
205. ata area 3 115 zoom 3 114 Waveforms adding 3 113 busforms 3 94 changing height 3 114 changing horizontal scale 3 114 changing width 3 114 compression expansion in display 2 42 cut copy paste 3 114 cutting 3 113 DSO ground line indicator 3 95 Index 12 DSO range readouts 3 95 DSO trigger threshold indicator 3 95 DSO waveforms 2 40 3 95 LA waveforms 2 40 magnitude 3 94 magnitude waveforms 2 39 measurement automatic 3 99 moving 3 112 naming 3 114 overlay 3 116 sample clock waveforms 3 94 sin x x interpolation 2 42 single channel LA waveforms 3 94 types 3 94 Web site address Tektronix xxiv Weld modules See Merge modules What s New xxi Window data window 2 14 3 87 Glossary 3 creating a new data window 3 90 opening a saved data window 3 89 DSO Setup window 3 52 DSO Trigger window 2 13 3 56 DSO Waveform window 3 93 External Oscilloscope Waveform window 3 93 Histogram window 2 15 3 147 LA Listing window 3 119 LA Setup window 3 3 LA Trigger window 2 12 3 28 LA Waveform window 3 93 Listing window 2 14 Glossary 5 locking data windows together 3 105 3 124 opening 3 2 3 88 Program window 2 23 renaming 3 2 Setup window 2 11 2 22 Source window 2 15 3 135 System window 2 9 2 22 3 1 3 88 Waveform window 2 14 Glossary 10 Word recognizer 3 45 Glossary 10 World Wide Web address Customer Service H 1 X XCOFF See COFF file formats Z Zoom 3 114 Zoom box
206. ated View and for the Tektronix logic analyzer when connected to an external oscilloscope For detailed information on the individual specifications of the external oscilloscope refer to the documentation that accompanies the oscilloscope Table A 73 External oscilloscope Integrated View or iView characteristics Characteristic Supported Tektronix logic analyzer instruments TLA application software version Minimum recommended TLA controller DRAM Supported external oscilloscopes for the latest list of supported external oscilloscopes visit our website at www tektronix com la Description TLA600 series TLA714 TLA715 TLA720 TLA721 V4 2 or greater 256 MB TDS3012 TDS3014 TDS3032 TDS3034 TDS3052 TDS3054 TDS3GM GPIB RS232 communication module required TDS3012B TDS3014B TDS3032B TDS3034B TDS3052B TDS3054B TDS5052 TDS5054 TDS5104 TDS654C TDS684C TDS694C TDS6604 TDS724D TDS754C TDS754D TDS784C TDS784D TDS794D TDS7054 TDS7104 TDS7154 TDS7254 TDS7404 CSA7154 CSA7404 External oscilloscope software or firmware version number TDS684C TDS694C Any version TDS3000 series Any version TDS5000 series Any version TDS6000 series Any version TDS7000 CSA7000 series Version 1 2 or greater Maximum number of external oscilloscopes One per Tektronix logic analyzer iView cable length 6 56 ft 2 m A 70 Tektronix Logic Analyzer Family User Manual Version
207. ates or reduces the input voltage of a signal by a factor of 10 Benchtop Chassis A benchtop chassis is a benchtop mainframe without a benchtop controller installed Chassis A chassis is a mainframe without a controller or expansion module installed Clause A trigger program term The combination of one or more events If statements or actions Then statements When the Event is satisfied the action is performed See also State Clock cycle A clock sequence that includes both high and low going transitions Clock equation The Boolean combination of events needed to generate a storage clock You can define a variety of clock inputs and link them using Boolean operators Data will be sampled and stored in memory only when this clock equation is true Clock qualification The process of filtering out irrelevant data by combining an acquisition clock with one or more bus signals Clock qualifier An external signal that acts as a gate for the acquisition clock When the external signal is false the acquisition clock is not allowed to load acquired data into the acquisition memory COFF file formats The COFF Common Object File Format format contains a number of variations and extensions such as ECOFF and XCOFF This flexibility enables it to be used with a wide variety of different microprocessors Some code generation tool vendors also extend this format in nonstandard ways that may make their files unreadable by the TLA logic
208. ation installed on your PC the Setup exe program will uninstall the old application before installing the new version If you are prompted for permission to remove unused shared files or any read only files select Yes to All NOTE The ReadMe file for the PatGenVu application contains most of the information that you need to run the application Access the ReadMe file by selecting Start Programs Tektronix Pattern Generator Pattern Generator Documentation PatGenVu ReadMe Upgrading or Restoring Firmware G 20 You may have to upgrade the firmware on the logic analyzer or on individual modules if the firmware version is not compatible with the TLA application software version This may be evident when a module does not appear in the TLA System window The most current firmware for the TLA application software resides in a file on the hard disk of the logic analyzer Although the firmware update procedures are similar there are some key differences between the Tektronix Logic Analyzer products and are therefore listed as separate procedures If you have mixed modules within your TLA700 mainframe you should review the procedures for each of the modules before beginning the upgrade Tektronix Logic Analyzer Family User Manual Version 4 2 Software Appendix G Installing Software Upgrading Firmware on Use the following procedure to upgrade the firmware for the TLA7Axx Series TLA7Axx Logic Analyzer Logic Analyzer Mod
209. aving a trigger program from the EasyTrigger tab use the Save Trigger button from the Trigger window toolbar to save your TLA file This file contains trigger state information as well as information about the currently selected EasyTrigger program If you do not use an EasyTrigger program as the basis for your trigger design but instead use the PowerTrigger tab to develop a new trigger program only the state information is saved Saving your trigger program requires that you specify both a filename and the name of the folder where you would like your customized trigger programs to reside In addition you can enter comments about trigger program construction or functionality in the dialog box Loading a Saved Trigger You load a saved trigger program by clicking the Load Trigger button from the Program Trigger window toolbar Then browse to the location where your trigger folder resides and select the desired trigger program You can then view the loaded program from the trigger window The TLA application displays the program you chose to load using the trigger tab from which the program was saved You can also load a trigger program from a list of recently used trigger program files The logic analyzer maintains a list of the ten most recently used trigger files that you load by clicking Recent Trigger Files from the File menu and then selecting the desired trigger file aol D L 5 S r detil g Eal wel Storage a v Trigger Pos j Q
210. be delay TILACMOS None None iD Disable 2 000 Disable Disable Disable Disable Figure 3 41 Probe Setup window 3 62 Tektronix Logic Analyzer Family User Manual Version 4 2 Software Setup Signal Setup Window Use the Signal Setup window to define the input and output signals After defining these signals you can use them in the Program window to control the flow of the pattern generator program You can use one of the backplane signals as an input to the pattern generator module and another backplane signal as an output signal For more information on using signals refer to Intermodule and External Signaling beginning on page 3 71 Figure 3 42 shows an example of the Signal Setup window iy Setup PG 2 BSE Module Setup Channel Setup Probe Setup i m Signal Input Signal Output One of the four backplane signals can One of the four backplane signals can be selected as an input to the module be selected as the destination for the This can be used in Event Definition Signal output specified in the Sequence Source for signal input Destination for signal output None z None ha Figure 3 42 Signals Setup window Setting Up the Pattern Generator Program After you have defined the module setups you can use the Program window to define the pattern generator program Use the Program windows in the following sequence 1
211. bes to the TLA7Lx TLA7Mx TLA7Nx TLA7Px and TLA7Qx modules 1 14 Tektronix Logic Analyzer Family User Manual Version 4 2 Software Getting Started 0989d Xruory E Match color coded labels Figure 1 11 Connecting the logic analyzer probes to the TLA7Axx module Configuring the Pattern Some of the TLA Pattern Generator probes require series termination resistors to Generator Probe provide impedance matching for the pattern generator and the system under test Determine the impedance matching for your application and then refer to the TLA7PG2 Probe Instruction Manual for information about how to change the series termination resistors Connecting the Pattern Power down the logic analyzer before connecting the pattern generator probe Generator Probes Connect the pattern generator probe as shown in Figure 1 12 The probe cable is reversible You can connect the probe cable in either direction CAUTION To prevent damage to the pattern generator module or probe do not connect or disconnect the probe cables while the logic analyzer is powered on Although the pattern generator probe cable appears to be a SCSI cable it is not compatible with a SCSI cable do not use a SCSI cable with the pattern generator module or use the pattern generator probe cable with a SCSI instrument The probe is fragile handle carefully Tektronix Logic Analyzer Family User Manual Version 4 2 Software 1
212. bination with other signal events This capability is useful for catching intermittent glitches that might not occur very often or appear only when a particular operation is taking place You can capture noise spikes and pulse ringing using the glitch capture feature Figures 2 41 and 2 42 show data captured by triggering on a glitch In the Waveform window a glitch captured by an LA module is indicated by a band of color See Figure 2 41 For clarity an arrow identifies the glitch in the figure A setup and hold violation is a data signal that transitions within the setup and hold time period You can identify setup and hold violations by looking at each clock edge and reviewing all relevant data signals However it is more efficient and reliable to use Setup Hold triggering to identify violations You must select the correct clocking mode to use either the glitch detection or the setup and hold violation features Choose internal clocking to use glitch detection choose external clocking source synchronous clocking or custom clocking to use setup and hold detection For information on glitch storage see Selecting the Acquisition Mode on page 3 17 Tektronix Logic Analyzer Family User Manual Version 4 2 Software 2 43 Operating Basics pa MAG_FF anlys Of x 2 5 PAER E a ates gt Time Div 1 0ns x Jy mE C1 14 8ns C2 1 11 8ns Delta Time 3ns alyzer Mag Sample C1 eer Mag Sane ECE ee
213. bits 6 1 bits 245 MHz 6 0 bits 6 0 bits 490 MHz 5 7 bits 5 7 bits 990 MHz 5 2 bits N A Frequency limit upper 20 MHz bandwidth 20 MHz limited Typical Frequency limit upper 250 MHz bandwidth 250 MHz limited Typical Input channels Product Channels TLA7E2 Four TLA7D2 Four TLA7E1 Two TLA7D1 Two Input coupling DC AC or GND4 Input impedance DC 1 MQ coupled 1 MQ 0 5 in parallel with 10 pF 3 pF Input impedance selections 1MQ or50Q Input resistance DC 50 2 coupled 50 Q 1 Input VSWR DC 50 Q coupled lt 1 3 1 from DC 500 MHz lt 1 5 1 from 500 MHz 1 GHz Input voltage maximum DC 1 MQ 300 Vrms but no greater than 420 V peak Installation category II derated at AC 1 MQ or GND coupled 20 dB decade above 1 MHz Input voltage maximum DC 50 Q or 5 Vrms with peaks lt 25 V AC 50 Q Coupled Lower frequency limit AC coupled Typical lt 10 Hz when AC 1 MQ Coupled lt 200 kHz when AC 50 Q Coupled y Random noise Bandwidth selection RMS noise Full 350 uV 0 5 of the full scale Setting 250 MHz 165 uV 0 5 of the full scale Setting 20 MHz lt 75 uV 0 5 of the full scale Setting A 62 Tektronix Logic Analyzer Family User Manual Version 4 2 Software Appendix A Specifications for the DSO Module Table A 62 DSO module signal acquisition system Cont Characteristic Description Range internal offset Full scale range setting Offset range 10mV 1V 1V 1 01V 10V 10V 10 1 V 100 V 100 V Range se
214. ble 3 15 describes the available measurements m Selected Measurements displays up to three DSO waveform measurements that you select You can modify the list of selected measurements using the Add gt gt and Remove lt lt buttons If more measurements are desired you can duplicate a waveform and select three additional measurements m Base Top Determination allows you to select the method for determining the base and top for a selected measurement automatic histogram or min max The default setting is automatic which lets the logic analyzer choose between histogram and min max for the waveform under test Changes made to the base top determination apply only to the selected measurements Tektronix Logic Analyzer Family User Manual Version 4 2 Software 3 99 Waveform Window m The Reference Levels group box enables you to select either absolute or percentage based reference levels for the measured waveform After selecting the type of waveform reference level you can either set the High Mid and Low Reference levels or elect to use the defaults Changes made to the reference levels apply to all measurements Table 3 16 lists the available reference levels and provides a description of each m The Gating group box enables you to select the area of the waveform over which the measurement is calculated You can select the entire waveform window boundaries or cursor positions The gating settings apply to all measurements
215. ble A 40 Enhanced monitor cc cece cece cece eeeee A 36 Table A 41 Benchtop and expansion mainframe mechanical A 36 Tektronix Logic Analyzer Family User Manual Version 4 2 Software Table of Contents Table A 42 TLA721 benchtop controller characteristics A 39 Table A 43 Front panel characteristics 0c cee eeeeee A 41 Table A 44 TLA720 benchtop controller characteristics A 42 Table A 45 TLA720 benchtop controller mechanical Characteristics 02 0 ccc ccc cece ce reece eee eee e eee EEE A 43 Table A 46 TLA7Axx input parameters with probes A 44 Table A 47 Analog output ccc ccc ecw cece eee ee eee A 45 Table A 48 Channel width and depth cceeeeeeee A 45 Table A 49s Clocking ssori gavin 68a oie 6 eed ais DE A 45 Table A 50 TLA7Axx module trigger system 04 A 49 Table A 51 MagniVu acquisition cc cece ec eee cree eee A 51 Table A 52 Merged modules cece cece cs ceeceeece A 52 Table A 53 Data handling cc cece cece cece cece eens A 52 Table A 54 Mechanical 0 cece ccc reece reece eeeee A 53 Table A 55 LA module channel width and depth A 54 Table A 56 LA module clocking cece cece eee eeee A 54 Table A 57 LA module trigger system cece ee eeeee A 56 Table A 58 LA module MagniVu feature 0ee sees A 58 Table A 59 LA module data handling
216. bol value that the logic analyzer will display for addresses that fall within the lower and upper bounds of a source symbol Color range symbols define the beginning and ending group values where a color is displayed Any group value in the acquisition falling within this range will be shown in the defined color The value range of a color symbol can overlap with the set of ranges defined by one or more Function Variable or Source symbols In many instances a Color symbol will use exactly the same range bounds as a Function or Variable symbol A partial range file with colors is shown below Color Color Low High em me ome ame elm ome mee me me meen fe fm me me ee me mem om oS me me ed SSS SS e ee S magenta 006035ba 00603640 yellow navy 00603541 00603675 default green 006036e6 0060372f The first line tells the file reader that the following symbols represent colors The next two lines are comments used as headers The first color name specifies the foreground color and the second optional color name specifies the background color The available color names keywords are black blue cyan lime magenta red yellow white navy teal green purple maroon olive gray and silver The special color name default gives the default text coloring specified by choosing a color in the Column tab of the Listing Window Property Sheet or the Waveform tab of the Waveform Window Property Sheet The Low and High
217. bols and symbol files 2 48 file name extension B 1 TLA symbol file format TSF B 1 Symbols and terms xviii Symbols dialog box 2 51 Synchronous acquisition 2 28 Glossary 8 System expansion mainframe troubleshooting H 18 isolating problems H 15 System defaults 3 79 System Interprobing dialog box 3 23 System options 3 79 System trigger 3 68 3 89 Glossary 9 source 3 69 System trigger in out connectors 3 73 System window 2 9 2 22 3 1 3 88 T Technical support contact information xxiv Tektronix contacting xxiv Tektronix binary format 3 132 Text data exporting 3 131 Three way merge procedure E 13 Threshold voltage Glossary 9 Thresholds DSO vertical input 3 54 indicator in DSO waveform 3 95 LA channels 3 27 Time Alignment dialog box 3 89 Time correlation 2 34 2 39 3 89 Glossary 9 Time per div in Waveform window 3 114 Time stamp 2 35 Glossary 9 Timer Glossary 9 Index 10 Tektronix Logic Analyzer Family User Manual Version 4 2 Software Index TLA application window overview 2 9 TLA symbol file format B 1 TLA600 BIOS configuration G 3 TLA600 series logic analyzer description 1 1 specifications A 5 TLA700 BIOS configuration G 7 TLA700 Series logic analyzer description 1 2 system specifications A 17 TLA720 Benchtop Mainframe AC power source A 34 cooling A 35 dimensions A 38 mechanical A 36 secondary power A 35 TLA721 Benchtop Mainframe AC power source A 34 co
218. bols can be further divided into three different categories functions variables and source code source Table 2 1 shows the different types of symbols and the windows where they are commonly used Table 2 1 Using symbols in logic analyzer windows Range symbols Window Pattern symbols Functions Variables Source code Listing Yes Yes Yes Yes Waveform Yes Yes Yes Yes Histogram No Yes Yes No Source No No No Yes LA Trigger Yes Yes Yes Yes Pattern Symbols Pattern symbols consist of data patterns up to 32 bits Each bit in a pattern symbol can be 0 1 or X don t care Pattern symbols are used when a group of signals define a logical state For example a microprocessor has a set of pins that indicates the type of bus cycle in progress A memory read cycle is indicated when the RD and MREQ pins are 0 logic low and the BUSAK and M1 pins are 1 logic high You can define a pattern symbol name called mem read that corresponds to bit pattern 1100 and thereby mark all memory read Tektronix Logic Analyzer Family User Manual Version 4 2 Software 2 49 Operating Basics 2 50 bus cycles in the Listing window For other bus cycles the logic state of these pins is also important and you can define different bit patterns for each cycle type Figure 2 47 shows pattern symbols used in a Waveform window fa Waveform 3 OL x f HESE aig ti gt Time Div 200ns x a8 Figure 2 47 Waveforms
219. bout using an EasyTrigger program refer to the online help You can switch between the EasyTrigger tab to modify the trigger program or select another one and the PowerTrigger tab to view or modify state and clause details of the trigger program you selected as many times as needed to acquire the desired data in acquisition memory CAUTION When you edit trigger programs from the PowerTrigger tab you must save your changes before returning to the EasyTrigger tab Otherwise your changes will be lost As you become more comfortable with trigger programming you can use the PowerTrigger tab to both view and modify the predefined EasyTrigger programs resulting in an increasingly complex trigger program designs You can also create new trigger programs using the PowerTrigger tab instead of modifying predefined EasyTrigger programs Figures 3 24 and 3 25 show the Trigger window displaying both the EasyTrig ger and PowerTrigger tab contents NOTE You can specify which trigger tab displays by default when you start the TLA application From the System menu click Options and then click the Defaults tab Click the Trigger Window Style field and then select the desired trigger tab from the list box zio Des i eE Soeg ay x TriggerPos j 50 4 I Force Main Prefill Magni u 125ps Magnivu Trigger Pos 50 4 EasyTrigger l PowerTrigger gg group i Trigger on group value outside of a r
220. but it ensures that you do not trigger on a false transition indication Tektronix Logic Analyzer Family User Manual Version 4 2 Software 3 85 Acquisition 3 86 Tektronix Logic Analyzer Family User Manual Version 4 2 Software Display To view acquired data open one of the data windows The Listing window and the Waveform window are the data windows that you will use for most applica tions see Figure 3 58 You can also create Source windows to use with high level language support applications or Histogram windows to use with performance analysis applications You can have multiple data windows to display different data or different views of the same data musno OOOO al ee sles aAa A l C4 2097150 a C2 2037154 Delta Time iens E T Lock Delta Time OSTART OSTART _ 151 Q Start Q Start Bats hee z 7 mi 2037142 OOFGFEFS gt fimen 500ps Bia aj OOF ZFF R OOFSFEFE C1 550ps C2 410ps Delta Time 350ps al I Lock Deka Time OOFSFSFS AFA ART Mag DataSize C1 EF c2 00 Delta EF FDF H 2097150 oorerere FEFE 3037122 o0000000 ooo RESE TS ART Mag Sampie ii oF a ART Mag Address pooaueoe ozb RESET 3 aa START Meg Dan 00050505 05 TART Mag Control O0OEOEOE 0606 RT 207 Ooor0rO7 ooososos 0808 Ei re 00030509 QSTART Sample QSTART Address QSTART Data Figure 3 58 The Listing and Waveform windows Setup
221. c data locations 3 137 marks cursors and indicators 3 136 scan listing 3 137 searching data 3 141 shortcut keys 3 145 Source Files property tab 3 143 Specifications A 1 expansion mainframe A 34 iView A 70 LA clock channels A 54 LA data rate A 56 LA qualifier channels A 55 P6417 probe capacitance A 5 A 59 P6418 probe capacitance A 5 A 59 P6434 probe capacitance A 5 A 59 TLA600 series A 5 TLA700 series A 17 TLA720 benchtop mainframe A 34 TLA721 benchtop mainframe A 34 TLA7PG2 Pattern Generator Module A 67 TLA7XM A 34 Splitting the data area 3 115 3 129 3 151 Standby STBY Glossary 8 Starting and stopping acquisition 3 81 Startup sequence H 12 State 3 30 Glossary 8 Static logical address D 1 default settings D 2 problems D 2 switch location D 2 Status bar hiding 3 79 Status Monitor 3 83 Step Forward and Step Backward buttons 3 139 Storage qualification 2 29 3 48 Glossary 8 Storing data 2 30 2 31 Subsequence Definition window Pattern Generator module 3 67 Suppressed data 3 105 Symbol files color symbols B 8 function symbols B 5 loading 2 52 pattern symbols B 3 range B 4 source symbols B 6 variable symbols B 5 viewing the status 2 51 Symbolic radix 2 48 Glossary 8 Symbolic range generation Glossary 8 Symbols color symbols B 8 function symbols B 5 histogram ranges 3 150 pattern symbols B 3 range B 4 source symbols B 6 variable symbols B 5 Sym
222. cates no recognizable LCD or external monitor was found Dynamic Display Configuration 1 DDC1 support for external SVGA monitor is provided Two VGA SVGA or XGA compatible analog output ports Display size is selected via Win2000 display applet Resolution Pixels 640 x 480 800 x 600 1024 x 768 1280 x 1024 1600 x 600 1600 x 1200 Resolution Pixels 640 x 480 800 x 600 1024 x 768 1280 x 1024 1600 x 1200 Colors 256 64 K 16 8 M 265 64 K 16 8 M 256 64 K 16 8 M 256 64 K 16 8 M 256 64 K 256 64 K Colors 256 64 K 16 8 M 256 64 K 16 8 M 256 64 K 16 8 M 256 64 K 16 8 M 256 Refresh Rates 60 75 85 60 75 85 60 75 85 60 60 60 Refresh Rates 60 75 85 60 75 85 60 75 85 60 75 80 60 75 Internal display Classification TFT Thin Film Transistor 26 cm active matrix color LCD display CCFL backlight intensity controllable via software Resolution 800 X 600 262 144 colors with 211 2 mm 8 3 in by 158 4 mm 6 2 in of viewing area Color scale 262 144 colors 6 bit RGB with a color gamut of 42 at center to NTSC A 24 Tektronix Logic Analyzer Family User Manual Version 4 2 Software Appendix A Specifications for the TLA715 Dual Monitor Portable Mainframe Table A 23 TLA715 front panel interface Characteristic QWERTY keypad HEX keypad Special function knobs Multi function knob Vertical position Vertical scale Horizontal position Ho
223. cc cee ee cee eecevees 3 11 Table 3 2 Group definitions ssessessussssssesossesoe 3 12 Table 3 3 EasyTrigger program list cece eee eeeeeee 3 32 Table 3 4 Trigger events 0 ce cece cece cece cece eee eeee 3 44 Table 3 5 Trigger resources 0 ccc ce ccc ee ccc ee ence eees 3 45 Table 3 6 Trigger actions cc cee cece e cece e eee enees 3 47 Table 3 7 Trigger storage cece ccc c cree cere eee enees 3 49 Table 3 8 MagniVu trigger position cece eee enone 3 51 Table 3 9 External Oscilloscope Setups eeeeeeees 3 58 Table 3 10 External oscilloscope trigger settings 3 59 Table 3 11 System trigger source cc cee ee cee eeeevees 3 69 Table 3 12 Menu shortcut keys 0 cc cece cece cece eeeee 3 80 Table 3 13 General purpose data window shortcut keys 3 91 Table 3 14 Waveform window cursor and mark summary 3 96 Table 3 15 Automatic waveform measurements 3 100 Table 3 16 Waveform Reference Levels 0eeeee 3 102 Table 3 17 MagniVu storage rates cc cece cece eee eee 3 107 Table 3 18 MagniVu storage rate cc cece cece eee 3 108 Table 3 19 Waveform window shortcut keys 0005 3 116 Table 3 20 Listing window cursor and mark summary 3 120 Table 3 21 Listing window shortcut keys 0ee00 3 133 Table 3 22 Source window cursor and mark summary 3
224. ccumulated time Timer 1 in the application Status Monitor Accumulates the time during which the group value stays within the specified range Press the Run Stop button to stop accumulating the time Look for the accumulated time Timer 1 in the application Status Monitor Count the occurrences of Event A between Event B and Event C and triggers on Event C Look for the count value Counter 1 in the application Status Monitor Measures the pulse width of the desired channel and triggers This program measures both On time and Off time of the desired channel Timer 1 gives the On time value and Timer 2 gives the Off time value Look for the Timer values in the application Status Monitor Measures the time between Event A and Event B and triggers on Event B Look for the Timer value Timer 1 in the application Status Monitor Measure the time between A and B reset on C Measures the time between Event A and Event B only if Event C does not occur between Event A and Event B Look for time value Timer 1 in application Status Monitor Measure the time within a range Measure the time for which the selected group has its value within the specified range and triggers when the group value goes out of the specified range Look for the time value Timer 1 in application Status Monitor Profile range matches for time T Increments counter on each match within range Decrements counter on each match outside of range T
225. cee ee cer ee ences 2 25 Figure 2 23 Waveform window ececececececeees 2 26 Figure 2 24 Pattern Generator Run Properties dialog box 2 26 Figure 2 25 Acquiring a digital signal LA module 2 27 Figure 2 26 Acquiring an analog signal DSO module 2 28 Figure 2 27 Block diagram of the LA module acquisition and SLOVASE Foss 5 aces wee Sardis sale cheers es bis 6 wrath lew ae Heda es 2 28 Figure 2 28 Block diagram of the DSO module acquisition and SUOV AGC 58h 06 6s oe Es ae a Wee Shea hss a Ss Bard Bedi dee WOES 2 30 Figure 2 29 Block diagram of the pattern generator module 2 31 Figure 2 30 Logic analyzer physical model 200 2 33 Figure 2 31 Logic analyzer conceptual model 62 2 34 Figure 2 32 Listing data 1 0 0 0 cece cect cece rere eees 2 35 Figure 2 33 Listing window with analog data 08 2 36 Figure 2 34 Listing data using a microprocessor support PACK AGC oi oE its fore E aire EE E al oie ee lectus d celle ote entes ze 2 36 Figure 2 35 High level source code cecececececeees 2 37 Figure 2 36 Source code viewed as acquired data 2 38 Figure 2 37 Waveform data ccc ccc eee c eee e eee eees 2 39 Figure 2 38 Using the DSO module to capture a runt pulse 2 40 Figure 2 39 LA module sampling resolution 000 2 41 Figure 2 40 Aliasing 0 ccc ccc ccc eee e eee eeeees 2 42 Figure
226. cified the trigger program might not acquire the desired data or might not trigger A less specific trigger program might acquire the desired data and also verify that you have set up the proper clocking and threshold levels 3 84 Tektronix Logic Analyzer Family User Manual Version 4 2 Software Acquisition DSO Module Arming or Intermodule Triggering First Transition Indication Problems The following condition applies to the DSO module only m Check the trigger Mode setting If Mode is set to Normal and the data does not meet the trigger conditions the module will not trigger Conversely if Mode is set to Auto the module will trigger after a set length of time even if the specified data does not occur The following conditions apply only if you are using arming or intermodule triggering m Internal signal logic function If your trigger depends on setting an internal signal and that signal has been set to Wired And all modules in the system must set the signal or it cannot assert m If any modules are turned off check that the trigger program is not waiting for input from an inactive module Because the logic analyzer does not clear the first transition indication check that the LA modules always show a first transition indication even if there are no probes attached To avoid triggering on a false first transition indication set the first state to If Anything Go to Next State This will use a state
227. ck Groups Sample Clocks Group Clocking Probe Demus gt Clock Group 0 Clock Group 1 Clock Group 2 Choose Edge Detectors Choose Edge Detectors Choose Edge Detectors Edge Detector 0 Edge Detector 0 Edge Detector 1 O Edge Detector 1 Edge Detector 2 Edge Detector 2 Edge Detector 3 Edge Detector 3 Edge Detector 0 O Edge Detector 1 Edge Detector 2 Edge Detector 3 KI IM Enable Reset VV Enable Reset M Enable Reset Counter C Timer Counter C Timer Counter C Timer Value 255 a Value 255 Walue 255 E P Use Extemal Reset CKO z in Figure 3 12 Clock Groups selection 3 14 Tektronix Logic Analyzer Family User Manual Version 4 2 Software Setup To sample the read and write data at the correct time use the Sample Clocks tab Figure 3 13 shows the Sample Clock equation The first equation is to properly sample the read data the second equation is to properly sample the write data These equations qualify the data so that the read and write transactions on the DDR SDRAM bus are sampled The Sample Clocks tab supports up to four sample clocks Each sample clock can have up to four OR d Clock Groups with each Clock Group containing up to three AND d qualifiers Source Synchronous Clocking LA 1 BEI Edge Detectors Clock Groups Sample Clocks Group Clocking Probe Demus Sample Clock Sample Clock 0
228. ck storage store stretch When enabled 31 samples are stored before and after the valid sample This allows the storage of a group of samples around a valid data sample when storage control is being used This only has meaning when storage control is used Block storage is disallowed when glitch storage or setup and hold violation storage is enabled Tektronix Logic Analyzer Family User Manual Version 4 2 Software Appendix A Specifications for the TLA7Axx Logic Analzyer Modules Table A 50 TLA7Axx module trigger system Cont Characteristic Glitch violation storage Setup and hold violation storage Description Glitch violation information can be stored to acquisition memory with each data sample when asynchronous clocking is used The acquisition data storage size is reduced by half when this mode is enabled the other half holds violation information The fastest asynchronous clock rate is reduced to 4 ns Setup and hold violation information can be stored to acquisition memory with each data sample when synchronous clocking is used The acquisition data storage size is reduced by half when this mode is enabled the other half holds violation information The maximum synchronous clock rate in this mode is 235 MHz Table A 51 MagniVu acquisition Characteristic MagniVu sampling period MagniVu memory depth Description Data is asynchronously sampled and stored every 125 ps in a separate MagniVu hi
229. claration of Conformity Low Voltage Standards or description Meets intent of Directive 89 336 EEC for Electromagnetic Compatibility Compliance was demonstrated to the following specifications as listed in the Official Journal of the European Communities EN 61326 EMC requirements for Class A electrical equipment for measurement control and laboratory use IEC 61000 4 2 Electrostatic discharge immunity Performance criterion B IEC 61000 4 3 RF electromagnetic field immunity Performance criterion A IEC 61000 4 4 Electrical fast transient burst immunity Performance criterion B IEC 61000 4 5 Power line surge immunity Performance criterion B IEC 61000 4 6 Conducted RF immunity Performance criterion A IEC 61000 4 11 Voltage dips and interruptions immunity Performance criterion B EN 61000 3 2 AC power line harmonic emissions Complies with EMC provision of Radiocommunications Act per the following standard s AS NZS 2064 1 2 Industrial Scientific and Medical Equipment 1992 Compliance was demonstrated to the following specification as listed in the Official Journal of the European Communities Low Voltage Directive 73 23 EEC amended by 93 68 EEC EN 61010 1 A2 1995 Safety requirements for electrical equipment for measurement control and laboratory use U S Nationally Recognized Testing Laboratory Listing UL3111 1 Standard for electrical measuring and test equipment Canadian Certification CAN CSA C22
230. common ground connection between instruments WARNING To reduce the risk of an electrical shock do not remove the safety ground screw from the logic analyzer The safety ground screw must always be in place to ensure proper grounding of the power supply to the logic analyzer De e ae 0 0580 oe ep ETS Mood amp P a L L Ground connection Figure 2 6 Location of ground connection TLA700 Series External Connectors The mainframe external connectors are shown in Figure 2 7 The following connections are available m System Trigger In and System Trigger Out used to receive or send a trigger from to an external source m External Signal In and External Signal Out used to receive or send a signal from to an external source m Accessory connections Tektronix Logic Analyzer Family User Manual Version 4 2 Software 2 5 Functional Overview m PC cards 2 PC cards 2 0 nt SYSTEM TRIG IN a Secondary video Ut SVGA OUT port SYSTEM TRIG OUT gt ovo E MRIG IN i COM port gt J lt Primary video SYSTEM TRIG OUT gt
231. complete the first cycle in a waveform or gated region Period is the reciprocal of frequency and is measured in seconds This timing measurement is a measure of the first cycle in a waveform or gated region Frequency is the reciprocal of the period it is measured in Hertz Hz where one Hz is one cycle per second This timing measurement is the ratio of the positive pulse width to the signal period expressed as a percentage The duty cycle is measured on the first cycle in the waveform or gated region Positive Duty Cycle Positive Width Period x 100 This timing measurement is the ratio of the negative pulse width to the signal period expressed as a percentage The duty cycle is measured on the first cycle in the waveform or gated region Negative Duty Cycle Negative Width Period x 100 Area is a voltage over time measurement The measurement is the area over the entire waveform or gated region expressed in volt seconds The area above the common reference point is positive and the area below the common reference point is negative Cycle Area The voltage over time measurement The measurement is the area over the first cycle in the waveform or the first cycle in the gated region expressed in volt seconds The area above the common reference point is positive and the area below the common reference point is negative Cycle Mean This voltage measurement is the arithmetic mean over the first cycle in the waveform or
232. completing these steps follow the instructions under Restoring the Hard Disk Image beginning on page G 2 While using this procedure you will be asked to log on as Administrator The logic analyzer is initially set up to automatically log on as Administrator with no password so you may not see the login prompt If the network setups have been changed on your instrument make sure that you log on as Administrator or as a user who has administrator privileges Failure to do so can prevent the software upgrade from completing successfully 1 Log on to the instrument as Administrator and quit any applications 2 Install Disc 1 of the Tektronix Logic Analyzer Family Application Software in the CD ROM drive of the logic analyzer 3 Click Run in the Windows Start menu to display the Run dialog box 4 Enter D TLA Application SW Disk1 Setup exe in the Run dialog box if your CD ROM drive is not the D drive enter the appropriate letter for your drive 5 Click OK to perform the installation If you have an existing version of the software on the hard disk the installation program will detect it and ask if you want to remove it Follow the on screen instructions to remove the software answering Yes to any prompts Reboot the instrument when prompted Repeat Step 4 to reinstall the software following any on screen prompts 6 After the software has been successfully installed restart the instrument G 16 Tektronix Logic Analyzer
233. crease the sampling rate decrease the clock sample period in the module Setup window If the shape of the displayed waveform changes drastically or becomes stable at a faster clock sample period setting your waveform was probably aliased Although the principles of sampling theory define a minimum sample rate of 2X a good rule of thumb is to choose a sample clock rate five times faster than the speed of the fastest signal being measured A faster sample clock rate results in a more accurate reconstructed waveform Waveforms are rarely displayed at an exact one sample point per pixel Wave forms are usually displayed in a compressed or expanded format As a general rule waveforms are compressed when the time per pixel is greater than the time per sample clock Waveforms are expanded when the time per pixel is less than the time per sample clock For compressed DSO waveforms the display shows the lowest and highest point that occupy a given pixel column joined by a vertical line For expanded waveforms the display points between the actual sample points are calculated For expanded DSO waveforms Sin x x interpolation computes the display points between the actual values acquired The LA module provides high speed timing support through MagniVu data The MagniVu data is stored in a separate memory that is parallel to the main memory All data from the sampler goes directly to the MagniVu memory The MagniVu memory also works like a circul
234. cteristic Nonvolatile memory retention time Typical Description 2016 samples per channel Data is asynchronously sampled and stored every 500 ps in a separate high resolution memory There are no clocking options Description Battery is integral to the NVRAM Battery life is gt 10 years Table A 11 TLA600 internal controller Characteristic Operating System Microprocessor Main Memory Style Speed Installed Configurations Description Microsoft Windows Intel Celeron 566 MHz SDRAM 168 pin DIMM 2 Sockets 100 MHz Minimum 256 MB loaded in one socket Maximum 512 MB with both sockets loaded Real Time Clock and CMOS Setups Plug amp Play NVRAM Retention Time Battery life is typically gt 3 years when the logic analyzer is not connected to line voltage When connected to line voltage the life of the battery is extended Lithium battery CR3032 Hard Disk Drive Standard PC compatible IDE Integrated Device Electronics hard disk drive residing on an EIDE interface Size Minimum Maximum 10 GByte 30 GByte Continually subject to change due to the fast moving PC component environment These storage capacities valid at product introduction CD RW Drive Standard PC compatible IDE Integrated Device Electronics 24x 10x 40x CD RW drive residing on an EIDE interface Continually subject to change due to the fast moving PC component environment Floppy Disk Drive Standard 3 5
235. ctions In a Listing window qualifica tion gaps are indicated by a horizontal gray line In a Waveform window qualification gaps are indicated by a blank vertical gap Range recognizer A trigger term Use range recognizers to trigger the logic analyzer on ranges of data Record length The specified number of samples in an acquisition Sample clock The clock signal that determines the points in time when the module samples data A sample clock can be set up to occur at regular intervals specified by an internal clock asynchronous acquisition or to occur when a Boolean expression combining an external clock and qualifier signals is true synchronous acquisition Sample rate The frequency at which data is logged into the logic analyzer Tektronix Logic Analyzer Family User Manual Version 4 2 Software Glossary 7 Glossary Glossary 8 Sampling The process of capturing an input signal such as a voltage at a discrete point in time and holding it constant so that it can be quantized Skew The relative time difference between input channels specified in terms of one edge relative to another Also the misrepresentation of data caused by parallel channels with different propagation delays Source Synchronous Clocking Clocking mode that sends a strobe signal with the data signal Data is synchronized with the strobe signal instead of the clock signal Source Window A data window where you can view the execution of sou
236. ctive cursor to the end of the data CTRL End Move active cursor up 10 pages CTRL Shift Page Up Move active cursor down 10 pages CTRL Shift Page Down Move active cursor to the top of the data CTRL Shift Home Move active cursor to the end of the data CTRL Shift End Tektronix Logic Analyzer Family User Manual Version 4 2 Software 3 91 Display 3 92 Tektronix Logic Analyzer Family User Manual Version 4 2 Software r E Waveform Window Use the LA DSO or External Oscilloscope Waveform window to display and evaluate acquisition data You can display internal DSO waveforms external oscilloscope waveforms and LA waveforms simultaneously Each window contains a data area waveform labels marks and several tool bars that allow you to measure and manipulate your waveforms See Figure 3 61 for an example For the LA module data values for each channel are shown as a digital two state waveform Logic level low is drawn at the bottom of the waveform area while a logic high is drawn at the top of the waveform area For the DSO module and the external oscilloscope data values for each channel are displayed as an analog waveform BHN E ale ae ES j TimezDiv ps w pas fe C1 550ps z Delta Time S60ps I Lock Delta Time ART Mag_DataSize C1 EF Delta EF 2 000 n 20 AT Mag _DataSize START Mag_Misc i QSTART Control Figure 3 61 Waveform window Tektronix Logic Analyzer Family
237. cts of the Histogram display such as ranges bounds font size color and data source information Click the Properties toolbar button to open the Histogram Properties dialog box Then select the specific tab you are interested in Here are some guidelines for using and customizing the Histogram window Data is accumulated until you explicitly clear the data There is no limit to the number of symbolic ranges for histogram data You can analyze live LA data or saved LA data reference data You can use up to 32 bits of data in an address group You can enable or disable channel group polarity You can change colors for the foreground background and histogram bars as needed You can change the data font size as necessary to view the data Tektronix Logic Analyzer Family User Manual Version 4 2 Software 3 151 Histogram Window Exporting Histogram Data Use the Export Histogram dialog box to export data from the current Histogram window to a text file This is a way to print a copy of the histogram data Figure 3 106 shows the Export Histogram dialog box Export Histogram Histogram 1 BE Save in a My Documents x El jE Eg File name Histogram Tote Save Save as type Text File txt Cancel Export range Help All First Row l mws j First Displayed Row jo ows Close Figure 3 106 Export Histogram dialog box Click Options to define the format of the data in the Export
238. currently loaded symbol file The last time the file was loaded into the logic analyzer application software It also includes error and warning messages associated with the last load m When the file was last modified The logic analyzer also displays a message if the file may need to be reloaded such as when the file is modified after it was first loaded m The format of the loaded file m Ifthe file can be unloaded or if the file is currently in use Symbol files can only be unloaded if no data windows or setups are using them Symbols x Loaded Symbol File c program hlesstla 700ssamplesstla new ta gs 2 Status Last Loaded 06 23 98 01 50 02 PM File Modified 04 13798 10 47 18 AM Format Loaded TSF Can Be Unloaded No File is in use by a setup or data window Content Symbol Type Functions Variables Source Code Total Symbols 324 Total Source Files 6 Range 04609204 to Ox80000002 with offset 0609204 to Ox80000003 without offset Figure 2 49 Symbols dialog box Tektronix Logic Analyzer Family User Manual Version 4 2 Software 2 51 Operating Basics Load Symbol Options Dialog Box 2 52 The following information is displayed in the Symbols dialog box m Whether the file is a pattern symbol file or a range symbol file If the file is a range file this field also lists the types of symbols loaded m The number of symbols loaded from the file Symbol files can have a
239. cursors in the Histogram window You should also refer to the discussions of shortcut keys in the online help or under the section for the individual data windows The shortcut keys also known as accelerator keys or hot keys abide by the following rules m Arrow keys with no modifier keys scroll data m The Shift key increases movement by a factor of 10 Table 3 24 Histogram window shortcut keys Desired action Key combination Scroll data up 10 ranges Shift Up arrow Scroll data down 10 ranges Shift Down arrow Tektronix Logic Analyzer Family User Manual Version 4 2 Software 3 153 Histogram Window 3 154 Tektronix Logic Analyzer Family User Manual Version 4 2 Software Appendices a Appendix A Specifications Characteristic Tables This chapter lists the specifications for the Tektronix Logic Analyzer family and the associated modules All specifications are guaranteed unless noted Typical Typical characteristics describe typical or average performance and provide useful reference informa tion Specifications that are marked with the symbol are checked directly or indirectly in the Tektronix Logic Analyzer Family Performance Verification and Adjustment Technical Reference Manual For mainframes and modules the performance limits in this specification are valid with these conditions m The logic analyzer must be in an environment with temperature altitude humidity and vibration within the
240. cy Threshold range and step size Threshold channel selection i Channel to channel skew Channel to channel skew Typical Sample uncertainty Asynchronous Synchronous Probe input resistance Typical Probe input capacitance P6417 P6434 Typical Probe input capacitance P6418 Typical Minimum slew rate Typical Maximum operating signal Description 100 mV Settable from 5 V to 2 V in 50 mV steps 16 threshold groups assigned to channels P6417 and P6418 probes have two threshold settings one for the clock qualifier channel and one for the data channels P6434 probes have four threshold settings one for each of the clock qualifier channels and two for the data channels one per 16 data channels lt 1 6 ns maximum When merged add 0 5 ns for the slave module lt 1 0 ns typical When merged add 0 3 ns for the slave module Sample period 500 ps 20 kQ 2 pF 1 4 pF data channels 2 pF CLK Qual channels 0 2 V ns 6 5 Vp p 3 5 V absolute input voltage minimum 6 5 V absolute input voltage maximum Probe overdrive P6417 P6418 P6434 250 mV or 25 of signal swing minimum required beyond threshold whichever is greater 300 mV or 25 of signal swing minimum required beyond threshold whichever is greater 4 V maximum beyond threshold Maximum nondestructive input signal to probe 15 V Minimum input pulse width signal 2ns single channel Typical Delay time from probe
241. d Most keys and key combinations are available using the front panel See Figure 2 1 C E VERTICAL HORETA gt A POSITION 4 POSITION gt Horizontal 1 Y Vertical lt General Purpose Knob a SIE SCALE z CA i D C D Run Stop Qwerty Keypad Figure 2 1 TLA61x 62x Logic analyzer front panel Tektronix Logic Analyzer Family User Manual Version 4 2 Software 2 1 Functional Overview Portable Mainframe Front Panel Controls For key combinations it is not necessary to hold down more than one key at a time For example you can press the SHIFT key in the hexadecimal keypad and then press a keypad key to accomplish a Shift key combination The same is true for other key combinations such as CTRL and ALT keys The portable mainframe has front panel controls that operate the logic analyzer without an external mouse or keyboard Changes the value in a selected Moves the display pointer gt box such as sample rate or N a and selects objects See memory depth With a cursor Trackball on page 2 3 selected the knob controls cursor for more information ODO position Does not scroll data Oooo Scrolls data horizontally Scrolls data vertically oe Changes the height of E l
242. d Full scale range setting Bandwidth 10 1 V 100 V DC 500 MHz TLA7E1 and TLA7E2 DC 500 MHz TLA7D1 and TLA7D2 100 mV 10 V DC 1 GHz TLA7E1 and TLA7E2 DC 500 MHz TLA7D1 and TLA7D2 50 mV 99 5 mV DC 750 MHz TLA7E1 and TLA7E2 DC 500 MHz TLA7D1 and TLA7D2 20 mV 49 8 mV DC 600 MHz TLA7E1 and TLA7E2 DC 500 MHz TLA7D1 and TLA7D2 10 mV 19 9 mV DC 500 MHz TLA7E1 and TLA7E2 DC 500 MHz TLA7D1 and TLA7D2 Bandwidth analog selections 20 MHz 250 MHz and FULL on each channel Calculated rise time Typical Full scale range setting TLA7E1 and TLA7E2 TLA7D1 and TLA7D2 Typical full bandwidth rise times are shown in 10 1 V 100 V 900 ps 900 ps the chart to the right 100 mV 10 V 450 ps 900 ps 50 mV 99 5 mV 600 ps 900 ps 20 mV 49 8 mV 750 ps 900 ps 10 mV 19 9 mV 900 ps 900 ps Crosstalk channel isolation 300 1 at 100 MHz and 100 1 at the rated bandwidth for the channel s sensitivity Full Scale Range setting for any two channels having equal sensitivity settings Digitized bits 8 Tektronix Logic Analyzer Family User Manual Version 4 2 Software A 61 Appendix A Specifications for the DSO Module Table A 62 DSO module signal acquisition system Cont Characteristic Description Effective bits real time sampling Typical Input frequency TLA7E1 and TLA7D1 and TLA7D2 2 5 GS s TLA7E2 5 GS s each channel each channel 10 2 MHz 6 2 bits 6 2 bits 98 MHz 6 1
243. de can be clocked up to 500 MHz Maximum count is 251 Maximum time is 4 5 x 108 seconds or 52 days Counters can be used as setable resettable and testable flags Counters can be reset do nothing increased or decreased Timers can be reset started stopped or not changed Counters and timers have zero reset latency and one clock terminal count latency Signal In 1 A backplane input signal Tektronix Logic Analyzer Family User Manual Version 4 2 Software A 49 Appendix A Specifications for the TLA7Axx Logic Analzyer Modules Table A 50 TLA7Axx module trigger system Cont Characteristic Signal In 2 Trigger In Active trigger resources Trigger states i Trigger state sequence rate Trigger machine actions Main acquisition trigger Main trigger position MagniVu trigger MagniVu trigger position Increment decrement counter Start stop timer Reset counter timer Reloadable word recognizer snapshot Reloadable word recognizer latency Description A backplane input signal A backplane input signal that causes the main acquisition and the MagniVu acquisition to trigger if they are not already triggered 16 maximum excluding counter timers Word recognizers are traded off one for one as Signal In 1 Signal In 2 glitch detection setup and hold detection or transition detection resources are added 16 Same rate as valid data samples received 500 MHz maximum Triggers the main acquisition m
