Home

MVI56E-MCM/MCMXT User Manual

image

Contents

1. EventCmd Name Data Type Description EventCmdTrigger BOOL Trigger for event command User ladder must set this bit to initiate event command EventC mdPending BOOL Set after the ladder has sent an event cmd to the module and is waiting for the status to be returned PortNumber INT Module master port number associated to this request 1 or 2 SlaveAddress INT Modbus slave node address InternalDBAddress INT Internal database address PointCount INT Number of points for this command SwapCode INT Swap code 0 no swap 1 swap words 2 swap words and bytes 3 swap bytes ModbusFunctionCode INT Modbus function code DeviceDBAddress INT Modbus register address within slave EventCmdStatusReturned 0 Fail 1 Success EventBlockID INT Temporary variable to calculate event block ID SlavePollStatus This object contains all of the Slave Polling status when the port is used as a Master Tag Name Data Type Description Port1SlaveORead BOOL Port1Slave128Read BOOL Port2SlaveORead BOOL Port2Slave128Read BOOL P1Slaves INT 256 P1 Slave Status ProSoft Technology Inc Page 159 of 199 June 18 2014 MVI56E MCM ControlLogix Platform User Manual Modbus Communication Module Tag Name Data Type Description P2Slaves INT 256 P2 Slave Status Passthru Tag Name Data Type Description MBOffset INT MBOffse
2. ee ance 12 Installing the Module in the 13 Creating a New RSLogix 5000 14 Connecting Your PC to the ControlLogix 28 Downloading the Sample Program to the 30 To get the most benefit from this User Manual you should have the following skills Rockwell Automation RSLogix software launch the program configure ladder logic and transfer the ladder logic to the processor Microsoft Windows install and launch programs execute menu commands navigate dialog boxes and enter data Hardware installation and wiring install the module and safely connect Modbus and ControlLogix devices to a power source and to the MVI56E MCM module s application port s 1 4 System Requirements The MVI56E MCM module requires the following minimum hardware and software components Rockwell Automation ControlLogix processor firmware version 10 or higher with compatible limited voltage power supply and one free slot in the rack for the MVI56E MCM module The module requires 800mA of available 5 VDC and 3 mA of available 24 VDC power Rockwell Automation RSLogix 5000 programming software o Version 16 or higher required for Add On In
3. 111 5 8 1 Viewing the Error Status Table 111 5 9 Configuration Error Codes sse eene 111 5 10 Connect to the Module s Web 113 6 Reference 115 6 1 Product Specifications oim pei t tmd i ale e aea idiot Mau 115 6 1 1 General Specifications 2 ages ce tetti E at te ci P 115 6 1 2 General Specifications Modbus 5 116 Page 6 of 199 ProSoft Technology Inc June 18 2014 MVI56E MCM ControlLogix Platform Contents Modbus Communication Module User Manual 6 1 3 Functional 116 6 1 4 Hardware 117 6 2 Functional 118 6 2 1 About the Modbus nnmnnn renn 118 6 2 2 Backplane Data 118 6 2 3 Normal Data 3 120 6 2 4 Special Function Blocks ennemis 122 6 2 5 Data Flow Between MVI56E MCM Module and ControlLogix Processor 134 6 3 Cable Connections
4. 154 Modbus Protocol Specification sse 160 Using the Optional Add On Instruction 172 Using the Sample Program RSLogix 5000 Version 15 and earlier 180 6 1 Product Specifications The MVI56E Enhanced Modbus Master Slave Communication Modules allow Rockwell Automation ControlLogix processors to easily interface with devices using the Modbus RTU ASCII serial communications protocol The MVIS56E MCM and MVI56E MCMXT act as input output modules on the ControlLogix backplane making Modbus data appear as data to the processor Data transfer to and from the processor is asynchronous from the communications on the Modbus network Two independently configurable serial ports can