Home

TF30 User`s manual - SparkFun Electronics

image

Contents

1. Hex ASCII Name 0 x 80 128 Initialize Data Source 0x81 129 Switch to NMEA Protocol 0x82 130 Set Almanac upload 0x 84 132 Software Version Poll 0x85 133 Set DGPS Source Control 0 x 86 134 Set Main Serial Port 0 x 88 136 Mode Control 0 x 89 137 DOP Mask Control 0x8A 138 DGPS Mode 0x 8B 139 Elevation Mask 0 x 8C 140 Power Mask 0x 8D 141 Editing Residual Not implemented 0 x SE 142 Steady State Detection Not implemented 0 x 8F 143 Static Navigation 0 x 90 144 Poll Clock Status 0x91 145 Set DGPS Serial Port 0 x 92 146 Poll Almanac 0 x 93 147 Poll Ephemeris 0 x 94 148 Flash Update 0 x 95 149 Set Ephemeris upload 0 x 96 150 Switch Operating Mode 0 x 97 151 Set Trickle Power Parameters 0 x 98 152 Poll Navigation Parameters 0x A5 165 Set UART Configuration 0 x A6 166 Set Message Rate 0x A7 167 Low Power Acquisition Parameters Initialize Data Source Message LD 128 Table 4 2 contains the input values for the following example Warm start the receiver with the following initialization data ECEF XYZ 2686727 m 4304282 m 3851642 m Clock Offset 75 000 Hz Time of Week 86 400 s Week Number 924 and Channels 12 Raw track data enabled Debug data enabled Example A0A20019 Start Sequence and Payload Length 80FFD700F9FFBE5266003AC57A000124F80083D600039C0C33 Payload 0A91B0B3 Message Checksum and End Sequence 18
2. Name Example Units Description Message ID GPRMC RMC protocol header UTC Time 161229 487 hhmmss sss Status A A data valid or V data not valid Latitude 3723 2475 ddmm mmmm N S Indicator N N north or S south Longitude 12158 3416 dddmm mmmm E W Indicator W E east or W west Speed Over 0 13 knots Ground Course Over 309 62 degrees True Ground Date 120598 Ddmmyy Magnetic degrees E east or W west Variation Checksum 10 CR lt LF gt End of message termination 1 All course over ground data are geodetic WGS84 directions 59 Laipac Technology Inc VTG Course Over Ground and Ground Speed Table 5 10 contains the values for the following example GPVTG 1309 62 T M 0 13 N 0 2 K 6E Table 5 JONTG Data Format Name Example Units Description Message ID GPVTG VTG protocol header Course 309 62 degrees Measured heading Reference T True Course degrees Measured heading Reference M Magnetic Speed 0 13 knots Measured horizontal speed Units N knots Speed 0 2 km hr Measured horizontal speed Units K Kilometers per hour Checksum 6E CR lt LF gt End of message termination 1 All course over ground data are geodetic WGS84 directions SiRF Proprietary NMEA Input Messages NMEA input messages are provided to allow you to control the Evaluation Unit while in NMEA protocol mode The Evaluation Unit m
3. Binary Hex Name Bytes Scale Example Units Description Message ID 1 88 ASCII 136 3D Mode 1 01 1 always true 1 Alt Constraint 1 01 YES 1 NO 0 Degraded Mode 1 01 See Table 4 13 TBD I 01 Reserved DR Mode 1 01 YES 1 NO 0 Altitude 2 0000 meters range 1 000 to 10 000 Alt Hold Mode 1 00 Auto 0 Always 1 Disable 2 Alt Source 1 02 Last Computed 0 Fixed to 1 Coast Time Out 1 14 Seconds Oto 120 Degraded Time 05 Seconds 0 to 120 Out DR Time Out 1 01 Seconds 0 to 120 Track 1 01 YES 1 NO 0 Smoothing Payload Length 14 bytes 24 Laipac Technology Inc Table 4 7 3 Degraded Mode Byte Value Byte Value Description 0 Use Direction then Clock Hold 1 Use Clock then Direction Hold 2 Direction Curb Hold Only 3 Clock Time Hold Only 4 Disable Degraded Modes DOP Mask Control Message I D 137 Table 4 14 contains the input values for the following example Auto Pdop Hdop Gdop 8 default Pdop 8 Hdop 8 Example A0A20005 Start Sequence and Payload Length 8900080808 Payload 00A1B0B3 Message Checksum and End Sequence Table 4 14 DOP Mask Control Binary Hex Name Bytes Scale Example Units Description Message ID 1 89 ASCII 137 DOP Selection it 00 See Table 4 15 GDOP Value 1 08 Range 1 to 50 PDOP Value 1 08 Range 1 to 50 HDOP Value 1 08 Range 1 to 50 Payload Length
4. Payload Length 43 bytes per subframe 5 subframes per page Note Data is logged in ICD format available from www navcen uscg gov The ICD specification is 30 bit words The output above has been stripped of parity to give a 240 bit frame instead of 300 bits 42 Laipac Technology Inc CPU Throughput Message I D 9 Output Rate 1 Hz Example A0A20009 Start Sequence and Payload Length 09003B0011001601E5 Payload 0151BOB3 Message Checksum and End Sequence Table 4 45 CPU Throughput Binary Hex ASCII Decimal Name Bytes Scale Example Units Scale Example Message ID 1 09 9 SegStatMax 2 186 003B millisec 186 3172 SegStatLat 2 186 60011 millisec 186 0914 AveTrkTime 2 186 60016 millisec 186 1183 Last MS 2 O1E5 millisec 485 Payload Length 9 bytes Command Acknowledgment Message I D 11 Output Rate Response to successful input message This is successful almanac message ID 0x92 request example A0A20002 Start Sequence and Payload Length 0B92 Payload 009DBOB3 Message Checksum and End Sequence Table 4 46 Command Acknowledgment Binary Hex ASCII Decimal Name Bytes Scale Example Units Scale Example Message ID 1 0B 11 Ack I D 1 92 146 Payload Length 2 bytes Command NAcknowledgment Message I D 12 Output Rate Response to rejected input message This is an unsuccessfu
5. Output Messages for SiRF Binary Protocol Note All output messages are received in BINARY format SiRFdemo interprets the binary data and saves it to the log file in ASCII format Table 4 36 lists the message list for the SiRF output messages Table 4 36 SiRF Messages Output Message List Hex ASCII Name Description 0x02 2 Measured Navigation Data Position velocity and time 0 x 03 3 True Tracker Data Not Implemented 0 x 04 4 Measured Tracking Data Satellite and C No information 0 x 05 5 Raw Track Data TF30 not supported 0 x 06 6 SW Version Receiver software 0 x 07 7 Clock Status Current clock status 0 x 08 8 50 BPS Subframe Data Standard ICD format 0 x 09 9 Throughput Navigation complete data OxOA 10 Error ID Error coding for message failure 0 x OB 11 Command Acknowledgment Successful reguest 36 Laipac Technology Inc U x UC 1 12 Command Nacknowledgment Unsuccessful request OxOD 13 Visible List Auto Output OxOE 14 Almanac Data Response to Poll 0 x OF 15 Ephemeris Data Response to Poll 0 x 10 16 Test Mode 1 For use with SiRFtest Test mode 1 0x 11 17 Differential Corrections Received from DGPS broadcast 0x 12 18 OkToSend CPU ON OFF Trickle Power 0 x 13 19 Navigation Parameters Response to Poll Ox 14 20 Test Mode 2 Additional test data Test mode 2 Ox1C 28 Nav Lib
6. 65 Laipac Technology Inc Tables Table 3 1 Pin List of the 20 pin Digital Interface Connector of Table 3 2 TricklePower Power Consumption Table 4 1 SiRF Messages Input Message Table 4 2 Initialize Data Source Table 4 3 Reset ConfigurationBitmap Table 4 4 Switch To NMEA Protocol Table 4 5 Set Almanac message Table 4 6 Software Version Table 4 12 Mode Control Table 4 14 DOP Mask Control Table 4 15 DOP Selection Table 4 17 DGPS Selection Table 4 18 Elevation Mask Table 4 19 Power Mask Table 4 20 Static Navigation Table 4 22 Clock Status Table 4 7 Set DGPS Source x eee Table 4 8 Set DGPS Source Selections Table 4 9 Set DGPS Source Selections wmenea Table 4 10 Internal Beacon Serach Settings Table 4 11 Set Main Serial Port sss eee Table 4 13 Degraded Mode Byte Value Table 4 16 DGPS Control Table 4 21 Message ID 143 Description Table 4 23 Set DGPS Serial Port Table 4 24 Almanac Table 4 25 Ephemeris Message 1 D Table 4
7. Payload Length 188 bytes 1 For further information go to Table 4 41 Note The measurement of GPS Week item is expressed with ICD GPS week format between 0 and 1023 Note Message length is fixed to 188 bytes with nontracking channels reporting zero values Table 4 4 TrktoNAVStruct trk status Field Definition Field Definition Hex Description Value ACQ SUCCESS 0x0001 Set if acq reacq is done successfully DELTA CARPHASE VALI 0x0002 Set Integrated carrier phase is valid D BIT SYNC DONE 0x0004 Set Bit sync completed flag SUBFRAME SYNC DONE 0x0008 Set Subframe sync has been done 40 Laipac Technology Inc CARRIER PULLIN DONE 0x0010 Set Carrier pullin done CODE LOCKED 0x0020 Set Code locked ACQ FAILED 0x0040 Set Failed to acquire S V GOT EPHEMERIS 0x0080 Set Ephemeris data available Note When a channel is fully locked and all data is valid the status shown is 0 x BF Raw Tracker Data Out Message I D 5 Not implementedfor TF30 Software Version String Response to Poll Message I D 6 Output Rate Response to polling message Example A0A20015 Start Sequence and Payload Length 0606312E322E30444B495431313920534D0000000000 Payload 0382B0B3 Message Checksum and End Sequence Table 4 42 Software Version String Binary Hex ASCII Decimal Name Bytes Scale Example Units Scale Example Me
8. 52 Laipac Technology Inc GPS Week 2 0434 1076 Time Init Source 1 02 2 Drift 8 Drift Init Source 1 02 2 Payload Length 84 bytes 1 0 Use last know altitude 1 Use user input altitude 2 Use dynamic input from external source 2 0 Use direction hold and then time hold 1 Use time hold and then direction hold 2 Only use direction hold 3 Only use time hold 4 Degraded mode is disabled 3 0 True False 4 0 Use DGPS if available 1 Only navigate if DGPS corrections are available 2 Never use DGPS corrections 5 0 True False 6 0 ROM position 1 User position 2 SRAM position 3 Network assisted position 7 0 ROM time 1 User time 2 SRAM time 3 RTC time 4 Network assisted time 8 0 ROM clock 1 User clock 2 SRAM clock 3 Calibration clock 4 Network assisted clock Development Data Message I D 255 Output Rate Receiver generated Example A0A2 Start Sequence and Payload Length PTE KE Paa B0B3 Message Checksum and End Sequence Table 4 59 Development Data Binary Hex ASCII Decimal Name Bytes Scale Example Units Scale Example Message ID ism s FF 255 Payload Length Variable Note MID 255 is output when SiRF binary is selected and development data is enabled The data output using MID 255 is essential for SiRF assisted troubleshooting support