244. density double sided PC compatible high density floppy disk drive Transfer rate 500 Kbits per second Access time ave 194 ms Bootable replaceable hard disk drive Standard PC compatible IDE Integrated device Electronics hard disk drive residing on an EIDE interface Size Maximum 30 GByte Continually subject to change due to the fast moving PC component environment These storage capacities valid at product introduction Interface ATA 5 Enhanced IDE EIDE Tektronix Logic Analyzer Family User Manual Version 4 2 Software A 39 Appendix A Specifications for the TLA721 Dual Monitor Benchtop Controller Table A 42 TLA721 benchtop controller characteristics Cont Characteristic Description Average seek time Read 12 ms I O data transfer rate 33 3 MB s maximum U DMA mode 2 Average latency 7 14 ms Cache buffer 512 KB CD RW Drive Standard PC compatible IDE Integrated device Electronics 8x 8x 24x CD RW drive residing on an IDE interface Continually subject to change due to the fast moving PC component environment Applicable formats CD DA CE ROM Mode 1 Mode 2 CD ROM XA Mode 2 Form 1 Form 2 Photo CD single multi session Enhanced CD Interface IDE ATAPI Average access time 130 ms Data transfer rate burst sustained 16 7 MB per second maximum 1290 3000 KB per second Display classification Standard PC graphics accelerator technology bitBLT based r
245. double width slot covers over slots 7 8 9 10 and 11 12 m Iftwo or more LA modules are to be installed install the module with the largest memory in slots 3 4 Install the module with the lower memory in slots 5 6 Place double width slot covers over slots 7 8 9 10 and 11 12 Use a screwdriver to tighten the retaining screws to 2 5 in lbs after seating the modules in place See Figure D 2 Portable mainframe Retaining screws Benchtop mainframe Injector ejector handles Figure D 2 Installing modules Tektronix Logic Analyzer Family User Manual Version 4 2 Software Appendix D TLA700 Module Installation Module Keying Covering Empty Slots Each module has a key that only allows certain modules to be installed next to other modules For example you can install a TLA7Dx DSO module to the left of a TLA7XM Expansion module but you can not install a TLA7Nx LA module to the immediate left of a TLA7XM Expansion module See Figure D 3 Key OJ TO OJ O pe O O BENCHTOP CONTROLLER QAccEssED ORN cy Pc O SLEEP CARD l on TEST n m 0 TLA720 TLA7XM TLA7Nx TLA7XM BT CTRL Exp Module LA Module Exp Module Key Key O OJ L alg l OJ OJ O O H 4
246. dth 51 bits Maximum clocking 250 MHz Maximum time 2 000 000 S 23 days Counter 1 and 2 events conflict with Timer 1 and 2 events respectively Signal Signal in Is True Is False One trigger resource uses one of four system signals Only one signal event is available in a trigger program Anything 0 trigger resources Used as a placeholder Not available with the OR conjunction Nothing 0 trigger resources Used as a placeholder with the OR conjunction Trigger Actions After defining the events in the If event portion of the clause you can select one or more trigger actions to complete the clause Figure 3 31 displays the Clause Definition dialog box with the trigger Resources list box selected Table 3 6 lists the trigger actions available for your trigger program 3 46 Tektronix Logic Analyzer Family User Manual Version 4 2 Software Setup Clause Definition LA 1 State 1 1 3x Group xj xj eal 11010001 Group Radix arm Module 0501 b Trigger Trigger All Modules wait for System Trigger Go To An a Inc Counter Reset Counter Start Timer Clear Timer Stop Timer Set Signal Clear Signal Event Name optional Add Delete Help Store Samole Figure 3 31 Clause Definition dialog box Trigger Actions list box Table 3 6 Trigger actions Action Description Trigger Triggers the current module When you use Trigge
247. e Memory Depth 4194304 Acquire Normal gt Support QSTART For more information on External clocking refer to the online help Advanced Clocking Advanced clocking is available only if you select External clocking Use advanced clocking to set up multiple phase clocking probe demultiplexing and other clocking features Multiple phase clocking specifies two different sample clock equations and assigns an equation to separate probe groups in order to clock in sample data You can also sample data from different channel groups at different points in time relative to the sample clock through a variable setup and hold window For more information on advanced clocking refer to the online help External 2X Clocking Available only in TLA7Axx modules External 2X clocking allows you to acquire listing data at twice the normal maximum sample frequency of the logic analyzer However this increased speed and acquisition depth come at the expense of half the acquisition input channels When you use External 2X clocking you acquire data using a clock rate of up to 800 MHz from the test system The maximum data rate in 2X clocking mode is 800 MB s You can access advanced 2X clocking functionality by clicking the More button The 2X Clocking dialog box allows you to select the active clock edge and to align data in relation to the specified clock edge for each channel group The Setup Hold window graphic illustrates your clock edge a
248. e Waveform Window Table 3 14 Waveform window cursor and mark summary Cont Mark Name Begin data end data 1 2 Cursors 1 and 2 User mark Zoom Box Description The start and end of a module s data record These data marks cannot be moved Moveable marks used for visual reference and for data measurements User created marks Use marks to make specific data more easy to identify and find Use the Zoom box feature see Figure 3 66 to zoom on waveform details with a click and drag of the mouse I ioii 2 6 a Ba zals j T ime Div Srs X niran al C1 100ns 2 C2 100ns Delta Time 200s 4 I Lock Delta Time LA 1 CKO C1 1 pt2 000 we 000 sees 2S poe LA 1 Mag A3 EE DSO 1 Sample Ti Move Cursors n Copy Bitmap Ctrl c Figure 3 66 Waveform window zoom box Point to the area of interest on the screen click the left mouse button and drag the cursor to create a zoom box After you create the box right click the mouse to display a menu containing several options Instead of right clicking the mouse you can also click on the magnifying glass near the upper right corner of the window after you draw the zoom box m Click Zoom from the menu to zoom on the area of interest m Click Copy Bitmap to copy the area inside the zoom box to the clipboard You can then use tools such as MS Paint to edit the bitmap for use in different applications Tektronix Logic Analyzer Fam
249. e clocking state machine the system under test supplied clocks and the qualification data Tektronix Logic Analyzer Family User Manual Version 4 2 Software Appendix A Specifications for the TLA600 Series Logic Analyzer Table A 5 TLA600 external signal interface Characteristic System Trigger Input Input Levels Vin Vi Input Mode Minimum Pulse Width Active Period Maximum Input Voltage External Signal Input Input Destination Input Levels Vin ViL Input Mode Input Bandwidth Signal 1 2 Signal 3 4 Active Period Maximum Input Voltage System Trigger Output Source Mode Active Period Description TTL compatible input via rear panel mounted BNC connectors TTL compatible input 2 0V lt 0 8 V Falling edge sensitive latched active low 12 ns Accepts system triggers during valid acquisition periods via real time gating resets system trigger input latch between valid acquisition periods 0 to 5 V peak TTL compatible input via rear panel mounted BNC connectors Signal 1 2 3 4 TTL compatible input gt 2 0 V lt 0 8 V Active true low level sensitive 50 MHz square wave minimum 10 MHz square wave minimum Accepts signals during valid acquisition periods via real time gating 0 to 5 V peak TTL compatible output via rear panel mounted BNC connectors Active true low falling edge latched Outputs system trigger state during valid acquisition period resets system trigger output to fals
250. e expansion module which is no longer present you need to press the On Standby switch on the expansion mainframe If the expansion mainframe powers on correctly the problem can be isolated to either the expansion module s or to the expansion cable s Repacking for Shipment If a mainframe or module is to be shipped to a Tektronix field office for repair attach a tag to the mainframe or module showing the owner s name and address the serial number and a description of the problem s encountered and or service required Always include the module and the probes so that the entire unit can be tested When packing an instrument for shipment use the original packaging If it is unavailable or not fit for use contact your Tektronix representative to obtain new packaging Tektronix Logic Analyzer Family User Manual Version 4 2 Software H 19 Appendix H User Service H 20 Tektronix Logic Analyzer Family User Manual Version 4 2 Software DT 2a a Glossary a E Glossary AC coupling A DSO mode that blocks the DC component of a signal but passes the dynamic AC component of the signal Useful for observing an AC signal that is normally riding on a DC signal Acquisition The process of sampling signals from input channels processing the results and displaying the data Active module The module highlighted by the pointer in the System window Aliasing The condition that occurs when data is sampled at a rate slower than
251. e module s from the expansion mainframe Set address switches to FF and reinstall module Turn off the benchtop mainframe install a known good module from the benchtop mainframe into the expansion mainframe the expansion mainframe where the modules were not recognized Turn on the benchtop mainframe and retry Module failure contact your local Tektronix service center Portable mainframe will not turn off with On Standby switch The mainframe utilities may be set up to disable hard power off Check the setting of the mainframe utilities the mainframe utilities are located in the Windows Control Panel This is a Windows operating system problem Try turning off the instrument using the Windows shutdown procedure If the instrument still does not turn off disconnect power cord and reconnect after 10 seconds to reboot the instrument Expansion Mainframe will not turn off with On Standby switch If the expansion mainframe was incorrectly shut down for example the power cord was discon nected while the expansion mainframe was running the expansion mainframe utility still registers the expansion mainframe as in the powered on condition To correct this condition press and hold the expansion mainframe power switch for three to four seconds The expansion mainframe will turn off on its own Power off the benchtop mainframe Power on the benchtop mainframe the expansion mainframe will turn on normally Startup Sequence
252. e state between valid acquisitions Output Levels VoH VoL 50 Q back terminated TTL compatible output 24 V into open circuit 2 V into 50 Q to ground lt 0 7 V sinking 10 mA Output Protection Short circuit protected to ground External Signal Output TTL compatible outputs via rear panel mounted BNC connectors Source Selection Signal 1 2 3 4 or 10 MHz clock Output Modes Level Sensitive User definable Active true low or active true high Output Levels VoH VoL 50 Ohm back terminated TTL output 4 V into open circuit 2 V into 50 Q to ground lt 0 7 V sinking 10 mA Tektronix Logic Analyzer Family User Manual Version 4 2 Software A 7 Appendix A Specifications for the TLA600 Series Logic Analyzer Table A 5 TLA600 external signal interface Cont Characteristic Description Output Bandwidth Signal 1 2 50 MHz square wave minimum Signal 3 4 10 MHz square wave minimum Active Period Outputs signals during valid acquisition periods resets signals to false state between valid acquisitions Outputs 10 MHz clock continuously Output Protection Short circuit protected to ground 1 The Input Bandwidth specification only applies to signals to the modules it does not apply to signals applied to the External Signal Input and sent back to the External Signal Output 2 The Output Bandwidth specification only applies to signals from the modules it does not apply to sig
253. e 3 63 Magnitude waveform DSO Waveforms DSO waveforms are analog timing diagrams that represent a single DSO channel The size of the DSO waveform depends on signal size and the input voltage range selected in the DSO Setup Window Range readouts for DSO waveforms are located at top and bottom left of the waveform The range readouts show the maximum and minimum vertical input voltage settings for the waveform See Figure 3 64 The ground line appears as a horizontal dotted line through each DSO waveform If ground is outside the bounds of the waveform the line is not shown The trigger threshold is indicated by a T gt at the right side of the waveform Set the trigger threshold in the Trigger page of the DSO Setup window Ei Waveform 2 Channel Figure 3 64 Range readouts Tektronix Logic Analyzer Family User Manual Version 4 2 Software 3 95 Waveform Window Reading the Waveform Indicators Data marks cursors and other indicators help you navigate and identify the data Figure 3 65 and Table 3 14 identify and describe data window marks To move cursors or marks drag the cursor and mark handles Trigger marks and Begin End data marks cannot be moved For more information on using marks refer to the online help Begin data mark System trigger Module trigger User mark Cursor 1 Cursor 2 End data mark a all a selel waj a C1 100ns D ns Delta Time f2oc ns LA 1
254. e a module you save all the setup and trigger information for that module You also have the option of saving the data for that module When you save a system you save all the setup information for the system including data window display settings and all the module information as well Tektronix Logic Analyzer Family User Manual Version 4 2 Software 2 33 Operating Basics System Data Windows General Settings Module 1 Module 2 Module n Setup Setup Setup Trigger Trigger Trigger Data Data Data Figure 2 31 Logic analyzer conceptual model Intermodule Interactions and Time Correlation 2 34 Each module has its own setup trigger and clocking functions LA modules may include microprocessor support as part of their setup Each module also acquires and stores its own data When you start an acquisition all modules start acquiring data together Exceptions are when one module has been programmed to arm another or when a module has been turned off Modules stop acquiring data individually according to their trigger programming You also have the option of setting the logic analyzer to operate in repetitive mode in which the modules acquire data and update the data windows continually until you manually stop the acquisition Modules readily communicate with one another by means of their trigger programs You can specify functions such as the following m Trigger all modules system trigge
255. e an event Event Mode for Advance Edge or Level for Jump Edge or Level Event Filter None or 50 ns A 68 Tektronix Logic Analyzer Family User Manual Version 4 2 Software Appendix A Specifications for the Pattern Generator Module Table A 70 PG module inter module interactions Characteristic Signal Input Signal Output Description Input from backplane Selectable from Signal 1 2 3 and 4 Used to define the Event Output to backplane Selectable from Signal 1 2 3 and 4 Specified as High or Low in each Sequence line Table A 71 PG module merged PG modules Characteristic Number of modules that can be merged together External Event Input for merged module Table A 72 PG module mechanical Description Five For Jump and Advance only the External Event Input of the leftmost module is used For Inhibit each module uses its own External Event Input as a source Characteristic Description Slot width Requires two mainframe slots Weight 2 5 kg 5 Ibs 4 oz Typical Overall dimensions excluding connectors Height 10 32 in 262 mm Width 2 39 in 61 mm Depth 14 7 in 373 mm Mainframe interlock 1 4 ECI keying is implemented Tektronix Logic Analyzer Family User Manual Version 4 2 Software A 69 Appendix A Specifications for the External Oscilloscope iView External Oscilloscope iView Characteristics Table A 73 list the characteristics for iView Integr
256. e application is ready to use for regular tasks i y _ a Mainframe kernel test Module 1 Module 2 Module 3 i Module n kernel test kernel test kernel test kernel test Pass Fail Pass Fail Pass Fail Pass Fail eae ee T Terminate and i display error Verify kernel self test status code Inhibit failed modules S Pass Log failures and build configuration MS Windows boot Start the TLA and pattern generator application TLA Module power on diagnostics Start resource manager System controller F tests TLA system power on diagnostics Records failures in Calibration and Diagnostic property sheet Figure H 1 TLA startup sequence Tektronix Logic Analyzer Family User Manual Version 4 2 Software Appendix H User Service Isolating Problems If you have completed all the troubleshooting procedures up to this point and the application fails to display any modules in the System window you may have a system problem Although most of the following steps apply to the TLA700 series some of the steps may also be helpful in identifying problems with the TLA600 series m Verify that all modules are properly installed in the mainframe m Verify that the module address switches are set correctly Power off the instrument and remove the modules Set the address switches to FF and reinstall the modules m Verify that the modules do not have the flash programming jumper installed on the rear of the module Po
257. e chassis The single wide expansion module requires up to 60 lbs of insertion force to engage it into the backplane The mounting screws will not provide enough force to seat the expansion module and you can easily strip the threads 3 Install the known good expansion module in slot 0 of the expansion chassis 4 Power on the benchtop mainframe and check for normal operation 5 Ifthe failure symptoms are still present with the known good expansion module the problem is most likely in the expansion mainframe Tektronix Logic Analyzer Family User Manual Version 4 2 Software Appendix H User Service 6 If your expansion mainframe operates normally with the known good expansion module then the suspect expansion module needs to be serviced Check the Expansion Mainframe If you do not have a known good expansion module perform the following procedure 1 Remove all modules from the expansion mainframe except the for the expansion module 2 Power on the benchtop mainframe and determine if the expansion mainframe is recognized by the instrument Replace the Expansion Module with a Benchtop Controller Module Make the expansion mainframe simulate a benchtop mainframe Do this by removing the expansion module from the slot 0 position in the expansion mainframe and replacing it with a known good benchtop controller module from the benchtop mainframe Because the expansion mainframe is set up to power on from a signal from th
258. e eee ee cee eee 3 133 Source Window 40 6 65s scau wee ace Maw Soee We ee wie gale HAN Gee ween 3 135 Creating a Source Window 10 0 eee eee eee 3 136 Reading the Source Window Indicators 0 e eee eee eee ee 3 136 Jumping to Specific Data Locations 00 eee eee eee eee 3 137 Moving Through Source Files 2 0 0 cee eee cee eee 3 138 Searching for Source Data 0 0 cc cece ccc cette enn ene 3 141 Adjusting the Source Window 0 cece eee eee eee neces 3 142 Customizing the Source Window Data Area 002 e eee eee ee 3 142 Locating Source Files oiee a 0 cc ccc eee ee tee eee A 3 143 Source Window Shortcut Keys 0 eee ee cee eee eens 3 145 Histogram Window cc cece cece cece cece cece eee eeeees 3 147 Measuring Histogram Data asso to enera SEa LEs 3 148 Creating a Histogram Window opa eceran ones EEE EE eee 3 149 Adjusting the Histogram Window ssssseserererrrrrrrrrrrerene 3 150 Customizing the Histogram Window Data Area 0 00 000000 3 151 Exporting Histogram Data 0 eee ee eee ee eee 3 152 Histogram Window Shortcut Keys 0 0 eee cee eee eee 3 153 Appendices Appendix A Specifications 00 ccc ce cece cence Dresa A 1 Characteristic Tables icoana t iee A EEA AE AE EAA A 1 Atmospheric Characteristics for the Tektronix Logic Analyzer Family A 2 Certifications and Compliances 0 0 cece cece eee ee A 3 TLA600 Serie
259. e for synchronizing the data with the strobe signal the receiving device is responsible for latching the data inside of itself and for resynchronizing the data with the clocking state machine CSM heartbeat clock This type of clocking is best used for state analysis when you want to see the data signal in relation to the CSM heartbeat clock You can access advanced source synchronous clocking functionality by clicking the More button The Source Synchronous Clocking dialog box allows you to specify edge detectors define clock groups create clocking equations demulti plex data and set up advanced clocking parameters Once you have set all clocking parameters you can click the Validate button to check that no source synchronous click setting conflicts exist Tektronix Logic Analyzer Family User Manual Version 4 2 Software Setup Figure 3 8 shows a typical DDR SDRAM read data transfer illustrating how the source synchronous clocking feature can be used to acquire data from a Double Data Rate DDR SDRAM memory bus ae TO Ti T2 T2 T3n T4 T4n T5 T5n 7 A 4 T A TTEN AR COMMAND X READ XIX NOE KZN HEAD BAA nor XK Nog XK X i j s 1 1 ADDRESS a T e ere ee ee o O Ge Gs Ge A DON T CARE TRANSITIONING DATA Figure 3 8 Typical DDR SDRAM consecutive READ bursts Tables 3 1 and 3 2 show the channel assignments and group definitions respectively
260. e front of the module Slide the rear panel on the chassis and install the rear panel screws Install the top and bottom rear screws Install the merge cable bracket so that the guide pins point into the module Install and tighten the screws on the merge cable bracket Verify that you have installed and tightened all screws on the module Tektronix Logic Analyzer Family User Manual Version 4 2 Software SSS Aen eee Appendix F Power Cord and Line Fuse Requirements for the Benchtop and Expansion Mainframes The benchtop and expansion mainframes come with two power cords and three fuses one fuse is already installed CAUTION You must determine the correct fuse and power cord for your configuration This is important to avoid overloading the power distribution system and ensures that you comply with the National Electrical Code The power consumption depends on the number and type of instrument modules installed in the mainframes Table F 1 lists the power consumed for each module To determine the total power consumption perform the following steps 1 Use Table F 1 to determine the power consumption for each module Add the power for each module to determine the total power consumption 2 3 Determine at which line voltage you will be operating 4 Refer to Figure F 1 on page F 3 to determine the proper power cord and line fuse for your mainframe Table F 1 Power for instrument modules Module type Mainframe
261. e mainframe and the expansion mainframe are correctly connected A A B B and C C Check that the expansion module is in slot 0 of the expansion chassis Check that power is available at the power source Check for failed fuses Expansion mainframe failure contact your local Tektronix service center Check the monitor power cord connection Check for failed fuse Monitor failure contact the vendor of your monitor for corrective action Check that the monitor is connected to the mainframe replace the cable if necessary If instrument display is blank try connecting an external monitor if both displays are blank contact your local Tektronix service center External monitor controls turned down adjust monitor controls for brightness and contrast Verify that the monitor is connected to the correct video port on the instrument Check the controller BIOS setups for the monitor Faulty monitor contact the vendor of your monitor for corrective action H 10 Tektronix Logic Analyzer Family User Manual Version 4 2 Software Appendix H User Service Table H 1 Failure symptoms and possible causes Cont Symptom Instrument turns on but does not complete the power on sequence Power on diagnostics fail Instrument does not recognize accessories such as monitor printer or keyboard LA Module merge not allowed in TLA700 Application Windows comes up but the TLA or pattern generator application does
262. e routine maintenance as follows Clean the face of the floppy disk drive monthly with a dampened cloth CAUTION Do not allow moisture to enter the disk drive When power is applied the internal components can be damaged Clean the head monthly following the instructions provided with the head clean ing kit Tektronix Logic Analyzer Family User Manual Version 4 2 Software H 7 Appendix H User Service In Case of Problems This section provides information to help you address problems you may encounter while installing and using your logic analyzer Diagnostics The logic analyzer runs power on diagnostics every time you power on the instrument You can view the results of the diagnostics by selecting Calibration and Diagnostics from the System menu You can run more detailed diagnostics by selecting Extended diagnostics Here you can run all tests loop on one or more tests or loop on a test until a failure occurs The following diagnostic tools are available with your logic analyzer Power On Diagnostics Power on diagnostics run when you first turn on the logic analyzer or when you first start the TLA or the pattern generator application If any diagnostic failures occur during turn on the Calibration and Diagnostics property page appears Extended Diagnostics Extended diagnostics test the logic analyzer more thoroughly than the power on diagnostics The extended diagnostics test the modules in the benchtop mainfr
263. e specified channel groups changes state To select the channel groups that will detect a change in state for Transitional storage click the Change Detect button which is located in the Trigger Detail area of the PowerTrigger tab Conditional Stores samples only if the storage clause is true Program this clause in the same way as a regular trigger clause Start Stop Storage is controlled by the Start Storing and Stop Storing trigger actions in the Then statement of the trigger clause Use the Start Storage Stop Storage button that displays in the Trigger Detail area of the PowerTrigger tab to select whether storage is initially enabled The Trigger Position selects the amount of post trigger data that is stored and determines the position of the trigger in the data record Tektronix Logic Analyzer Family User Manual Version 4 2 Software 3 49 Setup 3 50 After a module has triggered it continues to acquire data until it fills a specified amount of memory The total memory depth that the module fills is set in the Memory Depth box in the Setup window The proportion of data that is stored before and after the trigger is determined by the Trigger Position field For example if the Trigger Position is set to 10 and the module triggers then the module continues to acquire post trigger data until the remaining 90 of memory is filled If the trigger event occurs on any data sample before the specified amount of pre
264. e when you press the On Standby switch The expansion mainframe automatically powers down when the benchtop or portable mainframe is turned off Tektronix Logic Analyzer Family User Manual Version 4 2 Software Getting Started Performing the Incoming Inspection Incoming inspection consists of verifying the basic operation of the logic analyzer The power on diagnostics check the basic functionality These diagnostics run every time you turn on the logic analyzer You can also verify more detailed functionality by running the self calibration and extended diagnostics NOTE Allow the mainframe and modules to warm up for 30 minutes before running the self calibration To run self calibration and diagnostics perform the following 1 Disconnect any probes attached to the modules 2 Select the System menu and point to Calibration and Diagnostics 3 Run the self calibration followed by the extended diagnostics by selecting the proper tab Results of the tests display on the individual property page To run self calibration and external diagnostics for a pattern generator perform the following 1 Select the Pattern Generator System menu and point to Calibration and Diagnostics 2 Run the self calibration followed by the extended diagnostics by selecting the proper tab Results of the tests display on the individual property page NOTE The time required to run the self calibration on the logic analyzer modules dep
265. each line in the table represents a single data sample from a single data source You control the presentation of the data by selecting the display radix of the columns You can also make other format selections such as font size color and column width M Listing 2 Of x inl elas ele ALA 4a ve My 58340 f H a c2 My 68340 occccccccccscocesscceccccebe PEEGoDEC W000 TT BREE Ue ps FFS40000 5555 AFCF 15 375 000 ns FF607DZE 3007 amp FC4 ict 750 000 ns PR amp 07DS0 2FO0 FC ict 1 125 000 us PF607D32 4EB9 FC y ic 1 500 000 us FFOO6212 0000 AFFF 15 1 675 000 us PFOO6214 5555 SF9F 15 250 000 us FFS amp 07DS4 GO60 FC ic 625 000 us FF amp 07DS6 4144 amp FC7 ic 3 000 000 us FF amp 07D 5 2E1F fcs 1c 3 FFOO amp 20E Figure 2 32 Listing data You can include data acquired by the DSO module in the Listing window The Listing window in Figure 2 33 shows DSO module Channel 1 data as discrete voltage levels As with any module the data samples from the DSO module are time correlated with the other data and appear on separate lines Tektronix Logic Analyzer Family User Manual Version 4 2 Software 2 35 Operating Basics inl ie eles AA a0 C1 C2 Delta Time fi Ons 50 24m 23 87mv 193 4mv 150 2mv 163 2mv m 41 78mV 101 6my 749 3m4 iy 4 1L5 3 658 ns 3 169 4 658 ns 368 7m 5
266. eady assigned to an analog output those channels are highlighted in yellow under Select Channel s As you feed digital channels to the selected analog output channel s this highlighting changes to reflect current channel routing The Current Routing group box displays read only details about the assignment of individual data signals to analog outputs and the oscilloscope input ports to which they are physically connected It additionally provides a System Inter probing button that you can click to reassign oscilloscope destination of data signals Tektronix Logic Analyzer Family User Manual Version 4 2 Software Setup NOTE The Analog Feeds dialog box retains the channel assignment settings for each TLA7Axx module represented in the System window When using Analog Feed Cycling functionality you can assign channels using one of the control buttons then close the Analog Feeds dialog box Later when you reopen the dialog box you can resume assigning digital channels to analog outputs However if you change either the setup of groups or any channel names channel assignment settings will return to defaults the next time the Analog Feeds dialog box is opened Because the TLA application cannot sense probe physical connect disconnects it is unable to manage logic analyzer or oscilloscope mapping automatically Therefore you must use the System Inter probing dialog box to manually specify which connectors between the logic analyz
267. ed the program flow stops Fel File Edit System View Window Help lj x S 5 Hal al 2j Status lle Run A Ay le E Block Sequence Subsequence Event l Sequence List For Help press F1 Tektronix Figure 3 44 Sequence Definition window After defining a sequence you can display a graphical image of the sequence flow by clicking and dragging the vertical bar on the right side of the Sequence Definition window see Figure 3 45 The appearance of the sequence flow depends on the sequence definition Each sequence line has its graphic see Figure 3 46 Tektronix Logic Analyzer Family User Manual Version 4 2 Software 3 65 Setup H Tektronix Pattern Generator Program PG 1 Oy x File Edit System View Window Help e x Ba a R Status ide Run x iz ee m mi Block Sequence Subsequence Event Sequence List For Help press F1 Tektronix of Figure 3 45 Drag the vertical bar to the left to display the sequence flow graphic H Tektronix Pattern Generator Program PG 1 BEE File Edit System View Window Help e x Ba a R Status ide Run x ols sele e ml Elock Sequence Subsequence Event Sequence List gt e a Output Init h ai Is Repeat For Help press F1 Tektronix 4 Figure 3 46 Sequence flow graphic 3
268. ed file m DSO data values are in twos compliment format Tektronix Logic Analyzer Family User Manual Version 4 2 Software Listing Window m The formula used for converting a DSO channel field into a voltage is Vertical range in volts 64512 X channel field vertical offset in volts The contents of the window will be sent to the printer or to the specified file Listing Window Shortcut Keys You can use the general purpose shortcut keys listed in Table 3 21 to move data and cursors in the Listing window You should also refer to the discussions of short cut keys in the online help or under the section for the individual data windows The shortcut keys also known as accelerator keys or hot keys abide by the following rules m Arrow keys with no modifier keys scroll data m CTRL Arrow keys move the active cursor m The Shift key increases movement by a factor of 10 Table 3 21 Listing window shortcut keys Desired action Key combination Go to next trigger CTRL T Display Go To dialog box CTRL G Move Cursor 1 to the center of the window CTRL 1 Move Cursor 2 to the center of the window CTRL 2 Add a mark CTRL K Add a column CTRL L Scroll data up 10 samples Shift Up arrow Scroll data down 10 samples Shift Down arrow Move active cursor up one sample CTRL Up arrow Move active cursor down one sample CTRL Down arrow Move active cursor up 10 samples CTRL Shift Up arrow
269. edure 1 From the System menu and select Calibration and Diagnostics 2 Click the Self Calibration tab 3 Select the module to calibrate 4 Click the Run button NOTE For merged modules run the self calibration procedure on the modules as a merged set Preventive Maintenance Once a year the electrical performance should be checked and the instrument accuracy certified calibrated This service should be performed by a qualified service technician using the procedures outlined in the appropriate service manual for the Tektronix Logic Analyzer product Tektronix Logic Analyzer Family User Manual Version 4 2 Software H 5 Appendix H User Service Cleaning the P6860 and P6880 Probe Compression Footprints Cleaning the P6860 and H 6 P6880 Probe Heads ZN Flat Panel Display Cleaning A Preventive maintenance mainly consists of periodic cleaning Periodic cleaning reduces instrument breakdown and increases reliability Clean the instrument as needed based on the operating environment Dirty conditions may require more frequent cleaning than computer room conditions Prior to connecting the probe to the target system the compression footprints on the customer board must be properly cleaned Clean the compression footprints according to the following steps 1 Use a cleanroom wipe such as Wypall Medium Duty Wipes 05701 available from Kimberly Clark Corporation moistened with isopropyl alcohol to g
270. ee eee 3 102 Searching Datars n caA cate ae ate n EAE EE T T RR AE E 3 104 Locking WiNGOWS errio dor r aT aa oe Gia ws EER REPREN LA AS 3 105 Mean Vir Data ans otc ares evant eee as EE e N NTE wna a EA 3 106 Changing Analog Multiplex Data 0 0 0 eee eee eee eee eee 3 108 Comparing Waveform Data 00 0c cee eee cee ee 3 110 Adjusting the Waveform Window 0 00 cece eee eee eee 3 112 Customizing the Waveform Window Data 0 000 c eee eee 3 115 Exporting Waveform Data ses crece tiined terana un ee cee eee 3 115 Waveform Window Shortcut Keys 0 0 0 cece eee ee eens 3 116 Overlay Waveforms isi 20 86 4 eE DEEE E E EE aa aid wile aia Sees 3 116 Listing Wind OW 600 scence see eee eee a cet ekaw ieee SLY Reading the Listing Window Indicators 00 0 0 c ee eee eee 3 119 Taking Cursor Measurements 00 00 c cece eee ec eeeen ee 3 121 Jumping to Specific Data Locations 0 0 cee eee eee eee 3 121 Searching Data 2 24 esas ee SN eae ee eee 3 123 Locking WindowS sin ereas 0 eee cece ence een teen een eens 3 124 Magnivu Data srai twice tetrad AW Seed eee dw re eee eta 3 124 Comparing Listing Data 0 0 eee cee eee 3 125 Adjusting the Listing Window 0 0 c cece eee eee eee 3 127 Customizing the Listing Window Data Area 00 e ee eee ee 3 129 Exporting Listing Data 0 rriet Errn a eee eee eee 3 130 Listing Window Shortcut Keys 0 ce
271. efine Suppression click Show All acquired samples in the dialog box and then click OK to close the dialog box You can then search for the data Tektronix Logic Analyzer Family User Manual Version 4 2 Software Waveform Window 25 Waveform 1 Ox SE F EE AE th Trimeri fons o Bees fe C1 T4ns Gs B0ns Delta Time fibdns LA 1 CKO f Delta 1 m A LA 1 Sample Dnr e A LA 1 43 TAT Hoa Sara Figure 3 72 Suppressed samples in a Waveform window Be aware however that you cannot unsuppress samples from a saved setup where you selected Save only Unsuppressed Data in the Save As dialog box Locking Windows Locking windows provides an easy method to compare data from two different windows Use the Lock Windows dialog box shown in Figure 3 73 to select how windows are locked together To open the Lock Windows dialog box go the System window and click the button for the data window you want to open Then from the View menu click Lock Windows Lock Windows Select windows to lock 0K Iw Lis j Cancel P Waveform 2 M Testi Help daij Lock C1 to C1 C2 to C2 and Center Screen positions with No time offsets Reference Window Waveform 1 Current time offsets Figure 3 73 Lock Windows dialog box Tektronix Logic Analyzer Family User Manual Version 4 2 Software 3 105 Waveform Window MagniVu Data 3 106 The LA modules have MagniVu data acquisition
272. elections 125 ps 125 ps 125 ps 250 ps 250 ps 250 ps 500 ps 500 ps 1ns NOTE MagniVu storage rate adjustments do not affect Setup and Hold violation or Glitch violation The MagniVu trigger position available with TLA7Axx modules selects the amount of pretrigger MagniVu data to store and determines the position of the trigger in the data record You can control the MagniVu trigger position independently of main trigger position by a set of controls in the advanced toolbar Tektronix Logic Analyzer Family User Manual Version 4 2 Software 3 107 Waveform Window Once triggered a module continues to acquire MagniVu data until it fills a specified amount of memory MagniVu memory depth is set to a fixed 16K The Trigger Position field determines the proportion of data that is stored before and after the trigger For example if the Trigger Position is set to 15 and the module triggers then the module continues to acquire data until the remaining 85 of memory is filled The MagniVu trigger position controls mirror the corresponding controls for main memory trigger position They consist of a slider control an edit box and a spin control positioned beneath the main memory trigger controls They behave like the main memory counterparts except that the MagniVu trigger position is constrained by the MagniVu storage rate as shown in Table 3 18 Table 3 18 MagniVu storage rate Storage rate Resulting trig
273. eleting the connections for the logic analyzer Tektronix Logic Analyzer Family User Manual Version 4 2 Software Waveform Window Routing data from the logic analyzer Tektronix Logic Analyzer Family User Manual Version 4 2 Software Route to DSO Waveform 1 Route LA 1 CKO From Slots 3 4 To Destination Through Inter probe Connector DSO 1 Channel I Add wavetorm to view Help System Inter probing Apply Cancel OK Figure 3 75 Route to DSO dialog box To display the Route to DSO dialog box from the Waveform window select Route to DSO from the context menu associated with a selected LA channel waveform The Route to DSO context menu item is only enabled if the selected waveform is a TLA7Axx channel ae ee ae Gi rime fans SI I C1 Os C2 0s Delta Time 0s LA 1 CKO F Lock Delta Time LA 1 Sample E Tt Add Waveform Cut Waveform Copy Waveform Paste Delete Waveform Expand Channels Collapse Channels Display Busform Display Magnitude 4dd Delete D56 Measurements Create Overlay Waveform Split Qveday Wayetonn Route To DSO Route From DA Analog Feeds Properties Figure 3 76 Changing analog multiplex data from the Waveform window The Route from LA dialog box displays the currently defined inter probe connection and its feed for the oscilloscope channel This item cannot be selected
274. ell Each probe is a smart probe that once calibrated maintains its own individual calibration constraints deskew input resistance and gain offset in the probe s internal NVRAM When plugged into the new TLA7Axx logic analyzer module the probe calibration constants are loaded and used to provide more accurate measurements 5 Way Module Merging This increases the maximum channel count to 680 channels on a single timebase with no tradeoff in performance thereby allowing the TLA7Axx to be used for the deepest and widest applications For state applications you can get up to 340 channels at 128 M depth at 800 MHz External 2X or 170 channels at 258 M depth at 625 MHz clock 1 25 Gb s data External 4X For deep transitional timing applica tions you can get up to 340 channels at 128 M depth at 1 GHz Internal 2X or 170 channels at 256 M depth at 2 GHz Internal 4X Calibration Fixture The TLACAL2 calibration fixture provides you with the tools to keep your new TLA7Axx logic analyzer module operating at maximum performance for the most accurate measurements It also provides you with performance verification and adjustment procedures including traceable calibration New CD RW Drive All new TLA60x 61x 62x instruments and TLA715 721 mainframes now come standard with a CD RW drive that allows you to back up and transport your large setup and data files Tektronix Logic Analyzer Family User Manual Version 4 2 Software Preface
275. em trigger also functions as the primary reference point for the entire data acquisition In data windows timing and location information is relative to the system trigger Time correlation Tracking independent events captured by different modules and indicating how they relate to each other in time Specifically the chronological interleaving of data from different modules into a single display Shows real time interactions between independently clocked circuits Time stamp A separate clock value stored with each acquisition cycle Timer A trigger program device that records elapsed time Threshold voltage The voltage to which the input signals are compared Trigger An event or condition that leads to the end of an acquisition cycle When started the instrument continuously acquires data from a system under test until the trigger occurs After triggering the instrument continues to acquire data until the post fill requirement is met Trigger position Where the trigger resides in acquisition memory Electing to place the trigger in the center of memory means that half of the acquisition consists of data that occurred after the trigger Trigger program A series of conditions similar to software code that defines the data you want to capture and view The trigger program also specifies actions for data events The trigger program filters acquired data to find a specific data event or series of data events The trigger program can
276. emory Programmable to any data sample 2 ns boundaries Main acquisition machine controls the triggering of the MagniVu memory Programmable within 2 ns boundaries and separate from the main acquisition memory trigger position Counter timers used as counters can be incremented or decremented Either of the two counter timers used as timers can be started or stopped Either of the two counter timers can be reset When a counter timer used as a timer is reset the timer continues in the started or stopped state that it was prior to the reset Loads the current acquired data sample into the reference value of the word recognizer via a trigger machine action All data channels are loaded into their respective word recognizer reference register on a one to one manner 378 ns Signal Out A signal sent to the backplane to be used by other modules Trigger Out A signal sent to the backplane to trigger other modules Storage control Storage Storage is allowed only if a specific condition is met The condition can use any of the trigger resources except for counter timers Storage commands defined in the current trigger state will override the global storage control Storage can be used to start the acquisition with storage initially turned on default setting or off By event Storage can be turned on or off only the current sample can be stored Event storage control overrides any global storage commands Blo
277. ends on the number of acquisition channels Modules with a large number of channels may take several minutes to run the self calibration Checking the Logic Connect the logic analyzer probes to a signal source start an acquisition and Analyzer Probes verify that the acquired data is displayed in either the listing or waveform Optional windows NOTE If you connect probes to any channels other than the A2 and A3 groups you must define the groups and channels in the Setup window before acquiring data on other probe channels Tektronix Logic Analyzer Family User Manual Version 4 2 Software 1 21 Getting Started Checking the DSO Probes Optional Checking the Pattern Generator Probes Optional Checking the Mainframe Optional Checking the P68xx Probes Backing Up User Files 1 22 Connect the oscilloscope probes to the Probe Compensation connector on the front panel of the DSO module You can then run the Calibrate Probe function in each vertical setup page for the module Set up a simple pattern generator program to output a signal to the probes Connect an oscilloscope probe to the probe outputs and verify that the signal is present at the probe outputs To check the mainframe diagnostics not covered by the TLA Application software run the TLA700 Mainframe Diagnostics located under the Windows Start menu under the Tektronix TLA700 programs Exit the TLA Application before running the external diagnostics
278. ently wipe the footprint surface 2 Remove any remaining lint using a nitrogen air gun Prior to connecting the P6860 and P6880 probes to the target system the probe heads must be properly cleaned Clean the probe heads according to the following steps CAUTION Static discharge can damage any semiconductor component in the probe head Always wear a grounded antistatic wrist strap whenever handling the probe head Also verify that anything to which the probe head is connected does not carry a static charge 1 Moisten a cleanroom wipe such as Wypall Medium Duty Wipes 05701 available from Kimberly Clark Corporation with isopropyl alcohol 2 Gently wipe the edge print pads The LCD flat panel is a soft plastic display and must be treated with care during cleaning CAUTION Improper cleaning agents or methods can damage the flat panel display Do not use abrasive cleaners or commercial glass cleaners to clean the display surface Do not spray liquids directly on the display surface Do not scrub the display with excessive force Clean the flat panel display surface by gently rubbing the display with a cleanroom wipe such as Wypall Medium Duty Wipes 05701 available from Kimberly Clark Corporation Tektronix Logic Analyzer Family User Manual Version 4 2 Software Appendix H User Service If the display is very dirty moisten the wipe with distilled water or a 75 isopropyl alcohol solution and gently
279. er Figure 2 11 The only difference between the two System windows is that the TLA700 series System window reflects the additional modules available with the TLA700 series Tektronix Logic Analyzer Family User Manual Version 4 2 Software 2 9 Approaching the TLA Application Windows 2 10 EJ System 0 Logic PN Analyzer 0n 55 T ooo Off Setup Trig Figure 2 10 System window on a TLA600 series Hal System ol Mainframe Expansion 1 Expansion 2 igital Logic Logic F Logic Logic Bibs anos Slots 3 4 Broker Ging i Analyzer Slots 3 8 Analyzer mee fe 6 Analyzer EEE a 12 Ra On aS 20n FE T eon e 5 eon foe Ra an F OOff ERE T ooff E Trig ODff Ean a oorff Fei y pet fete ea ee LA4 EIR ae LA4 SS ee For a press F1 Figure 2 11 System window on a TLA700 series You can perform the following functions from the System window m Open module and data windows by clicking their icons To select a module without opening its window click inside the icon m Create new data windows through the New Data Window wizard You can create Histogram windows for performance analysis operations and Source windows to track the execution of source code You can also create additional Listing and Waveform windows Tektronix Logic Analyzer Family User Manual Version 4 2 Software Approaching the TLA Application Windows Setup Windows m Use the System window for an overvie
280. er and oscilloscope are fitted with probe connections NOTE Only TLA7Axx modules DSO modules and external oscilloscopes can be displayed in the System Inter probing dialog box When an inter probing connection is created the system changes the oscillo scope signal name to reflect the logic analyzer channel that is feeding it The signal name is visible in both the DSO Setup channel tabs and the waveform element label The system also automatically adjusts the time alignment dialog to incorporate whatever signal path delay is determined for the oscilloscope individual signal The delay is a single time value based on both the cable length and the particular path of the logic analyzer channel feed Signal routing from the logic analyzer You can specify the logic analyzer channel through which probe data is sent to the currently selected oscilloscope channel using the Route from LA dialog box To display this dialog box select Route from LA from the context menu associated with a selected oscilloscope channel waveform Tektronix Logic Analyzer Family User Manual Version 4 2 Software 3 23 Setup e ee sel Amen fons A 2S QI Ci jas Ge jos Delta Time jas I Lock Delta Time DS01 CKO Ct C3 Delta TREN ELSE To DSO 1 Channell LAT Mag CKO From Feed Through Inter probe Connector in 1 Hea SS CKO CH 1 Slots 3 4LA1 DSO 1 Sample i Select Channel System Inter probing Q Apply Cancel Help
281. er each acquisition you can have the logic analyzer do the following tasks m Save the system or module setups and data Export the data to separate files or overwrite the same file m Compare the acquisition data against data in another LA module or a saved LA module file To open a file or execute a set of defined tasks after the acquisition is complete For example you can execute a command such as sending email or paging you that the logic analyzer has stopped Select Repetitive Properties from the System menu to select the different options for the Repetitive mode Figure 3 56 shows an example of the Repetitive Properties dialog box NOTE You can minimize the time between acquisitions by specifying compare conditions under the LA Setup window deleting not just minimizing all data windows and then starting the logic analyzer When the logic analyzer fulfills the compare conditions you can create a new data window with the New Data Window wizard to view the data 3 82 Tektronix Logic Analyzer Family User Manual Version 4 2 Software Acquisition Repetitive Properties x m After Each Acquisition M Save Save Module and Data from la 1 x To File CM y Documents test2 Browse Save in same file each acquisition J Stop if Gompare with Reference re Mat Equal onlay I Stop After fi Acquisitions When en P Open lt Name of program or document Open Cancel He