operate on the same or different Modbus networks Each port can be configured as a Modbus Master or Slave sharing the same user controlled 10 000 word database The two modules are functionally the same The MVI56E MCM is designed for standard process applications The MVI56E MCMXT is designed for the Logix XT control platform allowing it to operate in extreme environments It can tolerate higher operating temperatures and it also has a conformal coating to protect it from harsh or caustic conditions 6 1 1 General Specifications Backward compatible with previous MVI56 MCM version Single Slot 1756 ControlLogix backplane compatible 10 100 MB Eth
5. 29 Trends 21 3 Data Types H E User Defined E Strings Ep Predefined Module Defined Gut Gr Paste Gr EV Print 2 In the SELECT MODULE TYPE dialog box select 1756 MODULE GENERIC 1756 MODULE from the list and and then click OK This action opens the MODULE PROPERTIES dialog box Select Module Type Major Revision 1756 MODULE fi Type Description 1756 L53 ControlLogix5553 Controller 1756 L55 ControlLogix5555 Controller 1756 L63 ControlLogix5563 Controller 1756 2 2 Axis Analog Encoder Servo 1756 085 8 Axis SERCOS Interface 1756 MODULE Generic 1756 Module 1756 0416 16 Point 74 265V AC Output 1756 04161 16 Point 74V 265V AC Isolated Output 1756 048 8 Point 74 265 AC Output 1756 0A8D 8 Point 74V 132V AC Diagnostic Output 1756 8 Point 74V 132V AC Electronically Fused Output 1756 0B15D 16 Point 19 2 30 DC Diagnostic Output Show Vendor All Other Specialty Select All Analog Digital Communication Motion Controller Clear All Cancel ProSoft Technology Inc Page 187 of 199 June 18 2014 MVI56E MCM ControlLogix Platform User Manual Modbus Communication Module 3 In the MODULE PROPERTIES dialog box enter the Name Description and Slot options for your application using the examples in the following illustration You must
6. TT_TT__TT_ lt R gt lt 01 gt lt 03 gt lt 00 gt lt 00 gt lt 00 gt lt 0A gt lt C5 gt lt CD gt shta ee ee TT_ 01 03 14 00 lt R gt _ 00 00 00 00 00 00 TT TT TT 60 00 00 67 TT TT TT TT TT 00 00 00 p ee TE TT__TT_TT_TT_TT_TT__ TT_ lt R gt lt 01 gt lt 10 gt lt 00 gt lt 00 gt lt 00 gt lt 0A gt lt 14 gt lt 04 gt 00 00 00 00 00 00 00 yg a p lt D2 gt lt 10 gt lt E1 gt lt 16 gt lt 2E gt lt 22 gt lt 3D gt lt 3F gt lt FF gt lt 00 gt lt 05 gt lt 00 gt lt 06 gt lt 00 gt lt 07 gt lt 00 gt lt 08 gt lt 00 gt lt 09 gt lt 86 gt lt 49 gt lt R gt _TT_TT_TT_ 01 n lt OA gt lt 00 gt lt 0A gt lt E5 gt lt FC gt lt R gt _TT__ 00 00 00 00 00 00 00 00 00 00 10 00 00 00 TITLE TT TT TT TT TT 02 STI I IIT lt 00 gt lt 0 gt lt 00 gt lt 0 gt lt 14 gt lt 00 gt lt 0 gt lt 00 gt lt 0 gt lt 00 gt lt 0 gt lt 00 gt lt 00 gt lt 00 gt lt 0 gt lt 00 gt lt 0 gt lt 00 gt lt 10 gt lt 00 gt lt 11 gt lt 00 gt lt 12 gt lt 00 gt lt 13 gt lt A5 gt lt 08 gt lt R gt _TT_TT_ ee TT TT TT 0A 40 0E 03 14
7. sss emm eee een eren nene nennen 61 3 3 Slave Configuration tnihi ntes asisten 62 3 4 Floating Point Data Handling Modbus Slave 63 3 4 1 Enron Daniel Float 64 3 5 Read and Write Same Modbus Address Pass 65 4 Verify Communication 67 4 1 Verifying Master Communications ssessseneeene eene 67 4 1 1 MVI56E MCM Status Data Definition as a Master 67 4 1 2 tede Ded eu tec de tiu cd 69 4 1 3 MEM Status Data RESUME 72 42 Verify Slave 73 4 2 1 MVI56E MCM Status Data Definition as a Slave 73 5 Diagnostics and Troubleshooting 75 5 1 Ethernet LEDs IMGiCators tee 75 5 1 1 Scrolling LED Status Indicators ccc cece mem 76 5 1 2 Non Scrolling LED Status Indicators 77 5 2 Clearing a Fault Condition 77 5 3 Troubleshooting the LEDS