9. Even though the protocol has a maximum length of 2 5 1 bytes practical considerations require the SiRF GPS module implementation to limit this value to a smaller number Likewise the SiRF receiving programs e g SiRFdemo may limit the actual size to something less than this maximum Payload Data The payload data follows the payload length It contains the number of bytes specified by the payload length The payload data may contain any 8 bit value Where multi byte values are in the payload data neither the alignment nor the byte order are defined as part of the transport although SiRF payloads will use the big endian order Checksum The check sum is transmitted high order byte first followed byte the low byte This is the so called big endian order High Byte LowByte Ox7F Any value The check sum is 16 bit checksum of the bytes in the payload data The following pseudo code defines the algorithm used Let message to be the array of bytes to be sent by the transport Let msgLen be the number of bytes in the message array to be transmitted Index first checkSum 0 while index msgLen checkSum checkSum message index checkSum checkSum AND 2 1 Input Messages for SiRF Binary Protocol Note All input messages are sent in BINARY format Table 4 1 lists the message list for the SiRF input messages siTe Laipac Technology Inc Table 4 SiRF Messages Input Message List
10. 10 C to 70 C 40 C to 85 C Chapter 2 Specifications TF30 1 Electrical Characteristics 1 1 General 1 2 Accuracy 1 3 DGPS Accuracy 1 4 Datum 1 5 Acquisition Rate 1 6 Dynamic Condition Frequency C A code Channels Position Velocity Time Position Velocity WGS 84 Reacquisition Cold start Warm start Hot start Altitude Velocity Acceleration Jerk L1 1575 42MHz 1 023 MHz chip rate 12 25 meters CEP without SA 0 1 meters second without SA 1 microsecond synchronized to GPS time 1 to 5 meters typical 0 05 meters second typical 0 1 sec average 45 sec average 38 sec average 8 sec average 18 000 meters 60 000 Feet max 515 meters sec 1000 Knots max 4 g max 20 meters sec max Laipac Technology Inc 1 7 Power 1 8 External Reset 1 9 Serial Port 1 10 Time 1PPS Pulse Main Power 3 3 Vdct 10 Supply Current 150 mA continuous Supply Current 50 mA TricklePower mode Backup Power 2 5V to 3 1V Backup Current 10A typical Active low input Electrical interface Two full duplex serial communication TTL level or EIA RS 232 level optional Protocol Design in binary and NMEA 0183 Version 2 20 with a baud rate selection NMEA output GGA GLL GSA GSV RMC and VTG on customer request Default six NMEA Baud Rate 4800 DGPS protocol RTCM SC 104 version 2 00 type 1 2 and 9 WAAS Supported Level TTL Pulse duration 100 ms
11. 26 Flash update sssssses eee eee as Table 4 27 Ephemeris sss eee e ec eee eee eee ees 23 220 30 30 Laipac Technology Inc Table 4 28 Switch Operating Mode 1 D I50 31 Table 4 29 Set Trickle Power Parameters LD 151 on nuuenuaauarnn 32 Table 4 30 Example of Selections for Trickle Power Mode of Operation 32 Table 4 31 Trickle Power Mode Settings 32 Table 4 32 Poll Receiver for Navigation Parameters 33 Table 4 33 Set UART Configuration wmmmmeesa 34 Table 4 34 Set Message Rate e 05 Table 4 35 Set Low Power Acquisition Parameters 36 Table 4 36 SiRF Messages Output Message List 36 Table 4 37 Measured Navigation Data Out Binary amp ASCII Message Data Format iens ee evi ce e eU oe te bcd 37 Table 4 38 Mode 1 cet cnir diede Rede SER REMIS 38 Table 4 39 Mode 2 te EIL Eee Ret e Stc d due ge 39 Tab e 4 40 Measured Tracker Data Out 40 Table 4 41 TrktoNAVStruct trk status Field Definition 40 Table 4 42 Software Version String eh 41 Table 4 43 Clock Status Data Message 42 Table 4 44 50 BPS Data nn csi Lk eee TR CERE EAE 42 Table 4 45 CPU Throughput ou 0 0 0 0 cece eee eee 43 Table 4 46 Command Acknowle
12. 5 bytes Table 4 75 DOP Selection Byte Value Description 0 Auto PDOP HDOP 1 PDOP 2 HDOP 3 GDOP 4 Do Not Use DGPS Control Message 1 D 138 Table 4 16 contains the input values for the following example 25 Laipac Technology Inc Set DGPS to exclusive with a time out of 30 seconds Example A0A20003 Start Sequence and Payload Length 8A011E Payload 00A9B0B3 Message Checksum and End Sequence Table 4 16 DGPS Control Binary Hex Name Bytes Scale Example Units Description Message ID T 8A ASCII 138 DGPS Selection 1 01 See Table 4 17 DGPS Time Out 1 1E seconds Range 0 to 255 Payload Length 3 bytes Table 4 17 DGPS Selection Byte Value Description 0 Auto 1 Exclusive 2 Never Use Note Configuration of the DGPS mode using MID 138 only applies to RTCM corrections received from an external RTCM source or internal or external beacon It does not apply to WAAS operation Elevation Mask Message I D 139 Table 4 18 contains the input values for the following example Set Navigation Mask to 15 5 degrees Tracking Mask is defaulted to 5 degrees Example A0A20005 Start Sequence and Payload Length 8B0032009B Payload 0158BOB3 Message Checksum and End Sequence Table 4 18 Elevation Mask Binary Hex Name Bytes Scale Example Units Description Message ID 1 8B ASC
13. 8 1 00 0 CH 9 1 00 0 CH 10 1 00 0 CH 11 1 00 0 CH 12 1 00 0 Payload Length 41 bytes 1 For further information go to Table 4 38 2 Dilution of precision DOP field contains value of PDOP when position is obtained using 3D solution and HDOP in all other cases 3 For further information go to Table 4 39 Note The measurement of GPS Week item is expressed with ICD GPS week format between 0 and 1023 Note Binary units scaled to integer values need to be divided by the scale value to receive true decimal value i e decimal X vel binary X vel 8 Table 4 38 Mode 1 Bit 7 6 5 4 3 2 1 0 Bit s DGPS DOP ALTMODE TPMODE PMODE Name Mask Bit s Name Value Description Name PMODE Position 0 No navigation solution mode 1 1 satellite solution 2 2 satellite solution 3 3 satellite solution 4 gt 3 satellite solution 5 2D point solution Least square 6 3D point solution Least square 38 Laipac Technology Inc Laipac Techno 7 Dead reckoning TPMODE Trickle power 0 Full power position mode 1 Trickle power position ALTMOD Altitude mode 0 No altitude hold E 1 Altitude used from filter 2 Altitude used from user 3 Forced altitude from user DOPMAS DOP mask 0 DOP mask not exceeded K status 1 DOP mask exceeded DGPS DGPS status 0 No DGPS position 1
14. A0A200007 Start Sequence and Payload Length 85030004B AF0C802 Payload 02FEBOB3 Checksum and End Sequence Table 4 8 DGPS Source Selection Example 2 Name Bytes Scale Hex Units Decimal Description Message I D 1 85 133 Message Identification DGPS Source 1 03 3 See Table 4 9 DGPS Source Selections Internal Beacon 4 0004BAFO HZ 310000 See Table 4 9 Internal Frequency Beacon Search Settings Internal Beacon 1 C8 BPS 200 See Table 4 10 Internal Bit Rate Beacon Search Settings 22 Table 4 9 SetDGPS Source Selections Laipac Technology Inc DGPS Hex Decimal Description None 0 0 DGPS corrections will not be used even if available WAAS 1 1 Uses WAAS Satellite subject to availability External RTCM 2 External RTCM input source i e Coast Guard Data Beacon Internal DGPS 3 3 Internal DGPS beacon receiver Beacon Receiver User software 4 4 Corrections provided using a interface module routine in a customer user application Table 4 0 Internal Beacon Search Settings Search Type Frequency Bit Rate Description Auto Scan 0 0 Auto scanning of all frequencies and bit rates are performed Full Frequency 0 None Zero Auto scanning of all frequencies and Scan specified bit rate are performed Full Bit Rate None Zero 0 Auto scanning of all bit rates and Scan specified frequency are p
15. Checksum and End Sequence Table 4 49 Almanac Data Binary Hex Name Bytes Scale Example Message LD 1 OE Sv LD 1 01 Satellite PRN Number Almanac week and 2 1101 First 10 bits is the Almanac Status week Next 5 bits have a zero value Last bit is 1 Almanac data 24 G This information is taken from the 50BPS navigation message broadcast by the satellite This information is the last 8 words in the 5th subframe but with the parity removed Package checksum 2 4CA This is the checksum of the preceding data in the payload It is calculated by arranging the previous 26 bytes as 13 half words and then summing them Payload Length 30 bytes 1 Each satellite almanac entry is output in a single message 2 There are 25 possible pages in subframe 5 Pages 1 through 24 contain satellite specific almanac information which is output as part of the almanac data Page 25 contains health status flags and the almanac week number 3 This checksum is not used for serial I O data integrity It is used internally for ensuring that almanac information is valid Note The data is actually packed and the exact format of this representation and packing method can be extracted from the ICD GPS 2000 document The ICD GPS 2000 document describes the data format of each GPS navigation sub frame and is available on the web at http www arinc com gps 45 Laipac Technology Inc Ephe
16. DGPS position Table 4 39 Mode 2 Mode 2 Hex ASCII Description 0 x 00 0 Solution not validated 0x 01 1 DR sensor data 0x 02 2 Validated 1 Unvalidated 0 0 x 04 4 If set Dead Reckoning Time Out 0 x 08 8 If set Output Edited by UI i e DOP Mask exceeded 0 x 10 16 Reserved 0 x 20 32 Reserved 0 x 40 64 Reserved 0 x 80 128 Reserved Measured Tracker Data Out Message I D 4 Output Rate 1 Hz Table 4 38 lists the binary and ASCII message data format for the measured tracker data Example A0A200BC Start Sequence and Payload Length 04036C0000937FOCOEAB46003F1A1E1D1D191D1A1A1D1F1D59423F1A1A Payload B0B3 Message Checksum and End Sequence 39 Laipac Technology Inc Table 4 40 Measured Tracker Data Out Binary Hex ASCII Decimal Name Bytes Scale Example Units Scale Example Message ID 1 04 None 4 GPS Week 2 036C 876 GPS TOW 4 s 100 0000937F S s 100 37759 Chans 1 OC 12 Ist Svid 1 OE 14 Azimuth 1 Az 2 3 AB deg 2 3 256 5 Elev 1 EI 2 46 deg 2 35 State 2 003F Bitmap 1 0 x BF C No 1 1 1A 26 C No 2 1 1E 30 C No 3 1 1D 29 C No 4 1 1D 29 C No 5 1 19 25 C No 6 1 1D 29 C No 7 1 1A 26 C No 8 1 1A 26 C No 9 1 1D 29 C No 10 1 IF 3l 2nd S Vid 1 1D 29 Azimuth 1 Az 2 3 59 deg 2 3 89 Elev 1 El 2 42 deg 3 66 State 2 3F Bitmap 1 63 C No 1 1 1A 26 C No 2 1 1A 63