282. er system Characteristic Triggering Resources All qualifier channels are stored For custom clocking there are an additional 4 qualifier channels on C2 3 0 regardless of Description Word Range recognizers 16 word recognizers The word recognizers can be combined to form full width double bounded range recognizers The following selections are available 16 word recognizers 13 word recognizers 10 word recognizers 7 word recognizers 4 word recognizers 0 range recognizers 1 range recognizer 2 range recognizers 3 range recognizers 4 range recognizers Range recognizer channel order From most significant probe group to least significant probe group C3 C2 C1 C0 E3 E2 E1 E0 A3 A2 D3 D2 A1 A0 D1 D0 Q3 Q2 Q1 Q0 CK3 CK2 CK1 CKO Missing channels for modules with fewer than 136 channels are omitted Glitch detector 2 Each channel group can be enabled to detect a glitch A 10 Tektronix Logic Analyzer Family User Manual Version 4 2 Software Appendix A Specifications for the TLA600 Series Logic Analyzer Table A 8 TLA600 trigger system Cont Characteristic Minimum detectable glitch pulse width Typical Setup and hold violation detector Transition detector Counter Timers External Signal In External Trigger In Active trigger resources Trigger States i Trigger State sequence rate Trigger Machine Actions Description 2 0 ns single channel with P6417 P6418 or a P6434 probe
283. erties tab To view glitches you must set clocking to Internal and select Glitches in the Acquire box of the Setup window before making an acquisition To view setup and hold violations you must set clocking to External and select Setup Hold in the Acquire box of the Setup window before making an acquisition NOTE To view glitches in a data window you must enable Glitch storage in the Acquire box of the LA Setup window before acquiring data To view setup and hold violations you must enable Setup Hold storage in the Acquire box of the LA Setup window before acquiring data Naming Columns Rename a column by returning to the LA Setup window and changing the channel group name Changing the For microprocessor support packages you can change the disassembly format Disassembly Format used in the Listing window Use the Disassembly properties tab to select the display format of disassembly groups You must have a support package loaded for this page to be active Splitting the Data Area You can split the data area to compare columns that are far away from each other within the display Drag the split box from the left end of the horizontal scroll bar Customizing the Listing Window Data Area Use the Listing Properties dialog box to customize data in the Listing window The related properties tabs control aspects of the listing display such as size color and in some cases enabling or disabling whether an element is shown Click the Pr
284. erty page eeeeeeee 3 143 Figure 3 102 Modify Search Path list dialog box 3 144 Figure 3 103 Histogram window cecececececeees 3 147 Figure 3 104 Selecting the data source for the Histogram window cc cece cscs cece cece ec eceeeees 3 148 Figure 3 105 Measuring events with the Histogram window 3 149 Figure 3 106 Export Histogram dialog box 006 3 152 Figure 3 107 ASCII histogram data file 0 cece ee eee 3 153 Figure A 1 Dimensions of the TLA600 series logic analyzer A 16 Figure A 2 Dimensions of TLA715 portable mainframe A 28 Figure A 3 Dimensions of TLA714 portable mainframe A 33 Figure A 4 Dimensions of the benchtop and expansion mainframe ccc cee ee reece cee eecevees A 38 Figure A 5 Dimensions of the benchtop and expansion mainframe with rackmount option A 38 Figure D 1 Logical address switches c ce ceeeeeees D 2 Figure D 2 Installing modules ccc ececececeees D 4 Figure D 3 Module Keying ccc cece eee e cere e eens D 5 Figure D 4 Installing panel covers on the portable mainframe D 6 Figure D 5 Installing panel covers on the benchtop mainframes D 6 Figure E 1 Location of modules in a merged system E 3 Figure E 2 Removing the merge connector assembly from the module ic3 si acest bed oe Sk eae ak he Se See eS E 4 Figure E 3 Connecting
285. es adapter Glossary 7 calibration DSO module 3 52 channel activity 3 26 Index 8 configuring P6470 pattern generator probes 1 15 connecting LA probes TLA600 series 1 13 TLA700 series 1 14 connecting pattern generator probes TLA 700 series 1 15 Info list 3 27 Info tab 3 27 podlet Glossary 7 Probe Setup window Pattern Generator module 3 62 properties displaying two dialog boxes 3 27 thresholds DSO vertical input 3 54 LA channels 3 27 setting 3 27 Problems checklist H 9 hardware H 9 software H 9 Product support contact information xxiv Program window 2 23 Programmatic control 2 19 Properties 3 115 3 129 3 142 3 151 overlay waveform 3 117 Q Qualification clock Glossary 2 gaps 3 128 Glossary 7 storage 2 29 3 48 Glossary 8 Qualifier clock Glossary 2 R Radix 3 128 binary glitch display 3 129 changing 3 128 symbolic 2 48 3 128 Glossary 8 Range readouts in DSO waveforms 3 95 Range recognizer 3 19 3 45 Glossary 7 Range symbols 2 49 color B 4 Glossary 2 function B 4 source B 4 variable B 4 Record length 3 18 3 48 3 55 Glossary 7 Registration card 1 4 Reinstalling software G 13 PatGenVu G 20 Pattern Generator application software G 17 Tektronix Logic Analyzer Family User Manual Version 4 2 Software Index PPI software G 18 TLA application software G 16 TLAVu software G 19 TPI software G 18 Release notes 1 33 Removing the hard di
286. es to a specific memory location Description Triggers when Event A and Event B occur simultaneous ly This program is not designed to work with Timer or Counter event types for user selectable events Triggers when Events A B and C occur simultaneously This program is not designed to work with Timer or Counter event types for user selectable events Triggers when Event A occurs and simultaneously Event B does not occur This program is not designed to work with Timer or Counter event types for user selectable events Triggers when Event A or Event B occurs This program is not designed to work with Timer or Counter event types for user selectable events Triggers when neither Event A nor Event B occurs This program is not designed to work with Timer or Counter event types for user selectable events Triggers when condition on both channels A and B are simultaneously met Triggers when condition on channel A is met and simultaneously condition on channel B is not met Triggers if condition on channel A or channel B is satisfied Triggers when neither condition on channel A nor condition on channel B is met Stores a sample when the defined word is matched The word definition should include the Write control line and the Address of the desired memory location The program triggers on the first occurrence of the word Store between A and B Stores samples between Event A and Event B and triggers on the first occurrence
287. esiding on the Peripheral Component Interconnect PCI bus capable of supporting external color VGA SVGA or XGA monitors Display configuration Hardware automatically senses a missing flat panel LCD in the benchtop mainframe and defaults to the external SVGA monitor output during the BIOS boot sequence no internal TFT LCD display exists This is indicated by a single beep during the boot sequence Dynamic Display Configuration 1 DDC1 support for the external monitor is provided Display memory 4 MB SDRAM is on board the video controller no external video memory Display drive Two VGA SVGA or XGA compatible analog output ports Display size User selected via Microsoft Windows Plug and Play support for DDC1 and DDC2 A and B Primary video port with Silicon Motion Chip Resolution Pixels Colors Refresh Rates 640 x 480 256 64 K 16 8M 60 75 85 800 x 600 256 64 K 16 8M 60 75 85 1024 x768 256 64 K 16 8M_ 60 75 85 1280 x 1024 256 64 K 16 8M 60 1600 x 600 256 64 K 60 1600 x 1200 256 64 K 60 Secondary video port with 815E Chip set Resolution Pixels Colors Refresh Rates 640 x 480 256 64 K 16 8M_ 60 75 85 800 x 600 256 64 K 16 8M 60 75 85 1024 x768 256 64 K 16 8M_ 60 75 85 1280 x 1024 256 64 K 16 8M_ 60 75 85 1600 x 1200 256 60 75 A 40 Tektronix Logic Analyzer Family User Manual Version 4 2 Software Appendix A Specifications for the TLA721 Dual Monitor Benchtop Controller Table A 43
288. espective of the event type Start of acquisition Figure 2 14 LA Trigger window DSO Trigger Window The DSO Trigger window lets you define how to trigger the DSO on analog and digital signals See Figure 2 15 f Setup DSO 1 Channel 1 Channel 2 Channel 3 Channel 4 Horizontal Trigger Event Type Immediate h DSO will Trigger immediately after itis armed DSO may be armed by the Run command or by another oi Mode Normal Action Trigger m Trigger Position module in the System Figure 2 15 DSO Trigger window Tektronix Logic Analyzer Family User Manual Version 4 2 Software Approaching the TLA Application Windows Data Windows Listing Windows Waveform Windows 2 14 You can use data windows to display and analyze acquired data from the logic analyzer or DSO modules The most common data windows are the Listing windows and Waveform windows These are the two default windows To display and evaluate complex logic analyzer data you can create other types of data windows using the New Data Window wizard such as the Histogram window and the Source window For more information on the New Data Window Wizard refer to Creating a New Data Window beginning on page 3 90 or the online help You can have as many data windows as you want to display different data or different views of the same data Listing windows display logic analyzer data in lists or columns T
289. etting Description 2nd Field setting Memo Diskette Configuration Diskette Controller Enabled Floppy A 1 44 1 25 MB 3 1 2 Diskette Write Protect Disabled p gt Event Log Configuration Event Log Space Available Not Active Selections Event Log Validity p gt View Event Log Clear Event Log Event Logging p gt Mark Events as Read Video Configuration Primary Video Adapter p gt Security Supervisor Password Is User Password Is p gt Set Supervisor Password Valid No Enabled PCI Not Installed Not Installed Event Log Pre Boot Error CMOS Checksum Error Yes Enter Password Not Active Selections On the 2 attempt reading No unread events PCI Internal Display AGP External Monitor Not Active Selections Not Active Selections p gt Set User Password Enter Password p gt Power Power Management Enabled Inactivity Timer Off Hard Drive Enabled Video Power Down Disabled ACPI Suspend State S1 State gt Boot Quiet Boot Disabled Quick Boot Enabled Scan Upper Flash Area Disabled After Power Failure Last State On Modem Ring Stay Off On LAN Power On Tektronix Logic Analyzer Family User Manual Version 4 2 Software G 5 Appendix G Installing Software Table G 1 TLA600 Controller BIOS setup Cont Parameter Setting Description 2nd Field setting Memo On PME Stay Off 15t Boot Device
290. evaluated Complete details of a trigger program s structure are only available from the PowerTrigger tab allowing you to either view details hidden in the EasyTrigger tab view or change the composition of the states and clauses The trigger program structure that displays from the EasyTrigger tab is predefined and is based on the trigger program that you select Using a predefined trigger structure allows you to begin using triggers without having to initially specify all of the available program implementation details EasyTrigger Properties The EasyTrigger tab displays a list of simplified logic analyzer trigger programs program controls and both a description and graphic example of the selected trigger program The trigger list is categorized by trigger program function and is simplified to hide many of the program implementation details allowing you to focus on acquiring and displaying data Once you have identified the EasyTrig ger program that best fits your triggering needs click the trigger program to display the underlying program controls These controls are a simplified representation of the selected trigger program that allows you to select events and set event timer and counter values iF Trigger Lal jo xi Dft Saf taf LE See Jar ThgerPos p FoasTigge Simple Events Trigger immediately Wait For syskem trigger Trigger on channel low high level i Trigger on channel transition
291. f the benchtop and expansion mainframe with rackmount option A 38 Tektronix Logic Analyzer Family User Manual Version 4 2 Software Appendix A Specifications for the TLA721 Dual Monitor Benchtop Controller TLA721 Dual Monitor Benchtop Controller Characteristics Tables A 42 and A 43 lists the specifications for the TLA721 Dual Monitor Benchtop Controller Table A 42 TLA721 benchtop controller characteristics Characteristic Operating system Description Microsoft Windows 2000 Microprocessor Intel 733 MHz Pentium III configuration with an Intel 815E chip set Main memory Two 144 pin SODIMM sockets support one or two SDRAM modules Available configurations 16 32 64 256 MB per SODIMM Installed configuration 512 MB maximum configuration Speed 133 MHz CAS latency 2 3 RAS to CAS delay 2 3 RAS precharge 2 3 DRAM cycle time 5 7 or 7 9 Cache memory 512 KB level 2 L2 write back cache Flash BIOS 512 KB Provides PC plug and play services with and without Microsoft Windows operating system Flash based BIOS field upgradable via a floppy disk Forced recovery jumper is provided Real time clock and CMOS setups NVRAM Real time clock calendar Standard and advanced PC CMOS setups see BIOS specifications RTC CMOS setup amp PnP NVRAM retention time Typical Battery life is typically gt 7 years Floppy disk drive Standard 3 5 inch 1 44 MB high
292. false You can also set up the pattern generator to single step through programs and output a single set of vectors with each clock cycle This is useful for trouble shooting or debugging setups Tektronix Logic Analyzer Family User Manual Version 4 2 Software Operating Basics Logic Analyzer Physical Model Physically the logic analyzer is made up of two main parts the modules and the mainframe Figure 2 30 illustrates the relationship between the logic analyzer and its subparts Logic Analyzer Mainframe Mechanical housing Disk drives Display Power supply Communications bus User interface software Controller Low level software Module 1 Module 2 Module n Module Module Module Probes Probes Probes Firmware Firmware Firmware Figure 2 30 Logic analyzer physical model Logic Analyzer Conceptual Model Conceptually the logic analyzer is made up of two main parts the modules and the system From the operational perspective a module encompasses the setup trigger and data associated with the physical logic analyzer DSO module installed in the logic analyzer or the external oscilloscope that is physically connected to the logic analyzer See Figure 2 31 The system refers to the setup and data for the whole logic analyzer including all the modules Some actions occur at the module level some at the system level For example you can save either module or system files When you sav
293. fies the file format version to potential file readers It specifies whether the file contains pattern or range symbols the radix used to specify symbol values and an optional offset amount to be added to each symbol value for range symbol files The TSF Header is a file directive which means that the following information begins with the special character combination of a number sign character followed immediately by a plus sign This is not a comment line The special character sequence is used to mark instructions to the file reader these instructions are called file directives The following examples show sample file headers for a pattern symbol file and a range symbol file The first two lines are comments included for readability they are not required as part of the file header TSF Format Type Display Radix File Radix Version 2 1 0 PATTERN HEX HEX TSF Format Type Display Radix File Radix Offset Version 2 1 0 RANGE HEX HEX 00000000 The File Format Version number contains three fields The first two fields are the format major and minor version numbers The logic analyzer will only read TSF files where the major and minor version number of the file is less than or equal to that of the TLA TSF symbol file reader The third field is used to denote minor format changes which do not impact the file reader The File Format Version number is followed by a key word PATTERN or RANGE which signifies the type of symbol
294. fix your long term maintenance costs and eliminate unplanned expenditures These options can be converted from service at Tektronix service depots to service on site see Option S1 and S3 which helps keep downtime to a minimum Tektronix Logic Analyzer Family User Manual Version 4 2 Software Appendix H User Service TLA600 Series Service The following service options are available for your TLA600 series logic Options analyzer Three years repair coverage Option R3 Five years repair coverage Option R5 Three years of calibration services Option C3 Five years of calibration services Option C5 Test data Option D1 Test data Option D3 Test data Option D5 Extends product repair warranty to a total of three years Provides a total of five years of repair cover age including the product warranty period Provides factory calibration certification on delivery plus two more years of calibration coverage Throughout the coverage period the instrument will be calibrated according to its Recommended Calibration Interval Provides five full years of coverage including the initial calibration within the delivery of the product C5 is available for traceable products Provides initial Test Data Report from factory on delivery Provides test data on delivery plus a Test Data Report for every calibration performed during 3 years of coverage requires Option C3 Available for traceable products It delivers a calibration data repo
295. for the selected module matches the version on the label that you recorded in step 21 If the firmware versions do not match power down the mainframe remove the module from the mainframe and update the label Upgrading Firmware on Use the following procedure to upgrade the firmware on the pattern generator the Pattern Generator modules Modules 1 Note which modules require new firmware If any modules are missing from the System window you can verify the status of the modules by doing the following steps a Select System Properties in the System menu b Click the Modules tab c Note the information under the Messages column for any installed modules If any modules indicate invalid or similar messages you must update the firmware for those modules Power down the mainframe and disconnect the power cord Disconnect probes connected to the modules that you want to upgrade Remove the modules from the mainframe Tektronix Logic Analyzer Family User Manual Version 4 2 Software G 25 Appendix G Installing Software G 26 5 Refer to Figure G 2 and locate the flash programming pins on the rear of each module 6 Install a jumper on the flash programming pins use one of the spare jumpers that came with your pattern generator 7 Reinstall the modules in the mainframe Flash programming pins
296. formation about the currently selected EasyTrigger program If you do not use an EasyTrigger program as the basis for your modified trigger design but instead use the PowerTrigger tab to develop your trigger program only a TLA file with the state information is saved Execute Save and Load operations from the File menu For module Save or Load operations you must first go to the module Setup or Trigger window Execute the trigger save operation by clicking the Save Trigger button from the Trigger window Tektronix Logic Analyzer Family User Manual Version 4 2 Software 2 17 Approaching the TLA Application Windows Save the setups and data in a folder where you can easily retrieve them For example you may want to save the data in the My Documents folder or within a folder of your own choosing You should not save the data in a location that may be difficult to find or in a location such as the Microsoft Windows System folder that may cause problems with your operating system Avoid using file name extensions other than the default extensions supplied by the system The logic analyzer may not recognize saved setups with nonstandard file name extensions Saved system and module files both contain trigger program information When you load a trigger from the LA Trigger window you can select a saved system or module file as the source When you do so the logic analyzer extracts only the trigger information from the file and loads it to t
297. g an external 2 ns clock TLA7Axx to TLA7Axx normal data using an external clock 2ns TLA7Axx to TLA7Lx Mx Nx Px Qx normal data using an external clock 4ns TLA7Lx Mx Nx Px Qx MagniVu to DSO data 3ns TLA7Axx MagniVu to DSO data 2ns TLA7Lx Mx Nx Px Qx to DSO normal data using an internal clock 1 TLA7LX Mx Nx Px Qx sample 2 ns TLA7Axx to DSO normal data using an internal clock 1 TLA7Axx sample 2 ns TLA7Lx Mx Nx Px Qx to DSO normal data using an external clock 3 ns TLA7Axx to DSO normal data using an external clock 2ns DSO to DSO 3ns 1 Includes typical jitter slot to slot skew and probe to probe variations to provide a typical number for the measure ment Assumes standard accessory probes are utilized 2 For time intervals longer than 1 us between modules add 0 01 of the difference between the absolute time measurements to the relative time correlation error to account for the inaccuracy of the CLK10 source 3 The DSO module time correlation is measured at the maximum sample rate on one channel only Tektronix Logic Analyzer Family User Manual Version 4 2 Software A 17 Appendix A Specifications for the TLA700 System Table A 19 TLA700 Backplane latencies Characteristic Portable mainframe and Expansion benchtop mainframe mainframe System trigger and external signal input latencies Typical External system trigger input to TLA7Lx Mx Nx Px Qx 266 ns
298. g is enabled all of the A and D channels are multiplexed there is no individual selection Channels demultiplex as follows A3 7 0 to from D3 7 0 A2 7 0 to from D2 7 0 A1 7 0 to from D1 7 0 A0 7 0 to from DO0 7 0 Any individual channel can be demultiplexed with its partner channel If multiplexing is enabled all of the A and D channels are multiplexed there is no individual selection Channels demultiplex as follows A3 7 0 to from C3 7 0 A2 7 0 to from C2 7 0 A1 7 0 to from D1 7 0 64 4 modules only A0 7 0 to from DO0 7 0 64 4 modules only Unlike the 2 1 Demultiplex the channels within a group of four cannot arbitrarily drive the others E3 7 0 to E2 7 0 E1 7 0 E0 7 0 128 8 modules only A3 7 0 to A2 7 0 D3 7 0 D2 7 0 A1 7 0 to A0 7 0 D1 7 0 DO 7 0 C3 7 0 to C2 7 0 C1 7 0 CO 7 0 CK3 to CK2 Q3 Q2 128 8 modules only CK1 to CKO Q1 Q0 TLA7AA1 TLA7AA2 TLA7AB2 modules Unlike the 2 1 Demultiplex the channels within a group of four cannot arbitrarily drive the others A1 7 0 to A0 7 0 D1 7 0 D0 7 0 64 4 modules only C3 7 0 to C2 7 0 A3 7 0 A2 7 0 Time between Demultiplex clock edges Typical Same limitations as normal synchronous acquisition Tektronix Logic Analyzer Family User Manual Version 4 2 Software A 47 Appendix A Specifications for the TLA7Axx Logic Analzyer Modules Table A 49 Clocking Cont Characteristic Description Source
299. ger LA 1 d E el Ea D r t r S dalta amp e Storage au Trigger Pos ip Trigger LA 1 iol xi m tit 3 EF a Dslts Sz altal BIBE Sass fan Toss Pos Tr Ar EasyTrigger PowerT rigger State 1 If Anything Go to State 2 Stael If Anything Then GoTo2 E State 2 If Data changes Trigger If Channel A3 7 Goes Low Then Trigger Figure 3 27 PowerTrigger tab structure The Overview portion of the PowerTrigger tab shows the relationship of the states See Figure 3 28 This example shows a branch occurring in State 2 This example also shows that a trigger note the trigger indicator occurs in State 2 and an Arm occurs To view the details in a particular state double click the State button in the Overview pane Tektronix Logic Analyzer Family User Manual Version 4 2 Software Setup T Stael Figure 3 28 Overview portion of LA Trigger window You can view the progress of the trigger states during acquisition using the Status Monitor See Viewing Acquisition Activity on page 3 83 The Trigger detail portion located on the right side of the tab shows summary information about the clauses within the states See Figure 3 29 For lengthy trigger programs click the State button in the Overview to jump to the corre sponding Trigger programming details State 2 If Word 2 occurs arm the DSO and trigger LAT If Word Word 2 O gt Then Am Module
300. ger position constraint 125 ps 0 to 58 in 1 increments 250 ps 0 to 79 in 1 increments 500 ps 0 to 89 in 1 increments 1ns 0 to 94 in 1 increments Changing Analog Multiplex Data Routing Data to the DSO 3 108 Using the Route to DSO dialog box available from the Waveform window you can change the analog multiplex data that is routed from a logic analyzer channel to one of the oscilloscope channels You can additionally change the analog multiplex data that is routed from a logic analyzer channel to the currently selected oscilloscope channel using the Route from LA dialog box which is also available from the Waveform window The channel waveform you select in the Waveform window determines the availability of the routing dialog box The Route to DSO dialog box lists oscilloscope channels that have inter probe connections defined to the logic analyzer If no inter probe connections are defined the list is empty Select an oscilloscope channel and click OK to feed the logic analyzer channel to the inter probe connection attached to the oscilloscope channel The check box named Add new waveform to view is not selected by default because the waveform view typically already contains waveforms for the oscilloscope of interest Selecting this check box and clicking OK will add a waveform of the selected oscilloscope destination to the view Click the System Inter probing button to change the destination list contents by adding or d
301. gh resolution memory The storage speed can be changed by software to 250 ps 500 ps or 1000 ps with no loss in memory depth so that the high resolution memory covers more time at a higher resolution Approximately 16 K per channel The MagniVu memory is separate from the main acquisition memory Tektronix Logic Analyzer Family User Manual Version 4 2 Software A 51 Appendix A Specifications for the TLA7Axx Logic Analzyer Modules Table A 52 Merged modules Characteristic Description Number of merged modules 2 3 4 or 5 adjacent modules can be merged Only 102 channel modules or 136 channel modules can be merged Merged modules can have unequal channel widths and channel depths Number of channels after merging The sum of all channels available on each of the merged modules including clocks and qualifiers No channels are lost when modules are merged Merged system acquisition depth Channel depth is equal to that of the shallowest module Number of clock and qualifier channels after The qualifier channels on the slave modules can only be used as data channels They merging cannot influence the actual clocking function of the logic analyzer for example log strobe generation The clock channels on the slave TLA7Axx modules can capture data on those modules for source synchronous applications Each slave module contributes four additional clock channels to the merged set All clock and qualifier channels are stored to acqui
302. gram is not designed to work with Timer or Counter event types for user selectable events Stores on occurrence of Event A or Event B and triggers on the first occurrence of Event A or Event B This program is not designed to work with Timer or Counter event types for user selectable events Stores samples if any of the channel groups change state Program triggers on the very first sample Stores a sample if the conditions specified on channel A and channel B are simultaneously satisfied and triggers when the conditions are satisfied for the first time Stores a sample if the desired channel satisfies the specified condition and triggers when the condition is satisfied for the first time Stores a sample for every specified transition of the desired channel and triggers on the first transition Choose Low for storing on falling edge High for storing on rising edge or High or Low for storing on both the edges Stores a sample for every change in value of the selected group and triggers on the first change in group value Stores a sample for every occurrence of the specified group value and triggers on the first occurrence of the value Stores samples when group value is not in the specified range and triggers when this condition occurs for the first time For proper functioning of this program the probe groups and probe channels must be in hardware order Store on group value within a range Stores samples if
303. han 5 C m You reconnect the probes to different DSO module input channels Tektronix Logic Analyzer Family User Manual Version 4 2 Software Setup The Probe Calibration dialog controls all DSO probe calibration cycles and directs you to perform any necessary steps You can calibrate all attached probes or only the probe on the selected channel NOTE Passive or unknown probes are not calibrated You can start a calibration cycle view the progress of calibration and see the results of calibration Once calibration starts the calibration cycle of a single probe cannot be stopped After a calibration cycle completes you can see the status of probe calibration To open the Probe Calibration dialog go to the System window and click the DSO Setup button select a vertical tab Channel x and click the Probe Cal button NOTE You should execute the DSO module self calibration if the ambient operating temperature has changed more than 5 C since last calibration Also you should execute the self calibration once a week if vertical settings of 50 mV full scale or less are used Perform self calibration after a 30 minute warm up To open the Self Calibration tab from the System menu click Calibration and Diagnostics and then click the Self Calibration tab Autoset Use Autoset when you need to see a signal in a circuit but do not know the signal amplitude or frequency Autoset automatically chooses the DSO setup value
304. hanges 1 Specification only applies with asynchronous internal clocking With synchronous clocking the setup and hold window size applies 2 Any or all clock channels can be enabled For an enabled clock channel either the rising falling or both edges can be selected as active clock edges Clock channels are stored 3 Qualifier channels are stored 4 This is a special mode and has some limitations such as the clocking state machine and trigger state machine only running at 500 MHz A 48 Tektronix Logic Analyzer Family User Manual Version 4 2 Software Appendix A Specifications for the TLA7Axx Logic Analzyer Modules Table A 50 TLA7Axx module trigger system Characteristic Trigger resources Word recognizers and range recognizers Range recognizer channel order Glitch detector normal asynchronous clock mode Minimum detectable glitch pulse width Typical Setup and hold violation detector normal asynchronous clock mode Description 16 word recognizers can be combined to form full width double bounded range recognizers The following selections are available 16 word recognizers 0 range recognizers 13 word recognizers 1 range recognizer 10 word recognizers 2 range recognizers 7 word recognizers 3 range recognizers 4 word recognizers 4 range recognizers From most significant probe group to least significant probe group C3 C2 C1 C0 E3 E2 E1 E0 A3 A2 D3 D2 A1 A0 D1 DO Q3 Q2 Q1 Q0 CK3 CK2 Ck1 CKO Mis
305. hannels Typical 2 pF CLK Qual channels Minimum slew rate 0 2 V ns Typical Maximum operating signal 6 5 Vp p 3 5 V absolute input voltage minimum 6 5 V absolute input voltage maximum Probe overdrive P6417 P6418 P6434 250 mV or 25 of signal swing minimum required beyond threshold whichever is greater 300 mV or 25 of signal swing minimum required beyond threshold whichever is greater 4 V maximum beyond threshold Maximum nondestructive input signal to probe 15 V Minimum input pulse width signal 2ns single channel Typical Delay time from probe tip to input probe 7 33 ns connector Typical Tektronix Logic Analyzer Family User Manual Version 4 2 Software A 5 Appendix A Specifications for the TLA600 Series Logic Analyzer Table A 4 TLA600 timing latencies Characteristic System Trigger and External Signal Input Latencies Typical Description System Trigger and External Signal Output Latencies Typical External System Trigger Input to LA Probe 266 ns Tip External Signal Input to LA Probe Tip via 212 ns Clk Signal 3 43 External Signal Input to LA Probe Tip via 208 ns Clk Signal 1 23 4 LA Probe Tip to External System Trigger 376 ns SMPL Out LA Probe Tip to External Signal Out via Signal 3 45 OR function 366 ns SMPL AND function 379 ns SMPL LA Probe Tip to External Signal Out via Signal 1 245 normal function 364 ns
306. hd Clock Group 0 x AND a2 7 AND fas x AND OR Clock Group 0 x AND o2 AND os AND QR Note Sample Clock 0 is the Master Sample Clock Figure 3 13 Sample Clocks equations The Group Clocking tab is where you input the Edge Detector Setup Hold Window Clock Group Pipeline Delay and Sample Clock for all of the groups Figure 3 14 shows the selections made in the sample application to properly capture both the read and write data on the DDR SDRAM bus To properly capture and align the common clock groups for both read and write two COMMAND and two ADDRESS groups are set up Remember the read cycle has a CAS latency of three so these two groups must be delayed three clock cycles to line up with the read data For the write cycle there is a delay of only one clock cycle To be able to sample the same data at two different time clock pipeline delays it is necessary to set up the groups as demultiplexed pairs The setup hold time relative to the common clock for these groups is always center aligned For the DATA you must have different setup hold sample times For the read cycle the data is edge aligned with the strobe for the write cycle the data is center aligned with the strobe DATA also has to be setup as a demultiplexed pair Figure 3 14 shows the programming to capture the read and write DDR SDRAM data Tektronix Logic Analyzer Family User Manual Version 4 2 Software 3 15 Setup 3 16
307. he Line voltage Rating Tektronix part number Portable mainframe 90 V to 132 V operation 8 A fast blow 250 V 159 0046 xx 207 V to 250 V operation 6 3 A fast blow 250 V 159 0381 xx Benchtop mainframe 90 V to 132 V operation 20 A slow blow 250 V 159 0379 xx 103 V to 250 V operation 15 A fast blow 125 V 159 0256 xx 207 V to 250 V operation 6 3 A fast blow 250 V 159 0381 xx Tektronix Logic Analyzer Family User Manual Version 4 2 Software Getting Started AC power and fuse Figure 1 15 Line fuse and power cord connector locations CAUTION To avoid overloading the power distribution system if you have four or more modules in your mainframe you must determine the correct fuse and power cord combination Although the benchtop mainframe can use the power cord with the 15 A plug mainframes operating at low line 90 VAC with four or more instrument modules may require the power cord with the 20 A plug See Appendix F Power Cord and Line Fuse Requirements for the Benchtop Mainframe for further information 4 Turn on the mainframe as follows a Press the On Standby switch to turn on the mainframe see Figure 1 16 for the switch location b Wait for the mainframe to complete power on self tests start Windows and start the TLA700 application Tektronix Logic Analyzer Family User Manual Version 4 2 Software 1 19 Getting Started
308. he External 4X clocking mode data rate does not always increase by four times above the base synchronous rate of the logic analyzer is that the Setup Hold window requirements of the logic analyzer may come into play Setup and hold requirements on the acquisition data can limit the acquisition rate to a lesser value than if it were constrained by the maximum clock speed alone When you use External 4X clocking you acquire data using a clock rate of up to 625 MHz from the test system The maximum data rate in 4X clocking is 1 25 GB s External 4X clocking mode is a double data rate DDR clocking mode which means that the two acquisition samples are taken per clock cycle This means that the data rate of the acquisition is double the rate of the clock signal that is driving it You can access advanced 4X clocking functionality by clicking the More button The 4X Clocking dialog box allows you to select the active clock edge and to align data in relation to the specified clock edge for each channel group Each channel group may be assigned a second edge delay to skew the second data capture in relation to the first The Setup Hold window graphic illustrates your clock edge and data alignment settings Source Synchronous Clocking Available only in TLA7Axx modules Source Synchronous clocking sends a strobe signal with the data signal The data is then synchronized with the strobe signal instead of the clock signal The sending device is responsibl
309. he Module Setup window to define the channel mode Run mode clocking and event setups Figure 3 39 shows an example of the Module Setup window m Use the channel mode to select the speed and width of the logical module Define the channel mode before defining other parameters Otherwise all module information will be lost when you change the channel mode Tektronix Logic Analyzer Family User Manual Version 4 2 Software Setup m Set the Run mode to Step to output the patterns vectors one at a time Use the Step button in the Status Monitor window to advance the steps Set the Run mode to Continuous to output all vectors in a single step m Select the Hi Z on Stop to cause the probes data and strobe outputs to go to a high impedance state when the program stops m Use the Clocking to select an internal or external clock When you select an external clock you can also select the polarity and the threshold levels m Use the Event setups to filter out events enable inhibit functions and to define whether the pattern generator responds to events due to edges or levels Mm Setup PG 1 px Module etup Crannel Satup Probe Setun Signals Setup M Channel Mode j r RunMode i Hiz Half Channel 268 MBis Step I Hig on Stof Full Channel 134 MBi s Continuous r Clocking Intend o Joo i m Event mIntenal I Event Filter Perad roo oocooous Intibitby None E RAR See m Estenal r Eve
310. he expansion cables out of your way Tektronix Logic Analyzer Family User Manual Version 4 2 Software 1 5 Getting Started 1 6 A If you are installing two expansion mainframes consider installing the two expansion modules next to the benchtop controller module to maximize the number of open slots as shown in Figure 1 5 on page 1 7 You can configure up to four expansion mainframes with the portable mainframe and up to ten expansion mainframes with a benchtop mainframe To install the expansion module 1 Ifthe expansion module is not already installed in slot 0 of your expansion mainframe install it now refer to Appendix D TLA700 Module Installation for detailed module installation instructions CAUTION To avoid damaging the chassis do not use the retaining screws to seat the expansion module These screws are intended for securing the module and reinforcing the grounding 2 Manually seat the expansion module by pressing it into place 3 Use a screwdriver to tighten the retaining screws maximum of 2 5 in lbs Benchtop mainframe Expansion mainframe Ol Mams We THAT Tagra eee pame nee C waren 1 coool 4o 0 of 1 J QQ j oo o Oo 000
311. he following list describes some of the tasks you can perform with Listing windows m Place user marks to flag specific data samples for evaluation m Use the scroll bars to move through the data or jump to a specific point in the data by clicking the Go To toolbar button and selecting a mark m Search for a data event by clicking the Define Search button in the toolbar m Add columns by clicking the Add Column toolbar button m Move columns by clicking on their labels to select them and then dragging them to a new location m Split the window into two panes for viewing data that is off screen m Click and drag columns m Identify sample suppression Waveform windows display DSO or LA waveform data The following list describes some of the tasks you can perform with Waveform windows m Perform automatic measurements on DSO analog waveforms m Use the cursors to take time or voltage measurements m Place user marks to flag specific data samples for evaluation m Overlay waveforms Tektronix Logic Analyzer Family User Manual Version 4 2 Software Approaching the TLA Application Windows Identify sample suppression View collections of logic analyzer module waveforms as busforms View the value of a logic analyzer module waveform group versus time using magnitude mode Expand and contract busforms Move waveforms by clicking their labels to select them and then dragging them to a new location Split the window into t
312. he module Customizing the Display 2 18 You can customize your data windows Using property sheets you can control data window display parameters Many screen elements such as waveforms columns and marks have their own property sheets Figure 2 17 shows an example of a typical property sheet Open data window property sheets by clicking the Properties toolbar button on the data window Open screen element property sheets by double clicking the element or its label Properties Waveform 1 E p alx About Data Waveform window Waveform Marks Wavefom DEE Source Curent DSO 1 Channel Height fo y Slots 5 6 m Color Fined L M Show Waveform C SameAs a m Measurements r Readouts M Show Readouts Readout Color L A Ok Cancel Apply Options Help Measurement Setup Figure 2 17 Using a property sheet to customize the display Tektronix Logic Analyzer Family User Manual Version 4 2 Software Approaching the TLA Application Windows Programmatic Control In addition to controlling the logic analyzer from the user interface you can use the TLA Programmatic Interface TPI to control the logic analyzer from a separate program running on the logic analyzer or on a remote host Information for using TPI is included as part of the TLA online help A printable version PDF file of the TPI online help is available on the instrument Click Start gt Programs gt Tektroni
313. hen you write applications that require binary data It is also faster than exporting an ASCII file and the file size is often smaller LA Module Binary Export File Format The LA module binary data is exported as a stream of bytes with the following characteristics m The binary data uses big endian fields the most significant bit is the left most bit m Each group column field is zero padded on the most significant end to the nearest byte m Sample numbers and mnemonics groups are not exported m Time stamp data is seven bytes wide and represents the number of picosec onds since the start of the acquisition m The left most column in the Listing window display corresponds to the first exported field of a sample m The first sample in the Listing window appears at the beginning of the exported file m MagniVu data follows the same guidelines as regular listing data DSO Module Binary Export File Format The DSO module binary data when used in a Listing window is exported as a stream of bytes with the following characteristics m The binary data uses little endian fields the most significant bit is the right most bit m Each channel field is a 16 bit value m Sample numbers mnemonics groups and time stamp values are not exported m The left most column in the Listing window display corresponds to the first exported field of a sample m The first sample in the Listing window appears at the beginning of the export
314. his warranty Customer must notify Tektronix of the defect before the expiration of the warranty period and make suitable arrangements for the performance of service Customer shall be responsible for packaging and shipping the defective product to the service center designated by Tektronix with shipping charges prepaid Tektronix shall pay for the return of the product to Customer if the shipment is to a location within the country in which the Tektronix service center is located Customer shall be responsible for paying all shipping charges duties taxes and any other charges for products returned to any other locations This warranty shall not apply to any defect failure or damage caused by improper use or improper or inadequate maintenance and care Tektronix shall not be obligated to furnish service under this warranty a to repair damage resulting from attempts by personnel other than Tektronix representatives to install repair or service the product b to repair damage resulting from improper use or connection to incompatible equipment c to repair any damage or malfunction caused by the use of non Tektronix supplies or d to service a product that has been modified or integrated with other products when the effect of such modification or integration increases the time or difficulty of servicing the product THIS WARRANTY IS GIVEN BY TEKTRONIX IN LIEU OF ANY OTHER WARRANTIES EXPRESS OR IMPLIED TEKTRONIX AND ITS VENDORS DISCLAIM ANY IMPLIED WA
315. hysical Logical Conversion Provides information on using signals between the LA module DSO module and the PG module Appendix D TLA700 Module Installation Provides installation instructions for logic analyzer modules Refer to this appendix if you need to install modules in the TLA700 mainframes Appendix E Merging Modules Provides instructions for merging modules to create wider mainframes for specific applications Appendix F Power Cord and Line Fuse Requirements for the Benchtop and Expansion Mainframes Provides information on the power and fuse requirements for the benchtop and expansion mainframes Appendix G Installing Software Provides instructions for reinstalling the system and application software and firmware Appendix H User Service Provides user service information Tektronix Logic Analyzer Family User Manual Version 4 2 Software xix Preface Related Documentation In addition to this user manual the following documentation is available for your Tektronix logic analyzer The online help provides information about the user interface the TLA700 Programmatic Interface TPI and the TLAScript interface To view the online help select Help Topics from the Help menu The TLAScript online help provides links to related topics in TPI The TLA7PG2 online help provides information about the pattern generator user interface and the Pattern Generator Programmatic Interface PPI To view the online help select
316. iV trigger position is programmable within 4 ns boundaries and separate from the main acquisition memory trigger position Increment counter Either of the two counter timers used as counters can be increased Start Stop timer Either of the two counter timers used as timers can be started or stopped Reset counter timer Either of the two counter timers can be reset When a counter timer is used as a timer and is reset the timer continues from the started or stopped state that it was in prior to the reset Signal out A signal sent to the backplane to be used by other instruments Trigger out A trigger out signal sent to the backplane to trigger other instruments Tektronix Logic Analyzer Family User Manual Version 4 2 Software Appendix A Specifications for the TLA600 Series Logic Analyzer Table A 8 TLA600 trigger system Cont Characteristic Storage Control Global storage By event Block storage Glitch violation storage Setup and hold violation storage of one word recognizer resource Description Storage is allowed only when a specific condition is met This condition can use any of the trigger machine resources except for the counter timers Storage commands defined in the current trigger state will override the global storage control Global storage can be used to start the acquisition with storage initially turned on default or turned off Storage can be turned on or
317. ible as part of the high level sequence flow You may want to create a subsequence that repeats a series of data blocks before returning control to the main program You can use meaningful names with each subse quence Use the Event tab to define how to use external signals with the pattern generator program You can logically AND and OR the probe event inputs to provide program control Tektronix Logic Analyzer Family User Manual Version 4 2 Software Approaching the Pattern Generator Application Windows Listing Windows Use the pattern generator Listing window to edit the vector data You can open multiple listing windows to easily move selected data from one block to another by copying and pasting the vector data You can define the radix to help you set up the vector data For example Figure 2 22 shows UserGrp3 with binary data as compared to the other user groups which show their data in Hexadecimal ixi Al alee ale al tat Reference 1 1 Reference 2 fi0 Delta 930 0000000 ns UserGrpl UserGrp2 UserGrp3 Usercrpa sd aa Wector Hex Hex TT ITT TTT TT Tt nex twee a step a AAAA 5555 gt o Oo afofo ojojo ojojo ojojo ojojo ajojo ajojo ojojo Figure 2 22 Listing window Tektronix Logic Analyzer Family User Manual Version 4 2 Software 2 25 Approaching the Pattern Generator Application Windows Waveform Window
318. ible outputs via rear panel mounted BNC connectors portable mainframe or front panel mounted SMB connectors benchtop mainframe Signal 1 2 Signal 3 4 10 MHz clock User definable Active true low or active true high 50 Q back terminated TTL output 4 V into open circuit 2 V into 50 Q to ground lt 0 7 V sinking 10 ma 50 MHz square wave minimum 10 MHz square wave minimum Outputs signals during valid acquisition periods resets signals to false state between valid acquisitions Outputs 10 MHz clock continuously Short circuit protected to ground Minimum bandwidth up to which the intermodule signals are specified to operate correctly 50 MHz square wave minimum 10 MHz square wave minimum 1 The Input Bandwidth specification only applies to signals to the modules it does not apply to signals applied to the External Signal Input and sent back to the External Signal Output 2 The Output Bandwidth specification only applies to signals from the modules it does not apply to signals applied to the External Signal Input and sent back to the External Signal Output A 22 Tektronix Logic Analyzer Family User Manual Version 4 2 Software Appendix A Specifications for the TLA715 Dual Monitor Portable Mainframe TLA715 Dual Monitor Portable Mainframe Characteristics Tables A 21 through A 28 describe the specifications for the TLA715 Dual Monitor Portable Mainframe Table A 21 TLA715 Internal controller Character
319. ied in the Clause Definition dialog box for the DSO module arming is specified in the Trigger page A module can arm any one of the other modules The designated module can be armed by only one module The same arming action can however appear multiple times within the same trigger program Arms are latched events that once set cannot be cleared until the acquisition is completed Tektronix Logic Analyzer Family User Manual Version 4 2 Software Setup NOTE For a single module arming and internal signaling are mutually exclusive You cannot simultaneously arm modules and set signals You can test for a set signal for example If Signal X Is True but you must designate an external signal for this purpose otherwise you will be unable to set the signal when using the arming feature Intermodule and External Signaling The logic analyzer has four internal signals that you can use to set up trigger conditions between modules or to send or receive signals external to the logic analyzer Use the Signals tab shown in Figure 3 50 in conjunction with the module trigger programs to configure these signals for your application The trigger programs determine when the signals occur The Signals tab specifies characteristics of the signals NOTE Observe the bandwidth and latency specifications when using internal and external signals Refer to Tables A 19 and A 20 on pages A 18 and A 21 for information To configure signals