8. tnnt nenne 78 5 4 Setting Up ProSoft Configuration Builder see 78 5 4 1 Installing ProSoft Configuration Builder 78 5 4 2 Setting Up the Project ic cide eee sed mmt d enm 79 5 4 3 Assigning IP Address in the Project sssssseeeeeen emen 81 5 5 Connecting Your PC to the Module sssesseeeeeem emen 83 5 5 1 Download the IP Address through 83 5 5 2 Using RSWho to Connect to the 92 5 5 3 Connecting Your PC to the Module s Ethernet 94 5 6 Downloading the Project to the 98 5 7 Using the Diagnostics Menu in ProSoft Configuration Builder 99 5 7 1 The Diagnostics Menu nennen nnns 103 5 7 2 Monitoring Backplane Information eem 103 5 7 3 Monitoring Database eme 104 5 7 4 Monitoring General eme 105 5 7 5 Monitoring Modbus Port Information essem 105 5 7 6 Data AN Aly 107 5 8 Reading Status Data from the Module
9. Word Offset Description Length 0 9958 1 1 to 247 Spare 247 This will inform the module that the command has been processed and can be cleared from the pass through queue Function 6 and 16 Pass Through Blocks 9956 or 9957 from Module to Processor Offset Description Length 0 0 1 1 9956 9957 Floating point 1 2 Number of data words 1 3 Data Address 1 4 to 248 Data 245 249 9956 9957 1 Page 130 of 199 ProSoft Technology Inc June 18 2014 MVI56E MCM ControlLogix Platform Reference Modbus Communication Module User Manual The ladder logic will be responsible for parsing and copying the received message and performing the proper control operation as expected by the Master device The processor must then respond to the Pass through block with a write block with the following format Response Blocks 9956 or 9957 from Processor to Module Offset Description Length 0 9956 9957 1 1 to 247 Spare 247 This will inform the module that the command has been processed and can be cleared from the pass through queue Function 15 When the module receives a function code 15 while in pass through mode the module will write the data using block ID 9959 for multiple bit data First the bit mask clears the bits to be updated This is accomplished by ANDing the inverted mask with the existing data Next the new data ANDed with the mask is ORed with the existing data This protects t
10. enne nnne 196 7 14 Contacting Technical Support ProSoft Technology Inc is committed to providing the most efficient and effective support possible Before calling please gather the following information to assist in expediting this process 1 Product Version Number 2 System architecture 3 Network details If the issue is hardware related we will also need information regarding Module configuration and associated ladder files if any Module operation and any unusual behavior Configuration Debug status information LED patterns Details about the serial Ethernet or Fieldbus devices interfaced to the module if any Note For technical support calls within the United States ProSoft s 24 7 after hours phone support is available for urgent plant down issues Detailed contact information for all our worldwide locations is available on the following page ProSoft Technology Inc Page 195 of 199 June 18 2014 Support Service amp Warranty MVI56E MCM ControlLogix Platform User Manual Modbus Communication Module Internet Web Site www prosoft technology com support E mail address support prosoft technology com Asia Pacific Tel 603 7724 2080 7 2 location in Malaysia E mail asiapc prosoft technology com Languages spoken include Chinese English Asia Pacific location in China Tel 86 21 5187 7337 x888 E mail asiapc prosoft technology com Languages spoken incl
11. RSLinx File View Recue Station DDE OPC S S RSWho Configure Shortcuts Configure Client Applications Configure CIP Options Driver Diagnostics CIP Diagnostics This action opens the Configure Drivers dialog box Configure Drivers Available Driver Types 5 232 DF1 devices Add New r Configured Drivers Name and Description Status AB DF1 1 DF1 Sta 0 COM1 RUNNING Running AB ETHIP 1 Ethemet RUNNING Running Configure Startup Start Stop Delete Note If the list of configured drivers is blank you must first choose and configure a driver from the Available Driver Types list The recommended driver type to choose for