17. LD 30 51 Nav Lib Intialization Data Message LD 31 eee 52 Development Data Message 1 D 2355 53 Additional Information 54 TricklePower Operation in DGPS Mode 54 GPS Week Reporting 54 NMEA Protocol in TricklePower Mode s 54 5 NMEA Input Output Messages BD NMEA Output Messages 56 GGA Global Positioning System Fixed Data o nuuusuuanaann aean 56 GLL Geographic Position Latitude Longitude 57 GSA GNSS DOP and Active Satellites 57 GSV GNSS Satellites in View 58 RMC Recommended Minimum Specific GNSS Data 59 VTG Course Over Ground and Ground Speed e 60 SiRF Proprietary NMEA Input Messages sse 60 Transport Message ii aradi ei Hem iive don dnt shiny Pate seek 60 SiRF NMEA Input Messages 61 SetSerialPOtt onte pw WRIST RS emia eames Ewen ages Lal 61 Naviagtionlinitialization 62 SetDGPSDPOtt IA EA AI Se ea oes ees 62 Query Rate Control ii ter AA AA te 63 LLANaviagtionlinitialization 64 Development Data On Off
18. Laipac Technology Inc Table 4 2 Initialize Data Source Binary Hex Name Bytes Scale Example Units Description Message ID l 80 ASCII 128 ECEF X 4 FFD700F meters ECEF Y 4 FFBE5266 meters ECEF Z 4 003AC57A meters Clock Offset 4 000124F8 Hz Time of Week 4 100 0083D600 seconds Week Number 2 039C Channels 1 0C Range 1 12 Reset Config 1 33 See table Table 4 3 Payload Length 25 bytes Table 4 3 Reset Configuration Bitmap Bit Description 0 Data valid flag set warm hot start Clear ephemeris set warm start Clear memory set cold start Factory Reset Enable raw track data YES 1 NO 0 Enable debug data for SiRF binary protocol YES 1 NO 0 Enable debug data for NMEA protocol YES 1 NO 0 Reserved must be 0 Note If Nav Lib data is ENABLED then the resulting messages are enabled Clock Status MID 7 50 BPS MID 8 Raw DGPS 17 NL Measurement Data MID 28 DGPS Data MID 29 SV State Data MID 30 and NL Initialize Data MID 31 All messages are sent at 1 Hz and the baud rate will be automatically set to 57600 SID A wN e Switch To NMEA Protocol Message I D 129 Table 4 4 contains the input values for the following example Request the following NMEA data at 4800 baud GGA ON at 1 sec GLL OFF GSA ON at 5 sec GSV ON at 5 sec RMC OFF VTG OFF Example A0A20018 Start Sequence and Payload
19. Measurement Data Measurement Data Ox1D 29 Nav Lib DGPS Data Differential GPS Data OxIE 30 Nav Lib SV State Data Satellite State Data 0 x IF 31 Nav Lib Initialization Data Initialization Data Ox FF 255 Development Data Various status messages 1 SiRFtest is product testing software tool Measure Navigation Data Out Message I D 2 Output Rate 1 Hz Table 4 37 lists the binary and ASCII message data format for the measured navigation data Example A0A20029 Start Sequence and Payload Length O2FFD6F78CFFBE536E003AC00400030104A00036B039780E3 0612190E160F04000000000000 Payload 09BBBOB3 Message Checksum and End Sequence Table 4 37 Measured Navigation Data Out Binary amp ASCII Message Data Format Binary Hex ASCII Decimal Name Bytes Scale Example Units Scale Example Message ID 1 02 2 K position 4 FFD6F78C m 2689140 Y position 4 FFBE536E m 4304018 Z position 4 003AC004 m 3850244 X velocity 2 8 00 m s Vx 8 0 Y velocity 2 8 03 m s Vy 8 0 375 Z velocity 2 8 01 m s Vz 8 0 125 Mode 1 1 04 Bitmap 4 DOP 1 nS A 5 2 0 Mode 2 1 00 Bitmap 0 B Laipac Technology Inc GPS Week 2 036B 875 GPS TOW 4 100 039780E3 seconds 100 602605 79 SVs in Fix 1 06 6 CH 1 1 12 18 CH 2 1 19 25 CH 3 1 OE 14 CH 4 1 16 22 CH 5 1 OF 15 CH 6 1 04 4 CH 7 1 00 0 CH
20. Squares Reserved DOP Mask Mode 04 4 NI Rie Re m me m Navigation Elevation Mask Navigation Power Mask Reserved DGPS Source DGPS Mode 00 0 DGPS Timeout 1E seconds 30 Reserved LP Push to Fix LP On time LP Interval LP User Tasks Enabled LP User Task Interval Aj l EI BRR A ey Re Rie LP Power Cycling Enabled A LP Max Acq Search Time A LP Max Off Time A Reserved Reserved 4 Payload Length 65 bytes 1 See Table 4 13 2 See Table 4 14 3 See Table 4 15 Navigation Library Measurement Data Message I D 28 Output Rate Every measurement cycle full power continuous 1Hz Example A0A20038 Start Sequence and Payload Length 1C00000660D015F143F62C4113F42FF3FBE95EA17B235CA468C6964B8FBC5 82415CF1C375301734 03E801F400000000 Payload 1533BOB3 Message Checksum and End Sequence MT s Table 4 52 Measurement Data Laipac Technology Inc Binary Hex ASCII Name Bytes Units Decimal Scale Example Scale Example Message I D IC Channel 00 Time Tag 000660D0 ms Satellite ID 15 GPS Software Time F143F62C ms 2 4921113 4113F42F 696e 005 Pseudo range F3FBE95E m 2 1016756 417B235C 638e 007 Carrier Frequency 468C6964 1 6756767 578e 004 Carrie
21. cee K RRR RR e 58 Table 5 9 RMC Data Format 59 Table 5 10 VTG Data Format 0 0 0 0 0c eee nee es 60 Table 5 11 Set Serial Port Data Format 61 Table 5 12 Navigation Initialization Data Format 62 Table 5 13 Reset Configuration 62 Table 5 14 Set DGPS Port Data Format 63 Table 5 15 Query Rate Control Data Format See example 1 64 Table 5 16 Messa g s ocs ooie Sor cece ee ee I Er 64 Table 5 17 LLA Navigation Initialization Data Format 65 Table 5 18 Reset Configuration 65 Table 5 19 Development Data On Off Data Format 65 Laipac Technology Inc Chapter 1 Introduction to TF30 GPS Receiver TF30 GPS Receiver Module Features Ultra miniature size 30 x 40 mm 12 Channel All in view GPS C A and carrier Integrated powerful 16 bit ARM7 TDMI CPU core 8 GPIO pins left for tremendous embedded applications Support WAAS signal Fast Cold Warm Hot Start T TFF time of 45 38 8 sec Fast re acquisition time of 0 1 sec Degraded mode solution enables during short blockage situation Enhanced sensitivity under weak satellite signals Single satellite tra cking capability Dual multipath rejection NMEAO0183 ver2 2 GGA GLL GSA GSV RMC and VIG SiRF binary protocol
22. command rejection are invalid checksum or parameter out of specified range Table 5 19 contains the input values for the following examples 1 Debug On PSRF105 1 3E 2 Debug Off PSRF105 0 3F Tabl e 5 1 9 Development Data On Off Data Format Name Example Units Description Message ID PSRF105 PSRF105 protocol header Debug 1 0 Off 1 On Checksum 3E lt CR gt lt LF gt End of message termination 65
23. output On board Real time RTCM SC 104 differen tial 1 PPS one pulse per second signal Two serial ports with TTL level RS 232 optional TricklePower function power saving Full shield design to withstand extern al EMI interferences Capability of adding uses task implementation to current throughput Based on the SiRFstarll chip set TF30 is a compact 12 channel AIL in View GPS TF30 GPS receiver offers not only superior performance integrated powerful ARM TDMI CPU core but also high reliability at very competitive compact price in the market With its delicate miniature size 30 x 40 mm and flexibility for eight GPIO pins extension TF30 GPS receiver module is suitable for all embedded applications such as s handheld wireless leisure navigation emergency call and location identification Besides its unique full shield design refer to the photo shown above will efficiently withstand all external EMI or RFI inter ference si gnals Quick View on Specifications 12Channel L1 C A 25m CEP 0 1 m s without SA 1 ussynchionized to GPS time 515 meters sec max 4 g max 20 meters sec max Laipac Technology Inc Start 1 sec 175dBW WGS 84 3 3V DC 50 mA 18 000 meters max 45 38 8 0 1 sec Cold Warm Hot 0 1 sec Reacquisition 4800 baud default NMEA 0183 v2 2 SiRF Binary RTCM SC 104 v2 0 type 1 2 9 Integrated 16 bit ARM7 TDMI 8 GPIO pins 30 x 40 x 7 mm Full Shield design
24. power in dB Hz for each of the 100 millisecond intervals in the previous second or last epoch for each particular SV being track in a channel First 100 millisecond measurement C No 2 Second 100 millisecond measurement C No 3 Third 100 millisecond measurement C No 4 Fourth 100 millisecond measurement C No 5 Fifth 100 millisecond measurement C No 6 Sixth 100 millisecond measurement C No 7 Seventh 100 millisecond measurement C No 8 Eighth 100 millisecond measurement C No 9 Ninth 100 millisecond measurement C No 10 Tenth 100 millisecond measurement Delta Range This is the delta pseudo range measurement interval for the Interval preceding second A value of zero indicated that the receiver has an AFC measurement or no measurement in the Carrier Frequency field for a particular channel Mean Delta Range This is the mean calculated time of the delta pseudo range Time interval in milliseconds measured from the end of the interval backwards Extrapolation Time This is the pseudo range extrapolation time in milliseconds to reach the common Time tag value Phase Error Count This is the count of the phase errors greater than 60 Degrees measured in the preceding second as defined for a particular channel Low Power Count This is the low power measurements for signals less than 28 dB Hz in the preceding second as defined for a particular channel Navigation Library DGPS Data Message I D 29 Output Rate Every meas
25. prior to reverting to TricklePower operation Alternatively the host application could send commands i e poll for position repeatedly until the request has been completed In Trickle Power mode the user is required to select an update rate seconds between data output and On Time milli seconds the chipset is on When the user changes to NMEA mode the option to set the output rate for each of the selected NMEA messages is also required These values are multiplied by the TricklePower update rate value as shown in Table 4 58 54 Laipac Technology Inc Table 4 60 NMEA Data Rates Under Trickle Power Operation Power Mode Continuous Trickle Power Trickle Power Trickle Power Update Rate 1 every second 1 every second Levey 1 every 8 seconds seconds On Time 1000 2000 4000 6000 NABA Update 1 every second beuma Veven e 1 every 5 seconds Rate seconds seconds Message l every 5 1 every 10 1 every 40 Output Rate V soni seconds seconds seconds Note The On Time of the chip set has no effect on the output data rates 55 Laipac Technology Inc Chapter 5 NMEA Input Output Messages TF30 may also o utp ut data in NM EA 0183 format as defined by the National Marine Electronics Asso ciation NMEA St and ard For Inte rfacing Marine Electronic D evices Version 2 20 J anua ry 1 1 997 Refer to Chapter 4 for det ailed instructions NMEA Output Messages TF30 outputs