320. ield is the symbol name and the second is the symbol pattern The symbol name is a sequence of ASCII characters of up to 220 characters in length although it is impractical to display symbol values much longer than 32 characters Symbol names longer than 220 characters will be truncated during loading The characters in a symbol name can be any character with an ASCII value between 0x21 the exclamation point character and O0x7E the tilde character You can use symbol names with embedded spaces by enclosing the Symbol Name in double quotes Symbol Symbol Optional Foreground Name Pattern and Background Color ooo et ee Sapo a at eae Saat we ae lm fe ie mf fe leet eet NUL X0000000 SOH X0000001 G red yellow STX X0000010 ETX 0x03 X0000011 The symbol pattern consists of numerals in the radix specified by the File Radix field in the header and Xs signifying don t care values The number of bits represented by each character position in the pattern depends on the selected radix For a radix of HEX each character represents 4 bits For an OCT radix each character represents 3 bits for a BIN radix each character represents one bit Symbol order in a TSF pattern file is important When selecting the symbol to display for a particular value the logic analyzer scans the list of pattern symbols from top to bottom It selects the first symbol for which all non don t care bits of the symbol match the corresponding bits
321. iew help for the currently selected window Tektronix Logic Analyzer Family User Manual Version 4 2 Software 1 31 Getting Started 1 32 Software Task topics provide procedure information about how to perform specific tasks Task topics are available through the Help menu From the Help menu click Help Topics and locate the topic using the Contents or Index tab What s This Help What s This help provides a short description of the control or screen feature selected First click the What s This button on the toolbar and then click the item of interest For further information about the item go to the Topic help TPI Online Help Select Help on TPI from the drop down help menu for information on using the TLA Programmatic Interface A printable version of the TPI online help is available on the instrument Click Start gt Programs gt Tektronix Logic Analyzer gt TLA Documentation gt TPI Manual TLAScript Online Help TLAScript is a script that works with TPI Select Help from the menu bar within the TLAScript application To start TLAScript select Start gt Programs gt Tektronix Logic Analyzer gt TLAScript Pattern Generator Online Help Select Help on TLA7PG2 from the drop down help menu for information on using the TLA Pattern Generator PPI Online Help Select Help on the TLA7PG2 PPI from the drop down help menu for information on using the TLA Pattern Generator A printable version of the PPI online help
322. ific Data Locations You can use the Go To dialog box to jump to a new position by selecting any current mark or waveform To open the Go To dialog box open a Waveform window and click the Go To tool bar button as shown in Figure 3 69 3 102 Tektronix Logic Analyzer Family User Manual Version 4 2 Software Waveform Window 2 Waveform 1 El oj x a6 seje at aa ey a A gt TimesDin 200ns oio aj GE Goto n Select Mark T CEEA ROR TOS3012 Trigger LA 1 Trigger Mag_L amp 1 Trigger DSO 1 Trigger Mag LA 1 Begin Mag LA 1 End gt Cancel Help Figure 3 69 Using the Go To dialog box to jump to the system trigger You can also use the Overview Mark bar to jump to another location If you do not click on a mark clicking in the Overview Mark bar scrolls to that location Joxi ae a S is Gale ET ih me Tine Div ans rs ee al 180 4ns 1100ns Delta Time 280 Bdne I Lock Delta Time Delta 1 Bhat SS L471 43 LAT A2 5 p E 30 LA 1 Mag_S ample eer i E TH aE Rider Beet cea isc acer clean ac ae at LA 1 Wag CKO LAT Mag A Aoo A ee 2 A A A Figure 3 70 Using the Overview Mark bar to jump to a data location Tektronix Logic Analyzer Family User Manual Version 4 2 Software 3 103 Waveform Window Searching Data 3 104 Use the Define Search dialog box see Figure 3 71 to search for specific data within the current Waveform window
323. ified events triggered but has not stopped the module probably has not acquired enough additional data to fill acquisition memory Click Stop to manually stop the acquisition and then change the module Memory Depth reduce or Trigger Position increase LA Module The following conditions apply to the LA module only m Check the Status Monitor for an external clock warning If the LA is not receiving an external clock the Status Monitor displays the following message External Clock Source Idle m Check for signal activity at the probe tip If there is no activity check the probe connections Check the clock signal to make sure that the LA module is actually clocking data Problems with the clock signal can impact setups using external clocking custom clocking microprocessor support packages only or storage qualification m Similar to the previous item check clock qualifier signals and clocking equations m Check the threshold voltages for probes and clocks m Ifthe module is correctly clocking data and the data events have occurred but the trigger program did not generate a trigger you should check the trigger program itself The trigger program might not be reaching the state that generates the trigger Use the Status Monitor to track trigger program progress and identify the state in which trigger progress stops m Check the complexity of your trigger program If your trigger program is too narrowly defined or over spe
324. ify problems not covered by other diagnostics The TLA mainframe diagnostics are located under the Start menu under the Tektronix Logic Analyzer programs Check for Common Use Table H 1 to help isolate problems This list is not exhaustive but it may Problems help you eliminate problems that are easy to fix such as an open fuse loose cable or defective module TLA700 series CAUTION To avoid damaging the instrument do not install or remove any modules while the instrument is turned on Tektronix Logic Analyzer Family User Manual Version 4 2 Software H 9 Appendix H User Service Table H 1 Failure symptoms and possible causes Symptom Instrument does not turn on Expansion mainframe does not turn on Monitor does not turn on Monitor display is blank Possible causes and recommended action Verify that all power cords are connected to the instrument and to the power source Check that the instrument receives power when you press the On Standby switch Check that fans start and that front panel indicators light Check that power is available at the power source Check for failed fuses Instrument failure contact your local Tektronix service center Verify that all power cords are connected to the expansion mainframe and to the power source Check that all of the expansion modules are firmly seated and that the mounting screws on the expansion modules are tightened Check that the cables between th
325. igger condition is met The connection from the module to the external connector is made by one of the four internal signals You must designate which internal signal is to be used for this purpose The external signal connectors are located at the rear of the portable mainframe and at the front of the benchtop mainframe The external signals all operate at TTL logic levels System Trigger System Trigger In Out Connector check boxes reflect the current state of the In Out Connectors System Trigger In and System Trigger Out connectors and can be used to both enable and disable them If an external scope is enabled the options chosen in System Trigger Source can affect the values and sensitivity of the System Trigger In Out checkboxes Merging Modules A merged LA module set consists of a master module and up to four slave modules A merged pattern generator module also consists of a master module and up to four slave modules LA Modules must have the same maximum state speed and must be physically connected in the mainframe before they can be merged by software Modules must be adjacent and connected as described in Appendix E Merging Modules Merged pattern generator modules are not physically connected in the mainframe but must be in adjacent slots in the same mainframe Modules that are capable of being merged are shown in the Merge Modules property page with a merge button See Figure 3 51 Tektronix Logic Analyzer Family User
326. ilities is a separate Windows application located in the Windows Start Programs menu The diagnostics check the basic PC operations of the controller Earlier versions of the logic analyzers used QA Win32 diagnostics Software Problems Your logic analyzer comes with most software installed Before running any of the diagnostics you should check the online release notes to verify that the logic analyzer software is compatible with the module firmware Many software problems can be due to corrupted or missing software files In most cases the easiest way to solve software problems is to reinstall the software and follow the on screen instructions Refer to Upgrading Software for instructions on reinstalling or upgrading software Refer to Table H 1 on page H 10 for a list of software and hardware trouble shooting information and recommended action Note that this table can be used to identify problems for the entire Tektronix logic analyzer family If you suspect problems with the application software contact your local Tektronix representative Hardware Problems If you are certain that you have installed the logic analyzer correctly run the extended diagnostics located under the System menu to identify any problems If your logic analyzer powers up so that you have access to the desktop run the CheckIt Utilities software to identify possible controller hardware problems You can also run the external TLA mainframe diagnostics to ident
327. ily User Manual Version 4 2 Software 3 97 Waveform Window m Click Move Cursors to move the cursors to both sides of the zoom box You can then easily make cursor measurements from the new cursor positions m Click Suppress to suppress or hide the waveforms under the boundaries of the zoom box To unsuppress the waveforms right click the mouse click Define Suppression and click Show All acquired samples in the dialog box Click OK to close the dialog box and the suppressed samples are restored Taking Cursor Measurements 3 98 Use the cursors to take time and voltage measurements You take time and voltage measurements in the Waveform window as shown below a f OOns 4 C2 fidin Delta Time 200ns Delta O I Lock Delta Time To take a time measurement perform the following steps Magnitude on an LA module waveform is expressed as a 1 or a 0 1 Inthe Waveform window select a waveform 2 Move Cursor 1 to the location on the waveform that you want to measure 3 Read the time from the C1 readout on the measurement bar 4 Move Cursor 2 to another location on the waveform that you want to measure 5 Read the time from the C2 readout on the measurement bar 6 Read the time difference between the two waveform locations from the Delta Time readout on the measurement bar 7 Optionally select the Lock Delta Time check box to lock the current time difference between cursors The Delta readout is no
328. image on your logic analyzer Flashing the BIOS onthe This procedure is only necessary if you need to update the latest flash image To TLA600 Logic Analyzer flash the BIOS complete the following steps 1 Exit all applications and power off the logic analyzer 2 Insert the TLA600 BIOS disk Version P09 in the floppy disk drive 3 Power on the logic analyzer and allow the logic analyzer to boot from the floppy disk After booting from the floppy disk the program on the floppy disk will automatically flash the BIOS on the TLA600 controller 4 Wait for the flash procedure to complete 5 After the flash procedure has completed power off the logic analyzer and remove the floppy disk CAUTION To avoid rendering the system inoperable do not remove the floppy disk or power down the logic analyzer during the flash operation Setting Up the TLA600 This procedure is necessary after replacing the hard disk or when the CMOS Controller BIOS settings are corrupted or lost To configure the Controller BIOS complete the following steps 1 Power on the logic analyzer and press function key F2 before the logic analyzer boots the Windows operating system 2 Press function key F9 select Yes and then press Enter to set the default settings Verify that the hard disk was auto recognized and that the correct size of the hard disk is displayed in the Primary Master setting 3 Verify that all of the settings are the same as the settings i
329. imum Power Factor Correction Yes On Standby Switch and Indicator Front Panel On Standby switch with indicator The power cord provides main power disconnect Table A 16 TLA600 cooling Characteristic Cooling System Description Forced air circulation negative pressurization utilizing six fans operating in parallel Cooling Clearance 2 in 51 mm sides and rear unit should be operated on a flat unobstructed surface Tektronix Logic Analyzer Family User Manual Version 4 2 Software A 15 Appendix A Specifications for the TLA600 Series Logic Analyzer Table A 17 TLA600 mechanical characteristics Characteristic Description Overall Dimensions See Figure A 1 for overall chassis dimensions Weight Includes empty accessory pouch and front cover TLA614 TLA624 TLA613 and TLA623 TLA612 TLA622 TLA611 and TLA621 TLA604 and TLA603 TLA602 and TLA601 18 1 Kg 40 Ibs 18 Kg 39 75 Ibs 17 6 Kg 38 75 Ibs 17 5 Kg 38 5 Ibs 457 20 mm 421 64 mm 18 00 in 16 60 in I yy q 281 94 mm gt 11 10 in oooooo0o0000000 z L e_o E a ee ig es
330. in the file as it is loaded You can choose any 32 bit hexadecimal value from 0 to FFFFFFFF When you enter bound values enter the values without an offset value If your application adds an offset you must subtract the offset value before you enter the bound values Tektronix Logic Analyzer Family User Manual Version 4 2 Software 2 53 Operating Basics 2 54 Tektronix Logic Analyzer Family User Manual Version 4 2 Software Di is Reference Setup This section describes how to set up the logic analyzer LA DSO modules and pattern generator modules For further details particularly about selections available to you in windows and dialog boxes please refer to the online help Starting From the System Window The System window gives an overview of the logic analyzer configuration arming and triggering relationships The System window also indicates whether LA modules are merged and whether an external oscilloscope has been set up See Figure 3 1 A black arrow from one module to another indicates that one module is set up to arm another Figure 3 1 shows the merged LA module arming the DSO module A module that is programmed to cause a system trigger has an indicator symbol on the right edge of the module graphic Overlapped icons indicating Arm indicator merged modules E System Mainframe System trigger indicator als xl External A ere TE z 6 Orlecope Sa Slets 7 8 sage se 0n aS o0n 5 e
331. indow Figure 3 44 shows an example of the Sequence Definition window Use the tables in Appendix C Pattern Generator Physical Logical Conversion to convert physical expressions to logical expressions or vice versa All logic analyzer modules can set and clear any of the four internal signals The DSO can set but not clear any signal The logical output of these signals can be used as an event in other modules trigger programs You can also connect the internal signals to the External Signal In and External Signal Out connectors on the mainframe so that you can use an external signal as a trigger event or send a signal out when a trigger condition is met Internal signaling is for users with special trigger programming requirements Internal signaling adds flexibility to trigger programming but also adds complexity When using internal signaling you must take care that the signals are correctly set and cleared and that the trigger programs for all modules are compatible with regard to signal usage Also you must have correctly set the internal signal attributes in the Signals tab of the System Configuration dialog box Internal signaling is accomplished through trigger actions specified in the Clause Definition dialog box and the DSO Trigger tab NOTE Arming and internal signaling are mutually exclusive You cannot simultaneously arm modules and set signals You can test for a set signal for example If Signal X Is True but unless
332. ing a grounded antistatic wrist strap while performing the merge procedure Perform the Two Way Logic Analyzer Merge Procedure beginning on page E 8 Perform the following steps to merge the second slave module 1 Lay the two merged module set on its right side as viewed from the front panel 2 Follow the procedure beginning on page E 8 to merge the second slave module to the left of the center master module Perform the following steps to store the logic analyzer merge cable inside the logic analyzer module 1 Use the screwdriver with the T 10 Torx tip to remove the screws that hold the merge cable bracket in place Remove the merge cable bracket Remove the screws from the side cover and rear cover Push the merge cable through the side cover and remove the cover AE ee eS Position the merge cable as shown in Figure E 9 Tektronix Logic Analyzer Family User Manual Version 4 2 Software E 13 Appendix E Merging Modules Figure E 9 Positioning the merge cable before installing the cover 10 11 12 13 Push forward on the cover so that you insert the tab on the front edge of the cover into the rear of the front subpanel Make sure that the cover is fully seated and there are no gaps between the front and rear chassis flanges refer to Figure E 7 While holding the cover in place install the screws nearest the front of the module to secure the cover to the chassis Install the screws near th
333. ing acquisition Figure 3 22 shows the Thresholds tab within the Probe Properties dialog box NOTE You can display a second Probe Properties dialog box to view real time signal activity while modifying input threshold voltages To do so click the Probes button again and then click the Activity tab Initially the Thresholds tab contains values that are set in the Preset tab of the Options dialog box Probe Properties LA 1 zix Activity Thresholds info Threshold WH Seal Threshold Cik Qual Threshold 2 1 5 1 5 _ D3D2 5V yay D1 D0 115V cK2 5V cac2 15V ck3 5v ciyco 15V Q1 1 5V E3 E2 1 5 Q3 1 5 E1 E0 15V Q2 1 5V Close Help Figure 3 22 Probe Thresholds dialog box Probe Info List Use the Info tab located in the Probe Properties dialog box to view a listing of the probes connected to the logic analyzer and the set of channels coming through each probe This tab is intended for informational purposes only See Figure 3 23 Tektronix Logic Analyzer Family User Manual Version 4 2 Software 3 27 Setup Probe Properties LA 1 ix Activity Thresholds Info E3 E2 Q3 E1sE0 Q2 No probe detected AWAZ CKO D3 D2 Q0 No probe detected ATAD CKI D1 DO CK2 No probe detected C3 C2 CK3 C1 C0 Q1 d al menlban datanta ad x Figure 3 23 Probe Info dialog box Setting Up the Trigger Prog
334. ing or modifying external oscilloscope trigger events and actions Mi Setup Tos3012 Setup Trigger Connections r Extemal Oscilloscope Trigger Source ox TDS 3012 Trigger Action TLA Triggers TDS3012 TDS 3012 Triggers TLA Clock synchronization Extemal Oscilloscope should be triggered by Extemal Oscilloscope Triggering Capabilities Supported Not Supported Not Supported Figure 3 37 External oscilloscope trigger tab You can view and modify the following external oscilloscope trigger settings Table 3 10 External oscilloscope trigger settings Trigger setting Trigger Event Description The instrument that will provide the trigger event Automatically set up the TDS trigger source Check box that indicates whether the logic analyzer sets up the external oscilloscope trigger source Trigger Action Determines whether or not the external oscilloscope triggers the logic analyzer after it has recognized a trigger event This capability is not available for all external oscilloscopes TLA Triggers TDS Indicates whether the external oscilloscope is capable of being triggered by the logic analyzer TDS Triggers TLA Indicates whether the external oscilloscope is capable of triggering the logic analyzer Clock synchronization Indicates whether you can synchronize the logic analyzer and external oscilloscope clocks 3 59 Setup External Oscilloscope Connectio
335. ing the Remote Operation Software beginning on page G 18 m To reinstall the latest version of the TLAVu offline software refer to Installing the TLAVu Software beginning on page G 19 To reinstall the latest version of the PatGenVu offline software refer to Installing the PatGenVu Software beginning on page G 20 m To reinstall other software refer to the instructions that came with your software m To upgrade the firmware on the TLA products refer to Upgrading or Restoring Firmware beginning on page G 20 Tektronix Logic Analyzer Family User Manual Version 4 2 Software G 1 Appendix G Installing Software Restoring the Hard Disk Image The next several pages describe the steps needed to restore the logic analyzer application software and operating system on the hard disk The following procedures will overwrite the entire contents of your hard disk You must back up any files that you want saved to another media before completing these procedures These procedures assume that you are restoring TLA application software V4 2 and the Windows 2000 Professional operating system If your instrument does not have TLA application software V4 2 you are encouraged to purchase one of the TLA6UP or TLA7UP field upgrade kits Contact your local Tektronix representatives for more information on the upgrade kits The restore procedures will also restore the Pattern Generator application software and any other software applications th
336. ion which can be 2nS or 4nS depending on the module type The program checks for changes in channel value for the specified time If channel value remains unchanged for the specified time then the program triggers Samples leading to SUT hang are stored Timer values are adjusted to the module timing resolution which can be 2ns or 4nS depending on the module type Trigger when two edges are too close together Triggers if any two edges of the desired channel are separated by less than or equal to specified time The minimum time value that can be measured between two edges is one clock period in case of External and Custom clocking and the module timing resolution in case of Internal clocking Trigger when two edges are too far apart Triggers if any two edges of the desired channel are separated by time greater than the specified time Timer values are adjusted to the module timing resolution which can be 2nS or 4nS depending on the module type Tektronix Logic Analyzer Family User Manual Version 4 2 Software Setup Table 3 3 EasyTrigger program list Cont File name Combination of Events Trigger on A and B Trigger on A and B and C Trigger on A and not B Trigger on A or B Trigger on not A and not B Trigger on channel A and channel B Trigger on channel A and not channel B Trigger on channel A or channel B Trigger on not channel A and not channel B Storage Store all writ
337. ion that came with your DSO probes P6243 and P6245 probes for connecting and using the DSO probes Refer to the TLA7PG2 Pattern Generator Probe Instruction Manual for more information on using the pattern generator probes with the pattern generator module This section lists sources for more information These sources are shipped with your logic analyzer The online help gives detailed information about the logic analyzer and its modules Look in the online help for details about user interface selections that are not described in this manual The online help also has basic operating information for microprocessor support products To access online help go to the Help menu or click the toolbar buttons shown PE TLA Waveform 1 2 x File Edit view Data System window Help elul 3 x ide im Al Tak Click for Topic help Click for What s This help on selected object Help topics tell you how to perform tasks and describe software features and selections shown on the screen There are two types of help topics overview topics and task topics Overview topics describe application features such as the different application windows Overview topics also describe concepts Overview topics are available through the Help menu and through Help buttons in dialog boxes From the Help menu click Help Topics and locate the topic using the Contents or Index tab The Help on Window selection in the Help menu provides overv
338. ip use the clock input to the counter chip to act as the external clock source to the logic analyzer With this setup each clock pulse to the counter chip can also be used to clock data from the counter output lines into the logic analyzer As another example to record the data being written to a latch you could use the load signal to the latch as the external clock source to the logic analyzer Internal Asynchronous Clocking Much activity can occur in the target system between system clock signals Using the LA module s internal asynchronous clock you can view all activity in the target system not just the data available at the target system clock signal Internal clocking is the best choice when you are primarily interested in the timing aspects of the data It is important to note however that the value of internal clocking is not limited to displaying waveforms If you want a detailed picture of data activity both during and between state changes use internal clocking For example internal clocking allows you to acquire and display glitch information in either the Waveform or Listing windows Acquiring Data When you start an acquisition the logic analyzer begins sampling data from the probes Then each time a sample clock occurs data is sampled Sampled data is sent to the trigger functional block and to the main memory Triggering and Storage The trigger program looks at sampled data for specific events and then takes a Qua
339. ired data in the Listing or Waveform data windows DSO Module Block Diagram The DSO module adds analog analysis capability to the instrument Functionally the DSO module can be divided into several blocks as shown in Figure 2 28 Refer to the figure as you read about the functional blocks System clock Acquisition unit Figure 2 28 Block diagram of the DSO module acquisition and storage custom gt Probes Attenuators _ target preamp system Probes A probe interface detects the attenuation factor of each probe This information is used to set the vertical scale Acquiring Data When you start an acquisition the DSO module begins sampling data from the probes Each time a sample clock occurs data is sampled Signals from the probes go to the attenuators preamp functional block which is responsible for input coupling termination bandwidth offset and full scale range The DSO module always uses internal clocking From the attenuators preamp signals are sent to the acquisition unit and trigger functional blocks Acquisition Unit The acquisition unit functional block samples the input signals and converts them to digital data 2 30 Tektronix Logic Analyzer Family User Manual Version 4 2 Software Operating Basics Triggering The DSO trigger looks at sampled data for a specific event The trigger can look for various types of events such as glitches setup and hold violations runt pulses or signals
340. is generated during an acquisition the modules are internally triggered the logic analyzer designates the latest occurring module trigger as the system trigger NOTE If an acquisition does not complete due to one or more modules not receiving a trigger or not completing post trigger acquisition then you can manually stop the acquisition by clicking the Stop button Clicking the Stop button effectively generates a system trigger and completes the acquisition The system trigger is a latched event and it resets to a false state between acquisitions The external system trigger input uses real time gating and is only active capable of latching system triggers during the actual acquisition period The logic analyzer can also send an internally generated system trigger out to the target system or to other test equipment through the SYSTEM TRIG OUT connector All the external signal inputs and outputs operate at TTL levels The connectors are located at the rear of the portable mainframe and at the front of the benchtop mainframe For more information about external signaling capabilities see Intermodule and External Signaling on page 3 71 Using the arm feature you can use one module to control when another module accepts triggers When module A arms module B this means that module B does not begin looking for a trigger until it receives an arm signal Arming is accomplished through trigger actions For the LA module arming is specif
341. istic Operating system Microprocessor Main memory Style Speed Available configurations Installed configurations Cache memory Flash BIOS Real time clock and CMOS setups NVRAM RTC CMOS setup amp PNP NVRAM retention time typical Floppy disk drive Bootable replaceable hard disk drive Description Microsoft Windows 2000 Intel Pentium PC AT configuration with an Intel 815E chip set and a 733 MHz Pentium III processor SDRAM 144 pin SO DIMM 2 sockets gold plated 1 25 inch 3 175 cm maximum height 133 MHz 32 64 128 256 MByte per SO DIMM 256 MB loaded in one socket 512 MB with both sockets loaded 256 KByte Level 2 L2 write back cache 256 KByte Real time clock calendar standard and advanced PC CMOS setups see BIOS specification Minimum Maximum gt 10 years battery life lithium battery Standard 3 5 inch 1 44 MB PC compatible high density double sided floppy disk drive 500 Kbits sec transfer rate Standard PC compatible IDE Integrated Device Electronics hard disk drive residing on an EIDE interface Size Minimum 10 GB Maximum 30 GB Continually subject to change due to the fast moving PC component environment These storage capacities valid at product introduction Interface ATA 5 enhanced IDE EIDE Average seek time Read 12 ms Average latency 7 14 ms I O data transfer rate 33 3 MBytes sec maximum U DMA mode 2 Cache buffer 2 MBytes 30 GB 51
342. ity of the TLA7Axx module To begin set up the Edge Detectors tab As indicated in this tab Edge Detector 0 is the CSM Heartbeat Clock which means that Edge Detector 0 is the master clock that clocks the Clocking State Machine and the Clock Group Complete sections You have a total of four Edge Detec tors each with four clocks rising and falling edge from which to choose Assign the rising edge of the DDR SDRAM clock to Edge Detector 0 CKO rising edge For Edge Detector 1 assign the DQS signal to Edge Detector 1 CK1 rising and falling edge Figure 3 11 shows the edge detect assignments Tektronix Logic Analyzer Family User Manual Version 4 2 Software 3 13 Setup Source Synchronous Clocking LA 1 x Edge Detectors Clock Groups Sample Clocks Group Clocking Probe Demus Edge Detector 0 Edge Detector 1 Edge Detector 2 Edge Detector 3 Choose Clock Edges Choose Clock Edges Choose Clock Edges Choose Clock Edges Note Edge Detector 0 is the CSM Heartbeat Clock Close Help Figure 3 11 Edge Detector assignments The Clock Groups tab has three Clock Groups from which to choose each with four Edge Detectors Clock Group 0 and Edge Detectors 0 and 1 are used for the example application The DDR SDRAM clock and the DQS strobe comprise Clock Group 0 Figure 3 12 shows the clock groups selection Source Synchronous Clocking LA 1 2 x Edge Detectors Clo
343. ive Tektronix Logic Analyzer Family User Manual Version 4 2 Software A 29 Appendix A Specifications for the TLA714 Portable Mainframe Table A 30 TLA714 display system Characteristic Classification Display Memory Size Display Selection External Display Drive Display Size Internal Display Description Standard PC graphics accelerator technology bitBLT based capable of supporting both internal color LCD display and external color SVGA XGA monitor DRAM based frame buffer memory 2 MB Hardware sense of external SVGA monitor during BIOS boot sequence defaults to internal color LCD display automatically switches to external SVGA monitor if attached Dual simultaneous display of external SVGA monitor and internal color LCD is possible via special simulscan CMOS setup as long as internal and external displays operate at same resolution limited to 800x600 on current TFT LCD and display rates Dynamic Display Configuration DDC2 A and B support for external SVGA monitor is provided One SVGA XGA compatible analog output port User selected via Microsoft Windows Plug and Play support for DDC1 and DDC2 A and B Resolution Pixels Colors 640 x 480 256 640 x 480 64 000 640 x 480 16 800 000 800 x 600 256 800 x 600 64 000 800 x 600 16 800 000 1024 x 768 256 1280 x 1024 256 1600 x 1200 256 Classification Thin Film Transistor TFT 10 4 inch active matrix color LCD display CCFL back
344. ix A Specifications for the TLA700 System Table A 19 TLA700 Backplane latencies Cont Characteristic Portable mainframe and Expansion benchtop mainframe mainframe DSO probe tip to external system trigger out 68 ns 104 ns DSO Probe tip to external signal out via Signal 3 4 OR function 65 ns 101 ns AND function 75 ns 111 ns DSO probe tip to external signal out via Signal 1 28 6 normal function 68 ns 89 ns inverted logic on backplane 7ins 92 ns Inter module latencies Typical TLA7Lx Mx Nx Px Qx to DSO inter module system 358 ns SMPL 394 ns SMPL trigger 4 TLA7Axx to DSO inter module system trigger 4 772 ns SMPL 808 ns SMPL TLA7Lx Mx Nx Px Qx to TLA7Lx Mx Nx Px Qx 66 ns SMPL 102 ns SMPL inter module system trigger 4 TLA7Axx to TLA7Lx Mx Nx Px Qx inter module system 479 ns SMPL 515 ns SMPL trigger 4 TLA7Axx to TLA7Axx inter module system trigger 116 ns SMPL 152 ns SMPL TLA7Lx Mx Nx Px Qx to DSO inter module ARM 360 ns SMPL 396 ns SMPL TLA7Axx to DSO inter module ARM 779 ns SMPL 815 ns SMPL TLA7Lx Mx Nx Px Qx to TLA7Lx Mx Nx Px Qx 108 ns SMPL Clk 144 ns SMPL Clk inter module ARM15 TLA7Axx to TLA7Lx Mx Nx Px Qx inter module ARM 5 479 ns SMPL Clk 533 ns SMPL Clk TLA7Axx to TLA7Axx inter module ARM15 111 ns SMPL Clk 147 ns SMPL Clk TLA7Lx Mx Nx Px Qx to TLA7Lx Mx Nx Px Qx 116 ns SMPL Clk 137 ns SMPL Clk inter module via Signal 1 21 556
345. izer Transition Tests the specified channel groups for the transitions as defined in the Transition Definition dialog box Glitch Detects glitches in channel groups as defined in the Glitch Detect dialog box Only available with internal asynchronous clocking Setup amp Hold fault Tests setup and hold parameters as defined in the Setup and Hold Event dialog box Not available with internal asynchro nous clocking 3 44 Tektronix Logic Analyzer Family User Manual Version 4 2 Software Setup Table 3 4 Trigger events Cont Event Counter and timer events Signal Anything Nothing Description Tests the specified counter or timer value Timer events are supported by all LA Modules except TLA7Lx and TLA7Mx modules with serial numbers B019999 or lower Looks for one of the four internal system signals Only one signal event is available in a trigger program All sampled data makes this event true All sampled data makes this event false Trigger Resources You can use up to 16 unique trigger resources not including counters and timers in a trigger program to define the events and actions A trigger resource can be used more than once in a trigger program However some events use more than one trigger resource Table 3 5 lists the trigger resources and any interactions that may occur when you use them Table 3 5 Trigger resources Event Word Group Word recognizer Range recognizer
346. l Model 0 0 0 eee eee 2 33 Intermodule Interactions and Time Correlation 005 2 34 Listing Data Concepts 0 tre crc eee ee cee eee ene 2 35 Microprocessor Support 0 0 0 eee eee eee eens 2 36 High Level Language Source Code Support 000 e eee 2 37 Waveform Data Concepts 0 cee cece cee ee 2 39 Performance Analysis Concepts 0 00 c eee eee eee eee 2 45 Comparing Acquired Data Against Saved Data 00000 2 46 Repetitive Acquisitions 0 0 cee eee eee ee eee 2 47 Symbol Support eerta te ee hs ese eee Vide eee A Cae ee wie ewe 2 48 Reference Setup dae LEN site Sete Sore eds heals 3 1 Starting Fron the System Window seh ced E Ged We ee a R ag wie wd 3 1 Setting Up the LA Module ie ence i ee eek ee ee eels See wd adie 3 3 Setting Up the Trigger Program oere 0 0 0 cee eee eee eee eee 3 28 Setting Up the DSO Module pre tarona cee eee eee ee eee 3 52 Setting Up the External Oscilloscope 00 c eee eee eee eee 3 57 Setting Up the Pattern Generator Module 0 0000008 3 60 Setting Up the Pattern Generator Program 0 0 0 0 00 e ee eee eee 3 63 Syst m Tigger yia EE eaten FEW A ed Oe eee Soa wd dee 3 68 Arming Modules eoira ceed nig eae we oN eS wd deeb we CONS we ee 3 70 Intermodule and External Signaling 0 0 00 cee eee ee eee 3 71 Merging Modules iaee pese a a OEE weds EO CEN wed we edie 3 73
347. largest memory in slots 3 4 Install the module with the lower memory in slots 1 2 Use a screwdriver to tighten the retaining screws to 2 5 in lbs after seating the modules in place See Figure D 2 Installing Modules in the Benchtop or Expansion Mainframes You must install the benchtop controller in the benchtop mainframe in slots 0 2 the TLA7XM Expansion Module must be located in slot 0 You can install any of the modules in any slot that the module key will allow see Figure D 3 If you intend to merge the modules disregard the following suggestions and refer to the merging modules rules on page E 1 If you are not merging the modules and for air flow considerations you should follow these guidelines m Ifasingle LA module is to be installed install it in slots 3 4 Place a double width slot cover over slots 5 6 7 8 9 10 and 11 12 Ifan LA module is to be installed with a DSO module install the LA module in slots 3 4 and the DSO module in slots 5 6 Place double width slot covers over slots 7 8 9 10 and 11 12 m Install TLA7Lx Mx Nx Px Qx modules DSO modules or pattern generator modules before you install TLA7Axx modules Tektronix Logic Analyzer Family User Manual Version 4 2 Software D 3 Appendix D TLA700 Module Installation D 4 m Iftwo or more LA modules are to be installed install the module with the highest channel count in slots 3 4 Install the module with the lower channel count in slots 5 6 Place
348. latencies 0e 000s A 18 Table A 20 TLA700 External signal interface A 21 Table A 21 TLA715 Internal controller eee eee A 23 Table A 22 TLA715 display system cece cece eee eeee A 24 Table A 23 TLA715 front panel interface 0 000 A 25 Table A 24 TLA715 rear panel interface cee eens A 25 Table A 25 TLA715 AC power source ec cee eeeeeees A 26 Table A 26 TLA715 secondary power ecceeeeeevees A 26 Table A 27 TLA715 cooling 0 cece cece cece cece eeee A 27 Table A 28 TLA715 mechanical ccc cece cece evens A 27 Table A 29 TLA714 Internal controller 0c eee eee A 29 Table A 30 TLA714 display system cece cece eee eeee A 30 Table A 31 TLA714 front panel interface 0 000 A 31 Table A 32 TLA714 rear panel interface eee sees A 31 Table A 33 TLA714 AC power source c cee eeeevees A 31 Table A 34 TLA714 secondary power eeceeeecevees A 32 Table A 35 TLA714 cooling cc cece cece cece ee eee A 32 Table A 36 TLA714 mechanical ccc cece cece eeeee A 33 Table A 37 Benchtop and expansion mainframe AC POWEF SOUICE 2 cece ccc tec c cee e rece reese EEA A 34 Table A 38 Benchtop and expansion mainframe secondary power ccc cece ccc e cere rere rere ee eeeeeens A 35 Table A 39 Benchtop and expansion mainframe cooling A 35 Ta
349. lete Save settings as application defaults OK Cancel Apply Help Figure 3 101 Source Files property page The search path list can also contain a path to a file that lists search paths path file When you add a new entry to the search path list by clicking the Add button you can specify that the entry is a file that lists directory paths see Figure 3 102 The path file must already exist when you add it to the list The paths in the file will be interpreted just as if the paths were specified in the property page Tektronix Logic Analyzer Family User Manual Version 4 2 Software 3 143 Source Window 3 144 Modify Search Path List i ajx Directory Path File containing list of directory paths Enter path to text file EY y Documents FilePathList tat ETE Cancel Help Figure 3 102 Modify Search Path list dialog box You can intermix paths and path files in the property sheet Each entry is prefixed with either Path or Path File to indicate the type of entry The paths in a path file will be searched according to the position of the entry in the property page and in the order of the paths listed in the file The search order is deter mined as if the entries in the property page were replaced with the contents of the path file When specifying the search path you can use an asterisk as the final component of a search path directory For example if you specify the following
350. lications are unable to use the symbol file if the appropriate type of symbols are not present For example the source window is only able to correlate with a listing window if the symbol file contains source symbols Range symbol names follow the same rules as pattern symbol names The symbol name is a sequence of ASCII characters of up to 220 characters in length even though it is impractical to display symbol values much longer than 32 characters Symbol names longer than 220 characters will be truncated during loading The characters in a symbol name can be any character with an ASCII value between 0x21 the exclamation point character and Ox7E the tilde character You can use symbol names with embedded spaces by enclosing the Symbol Name in double quotes Tektronix Logic Analyzer Family User Manual Version 4 2 Software Appendix B TLA Symbol File Format Range symbol address ranges can overlap This overlap sometimes produces unexpected results When overlaps occur and the logic analyzer needs to convert a numeric value to a symbol it must choose between the overlapping symbols When choosing between overlapping symbols the logic analyzer assigns a precedence order to the symbol types Function symbols have the highest precedence followed by variable symbols and then source symbols TSF Function Symbols The file directive Function introduces the function symbol section of a TSF Range file The file directive te
351. lification specified action The trigger program can look for events such as data values data ranges or signals from another module You can also use internal counters to trigger when the counter reaches a specified value When the trigger condition is satisfied the LA module enables a post trigger delay counter to allow the post trigger portion of the acquisition memory to fill before stopping acquisition You can also indicate a prefill portion of acquisition memory that must be met before the trigger state machine can store post trigger data The trigger function block includes storage qualification that looks at sampled data If the storage conditions are met a storage qualifier signal enables sampled data to pass into the acquisition memory as qualified data Any unqualified data samples are excluded Tektronix Logic Analyzer Family User Manual Version 4 2 Software 2 29 Operating Basics Storing Data in Memory The acquisition memory works like a circular buffer storing every qualified data sample until the entire memory is full After that each new data sample overwrites the oldest existing sample This process continues until the trigger event is found and the post trigger delay counter reaches the specified value based on the trigger position selection which stops acquisition During acquisition you can monitor the progress of the data storage process using the Status Monitor After storing the data you can display the acqu
352. light intensity controllable via software Resolution 800 x 600 pixels Color Scale 262 144 colors 6 bit RGB A 30 Tektronix Logic Analyzer Family User Manual Version 4 2 Software Appendix A Specifications for the TLA714 Portable Mainframe Table A 31 TLA714 front panel interface Characteristic QWERTY Keypad HEX Keypad Special Function Knobs Integrated Pointing Device Dual USB Ports Mouse Port Keyboard Port Description ASCII keypad to support naming of files traces and keyboard equivalents of pointing device inputs for menus HEX keypad supporting text entry functions Various functions GlidePoint touchpad Two USB Universal Serial Bus compliant ports PS 2 compatible mouse port utilizing a mini DIN connector PS 2 compatible keyboard port utilizing a mini DIN connector Table A 32 TLA714 rear panel interface Characteristic Parallel Interface Port LPT Serial Interface Port COM A SVGA Output Port SVGA OUT Type and II PC Card Port Type I Il and III PC Card Port Description 36 pin high density connector supports standard Centronics mode Enhanced Parallel Port EPP or Microsoft high speed mode ECP 9 pin male sub D connector to support RS 232 serial port 15 pin sub D SVGA connector Standard Type and II PC compatible PC card slot Standard Type I Il and IIl PC compatible PC card slot Table A 33 TLA714 AC power source Characteristic Source Voltage and Frequency Descrip
353. ling errors are typically less than the percentages from the table 8 The maximum absolute difference between the value at the end of a specified time interval after the mid level crossing of the step and the value one second after the mid level crossing of the step expressed as a percentage of the step amplitude See IEEE std 1057 Section 4 8 1 Settling Time Parameters Tektronix Logic Analyzer Family User Manual Version 4 2 Software A 63 Appendix A Specifications for the DSO Module Table A 63 DSO module timebase system Characteristic Range Extended Realtime Sampling Rate Range Realtime Sampling Rate Record Length i Long Term Sample Rate Table A 64 DSO module trigger system Characteristic y Accuracy Time for Pulse Glitch or Pulse Width Triggering Accuracy DC for Edge Trigger Level DC Coupled Description 5 S s to 10 MS s in a 1 2 5 5 sequence Products Limits TLA7E1 and 25 MS s to 5 GS s on all channels simultaneously in a 1 2 5 5 TLA7E2 sequence TLA7D1 and 25 MS s to 2 5 GS s on all channels simultaneously in a TLA7D2 1 2 5 5 sequence 512 1024 2048 4096 8192 and 15000 100 ppm over any 1 ms interval Description Time Range Accuracy 2 ns to 500 ns 20 of Setting 0 5 ns 520 ns to1s 104 5 ns 0 01 of Setting 2 x Setting 0 03 of Full Scale Range Offset Accuracy for signals having rise and fall times 20 ns Range Time for Pulse Glitch and Pulse
354. ll O K KK J K K Figure 3 15 Probe Demux channel selections Tektronix Logic Analyzer Family User Manual Version 4 2 Software Setup The preceeding source synchronous clocking application example is intended to familiarize you with this clocking capability In addition you should consider the following functional clarifications m The source synchronous clocking hardware in the TLA7Axx is designed to wait for Clock Group Complete CGC signal before it clocks the CSM If the data strobe straddles the master clock meaning that one edge occurs before the master clock and one edge occurs after the master clock then that sample will be clocked in on the next edge of the master clock m You must verify that the strobe edge is not time aligned with the master clock because this will cause the CGC signal to shift from one master clock cycle to the next This will cause the data sample presentation to dither back and forth m The separation of edges on the same signal is limited to no less than 2 2 ns 450 MHz m The frequency of the strobes must be equal to or less than the frequency of the master clock or the input data pipeline will overflow For more details on Source Synchronous Clocking refer to the online help Custom Clocking Custom clocking is used only with microprocessor support packages Custom clocking enables and disables a variety of microprocessor spe cific cl
355. lls the file reader that the following symbols represent functions as opposed to variables or source statements If no symbol type file directive is given the function symbol type is assumed Function Symbol Name Low High SS E A E E S A A e EE ES P e Eea a e SSS a e displayBanner 006035ba 00603675 buildMenus 00603676 006036e5 displayLCDmenu 006036e6 0060372f Function symbols consist of three fields the symbol name the lower bound and the upper bound The lower and upper bound values are each 32 bit values defined by numerals in the radix specified by the File Radix field in the file header These values define the lower and upper limits of the range of addresses occupied by the instructions which implement a function Both values are inclusive which means that the specified range includes both of the bound values as well as all of the addresses between them TSF Variable Symbols The file directive Variable introduces the variable symbol section of a TSF Range file The file directive tells the file reader that the following symbols represent variables as opposed to functions or source statements If no symbol type file directive is given the function symbol type is assumed Variable Symbol Name Low High fone fee armen mem homer omen mh ein fern meme ome vm haere eee omen hen nth mt fa fe cel eon eh a eee ee ey ee menu 00000100 00000102 userMenul 000004c0 000004c2 binBits 000004d4 000004d
356. loscope enabling communication between the two instruments The Add External Oscilloscope wizard which is available from the TLA application System menu will guide you through the process of connecting the iView cable between your logic analyzer and external oscilloscope A setup window is also available to assist you in verifying changing and testing the external oscilloscope settings Before acquiring and displaying a waveform you must establish a connection between your Tektronix Logic Analyzer and external oscilloscope using the Add External Oscilloscope wizard Table A 73 in Appendix A on page A 70 includes a list of supported TDS oscilloscopes available at the printing of this manual For a current list of supported TDS oscilloscopes visit our web site at www tektronix com la Tektronix Logic Analyzer Family User Manual Version 4 2 Software 3 57 Setup External Oscilloscope The Setup tab contains the external oscilloscope model number the assigned Setup GPIB address and indicates whether the external oscilloscope is currently enabled It also contains a Test button that allows you to confirm communication between the logic analyzer and external oscilloscope and provides controls for viewing or modifying aspects of the external oscilloscope setup alo Setup Trigger Connections External Oscilloscope Setup Extemal Oscilloscope model External Oscilloscope status Depth limit f1M he External Oscilloscope G
357. low Any modules in the saved system that are not mapped will not be loaded Any modules in the current system that aren t mapped to will be defaulted and disabled Press OK to continue with the load operation Press Cancel to abort LA 1 Slots 3 4 willbe loaded onto Slots 3 4 Expansion 1 LA 2 Slots 5 6 willbe loaded onto Slots 5 6 Expansion 1 LA 3 Slots 10 11 will be loaded onto Slots 7 8 Expansion 1 Cancel Figure 3 54 Loading a saved system that does not match the current system If you click the Cancel button the logic analyzer displays the Load System Options dialog box Use this dialog box to load specific modules from the saved system To load a module from the saved system drag the module icon from the top of the dialog box to a module icon in the bottom of the dialog box Figure 3 55 shows an example of the Load System Options dialog box Tektronix Logic Analyzer Family User Manual Version 4 2 Software 3 77 Setup 3 78 Load System Options Drag modules in the saved system onto desired modules in the current system Reference data sources and data windows in the saved system will also be loaded 3 Capture Error On LEDs Cancel Help Figure 3 55 Load System Options dialog box Loading a Setup and a Trigger Program When you execute a Load System or Load Module operation you load a saved setup and its related trigger program s to the logic analyzer system or specified module