serial communication with the processor is RS 232 DF1 Devices ProSoft Technology Inc Page 31 of 199 June 18 2014 Start Here MVI56E MCM ControlLogix Platform User Manual Modbus Communication Module 3 Click to select the driver and then click CONFIGURE This action opens the Configure RS 232 DF1 Devices dialog box Configure RS 232 DF 1 Devices Device Name AB DF1 1 Comm Port COMT vj Device Logix 5550 CompactLogix x Baud Rate 19200 v Station Number pq aud Rate 19200 Decimal Parity None b Error Checking CRC X Stop Bits 1 Protocol FullDuplex Auto Configure Use Modem Dialer Cancel Delete 4 Click the AUTO CONFIGURE button RSLinx will attempt to configure your ser
12. File name MVI56EM _ _ ung v2 S amp LEX Files of type jix 5 Network Files containing ng Heb Places Into Eh Overwrite Selected Rungs Page 24 of 199 ProSoft Technology Inc June 18 2014 MVI56E MCM ControlLogix Platform Start Here Modbus Communication Module User Manual 9 This action opens the IMPORT CONFIGURATION window Click TAGS under MAINROUTINE to show the tags that will be imported Wil Import Configuration v BA Find Within Final Name Import Content 25 MainT ast Y ipd eo oe _ import Name Operation 13 FinalName amp P AliasFor Data Type Description Bc MoinRoutine Rung 9 ADBSMCM Cese O ADISEMCM ADISEMCM Undefined Locatil ABT756N Ly Add On Instruction m B Locat1 0 Undefined Local 1 0 1756 ds ia Data Types 9 Create 2 MCM MCMModul mt nnn AA 10 Associate the I O connection variables to the correct module The default values are 1 and Local 1 O so you may have to edit the FINAL NAME field to change the values You can also click the drop down arrow to select the correct name Wi import Configuration EI Find Within Final Name Import Content 2 MainT as De pe import Name Operation ts Final Name SF Alias For Type Description ex Routine Runas
13. AGISSMEM Use Existing ADIS6MCM Da A Taos Use Existing 3 EESE vll amp B 1756 M Add On Instruction Locat1 0 Use Existing j v Show Al Tags J E Data Types Create ee Desin g Ej 4OI58MCM AOISBMCM Add On g Local 1 AB 1758 MODULE C O g Locat1 l AB 1756 MODULE INT g Local 1 0 AB 1756 MODULE INT 8 xLocat2 C AB 1756 MODULE C O Local 2 1 AB 1756 MODULE INT g Local 2 0 AB 1756 MODULE INT g FMCM MCMModuleDet This object co Controller v ProSoft Technology Inc Page 25 of 199 June 18 2014 Start Here MVI56E MCM ControlLogix Platform User Manual Modbus Communication Module 11 Change the default tags and AOI56MOCM to avoid conflict with existing tags In this step append the string 2 as shown in the following illustration lil Import Configuration EL Find v 88 Find Within Final Name Import Content MainT ask Configure Tag References ca MainProgram MainRoutine 2 066 2 ADISEMCM Local 2 l Use Existing 14 Loca2 l E amp B 1755 M Add On Instruction Local 2 0 Use Existing y Local 2 0 E 1756_ Data Types MCM Create 2 MCM 2 ET MCMMoadul Bf File Edt View Search Logic Communications Tools Window Help amp tr om TN 5c D m RUN T Pa
14. a niin dod eee Sai deer eee 138 6 3 1 Ethernet Cable Specifications 138 6 3 2 Ethernet Cable Configuration sse eene 139 6 3 3 Ethernet Performance eaa r aiaa 139 6 3 4 RS 232 Application amp 140 6 3 5 RS 422 45x dune Hes ed ore gia i ete dde EI va aa edd es ae dee eg ea edet 142 6 3 6 RS 485 Application Port s ssssseeeeeneeenenenenenn 142 6 3 7 DB9 to RJ45 Adaptor Cable 14 143 6 4 MVI56E MCM Database Definition 143 6 5 MVI56E MCM Configuration 144 6 5 1 Backplane Set p reinen REL RE IO e did de Lc d ag ode oa 144 6 5 2 Port 1 Setup edipi HO ehe i ede onem iie tees 145 6 5 3 Port 2 Setup ne ou etin etenim eee 147 6 5 4 Port 1 Gommands 5 n neptem mtu tei mee 150 6 5 5 Port 2 Commands 2 ne eee mae ipa eee 150 6 5 6 MISC Status eie tm e te i te en 150 6 5 7 Command Controls 5 2 che in pectet dde e p Det aac gab tides 152 6 6 MVI56E MCM Status Data Definition 152 6 7 MVI56E MCM User Defined Data Types 154 6 7 1 Een ee eot e m etes 154 6 7