26. the following messa ges as s hown in Table 5 1 Tabl e 5 NMEA0183 Output Messages NMEA Record Description GGA Global positioning system fixed data GIL Geographic position latitude longitude GSA GNSS DOP and active satellites GSV GNSS satellites in view RMC Recommended minimum specific GNSS data VTG Course over ground and ground speed GGA Global Positioning System Fixed Data Table 5 2 contains the values for the following example GPGGA 1161229 487 3723 2475 N 12158 3416 W 1 07 1 0 9 0 M 0000 18 Tabl e 5 2 GGA Data Format Name Example Units Description Message ID GPGGA GGA protocol header UTC Time 161229 487 hhmmss sss Latitude 3723 2475 ddmm mmmm N S Indicator N N north or S south Longitude 12158 3416 dddmm mmmm E W Indicator W E east or W west Position Fix Indicator 1 See Table 5 3 Satellites Used 07 Range 0 to 12 HDOP 1 0 Horizontal Dilution of Precision MSL Altitude 9 0 meters 56 Laipac Technology Inc Units M meters Geoid Separation meters Units M meters Age of Diff Corr second Null fields when DGPS is not used Diff Ref Station ID 0000 Checksum 18 CR lt LF gt End of message termination 1 Values are WGS84 ellipsoid heights Tabl e 5 3 Position Fix Indicator Value Description 0 Fix not available or invalid 1 GPS SPS Mode fix valid 2 Differen
27. 53 Laipac Technology Inc Additional Information TricklePower Operation in DGPS Mode When in TricklePower mode serial port DGPS corrections are supported The CPU goes into sleep mode but will wake up in response to any interrupt This includes UART s Messages received during the TricklePower off period are buffered and processed when the receiver awakens for the next TricklePower cycle GPS Week Reporting Since Aug 22 1999 the GPS week roll from 1023 weeks to 0 weeks is in accordance with the ICD GPS 200 specifications To maintain roll over compliance SiRF reports the ICD GPS week between 0 and 1023 If the user needs to have access to the Extended GPS week ICD GPS week 1024 this information is available through the Clock Status Message 007 under the Poll menu NMEA Protocol in TricklePower Mode The NMEA standard is generally used in continuous update mode at some predefined rate This mode is perfectly compatible with all SiRF TricklePower and Push to Fix modes of operations There is zo mechanism in NMEA that indicates to a host application when the receiver is on or in standby mode If the receiver is in standby mode chip set OFF CPU in standby then no serial communication is possible for output of NMEA data or receiving SiRF proprietary NMEA input commands To establish reliable communication the user must repower the receiver and send commands while the unit is in full power mode during start up and
28. 8 Switch Operating Mode I D 150 Binary Hex Name Bytes Scale Example Units Description Message ID 1 96 ASCII 150 Mode 2 1E51 O normal 1E51 Testmodel 1E52 Testmode 2 1E53 not supported SvID 2 0006 Satellite to Track Period 2 OOI1E seconds Duration of Track Payload Length 7 bytes Set Trickle Power Parameters Message I D 151 Table 4 29 contains the input values for the following example Sets the receiver into low power Modes Example Set receiver into Trickle Power at 1 hz update and 200 ms On Time A0A20009 Start Sequence and Payload Length 97000000C8000000C8 Payload 0227B0B3 Message Checksum and End Sequence 3 Laipac Technology Inc Table 4 29 Set Trickle Power Parameters I D 151 Binary Hex Name Bytes Scale Example Units Description Message ID 1 97 ASCII 151 Push To Fix Mode 2 0000 ON 1 OFF 0 Duty Cycle 2 10 00C8 96 Time ON A duty cycle of 1000 100 means continuous operation Milli Seconds On 4 000000C8 msec range 200 500 ms Time Payload Length 9 bytes Note On time of 700 800 900 msec are invalid if update rate of 1 second is selected Computation of Duty Cycle and On Time The Duty Cycle is the desired time to be spent tracking The On Time is the duration of each tracking period range is 200 900 ms To calculate the TricklePower update rate as a function of Duty cycl
29. II 139 Tracking Mask 2 10 0032 degrees Not currently used Navigation Mask 2 10 009B degrees Range 20 0 to 90 0 26 Laipac Technology Inc Payload Length 5 bytes Power Mask Message I D 140 Table 4 19 contains the input values for the following example Navigation mask to 33 dB Hz tracking default value of 28 Example A0A2000 3 Start Sequence and Payload Length 8C1 C2 Payload 00C9BOB3 Message Checksum and End Sequ ence Table 4 19 Power Mask Binary Hex Name Bytes Scale Example Units Description Message ID 1 8C ASCII 140 Tracking Mask 1 1C dBHz Not currently implemented Navigation Mask 1 21 dBHz Range 20 to 50 Payload Length 3 bytes Editing Residual Message LD 141 Note Not implemented current ly Steady State Detection Message I D 142 Note Not implemented current ly Static Navigation Message I D 143 This command allows the user to enable or disable navigatio TF30 Example A0A20002 Start Sequence and Payload Length 8F01 Payload xxxxBOB3 Message Checksum and End Sequence Table 4 20 Static Navigation Binary Hex Name Bytes Scale Example Units Description Message ID 1 8F ASCII 143 297 Laipac Technology Inc Static Navigation 1 01 degrees ASCII 1 Flag Payload Length 2 bytes Table 4 27 Message ID 143 Description Name Description Message ID M
30. Length 8102010100010501050100010001000100010001000112C0O Payload 19 Laipac Technology Inc 016ABOB3 Message Checksum and End Sequence Table 4 4 Switch To NMEA Protocol Binary Hex Name Bytes Scale Example Units Description Message ID 1 81 ASCII 129 Mode 1 02 GGA Message 1 01 1 s_ See Chapeter 5 for format Checksum 2 1 01 GLL Message 1 00 I s Se Chapeter 5 for format Checksum 1 01 GSA Message 1 05 I s See Chapeter 5 for format Checksum 1 01 GSV Message 1 05 I s See Chapeter 5 for format Checksum 1 01 RMC Message 1 00 l s See Chapeter 5 for format Checksum 1 01 VTG Message 1 00 I s See Chapeter 5 for format Checksum 1 01 Unused Field 1 00 Recommended value Unused Field 1 01 Recommended value Unused Field 1 00 Recommended value Unused Field 1 01 Recommended value Unused Field 1 00 Recommended value Unused Field 1 01 Recommended value Unused Field 1 00 Recommended value Unused Field 1 01 Recommended value Baud Rate 2 12C0 38400 19200 9600 4800 2400 Payload Length 24 bytes 1 A value of 0x00 implies NOT to send message otherwise data is sent at message every X seconds requested i e to request a message to be sent every 5 seconds request the message using a value of 0x05 Maximum rate is 1 255s 2 A value of 0x00 implies the checksum NOT transmitted with the message not recommended A va
31. TF 30 GPS Engine Laipac Technology I nc 105 West Beaver Creek Rd Unit 207 Richmond Hill Ontario L4B 1C6 Canada Tel 905 762 1228 Fax 905 763 1737 http www laipac com Laipac Technology Inc Contents 1 Introduction to TF GPS series sss e s x x x eee 8 TF30 GPS Receiver lt eaae Quick View on Specifications 8 2 Specifications SER ccc E ee cote H 3 Interface Description and Options LI Phsical Diagram erc optet etam ve ere Pepe SA Eye E PARA REPE dee AEE Vo 11 Pin Definition of the Digital Interface Connector I2 TB Mm 12 Option Descriptions sse T sy De RR Laue Sa ed ed ae ae 14 TricklePower Option derer eae ea Ree ea as LF RS 232 VO Option ceret eI es IIS ebrii ense epe IS 4 SiRF Binary Protocol Specification 16 Protocol Layers codes tesoro EE er pa ee Tere 16 Transport Message eder eia wig eee pcm RLE na ig owe guido 16 Transport eco cita 62d RM RR RE RP rep IUE eee ba EAE ERE d 16 Message Validation es 16 Payload Length lt Z reso iow dey vert ERbRPRDGDU edet ex de 16 Payload Datars eee ee oe ute ur eoo tanen doi etes Re RC 17 CHECKSUM AA eosam mah ac da en eee edge pen ERE ca 17 Input Messages for SiRF Binary Protocol eese 17 Initialize Data Source Message I D 128 18 Switch To NMEA Protoco
32. Time reference At the pulse positive edge Measurements Aligned to GPS second 1p sec 2 Environmental Characteristics 2 1Temperature 2 2 Physical characteristics 3 Antenna 4 CPU Throughput 5 RF Interference Operating range 10 C to 70 C Storage range 40 C to 85 C Dimension 40 X 30 mm thickness less then 7 mm Antenna connector MMCX type Interface connector 20 pin 2X 6 low profile socket 1mm 8 pin 2X 4 JTAG 1mm optional Passive or Active Antenna GPS Signal Processor amp Integrated 16 bit 50 MHz ARM7TDMI Software CPU core amp 1M DRAM memory 9096 CPU throughput available for user tasks It is assembled with full shield case design to withstand the highest possible interference 10 Laipac Technology Inc Chapter 3 Interface and Options This chapter describes the pin definitions of the interface connector and flexible options of TF30 Physical Diagram 809271 ach ha LATERAL VIEW ALL 1031 A BOTTOM VIEW Laipac Technology Inc Pin Definition of the Digital Interface Connector TF30 Table 3 Pin List of the 20 pin Digital Interface Connector of TF30 Pin Name Description 1 VCC 3 3V 10 DC Power Input 2 TXA Host Serial Data Output A 3 RXA Host Serial Data Input A 4 TXB Aux Serial Data Output B 5 RXB Aux Serial Data Input B DGPS 6 TIMEMARK 1PPS Time Mark Output 7 BAT Battery B