358. lowing steps describe how to display compare data in the Waveform window 1 Open a Waveform window and click the Properties tool bar button as shown I Soba aEE4 4e ales th gt timeroiv 200rs a ERIE 2 Click the Waveform Window tab 3 From the Show Compare group box select one of the colors to use when data does not equal the reference data Acq Ref If you want to highlight data that does equal the reference data select Acq Ref and the appropriate color see Figure 3 78 4 Click OK The data differences or equalities will be highlighted in the Waveform window in colors you specified NOTE For more information on comparing data refer to Guidelines for Memory Compare on page 3 7 Tektronix Logic Analyzer Family User Manual Version 4 2 Software 3 111 Waveform Window Properties Waveform 1 p alx About Data Waveform Window Waveform Marks IV Acq Ref Lz I Acg Ref SS Background z Color Scheme Lint on Dark OK Cancel Apply Figure 3 78 Selecting compare data colors in the Waveform Window property page Adjusting the Waveform Window There are a number of actions you can perform in the Waveform window to get the exact view of the data that you want Waveform Window The tool bar has shortcut buttons for common operations as shown in the Toolbar following illustration Cut Search backward Copy Define search Zoom out ie Search forward Zoom in
359. lp Figure 3 56 Defining setups for Repetitive mode Viewing Acquisition Activity While the logic analyzer is acquiring data you can check its progress to see how much data it has acquired or to view channel activity Use the Status Monitor for a brief summary of acquisition trigger and data storage progress See Figure 3 57 To display the Status Monitor click Status on the Control bar ax System Status Running Repeat Count amp Start Time 05 74 01 08 51 11 Module Name Status Full Trigger State Clock LA1 waiting for Arm Active bso 1 waiting for Arm Active TDS3012 Waiting for Arm Active LA 1 Trigger State 3 T Waiting for Arm E ia Pi il F Help Figure 3 57 The Status Monitor The Status Monitor is also useful to debug a trigger program From the Status Monitor you can view the current status of various resources of the logic analyzer during acquisition Be aware that rapid changes in trigger state counter Tektronix Logic Analyzer Family User Manual Version 4 2 Software 3 83 Acquisition values timer values and the internal signals cannot be accurately displayed in real time in the Status Monitor If the Logic Analyzer Does Not Trigger If the logic analyzer does not trigger you should check the following m Check that your target system is powered on m Check the System window to verify that required modules are turned on m Ifthe module has correctly clocked data acquired the spec
360. lso remove waveforms from the Waveforms In Group list and return them to the Waveforms Available list using the lt lt button To change waveform properties from the System window click a Waveform data window icon double click the label of a waveform and then click the Wave form tab To create an overlay waveform click a waveform label and then drag it to a second waveform that you want to overlay As you drag the waveform label a drop marker displays at the left edge of the waveform label Use this marker to determine which waveform label you will be selecting to form the overlay When the Add Overlay Waveform Name dialog box appears enter a name for the waveform or use the default name For more information about creating overlay waveforms or removing a waveform from an overlay waveform refer to the online help Tektronix Logic Analyzer Family User Manual Version 4 2 Software Se y eee Listing Window Use the LA Listing window to view and evaluate acquisition data Data is presented as tabular text in columns that represent channel groups Other columns are sample numbers and time stamp values See Figure 3 84 This window displays the amount of data you specified in Setup and Trigger windows Each row in the table consists of data sampled on one acquisition cycle and is assigned a sample number Sample numbers are relative to the beginning of memory Listing 1 4 x He seel ables ajal alel x c1 2097150 Ca 2057 5d
361. m value FF A logic analyzer waveform appears to have zero length rise and fall times This is because the logic analyzer is recreating the waveform from the samples stored in its memory which are either ones or zeros No electronic signal is perfectly digital in nature there is always some analog component Consider a fast rising pulse with ringing on the front edge or glitches that can occur in a noisy circuit If you suspect problems caused by analog signal characteristics such as signal voltages higher or lower than specified voltage levels or slow transition times use a DSO module to observe the voltage characteristics of the signal Figure 2 38 shows where the DSO module captured a runt pulse that was below the logic analyzer s threshold Eg FF Analysis 2 5 HESE al j Time Div 10ns x J a C1 4 887ns C2 2 887ns Delta Time 2ns a My DSO FF_Q OUT C1 416 1m C2 1 408 Delta 991 9mi 34 712 hs A C OD _ Figure 2 38 Using the DSO module to capture a runt pulse The accuracy of the waveform re created from the sampled data depends on the sample clock rate used to record the incoming signals This is due to the fact that the waveform re created by the logic analyzer is based on the sampled signals stored in its memory If the sample clock rate is too slow the recorded data will produce an inaccurate display Figure 2 39 shows how the sample clock rate can affect an LA waveform
362. maintenance H 5 Setting the logical address D 1 Setup window 2 11 2 22 3 1 Setup Hold Setup Hold violation storage mode 3 18 Shipping H 19 Shipping list checking 1 4 Shortcut keys general purpose data window 3 91 Histogram window 3 153 Listing window 3 133 menu keys 3 80 Source window 3 145 Waveform window 3 116 Signal routing from the logic analyzer 3 23 Signal routing to the oscilloscope 3 24 Signals Setup window Pattern Generator module 3 63 Signals tab 3 71 Sin x x interpolation 2 42 Single run acquisition 3 82 Skew Glossary 8 Slot covers D 5 fillers D 5 numbers 3 2 Software BIOS configuration TLA6O00 G 3 TLA700 G 7 expansion mainframe diagnostics H 8 extended diagnostics H 8 installing G 1 PatGenVu G 20 Pattern Generator application software G 17 PPI software G 18 TLA application software G 16 TLAVU software G 19 TPI software G 18 mainframe diagnostics H 8 power on diagnostics H 8 problems H 9 Tektronix Logic Analyzer Family User Manual Version 4 2 Software Index 9 Index starting the application 1 16 Sorting data in Histogram windows 3 150 Source Files property tab 3 143 Source symbols B 6 Source Synchronous Clocking Glossary 8 Source synchronous clocking 3 10 Source window 2 15 3 135 Glossary 8 accelerator keys 3 145 buttons 3 139 changing font size 3 142 creating 3 136 cursors 3 138 customizing the display 3 142 hot keys 3 145 jumping to specifi
363. mation on merging three modules see page E 13 CAUTION Static discharge can damage any semiconductor component in the logic analyzer module Discharge the static voltage from your body by wearing a grounded antistatic wrist strap while performing the merge procedure Perform the following steps to merge two modules 1 2 a ae E 8 Power off the mainframe Determine which module will be designated as the slave module and which module will be the master module Lay the slave module on the right side as viewed from the front panel Remove the screws from the module cover with a screwdriver with a T 10 Torx tip refer to Figure E 5 on page E 9 Remove the screws near the front of the module Remove the screws holding the merge cable bracket to the cover Remove the top part of the cable bracket and set it aside Remove the module cover and locate the merge cable Tektronix Logic Analyzer Family User Manual Version 4 2 Software Appendix E Merging Modules Merge cable bracket x Remove screws 2 Remove screws 4 Re d N Module cover fol Remove screws 8 Chassis Figure E 5 Removing the cover 9 Replace the cover while feeding the merge cable through the hole in the cover see Figure E 6 NOTE Do not twist the cable while feeding it through the hole If the cable is twisted the modules will not mate correctly Tektronix Logic Analyzer Family User Manual Version 4 2
364. milar to those of function and variable symbols For source symbols these bounds represent the range of addresses occupied by the instructions that implement a single source statement The bound values are defined in the file radix specified in the header and can range in value from 0x00000000 to OXFFFFFFFF The lower and upper bound addresses are inclusive just like other symbols A source symbol for an instruction occupying a single memory location has matching lower and upper bound values The beginning and ending column fields of a source statement are optional When present and non zero they define the beginning and ending column position for the source statement The beginning and ending column values define the location of the statement in the line This is especially useful when there are multiple statements on a single line because it makes it possible to define a separate symbol for each statement When the column information is not present or is set to zero the symbol is assumed to correspond to the entire line Only a few compilers generate column information but when the information is present in the symbol file the logic analyzer uses the column information to provide highly accurate source code correlation The example source symbols on the previous page show typical column values In most cases only one of the column values is non zero This is because those lines contain only one statement and the compiler specified o
365. module from the instrument and remove the jumper from the Flash programming pins on the rear of the module Keep the jumper for future updates Locate the big label on the side of the module Record the firmware version that is printed on the label You will need this information to see that the firmware version matches the label Reinstall the module in the mainframe and power on the mainframe After the instrument completes the power on diagnostics select System Properties from the System menu Click the module tab for example PG1 Verify that the firmware version for the selected module matches the version on the label that you recorded in step 21 If the firmware versions do not match power down the mainframe remove the module from the mainframe and update the label Tektronix Logic Analyzer Family User Manual Version 4 2 Software G 27 Appendix G Installing Software Upgrading Firmware on Use the following procedure to upgrade the firmware for the TLA600 Series TLA600 Series Logic Logic Analyzers Because the TLA600 Series Logic analyzers are monolithic Analyzer instruments you can easily tell if the firmware needs updating by the absence of the logic analyzer module in the System window 1 2 3 SE e a eo M 10 11 12 13 14 15 16 G 28 Disconnect any probes connected to the logic analyzer Exit the logic analyzer application Click Start Programs Tektronix Logic Analyzer TL
366. mon problem checklist H 9 equipment required to merge modules E 8 expansion mainframe troubleshooting H 18 installing software G 1 isolating system problems H 15 merging modules rules E 1 Manuals list xx Marks 3 96 3 119 3 136 cut copy and paste 3 114 3 128 3 142 using the mark bar to jump to a new location 3 103 3 121 3 137 Matched samples Glossary 6 Measurement setup 3 99 waveform 3 99 Measuring counter or timer events in Histogram windows 3 148 Measuring using cursors 3 98 3 121 Memory TLA600 A 13 TLA714 A 29 TLA715 A 23 TLA720 A 42 TLA721 A 39 Memory compare 3 5 channel setups 3 5 guidelines 3 7 Memory depth 2 41 3 18 3 55 Merge modules 3 73 Glossary 6 Index 6 Tektronix Logic Analyzer Family User Manual Version 4 2 Software Index self calibration 3 74 H 5 Merged modules rules E 1 Merging modules E 1 equipment required E 8 merge cable location E 8 three way merge procedure E 13 two way merge procedure E 8 Microprocessor support 3 4 3 129 Glossary 6 channel grouping 3 19 custom clocking 3 17 Mnemonic disassembly Glossary 6 Module 2 33 Glossary 6 arming another module 3 70 disabling 3 2 dynamic autoconfiguration of address D 1 identifying slot number 3 2 installing in the benchtop mainframe D 3 in the expansion mainframe D 5 in the portable mainframe D 3 intermodule interactions 2 34 joining LA modules See Merge modules keying D 5 logical address
367. n 0 5 V base top 1 into a 50 Q load Description Requires 2 mainframe slots Products Weight TLA7D1 and TLA7E1 2 44 kg 5 38 Ibs TLA7D2 and TLA7E2 2 55 kg 5 63 Ibs Products Weight TLA7D1 and TLA7E1 6 35 kg 14 Ibs TLA7D2 and TLA7E2 7 71 kg 17 Ibs Height 262 05 mm 10 32 in Width 60 66 mm 2 39 in Depth 373 38 mm 14 70 in Tektronix Logic Analyzer Family User Manual Version 4 2 Software Appendix A Specifications for the Pattern Generator Module TLA7PG2 Pattern Generator Module Characteristics Tables A 67 through A 72 list the specifications for the pattern generator module For information on the individual pattern generator probes refer to TLA7PG2 Pattern Generator Probe Instruction Manual Table A 67 PG module electrical specification operational mode Characteristic Operational mode Normal Step Output pattern 1 Maximum Operating Clock Frequency Pattern length Number of channels Description Pattern data output is synchronized by the internal external clock input Pattern data output is synchronized by the software command 134 MHz in Full Channel Mode 268 MHz in Half Channel Mode 40 to 262 140 218 4 in Full Channel Mode standard 80 to 524 280 219 8 in Half Channel Mode standard 40 to 1 048 572 22 4 in Full Channel Mode option 1M or PowerFlex upgrade 80 to 2 097 144 22 8 in Half Channel Mode option1M or PowerFlex upgrade 64 channels in Full Chan
368. n unlimited number of symbols The number of symbols is limited by the amount of memory When you load a symbol file the symbols are placed in memory Because symbol files consume memory you should unload unused symbol files to keep memory available for your main application m The number of source files referenced by source code symbols loaded from the file The minimum and maximum address values and offset information Click the Load button see Figure 2 49 to open the Select Symbol File dialog box and load a new symbol file You can browse the file system for the symbol file If the symbol file is a range file you can click the Options button in the Select Symbol File dialog box to open the Load Symbols Options dialog box Click the Export button to save the current file as a TSF format symbol file You can view the exported symbol file with applications such as Wordpad Edit the symbol file by saving it under a new name and using a text editor Save the edited file in text format You can then load the edited symbol file Use the Load Symbols Options dialog box see Figure 2 50 to specify options for range symbol files before loading them into the system ax File Format m symbol Types V Functions M Variables I SouwceCode I Color r Load Limits Bound 1 Hex 0 Bound 2 Hex FFFFFFFF Offset Loaded ymbols Default Offset Hex 0 C Custom Offset Hex Add i Cancel Help
369. n Table G 1 4 Press function key F10 to exit and save the BIOS setup Tektronix Logic Analyzer Family User Manual Version 4 2 Software G 3 Appendix G Installing Software Table G 1 TLA600 Controller BIOS setup Parameter Main Processor Type Processor Speed Cache RAM Total Memory Memory Bank 0 Memory Bank 1 System Time System Date Setting Description Intel Celeron 500 MHz 128 KB 64 MB 64 MB Not Installed Set to current time Set to current date 2nd Field setting Memo No active selections No active selections No active selections 64 MB or 128 MB Will be installed as an option Advanced gt Boot Configuration Plug amp Play O S No Reset Configuration Data No Numlock Off p gt Peripheral Configuration Serial Port A Auto Serial Port B Disabled Parallel Port Auto Mode ECP Audio Device Enabled LAN Device Enabled Legacy USB Port Enabled p gt IDE Configuration IDE Controller Both Hard Disk Pre Delay Disabled p gt Primary IDE Master Mfg name model HDD e g Autodectable p gt Primary IDE Slave Not installed gt Secondary IDE Master Mfg name model CD ROM e g Autodectable p gt Secondary IDE Slave Not installed G 4 Tektronix Logic Analyzer Family User Manual Version 4 2 Software Appendix G Installing Software Table G 1 TLA600 Controller BIOS setup Cont Parameter S
370. n generator program flow Tektronix Logic Analyzer Family User Manual Version 4 2 Software 2 23 Approaching the Pattern Generator Application Windows 2 24 Block Tab Sequence Tab Subsequence Tab Event Tab Use the Block tab to create blocks of data vectors The Block tab lets you view all of the data blocks in a single window without having to view the individual data vectors You can assign meaningful names to each data block and then use those data blocks in the Sequence tab to create the pattern generator program Use the pattern generator Listing and Waveform windows from the Block tab to create the data vectors that you want to send to the target system Figure 2 21 shows an example of the Block tab H Tektronix Pattern Generator Program PG 1 Oy x File Edit System View Window Help e x 2 x i zele m Block Sequence Subsequence Event Block List Block No Block Name Block Size j fw fo For Help press F1 Tektronix of Figure 2 21 Block tab Use the Sequence tab to provide a high level view of the pattern generator program Use the data blocks that you created in the Block tab together with subsequences signals and events to create the pattern generator program Use labels with each sequence to help control the flow of the pattern generator program Use the Subsequence tab to create subsequences or macros that contain tasks that you may not want vis
371. n software running on the Windows 2000 Professional operating system If you want to upgrade to the latest application software version and to the Windows 2000 Professional operating system contact your local Tektronix representative about purchasing either the TLA6UP or TLA7UP field upgrade kits This appendix also provides information on installing related logic analyzer software on a PC for remote operation or for offline applications When reinstalling software on your logic analyzer hard disk you can reinstall the entire software or the individual software components NOTE If you install or reinstall any software on a remote PC make sure that the software version matches that of the main application on the logic analyzer Refer to the following topics in this appendix to install or reinstall software m To reinstall the entire software on your logic analyzer refer to the instruc tions under Restoring the Hard Disk Image beginning on page G 2 m To reinstall the latest version of Tektronix Logic Analyzer application software follow the instructions under Reinstalling the TLA Application Software beginning on page G 16 To reinstall the latest version of Tektronix Pattern Generator application software follow the instructions under Reinstalling the Pattern Generator Application Software beginning on page G 17 m To reinstall the latest version of the TPI or PPI remote operation software follow the instructions under Install
372. n the Source window Tektronix Logic Analyzer Family User Manual Version 4 2 Software 2 15 Approaching the TLA Application Windows MagniVu Data 2 16 MagniVu data is the result of asynchronous digital oversampling acquisition This data is automatically acquired whenever you perform an acquisition This means that even if you specify synchronous acquisition you can view the asynchronous data at any time without having to reacquire MagniVu functional ity is designed to acquire data at a high sample rate allowing you to see the timing of signals in much greater detail This is useful when you are debugging hardware and needing higher resolution data samples for viewing events that change very quickly The logic analyzer modules have MagniVu data acquisition as a standard feature MagniVu acquisition offers 500 ps high resolution sampling rate on both TLA600 and TLA7Lx Mx Nx Px Qx modules simultaneous with either 100 MHz or 200 MHz maximum synchronous speed on all channels through the same probes Both the MagniVu sample and storage rates are 2 GS s MagniVu memory depth is set to a fixed 2K MagniVu acquisition for TLA7Axx modules offers 125 ps high resolution sampling rate with 120 235 or 450 MHz maximum synchronous speed on all channels through the same probes The MagniVu sample rate is 8 GS s while the MagniVu storage rate can be 8 GS s 4 GS s 2 GS s or 1 GS s Setting a lower storage rate allows you to stretch MagniVu memory
373. n the mainframe Tektronix Logic Analyzer Family User Manual Version 4 2 Software Setup Setting Up the LA Module The primary function of the Setup window see Figure 3 3 is to configure the LA module for compatibility with the target system This is where you specify channel groups set thresholds and select the sample clock rate Additional selections configure the LA module for best compatibility with the type of data you want to acquire Before you acquire and display data you must first set up the LA module using the LA Setup and Trigger windows Together these windows determine the data to be acquired Each module has its own Setup window and Trigger window and each is set up individually You should configure the Setup window before the Trigger window because some of the Setup window settings affect Trigger window selections Clocking ns X Memory Depth 67108864 X Acquire Normal Se Support Package None Probes Analog Feeds Suppress Define Compare Group Name MSB Probe Channels CKO A3 em A307 AZ 0 aa Probe Channels Names Probe 7 6 5 4 J 2 0 CLKQual AQ el CKI jee of of of amp of pi hi L E E CKI a of E wf Ff E m pa Ej m a T x In selected group _ Not grouped Table Shows Channel Polarity Channel Compare j In other group s Figure 3 3 LA m
374. n two benchtop and expansion mainframes install the mainframes in a rack Rackmount kits are available from third party vendors Please refer to the online help under Standard and Optional Accessories for rackmount kit part numbers WARNING To avoid personal injury never lift or move a benchtop or expansion mainframe by yourself The size and weight of these mainframes requires two people to lift or move them Installing Expansion Mainframes A Installing in a benchtop Mainframe This section describes how to install a TLA7XM expansion mainframe If your logic analyzer does not contain any expansion mainframes you can skip this section Observe the following guidelines when installing expansion mainframes m Do not stack more than one mainframe on top of another mainframe without a rackmount kit m The expansion module must be installed in slot 0 of the expansion main frame CAUTION Verify that all mainframes are powered off before continuing the installation procedure If you are installing more than two expansion main frames always use a rackmount kit Contact your local Tektronix representative for information on site considerations for multiple mainframes The expansion module can be installed in any slot of the benchtop mainframe except 0 through 2 which are reserved for the benchtop controller module If you are only installing one expansion mainframe you can install the expansion module in slot 12 to keep t
375. nals applied to the External Signal Input and sent back to the External Signal Output Table A 6 TLA600 channel width and depth Characteristic Description Number of channels Product Channels TLA601 TLA611 TLA621 32 data and 2 clock TLA602 TLA612 TLA622 64 data and 4 clock TLA603 TLA613 TLA623 TLA604 TLA614 TLA624 Acquisition memory depth Product Memory depth 96 data 4 clock and 2 qualifier 128 data 4 clock and 4 qualifier TLA601 TLA602 TLA603 TLA604 64 K or 256 K samples TLA611 TLA612 TLA613 TLA614 64 K or 256 K samples TLA621 TLA622 TLA623 TLA624 1M samples 1 PowerFlex options A 8 Tektronix Logic Analyzer Family User Manual Version 4 2 Software Appendix A Specifications for the TLA600 Series Logic Analyzer Table A 7 TLA600 clocking Characteristic Asynchronous clocking y7 Internal sampling period Description 4 ns to 50 ms in a 1 2 5 sequence y7 Minimum recognizable word 2 ns in 2x Clocking mode Channel to channel skew sample uncertainty across all channels Example for a P6417 P6418 or P6434 Probe and a 4 ns sample period 1 6 ns 4 ns 5 6 ns Synchronous clocking Number of clock channels3 Product Clock channels Number of qualifier channels TLA601 TLA611 TLA621 2 TLA602 TLA612 TLA622 4 TLA603 TLA613 TLA623 4 TLA604 TLA614 TLA624 4 Product Qualifier channels TLA601 TLA611 TLA621 0 TLA602 TLA612 TLA622 0 TLA603 TLA613 TLA62
376. nd data alignment settings External 2X DDR Clocking Available only on TLA7Axx modules External 2X Double Data Rate DDR clocking allows you to acquire data on both the rising and falling clock edges at clock rates up to the normal maximum sample frequency of the logic analyzer In this mode half the logic analyzer input channels are traded for twice the data rate and twice the acquisition depth When you use External 2X DDR clocking you acquire data using a clock rate of up to 450 MHz from the target system The maximum data rate in External 2X DDR clocking mode is 900 MB s Tektronix Logic Analyzer Family User Manual Version 4 2 Software 3 9 Setup You can access External 2X DDR advanced clocking functionality by selecting a clocking type of External 2X and then clicking the More button Note that you must specify a clock edge of Both The 2X Clocking dialog box also allows you to align the data in relation to the specified clock edge for each channel group The Setup Hold window graphic illustrates your clock edge s and data alignment settings External 4X Clocking Available only in TLA7Axx modules External 4X clocking acquisitions allow data to be acquired and displayed at approximately three to four times the normal maximum sample frequency of the logic analyzer In this mode three quarters of the logic analyzer input channels are traded for three to four times the speed and four times the acquisition depth The reason that t
377. nd hold violation The range is from 8 ns before the clock edge to 8 ns after the clock edge The range can be selected in 0 5 ns increments The setup and hold violation of each window can be individually programmed Each channel group can be enabled or disabled to detect a transition between the current valid data sample and the previous valid data sample 2 counter timers 51 bits wide can be clocked up to 250 MHz Maximum count is 257 Maximum time is 9 007 X 10 seconds or 104 days Counters and timers can be set reset or tested and have zero reset latency A backplane input signal A backplane input signal A backplane input signal that causes the main acquisition and the MagniVu acquisition to trigger if they are not already triggered 16 maximum excluding counter timers Word recognizers are traded off one by one as Signal In 1 Signal In 2 glitch detection setup and hold detection or transition detection resources are added 16 Same rate as valid data samples received 250 MHz maximum Triggers the main acquisition memory Trigger position is programmable to any data sample 4 ns boundaries Either of the two counter timers used as counters can be increased Start Stop timer Either of the two counter timers used as timers can be started or stopped Reset counter timer Either of the two counter timers can be reset When a counter timer is used as a timer and is reset the timer continues in the started or
378. ndwidth Ful a Autoset Probe Cal Cal Coupling for Signal Name Channen Probe Type 1 x Figure 3 34 DSO Setup window vertical input settings For best vertical resolution set the range just slightly larger than the expected input signal Autoset automatically sets the vertical range for the signal assuming a 0 VDC offset Offset Offset is the offset voltage applied to the probe If Range is changed using the preset values then Range also sets the Offset The Offset default is 3 V for TTL signals Bandwidth Bandwidth is the range of frequencies that can be acquired and displayed accurately Your bandwidth selection sets the upper limit of frequen cies that will be acquired and displayed Bandwidth filters reduce unwanted noise and aliasing Coupling Coupling selects how the input signal is coupled to the vertical input channel Tektronix Logic Analyzer Family User Manual Version 4 2 Software Setup Horizontal Controls Horizontal settings control the rate at which the data is sampled and the amount of data acquired See Figure 3 35 To open the horizontal page from the System window click the DSO Setup button and then click the Horizontal tab Wi Setup DSO 1 See Channel 1 Channel2 Channel 3 Channel 4 Horizontal Trigger Sample Period Me Memory Depth Figure 3 35 DSO Setup window Horizontal settings Sample Period The Sample Period sets the interval between successive samples
379. necting the 34 channel P6810 general purpose probe to the target system Tektronix Logic Analyzer Family User Manual Version 4 2 Software 1 27 Getting Started High Density Probe P6434 Mass Termination Probe The P6434 Mass Termination Probe allows you Connections to connect 34 LA channels to a microprocessor probe adapter or directly to the target system To connect to the target system directly you must include compatible Mictor connectors in your circuit board design Figure 1 22 shows two ways of connecting the LA module to a target system For more instructions on this probe and instructions for connecting it to your target system refer to the P6434 Mass Termination Probe Instructions SS Q AN 0 O Low profile connector TLA7xx PA probe connection Connector with reduced bies connector optional Figure 1 22 P6434 High Density Probe connections 1 28 Tektronix Logic Analyzer Family User Manual Version 4 2 Software Getting Started P6860 High Density Probe The P6860 probe is a 34 channel high density compression probe consisting of two independent probe heads of 17 channel connectors each 16 data and 1 clock qual This probe possesses differential clock and single ended data input capabilities P6880 High Density Differential Probe The P6880 probe is a 34 channel high density differential compression probe consisting of four independent probe heads of 8 9 channels each This probe also pos
380. nel Move gt gt Copy gt gt E Ok Cancel Apply Option Help Figure 3 83 Waveform properties tab 3 117 Waveform Window 3 118 The following properties are associated with overlay waveforms m Waveform lists the label that displays in the Waveform window You can select a different waveform from the list The list contains the names of all waveforms in the active window The initial waveform is the selected waveform or the first waveform if no waveform is selected The list box is empty if multiple waveforms are selected Overlay Waveform Name permits you to rename overlay waveforms Height controls the height of the waveform Height can range from 10 to 500 pixels The default height of an LA waveform is 18 pixels the default height of a DSO waveform or external oscilloscope waveform is 60 pixels m Waveforms Available lists all of the individual waveforms and preexisting overlay waveforms You can move and copy waveforms in this list to the Overlay Waveforms list using the Move gt gt and Copy gt gt buttons respective ly You can also remove waveforms from the Overlay Waveforms list and return them to the Waveforms Available list using the lt lt button m Overlay Waveforms lists the waveforms currently in the selected overlay waveform group You can move and copy waveforms from the Waveforms Available list to this list using the Move gt gt and Copy gt gt buttons respective ly You can a
381. nel Mode 32 channels in Half Channel Mode The pattern memory for the following data channel will be shared with strobe control internal inhibit control Probe D data output channel Control D0 0 STRBO DO 1 STRB1 D0 2 STRB2 D0 3 STRB3 D0 4 Inhibit probe A D0 5 Inhibit probe B D0 6 Inhibit probe C D0 7 Inhibit probe D Sequences Maximum 4 000 Number of blocks Maximum 4 000 Number of subsequences Maximum 50 Subsequences Maximum 256 steps Repeat count 1 to 65 536 or infinite Tektronix Logic Analyzer Family User Manual Version 4 2 Software A 67 Appendix A Specifications for the Pattern Generator Module Table A 68 PG module clocking Characteristic Internal clock Clock Period Period Resolution Frequency Accuracy External clock input Clock Rate Polarity Threshold Range Resolution Input Impedance Sensitivity Table A 69 PG module event processing Characteristic Event Action Number of Event Inputs Number of Event Definitions Description 2 0000000 s to 7 462865 ns in Full Channel Mode 1 0000000 s to 3 7313432 ns in Half Channel Mode 8 digits 100 PPM DC to 134 MHz in Full Channel Mode DC to 267 MHz in Half Channel Mode Normal or Invert 2 56 V to 2 54 V 20 mV 1 KQ terminated to GND 500 MVp p Description Advance Jump and Inhibit 8 External Event Inputs 2 per each probe 8 A maximum of 256 event input patterns can be OR d to defin
382. ng as the data is in memory However you cannot unsuppress data in setups that you save using the Save only Unsuppressed Data from the Save As dialog box Define Search BE Search Data Source System tla CPU32 x Starting At Active Cursor Waveform Column Name Condition Value s Symbolic CPU32 Address x fisin foooosoca 7 And Control 7 F WRITE 7 00006000 X lt lt Search Back Search Fwd gt gt M i AA Figure 3 88 Defining search criteria Tektronix Logic Analyzer Family User Manual Version 4 2 Software 3 123 Listing Window Locking Windows Locking windows provides an easy method to compare data from two different windows Use the Lock Windows dialog box shown in Figure 3 89 to select how windows are locked together To open the Lock Windows dialog box go the System window and click the button for the data window you want to open Then from the View menu click Lock Windows Lock Windows HE Select windows to lock I Listing 1 Cancel E Waveform 2 M Test Help Lock C1 to C1 C2 to C2 and Center Screen positions with No time offsets Reference Window Waveform 1 Current time offsets Figure 3 89 Lock Windows dialog box MagniVu Data The LA modules have MagniVu data acquisition as a standard feature MagniVu data acquisition for TLA7Lx Mx Nx Px Qx modules offers 500 picosecond high speed timing simultaneous with 200 MHz state on all channel
383. nimum Amplitude x 100 Mean This voltage measurement is the arithmetic mean over the entire waveform or gated region RMS This voltage measurement is the true Root Mean Square voltage over the entire waveform or gated region Rise Time This timing measurement is the time required for the leading edge of the first pulse in the waveform or gated region to rise from the low reference value default 10 to the high reference value default 90 of the final value 3 100 Tektronix Logic Analyzer Family User Manual Version 4 2 Software Waveform Window Table 3 15 Automatic waveform measurements Cont Measurement Fall Time Positive Width Negative Width Measurement Period Frequency Positive Duty Cycle Negative Duty Cycle Area Description This timing measurement is the time required for the falling edge of the first pulse in the waveform or gated region to fall from the high reference value default 90 to the low reference value default 10 of the final value This timing measurement is the distance time between the mid reference default 50 amplitude points of a positive pulse The measurement is made on the first pulse in the waveform or gated region This timing measurement is the distance time between the mid reference default 50 amplitude points of a negative pulse The measurement is made on the first pulse in the waveform or gated region The time required to
384. nition window 6 3 67 Figure 3 48 Event Definition window eceeeeeees 3 68 Figure 3 49 System Trigger dialog box eceeeeeees 3 69 Figure 3 50 Signals property page ecece cece eeees 3 71 Figure 3 51 Merging modules cece cece cee eeees 3 74 Figure 3 52 Logic analyzer conceptual model 62 3 75 Figure 3 53 Saving a system with data 0 cece eee wees 3 76 Figure 3 54 Loading a saved system that does not match the CUUETONE system oscena a care aire ge aya E Wao See aS 3 77 Figure 3 55 Load System Options dialog box 00 3 78 Figure 3 56 Defining setups for Repetitive mode 3 83 Figure 3 57 The Status Monitor 0 cece eer e eee eees 3 83 Figure 3 58 The Listing and Waveform windows 3 87 Figure 3 59 Opening a data window eceeeceeeees 3 88 Figure 3 60 New Data Window wizard eeeeeeees 3 90 Tektronix Logic Analyzer Family User Manual Version 4 2 Software ix Table of Contents Figure 3 61 Waveform window ccecececececeees 3 93 Figure 3 62 Waveform types c cece eee c eee ececeees 3 94 Figure 3 63 Magnitude waveform ccceeeeceececes 3 95 Figure 3 64 Range readouts ccc cece eee eee eee eees 3 95 Figure 3 65 Waveform window cursors and marks 3 96 Figure 3 66 Waveform window zoom box eeeeeeees 3 97
385. nly the column at which the statement ended Some compilers specify only the beginning column position for such lines in which case the beginning value would be non zero and the ending value zero Note that there are three symbols corresponding to line 59 of the file Line 59 of the original source file contains the following statement for i 0 i lt NUM_STATES i This one line contains three separate statements The first statement is the initialization i 0 the second statement is the test i lt NUM_STATES and the third statement is the increment i Although all three statements appear on the same line each generates a separate set of instructions and the symbols in the example define unique address ranges for each This enables the Source window to accurately indicate which of the three statements on the line is associated with any given address Tektronix Logic Analyzer Family User Manual Version 4 2 Software B 7 Appendix B TLA Symbol File Format TSF Color Symbols Each of the source symbols in the example includes a comment at the end of the line showing a symbol name Since this is a comment it is ignored by the symbol file reader and is optional When symbol files are exported by the logic analyzer they contain comments that show the derived symbol name created by the logic analyzer itself The name is a concatenation of the symbol file name line number and column number if present This is the sym
386. nnector in the recessed position Width increases by 0 41 in 10 41 mm with merge connector in the extended position 14 7 in 373 mm 1 4 ECL keying is implemented Tektronix Logic Analyzer Family User Manual Version 4 2 Software A 53 Appendix A Specifications for the TLA7Lx Mx Nx Px Qx Logic Analzyer Modules TLA7Lx Mx Nx Px Qx Module Characteristics Table A 55 LA module channel width and depth Characteristic Number of channels Acquisition memory depth 1 PowerFlex options Table A 56 LA module clocking Characteristic Asynchronous clocking Description Product TLA7N1 TLA7L1 TLA7M1 TLA7N2 TLA7P2 TLA7Q2 TLA7L2 TLA7M2 TLA7N3 TLA7L3 TLA7M3 TLA7N4 TLA7P4 TLA7Q4 TLA7L4 TLA7M4 Product TLA7L1 TLA7L2 TLA7L3 TLA7L4 TLA7M1 TLA7M2 TLA7M3 TLA7M4 TLA7N1 TLA7N2 TLA7N3 TLA7N4 TLA7P2 TLA7P4 TLA7Q2 TLAQP4 Description Tables A 55 through A 61 list the specifications of the TLALx Mx Nx Px Qx logic analyzer modules Channels 32 data and 2 clock 64 data and 4 clock 96 data 4 clock and 2 qualifier 128 data 4 clock and 4 qualifier Memory depth 32 K or 128 K samples 512 K samples 64 K or 256 K or 1 M or 4M samples 16 M samples 64 M samples Internal sampling period 4 ns to 50 ms in a 1 2 5 sequence 2 ns in 2x Clocking mode y7 Minimum recognizable word across all channels 1 6ns 4ns 5 6 ns Channel to channel skew sample uncertainty Example for a
387. ns The Connections tab contains diagrams that help you to confirm that your logic analyzer and external oscilloscope are physically connected correctly Two diagrams are available for confirming the physical connection of both your logic analyzer and your specified external oscilloscope Click the TLA Connections button to display the logic analyzer diagram or click the TDS Connections button to display the diagram for the external oscilloscope that you specified in the setup wizard io Setup Trigger Connections Logic Analyzer iat a SYSTEM TRIG IN oo SYSTEM TRIG OUT P P o 3 a SMB BNC A p EXTERNAL SIGNAL ADAPTER _ Pour 5 te ay lt a IEW EXTERNAL SCOPE CABLE SYSTEM TRIG IN SYSTEM TRIG OUT If you are having difficulty with your connections you can go through the Add External Oscilloscope Wizard again to get detailed instructions about how to connect your external oscilloscope to the logic analyzer Figure 3 38 External Oscilloscope Connections tab For further information about external oscilloscope setup refer to the online help Setting Up the Pattern Generator Module 3 60 Module Setup Window The pattern generator modules like the LA modules have a Setup window where you can specify the individual module setups channel setups probe setups and signal setups You should define these parameters before setting up the pattern generator program in the Program window Use t
388. ns to define the data suppression You can select a similar dialog box by right clicking in one of the display windows For more information on data suppression refer to the online help Sample Suppression LA 2 2x After each acquisition reset Sample Suppression to C Show All acquired samples O Show fica samples around trigger C Re use existing suppression relative to Trigger F Cancel Help Figure 3 5 Sample Suppression dialog box Data Compare Data Compare allows you to compare the current acquisition data of an LA module to a known reference data You can quickly view data differences and similarities in a Listing or Waveform window using user defined colors Selecting Channels for the Memory Compare Choose the channels that you want to compare in the LA Setup window by selecting Channel Compare in the Table Shows box see Figure 3 6 You can then compare all data channels specific channel groups or individual channels by selecting the appropriate channels in the Probe Channels Names table After selecting the channels that you want to compare click the Define Compare button in the upper right of the Setup window to define the compare actions Tektronix Logic Analyzer Family User Manual Version 4 2 Software 3 5 Setup ioi Clocking fintemal z Jans Memory Depth na Acquire Normal Support None Probes Suppress Define Compare Probe Channels
389. nsitivity full scale range 10 mV to 100 V all channels Step response settling errors Typical gt 8 Full scale range Maximum settling error at setting Step response 20ns 100ns 20ms 10mV 1V lt 2 V 0 5 0 2 0 1 1 01 V 10V lt 20 V 1 0 0 5 0 2 10 1 V 100 V lt 200 V 1 0 0 5 0 2 1 Net offset is the nominal voltage level at the digitizing oscilloscope input that corresponds to the center of the A D Converter dynamic range Offset accuracy is the accuracy of this voltage level 2 The limits given are for the ambient temperature range of 0 C to 30 C Reduce the upper bandwidth frequencies by 5 MHz for each C above 30 C The bandwidth must be set to FULL 3 Rise time rounded to the nearest 50 ps is calculated from the bandwidth when Full Bandwidth is selected It is defined by the following formula Rise Time ns 450 BW MHz 4 GND input coupling disconnects the input connector from the attenuator and connects a ground reference to the input of the attenuator 5 The AC Coupled Lower Frequency Limits are reduced by a factor of 10 when 10X passive probes are used 6 The sensitivity ranges from 10 mV to 100 V full scale in a 1 2 5 sequence of coarse settings Between coarse settings you can adjust the sensitivity with a resolution equal to 1 of the more sensitive coarse setting For example between the 500 mV and 1 V ranges the sensitivity can be set with 5 mV resolution 7 The Full Bandwidth sett
390. nt Mcde Threshold f0 H Level for Advance Polarity Koma eee gt tor Jump Figure 3 39 Module Setup window Channel Setup Window The Channel Setup window functions like the Channel Setup window in the LA modules Use this window to define the channel group names the logical grouping of channels and the individual channel names Figure 3 40 shows an example of the Channel Setup window Tektronix Logic Analyzer Family User Manual Version 4 2 Software 3 61 Setup Fl Setup PG 2 i x Module Setup Channel Setup Probe Setup Signals Setup GroupNo Group Name MSB Probe Channels I 1 AA 7 At 69 1 A105 8104 1 813 1 A12 1 8101 1810 1407 1 164 7 164 63 164 5 164049 181 03 16102 16101 161 0 1B0 7 1 60 11 79 104 69 14 59 101 4 101 63 10962 1C1 1 1C1 0 1 CO 7 1 C0 101 7 1D1 63 11 5 1D14 1013 1012 1D1 1 1D1 0 1 DO 7 1 DO Proble Channels Names amp In the selected group Note Probe D channels may be used for Inhibit control O Not grouped E In other group Figure 3 40 Channel Setup window Probe Setup Window Use the Probe Setup window to specify the probe details such as the output threshold voltage and inhibit information Figure 3 41 shows an example of the Probe Setup window Ft Setup PG 2 i Xx Module Setup Channel Setup Probe Setup Signals Setup Type i Le ee Stro
391. nt of data that you want to compare against You can compare all data or a portion of the data by filling in the appropriate information You can also define the alignment of the data by filling in the appropriate information A summary of your setup displays at the bottom of the dialog NOTE After defining the compare setup remember to select Show Compare in the Listing Window or Waveform Window property page Guidelines for Memory Compare There are a few guidelines that you should be aware of when using memory compare m You must select the Enable Data Compare check box in the Compare Definition dialog box see Figure 3 7 Acquisition modules and reference modules must be the same width m Specify the color of compare data in the Listing Window or Waveform Window property sheet or use the default colors m You can search for data differences or data equalities m You can use memory compare with repetitive acquisitions m You can compare only the main logic analyzer data you cannot compare glitch data disassembler group data or MagniVu data NOTE Although you cannot compare disassembler group data directly you can compare the raw data before it is disassembled by using the channel groups as defined in the Setup window To view these channel groups in a Listing window use the Add Column toolbar button to add the channel group to the window Clocking Use Clocking to specify the clock s used to sample data Y
392. nted BNC connectors portable mainframe or front panel mounted SMB connectors benchtop mainframe Signal 1 2 Signal 3 4 TTL compatible input gt 2 0 V lt 0 8 V Active true low level sensitive 50 MHz square wave minimum 10 MHz square wave minimum Accepts signals during valid acquisition periods via real time gating 0 to 5 V peak System Trigger Output TTL compatible output via rear panel mounted BNC connectors portable mainframe or front panel mounted SMB connectors benchtop mainframe Source selection System trigger Source Mode Active true low falling edge latched Active Period Outputs system trigger state during valid acquisition period resets system trigger output to false state between valid acquisitions Output Levels VoH VoL 50 Q back terminated TTL compatible output 24 V into open circuit 2 V into 50 Q to ground lt 0 7 V sinking 10 ma Output Protection Short circuit protected to ground Tektronix Logic Analyzer Family User Manual Version 4 2 Software A 21 Appendix A Specifications for the TLA700 System Table A 20 TLA700 External signal interface Cont Characteristic External Signal Output Source Selection Output Modes Level Sensitive Output Levels VoH VoL Output Bandwidth Signal 1 2 Signal 3 4 Active Period Output Protection Intermodule signal line bandwidth Signal 1 2 Signal 3 4 Description TTL compat
393. nuation level based on the amplitude of the signals being assigned You can also choose the manner in which digital channels are displayed by group probe or name Selecting individual channels After you have chosen a digital channel to output you can assign it to an analog output channel by clicking a channel button under Assign To You can confirm that the digital signal was correctly routed by reviewing the analog feed assignment information under Current Routing Selecting groups of channels When you select multiple digital channels to output you can assign them to one or more analog output channels by selecting the check boxes associated with the target channels If you are interested in more digital channels than you have analog outputs use the Analog Feed Cycling buttons to cycle the selected digital channels through the selected analog outputs You can additionally direct the system to exclude channels assigned to unchecked outputs from being re assigned which guarantees that channel assignments to unselected outputs are preserved To do so select the check box labeled Exclude channels assigned to unchecked outputs NOTE The system only reassigns digital channels when the assigned digital channel is a member of the channels that you specified for output in Selected Channel s and the analog output channel to which the digital channel is assigned is not selected If one or more of the selected digital channels are alr
394. o DSO Waveform 1 3 Route LA 1 CKO From Slots 3 4 Through Inter probe Connector To Destination DSO 1 Channell CH 2 A30 DSO 1 Channel CH 3 A3 6 TOS 7404 Channell System Inter probing I Add waveform to view OK Apply Cancel Help Figure 3 20 Route to DSO dialog box The Route to DSO dialog box provides a list of oscilloscope channels that have inter probe connections defined to the logic analyzer If no inter probe connec tions are defined the list is empty If the oscilloscope list contains the desired LA channel then that list item is selected by default Select an oscilloscope channel and click OK to feed the logic analyzer channel to the inter probe connection attached to the oscilloscope channel The check box named Add new waveform to view is not selected by default because the waveform view typically already contains waveforms for the oscilloscope of interest Selecting this check box and clicking OK will add a waveform of the selected oscilloscope destination to the view Click the System Inter probing button to change the destination list contents by adding or deleting the connections for the logic analyzer Tektronix Logic Analyzer Family User Manual Version 4 2 Software 3 25 Setup 3 26 Activity Indicators Use the Activity tab located in the Probe Properties dialog box click the Probes button located in the LA Setup window to show the real time signal activity at
395. o each connector 2 Connect one end of the gray expansion cable to connector C of the expansion module on the expansion mainframe side Connect the other end of the gray expansion cable to connector C of the expansion module on the benchtop or portable mainframe side 3 Fasten the expansion cable connector to the expansion module by tightening the two hold down screws 4 Examine the two blue expansion cables to determine if the connectors are labeled A and B Tektronix Logic Analyzer Family User Manual Version 4 2 Software Getting Started a Ifthe cables are labeled A and B select the B cable and proceed to step 5 b Ifthe cables are not labeled select either blue expansion cable and label each connector with the B label Select the other cable and apply the A labels to each connector 5 Connect one end of the blue expansion cable to connector B of the expansion module on the expansion mainframe side Connect the other end of the blue expansion cable to connector B of the expansion module on the benchtop or portable mainframe side 6 Fasten the expansion cable connector to the expansion module by tightening the two hold down screws 7 Connect one end of the blue expansion cable to connector A of the expansion module on the expansion mainframe side Connect the other end of the blue expansion cable to connector A of the expansion module on the benchtop or portable mainframe side 8 Fasten the expansion cable connect