15. ProSoft Technology Inc Page 65 of 199 June 18 2014 MVI56E MCM ControlLogix Platform User Manual Modbus Communication Module Page 66 of 199 ProSoft Technology Inc June 18 2014 MVI56E MCM ControlLogix Platform Verify Communication Modbus Communication Module User Manual 4 44 Verify Communication In This Chapter Verifying Master nne 67 Verify Slave 73 There are several ways to verify that the 156 module is communicating with the processor and with the Modbus network View the LED Status Indicators View the Module Status in the MVIBGE MCM Status Data Definition page 152 View Diagnostics in Diagnostics and Troubleshooting page 75 Verifying Master Communications The Modbus Master commands are configured now it is time to verify that these commands are working correctly Within the 156 module there are a couple of ways of checking to see if the commands that have been configured in the previous location are working correctly The most common and detailed method of checking the communications is using the MCM CONFIG PORTX CMDERRPTR parameter This parameter will tell you the individual status of each command that is issued by the module Another method is by checking the MCM STATUS PRTXERRS location for total commands issu
16. 43 2 3 5 Force Write Single Coil Modbus Function Code 5 44 2 3 6 Force Write Multiple Coils Ox Modbus Function Code 15 44 2 3 7 Preset Write Single Register 4x Modbus Function Code 6 45 2 3 8 Preset Write Multiple Registers 4x Modbus Function Code 16 46 2 4 Floating Point Data Handling Modbus 46 2 4 1 Read Floating Point Data oneni niaii eaei dana 47 2 4 2 Read Multiple Floating Point Registers 48 2 4 3 Write Floats to Slave 49 2 4 4 Read Floats with Single Modbus Register Address Enron Daniel Float 50 2 4 5 Write to Enron Daniel Floats emen 51 2 5 Command Control and Event sss eene 52 2 5 1 Command Control 2 eiie cecidi ee nna o dee ue En dete 53 2 5 2 Event Command is inteira eiie daa 54 ProSoft Technology Inc June 18 2014 Page 5 of 199 Contents User Manual MVI56E MCM ControlLogix Platform Modbus Communication Module 3 Configuration as a Modbus Slave 57 3 1 OVOrviQW Seat 57 3 2 ModDet SettingS 58 3 2 1 Modbus Memory 2 oet t et 59 3 2 2 Customizing the Memory Map
17. Page 166 of 199 ProSoft Technology Inc June 18 2014 MVI56E MCM ControlLogix Platform Reference Modbus Communication Module User Manual Adr Func DataStartReg Data Start Reg Data tof Regs Hi Data ofRegsLo Error Check Field Hi Lo 0B 06 00 01 00 03 CRC Response The response to a preset single register request is to re transmit the query message after the register has been altered Adr Func DataRegHi DataRegLo DatalnputRegHi Data Input RegLo Error Check Field 0B 06 00 01 00 03 CRC 6 8 8 Diagnostics Function Code 08 Modbus function code 08 provides a series of tests for checking the communication system between a Master device and a slave or for checking various internal error conditions within a slave The function uses a two byte sub function code field in the query to define the type of test to be performed The slave echoes both the function code and sub function code in a normal response Some of the diagnostics commands cause data to be returned from the remote device in the data field of a normal response In general issuing a diagnostic function to a remote device does not affect the running of the user program in the remote device Device memory bit and register data addresses are not accessed by the diagnostics However certain functions can optionally reset error counters in some remote devices A server device can however be forced into Listen Only Mode in which it will monitor the