33. ackup Power Input 8 GPIOA General Purpose Input Output 9 RESET Reset Active Low 10 RESERVED Reserved 11 GROUND Ground 12 BOOTSEL Internal External Boot selective 13 GPIOB General Purpose Input Output 14 GPIOC General Purpose Input Output 15 GPIOD General Purpose Input Output 16 GPIOE General Purpose Input Output 17 GPIOF General Purpose Input Output 18 GPIOG General Purpose Input Output 19 GPIOH General Purpose Input Output 20 GROUND Ground X The Host Serial Data YO is nominally a CMOS logical high 3 3 VDC X The Host Serial Data Input A Pin 3 suggest to an active high ex 100K Q serial to 4 Vec when not used VCC 3 3V DC Power Input This is the main DC power supply for a 3 3V powered TF30 board TXA This is the main transmit channel and is used to output navigation and measurement data RXA This is the main receiver channel and is used to receive software commands to the TF30 board 12 Laipac Technology Inc TXB For user s application not currently used RXB This is the auxiliary receive channel and is used to input differential corrections to the TF30 board to enable DGPS navigation Timemark This pin provides one pulse per second output from TF30 board which is synchronized to GPS time This is not available in TricklePower mode BAT This is the battery backup input that powers the SRAM and RTC when main power is removed Typical current draw is 10uA Without an external b
34. ackup battery or supercap TF30 will execute a cold start after every power on To achieve the faster start up offered by a hot or warm start a battery backup must be connected To maximize battery lifetime the battery voltage should not exceed the supply voltage and should be between 2 5V and 3 1V GPIOA The pin is connected to the digital interface connector for custom applications RESET This pin provides an active low reset input to the TF30 board It causes the TF30 board to reset and start searching for satellites If not utilized it may be left open GND GND provides the ground for the TF30 board BOOTSEL Internal External Boot selective GPIOB GPIOH These pins are connected to the digital interface connector for custom applications 213 Laipac Technology Inc Option Descriptions TricklePower Option The design of TF30 includes all the functionality necessary to implement the TricklePower mode of operation In this mode the lowest average power dissipation is achieved by powering down the board after a position is determined in such a manner that when it is turned back on it can re compute a position fix in the shortest amount of time The standard TricklePower operates in three states 1 Tracking State In this state the board is fully powered tracking satellites and gathering data This time in this state is selectable via SIRFdemo demo software from 200 900ms After this time the measurem
35. ay be put into NMEA mode by sending the SiRF Binary protocol message Switch To NMEA Protocol Message I D 129 using a user program or using Sirfdemo exe and selecting Switch to NMEA Protocol from the Action menu If the receiver is in SiRF Binary mode all NMEA input messages are ignored Once the receiver is put into NMEA mode the following messages may be used to command the module Transport Message Start Sequence Payload Checksum End Sequence PSRF lt MID gt Data CKSUM lt CR gt lt LF gt 1 Message Identifier consisting of three numeric characters Input messages begin at MID 100 2 Message specific data Refer to a specific message section for lt data gt lt data gt definition 60 Laipac Technology Inc 3 CKSUM is a two hex character checksum as defined in the NMEA specification Use of checksums is required on all input messages 4 Each message is terminated using Carriage Return CR Line Feed LF which is r n which is hex OD OA Because Vn are not printable ASCII characters they are omitted from the example strings but must be sent to terminate the message and cause the receiver to process that input message Note All fields in all proprietary NMEA messages are required none are optional All NMEA messages are comma delimited SiRF NMEA Input Messages Message MID Description Set Serial Port 100 Set PORT A parameters and proto
36. col Navigation Initialization 101 Parameters required for start using X Y Z Set DGPS Port 102 Set PORT B parameters for DGPS input Query Rate Control 103 Query standard NMEA message and or set output rate LLA Navigation 104 Parameters required for start using Lat Lon Alt Initialization Development Data 105 Development Data messages On Off On Off 1 Message Identification MID 2 Input coordinates must be WGS84 SetSerialPort This command message is used to set the protocol SiRF Binary or NMEA and or the communication parameters baud data bits stop bits parity Generally this command is used to switch the module back to SiRF Binary protocol mode where a more extensive command message set is available When a valid message is received the parameters are stored in battery backed SRAM and then the Evaluation Unit restarts using the saved parameters Table 5 11 contains the input values for the following example Switch to SiRF Binary protocol at 9600 8 N 1 PSRF100 0 9600 8 1 0 0C Table 5 Set Serial Port Data Format Name Example Units Description Message ID PSRF100 PSRF100 protocol header Protocol 0 OzSiRF Binary 1ZNMEA 61 Laipac Technology Inc Baud 9600 4800 9600 19200 38400 DataBits 8 8 7 StopBits 1 0 1 Parity 0 0 None 1 Odd 2 Even Checksum OC lt CR gt lt LF gt End of message termination 1 Only valid for 8
37. data bits Istop bit and no parity NaviagtionInitialization This command is used to initialize the module for a warm start by providing current position in X Y Z coordinates clock offset and time This enables the TF30 to search for the correct satellite signals at the correct signal parameters Correct initialization parameters enable TF30 to acquire signals quickly Table 5 12 contains the input values for the following example Start using known position and time PSRF101 2686700 4304200 385 1624 96000 497260 921 12 3 7F Tabl e 5 2 Navigation Initialization Data Format Name Example Units Description Message ID PSRF101 PSRF101 protocol header ECEF X 2686700 meters X coordinate position ECEF Y 4304200 meters Y coordinate position ECEF Z 3851624 meters Z coordinate position CIkOffset 96000 Hz Clock Offset of TF 30 TimeOfWeek 497260 seconds GPS Time Of Week WeekNo 921 GPS Week Number ChannelCount 12 Range to 12 ResetCfg 3 See Table 5 13 Checksum 7F lt CR gt lt LF gt End of message termination 1 Use 0 for last saved value if available If this is unavailable a default value of 96 000 will be used Zabi e 5 73 Reset Configuration Hex Description 0x01 Data Valid Warm Hot Starts 1 0x02 Clear Ephemeris Warm Start 1 0x04 Clear Memory Cold Start 1 62 Laipac Technology Inc SetDGPSPort This command is u
38. dgment 43 Table 4 47 Command Nacknowledgment 44 Table 4 48 Visible Dist em eR er Toe UE 44 Table 4 49 Almanac Data sese eee eL Table 4 50 Ephemeris Data I 46 Table 4 51 Navigation Parameters 46 Table 4 52 Measurement Data 48 Table 4 53 Sync Flag Fields segar snada ia RR RE em 48 Table 4 54 Detaied Description of the Measurement Data Table 4 55 Detaied Description of the Measurement Data Eripe ELT ae sete ae aaah Table 4 56 Measurement Data Table 4 57 SV State Data Table 4 58 Measurement Data Table 4 59 Development Data Table 4 60 NMEA Data Rates Under Trickle Power Operation Laipac Technology Inc Table 5 1 NMEA 0183 Output Messages 56 Table 5 2 GGA Data Format 56 Table 5 3 Position Fix Indicator 57 Table 5 4 GLL Data Format 57 Table 5 5 GSA Data Format 58 Table 5 6 Mod6e T TTT 58 Table 5 7 Mod 2 sr n ET REATUS RET eee 58 Table 5 8 GSV Data Format o co seee
39. e 4 34 contains the input values for the following example Set message ID 2 to output every 5 seconds starting immediately Example A0A20008 Start Sequence and Payload Length A601020500000000 Payload O0AEBOB3 Message Checksum and End Sequence Table 4 34 Set Message Rate Name Bytes Binary Hex Units Description Scale Example Message ID 1 A6 ASCII 166 Send Now 1 01 Poll message MID to be set 1 02 Update Rate 1 05 sec Range 1 30 Reserved 1 00 Not used Reserved 1 00 Not used Reserved 1 00 Not used Reserved 1 00 Not used Payload Length 8 bytes 1 0 No 1 Yes if no update rate the message will be polled 35 Laipac Technology Inc Low Power Acquisition Parameters Message I D 167 Table 4 35 contains the input values for the following example Example Set maximum off and search times for re acquisition while receiver is in low power A0A20019 Start Sequence and Payload Length A7000075300001D4C000000000000000000000000000000000 Payload 02E1B0B3 Message Checksum and End Sequence Table 4 35 Set Low Power Acquisition Parameters Name Bytes Binary Hex Units Description Scale Example Message ID 1 A7 ASCII 167 Max Off Time 4 00007530 ms Maximum time for sleep mode Max Search 4 0001D4C ms Max satellite search time Time 0 Push To Fix 4 0000003C sec Push To Fix cycle period period
40. e and On Time use the following formula Off Time On Time Duty Cycle On Time Duty Cycle Update rate Off Time On Time Note It is impossible to enter On Time of 900 ms Following are some examples of selections Table 4 30 Example of Selections for Trickle Power Mode of Operation Mode On Time ms Duty Cycle Update Rate 1 Hz Continuous 1000 100 1 Trickle Power 200 20 1 Trickle Power 200 10 2 Trickle Power 300 10 3 Trickle Power 500 5 10 Table 4 37 Trickle Power Mode Settings On Time Update Rate sec ms 121 3 4 5 6 7 8 9 10 200 XvLWwEEBXLYX IxX ctxg Xx 232 Laipac Technology Inc 300 Y Y Y Y Y Y Y Y Y Y 400 Y Y Y Y Y Y Y Y X Y 500 Y Y Y Y Y Y Y Y Y Y 600 Y Y Y Y Y Y S00 25 I d Y 700 N Y Y Y Y Y Y Y Y Y 800 N Y Y Y Y Y XU OY Y 900 N Y Y Y Y Y b Y Y 1 Y Yes Mode supported 2 N No Mode NOT supported Push to Fix In this mode the receiver will turn on every 30 minutes to perform a system update consisting of a RTC calibration and satellite ephemeris data collection if required 1 e a new satellite has become visible as well as all software tasks to support SnapStart in the event of an NMI Ephemeris collection time in general takes 18 to 30 seconds If ephemeris data is not required then the system will re calibrate and shut down In e