396. o the File menu and click Default System System Options The logic analyzer provides several property pages where you can set or change system options To access the system options select Options from the System menu and choose the property page you are interested in Use the Color tab to create remove and modify color schemes Use the Defaults tab to specify the defaults throughout the application The settings you enter will be the default settings when you create new data windows Use the Preference tab to specify user preferences such as changing the color of the Run or Stop buttons or hiding the Status bar Use the Presets tab to view and modify preset names and values such as probe threshold voltages and DSO vertical range or vertical offset values Use the Start Up tab to select which system setup such as a previous system or a Saved system setup to open after you power on the logic analyzer e se the System Source Files tab to define the location of source files and suffixes used to create new Source windows Tektronix Logic Analyzer Family User Manual Version 4 2 Software 3 79 Setup Menu Shortcut Keys You can use the shortcut keys listed in Table 3 12 to manipulate menus and edit windows You should also refer to the discussions of short cut keys in the online help or under the section for the individual data windows Table 3 12 Menu shortcut keys Desired action Key combina
397. ock cycle types such as DMA cycles For more information see the instructions that came with your microprocessor support package Selecting the Acquisition Use Acquire to select the acquisition mode which determines the type of data to Mode select and store You can store channel data only glitch data setup and hold violation data or blocks of data around requested samples I ioii Clocking finena z ans 7 Memory Depth aig4304 Acquire Normal ad Support None Normal Mode Normal mode stores only the requested channel data Glitch Storage Mode Internal Clocking Mode Only Glitch mode captures glitch data and regular data for each data channel You must select internal clocking for Glitch mode to be available Glitch storage is independent of glitch events Therefore you can trigger on a glitch even when you are not storing glitches Tektronix Logic Analyzer Family User Manual Version 4 2 Software 3 17 Setup Setting Memory Depth Grouping Channels Glitch mode limits memory depth to half of the maximum depth and limits the sample period to 10 ns or greater for TLA7Lx Mx Nx Px Qx modules and 4ns for TLA7Axx modules However there is no trade off in channels which avoids changing probe connections Setup Hold Violation Storage Mode External Source Synchronous and Custom Clocking Mode Only Setup Hold mode captures setup and hold violations for each channel You must select External or Source Sync clocking
398. odule Setup window NOTE If you intend to use merged modules turn to page 3 73 for information before you proceed with the setup procedure Tektronix Logic Analyzer Family User Manual Version 4 2 Software 3 3 Setup Microprocessor Support Setup Performance Analysis Setups Sample Suppression If you intend to use a microprocessor support package load it before completing the entries in the Setup window The microprocessor support package configures the Setup window for you To load a microprocessor support package from the File menu click Load Support Package select the support package you want to load and then click Load After loading the microprocessor support package the LA Setup window shows the channel definitions channel groups and clocking requirements for the microprocessor support package Figure 3 4 shows an example of the LA Setup window after loading the QSTART support package if Setup QSTART BEES Clocking friem al dns F Memory Depth naa F Acquire Normal gt Support OSTART Probes Suppress Define Compare Group Name MSB Probe Channels 31 0 431 420 419 A0g 15 0 D10 DO 15 0 RESET FREEZE AVEC IRG_ANY_D BG_D BGACK_L BERR HALT RMC R 7 0 FC3 FC2 FCI FCO DSACK1 DSACKO SIZ1 SIZO Probe Channels Names 2 0 CLKQual x a3 X sod 3 MI sddr_3t X ddr_ 24 X ddr 24 X
399. odules of unequal channel widths use the logic analyzer module with the higher number of channels as the master module If there is a second slave module the first slave must have greater than or equal the number of channels as the second slave module Slave 3 cannot have more channels than the master slave 1 or slave 2 Slave 4 cannot have more channels than the master slave 1 slave 2 or slave 3 m The logic analyzer modules must have the same firmware version m The maximum merged combinations are two TLA7Lx and TLA7Mx logic analyzer modules three TLA7Nx TLA7Px or TLA7Qx logic analyzer modules and five TLA7Axx logic analyzer modules Tektronix Logic Analyzer Family User Manual Version 4 2 Software E 1 Appendix E Merging Modules Merge Procedure A E 2 TLA7Nx TLA7Px and TLA7Qx Logic analyzer modules cannot be merged with TLA7Lx and TLA7Mx Logic analyzer modules even if they are connected together TLA7Axx modules cannot be merged with TLA7Nx TLA7Px TLA7Qx TLA7Lx or TLA7Mx modules To merge a logic analyzer module to an established merged set the established merged set must first be unmerged through software Unmerged modules are the only potential candidates to add to a merged configuration Complete the following steps to create a merged module from two or more individual modules You must complete these steps prior to installing the modules in a mainframe CAUTION To avoid damaging the mainframe or
400. of Event A Store except between A and B Stores everything except samples between Event A and B and triggers on the very first sample Store on A and B Stores on simultaneous occurrence of Event A and Event B and triggers on the first simultaneous occurrence of Event A and Event B This program is not designed to work with Timer or Counter event types for user selectable events Store on A and not B Stores a sample when Event A occurs and simulta neously Event B does not occur and triggers when this condition occurs for the first time This program is not designed to work with Timer or Counter event types for user selectable events Store on A trigger on B Stores on occurrence of Event A and triggers on occurrence of Event B This program is not designed to work with Timer or Counter event types for user selectable events Tektronix Logic Analyzer Family User Manual Version 4 2 Software 3 39 Table 3 3 EasyTrigger program list Cont File name Store on A trigger on B then store onc Store on A or B Store on all transitions Store on channel A is low high and channel B is low high Store on channel is low high Store on channel transitions edge Store on group transition Store on group value Store on group value outside of a range Description Stores Event A as pre trigger samples triggers on occurrence of Event B then stores Event C as post trigger samples This pro
401. oftware Setup Any number of groups can be created Each group can contain any combination of module channels the application does not restrict you from repeating channels from various groups When using group range events range recognizers the probe groups and probe channels must be used in hardware order That is probes must be used from the most significant probe group to the least significant probe group based on the following order C3 C2 C1 C0 E3 E2 E1 E0 A3 A2 D3 D2 A1 A0 D1 DO Q3 Q2 Q1 Q0 CK3 CK2 CK1 CKO The probe channels must be used from the most significant channel to the least significant probe channel based on the following order 76543210 In Internal 2X Clocking and External 2X Clocking mode half of the probe channels are designated as the demux destination indicating that they are unavailable as a source see Figure 3 16 NOTE If a microprocessor support package is loaded do not change or delete the default channel groups Doing so can cause an inaccurate analysis However you can still add and delete new channel groups If you are using a TLA7Axx module both Internal and External 4X Clocking modes designate three quarters of the probe channels as the demux destination to indicate they are unavailable as a source In Source Synchronous and External Clocking mode the source channel availability depends on whether you have set up probe channel demultiplexing For more details on Source Synchrono
402. ogether until the connectors are seated in place E 4 Tektronix Logic Analyzer Family User Manual Version 4 2 Software Appendix E Merging Modules 8 Add any additional modules to the set Figure E 3 Connecting modules in a merged set CAUTION Ensure that the mainframe is powered off before installing or removing the modules 9 Place the merged module set into the mainframe 10 Align the tops and bottoms of the modules with the slots in the mainframe see Figure E 4 on page E 6 You may need the help of another individual if your merged module set contains more than two modules Tektronix Logic Analyzer Family User Manual Version 4 2 Software E 5 Appendix E Merging Modules Slide module set all the way in Latch in place Figure E 4 Installing the merged module set in the mainframe 11 Slide the modules all the way into the mainframe until they rest against the rear panel connectors E 6 Tektronix Logic Analyzer Family User Manual Version 4 2 Software Appendix E Merging Modules 12 Use the injector handles to firmly seat the modules in place one at a time The merge cable assembly should allow enough play between two side by side modules 13 After installing all of the modules power on the mainframe and complete the merge process listed under the Merged Modules tab in the System Configu ration dialog box Unmerge Procedure Although you can unmerge modules from a merged
403. ogic analyzer automatically reboots Remove the BIOS disk from the floppy disk drive during the flash operation Doing so will cause the system to become inoperable fh CAUTION Do not remove the floppy disk drive or power down the logic analyzer Setting Up the TLA700 This procedure is necessary after replacing the hard disk or when the CMOS Controller BIOS settings are corrupted or lost To configure the Controller BIOS complete the following steps 1 Power on the logic analyzer and press function key F2 before the logic analyzer boots the Windows operating system Press function key F9 select Yes and then press Enter to set the default settings Verify that the hard disk was auto recognized and that the correct size of the hard disk is displayed in the Primary Master setting If you have a TLA715 or TLA721 logic analyzer all of the settings are the default settings Press function key F10 to exit and save the BIOS setup and then continue with the hard disk image installation procedure beginning on page G 11 If you have a TLA714 or TLA720 logic analyzer verify that all of the settings are the same as the settings in Table G 2 Press function key F10 to exit and save the BIOS setup Tektronix Logic Analyzer Family User Manual Version 4 2 Software G 7 Appendix G Installing Software Table G 2 TLA714 and TLA720 Controller BIOS setup Parameter Factory setting Submenu parameter Fac
404. ogram enters the subroutine for the first time Inter Module Communication Send a signal to another module Sends a signal signal 1 is set to another module and when A occurs triggers when Event A occurs Trigger all other modules when A Triggers all other modules when Event A occurs The occurs triggering action of this program is equivalent to that of a system trigger Trigger on a signal from another Triggers if the selected signal is set by another module module Using an EasyTrigger Program You use an EasyTrigger program by selecting one from the EasyTrigger program list Depending on the trigger program that you select there may be event conditions for you to specify before clicking the Run button and acquiring data If you require further modifications or want to view the program details you can view the program from the PowerTrigger tab PowerTrigger Properties The PowerTrigger tab provides access to the full low level trigger capabilities of the logic analyzer It can also be used to view and modify the underlying details of an EasyTrigger program The Overview shows the general structure of the trigger program The Trigger Detail summarizes activity within individual program states You can click the If Then button in the Trigger Detail to open the Clause Definition dialog box which contains trigger programming details Tektronix Logic Analyzer Family User Manual Version 4 2 Software 3 41 Setup 3 42 ff Trig
405. oling A 35 dimensions A 38 mechanical A 36 secondary power A 35 TLA7XM installing 1 5 installing the expansion cables 1 8 installing the expansion module in a benchtop mainframe 1 5 in a TLA715 1 7 TLA7XM Expansion Chassis mechanical A 36 TLA7XM Expansion mainframe AC power source A 34 cooling A 35 secondary power A 35 specifications A 34 TLA7XM specifications A 34 Toolbar Histogram window 3 150 Listing window 3 127 Source window 3 142 Waveform window 3 112 TPI 2 19 Trackball 2 3 Trigger 2 29 Glossary 9 clause 3 30 Glossary 2 DSO module 2 31 DSO module setup 3 56 indicator 3 1 LA trigger actions 3 46 LA trigger events 3 44 LA trigger resources 3 45 LA Trigger window configuration 3 28 MagniVu trigger position 3 50 options data storage 3 48 Force Main Pre Fill 3 48 MagniVu storage rate 3 48 MagniVu trigger position 3 48 trigger position 3 48 position 3 49 3 57 Glossary 9 problems 3 84 program 3 28 Glossary 9 creating your own 3 79 debugging 3 83 loading saved 3 51 saving 3 51 setting clearing signals 3 71 structure 3 30 settings external oscilloscope 3 59 state 3 30 storage qualification 3 48 system 3 68 3 89 Glossary 9 external signal 2 4 2 5 3 68 Troubleshooting H 8 common problem checklist H 9 expansion mainframe H 18 isolating system problems H 15 logic analyzer does not trigger 3 84 module address problems D 2 TSF color symbols B 8 file format
406. olumn Marks Disassembly Data Font Size 8 F Show Violations fo Show Compare NOTE Compare results can not be shown I Aca l Ret for channel groups generated by a 3 D disassembler To see compare results be sure that you are viewing a I Acg Ref non disassembler group Background Color Scheme Dak on Light Cancel Apply Figure 3 90 Selecting compare data colors in the Listing Window tab Tektronix Logic Analyzer Family User Manual Version 4 2 Software 3 125 Listing Window 3 126 5 Click OK The data differences or equalities will be highlighted in colors you specified similar to Figure 3 91 NOTE For more information on comparing data refer to Guidelines for Memoy Compare on page 3 7 m Listing 3 Of x ale eee e A A Oo Delta Time fi ns 00000000 oo000000 oo000000 oooge00d ooo00000 01100000 01100000 01100000 0110000 LAMod1 LA 01100000 L ooo00000 01100000 A2 z 7 2 A 2 A2 2 Ag 2 Ag 2 A2 2 A2 2 A2 2 2 D6 8 8 a u en BB LAMod1 LA LA ooo00000 Figure 3 91 Viewing LA compare data in a Listing window Tektronix Logic Analyzer Family User Manual Version 4 2 Software Listing Window Adjusting the Listing Window There are a number of actions you can perform in the Listing window to get the exact view of the data that you want Listing Window Tool Bar The tool bar ha
407. ompare Figure 3 17 Channel grouping table in the Setup window Analog Multiplexing Available only in TLA7Axx modules analog multiplexing allows you to observe multiple digital data signals on a DSO using multiple analog channel outputs You can assign data signals in one of two ways You can either select an individual channel and assign it to an analog output or a group of channels and then select the analog outputs to which you want them assigned Setting up analog multiplexing involves specifying signal routing between the LA module and the DSO module or external oscilloscope zix Al Close Physical Module Analog Output Attenuation 10 Attenuation 2 5 to 5 0V input range Help 5X Attenuation 1 54 to 2 5 input range p Select Channel s __ Assign To m Current Routing By Group xj Analog Output Analog Feed Destination CH1 CKO None CH2 AIQ None CH1 CH2 CH3 CH3 A316 None CH4 CH4 A35 None System Interprobing gt Analog Feed Cycling M CH1 F cH2 lt lt lt gt gt Bo I Exclude channels assigned to unchecked outputs I CH4 Figure 3 18 Analog Feeds dialog box Tektronix Logic Analyzer Family User Manual Version 4 2 Software 3 21 Setup 3 22 The Analog Feeds dialog box controls which digital data signals via the probed channels on which they reside are assigned to each analog output In addition you can specify an atte
408. on 4 2 Software 3 35 Setup 3 36 Table 3 3 EasyTrigger program list Cont File name Trigger on A followed immediately by B Trigger on B not occurring between A and C Trigger on the Nth consecutive oc currence of A Trigger on the Nth occurrence of A Trigger on the Nth transition of channel Trigger on violation of sequence A B CD Trigger on a glitch between A and B Trigger on a sequence of edges Trigger on 16th edge transition Sequence of Events Time or Count Trigger on A followed by B after N samples Description Triggers on Event B if Event B occurs immediately after Event A Triggers on Event C if Event B does not occur between Event A and Event C Triggers on the Nth consecutive occurrence of Event A If anything occurs in between the consecutive occurrences of Event A then program resets the counter and waits for Event A again Triggers on the Nth occurrence of Event A Triggers on the Nth transition of the desired channel Triggers when Events A B C and D do not occur sequentially Triggers on Event B if glitch occurs between Event A and Event B Glitches can only be stored in Internal Clocking mode Glitch storage is not available in Internal 2X mode though glitch detection is possible This program is not designed to work with Timer or Counter event types for user selectable events This example program checks a sequence of only three edges rising or falling Modify the
409. ontroller BIOS setup G 8 Table G 3 TLA user file suffixes 1 0 0 0 ccc cece cece cece eee G 12 Table G 4 Bios Boot settings for reinstalling software G 13 Table G 5 Bios Boot settings for reinstalling software G 15 Table G 6 TLA firmware files 0 cece cece cece eee enee G 24 Table H 1 Failure symptoms and possible causes H 10 Table H 2 Command line options for ResMan32_ H 15 Tektronix Logic Analyzer Family User Manual Version 4 2 Software a 7 General Safety Summary Review the following safety precautions to avoid injury and prevent damage to this product or any products connected to it To avoid potential hazards use this product only as specified Only qualified personnel should perform service procedures To Avoid Fire or Use Proper Power Cord Use only the power cord specified for this product and Personal Injury certified for the country of use Connect and Disconnect Properly Do not connect or disconnect probes or test leads while they are connected to a voltage source Ground the Product This product is grounded through the grounding conductor of the power cord To avoid electric shock the grounding conductor must be connected to earth ground Before making connections to the input or output terminals of the product ensure that the product is properly grounded Observe All Terminal Ratings To avoid fire or shock hazard observe all ratings and m
410. operly The most common symptom of conflicting logical addresses is that a module will not show up in the system window You can merge individual logic analyzer and pattern generator modules to create wider modules Logic analyzer modules must be physically merged together by a merge cable and through software Refer to Appendix E Merging Modules for more information on merging modules Tektronix Logic Analyzer Family User Manual Version 4 2 Software Appendix D TLA700 Module Installation Installing Modules in the Portable Mainframe You can install any of the modules in any slot that the module key will allow see Figure D 3 If you intend to merge the modules disregard the following suggestions and refer to the merging modules rules on page E 1 If you are not merging the modules and for air flow considerations you should follow these guidelines m Ifasingle LA module is to be installed install it in slots 3 4 Place a double width slot cover over slots 1 2 m Install TLA7Lx Mx Nx Px Qx modules DSO modules or pattern generator modules before you install TLA7Axx modules m Ifan LA module is to be installed with a DSO module install the DSO module in slots 1 2 and the LA module in slots 3 4 m Iftwo LA modules are to be installed install the module with the highest channel count in slots 1 2 Install the module with the lower channel count in slots 3 4 m Iftwo LA modules are to be installed install the module with the
411. operties tool bar button to display the Listing Window properties Then select one of the properties tabs to change the data you are interested in Tektronix Logic Analyzer Family User Manual Version 4 2 Software 3 129 Listing Window Exporting Listing Data Use the Export Data dialog box to export data from the current listing window to a text file or to a binary file This is a way to print a copy of a complete or partial listing Figure 3 93 shows the Export Data dialog box Export Data 7 x Save in EJ My Documents ce jE Listing 1 tat Listing 11 tet File name Listing Atat Save as type Text File txt x Cancel Export range Help Al C Marke Options From cursor d Close Samples From fLA 1 TofLat fico Figure 3 93 Export Data dialog box You can export the following listing data m All listing data from the acquisition m Listing and DSO voltage measurement from a Listing window m A range of listing data between two selected marks m A range of listing data between two samples 3 130 Tektronix Logic Analyzer Family User Manual Version 4 2 Software Listing Window Exporting Data toa If you want to export data to a text file click Options to define the format of the Text File data in the Export Data Options dialog box see Figure 3 94 The data is saved in a text file with the txt file name extension Export Data Options d Field Delimite
412. or to the expansion module by tightening the two hold down screws Installing TLA700 Modules To install additional modules for the TLA700 series logic analyzers refer to Appendix D TLA700 Module Installation for detailed instructions Connecting Accessories After installing the mainframes and modules you can connect the accessories such as external monitors keyboard and printer Tektronix Logic Analyzer Family User Manual Version 4 2 Software 1 9 Getting Started Connecting Accessories The accessory connections are the same as those you would make on a personal to the TLA600 Series computer Connect the accessories to the rear of the instrument The connection points are shown in Figure 1 7 Description Icon Label Locations Monitor SVGA OUT Pritt tisa essss esssectissecsss LPT L RS 232 cccsccssssee COM 1 Network oo disc y O L LPT E Jea wy 00 ikea op Y amp an com 1 00 sveaourl_ sese O LI e dp THOO p gt J PC CARD L q A F TYPE 2 TYPE3 gt J n EXTERNAL SIG OUT EXTERNAL SIG IN SYSTEM TRIG OUT SYSTEM TRIG IN Card Slot H oE 3 Figure 1 7 T
413. ore creating a Source window load a microprocessor support package You should also set up the Listing window you will use with the Source window Create a new Source window with the New Data Window wizard You can access the New Data Window wizard from the tool bar in the System window For help on using the New Data Window wizard refer to the online help TLA 700 FF Analysis File Edit View Data System Window Help g h 2 Status Idle Run gt Figure 3 96 Accessing the New Data Window wizard Reading the Source Window Indicators Data marks cursors and other indicators help you navigate and identify the data Figure 3 97 and Table 3 22 identify and describe data window marks if front rear 5 return TRUE else User mark return FALSE H Pecan ees ee A e RE E A eae ee eee A A E iuea de uee Routine to check if queue is full COC e eet add at neat aa neni eentatenatinea ys ie queveF ul Cursor 1 if rear 1 QUEUE SIZE front return TENE F else return False T Data mark bar Overview mark bar fine control coarse control Figure 3 97 Source window cursors and marks 3 136 Tektronix Logic Analyzer Family User Manual Version 4 2 Software Source Window Table 3 22 Source window cursor and mark summary Mark Description 1 2 Cursors 1 and 2 Moveable marks used for visual reference and for data measurements User mark User created ma
414. oreground color followed by the background color To supply a background color you must give a foreground color If you want to use the group s defined color from the Column or Waveform Property Page you can use default as the foreground color Tektronix Logic Analyzer Family User Manual Version 4 2 Software B 9 Appendix B TLA Symbol File Format B 10 Tektronix Logic Analyzer Family User Manual Version 4 2 Software Say lt a ee eee Appendix C Pattern Generator Physical Logical Conversion The logic analyzer and DSO modules handle signals 1 2 3 and 4 with a logical expression True False However the pattern generator module handles these signals with a physical expression High Low Select whether to use the signals as AND or OR from the TLA application s Signals property page of the System Configuration window Use Tables C 1 and C 2 to convert physical expressions to logical expressions or vice versa Table C 1 For Signal 1 2 and 3 4 logical function AND LA DSO expression Logical true Logical false Pattern generator High Low signal output Pattern generator 1 0 event definition Table C 2 For Signal 3 4 logical function OR LA DSO expression Logical true Logical false Pattern generator Low High signal output Pattern generator 0 1 event definition Only one module in the system can drive Signal 1 Only one module in the system can drive signal 2 When used with an expansion m
415. ou are using a TLA7Lx Mx Nx Px Qx module Internal 2X clocking provides a sample rate of 2 ns using a TLA7Axx module Internal 2X clocking provides a sample rate of 1 ns ioii Ins Me Memory Depth 67108864 x Acquire Normal x Suppor Package None Clocking Internal 4X Clocking Available only for TLA7Axx modules Internal 4X clocking mode allows you to trade three quarters of the input channels for four times the sampling speed and four times the acquisition depth Available only in TLA7Axx modules Internal 4X clocking provides a sample rate of 500 ps Joa 500ps z Memory Depth e71 09064 gt Acquire Normal v Suppor Package None Internal 4 Clocking External Clocking External synchronous clocking synchronizes data sampling with the clock of the target system so you can be more selective about the data you sample This type of clocking is best for state analysis listing data Tektronix Logic Analyzer Family User Manual Version 4 2 Software Setup When you select External clocking you have the option of further selections to define the sample clock To do so you create clocking definitions in the Clocking dialog box Clocking definitions qualify when data is sampled The definitions consist of a Boolean combination of events linking clock and qualifier lines Data is sampled and stored in memory only when the clock definition is true lily Setup QSTART Bel xi Clocking Sie Mor
416. ou have several clocking choices depending on the module you are using Internal Internal 2X and External are available for all module types If you are using a TLA7Axx module you can also choose Internal 4X External 2X External 2X Double Data Rate DDR External 4X and Source Sync clocking Custom clocking is also available regardless of your module type if a microprocessor support package has been loaded Your clocking choice determines further clocking selections Internal Clocking Internal asynchronous clocking uses the LA module internal clock to determine when to sample data Typically internal clocking is used for timing analysis waveform data Tektronix Logic Analyzer Family User Manual Version 4 2 Software 3 7 Setup 3 8 ioil Clocking finena 7 ans 7 Memory Depth ai 94304 F Acquire Normal Support None When you choose Internal clocking the only additional selection is the clock rate in the next field Because the internal clock signal is asynchronous to the target system be careful to select a sample period that is considerably faster than the data rate of your target system For more information on Internal clocking refer to the online help Internal 2X Clocking When you use Internal 2X clocking mode you trade half the input channels for twice the sampling speed and acquisition depth You can use Internal 2X clocking mode with triggering and in both Listing and Waveform windows If y
417. our logic analyzer to connect to the ECP connector Once you have connected all the accessories you can connect the probes to the instrument Refer to the appropriate section for your instrument For additional information on the individual probes refer to the instructions that accompanied your probes CAUTION When attaching the probe to the logic analyzer you must use care to A N evenly tighten probe screws until they are snug First slightly tighten screws then snug each screw to 4 in lbs max Under tightening the probe screws can result in intermittence Over tightening can result in stripped screws Tektronix Logic Analyzer Family User Manual Version 4 2 Software Getting Started Connecting Probes tothe Connect the logic analyzer probes and the optional retaining brackets as shown TLA600 Logic Analyzer in Figure 1 9 Attach optional probe retainer brackets Match color coded labels Figure 1 9 Connecting the logic analyzer probes to a TLA600 logic analyzer Tektronix Logic Analyzer Family User Manual Version 4 2 Software 1 13 Getting Started Connecting Probes tothe Connect the logic analyzer probes and the optional retaining brackets as shown TLA700 LA Module in Figure 1 10 and Figure 1 11 Match color coded labels lt gt 3 DA g LN E a NN Q os SS D Attach optional probe retainer brackets Figure 1 10 Connecting the logic analyzer pro
418. ousing to minimize reentry into the intake A Temperature readout sensitivity 100 mV C with 0 C corresponding to 0 V output Temperature sense range 10 C to 90 C delta temperature lt 50 C Clearance 2 in 51 mm rear top and sides Fan speed readout RPM 20 x Tach frequency or 10 Pulse Width where Pulse Width is the positive width of the TACH1 fan output signal measured in seconds Fan speed range 650 to 2250 RPM Tektronix Logic Analyzer Family User Manual Version 4 2 Software A 35 Appendix A Specifications for the Benchtop and Expansion Mainframe Table A 40 Enhanced monitor Characteristic Voltage readout Voltage readout accuracy Typical Current readout Current readout accuracy Typical Rear panel connector levels Description 24 V 24 V 12 V 12 V 5 V 5 2 V 2 V 5 Votandby if present and 5 Vexternal Via RS232 3 maximum Readout of the present current on the 24 V 24 V 12 V 12 V 5 V 2 V 5 2 V rails via RS232 5 of maximum power supply Imp 25 VDC maximum 1 A maximum per pin Provides access for RS 232 host to enhanced monitor Table A 41 Benchtop and expansion mainframe mechanical Characteristic Overall Dimensions Description See Figures A 4 and A 5 for overall dimensions Standard Height with feet 13 7 in 346 7 mm including feet Width 16 7 in 424 2 mm
419. p the software packaging available because you will need it to enter the Windows software registration number when you first turn on the logic analyzer m Fill out and return the customer registration card that is packaged with this manual Read this section before installing the logic analyzer This section describes site considerations power requirements and ground connections for your logic analyzer CAUTION Allow a two inch 5 1 cm clearance at the bottom and sides of the instrument to ensure proper cooling TLA600 and TLA714 715 Logic Analyzers You can use the TLA600 and TLA715 logic analyzers on a bench or on a cart in the normal position on the bottom feet You can also use the logic analyzer while it rests on the rear feet If you use the instrument while it is resting on the rear feet make sure that you properly route any cables connected to the rear of the instrument to avoid damaging them Tektronix Logic Analyzer Family User Manual Version 4 2 Software Getting Started A TLA720 721 Benchtop and TLA7XM Expansion Mainframes The benchtop and expansion mainframes are designed to operate on a bench or in a rackmount environment WARNING To avoid personal injury do not stack more then one expansion mainframe on top of a benchtop mainframe or another expansion mainframe Always use a rackmount kit to ensure that the expansion mainframes are secure and will not fall If you need to stack more tha
420. p time 2 0 ns 0 8 ns 2 8 ns Maximum hold time 0 0 ns 0 2 ns 0 2ns Channel to channel skew typical 2 x sample uncertainty Example for P6417 or P6418 Probe 1 ns 2 x 500 ps 2 ns The setup and hold window can be moved for each channel group from 8 5 ns Ts to 7 0 ns Ts in 0 5 ns steps setup time Hold time follows the setup time by the setup and hold window size 200 MHz in full speed mode 5 ns minimum between active clock edges 100 MHz in half speed mode 10 ns minimum between active clock edges Demux clocking Demux Channels TLA7N3 TLA7N4 TLA7P4 TLA7Q4 TLA 7L3 TLA 7L4 TLA 7M3 TLA 7M4 Channels multiplex as follows A3 7 0 to D3 7 0 A2 7 0 to D2 7 0 A1 7 0 to D1 7 0 A0 7 0 to D0 7 0 TLA7N1 TLA7N2 TLA7P2 TLA7Q2 TLA 7L1 TLA 7L2 TLA 7M1 TLA 7M2 Channels multiplex as follows A3 7 0 to C3 7 0 A2 7 0 to C2 7 0 A1 7 0 to D1 7 0 TLA7N2 TLA7P2 TLA7Q2 TLA 7L2 TLA 7M2 only A0 7 0 to DO 7 0 TLA7N2 TLA7P2 TLA7Q2 TLA 7L2 TLA 7M2 only Time between DeMux clock edges Typical 5 ns minimum between DeMux clock edges in full speed mode 10 ns minimum between DeMux clock edges in half speed mode Time between DeMux store clock edges Typical 10 ns minimum between DeMux master clock edges in full speed mode 20 ns minimum between DeMux master clock edges in half speed mode Tektronix Logic Analyzer Family User Manual Version 4 2 Software A 5
421. pees ees eee eines A T 457 20 mm 414 02 mm 18 00 in f 16 30 in p e r Ss 281 94 mm z 11 10 in o e E ae tee 55 SS SS 5 ia SS SS SS Sa SS a Figure A 1 Dimensions of the TLA600 series logic analyzer A 16 Tektronix Logic Analyzer Family User Manual Version 4 2 Software Appendix A Specifications for the TLA700 System TLA700 System Specifications Tables A 18 through A 20 list the specifications common to the TLA715 TLA714 TLA720 and TLA721 logic analyzers Detailed specifications for the individual logic analyzers begin on page A 23 Table A 18 TLA700 Backplane interface Characteristic Description Slots Portable mainframe 4 Benchtop mainframe 10 three slots taken up by the controller module Expansion mainframe 13 4 CLK10 Frequency 10 MHz 100 PPM Relative Time Correlation Error Typical TLA7Lx Mx Nx Px Qx to TLA7Lx Mx Nx Px Qx MagniVu data 2ns TLA7Axx to TLA7Axx MagniVu data 2ns TLA7Axx to TLA7Lx Mx Nx Px Qx MagniVu data 3 ns TLA7Lx Mx Nx Px Qx to TLA7Lx Mx Nx Px Qx normal data using an internal 1 TLA7Lx Mx Nx Px Qx sample 0 5 ns clock TLA7Axx to TLA7Axx normal data using an internal clock 1 TLA7Axx sample 0 5 ns TLA7Axx to TLA7Lx Mx Nx Px Qx normal data using an internal clock 1 TLA7LX Mx Nx Px Qx sample 0 5 ns TLA7Lx Mx Nx Px Qx to TLA7Lx Mx Nx Px Qx normal data usin
422. prayed J7 ZI en J TS 7 DS I JISS rot FIII or Fa 2J JI T q Sa Figure 1 17 Depress the hard disk drive latch Tektronix Logic Analyzer Family User Manual Version 4 2 Software 1 23 Getting Started NS SAA U UIIE 9 Y DA Ss x 5 LOL LLL Lf pel CY LITTLE ELE COOOL ELT COOCOO FOF ALO LEG SELE LLY OILED o DELL CLL AS PLE ff CLL Figure 1 18 Unlatching the hard disk drive cartridge Tektronix Logic Analyzer Family User Manual Version 4 2 Software Figure 1 19 Removing the hard disk drive cartridge 1 24 Getting Started Connecting Probes to the Target System The logic analyzer connects to the target system through probes The LA probes allow you to connect to the target system in several different ways as shown in the following illustrations You can use the color coded probe channels to map the hardware connections to the channel settings in the LA Setup window Each LA probe group consists of eight channels that can be individually named in the LA Setup menu NOTE Power off the target system and the logic analyzer before connecting the probes to the target system Connect the probes to the logic analyzer by matching the color coded label to the label on the LA module Table 1 4 identifies the recommended probes for each logic analyzer series Table 1 4 Probe Logic
423. r Space Tab Comma C Semicolon I Include Column Headers I Use Enhanced Column Headers jy Include Unit Characters M Fixed Radix Decimal Figure 3 94 Export Data Options dialog box Use the Export Data Options dialog box to customize the listing data for a text file You can specify the field delimiter to separate the listing columns You can also specify whether measurement units will be included with the data If you export the data without unit characters the time stamp values are in picoseconds and the DSO values are listed in volts To export listing data follow these steps 1 Inthe System window select a Listing window 2 From the File menu click Export Data 3 In the Export Data dialog box select the folder to which you want to export data Otherwise leave the default of My Documents 4 Click the Options button to specify any export options for the text data and then click OK 5 Enter a name for the exported file 6 Specify the export range 7 Click Save Tektronix Logic Analyzer Family User Manual Version 4 2 Software 3 131 Listing Window 3 132 Exporting Data as a Binary File You can also export the listing data as a binary file with a tbf TLA700 Binary Format file name extension This option is only available if the data window is from a single data source You can export any data that appears in a Listing window including DSO and MagniVu data This option is useful w
424. r m One module arms another m Modules respond to events declared by another module internal signals After the modules have captured and stored data you can view the data in a Listing or Waveform window All data is time correlated in the display regardless of its source Due to the precise time stamp information stored with the data and the tightly integrated communications between modules the logic analyzer interleaves data acquired from various sources Because time stamp information is always stored with the data you can also compare saved data and current data with no loss of accuracy MagniVu data is also time correlated with regular data Because MagniVu data is always present you can easily compare a normal acquisition with the MagniVu counterpart Tektronix Logic Analyzer Family User Manual Version 4 2 Software Operating Basics Listing Data Concepts In many cases you will use the logic analyzer to observe the data flow in the target system The data recorded by the logic analyzer can be displayed in a listing format as shown in Figure 2 32 Listing data is a table of sequential operations performed by the target system In the Listing window each data sample is displayed sequentially Because each data sample includes time stamp information it is a straightforward process to display acquisitions from multiple data sources Samples from all specified data sources are interleaved in chronological order For clarity
425. r Cord with 20A plug NEMA 5 20P Power Consumption Watts 0 90 110 130 150 170 190 210 230 250 115 Input Line Voltage Volts AC 20AT Fuse 15AF Fuse 6 3AF Fuse Figure F 1 Power cord identification chart For example assume that your TLA721 benchtop system consists of four TLA7Q4 Logic Analyzer Modules and one TLA7E2 DSO Module Also assume that you will be operating the mainframe at 90 VAC Add 121 Watts for the DSO Module 4 X 75 Watts for the logic analyzer modules 70 Watts for the controller 100 Watts for the mainframe to come up with a total value of 591 Watts Because the power consumption at 90 VAC is approaching the shaded area of the graph in Figure F 1 you should consider using the 20A power cord NOTE If you are configuring an expansion mainframe remember to use the power value for the expansion module instead of the benchtop controller Tektronix Logic Analyzer Family User Manual Version 4 2 Software F 3 Appendix F Power Cord and Line Fuse Requirements for the Benchtop and Expansion Mainframes F 4 Tektronix Logic Analyzer Family User Manual Version 4 2 Software SSS aS eee Appendix G Installing Software Most of the software comes factory installed when you receive your logic analyzer You should only need to refer to this appendix if you reinstall your software These instructions only refer to reinstalling the latest version of the applicatio
426. r Family User Manual Version 4 2 Software Setup Saving and Loading Setups Triggers and Data Saving System and Module Files Once you set up the logic analyzer to your satisfaction you will probably want to save the setup for future use You can save setup information in two ways via a saved system file or a saved module file Refer to the Logic Analyzer Conceptual Model described on page 2 33 The modules consist of the setup trigger and data associated with the physical LA or DSO module installed in the logic analyzer The system consists of the setup and data for the whole logic analyzer including all the modules and all data windows See Figure 3 52 When you save a module you save all the setup and trigger information for that module When you save a system you save all the setup information for the system including data window display settings and all the module information as well In either case you have the option of saving acquired data System Data Windows General Settings Module 1 Module 2 Module n Setup Setup Setup Trigger Trigger ee Trigger Data Data Data Figure 3 52 Logic analyzer conceptual model Determine whether you want to save the information from a single module or from all modules Select Save System or Save Module from the File menu In the Save As dialog box select one of the save options see Figure 3 53 m Click the Save all Acquired Data option button
427. r in the trigger program you cannot use Trigger All Modules Trigger All Modules Also known as a System trigger This signal is also available at the System Trigger Out connector When you use Trigger All Modules in the trigger program you cannot use Trigger Wait for System Trigger Causes this module to wait for a system trigger that is generated by another module Trigger Main Available only on TLA7Axx modules specifies that sample data will be stored in main memory Only one type of main triggering Trigger Trigger Main or Trigger System can be used in the trigger program Trigger MagniVu Available only on TLA7Axx modules specifies that sample data will be stored in MagniVu memory Trigger MagniVu can be used in conjunction with one of the main memory trigger actions Snapshot Current Sample Available only on TLA7Axx modules reloads the word recognizer Snapshot data is not available during an acquisition therefore it is not be added to the status monitor Go To Passes the program flow to a different trigger state You can only use one Go To action in the clause definition Tektronix Logic Analyzer Family User Manual Version 4 2 Software 3 47 Setup 3 48 Table 3 6 Trigger actions Cont Action Description Counter and Timer actions Starts stops resets or clears counters or timers Counter 1 and 2 actions conflict with Timer 1 and 2 actions respectively Counter timer actions may conflict wi
428. r under warranty as well as other services that are designed to meet your specific service needs Whether providing warranty repair service or any of the other services listed below Tektronix service technicians are well equipped to service the logic analyzers Services are provided at Tektronix Services Centers and on site at your facility depending on your location Tektronix warrants this product for one year from date of purchase The warranty appears behind the title page in this manual Tektronix technicians provide warranty service at most Tektronix service locations worldwide The Tektronix product catalog lists all service locations worldwide or you can visit us on our Customer Services World Center web site at www tektronix com Measurement Service In addition to warranty repair Tektronix Service offers calibration and other services that provide cost effective solutions to your service needs and quality standards compliance requirements Our instruments are supported worldwide by the leading edge design manufacturing and service resources of Tektronix to provide the best possible service The following services can be tailored to fit your requirements for calibration and or repair of the TLA logic analyzers Service Options Tektronix Service Options can be selected at the time you purchase your instrument You select these options to provide the services that best meet your service needs These service options are listed on
429. ram 3 28 Use the LA Trigger window see Figure 3 25 to construct a trigger program You also use the Trigger window to select how and when to store data It is important to configure the LA module Setup window before you work in the Trigger window because some of the Setup window settings affect Trigger window selections A trigger program is a series of events and actions that define when to trigger and store data The trigger program filters acquired data to find a specific data event or series of data events The trigger program can accept information from other modules or send signals external to the logic analyzer Trigger programs range from simple to extremely complex They are the key to logic analyzer operation of acquiring the desired data in acquisition memory and to displaying the data for viewing There are two methods of setting up logic analyzer trigger programs You can either select a preexisting Easy Trigger program or develop a trigger program using functionality available from the PowerTrigger tab EasyTrigger programs are designed to help you quickly start acquiring and displaying data The EasyTrigger tab contains a list of predefined trigger programs that contain simplified event conditions You can modify EasyTrigger program event conditions and then rename and save the program to a specified file for later reuse Tektronix Logic Analyzer Family User Manual Version 4 2 Software Setup For information a
430. ration 3 150 symbols 3 150 Tektronix Logic Analyzer Family User Manual Version 4 2 Software Index Histogram window 2 15 2 45 3 147 Glossary 5 accelerator keys 3 153 changing font size 3 150 clearing counts 3 150 columns 3 150 creating 3 149 customizing the display 3 151 exporting data 3 152 hot keys 3 153 magnification 3 150 measuring events 3 148 shortcut keys 3 153 sorting data 3 150 splitting the data area 3 151 stopping analysis 3 150 viewing address activity 3 148 Horizontal controls DSO setup 3 55 Waveform window 3 114 Hot keys general purpose data window 3 91 Histogram window 3 153 Listing window 3 133 menu keys 3 80 Source window 3 145 Waveform window 3 116 IEEE695 file format Glossary 5 Incoming inspection checking probes 1 21 checking the mainframe 1 22 performing 1 21 Installing expansion cables 1 8 expansion mainframe 1 5 expansion module in a benchtop mainframe 1 5 in a TLA714 1 7 in a TLA715 1 7 software G 13 PatGenVu G 20 PPI software G 18 TLA application software G 16 TLAVu software G 19 TPI software G 18 Intermodule signals 3 71 Internal 2X clocking 3 8 Internal 4X clocking 3 8 Internal clock 2 29 Glossary 5 Internal clocking 3 7 Internal signal 3 71 3 85 Glossary 4 Interpolation 2 42 Glossary 5 Isolating system problems H 15 iView cable 3 57 J Jumping to specific data locations 3 102 3 121 3 137 K Keypad portable m
431. rce code Standby STBY The off like state when the instrument in not in use Some circuits are active even while the instrument is in the standby state State A trigger program term A step in a trigger program made up of one or more clauses See also clause Storage qualification The process of filtering out data that has been acquired but which you do not want to store in acquisition memory This allows you to avoid filling up your module s acquisition memory with irrelevant data samples Symbolic range generation A Histogram window term The histogram ranges are defined in a range symbol file The highest and lowest ranges depend on the maximum and minimum boundaries for the ranges defined in the symbol file Symbolic radix A format that allows you to substitute mnemonics names for radix numbers in the Trigger and data windows Synchronous acquisition An acquisition that is made using a clock signal generated external to the logic analyzer This clock is usually the clock in the system under test The external clock is usually synchronous with the system under test and may or may not be periodic Tektronix Logic Analyzer Family User Manual Version 4 2 Software Glossary System trigger trigger all An overriding command to all modules that causes them to stop looking for a trigger and to acquire their posttrigger data regardless of whether they have been armed or have fulfilled their own trigger conditions The syst
432. rce window properties You can also click the label above the data area to display Source window properties Then select one of the tabs to change the data you are interested in Tektronix Logic Analyzer Family User Manual Version 4 2 Software Source Window Locating Source Files You can define the location of source files using the Source Files properties tab see Figure 3 101 Use the Source Files tab to list the locations of source files as well as possible file suffixes that can be attached to the file names used for compilers that do not include the file suffixes A similar tab System options Source Files tab is used as a default list of locations of source files and suffixes The logic analyzer uses this list every time you create a new Source window The Source window uses the file path and file suffix in combination to locate the correct source file It searches for the file name in each directory indicated by the file path list in the order specified If a file name does not have a suffix then suffixes from the suffix list are tried until a match is found or all file path and suffix combinations are exhausted Properties Qstart Src k rixi About Data Source Window Source Files Data Marks Modify Source Files Search Conditions Search Path List Suffis List Path C Program Files TLA 7O0 S amples TLA700 S amples S ource Files Path File C My Dacuments FilePathList txt Edit De
433. red file or prompts you for a path name The ability to locate source files depends on the Search Path List and Suffix List defined in the Source Files properties tab Searching for Source Data Use the Define Search dialog box to search for specific text patterns You can search the current source file or search all of the source files identified by the loaded symbol file Click the search icon to open the dialog box and then fill out the search conditions see Figure 3 100 The active cursor marks the first occurrence of the data MES Le ae aJa Scan Listing Later Define Search Source 1 kl Search Jal Files starting at Active Cursor For the pattern eprint lt lt Search Back Search Fwd gt gt I Ignore Case I Close on Search Cancel Help Figure 3 100 Defining source search criteria You can search for any text pattern including leading and embedded white space trailing white space is ignored Tektronix Logic Analyzer Family User Manual Version 4 2 Software 3 141 Source Window When searching for data in multiple files using the Displayed Source File list the search operation follows the order of files listed in the Source Window properties tab When you search for data in all files and one or more of the files cannot be found the Source File Locator dialog box prompts you to specify the location of the file If the search is not completed in a set amount of time