18. 00 00 00 00 00 00 00 MODBUS PORT 1 00 00 00 00 00 00 43 67 TT TT TT TT TT TT TT TT TT TT TT TT Config TT TT TT TT TT TT TT TT TT TT TT TT TT TT TT TT TT TT TT TT TT TT TT TT TT TT TT TT TT TT TT R 01 10 00 00 00 0A 14 04 Master Command List pr e va a M MCI e dd Ld Master Command Status 49 R TT TT TT 01 10 00 00 00 0a 40 OE TT TT TT TT TT TT TT p u mS TT TT TT TT TT y TT_ lt R gt lt 02 gt lt 03 gt lt 00 gt Status lt 0A gt lt 00 gt lt 04 gt lt E5 gt lt FC gt lt R gt _TT__TT__TT_ 02 03 14 o0 T 00 007 00 00 00 00 5 MODBUS PORT 2 00 00 00 00 00 00 00 00 00 00 00 F7 82 TT TT TT TT TT TT Config TT TT TT TTL TT TT R402 20 gt Master Command List 00 0A 00 0A 14 00 0A 00 0B 00 0C 00 0D 00 0E 00 0F 00 10 00 Master Command Status lt 11 gt lt 00 gt lt 12 gt lt 00 gt lt 13 gt lt A5 gt lt 08 gt lt R gt _TT__TT_ 02 10 00 0A 00 oa 60 3F TT TT Slave Status List Path Ethernet 105 102 0 25 The Data Analyzer can display the following s
19. Description 12 670 to 12 677 Command 1 This set of registers contains the parameters for the first command in the Master command list Refer to Master Command Configuration page 37 12 678 to 12 685 Command 2 Command Z2 data set 15 626 to 15 629 Command 325 Command 325 data set 6 5 6 Misc Status Register Content Description 15 270 Program Scan Count This value is incremented each time a complete program cycle occurs in the module 15 271 to 15 272 Product Code These two registers contain the product code of 150 of 199 ProSoft Technology Inc June 18 2014 MVI56E MCM ControlLogix Platform Modbus Communication Module Reference User Manual Register Content Description 15 273 to 15 274 Product Version These two registers contain the product version for the current running software 15 275 to 15 276 Operating System These two registers contain the month and year values for the program operating system 15 277 to 15 278 Run Number These two registers contain the run number value for the currently running software 15 279 Port 1 Command List This field contains the number of requests made Requests from this port to Slave devices on the network 15 280 Port 1 Command List This field contains the number of Slave response Response messages received on the port 15
20. For a Slave Port this field contains the value of the most recently returned error code For a Master Port this field contains the index number of the most recently executed command that failed 232 Port 1 Last Error For a Slave Port this field contains the value of the previous most recently returned error code For a Master Port this field contains the index number of the previous most recently executed command that failed 233 Port 2 Current Error For a Slave Port this field contains the value of the most recently returned error code For a Master Port this field contains the index number of the most recently executed command that failed 234 Port 2 Last Error For a Slave Port this field contains the value of the previous most recently returned error code For a Master Port this field contains the index number of the previous most recently executed command that failed 6 7 MVI56E MCM User Defined Data Types 6 7 1 MCMModuleDef This object contains the data types that apply to the operation of the module Name Data Type Description CONFIG MCMCONFIG page Module and port configuration 154 DATA MCMDATA page Modbus data transferred between module and 157 processor STATUS MCMSTATUS page Status information in each read block 157 CONTROL MCMCONTROL Optional requests from the processor to the page 158 module UTIL Util page 158 Variables for internal ladder usage sho