41. ents to calculate a position are ready 2 CPU State In this state the GRF1 LX RF IC has been turned off by the control signal removing the clock to the GSP1 LX Baseband ASIC Without a clock the GSP1 LX is effectively powered down although the RTC keeps running The CPU is kept running to process the GPS data until a position fix is determined and the result has been transmitted by the serial communication interface 3 Trickle State In this state the CPU is in a low power standby state and the receiver clocks are off with only the RTC clock active After a set amount of time the RTC generates a NMI signal to wakeup the Hitachi microprocessor and set the receiver back to the tracking state The default time for each TricklePower state and the approximate current consumed is shown below in Table 3 3 For example the TricklePower duty cycle 20 the average receiver power dissipation is approximately 165mW 50mA 3 3v while maintaining a one second update rate 14 Laipac Technology Inc Table 3 2 TricklePower Power Consumption Stale Time 3 3V Current Tracking 220mS 145mA CPU 360mS 40mA Trickle 420mS 0 5mA Note Table 3 2 does not include the external antenna power consumption RS 232 I O Option TF30 allows populating an RS 232 driver Customers can make request for I O of TTL Level 5V or RS 232 Level 12V 15 Laipac Technology Inc Chapter 4 SiRF Bina
42. erformed Specific Search None Zero None Zero Only the specified frequency and bit Scan rate search are performed 1 Frequency Range is 283500 to 325000 Hz 2 Bit Rate selection is 25 50 100 and 200 BPS Set Main Serial Port Message I D 134 Table 4 11 contains the input values for the following example Set Main Serial port to 9600 n 8 1 Example A0A20009 Start Sequence and Payload Length 860000258008010000 Payload 0134B0B3 Message Checksum and End Sequence Table 4 Set Main Serial Port Binary Hex Name Bytes Scale Example Units Description MessageID 86 Decimal 134 223 Laipac Technology Inc Baud 4 00002580 38400 19200 9600 4800 2400 1200 Data Bits 1 08 8 7 Stop Bit 1 01 0 1 Parity 1 00 None 0 Odd 1 Even 2 Pad 1 00 Reserved Payload Length 9 bytes Mode Control Message I D 136 Table 4 12 contains the input values for the following example 3D Mode Always Alt Constraining Yes Degraded Mode clock then direction TBD 1 DR Mode Yes Altitude 0 Alt Hold Mode Auto Alt Source Last Computed Coast Time Out 20 Degraded Time Out 5 DR Time Out 2 Track Smoothing Yes Example A0A2000E Start Sequence and Payload Length 88010101010100000002140501 Payload 00A9B0B3 Message Checksum and End Sequence Table 4 12 Mode Control
43. essage ID number Static Navigation Flag Valid values 1 enable static navigation 0 disable static navigation Poll Clock Status Message I D 144 Table 4 22 contains the input values for the following example Poll the clock status Example A0A20002 Start Sequence and Payload Length 9000 Payload 0090BOB3 Message Checksum and End Sequence Table 4 22 Clock Status Binary Hex Name _ Bytes Scale Example Units Description Message ID 1 90 ACSII 144 TBD 1 00 Not used Payload Length 2 bytes Set DGPS Serial Port Message I D 145 Table 4 23 contains the input values for the following example Set DGPS Serial port to 9600 n 8 1 Example A0A20009 Start Sequence and Payload Length 9100002580080 10000 Payload 013FBOB3 Message Checksum and End Sequence 28 Laipac Technology Inc Tab e 4 23 Set DGPS Serial Port Binary Hex Name Bytes Scale Example Units Description Message ID 1 9 ASCII 145 Baud 4 00002580 38400 19200 9600 4800 2400 120 Data Bits 1 08 8 7 Stop Bit 1 01 0 1 Parity 1 00 None 0 Odd 1 Even 2 Pad 1 00 Reserved Payload Length 9 bytes Note Setting the DGPS serial port usi ng MID 145 will e ffect Com B only regardl ess of the port being used to com municTF 30 Poll Almanac Message I D 146 Table 4 24 contains the input values for the following example Pol
44. g 1 01 1 Reserved 8 Ionospheric Delay 4 408906C8 m 1082721992 Payload Length 83 bytes 1 0 no valid SV state 1 SV state calculated from ephemeris 2 Satellite state calculated from almanac 5 Laipac Technology Inc Navigation Library Initialization Data Message I D 31 Output Rate Every measurement cycle full power continuous 1Hz Example A0A20054 Start Sequence and Payload Length 1F 00000000000001001E000F 00 000000000F 00 02 043402 02 Payload 0E27B0B3 Message Checksum and End Sequence Table 4 58 Measurement Data Name Bytes Binary Hex Scale Example Units ASCII Decimal Scale Example Message I D 1E Reserved Altitude Mode 00 Altitude Source 00 Altitude 00000000 Degraded Mode 01 coO c Degraded Timeout 001E Dead reckoning Timeout 000F m GO nd Reserved Track Smoothing Mode 00 Reserved Reserved Reserved Reserved DGPS Selection 00 DGPS Timeout Elevation Nav Mask Reserved Reserved Reserved Reserved Reserved Static Nav Mode Reserved Position X Position Y Position Z Position Init Source 02 GPS Time GO l l GO o o N NIe NIe IHA IEA HA1 ea INININ e l NINNIN A e Kk l K l K
45. he web at http www arinc com gps Software Version Message I D 132 Table 4 6 contains the input values for the following example Poll the software version Example A0A20002 Start Sequence and Payload Length 8400 Payload 0084B0B3 Message Checksum and End Sequence Table 4 6 Software Version Binary Hex Scale Example Units Name Bytes Description Message ID 1 84 ACSII 132 ITBD 1 00 Not used Payload Length 2 bytes a2 Laipac Technology Inc Set DGPS Source Message I D 133 This command allows the user to select the source for DGPS Corrections Options available are External RTCM Data any serial port WAAS subject to WAAS satellite a vailab ility Internal DGPS beacon receiver Example 1 Set the D GPS source to E xternal RTCM Data A0A200007 Start Sequence and Payload Length 8502000000000 Payload 0087B0 B3 Checksum and End Seq uence Table 4 7 Set DGPS Source Binary Hex Name Bytes Scale Example Units Description Message ID 1 85 decimal 133 DGPS Source 1 02 See Table 4 9 DGPS Source Selections Internal Beacon 4 00000000 Hz Internal Beacon Se arch Frequency Sett ings Internal Beacon 1 00 BPS Internal Beacon Se arch Bit Rate Sett ings Payload Length 7 bytes Example2 Set the D GPS source to Internal DGPS Beacon Rece Current ly TF30 is not supported Search Frequency 310000 Bit Rate 200
46. ither case the amount of time the receiver remains off will be in proportion to how long it stayed on Off period On Period 1 Duty Cycle Duty Cycle The off period has a possible range between 10 and 7200 seconds The default is 1800 seconds Poll Navigation Parameters Message I D 152 Table 4 32 contains the input values for the following example Example Poll receiver for current navigation parameters A0A20002 Start Sequence and Payload Length 9800 Payload 0098BOB3 Message Checksum and End Sequence Table 4 32 Poll Receiver for Navigation Parameters Binary Hex Name Bytes Scale Example Units Description Message ID 1 98 ASCII 152 Reserved 1 00 Reserved Payload Length 2 bytes 233 Laipac Technology Inc Set UART Configuration Message I D 165 Table 4 33 contains the input values for the following example Example Set port 0 to NMEA with 9600 baud 8 data bits 1 stop bit no parity Set port 1 to SiRF binary with 57600 baud 8 data bits 1 stop bit no parity Do not configure ports 2 and 3 Example A0A2003 1 Start Sequence and Payload Length A50001010000258008010000000100000000E1000801000000FF0505000000000000000000FF05050 00000000000000000 Payload 0452B0B3 Message Checksum and End Sequence Table 4 33 Set UART Configuration Name Bytes Binary Hex Un
47. its Description Scale Example Message ID 1 A5 ASCII 165 Port 1 00 For UART 0 n Protocol 1 01 For UART 0 Out Protocol 1 01 For UART 0 Set to in protocol Baud Rate 2 4 00002580 For UART 0 Data Bits 1 08 For UART 0 Stop Bits 1 01 For UARTO Parity 1 00 For UART 0 Reserved 1 00 For UART 0 Reserved 1 00 For UART 0 Port 1 01 For UART 1 In Protocol 1 00 For UART 1 Out Protocol 1 00 For UART 1 Baud Rate 4 0000E100 For UART 1 Data Bits 1 08 For UART 1 Stop Bits 1 01 For UART 1 Parity 1 00 For UART 1 Reserved 1 00 For UART 1 Reserved 1 00 For UART 1 Port 1 FF For UART 2 In Protocol 1 05 For UART 2 Out Protocol 1 05 For UART 2 Baud Rate 4 00000000 For UART 2 Data Bits 1 00 For UART 2 Stop Bits 1 00 For UART 2 Parity 1 00 For UART 2 Reserved 1 00 For UART 2 23432 Laipac Technology Inc Reserved 1 00 For UART 2 Port 1 FF For UART 3 In Protocol 1 05 For UART 3 Out Protocol 1 05 For UART 3 Baud Rate 4 00000000 For UART 3 Data Bits 1 00 For UART 3 Stop Bits 1 00 For UART 3 Parity 1 00 For UART 3 Reserved 1 00 For UART 3 Reserved 1 00 For UART 3 Payload Length 49 bytes 1 0 SiRF Binary 1 NMEA 2 ASCII 3 RTCM 4 Userl 5 No Protocol 2 Valid values are 1200 2400 4800 9600 19200 38400 and 57600 3 Valid values are 7 and 8 4 Valid values are and 2 5 0 None 1 Odd 2 Even Set Message Rate Message I D 166 Tabl
48. l Message I D 129 19 Set Almanac Message I D 130 21 Software Version Message I D 132 21 Set DGPS Source Message I D 133 For TF10 100 200 22 Set Main Serial Port Message I D 134 23 Mode Control Message LD 136 24 Laipac Technology Inc DOP Mask Control Message I D 137 25 DGPS Control Message I D 138 25 Elevation Mask Message I D 139 26 Power Mask Message LD 140 27 Editing Residual Message I D 141 27 Steady State Detection Message I D 140 esses 2 G27 Static Navigation Message I D 143 27 Poll Clock Status Message I D 144 28 Set DGPS Serial Port Message LD 145 28 Poll Almanac Message LD 146 29 Poll Ephemeris Message I D 147 29 Flash Update Message LD 148 30 Set Ephemeris Message I D 149 30 Switch Operating Modes Message I D 150 31 Set Trickle Power Parameters Message I D 151 31 Computation of Duty Cycle and O
49. l almanac message ID 0x92 request example A0A20002 Start Sequence and Payload Length 43 YA 0C92 Payload 009EBOB3 Message Checksum and End Sequence Table 4 47 Command Nacknowledgment Laipac Technology Inc Binary Hex ASCII Decimal Name Bytes Scale Example Units Scale Example Message ID 1 OC 12 INack LD 1 92 146 Payload Length 2 bytes Visible List Message I D 13 Output Rate Updated approximately every 2 minutes Note This is a variable length message Only the number of visible satellites are reported as defined by Visible Svs in Table 4 48 Maximum is 12 satellites Example A0A2002A Start Sequence and Payload Length 0D080700290038090133002C xxxxxxxxxxxxxxxxx Payload xxxxBOB3 Message Checksum and End Sequence Table 4 48 Visible List Binary Hex ASCII Decimal Name Bytes Scale Example Units Scale Example Message ID 1 UD 13 Visible Svs 1 08 8 CH 1 Sv 1 10 16 I D CH 1 Sv 2 002A degrees 42 Azimuth CH 1 Sv 2 0038 degrees 56 Elevation CH 2 Sv 1 09 9 I D CH2 Sv 2 0133 degrees 307 Azimuth CH 2 Sv 2 002C degrees 44 Elevation Payload Length Variable 44 Laipac Technology Inc Almanac Data Message I D 14 Output Rate Response to poll Example A0A203A1 Start Sequence and Payload Length OEO1 Reet K Pa vida B0B3 Message