434. rformance requirements A 1 F File format COFF Glossary 2 IEEE695 Glossary 5 OMF166 Glossary 6 OMF286 Glossary 6 OMF386 Glossary 6 OMFS51 Glossary 6 OMF86 Glossary 6 File name extension saved files 3 75 symbol files B 1 Firmware Upgrading G 20 Font in Histogram window 3 150 in Listing window 3 127 in Source window 3 142 Force Main Prefill 3 48 Front panel controls portable mainframe 2 2 TLA600 series 2 1 Function symbols B 5 Index 4 Fuse location TLA600 series 1 17 TLA700 series 1 19 requirements TLA600 series 1 16 TLA700 series 1 18 Fuse requirements benchtop mainframe F 3 expansion mainframe F 3 G Gap qualification 3 128 Glossary 7 General maintenance H 5 General safety summary xvii symbols and terms xvili to avoid fire xvii to avoid personal injury xvii Glidepoint pad 2 3 portable mainframe 2 2 Glitch 2 43 3 17 Glossary 5 glitch storage mode 3 17 Listing window 3 129 Waveform window 3 114 Go To dialog box 3 102 3 121 3 137 Ground chassis TLA600 series 2 5 TLA700 series 2 6 safety TLA600 series 2 5 TLA700 series 2 6 Ground GND coupling Glossary 5 Ground line indicator in DSO waveforms 3 95 Guidelines for merging modules E 1 H Hard disk drive removal 1 23 image installing G 11 reformatting G 13 Hardware problems H 9 Help online 1 31 High level language 2 37 3 135 Histogram ranges defining 3 150 linear generation 3 150 log gene
435. riggers when specified time has elapsed If the counter is positive then more values within the range have occurred If the counter is negative then values outside the range have occurred Timer values are adjusted to the module timing resolution which can be 2nS or 4nS depending on the module 3 34 Tektronix Logic Analyzer Family User Manual Version 4 2 Software Setup Table 3 3 EasyTrigger program list Cont File name Trigger after acquiring for a specified time Trigger after acquiring N samples Trigger after filling pre trigger ac quisition memory Trigger on stack overflow or underflow Simple Events Time or Count Trigger on event absent for gt time T Trigger on event absent for lt time T Trigger on event present for gt time T Trigger on event present for lt time T Description Trigger after acquiring the samples for a specified time Timer values are adjusted to the module timing resolution which can be 2nS or 4nS depending on the module type Trigger after acquiring N samples Triggers after filling pre trigger acquisition memory Note Please ensure that the number of pre trigger samples entered is lt number of pre trigger samples as determined by trigger position in the tool bar For example if the memory depth in the Setup window is set to 512 and if the trigger position in the Trigger window is set to 50 then the entered number of pre triggered samples should be lt
436. ring Firmware 0 eee eee eee eee ee G 20 iv Tektronix Logic Analyzer Family User Manual Version 4 2 Software Table of Contents Appendix H User Service PE ase blac Sar ssh cave E EET H 1 Service Offerings cc sc essa Pee PEERS es a PEE ORG ORE aR EMSRS H 1 Service OPONE ner ta KER sek Vee aces Fae MERE AG hee van Pew RS H 2 General Caie t orange pra Seeded ius bi tad Sedo swthha eae Beek is H 5 Module Self Calibration 0 0 0 ccc cee eee eee ee eens H 5 Preventive Maintenance 0 0 ccc eee eee eee ee eens H 5 In Cas of Problems iis ein Se ehGee ba tsa tad Reheat ayes tess H 8 Repacking for Shipment 0 eee eee ee eee eee H 19 Glossary Index Tektronix Logic Analyzer Family User Manual Version 4 2 Software v Table of Contents List of Figures vi Figure 1 1 TLA600 series logic analyzers 00e eens Figure 1 2 TLA700 portable mainframe 006 Figure 1 3 TLA700 benchtop mainframe with an expansion mainframe cc cec cece cece eee cevees Figure 1 4 Benchtop mainframe and one expansion mainframe Figure 1 5 Benchtop mainframe and two expansion mainframes Figure 1 6 Portable mainframe shown with two expansion mainframes cc cee ce reece cee eecevees Figure 1 7 TLA600 series accessories connections Figure 1 8 TLA700 series accessories connections Figure 1 9 Connecting the logic analyzer
437. rizontal scale Integrated pointing device USB port Mouse Port Keyboard Port Description 31 key ASCII keypad to support naming of files traces and keyboard equivalents of pointing device inputs for menus 25 key HEX keypad supporting standard DSO and LA entry functions Various increment decrement functions dependent on screen or window type Scrolling and positioning dependent on display type Scales waveform displays only Scrolling and positioning dependent on display type Scales waveform displays only Vertically mounted Trackball with two keypad control buttons SELECT and MENU Front panel lower left hand side dual USB connector PS 2 compatible pointing device port PS 2 compatible keyboard port Table A 24 TLA715 rear panel interface Characteristic Parallel interface port Description 36 pin high density connector supports Output only Enhanced Parallel Port EPP or Microsoft high speed mode ECP Complies with IEEE P1284 C D2 for bi directional Parallel Peripheral Interface for Personal Computers draft style 1284 C Serial interface port 9 pin male sub D connector to support RS 232 serial port SVGA output Port 1 and Port 2 Two 15 pin sub D SVGA connectors PC CardBus32 port Standard Type I Il II PC compatible PC card slot Complies with PCMCIA 2 1 and JEIDA 4 1 Tektronix Logic Analyzer Family User Manual Version 4 2 Software A 25 Appendix A Specifications for the TLA715 D
438. rks Use marks to make specific data easier to identify and find Jumping to Specific Data Locations You can use the Go To dialog box to jump to a new position by selecting any current mark or waveform To open the Go To dialog box open a data window and click the Go To tool bar button as shown in Figure 3 98 a LIR aJa l l Scan Listing Later Go To Source 1 21 x Select Mark Go To Cancel Help Figure 3 98 Using the Go To dialog box to jump to the cursor location You can also use the Overview Mark bar to quickly jump to another location If you do not click a mark clicking in the Overview Mark bar scrolls to that location Moving the cursor between statements in the Source window does not necessari ly move the cursor in the same direction in the Listing window This can happen for example if the statement in the new location was executed both before and after the statement in the old location such as when the statement is in a loop The Scan Listing box sets the scan direction in a Listing window when you move the cursor in the Source window Tektronix Logic Analyzer Family User Manual Version 4 2 Software 3 137 Source Window Moving Through Source Files Source Relative Cursor 3 138 Positioning There are several ways of moving through the data in source files You can move through source files from the Source window or from the Listing window When you move a cursor in one
439. rogram will detect it and ask if you want to remove it Follow the on screen instructions to remove the software answering Yes to any prompts Reboot the instrument when prompted Repeat Step 4 to reinstall the software following any on screen prompts 6 After the software has been successfully installed restart the instrument Tektronix Logic Analyzer Family User Manual Version 4 2 Software G 17 Appendix G Installing Software Installing the Remote Operation Software The TPI client software and the PPI client software are two software packages that allow you to remotely control the logic analyzer or pattern generator from a remote PC These software packages are located on Disc 1 of the dual CD ROM set You must ensure that the version of the TPI and PPI client software is the same as that of TLA and pattern generator application on your logic analyzer Complete the following steps to update the client software packages on your PC If you have an older version already installed on your PC the program will automatically detect it and replace it during the upgrade process 1 Install Disc 1 of the Tektronix Logic Analyzer Family Application Software in the CD ROM drive of the PC Click Run in the Windows Start menu to display the Run dialog box To install the TPI client software enter D TPI Client SW Disk1 Setup exe in the Run dialog box To install the PPI client software enter D PPI Client SW Disk1 Setup exe in
440. rs 4 word recognizers 4 range recognizers Range recognizer channel order From most significant probe group to least significant probe group C3 C2 C1 C0 E3 E2 E1 E0 A3 A2 D3 D2 A1 A0 D1 DO Q3 Q2 Q1 Q0 CK3 CK2 CK1 CKO Missing channels for modules with fewer than 136 channels are omitted When merged the range recognition extends across all the modules the master module contains the most significant groups The master module is to the left lower numbered slot of a merged pair The master module is in the center when three modules are merged Slave module 1 is located to the right of the master module and slave module 2 is located to the left of the master module Glitch detector 2 Each channel group can be enabled to detect a glitch Minimum detectable glitch pulse width Typical 2 0 ns single channel with a P6417 P6418 or P6434 probe A 56 Tektronix Logic Analyzer Family User Manual Version 4 2 Software Appendix A Specifications for the TLA7Lx Mx Nx Px Qx Logic Analzyer Modules Table A 57 LA module trigger system Cont Characteristic Setup and hold violation detector Transition detector 4 Counter Timers Signal In 1 Signal In 2 Trigger In Active trigger resources Trigger States 1 Trigger State sequence rate Trigger Machine Actions Main acquisition trigger Main trigger position Increment counter Description Each channel group can be enabled to detect a setup a
441. rs are input through the SYSTEM TRIG IN connector Regardless of the source of the system trigger all modules must respond Use the System Trigger dialog box to specify triggering for the overall system The following options allow you to change the trigger programs of all modules from one location Tektronix Logic Analyzer Family User Manual Version 4 2 Software Setup m System Trigger Source Modules trigger independently for System Trigger actions System triggered by this module LA1 x System triggered by the first internal module that triggers Modules tigger using the current custom setup NOTE The option selected will change the trigger behavior of all modules except LA modules that have neither Trigger Trigger All Modules nor Wait m System Trigger In Out Connectors V Enable Systemiinager Gut front panel connector J Enable System Trigger In front panel connector Cancel Help Figure 3 49 System Trigger dialog box Table 3 11 System trigger source System trigger source Modules trigger independently Systems triggered by this Description Trigger All Modules and Wait for System Trigger actions in all trigger programs are changed to trigger actions The selected module s trigger program uses the Trigger All module Modules action all other programs will wait for the system trigger Use the associated list box to select which module is used to
442. rs simplifies triggers by providing a list of trigger programs for you to either load or use as the basis for developing customized trigger programs that are specifically designed to your data require ments The EasyTrigger tab lists all available predefined trigger programs and provides both a text description and graphical representation of each The system responds by displaying a simplified version of the program s event conditions The PowerTrigger tab shows the general structure of the trigger program and summarizes activity within individual program states You can also use the PowerTrigger tab to manually define simple or complex trigger programs one step at a time to determine how the logic analyzer finds the data you are interested in See Figure 2 14 for an example of the default LA Trigger window Tektronix Logic Analyzer Family User Manual Version 4 2 Software Approaching the TLA Application Windows oix D L S Aa af E5 Storage fa z Trigger Pos aaa aS EasyTrigger PowerTrigger Simple Events Trigger immediately Wait For systern trigger i Run until the Stop button is pressed Trigger on channel low high level Trigger on channel transition fedge Trigger immediately Triggers on the first sample Triggers on the very first sample irrespective of the event type The Event field is fixed to Anything and disabled to ensure that trigger occurs on the very first sample irr
443. rt with the calibration performed in conjunction with Option CS Tektronix Logic Analyzer Family User Manual Version 4 2 Software H 3 Appendix H User Service TLA700 Series Service The following service options are available for your TLA700 series logic Options analyzer Three years repair coverage Five years repair coverage Three years of calibration services Five years of calibration services One year upgrade to on site service 2 Three year upgrade to on site service Test data Test data Product installation service Option R3 Option R5 Option C3 Option C5 Option S1 Option S3 Option D1 Option D3 Option IN Extends product repair warranty to a total of three years Provides a total of five years of repair cover age including the product warranty period Provides factory calibration certification on delivery plus two more years of calibration coverage Throughout the coverage period the instrument will be calibrated according to its Recommended Calibration Interval Provides five full years of coverage including the initial calibration within the delivery of the product C5 is available for traceable pro ducts Upgrades the standard one year return to depot warranty to an on site warranty Upgrades any C3 D3 and R3 options pur chased to on site coverage for three years Provides initial Test Data Report from factory on delivery Provides test data on delivery plus a Te
444. runs Point at this icon with the mouse to display a tooltip showing the instrument status 4 Wait for the logic analyzer to trigger and display data or click Stop to manually stop an acquisition There are two ways to acquire data Single run or Repetitive mode Within Repetitive mode you can specify the following three conditions m Save Module and Data m Stop if Compare with Reference is Equal or Not Equal m Stop After N Acquisitions When comparing acquisition data against reference data you can view the results in either a Listing window or in a Waveform window Tektronix Logic Analyzer Family User Manual Version 4 2 Software 3 81 Acquisition Single Run Mode In Single run mode the logic analyzer automatically stops acquiring and displays data when it fulfills the setup conditions Use Single run mode to find and display a specific event During acquisition the logic analyzer monitors the data looking for the events you specified in the Trigger windows When the specified events occur the logic analyzer responds according to the selections you made in the Setup and Trigger windows Repetitive Mode In Repetitive mode the logic analyzer keeps acquiring data until you click Stop or until it fulfills the stop conditions You can use Repetitive mode as follows m To observe the same waveform or listing for a period of time m To stop after a set number of acquisitions for a period of time and look for differences Aft
445. s B 1 Glossary 9 function symbols B 5 pattern file header B 2 range file header B 2 range symbols color B 4 function B 4 source B 4 variable B 4 source symbols B 6 variable symbols B 5 Turning on TLA600 series 1 16 TLA700 series 1 18 Two way merge procedure E 8 U Unassert Glossary 9 Upgrading firmware G 20 URL Tektronix xxiv User service general maintenance H 5 preventive maintenance H 5 Tektronix Logic Analyzer Family User Manual Version 4 2 Software Index 11 Index V Variable symbols B 5 Vertical controls DSO setup 3 54 Video output in a TLA715 721 1 11 in a TLA714 720 1 11 primary and secondary 1 11 Viewing glitches 3 129 setup and hold violations 3 129 violations 3 129 Violation 2 43 detecting 2 43 setup and hold 2 43 W Warranty repair service H 1 Waveform properties overlay 3 117 Waveform data concepts 2 39 Waveform measurements list 3 99 Waveform window 2 14 Glossary 10 accelerator keys 3 116 cursors 3 98 customizing the display 3 115 DSO module 3 93 External Oscilloscope module 3 93 hot keys 3 116 jumping to specific data locations 3 102 LA module 3 93 locking data windows together 3 105 marks cursors and indicators 3 96 pattern generator 2 26 Route from LA dialog box 3 109 Route to DSO dialog box 3 108 routing data from the logic analyzer 3 109 routing data to the DSO 3 108 searching data 3 104 shortcut keys 3 116 splitting the d
446. s Figure 2 20 shows an example of the Module Setup tab Mi Setup PG 1 Module Setup Crannel S2tup Fiabe Setua Signals Setup r Channel Mode Half Channel 268 MBi s Full Channel 134 MBi s gt Run Mode p Hid Step I Hig on Stop Continuous Internal Perisd froo oocooous 4 E Clocking Interna T _ Exte nal Event I Event Filter Inhibit by None z Event Mcde Level 7 for Advance Level tor Jump Threshold J je Polarity Noun dl az Figure 2 20 Module Setup tab Click the Channel Setup tab to define the individual channel setups The Channel Setup tab is similar to the LA Setup window It shows all of the probe and channel groupings You can edit the groups as necessary to fit the needs of your application Click the Probe Setup tab to specify probe details such as the output threshold voltage and inhibit information The Probe Setup window shows the detailed settings of all probes connected to the pattern generator module Click the Signal Setup tab to define the input and output signals Use these signals together with the Program window settings to control the pattern generator program Use the Program window to develop the pattern generator program The Program window provides access to the Block tab Sequence tab Subsequence tab and the Event tab Use the Program windows to create the data vectors and the patter
447. s You can further define the number of samples that you want to compare as well as data alignment offset In the Listing and Waveform windows you can use color to quickly identify the compared data You can set up one color to show where the acquired data does not equal the reference data You can use another color to show where the acquired data equals the reference data Figure 2 44 shows a Listing window during a memory compare operation Notice that some of the data under the LA 2 A2 column appears in a different color indicating that there were differences between the acquired data and the reference data FB Listing 3 Ol x ile tee e Delta Time h 2ns 01100000 01100000 OLLOOOOO QLLOONNO 01100000 01100000 0 1 2 3 3 4 4 5 5 6 6 s 8 3 g ce i a a a O a Figure 2 44 Using color to show memory differences in a Listing window 2 46 Tektronix Logic Analyzer Family User Manual Version 4 2 Software Operating Basics Repetitive Acquisitions Use the Repetitive acquisition features of the logic analyzer to automate repetitive and time consuming tasks For example you can specify the number of times that you want the logic analyzer to acquire data With each acquisition you can save the data to a file for analysis You can also set up the logic analyzer to open a file or execute a program when all of the acquisitions have been completed You can set up the LA module
448. s Logic Analyzer Specifications 0 2 00 00 00 ee A 5 TLA700 System Specifications 0 00 eee eee eee eee eee A 17 TLA715 Dual Monitor Portable Mainframe Characteristics A 23 Tektronix Logic Analyzer Family User Manual Version 4 2 Software iii Table of Contents TLA714 Portable Mainframe Characteristics 000000000008 A 29 Benchtop and Expansion Mainframe Characteristics 0 A 34 TLA721 Dual Monitor Benchtop Controller Characteristics A 39 TLA720 Benchtop Controller Characteristics 000 000 0008 A 42 TLA7Axx Series Logic Analyzer Module Characteristics A 44 TLA7Lx Mx Nx Px Qx Module Characteristics 00 00 0000 0 eee A 54 DSO Module Characteristics 2 0 0 0 eee eee cee eee A 61 TLA7PG2 Pattern Generator Module Characteristics 04 A 67 External Oscilloscope iView Characteristics 0 0 ee eee eee eee A 70 Appendix B TLA Symbol File Format EERTE ROE TSF Headets eccedere na gab E E A ae Ae eae TSF Pattern Symbols sessveieeie nesre eee a ee a e a wes TSF Range Symbols essei ce ee cba i eae a ee eee ee awe Appendix C Pattern Generator Physical Logical Conversion Appendix D TLA700 Module Installation 0 Setting the Logical Address 0 0 eee eee ee teen eee Merging Modules persieno e a a e Pe eee ee ee Installing Modules in the Portable Mainframe
449. s based on the input signal at the time you clicked the Autoset button Autoset works best on repetitive signals that do not have a DC offset component If the Autoset setup does not display the waveform as you want it you can easily change the setup manually To set the DSO input values based on the input signal 1 From the System window click the DSO Setup button 2 Click the Autoset button from any tab in the DSO Setup window The Autoset selections apply to all input channels the horizontal setup and the trigger setup regardless of which Autoset button was clicked 3 Ifthe signal changes or you move the probe to another signal click Autoset again to reset the setup values Autoset affects only the DSO setup it does not affect data window settings You may need to adjust data window settings for optimum display of the data Tektronix Logic Analyzer Family User Manual Version 4 2 Software 3 53 Setup 3 54 Vertical Controls Use the vertical controls to adjust vertical input voltage parameters See Figure 3 34 To open the page containing the vertical controls from the System window click the DSO Setup button and then select one of the Channel tabs TI Setup DSO 1 Sei Channel 1 Channel 2 Channel 3 Channel 4 Horizontal Trigger Vertical Input Voltage Range Vv 4 m reeeo pk pk volts N bs ree Sia Offset fv oe ener Maximum amp 54 Minimum 500r Termination Ba
450. s in either the Listing or Waveform windows Sequence Definition After defining the data blocks use the Sequence Definition window to create a Window high level overview of the pattern generator program Figure 3 44 shows an example of the Sequence Definition window You can do the following tasks with sequences Output the data blocks Use the data blocks that you defined in the Block Definition window You can specify how many times you want to output the data blocks m Determine the program flow You can wait for an external event to occur before outputting the data blocks You can also pass the program control to another sequence by jumping to a specific sequence label m Use Subsequences to execute or control the program flow Subsequences are macros that you define in the Subsequence Definition window For example you can use a subsequence to output a read cycle five times and then output a write cycle before returning control to the main program sequence 3 64 Tektronix Logic Analyzer Family User Manual Version 4 2 Software Setup m Output a high or low signal to a defined event line The event line is the one you defined in the Signal Setup window Each sequence has its own line Use labels for each line to help with the program flow Unless you set up a data block to be repeated an infinite number of times the program flow will pass to the next sequence or jump to a defined label When the last sequence has been execut
451. s of the next executable statement is used Tektronix Logic Analyzer Family User Manual Version 4 2 Software Source Window Listing Relative Cursor Listing relative cursor positioning refers to updating the Source window cursor Positioning position as a result of changing the active cursor position in the Listing window When you move the Listing window cursor to a new sample the active Source window cursor attempts to move to a corresponding source statement in the Source window The Source window uses information from the loaded symbol file to convert the address of the Listing cursor position to a source file name and statement line number location The Source window then updates the active Source window cursor position and displays the corresponding source statement Step Forward and Step Use the Step Forward and Step Backward buttons to trace the execution order of Backward Buttons source statements Click the Step Forward button to move to the next executed source statement Click the Step Backward button to move to the previous executed source statement When you click the Step Forward or Step Backward buttons the Source window causes the Listing window to search forward or backward beginning at the active Listing cursor for the next or previous executed source statement When a match is found the Listing window positions the active Listing cursor to the matching sample The Source window converts the address to a file name
452. s or practices that could result in damage to this product or other property Terms on the Product These terms may appear on the product DANGER indicates an injury hazard immediately accessible as you read the marking WARNING indicates an injury hazard not immediately accessible as you read the marking CAUTION indicates a hazard to property including the product Symbols on the Product The following symbols may appear on the product A A m WARNING Protective Ground CAUTION Double High Voltage Earth Terminal Refer to Manual Insulated Tektronix Logic Analyzer Family User Manual Version 4 2 Software Preface This manual contains operating information for the Tektronix Logic Analyzer family The manual consists of the following sections Getting Started Provides basic information about installing and using the logic analyzer Operating Basics Provides an overview of the logic analyzer connectors introduces you to the logic analyzer and pattern generator windows and explains the basic operation of the Tektronix Logic Analyzer Reference Provides detailed information of the logic analyzer This section is divided according to the window types Appendix A Specifications Lists the environmental physical and electrical properties of the logic analyzer family Appendix B TLA700 Symbol File Format Provides information about the contents of symbol files using the TLA700 Symbol File format Appendix C PG P
453. s shortcut buttons for common operations as shown below Paste Add eae L Go To Cut nai EE T l i HEE HALE wa ajA 4 j l i AES CIE i alal tla Font size Search Changing the Display Font Click the Font Size tool bar buttons Continue to click the tool bar buttons until Size the text reaches the desired size You can also set the font to a specific size using the Listing Window properties Moving Columns Select the column labels and then drag them to their new location Adding a New Column or Click the tool bar Add Column button to open the Add Column dialog box Then DataSource select the data source and its associated group or channel to add it to the display If the data source you want is not listed click Add Source to find and select the source The data source can be an installed module or a saved module file See Figure 3 92 New columns are added after to the right of the selected columns or after all columns if none are selected Tektronix Logic Analyzer Family User Manual Version 4 2 Software 3 127 Listing Window Deleting Columns Changing Column Width 3 128 Cut Copy Paste Changing Radixes Viewing Qualification Gaps Add Column HE b M ni l Add Data Source Figure 3 92 Add Column dialog box Select the column labels and then click the Cut tool bar button Double click the column label to display the Column tab Enter a new value for the column width If
454. s through the same probe MagniVu memory depth is set to a fixed 2K MagniVu data acquisition for TLA7Axx modules offers 125 ps high speed timing simultaneous with120 MHz 235 MHz or 450 MHz state on all channels through the same probe MagniVu memory depth is set to a fixed 16K You can view MagniVu data in both Listing and Waveform windows For more information on MagniVu data refer to MagniVu Data beginning on page 3 106 3 124 Tektronix Logic Analyzer Family User Manual Version 4 2 Software Listing Window Comparing Listing Data When comparing data to reference data you can highlight data that is equal to or not equal to the reference data NOTE Before you can display compare data you must define the compare parameters in the Define Compare dialog box in the LA Setup window Refer to Data Compare beginning on page 3 5 for information on setting up the compare parameters The following steps describe how to display compare data in the Listing window 1 Open a Listing window and click the Properties tool bar button as shown nial hace Heel A A db 2 2 Select the Listing Window tab 3 Select Show Compare and select one of the colors to indicate when data does not equal the reference data Acq Ref See Figure 3 90 4 Ifyou want to highlight data that does equal the reference data select Acq Ref and the appropriate color Properties Listing 1 i 2 x About Data Listing Window C
455. s to be found in the file TSF files can contain either type of symbols but no single file can contain both The header specifies the type for all symbols in the file The Display Radix field sets the default radix that will be used to display the numeric symbol value For range symbol files this field must be one of the key words HEX DEC OCT or BIN For pattern symbol files only the key words HEX OCT or BIN are allowed The File Radix field specifies the radix used by the symbol values in this file Like the Display Radix field the File Radix field must be one of the key words HEX DEC OCT or BIN for range symbol files or HEX OCT or BIN for pattern symbol files Tektronix Logic Analyzer Family User Manual Version 4 2 Software Appendix B TLA Symbol File Format TSF Pattern Symbols The Offset field specifies an offset value and is applicable only to range symbol files The offset value is specified in the radix indicated by the File Radix field This offset value will be added to the lower and upper bounds of each range symbol that is read from the file The offset is a 32 bit value so it can have any value between 0x00000000 and OxFFFFFFFF If the sum of the offset and a range symbol bound value exceeds the 32 bit limit of OxFFFFFFFF the overflow bit is discarded Negative offsets are specified by using a twos complement value for the offset Each pattern symbol in a TSF pattern file consists of two fields The first f
456. sesses differential clock and differential data input capabilities NOTE Compression probes provide a compression contact which eliminates the need for a built in connector Figure 1 23 shows how to connect the compression probes to the Logic Analyzer and to the target system For more information on the P6860 and P6880 probes and adapters refer to the P6810 P6860 and P6880 Logic Analyzer Probes Instruction Manual Tektronix Logic Analyzer Family User Manual Version 4 2 Software 1 29 Getting Started 1 30 Thin black no rib Press in nuts Nut Bar Mictor on PCB Figure 1 23 P6860 High Density Probe and P6880 Differential Probe connections NOTE When connecting the P6860 or P6880 probe head to the target system make sure that the alignment pin on the probe head is aligned with the hole on the test fixture Tighten the probe head screws by alternating between them until they are finger tight no more than 1 in lbs of torque Tektronix Logic Analyzer Family User Manual Version 4 2 Software Getting Started Microprocessor Connections DSO Probe Connections Pattern Generator Probes Additional Information Online Help All LA probes can be connected to microprocessor adapters Refer to the documentation that came with your microprocessor disassembler package for details about connecting the probes to the microprocessor adapters and to the target system Refer to the user documentat
457. siderations 1 4 TLA600 Series description 1 1 TLA700 Series description 1 2 trigger setup 3 28 Trigger window 2 12 3 28 window structure 3 31 Logical address module D 1 module switch location D 2 setting D 1 troubleshooting problems D 2 Magnifying data in Histogram windows 3 150 Magnitude mode 2 39 Magnitude waveforms 3 94 MagniVu data 2 16 2 34 2 41 2 42 3 106 definition of Glossary 5 storage rate 3 48 3 107 trigger position 3 48 3 50 3 107 using 2 41 MagniVu data 3 106 3 124 MagniVu storage rate 3 107 MagniVu trigger position 3 107 Mainframe chassis ground TLA700 series 2 6 configuring P6470 pattern generator probes 1 15 connecting accessories TLA600 series 1 10 TLA700 series 1 11 connecting LA probes TLA700 series 1 14 connecting pattern generator probes TLA700 series 1 15 diagnostics H 8 equipment required to merge modules E 8 fuse location TLA700 series 1 18 fuse requirements for the benchtop mainframe F 1 for the expansion mainframe F 1 TLA700 series 1 18 incoming inspection 1 21 merging modules rules E 1 module installation in the benchtop mainframe D 3 in the expansion mainframe D 5 in the portable mainframe D 3 keying D 5 panel cover D 5 power cord location TLA700 series 1 19 power cord requirements for the benchtop mainframe F 1 for the expansion mainframe F 1 powering on TLA700 series 1 18 Maintenance BIOS configuration TLA6O00 G 3 TLA700 G 7 com
458. sing channels for modules with fewer than 136 channels are omitted When merged the range recognition extends across the modules The master module contains the most significant groups Channel groups can be enabled to detect glitches Glitches are subject to pulse width variations of up to 125 ps Minimum input pulse width single channel P6860 high density probe 500 ps P6880 differential probe 500 ps P6810 general purpose probe 750 ps Any channel group can be enabled to detect a setup or hold violation The range is from 8 0 ns before the clock edge to 8 0 ns after the clock edge in 0 125 ns steps The channel setup and hold violation size can be individually programmed The range can be shifted towards the positive region by 0 ns 4 ns or 8 ns With a 0 ns shift the range is 8 ns to 8 ns with a 4 ns shift the range is 12 ns to 4 ns with an 8 ns shift the range is 16 ns to 0 ns The sample point selection region is the same as the setup and hold window Any setup value is subject to variation of up to the channel skew specification Any hold value is subject to variation of up to the channel skew specification Transition detector 16 transition detectors Any channel group can be enabled or disabled to detect a rising transition a falling transition or both rising and falling transitions between the current valid data sample and the previous valid data sample Counter timers 2 counter timers 51 bits wi
459. sition memory Merged system trigger resources The same as a single module except for word recognizer width setup and hold violation detector width glitch detector width and transition detector width has increased to equal that of the merged channel width Range recognizers will increase to the merged channel width up to three modules range recognition is not supported on the two outside slave modules Merged range significance Most significant Master Slave 1 Slave 2 Table A 53 Data handling Description The battery life is integral to the NVRAM battery life is gt 10 years Characteristic Nonvolatile memory retention time Typical A 52 Tektronix Logic Analyzer Family User Manual Version 4 2 Software Appendix A Specifications for the TLA7Axx Logic Analzyer Modules Table A 54 Mechanical Characteristic Material Weight 136 channel module 102 channel module 68 channel module 34 channel module Shipping weight Overall dimensions Height Width Length Mainframe interlock Description Chassis parts are constructed of aluminum alloy The front panel is constructed of plastic laminated to steel front panel Circuit boards are constructed of glass laminate 5 Ib 6 oz 2 438 kg 5 lb 4 0z 2 381 kg 5 lb 0 5 oz 2 282 kg 4 lb 15 5 oz 2 254 kg 7 Ib 12 oz 3 515 kg for 136 channel module when packaged for domestic shipment 10 32 in 262 mm 2 39 in 61 mm with merge co
460. sk drive 1 23 Repacking for shipment H 19 H 20 Repair service H 1 Repetitive acquisition 3 82 Requirements site consideration 1 4 ResMan resource manager H 13 Resource manager ResMan H 13 Rules for merging modules E 1 Run Properties dialog box Pattern Generator module 2 26 Run Stop button 3 81 S Sample clock 2 28 2 41 3 7 3 94 Glossary 7 data Glossary 3 period DSO 3 55 rate 2 40 2 42 Glossary 7 Sample suppression 3 77 Sampling Glossary 8 and digitizing a signal 2 27 resolution 2 40 Saved files 2 17 3 75 file name extension 3 75 loading 3 76 saved data 3 78 saved trigger 3 78 setups and trigger programs 3 51 3 78 system file 3 76 module and system 2 33 saving 3 75 trigger programs 3 51 Scan Listing box 3 137 Searching data 3 104 3 123 3 141 Self calibration 3 74 H 5 Sequence Definition window Pattern Generator module 3 64 Service common problem checklist H 9 expansion mainframe diagnostics H 8 expansion mainframe troubleshooting H 18 for more information H 2 isolating system problems H 15 mainframe diagnostics H 8 options TLA600 series H 3 TLA700 series H 4 self service H 2 service on demand H 2 support contact information xxiv Service offerings H 1 calibration and repair service H 1 for more information H 2 self service H 2 service agreements H 2 service on demand H 2 service options H 1 warranty repair service H 1 Service user preventive
461. ssary 8 Clocking 2X 2 41 4X 2 41 advanced 3 9 custom 3 17 external 3 8 external 2X 3 9 external 2X DDR 3 9 external 4X 3 10 internal 3 7 internal 2X 3 8 internal 4X 3 8 multiple phase 3 9 source synchronous 3 10 COFF file formats Glossary 2 Color in data windows 3 79 3 115 3 129 3 142 3 151 Color range symbols Glossary 2 Color symbols B 8 Column adding 3 127 changing width 3 128 cut copy and paste 3 128 cutting 3 128 moving 3 127 naming 3 129 Columns sizing histograms 3 150 Compare data displaying 3 110 3 125 Comparing listing data 3 125 waveform data 3 110 Comparing data 2 46 overlay waveforms 2 39 Condition trigger Glossary 9 Configuring P6470 pattern generator probes 1 15 Connecting accessories TLA600 series 1 10 TLA700 series 1 11 LA probes TLA600 series 1 13 TLA700 series 1 14 pattern generator probes TLA 700 series 1 15 Connectors external TLA600 series 2 4 TLA700 series 2 5 Contacting Tektronix xxiv Controller BIOS setup table TLA600 series G 4 TLA714 and TLA720 G 8 Copying text 3 128 3 142 Counter Glossary 3 Index 2 Tektronix Logic Analyzer Family User Manual Version 4 2 Software Index Coupling 3 54 Cover plate installation D 5 Creating a Histogram window 3 149 Creating a Source window 3 136 Cursors 3 96 3 98 3 119 3 121 3 136 3 138 Glossary 3 Custom clocking 3 17 Custom clocking Glossary 3 Customer registration card 1 4 Cu
462. st Data Report for every calibration performed during 3 years of coverage requires Option C3 Available for traceable products It delivers a calibration data report with the calibration performed in conjunction with Option C5 1 Availability of installation and on site services depends on the type of product and may vary by geography 2 Upgrade options are ordered with the mainframe products and cover individual modules H 4 Tektronix Logic Analyzer Family User Manual Version 4 2 Software Appendix H User Service General Care A Protect the instrument from adverse weather conditions The instrument is not waterproof Do not store or leave the instrument where the LCD display will be exposed to direct sunlight for long periods of time CAUTION To avoid damage to the instrument do not expose it to sprays liquids or solvents Module Self Calibration Use the Self Calibration property page to run self calibration procedures for installed modules and merged modules For all modules you should run these procedures after repair At a minimum you should run these procedures once a year For the DSO module you should also run these procedures if the ambient operating temperature has changed more than 5 C since last calibration or once a week if vertical settings of 50 mV full scale or less are used Perform self calibration after a 30 minute warm up Complete the following steps to run the self calibration proc
463. stfill data samples is filled With TLA7Axx modules you can adjust the MagniVu storage rate downward allowing for a lower resolution of data samples from a longer time period The MagniVu trigger position available with TLA7Axx modules selects the amount of pretrigger MagniVu data to store and determines the position of the trigger in the data record You can control the MagniVu trigger position independently of main trigger position by a set of controls in the advanced toolbar The MagniVu trigger position controls mirror the corresponding controls for main memory trigger position They consist of a slider control an edit box and a spin control positioned beneath the main memory trigger controls They behave like the main memory counterparts except that the MagniVu trigger position is constrained by the MagniVu storage rate as shown in Table 3 8 Tektronix Logic Analyzer Family User Manual Version 4 2 Software Setup Table 3 8 MagniVu trigger position Storage rate Resulting trigger position constraint 125 ps 0 to 58 in 1 increments 250 ps 0 to 79 in 1 increments 500 ps 0 to 89 in 1 increments 1ns 0 to 94 in 1 increments NOTE MagniVu data acquisition starts prior to the run line and fills memory before any possible trigger event Therefore there should be no need for a MagniVu forced prefill Saving Trigger Programs You can save trigger programs that you have created or modified for future use When s
464. stomer Service web address H 1 Cutting columns 3 113 3 128 columns marks 3 128 marks 3 142 waveforms marks 3 114 D Data differences Glossary 3 equalities Glossary 3 exporting 3 130 3 152 rate Logic Analyzer module A 56 sample Glossary 3 Data marks 3 96 3 119 3 136 Data source adding 3 113 3 127 Data window 2 14 3 87 Glossary 3 marks cursors and indicators 3 119 splitting the data area 3 129 DC coupling Glossary 3 Default settings 3 79 trigger tab 3 29 Delta measurement 3 98 3 121 Glossary 3 Demultiplex Glossary 3 clock setting 3 9 Diagnostics H 8 expansion mainframe H 8 extended H 8 mainframe H 8 power on H 8 start up sequence tree H 14 Differences See Data differences Digital real time signal acquisition Glossary 4 Digitizing 2 27 Glossary 4 Disabling modules 3 2 Disassembly format changing 3 129 Documentation list xx Don t care Glossary 4 DSO data viewing in a Listing window 2 35 DSO module acquisition 2 28 Autoset 3 53 block diagram 2 30 description 1 3 export binary data 3 132 horizontal controls 3 55 probe calibration 3 52 self calibration H 5 setup 3 52 Setup window 3 52 trigger controls 3 56 Trigger window 2 13 3 56 vertical controls 3 54 Dynamic autoconfiguration D 1 E EasyTrigger modifying programs 3 28 3 32 program list 3 32 Glossary 4 combination of events 3 39 inter module communication 3 41 measuring time
465. stomer may terminate the license for this software product and return this software product and any associated materials for credit or refund THIS WARRANTY IS GIVEN BY TEKTRONIX IN LIEU OF ANY OTHER WARRANTIES EXPRESS OR IMPLIED TEKTRONIX AND ITS VENDORS DISCLAIM ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE TEKTRONIX RESPONSIBILITY TO REPLACE DEFECTIVE MEDIA OR REFUND CUSTOMER S PAYMENT IS THE SOLE AND EXCLUSIVE REMEDY PROVIDED TO THE CUSTOMER FOR BREACH OF THIS WARRANTY TEKTRONIX AND ITS VENDORS WILL NOT BE LIABLE FOR ANY INDIRECT SPECIAL INCIDENTAL OR CONSEQUENTIAL DAMAGES IRRESPECTIVE OF WHETHER TEKTRONIX OR THE VENDOR HAS ADVANCE NOTICE OF THE POSSIBILITY OF SUCH DAMAGES a Table of Contents Getting Started Operating Basics General Safety Summary cc cece cece cece ence ecees Prelite ec bias ETERRA OEA es RA Gad Related Documentation excess isa wis so teas EN cattails Tatas Gh a a Terms Used in this Mantlal occ6 i056 csc ae eei e Ea a ea i ene SD We Ss What s New in This Manual 2 0 ienee Eie eee e Contacting Tektronix irori Eo 0 eae A EE Be herald bel ee bee ae TLA600 Series Logic Analyzers 0 0 cece cece eee eee een eee TLA700 Series Logic Analyzers 0 0 cece cece ee eee eens ACGCESSOLICS a s eed age pts pe FE AGS Eas ap EE EEA aad a FR Installation sci e e 4 we see a Go VS AGAR Sea Fu KENE SAER GS Installing Expansion Mainframes 00 0
466. synchronous clocking Clocks per module Four Clocks with merged modules When merged the slave modules have two clocks available from the master module Including the local clocks the total is six clocks Clock groups Four for a single module and for a merged system Size of clock group valid FIFO Four stages this allows four source synchronous or other clocks to occur before the clock that completes the Clock Group Valid signal for that group Source synchronous clock alignment window Channel to channel skew only Source synchronous clock reset The Clock Group Valid FIFO can be reset in one of the two ways 1 By the overflow of a presettable 1 255 8 bit counter that counts one of the following clocks 2 ns Clock or the master heartbeat clock synchronous or asynchronous An active edge places the reset count to its preset value An active clock edge will clear the Clock Group Valid reset before the clock gets to the FIFO so that no data is lost 2 By enabling an external reset In this mode one of the clock channels must be traded on the master module to act as a level sensitive reset input Any one of the clocks can be selected A polarity selection is available This mode affects all Clock Group Complete circuits Neither one of the above modes can be intermixed one or the other must be selected Clocking state machine Pipeline delays Channel groups can be programmed with a pipeline delay of 0 through 7 active clock c
467. t all ranges and percentages to zero Click the Stop Analyzing tool bar button to stop analyzing the current acquisi tion This button is inactive when there is no current acquisition in process Select the column label separator and drag it to change the width of a column Sort ranges counts and percentages by clicking on the column labels Click the column label to toggle the sort between increasing and decreasing values Click Scale from the View menu Select a new magnification value from the list and click OK You can also click on the percentage column label and select a magnification value Ranges displayed in the Histogram window are based on the values you select in the Ranges properties tab You can define ranges as follows m Linear generation The ranges are divided linearly between two bounds m Log generation The ranges are divided logarithmically between two bounds m Symbols The ranges are defined by the values in a loaded symbol file You can use the same loaded symbol table as in other windows Tektronix Logic Analyzer Family User Manual Version 4 2 Software Histogram Window Splitting the Data Area You can split the data area to compare ranges that are far away from each other within the display Drag the split box from the top of the horizontal scroll bar Customizing the Histogram Window Data Area Use properties to customize data in the Histogram window The Histogram Properties dialog box controls aspe
468. t an absolute delta because the delta can be either positive or negative For example if you place Cursor 2 before Cursor 1 the result will be a negative value Cursor time is relative to the active system trigger Tektronix Logic Analyzer Family User Manual Version 4 2 Software Waveform Window Automatic Waveform Measurements Use the Measurement Setup dialog box to select the measurements that will be performed on the DSO waveform s and to select the new measurement setup parameters To display the Measurement Setup dialog box right click the DSO waveform label and select Add Delete DSO Measurement from the context menu Measurement Setup 1053012 Channeli a P d 2 x Available Measurements Selected Measurements Base T op Determination f Automatic Max z Freguenc Histogram Min Max Overshoat xl Voltage including undershoot N INA for MinM ax method m Reference Levels r Gating Percent Absolute C Entire Waveform High Reference a0 i jx Window Boundati Mid Reference 50 indow Boundanes Low Reference 10 E Set Defaults amp Cursors OK Cancel Apply Figure 3 67 Measurement Setup dialog box m Available Measurements lists all of the available measurements that are supported on the DSO waveform When you select an available measure ment a graphic and a brief description of the measurement are displayed beneath the Available Measurements list box Ta
469. te acquisition To enable tracing data flow and program execution of processors and buses 120 to 800 MHz state acquisition is now available Three state acquisition speeds are provided 120 MHz standard 235 MHz optional and 450 MHz optional to fit a wide range of processor and bus applications A comprehensive set of clocking capabilities provide the means to work with virtually any processor or bus including support for high speed data rates Plus advanced support is provided for source synchronous buses to simplify setup and acquisition A setup hold window of 650 ps provides accurate data capture from the fastest processors and busses The window is adjustable in 125 ps increments within a range from 16 ns to 8 ns m Triggering Enhancements include a trigger state machine that operates at a 2 ns rate with trigger resources that include 16 states 16 words 4 range recognizers two 51 bit counter timers and 16 transition edge recognizers A key benefit of the MagniVu acquisition technology is that it provides a 500 ps glitch recognizer and a 250 ps setup hold violation both with 125 ps resolution up to a 16 ns window A comprehensive set of trigger actions including storage control and sequence actions is also provided Additional triggering enhancements include a decrement counter function a force prefill function used to ensure that memory is fulled before looking for the trigger Tektronix Logic Analyzer Family User Manual Version 4
470. tep NOTE Use care when proceeding through the software license agreement to avoid confirming that you want to cancel the software installation procedure 4 After you review the software license agreement the EasyRestore dialog box displays and prompts you to either continue or cancel the upgrade process Click Continue to begin loading the contents of the upgrade CD 5 The EasyRestore program displays a warning that the contents of your hard disk will be destroyed if you choose to continue Click Yes to continue the process 6 The program will automatically start and guide you through the rest of the procedure The image loading procedure is fully automatic and takes approximately 15 minutes to complete The image loading procedure automatically installs and sets up the logic analyzer application You should not need to make any changes to the setup to use the logic analyzer 7 After the image is loaded remove the CD from the CD ROM drive and reboot the logic analyzer 8 The Systems Settings Change error message displays prompting you to restart the instrument before your changes can take effect Click Yes to restart the instrument 9 Reinstall any user files that you backed up previously Reinstall any software such as the microprocessor support packages that you want to use on the logic analyzer 10 If desired reconfigure the TLA network interface Tektronix Logic Analyzer Family User Manual Version 4 2 Softw
471. tern generator modules may not be merged across mainframes Merging pattern generator modules with unequal memory depths will result in the merged set assuming the depth of the shallowest pattern generator module Pattern generator modules must have the same firmware version When merged the left most pattern generator module is the master TLA7Axx Logic Analyzer Merge Procedures Complete the following steps to create a merged module from two to five individual TLA7Axx modules 1 Place the module on the right side 2 Using a Torx T 10 screw driver remove the two screws holding the merge connector to the module see Figure E 2 Tektronix Logic Analyzer Family User Manual Version 4 2 Software E 3 Appendix E Merging Modules Remove two screws Standoff posts Figure E 2 Removing the merge connector assembly from the module 3 Gently lift the merge connector out of the slot and place it in the extended position such that the screw holes line up over the two standoff posts 4 Install the two screws into the standoff posts Tighten the screws to 4 in Ibs 5 Repeat steps 1 through 4 for the remaining modules NOTE When installing the merged modules into a mainframe you may need the help of another individual 6 Place the first pair of modules to be merged side by side such that the merge connector assemblies line up and connect between the two modules see Figure E 3 7 Push the two modules t