21. Function Code 2 DevAddress Modbus address in device 100001 Example Modbus address 100001 DevAddress 0 Modbus address 100345 DevAddress 344 Function Codes 3 6 or 16 DevAddress Modbus address in device 400001 Example Modbus address 400001 DevAddress 0 Modbus address 400591 DevAddress 590 Function Code 4 DevAddress Modbus address in device 300001 Example Modbus address 300001 DevAddress 0 Modbus address 304290 DevAddress 4289 For example our device listed above could show their addressing as follows Variable Name Data Type Address Switch_Input_Status INT 300513 LED_Status_Flags INT 300514 LED_Attribute_Flags INT 300515 Output_Relay_Status_Flags INT 300516 To read the same parameter Switch_Input_Status you would still issue a Function Code 4 and use a DevAddress of 512 decimal 2 3 Master Command Examples 2 3 1 Read Holding Registers 4x Modbus Function Code 3 The 4x holding registers are used for Analog Values such as Pressure Temperature Current and so on These are 16 bit register values but they can also store Floating Point Data Handling Modbus Master page 46 You can also write to these Modbus addresses using Modbus Function Codes 6 or 16 Below is a sample command to read Modbus addresses 40001 to 40010 of node 1 on the Modbus network MCM CONFIG Port MasterCmd 0 PT MCM CONFIG Portl MasterCmd O Enable 1 MCM CONFIG Portl MasterCmd O
22. m f Connect PATH EDITOR Source Module IP Source Module Node Destination Module No Source Module Address Destination Module Slot Number Be 192 168 0100 1756 CNB BN 0 MVI56 Module t 192 168 0 100p 1s 2p 2 c 0p 18 6 Add Rack Delete Rack Construct CIP Path OK Cancel 6 Click OK to close the C Pconnect Path Editor and return to the Connection Setup dialog box Check the new path in the Connection Setup dialog box Connection Setup Select Connection Type v Ethemet GS ProSoft Discovery Service PDS ClPconnect 192 168 0 100 1 3 2 2 0 1 3 6 CIP Path Edit Test Connection Cancel ProSoft Technology Inc Page 91 of 199 June 18 2014 Diagnostics and Troubleshooting MVI56E MCM ControlLogix Platform User Manual Modbus Communication Module 8 Click TEST CONNECTION to verify that the physical path is available The following message should be displayed upon success Connection Setup Select Connection 9138 v ProSoft Configuration Builder Successfully Connected 1 192 168 0 100 1 2 2 0 1 2 6 CIP Path Edit Test Connection Cancel 9 Click OK to close the Test Connection pop up and then click CONNECT to close the Connection Set up dialog box The Diagnostics menu is now connected through ClPconnect 5 5 2 Using RSWho to Connect to the Module You need to have RSLin
23. 1 12337 20561 28785 28527 4113 12337 20561 28785 28527 99 ASCII 44 lt lt lt lt 0 lt gx 47 dho 2 3 12851 13365 21075 21589 29299 29813 28013 27499 4627 5141 12851 13365 21075 21589 299 29813 28013 27499 Refresh counter 3 4 6169 13879 14393 22103 22617 30327 30841 26985 26471 5655 6169 13879 14393 22103 22617 30327 30841 26985 26471 Page 104 of 199 ProSoft Technology Inc June 18 2014 MVI56E MCM ControlLogix Platform Modbus Communication Module Diagnostics and Troubleshooting User Manual Float DATABASE DISPLAY 0 to 49 FLOAT Refresh Counter 5 1 000 1 000 9 18354962 041 2 75509291E 040 1 97747944E 024 21076282 018 5 79887491bE 016 6 44492959 010 1 68752010E 007 4 88127480 001 1 27530674 004 1 40447017 010 3 66483682E 012 9 04858893 021 2 73179652E 023 2 98848446 029 7 77852805E 031 2 93224776E 037 5 09760759E 035 5 74027813 029 1 51029685 026 3 97016299 024 62436112E 038 2 53936311 035 2 86023979 029 7 52614210E 027 1 97859390E 024 21076282bE 018 5 79887491bE 016 6 44492959 010 1 68752010E 007 4 41579286E 005 88127480 001 1 27530674 004 1 40447017E 010 3 66483682 012 9 55859400 014 04858893 021 2 73179652 023 2 98848446 029 7 77852805 031 2 02388230E 034 93224776E 0