50. l for the Almanac Example A0A20002 Start Sequence and Payload Length 9200 Payload 0092BOB3 Message Checksum and End Sequence Table 4 24 Almanac Binary Hex Name Bytes Scale Example Units Description Message ID 1 92 ASCII 146 TBD 1 00 Reserved Payload Length 2 bytes Poll Ephemeris Message I D 147 Table 4 25 contains the input values for the following example Poll for Ephemeris Data for all satellites Example A0A20003 Start Sequence and Payload Length 930000 Payload 0092B0B3 Message Checksum and End Sequence 29 Laipac Technology Inc Table 4 25 Ephemeris Message I D Binary Hex Name Bytes Scale Example Units Description Message ID 1 93 ASCII 147 Sv LD 1 00 Range 0 to 32 TBD ji 00 Not used Payload Length 3 bytes 1 A value of 0 requests all available ephemeris records otherwise the ephemeris of the Sv I D is requested Flash Update Message I D 148 This command allows the user to command the Evaluation Receiver to go into internal boot mode without setting the boot switch Internal boot mode allows the user to re flash the embedded code in the receiver Note It is highly recommended that all hardware designs should still provide access to the boot pin in the event of a failed flash upload Example A0A20001 Start Sequence and Payload Length 94 Payload 0094B0B3 Message Checksum a
51. lue of 0x01 will have a checksum calculated and transmitted as part of the message recommended Note In Trickle Power mode update rate is specified by the user When you switch to NMEA protocol message update rate is also required The resulting update rate is the product of the Trickle Power Update rate AND the NMEA update rate i e Trickle Power update rate 2 seconds NMEA update rate 5 seconds resulting update rate is every 10 seconds 2 X 5 10 20 Laipac Technology Inc Set Almanac Message I D 130 This command en ables the user to upload an alman ac TF30 Example A0A20380 Start Sequence and Payload Length S2KK AA R aces Payload xxxxBOB3 Message Checksum and End Sequence Table 4 5 Set Almanac message Binary Hex Name Bytes Scale Example Units Description Message ID 1 82 ACSII 130 Almanac 896 00 Reserved Payload Length 897 bytes The almanac data is stored in the code as a 448 element array of INT16 values These 448 elements are partitioned as 32 x 14 elements where the 32 represents the satellite number minus and the 14 represents the number of INT16 values associated with this satellite The data is actually packed and the exact format of this representation and packing method can be extracted from the ICD GPS 2000 document The ICD GPS 2000 document describes the data format of each GPS navigation sub frame and is available on t
52. meris Data Response to Poll Message I D 15 The ephemeris data that is polled from the receiver is in a special SiRF format based on the ICD GPS 200 format for ephemeris data OkToSend Message I D 18 Output Rate Trickle Power CPU on off indicator Example A0A20002 Start Sequence and Payload Length 1200 Payload 0012BOB3 Message Checksum and End Sequence Table 4 50 Ephemeris Data Binary Hex ASCII Decimal Name Bytes Scale Example Units Scale Example Message I D 1 12 12 Send Indicator 1 00 00 Payload Length 2 bytes 1 0 implies that CPU is about to go OFF OkToSend NO 1 implies CPU has just come ON OkToSend YES Navigation Parameters Response to Poll Message I D 19 Output Rate 1 Response to Poll Example A0A20018 Start Sequence and Payload Length 130100000000011E3C0104001E004B 1E00000500016400C8 Payload 022DB0B3 Message Checksum and End Sequence Table 4 5 Navigation Parameters Binary Hex ASCII Name Bytes Units Decimal Scale Example Scale Example Message ID 1 13 19 Reserved 4 Altitude Hold Mode 1 00 0 Altitude Hold Source 1 00 0 Altitude Source Input 2 0000 meters 0 Degraded Mode 1 01 1 46 Laipac Technology Inc Degraded Timeout 1E seconds 30 DR Timeout 3C seconds 60 Track Smooth Mode 01 1 Static Navigation 3SV Least
53. n Time 32 PUSH dub cR 33 Poll Navigation Parameters Message LD 1572 ar 33 Set UART Configuration Message LD 165 34 Low Power Acquisition parameters Message I D 167 36 Output Messages for SiRF Binary Protocol 36 Measure Navigation Data Out Message 1 D 2 37 Measured Tracker Data Out Message I D 2 nunununnnnunnannrn 39 Raw Tracker Data Out Message 1 D 5 41 Software Version String Response to Poll Message I D 6 41 Response Clock Status Data Message 1 D 7 41 50 BPS Data Message 1 D 8 42 CPU Throughput Message 1 D 9 43 Command Acknowledgment Message I D 11 43 Command NAcknowledgment Message LD 12 nuuunnuuanarna 43 Visible List Message LD 13 000 000 eee eee eee 44 Almanac Data Message LD 14 45 Ephemeris Data Response to Poll Message 1 D 15 46 OkToSend Message I D 18 46 Navigation Parameters Response to Poll Message I D 19 46 Laipac Technology Inc Nav Lib Measurement Data Message 1 D 28 47 Nav Lib DGPS Data Message LD 29 eee 50 Nav Lib SV State Data Message
54. nd End Sequence Table 4 26 Flash update Binary Hex Name Bytes Scale Example Units Description Message ID 1 94 ASCII 148 Payload Length 1 bytes Set Ephemeris Message I D 149 This command enables the user to upload an ephemeris file to the Evaluation Receiver Example A0A2005B Start Sequence and Payload Length Ores atta uer Donee Payload xxxxBOB3 Message Checksum and End Sequence Table 4 27 Ephemeris Binary Hex Name Bytes Scale Example Units Description Message ID 1 95 ASCII 149 Ephemeris 90 00 Reserved 30 Laipac Technology Inc data Payload Length 91 bytes The ephemeris data for each satellite is stored as a two dimensional array of 3 15 UNIT16 elements The 3 represents three separate sub frames The data is actually packed and the exact format of this representation and packing method can be extracted from the ICD GPS 2000 document The ICD GPS 2000 document describes the data format of each GPS navigation sub frame and is available on the web at http www arinc com gps Switch Operating Modes Message I D 150 Table 4 28 contains the input values for the following example Sets the receiver to track a single satellite on all channels Example A0A20007 Start Sequence and Payload Length 961E510006001E Payload 0129BOB3 Message Checksum and End Sequence Table 4 2
55. nerated pseudo range measurement for a particular SV Carrier Frequency This is can be interpreted in two ways 1 The delta pseudo range normalized by the reciprocal of the delta pseudo range measurement interval 2 The frequency from the AFC loop If for example the delta pseudo range interval computation for a particular channel is zero then it can be the AFC measurement otherwise it is a delta pseudo range computation Carrier Phase This is the integrated carrier phase given in meters Time in Track The Time in Track counts how long a particular SV has been in track For any count greater than zero 0 a generated pseudo range is present for a particular channel The length of time in track is a measure of how large the pull in error may be Sync Flags This byte contains two a two bit fields that report the integration inter val and sync value achieved for a particular channel 1 Bit 0 Coherent Integration Interval 0 2 milliseconds 1 10 milli seconds 2 Bits 1 2 Synchronization 3 Bit 2 1 Value 0 0 Not Aligned Value 0 1 Consistent Code Epoch Alignment Value 1 0 Consistent Data Bit Alignment Value 1 1 No Millisecond Errors 49 Laipac Technology Inc Tabl e 4 55 Detailed Description of the Measurement Data Continued Name Description C No 1 This array of Carrier To Noise Ratios is the average signal
56. or the following examples 1 Query the GGA message with checksum enabled PSRF103 00 01 00 01 25 2 Enable VTG message for a 1 Hz constant output with checksum enabled PSRF103 05 00 01 01 20 63 3 Disable VTG message Laipac Technology Inc PSRF103 05 00 00 01 21 Tabl e 5 5 Query Rate Control Data Format See example 1 Name Example Units Description Message ID PSRF103 PSRF103 protocol header Msg 00 See Table 5 16 Mode 01 O SetRate 1 Query Rate 00 seconds Output off 0 max 255 CksumEnabe 01 0 Disable Checksum 1 Enable Checksum Checksum 25 lt CR gt lt LF gt End of message termination Table 5 16 Messages Value Description 0 GGA 1 GLL 2 GSA 3 GSV 4 RMC 5 VTG Note In Trickle Power mode update rate is specified by the user When you witch to NMEA protocol message update rate is also required The resulting update rate is the product of the Trickle Power Update rate AND the NMEA update rate i e Trickle Power update rate 2 seconds NMEA update rate 5 seconds resulting update rate is every 10 seconds 2 X 5 10 LLANaviagtionInitialization This command is used to initialize the module for a warm start by providing current position in latitude longitude and altitude coordinates clock offset and time This enables the receiver to search for the correct satellite signals at the correct signal pa
57. r Phase B8FBC582 4 4345542 415CF1C3 262e 004 Time in Track 7530 ms 10600 Sync Flags 17 23 C No I 34 dB Hz 43 CINo 2 dB Hz 43 CINo 3 dB Hz 43 C No 4 dB Hz 43 C No 5 dB Hz 43 C No 6 dB Hz 43 C No 7 dB Hz 43 C No 8 dB Hz 43 C No 9 dB Hz 43 C No 10 dB Hz 43 Delta Range Interval 03E801F4 m 1000 Mean Delta Range Time O1F4 ms 500 Extrapolation Time 0000 ms Phase Error Count 00 0 Low Power Count 00 0 Payload Length 56 bytes Tabl e 4 53 Sync Flag Fields Bit Fields De SCFIDITON 0 Coherent Integration Time 0 2ms 1 10ms 2 1 Synch State 00 Not aligned 01 Consistent code epoch alignment 10 Consistent data bit alignment 11 No millisecond errors 48 Laipac Technology Inc 4 3 Autocorrelation Detection State 00 Verified not an autocorrelation 01 Testing in progress 10 z Strong signal autocorrelation detection not run 11 2 Not used Tabl e 4 54 Detailed Description of the Measurement Data Name Description Message I D Message I D number Channel Receiver channel number for a given satellite being searched or tracked Time Tag This is the Time Tag in milliseconds of the measurement block in the receiver software time Satellite ID Satellite or Space Vehicle SV I D number or Pseudo random Noise PRN number GPS Software Time This is GPS Time or Time of Week TOW estimated by the software in milliseconds Pseudo range This is the ge