472. th counter timer event usage Set and Clear Signal Sets or clears one of the four internal system signals You can use only one Set or Clear in a trigger program The Set or Clear Signal is mutually exclusive with the Arm Module action Arm Module Sends an Arm signal to another module The other module begins running its trigger program You can arm only one module in a trigger program However you can use actions throughout the trigger program Arm Module is mutually exclusive with Set and Clear Signal actions Store Sample Stores exactly one sample Not available in Start Stop storage mode Start amp Stop Storing Begins or ends storing of samples Start and Stop Storing actions only appear when you select Start Stop storage mode Use Start and Stop Storing in conjunction with Start Stop storage mode in the Trigger window Available only in Start Stop storage mode Do Nothing Use as a placeholder when defining a complicated trigger program Does not override other actions specified in a clause Don t Store Available only on TLA7Axx modules does not store this sample Not available in Start Stop storage mode Other Trigger Options From the Trigger window you can also make data storage and trigger position selections In TLA7Axx modules you have additional selections available for MagniVu storage rate MagniVu trigger position and Force Main Prefill Use the storage selections to avoid filling up the acquisition memory with d
473. th the current data is called the active system trigger The system trigger associated with saved data is called the reference system trigger The active system trigger is indicated by a yellow T the reference system trigger is indicated by a gray T F Module trigger The point at which the module triggered Trigger marks cannot be moved gt Begin data end data The start and end of a module s data record These data marks cannot be moved 1 2 Cursors 1 and 2 Moveable marks used for visual reference and for data measurements Checkbox Lock Delta Time Click this checkbox to lock the delta time value When you lock delta time the channel marks move across the data simultaneously maintaining a fixed delta time User mark User created marks Use marks to make specific data more easy to identify and find 3 120 Tektronix Logic Analyzer Family User Manual Version 4 2 Software Listing Window Taking Cursor Measurements Use the cursors to take time measurements Take time measurements in the Listing window as shown below C1 2097150 C2 2097154 Delta Time 16ns E T Lock Delta Time QSTART QS TART 1 Inthe Listing window move Cursor 1 to the location that you want to measure 2 Read the time from the C1 readout on the measurement bar Cursor time is relative to the active system trigger 3 Move Cursor 2 to another location that you want to measure 4 Read the time from the C2 reado
474. that occurs when the module detects the source passing through a specified voltage level in a specified direction the trigger slope Event condition Event conditions are a logical combination of trigger events within a single clause If you set up a logical AND statement all event conditions in the clause must be fulfilled before the clause can execute the action If you set up a logical OR statement any one of the event conditions can be fulfilled before the clause can execute the action Expansion Chassis An expansion chassis is an expansion mainframe without an expansion module installed External clock A clock external to the logic analyzer and usually synchronous with the system under test Internal signal An internal communication line that can be set as a marker An internal signal can be used as either an event or an action in a trigger program When used as an event the internal signal is tested for true false value like any other event when used as an action the signal can simply be set or cleared as the result of a condition being satisfied Tektronix Logic Analyzer Family User Manual Version 4 2 Software Glossary Glitch An unintentional signal that makes a transition through the threshold voltage two or more times between successive sample clock cycles Noise spikes and pulse ringing are examples of glitches Ground GND coupling A DSO coupling option that disconnects the input signal from the vertical system
475. the Run dialog box Click OK to perform the installation Follow any on screen instructions If you have an earlier version of either software package installed on your PC the Setup exe program will uninstall the application before installing the new version If you are prompted for permission to remove unused shared files or any read only files select Yes to All Tektronix Logic Analyzer Family User Manual Version 4 2 Software Appendix G Installing Software Installing the TLAVu Software TLAVu application software allows you to view data and create setups for your logic analyzer on a PC You must ensure that the version of the TLAVu application software is the same as that of TLA application The TLAVu application software is located on Disc 2 of the dual CD ROM set Complete the following steps to update the TLAVu application software on your PC If you have an older version already installed on your PC the program will automatically detect it and replace it during the upgrade process 1 Install Disc 2 of the Tektronix Logic Analyzer Family Application Software in the CD ROM drive of the PC Click Run in the Windows Start menu to display the Run dialog box Enter D TLAVu Disk1 Setup exe in the Run dialog box Click OK to perform the installation Follow any on screen instructions GS oe BS If you have an earlier version of the TLAVu application installed on your PC the Setup exe program will uninstall the old applica
476. the desired group has the specified value Trigger on group value outside of a range Triggers when the group value is outside the specified range For proper functioning of this program probe groups and probe channels must be in hardware order Trigger on group value within a range Triggers when the value of the desired group is within the specified range For proper functioning of this program probe groups and probe channels must be in hardware order Trigger on word transition Triggers when transition occurs on any of the selected groups that have been specified in the Define Transition dialog box Tektronix Logic Analyzer Family User Manual Version 4 2 Software 3 33 Setup Table 3 3 EasyTrigger program list Cont File name Trigger on word value Measuring Time and Counting Events Accumulate the number of occur rences of A Accumulate the time between A and B Accumulate the time within a range Count occurrences of A between B and C Measuring pulse width Measure the time between A and B Description Triggers when sample matches the word definition in the Define Word dialog box Accumulates the occurrences of Event A Press the Run Stop button to stop accumulating the count Look for accumulated count Counter 1 in the application Status Monitor Accumulate the total time between Event A and Event B Press the Run Stop button to stop accumulating the time Look for the a
477. the group value lies within the specified range and triggers when this condition is satisfied for the first time For proper functioning of this program the probe groups and probe channels must be in hardware order Store on word value Stores a sample for every occurrence of the specified word and triggers on the first occurrence of the word value Store when using transition storage and edge transitions Stores all Transition 0 transitions and then triggers after Transitions 1 2 3 and 4 have been seen This program shows that a storage transition as well as edge transitions can be defined If a storage transition is defined then up to fifteen additional edge transitions can be specified in the main body of the PowerTrigger program Tektronix Logic Analyzer Family User Manual Version 4 2 Software Setup Table 3 3 EasyTrigger program list Cont File name Description Store when in a subroutine exclud Stores only the samples that occur during the specified ing subroutines it calls subroutine The program does not store the samples of nested subroutines called by the specified subroutine Program triggers on the first sample belonging to the specified subroutine For proper functioning of this program the probe groups and probe channels must be in hardware order Store when in a subroutine including Stores samples that occur during the specified subroutines it calls subroutine and triggers when the pr
478. tion 90 250 Vrms 45 66 Hz continuous range CAT II 100 132 Vans 360 440 Hz continuous range CAT II Fuse Rating 90 V 250 V Operation 159 0046 00 UL198 CSA C22 2 0 25 in x 1 25 in Fast Blow 8 A 250 V 90 V 250 V Operation 159 0381 00 IEC 127 Sheet 1 5 mm x 20 mn Fast Blow 6 3 A 250 V Maximum Power Consumption 600 W line power maximum Steady State Input Current 6 Arms maximum Inrush Surge Current 70 A maximum Tektronix Logic Analyzer Family User Manual Version 4 2 Software A 31 Appendix A Specifications for the TLA714 Portable Mainframe Table A 33 TLA714 AC power source Cont Characteristic Description Power Factor Correction Yes On Standby Switch and Indicator Front Panel On Standby switch with LED indicator located next to switch The power cord provides main power disconnect Table A 34 TLA714 secondary power Characteristic Description DC Voltage Regulation Voltage Minimum Nominal Maximum Combined System voltage avail nee ence ees STAIN able at each slot 12 V 11 64 V 12 12 V 12 60 V 5 V 4 875 V 5 063 V 5 250 V 2 V 2 10 V 2 00 V 1 90 V 5 2 V 5 460 V 5 252 V 5 044 V 12 V 12 60 V 12 12 V 11 64 V 24 V 25 20 V 24 24 V 23 28 V Table A 35 TLA714 cooling Characteristic Description Cooling System Forced air circulation negative pressurization utilizing six fans operating in parallel Cooling Clearance 2 in 51 mm
479. tion File menu Return system to the default setups CTRL D Load a saved system CTRL 0 Save a system setup CTRL S Print the active window CTRL P Edit menu Cut a selected item to the clipboard CTRL X Copy a selected item to the clipboard CTRL C Paste items from the clipboard CTRL V Undo edit CTRL Z Data menu Search backward CTRL B Search forward CTRL F System menu Display the Status Monitor CTRL M Run or Stop CTRL R Window menu Create a new data window CTRL N System F9 Next Setup F10 Next Trigger F11 Next Data F12 3 80 Tektronix Logic Analyzer Family User Manual Version 4 2 Software Sey Acquisition When you start an acquisition all modules start acquiring data together Exceptions are when one module has been programmed to arm another or when a module has been turned off Modules stop acquiring data individually according to their trigger programming Starting and Stopping Acquisition You control acquisition from the Control bar shown below Opens System Starts stops Trigger Dialog acquisition I HEIZ File Edit View Data Systyn Window Help Sf S BE Bl ele stus tate E y Al me Displays Status Selects Repetitive or Animates while Monitor Single run mode running 1 In the Control bar click the System Trigger button to define system trigger parameters 2 In the Control bar click Run to start an acquisition 3 The Tek icon on the right animates while the logic analyzer
480. tion before installing the new version If you are prompted for permission to remove unused shared files or any read only files select Yes to All NOTE The ReadMe file for the TLAVu application contains most of the information that you need to run the application Access the ReadMe file by selecting Start Programs Tektronix Logic Analyzer gt TLA Documenta tion TLAVu ReadMe Tektronix Logic Analyzer Family User Manual Version 4 2 Software G 19 Appendix G Installing Software Installing the PatGenVu Software The PatGenVu application software allows you to view data and create setups for your pattern generator on a PC You must ensure that the versions of the PatGenVu software are the same as the pattern generator application The PatGenVu software application is located on Disc 2 of the dual CD ROM set Complete the following steps to upgrade the PatGenVu application software on your PC If you have an older version already installed on your PC the installation program will automatically detect it and replace it during the upgrade process 1 Install Disc 2 of the Tektronix Logic Analyzer Family Application Software in the CD ROM drive of the PC Click Run in the Windows Start menu to display the Run dialog box Enter D PatGenVu Disk1 Setup exe in the Run dialog box Click OK to perform the installation Follow any on screen instructions Gi Be ts If you have an earlier version of the PatGenVu applic
481. tions Tektronix Logic Analyzer Family User Manual Version 4 2 Software Appendix A Specifications for the TLA600 Series Logic Analyzer Table A 14 TLA600 rear panel interface Characteristic Parallel Interface Port LPT Serial Interface Port COM 1 Single USB Ports SVGA Output Port SVGA OUT Mouse Port Keyboard Port Type and II PC Card Port Type I Il and Ill PC Card Port Description 36 pin high density connector supports standard Centronics mode Enhanced Parallel Port EPP or Microsoft high speed mode ECP 9 pin male sub D connector to support RS 232 serial port One USB Universal Serial Bus compliant port 15 pin sub D SVGA connector PS 2 compatible mouse port utilizing a mini DIN connector PS 2 compatible keyboard port utilizing a mini DIN connector Standard Type and II PC compatible PC card slot Standard Type Il and IIl PC compatible PC card slot Table A 15 TLA600 AC power source Characteristic Source Voltage and Frequency Fuse Rating 90 V 132 V Operation 2 required 90 V 250 V Operation 2 required Maximum Power Consumption Description 90 250 Vrms 45 66 Hz continuous range CAT II 100 132 Vrms 360 440 Hz continuous range CAT II UL198 CSA C22 2 0 25 in x 1 25 in Fast Blow 8 A 250 V IEC 127 Sheet 1 5 mm x 20 mn Fast Blow 6 3 A 250 V 600 Watts line power maximum Steady State Input Current 6 Arms maximum Inrush Surge Current 70 A max
482. to 10 ns 1 Each use of a glitch detector setup and hold violation detector or transition detector requires a trade off of one word recognizer resource 2 Any glitch is subject to pulse width variation of up to the channel to channel skew specification 0 5 ns 3 For TLA7N1 TLA7N2 TLA7N3 TLA7N4 TLA7P2 TLA7P4 TLA7Q2 and TLA7Q4 Logic Analyzer modules any setup value is subject to variation of up to 1 8 ns any hold value is subject to variation of up to 1 2 ns For TLA7L1 TLA7L2 TLA7L3 TLA7L4 TLA7M1 TLA7M2 TLA7M3 and TLA7M4 Logic Analyzer modules any setup value is subject to variation of up to 1 6 ns any hold value is subject to variation of up to 1 4 ns 4 This mode can be used to create transitional storage selections where all channels are enabled Table A 58 LA module MagniVu feature Characteristic Description MagniVu memory depth 2016 samples per channel MagniVu sampling period Data is asynchronously sampled and stored every 500 ps in a separate high resolution memory Table A 59 LA module data handling Characteristic Description Nonvolatile memory retention time Typical Battery is integral to the NVRAM Battery life is gt 10 years A 58 Tektronix Logic Analyzer Family User Manual Version 4 2 Software Appendix A Specifications for the TLA7Lx Mx Nx Px Qx Logic Analzyer Modules Table A 60 LA module input parameters with probes Characteristic 1 Threshold Accura
483. to acquire and compare the acquisition data to known reference data The LA module can continue acquiring data until there is a mismatch between the acquisition data and the reference data Figure 2 45 shows an example of such a setup where the acquired data is exported to a file for each acquisition When a data mismatch occurs the logic analyzer stops acquiring data and exports the data to a file The faulty data can now be analyzed by another application Repetitive Properties x After Each Acquisition M Save export Data gt from LED Error To File LED Fault txt TET Save in same file each acquisition C Save in new file each acquisition Starting file Suffix fi I Stop if Compare with Reference is Net Equal on QSTART Stop After fi Acquisitions When Stopped Open Cancel Help Figure 2 45 Defining repetitive setups Tektronix Logic Analyzer Family User Manual Version 4 2 Software 2 47 Operating Basics Symbol Support 2 48 Symbols simplify tasks such as setting up triggers or identifying specific values within the data When you program a trigger or view data it is cumbersome to remember which numeric channel group values correspond to particular machine instructions or code modules The logic analyzer makes this task more manage able by allowing you to assign symbolic names or mnemonics to group values For example assign the symbol WRITE to the control
484. to another media a second hard drive CD or a network drive before continuing with this procedure Tektronix Logic Analyzer Family User Manual Version 4 2 Software Appendix G Installing Software Backing Up Files G 12 Before loading the Hard Disk Image software make sure that you back up any files applications and personal documents to an external storage device You can do this using one of the following methods Move the files to another PC via a network or via another backup medium such as a ZIP drive m If you have a TLA700 series logic analyzer purchase TLA7UP Option 12 for instruments with TLA Application software version 4 2 or TLA7UP Option 10 for instruments with TLA Application software version 4 1 and below This allows you to install a second hard disk drive so that you can still access the user files Refer to the TLA7UP Logic Analyzer Field Upgrade Kit Instruction Manual for information on installing the second hard disk You can find most TLA user files using the Windows Search utility For example open Windows Explorer and select the C My Documents folder Right click on the folder and select Search Enter one of the suffixes from Table G 3 to locate the files in the current folder and all subfolders Table G 3 TLA user file suffixes Suffix Description tla TLA setup files tsf TLA symbol files tbf Tektronix binary format tls TLA script file tpg Tektronix pattern generator files
485. to the file in the text box NOTE The saved file must be a saved system file Once the file is found click the Open button Select the data window to load Click OK Si UN ee If the data window name is not unique you will be prompted for a new name Enter a name and click OK Aligning Saved Data with Current Data Saved data and current data are time correlated by aligning their system triggers You can manually adjust this alignment using the Time Alignment dialog box To access the Time Alignment dialog box go to the Data menu and click Time Alignment as shown below Go To Search Forward Ctrl F Search Backward Ctrl B Define Search Move Gursors To Select Define Suppression Show Between Cursors Suppress Between Cursors Time Alignment Tektronix Logic Analyzer Family User Manual Version 4 2 Software 3 89 Display Creating a New Data Window 3 90 Use the New Data Window wizard to create a new data window for the data you want to display You can select data from any module a saved system file or saved module file See Figure 3 60 New Data Window 1x What type of data window would you like to create Cancel Help Figure 3 60 New Data Window wizard Create a new data window as follows 1 Click the New Data Window icon in the toolbar TLA Listing 1 File Edit Wiew Data System Window Help Sjaj al li h P Status 1de Run 2 Select
486. tor module Block Definition window 3 64 block diagram 2 31 Channel Setup window 3 61 description 1 3 Event Definition window 3 67 Listing window 2 25 merging E 1 merging rules E 3 Module Setup window 3 60 probes configuring P6470 1 15 connecting TLA700 series 1 15 Tektronix Logic Analyzer Family User Manual Version 4 2 Software Index 7 Index Probe Setup window 3 62 Run Properties dialog box 2 26 Sequence Definition window 3 64 Signals Setup window 3 63 specifications A 67 Subsequence Definition window 3 67 Waveform window 2 26 Pattern symbols 2 49 B 3 PC card connector TLA600 series 2 4 TLA700 series 2 5 PCMCIA Glossary 7 Performance analysis 2 45 External oscilloscope A 1 Phone number Tektronix xxiv Podlet Glossary 7 Pointing device 2 3 Polarity LA channels 3 20 Post trigger Glossary 7 Power cord identification chart F 3 Power requirements benchtop mainframe F 1 expansion mainframe F 1 Power down procedure TLA714 715 1 20 TLA720 721 1 20 Power on diagnostics H 8 Power on procedure benchtop mainframe 1 19 portable mainframe 1 19 TLA600 series 1 17 TLA714 1 19 TLA720 1 19 PowerTrigger actions 3 46 clause definition 3 43 detail 3 43 events 3 44 modifying programs 3 29 overview 3 42 properties 3 41 resources 3 45 storage 3 48 window 2 12 Pretrigger Glossary 7 Preventive maintenance H 5 cleaning H 7 disks floppy disk drive H 7 LCD display H 6 Prob
487. tory setting Main System Time Set to current time System Date Set to current date Legacy Diskette A 1 44 1 25 MB 3 1 2 p gt Primary Master hard disk drive size Type Auto Cylinders Set by Autotype Heads Set by Autotype Sectors Set by Autotype Maximum Capacity Set by Autotype Multi sector transfers Set by Autotype LBA Mode Control Set by Autotype 32 Bit I O Disabled Transfer Mode Set by Autotype Ultra DMA Mode Set by Autotype p gt Primary Slave None p gt Secondary Master CD ROM p gt Secondary Slave None Enable SimulScan Disabled Summary Screen Disabled p gt Memory Cache Memory Cache Enabled External Cache Disabled Cache System BIOS area Enabled Cache Video BIOS area Disabled Cache D000 D3FF Disabled Cache D400 D7FF Disabled Cache D800 DBFF Disabled System Memory 640 KB Extended Memory Installed memory 640 K G 8 Tektronix Logic Analyzer Family User Manual Version 4 2 Software Appendix G Installing Software Table G 2 TLA714 and TLA720 Controller BIOS setup Cont Parameter Factory setting Submenu parameter Factory setting Advanced p gt I O Device Configuration Local Bus IDE Adapter Both Serial port A Enabled Base I O Address 3F8 Interrupt IRQ4 Serial port B Enabled Mode Normal Base I O Address 2F8 Interrupt IRQ3 Parallel Port Enabled Mode ECP Base I O Address 378 Interrupt IRQ7 DMA Channel DMA 1 Flopp
488. trigger data has occurred then the logic analyzer triggers and begins filling memory with post trigger data regardless of the amount of pretrigger data specified For example if you set the trigger position to 50 and set the logic analyzer to trigger on a processor reset start the logic analyzer and then power on your target system the logic analyzer will trigger However the logic analyzer memory will be filled only with post trigger data not any pretrigger data This is due to the trigger event which has higher precedence occurring before the pretrigger condition is satisfied Forced main prefill available in TLA7Axx modules sets the main prefill amount that must be met before the trigger state machine is activated When you use Force Main Prefill functionality you specify which data samples are stored by selecting the desired sample type from the Storage drop down list Note that when you select either the None or Stop Start storage settings the Force Main Prefill check box and related functionality become unavailable System triggers produced by modules other than the TLA7Axx module override force prefill functionality and immediately start execution of the trigger state machine An externally generated system trigger does not purge the force prefill data samples stored in main memory However the TLA7Axx module stops acquiring further prefill data samples and begins acquiring postfill data samples until main memory allocated for po
489. tronix Logic Analyzer Family User Manual Version 4 2 Software 3 139 Source Window Active Cursor Readout Uncorrelated State 3 140 The Next Mark and Previous Mark buttons are similar to the Step Forward and Step Backward buttons However rather than stepping through every executed statement you can define marks in the Source window as breakpoints and then step between marks in execution order to move though the source code When you click the Next Mark or Previous Mark buttons the Source window tells the Listing window to search for addresses corresponding to the marked source statements When a corresponding sample is found the Listing window positions its active cursor to the matching sample The Source window converts the address to a file name and line number It then updates the active Source cursor position and displays the corresponding source statement If the code generation tools provide column information for symbol files you can mark individual statements of multiple statement lines in the source code You can then use the Next Mark and Previous Mark buttons to step between the marks and highlight the individual statements The Next Mark and Previous Mark buttons are not active if there are no marks defined in the Source window The active cursor readout displays the address of the source statement at the active cursor The address shown is the low address bound The radix of the address is always hexadecimal If you
490. u data feature available for all modules you can view high resolution data centered about the LA module trigger This allows you to zoom in on the data of particular interest while still maintaining visibility of a more extended signal duration m By using Internal 2X Clocking mode available for all modules you can trade one half the channels for twice the resolution and twice the memory depth The 2X Clocking mode is only available with the main timing not with the MagniVu data feature m By using Internal 4X Clocking mode available only for TLA7Axx modules you can trade three quarters of the channels for four times the speed and memory depth The 4X Clocking mode is only available with the main timing not with the MagniVu data feature Tektronix Logic Analyzer Family User Manual Version 4 2 Software 2 41 Operating Basics 2 42 Preventing Aliasing Displaying Waveforms High Speed Timing Under certain conditions an analog waveform can be aliased on screen When a waveform aliases it appears on screen with a frequency lower than the actual waveform being input or it appears unstable Aliasing occurs because the instrument cannot sample the signal fast enough to construct an accurate waveform record See Figure 2 40 Actual high frequency waveform Apparent low frequency gt waveform due to aliasing Sampled points gt Figure 2 40 Aliasing To check for aliasing in
491. u install two expansion mainframes software determines which expansion chassis is expansion 1 and which is expansion 2 by the order in which you install the expansion modules in the benchtop mainframe The expansion module in the lower numbered slot will be expansion 1 and the expansion module in the higher slot will be expansion 2 For the setup in Figure 1 5 place the EXPANSION 1 label in the outlined area on the upper right side of the expansion mainframe to the left of the benchtop mainframe Place the EXPANSION 2 label in the outlined area on the upper right side of the expansion mainframe to the right of the benchtop mainframe For information on installing modules see TLA700 Module Installation beginning on page D 1 The expansion module can be installed in any slot of the portable mainframe If you are installing one or two expansion mainframes you can install the expansion module in slot 1 as shown in Figure 1 6 If the expansion module is not already installed in slot 0 of your expansion mainframe install it now CAUTION To avoid damage to the chassis do not use the retaining screws to seat the expansion module These screws are intended for securing the module and reinforcing the grounding Manually seat the expansion module by pressing it into place and then secure it using the retaining screws After seating the modules in place use a screwdriver to tighten the retaining screws maximum of 1 0 in lbs Tektronix
492. ual Monitor Portable Mainframe Table A 25 TLA715 AC power source Characteristic Description Source voltage and frequency 90 Vas to 250 Vas 45 Hz to 66 Hz continuous range CAT II 100 Vams to 132 Vas 360 Hz to 440 Hz continuous range CAT II Fuse rating 90 V to 250 V operation UL198 CSA C22 2 159 0046 00 0 25 in x 1 25 in Fast Blow 8 A 250 V 90 V to 250 V operation IEC 127 Sheet 1 159 0381 00 5mm x 20 mm Fast Blow 6 3 A 250 V Maximum power consumption 600 W Steady state input current 6 Arms maximum at 90 VACpms 60 Hz or 100 VACpms 400 Hz Inrush surge current 70 A maximum Power factor correction Yes On Sleep indicator Green yellow front panel LED located next to On Standby switch provides visual feedback when the On Off switch is actuated When the LED is green the instrument is powered and the processor is not sleeping When the LED is yellow the instrument is powered but the processor is sleeping On Standby switch and indicator Front panel On Standby switch Users can push the switch to power down the instrument without going through the Windows shutdown process the instrument normally powers down The power cord provides main power disconnect Table A 26 TLA715 secondary power Characteristic Description DC Voltage Regulation Voltage Minimum Nominal Maximum Combined System voltage avail TEN ERAAN PAPAN Poan y able at each slot 12 V 11 64 V 12 12 V 12 60 V 5 V 4 875 V 5 063 V 5 250 V 2 V 2 10 V
493. ules Moues 1 Note which modules require new firmware If any modules are missing from the System window you can verify the status of the modules by doing the following steps a Select System Properties from the System menu b Click the Modules tab c Note the information under the Messages column for any installed modules If any modules indicate invalid or similar messages you must update the firmware for those modules 2 Disconnect probes connected to the modules that you want to update 3 Exit the logic analyzer application 4 Click Start gt Programs Tektronix Logic Analyzer TLA Firmware Loader 5 You may be prompted to cycle the power on the mainframe after completing the upgrade operation Click Yes to continue The logic analyzer will scan the mainframe to determine which modules are installed and which modules can have their firmware upgraded If you have any older modules you may see them listed in the bottom half of the window These modules cannot be updated until you install the flash jumper on the rear of the modules 6 Select the modules that you want to update from the list of modules displayed in the Supported list box near the top of the window If you are updating more than one module at a time note the slot location of the module in the selection box 7 Select Load Firmware from the Execute menu 8 Click the TLA7A lod file for the selected module NOTE Be sure to select the proper
494. un on 80286 80386 or higher level microprocessors in real or 8086 compatible mode OMF166 file format This format holds symbolic information and executable images for the Siemens Infinion C166 microprocessor family or equivalent microprocessor OMEF 286 386 file formats These file formats hold symbolic informaton and executable images for 80286 80386 or equivalent microprocessors They are also used for executable images intended to run on the 8086 or other microprocessors in the 80x86 families Tektronix Logic Analyzer Family User Manual Version 4 2 Software Glossary PCB An acronym for Printed Circuit Board also known as Etch Circuit Board ECB PCMCIA An acronym for Personal Computer Memory Card Industry Association Podlet A circuit contained in a flex lead and attached to a probe that provides square pin connections to the circuit under test for one data acquisition channel and a ground pin Pretrigger The specified portion of the data record that contains data acquired before the trigger event Post trigger The specified portion of the data record that contains data acquired after the trigger event Probe head The end of the probe that connects to the target system Probe adapter A microprocessor specific lead set that connects the LA module probe to a target system Qualification gap Qualification gaps indicate that data samples were not stored due to storage qualification or Don t Store trigger a
495. up the counters or timers in the Trigger window You can then select the data source in the New Data Window wizard when you create a Histogram window You can also select the data source for an existing Histogram window from the Data Source properties tab as shown in Figure 3 104 Properties Histogram 1 BE About Data Histogram Window Data Source Ranges m Data from QSTART Y Changing the data source will also create new default ranges Accumulated counts Add Data Source will be lost Adare z IV Uset i Counter 1 z Cancel Apply Help Figure 3 104 Selecting the data source for the Histogram window To provide an overview of the address activity of a software routine you define a set of ranges numeric logarithmic or symbolic You can set up the Trigger window to look for data within the defined ranges The data is processed and displayed in the Histogram window for the current acquisition If you set up the logic analyzer to repetitively acquire data the sampling errors will decrease over time as you acquire more data The resultant data provides a stable display in the Histogram window where you can view the overall activity of the software You can use this method of analyzing data to determine which sections of code are being accessed or not accessed You can also determine the time spent in a routine relative to other areas of code Figure 3 103 is an example of viewing address acti
496. us clocking refer to the online help If a microprocessor support package is loaded the channel groups are defined for you Tektronix Logic Analyzer Family User Manual Version 4 2 Software 3 19 Setup 3 20 alo Clocking ternal 2x Ins hd Memory Depth ferioesc4 Acquire Normal Support Package None Probes Analog Feeds Suppress Define Compare Group Name Probe Channels Probe 7 5 4 Soe 2 0 oo CLKQual Ja a a a a a a cea af ac ef el olf ef ef e a ai E E E E E E ci l O a a a a a a a co x In selected group E Demux Source Not grouped Table Shows Channel Polarity Oo Demi Deasinaina Channel Compare In other group s Figure 3 16 Source and destination probe channels in Internal 2X Clocking mode Channel Group Name Each channel group must have a name Use the default name or enter another name There is no limit to the number of groups Channel groups defined in the channel grouping table are used in other displays and setup controls The order of the groups in this table determine the order of presentation in other windows For each group name list all the probe channels that make up the group The group names are listed in the left column of the table The individual probe channels that make up each group are listed in the right column of the table The center column
497. using pattern symbols Range Symbols Range symbols define a range of 32 bit addresses represented by a contiguous set of integers marked by specific lower and upper bounds The different types of range symbols are discussed in detail under TLA Symbol File Format beginning on page B 1 When defining a range symbol file do not overlap ranges of values If ranges overlap they may not be recognized For example if SYM1 covers the range 1000 3FFF and SYM2 covers 2000 2FFF then the values in range 2000 2FFF may be recognized as either SYM1 or SYM2 and the values in the range 3000 3FFF may not be recognized as SYM1 at all The range symbols shown in Figure 2 48 define subroutine boundaries B Listing 1 olx al sole zal a Al tlala C2 Te EBEE o ENEO Te EBEE o ENEO A Mesa 14 a E BEEE ava concen 1787 CAPTURE DATA 3588 1788 CAPTURE DATA 3584 1789 CAPTURE DATA 41C8 1790 CAPTURE DATA 41CA 1791 FORMATTER 138 1792 FORMATTER 134 1793 CAPTURE DATA 41CC 1794 CAPTURE DATA 41CE 1795 DISPLAY BUF 674 Figure 2 48 Listing data using range symbols Tektronix Logic Analyzer Family User Manual Version 4 2 Software Operating Basics Symbols Dialog Box Use the Symbols dialog box to provide an overview of all currently loaded symbol files see Figure 2 49 You can display information about all symbol files currently used by the logic analyzer The following status information is available for each
498. usion of time stamp information with the stored data samples makes it a straightforward process to display time correlated acquisitions from multiple data sources You control the horizontal scale of the acquired data in the display You do not however change setup parameters by changing settings in the waveform display You can also make other format selections such as channel group radix waveform color and track height To show when the logic analyzer sampled the data you can add Sample using the Add Waveform tool bar button When viewing logic analyzer data you can view the data as individual channels You can also display the logic analyzer data in groups of channels known as busforms Use the busforms to display when data changes with respect to clock or control signals Another method of displaying logic analyzer data is to overlay waveform channels Use overlay waveforms to visually compare two or more waveforms at the same time Tektronix Logic Analyzer Family User Manual Version 4 2 Software 2 39 Operating Basics LA Module Versus DSO 2 40 Waveforms Sampling Resolution When you are interested in displaying the value of a group of channels over a period of time you can use magnitude mode For example using magnitude mode you can view the channels connected to a 16 bit digital counter The magnitude waveform appears as a sawtooth waveform as the counter values increment from the minimum value 00 to the maximu
499. ut on the measurement bar 5 Read the time difference between the two locations from the Delta readout on the measurement bar 6 Click the Lock Delta Time checkbox to maintain the specified delta time moving the C1 and C2 marks simultaneously across the data Jumping to Specific Data Locations You can use the Go To dialog box to jump to a new position by selecting any current mark or waveform To open the Go To dialog box open a data window and click the Go To tool bar button as shown in Figure 3 86 You can also use the Overview Mark bar see Figure 3 87 to jump to another location If you do not click on a mark clicking in the Overview Mark bar scrolls to that location Tektronix Logic Analyzer Family User Manual Version 4 2 Software 3 121 Listing Window 3 122 in Ae axle Al Al 4th 2 Go To Listing 1 HEI Go to What Select Mark Column LA 1 Begin LA 1 End Cursor 1 Cursor 2 Goto Cancel Help Figure 3 86 Using the Go To dialog box to jump to the system trigger zini He seel ables aal alel l c1 2097150 c2 20571 5d Delta Time fi Bins T Lock Delta Time QSTART QSTART Q Start Q Stz G Start Address Data Mnemonic Timestamp 2037142 OOFSF6F6 Fore RESET 2097143 z097144 oOFSsrsre FaFa HALT J 2097145 OOFSFSFS FSF5 C BUS ERROR m 2097146 OOFAFAFA FAFA BACKGROUND WRITE 3 o Wl 2097147 OOFBFBFE FEFB BACKGROUND READ j RUD 2097148
500. vity in a software application using symbolic ranges Tektronix Logic Analyzer Family User Manual Version 4 2 Software Histogram Window Measuring Counter or Timer Events Single Event To measure an event you define a starting point a target event a counter or a timer and a stopping point in the LA Trigger window Use the Data Source properties tab to select the counter or timer as the data source for your analysis When you acquire data the Histogram window displays the minimum maxi mum and average value of the counter or timer data as shown in Figure 3 105 9 Histogram 1 Oy AIA 33 Ol Percentages Based On Matched Samples x i Minimum 49 748 140 ms Maximum 266 028 31 2 me Average 159 580 797 ms Range Count A0 ns 10 ns 100 ms 1 000 us 10 000 us 100 000 us 999 999 us 1 000 000 ms 3 939 999 ms 10 000 000 ms 99 999 999 ms 100 000 000 ms 999 999 999 ms 1 000 000 000 s 9 999 999 999 s 1239 999 999 999 239 999 999 999 339 999 999 999 10 000 000 000 1 40 000 000 000 s 16 40 000 000 000 s 2346540 000 000 000 346539 999 999 999 s r s 246 40 000 000 000 139 999 999 999 46 40 000 000 000 53 284 740 991 Seccscsonrosossoooces Figure 3 105 Measuring events with the Histogram window Creating a Histogram Window Before creating the Histogram window define the channel setups and clocking in the Setup window You should also define your trigger program
501. w If you want to save the settings as defaults click Save settings as application defaults near the bottom of the window see Figure 3 101 on page 3 143 The settings will be saved to the System options Source Files tab and will be used each time you create a new Source window Source Window Shortcut Keys You can use the general purpose shortcut keys listed in Table 3 23 to move data and cursors in the Source window You should also refer to the discussions of shortcut keys in the online help or under the section for the individual data windows The shortcut keys also known as accelerator keys or hot keys abide by the following rules m Arrow keys with no modifier keys scroll data m CTRL Arrow keys move the active cursor m The Shift key increases movement by a factor of 10 Table 3 23 Source window shortcut keys Desired action Key combination Display Go To dialog box CTRL G Move Cursor 1 to the center of the window CTRL 1 Move Cursor 2 to the center of the window CTRL 2 Add a mark CTRL K Scroll data up 10 lines Shift Up arrow Scroll data down 10 lines Shift Down arrow Move active cursor up one line CTRL Up arrow Move active cursor down one line CTRL Down arrow Move active cursor up 10 lines CTRL Shift Up arrow Move active cursor down 10 lines CTRL Shift Down arrow Tektronix Logic Analyzer Family User Manual Version 4 2 Software 3 145 Source Window
502. w of how the modules and data windows relate to one another Relationships between modules if any are always shown to view which modules are associated with a data window you must select the module icon m View which modules provide data to each window by clicking the window name m Enable and disable modules by clicking their On Off buttons m Save and load files containing setup trigger and data information using the File menu m Add an external oscilloscope connection or delete an existing external oscilloscope connection using the context menu Before you acquire and display data you must first configure the modules using the module Setup windows Each module has its own Setup and Trigger window each module is set up individually Configure the Setup window before configuring the Trigger window because the Setup window settings affect the Trigger window selections An example of a logic analyzer Setup window is shown in Figure 2 12 M TLA Setup LA 1 LEE I File Edit System Window Help 12 xi S BI E 3 stous tate m Al ES Clocking internas ens x Memory Depth 67108864 hd Acquire Normal Support Package None Analog Feeds Suppress Define Compare Group Name MSB Probe Channels LsB exo 00 CKO AS Go A 0 A2 Go Az 0
503. wer off the instrument and remove the modules Remove the jumper and reinstall the modules m Try placing a suspected module in a different slot to verify slot dependency problems For example if you have a module in one set of slots power off the instrument move the module to a different set of slots and then try the tests again If the module works in the new location you have identified a faulty slot in the instrument E Check for bent or broken pins on the backplane of the instrument You can execute the internal resource manager program ResMan32 exe to identify if any of the installed modules are being identified in the instrument slots Table H 2 lists some of the command line options for executing the ResMan32 software Table H 2 Command line options for ResMan32 Option Description a A 0 O ResMan32 will not close the text window after executing and displaying the results the major functions default p P ResMan32 will not execute the mainframe power on self test diagnostics default v V ResMan32 records the resource manager actions in the text window in a short form or nonverbose mode a A 0 0 ResMan32 will terminate the tests and display the resultant action information in the text window p P ResMan32 will perform the mainframe power on self test diagnostics y V ResMan32 records all actions in a text window in the verbose mode default Tektronix Logic Analyzer
504. wo panes for viewing data that is off screen Use the scroll bars to move through the data or jump to a specific point in the data by clicking the Go To toolbar button and selecting a mark Histogram Windows Histogram windows display logic analyzer data as histograms You use Histogram windows to evaluate the performance of software which is also known as performance analysis The following list describes some of the tasks you can perform with Histogram windows Use the scroll bars to move through the data Sort histogram data by ranges counts or percentages Change the magnification of histogram bars to view the data in greater detail Split the window into two panes for viewing data that is off screen View various statistics on the acquired data Source Windows Source windows display source data You can track the execution of source code based on the data displayed in a Listing window The following list describes some of the tasks you can perform with Source windows Step through source code statements Turn source code line numbers on or off Place user marks to flag specific data samples for evaluation Use the scroll bars to move through the data or jump to a specific point in the data by clicking the Go To toolbar button and selecting a mark Search for source code statements by clicking the Define Search button in the toolbar Determine whether there is any acquired data for the corresponding source file displayed i
505. x Logic Analyzer gt TLA Documentation gt TPI Manual Tektronix Logic Analyzer Family User Manual Version 4 2 Software 2 19 Approaching the TLA Application Windows 2 20 Tektronix Logic Analyzer Family User Manual Version 4 2 Software rr 7 Approaching the Pattern Generator Application Windows The TLA pattern generator application is similar to the logic analyzer applica tion Typically you use the windows in the pattern generator application as shown in Figure 2 18 1 Go to the System window This is the main 3 Use the Program window to generate the access point to the other windows Block Sequence Sub Sequence and Event Click the Program button Press the i From Block Page Setup button 4 Use the Listing or Waveform window to 2 Use the Setup window to generate the pattern data for each configure the module block aE n e eeeeFSsS Co H e z 5 Click the Run toolbar button to send the program to the hardware Q 6 a Run the TLA software and click Run on the toolbar to acquire the data b View the pattern generated in Listing and Waveform windows Figure 2 18 Window usage control flow Tektronix Logic Analyzer Family User Manual Version 4 2 Software 2 21 Approaching the Pattern Generator Application Windows System Window Setup Windows 2 22 The pattern generator System window see Figure 2 19 graphically represents the pattern generator configuration The modules are placed in
506. y disk controller Enabled p gt Advanced Chipset Control DRAM Speed 60 ns DMA Aliasing Enabled 16 Bit I O Recovery 4 5 8 Bit I O Recovery 4 5 Plug amp Play O S Yes Reset Configuration Data No PS 2 Mouse AutoDetect Large Disk Access Mode Other Secured Setup Configurations No p gt PCI Configuration ISA graphics device installed No p gt PCI PNP ISA UMB Region Exclusion C800 CBFF Available CC00 CFFF Available D000 D3FF Available Tektronix Logic Analyzer Family User Manual Version 4 2 Software G 9 Appendix G Installing Software Table G 2 TLA714 and TLA720 Controller BIOS setup Cont Parameter Factory setting Submenu parameter Factory setting D400 D7FF Available D800 DBFF Available DC00 DFFF Available p gt PCI PNP ISA IRQ Resource Exclusion IRQ3 Available IRQ4 Available IRQ5 Available IRQ7 Available IRQ9 Available IRQ10 Available IRQ11 Available IRQ14 Available IRQ15 Available Power Power Savings Disabled Standby Timeout Off Auto Suspend Timeout Off Resume On Time Off IDE Drive 0 Monitoring Disabled IDE Drive 1 Monitoring Disabled IDE Drive 2 Monitoring Disabled IDE Drive 3 Monitoring Disabled PCI Bus Monitoring Disabled G 10 Tektronix Logic Analyzer Family User Manual Version 4 2 Software Appendix G Installing Software Table G 2 TLA714 and T
507. you have designated an external signal for this purpose you will be unable to set the signal when using the arming feature Signal Logic Function To use internal signals you must select which internal signal logic function is appropriate for your trigger program Signals 1 and 2 high speed can be asserted by only one module each For signals 3 and 4 the modules can be wired OR or wired AND Selecting the OR function means that any module can assert the signal Selecting AND means that all modules must set the signal for it to be asserted The same logic applies to clearing signals Tektronix Logic Analyzer Family User Manual Version 4 2 Software Setup The logic function applies only at a module level not to multiple set clear statements within a single module NOTE Be careful when using wired AND internal signals If your trigger depends on an internal signal all modules must set the signal for it to be asserted or the trigger will not occur If you change your trigger program remember to update the logic function settings accordingly External Signals The logic analyzer can send and receive signals to from the target system using the External Signal In and External Signal Out connectors on the mainframe Use the External Signal In function to include a signal from your target system as part of the trigger setup Use the External Signal Out function to send a signal to the target system or other test equipment when a tr
508. ype lod file TLA7Nx TLA7Px TLA7Qx logic analyzer modules TLA7NPQ lod TLA7LX and TLA7Mx logic analyzer modules TLA7LM lod TLA7Dx and TLA7Ex DSO modules FirmwareDSO lod TLA720 Benchtop controller module TLA720 lod 16 Click OK You will be asked to confirm your action click Yes when prompted NOTE The program will not allow you to load firmware to an incompatible module For example the program will not load DSO firmware to a logic analyzer module The program will load the firmware for each module one at a time The process may take several minutes per module 17 When the upgrade is complete exit the program Tektronix Logic Analyzer Family User Manual Version 4 2 Software Appendix G Installing Software 18 19 20 21 22 23 24 25 26 Turn off the logic analyzer and disconnect the power cord Remove the module from the instrument and remove the jumper from the Flash programming pins on the rear of the module Keep the jumper for future updates Locate the big label on the side of the module Record the firmware version that is printed on the label You will need this information to see that the firmware version matches the label Reinstall the module in the mainframe and power on the mainframe After the logic analyzer completes the power on diagnostics select System Properties from the System menu Click the module tab for example LA1 Verify that the firmware version
509. yzer Family User Manual Version 4 2 Software E 11 Appendix E Merging Modules 18 Install the top and bottom rear screws 19 Check and tighten all screws 20 Place the master module adjacent to the slave module so that the two guide pins from the Slave module line up with the guide pin holes in the master module p y f f Guid R ui D EL m 3 i Z _ og E MW Q j Rae lt a RB Ta 5 wee ee A 9 l oS Master module Slave module 7 Ys Figure E 8 Lining up the two modules 21 Gently push the two modules together so that the merge connector of the slave module mates with the merge connector on the master module E 12 Tektronix Logic Analyzer Family User Manual Version 4 2 Software Appendix E Merging Modules Three Way Logic Analyzer Merge Procedure A Storing the Logic Analyzer Module Merge Cable The following procedure is used for merging three logic analyzer modules together to form a merged set with a higher logic analyzer channel count In a three way merge TLA7Nx TLA7Px and TLA7Qx logic analyzer modules only the master module is in the center Slave module 1 is to the right of the master module Slave module 2 is on the left of the master module as shown in Figure E 1 on page E 3 CAUTION Static discharge can damage any semiconductor component in the logic analyzer module Discharge the static voltage from your body by wear
Download Pdf Manuals
Related Search
Related Contents
二重絶縁 - リョービ UC 36YRSL - Hitachi Koki Scarica - Alberici SpA InLine 76440R networking cable 二重命 -ETC 載器 Aplicación móvil MobileTogether para WebClient TruPortal™ 1.5 ! WARNING - Napoleon® Products WIPER 3 - Nos produits coups de coeur Copyright © All rights reserved.
Failed to retrieve file