58. rameters Correct initialization parameters enable the receiver to acquire signals quickly Table 5 17 contains the input values for the following example Start using known position and time PSRF104 37 3875 111 121 97232 0 96000 237759 922 12 3 37 64 Table 5 7LLA Navigation Initialization Data Format Laipac Technology Inc Name Example Units Description Message ID PSRF104 PSRF104 protocol header Lat 3 3875111 degrees Latitude position Range 90 to 90 Lon 121 97232 degrees Longitude position Range 180 to 180 Alt meters Altitude position CIkOffset 95000 Hz Clock Offset of the Evaluation Unit TimeOfWeek 237754 seconds GPS Time Of Week WeekNo dee GPS Week Number ChannelCount 12 Range to 12 ResetCfg 3 See Table 5 18 Checksum 37 lt CR gt lt LF gt End of message termination 1 Use 0 for last saved value if available If this is unavailable a default value of 96 000 will be used Zabi e 5 8 Reset Configuration Hex Description 0x01 Data Valid Warm Hot Starts 1 0x02 Clear Ephemeris Warm Start 1 0x04 Clear Memory Cold Start 1 Development Data On Off Use this command to enable development data information if you are having trouble getting commands accepted Invalid commands generate debug information that enables the user to determine the source of the command rejection Common reasons for input
59. ry Protocol Specification The serial communication protocol is designed to include Reliable transport of messages Ease of implementation Efficient implementation ndependence from payload Protocol Layers Transport Message Start Payload Message End Sequence Length Payload Payload Checksum Sequence OxA0 Two bytes Up to 2 1 Two bytes OxBO OxA2 15 bits lt 1023 15 bits OxB3 1 OxYY denotes a hexadecimal byte value Ux AU equals 160 Transport The transport layer of the protocol encapsulates a GPS message in two start characters and two stop characters The values are chosen to be easily identifiable and such that they are unlikely to occur frequently in the data In addition the transport layer prefixes the message with a two byte 15 bit message length and a two byte 15 bit check sum The values of the start and stop characters and the choice of a 15 bit values for length and check sum are designed such that both message length and check sum can not alias with either the stop or start code Message Validation The validation layer is of part of the transport but operates independently The byte count refers to the payload byte length Likewise the check sum is a sum on the payload Payload Length The payload length is transmitted high order byte first followed by the low byte High Byte Low Byte lt Ox7F Any value 16 Laipac Technology Inc
60. sed to control Serial Port B which is an input only serial port used to receive RTCM differential corrections Differential receivers may output corrections using different communication parameters The default communication parameters for PORT B are 9600 baud 8 data bits stop bit and no parity If a DGPS receiver is used which has different communication parameters use this command to allow the receiver to correctly decode the data When a valid message is received the parameters are stored in battery backed SRAM and then the receiver restarts using the saved parameters Table 5 14 contains the input values for the following example Set DGPS Port to be 9600 8 N 1 PSRF102 9600 8 1 0 12 Table 5 4Set DGPS Port Data Format Name Example Units Description Message ID PSRF102 PSRF102 protocol header Baud 9600 4800 9600 19200 38400 DataBits 8 8 7 StopBits 1 0 1 Parity 0 0 None 1 Odd 2 Even Checksum 12 CR lt LF gt End of message termination Query Rate Control This command is used to control the output of standard NMEA messages GGA GLL GSA GSV RMC and VTG Using this command message standard NMEA messages may be polled once or setup for periodic output Checksums may also be enabled or disabled depending on the needs of the receiving program NMEA message settings are saved in battery backed memory for each entry when the message is accepted Table 5 15 contains the input values f
61. ssage ID 1 06 6 ICharacter 20 1 Payload Length 21 bytes 1 06312E322E30444B495431313920534D0000000000 Note Convert to symbol to assemble message i e 0 x 4E is N These are low priority task and are not necessarily output at constant intervals Response Clock Status Data Message I D 7 Output Rate 1 Hz or response to polling message Example A0A20014 Start Sequence and Payload Length 0703BD021549240822317923DAEF Payload 0598BOB3 Message Checksum and End Sequence 41 Table 4 43 Clock Status Data Message Laipac Technology Inc Binary Hex ASCII Decimal Name Bytes Scale Example Units Scale Example Message ID 1 07 7 GPS Week 2 03BD 957 GPS TOW 4 100 002154924 S 100 349494 12 Svs 1 08 8 Clock Drift 4 2231 Hz 74289 Clock Bias 4 7923 nanosec 128743715 Estimated GPS 4 DAEF millisec 349403999 Time Payload Length 20 bytes Note The mersurement of GPS week item is with Extended GPS week ICD GPS week 1024 50 BPS Data Message I D 8 Output Rate As available 12 5 minute download time Example A0A2002B Start Sequence and Payload Length 08xxxxxx Payload xxxxBOB3 Message Checksum and End Sequence Table 4 44 50 BPS Data Binary Hex ASCII Decimal Name Bytes Scale Example Units Scale Example Message ID 1 08 8 Channel 1 Sv LD 1 Word 10 40
62. tial GPS SPS Mode fix valid 3 GPS PPS Mode fix valid GLL Geographic Position Latitude Longitude Table 5 4 contains the values for the following example GPGLL 13723 2475 N 12158 3416 W 161229 487 A 2C Tabl e 5 4 GLL Data Format Name Example Units Description Message ID GPGLL GLL protocol header Latitude 3723 2475 ddmm mmmm N S Indicator N N north or S south Longitude 12158 3416 dddmm mmmm E W Indicator W E east or W west UTC Position 161229 487 hhmmss sss Status A A data valid or V data not valid Checksum 2C CR lt LF gt End of message termination GSA GNSS DOP and Active Satellites Table 5 5 contains the values for the following example GPGSA A 3 07 02 26 27 09 04 15 1 8 1 0 1 5 33 57 Laipac Technology Inc Table 5 5 GSA Data Format Name Example Units Description Message ID GPGSA GSA protocol header Mode 1 A See Table 5 6 Mode 2 3 See Table 5 7 Satellite Used 07 Sv on Channel 1 Satellite Used 02 Sv on Channel 2 Satellite Used Sv on Channel 12 PDOP 1 8 Position Dilution of Precision HDOP 1 0 Horizontal Dilution of Precision VDOP 1 5 Vertical Dilution of Precision Checksum 33 CR LF End of message termination 1 Satellite used in solution Tabl e 5 6 Mode 1 Value Description M Manual forced to operate in 2D or 3D mode A 2Da
63. urement cycle full power continuous 1Hz Example A0A2001A Start Sequence and Payload Length 1D000F00B501BFC97C673CAAAAAB3FBFFE1240A0000040A00000 Payload 0956B0B3 Message Checksum and End Sequence Table 4 56 Measurement Data Binary Hex ASCII Name Bytes Units Decimal Scale Example Scale Example Message I D 1 1D 50 Laipac Technology Inc Satellite ID 2 000F IOD 2 00B5 Source 1 01 Pseudo range Correction 4 BFC97C67 ms Pseudo range rate 4 3CAAAAAB m s Correction Correction Age 4 3FBFFE12 S Reserved 4 Reserved 4 Payload Length 26 bytes 1 0 2 Use no corrections 1 Use WAAS channel 2 Use external source 3 Use Internal Beacon 4 Set DGPS Corrections Navigation Library SV State Data Message I D 30 Output Rate Every measurement cycle full power continuous 1Hz Example A0A20053 Start Sequence and Payload Length 1E15 2C64E99D01 408906C8 Payload 2360B0B3 Message Checksum and End Sequence Table 4 57 SV State Data Binary Hex ASCII Name Bytes Units Decimal Scale Example Scale Example Message I D 1 1E Satellite ID 1 15 GPS Time 8 S Position X 8 m Position Y 8 m Position Z 8 m Velocity X 8 m s Velocity Y 8 m s Velocity Z 8 m s Clock Bias 8 S Clock Drift 4 2C64E99D s 7448 10909 Ephemeris Fla
64. utomatic allowed to automatically switch 2D 3D Table 5 7 Mode 2 Value Description 1 Fix Not Available 2 2D 3 3D GSV GNSS Satellites in View Table 5 8 contains the values for the following example GPGSV 2 1 07 07 79 048 42 02 51 062 43 26 36 256 42 27 27 138 42 71 GPGSV 2 2 07 09 23 313 42 04 19 159 41 15 12 041 42 41 Tabl e 5 4 GSV Data Format Name Example Units Description Message ID GPGSV GSV protocol header Number of 2 Rangelto3 Messages Message Rangelto3 Number Satellites in 07 58 Laipac Technology Inc View Satellite ID 07 Channel 1 Range 1 to 32 Elevation 79 degrees Channel 1 Maximum 90 Azimuth 048 degrees Channel 1 True Range 0 to 359 SNR C No 42 dBHz Range 0 to 99 null when not tracking Satellite ID 27 Channel 4 Range 1 to 32 Elevation 27 degrees Channel 4 Mazimum 90 Azimuth 138 degrees Channel 4 True Range 0 to 359 SNR C No 42 dBHz Range 0 to 99 null when not tracking Checksum 71 lt CR gt lt LF gt End of message termination 1 Depending on the number of satellites tracked multiple messages of GSV data may be required RMC Recommended Minimum Specific GNSS Data Table 5 9 contains the values for the following example GPRMC 3 161229 487 A 3723 2475 N 12158 3416 W 0 13 309 62 120598 10 Tabl e 5 9RMC Data Format

Download Pdf Manuals

image

Related Search

Related Contents

Télécommande sans fil avec écran LV-W1 Manuel d  Terrawave TWS-195 coaxial cable  ua-11 (link is external) - Dj  wellness4one Enterprise Admin Manual    libretto d`istruzioni della Philips AJ3231.  議事録  Benzinmotor - WilTec Wildanger Technik GmbH  Samsung P2370HD Εγχειρίδιο χρήσης  Epson EP4749CB User's Manual  

Copyright © All rights reserved.
Failed to retrieve file