24. Config Master Command List Master Command Status Slave Status List Status 5 MODBUS PORT 2 Contig Master Command List Master Command Status Slave Status List Path Ethernet 105 102 0 25 Time 08 45 43 lt 20 gt lt 00 gt lt 2 gt lt 00 gt lt 2 gt lt 00 gt lt 30 gt lt 00 gt lt 31 gt lt 16 gt lt 0 gt lt gt TT TT 05 10 00 28 00 oa c1 82 TT TT TT TT TT TT TT TT TT TT TT TT TT TT TT TT 00 00 00 00 oo F3 97 TT 00 TT 00 TT ig p TT TTL TTL H TT _ _TT__TT__TT__TT__TT_ lt R gt lt 06 gt lt 04 gt lt 00 gt lt 32 gt lt 00 gt lt 04 gt lt D0 gt lt 75 gt lt R gt _TT__TT_ 06 04 00 00 00 00 Te 00 00 00 00 00 00 oo TT i JT 06 10 00 32 00 0 TT TT TT TI TT __ _ lt gt lt 06 gt lt 10 gt lt 00 gt lt 32 gt lt 00 gt lt 04 gt lt 14 gt lt 00 gt lt 32 gt lt 00 gt lt 33 gt lt 00 gt lt 34 gt lt 00 gt lt 3 5 gt lt 00 gt lt 36 gt lt 00 gt lt 37 gt lt 00 gt lt 38 gt lt 00 gt lt 39 gt lt 00 gt lt 3A gt lt 00 gt lt 3B gt lt LE gt lt 26 gt lt R gt _TT__TT_ 76 TT TT TT TT TT TT TT TT TT TT TT TT TT TT TT TT TT TT TT TT TT TT TT TT E0
25. Inc June 18 2014 MVI56E MCM ControlLogix Platform Modbus Communication Module Reference User Manual Offset Content Description 207 to 208 Operating System These two registers contain the month and year values for the program operating system 209 to 210 Run Number These two registers contain the run number value for the currently running software 211 Port 1 Command List This field contains the number of requests made from this Requests port to Slave devices on the network 212 Port 1 Command List This field contains the number of Slave response messages Response received on the port 213 Port 1 Command List This field contains the number of command errors Errors processed on the port These errors could be due to a bad response or command 214 Port 1 Requests This field contains the total number of messages sent from the port 215 Port 1 Responses This field contains the total number of messages received on the port 216 Port 1 Errors Sent This field contains the total number of message errors sent from the port 217 Port 1 Errors This field contains the total number of message errors Received received on the port 218 Port 2 Command List This field contains the number of requests made from this Requests port to Slave devices on the network 219 Port 2 Command List This field contains the number of Slave response messages Response received on the port 220 Port
26. MaxWriteBlock DINT Maximum write block RBTSremainder INT Contains remainder from Read Data array size divided by the block size WBTSremainder INT Contains remainder from Write Data array size divided by the block size 6 7 6 Util This object contains optional elements for the module Name Data Type Description CmdControl CmdControl page Allows for a disabled command to be sent to a 159 device MASTER EventC md EventCmd page Allows a command defined in ladder to be sent 159 to a device MASTER SlavePollStat SlavePollStatus Request slave poll status for the port page 159 MASTER Passthru Passthru page 160 Contains PassThru objects required when PortX Type is set to a value between 2 to 4 Page 158 of 199 ProSoft Technology Inc June 18 2014 MVI56E MCM ControlLogix Platform Reference Modbus Communication Module User Manual CmacControl Name Data Type Description TriggerCmdCntrl BOOL Trigger command control User application will activate this trigger NumberOfCommands INT Number of commands per block 1 to 6 PortNumber INT MVI56 MCM Port Number of master port 1 or 2 Commandindex INT 6 Stores the command indexes for command control CmdsAddedToQueue INT Number of commands added to queue CmdControlBlockID INT Temporary variable to calculate control block ID CmdCnitrlPending BOOL Auxiliary control command prevents a second request before acknowledgment is received
27. Netmask 3 MVIBBMCMEthemet Config G ateway MVI56MCME thermet Config Gateway 0 MVI56MCME thermet Config Gateway 1 MVIBBMCMEthemet Config G ateway 2 MVIBBMCMEthemet Config G ateway 3 MiSo Page 176 of 199 ProSoft Technology Inc June 18 2014 MVI56E MCM ControlLogix Platform Reference Modbus Communication Module User Manual The bit will be automatically reset and the current Ethernet settings will be copied to 156 controller tag as follows MVISEMCMEthernet TY MVIBSBMCMEthemet Read 0 MVISBMCMEthernet write MVIBBMCMEthemet Config bod MVIBBMCMEthermet Config IP p MVIBBMCMEthernet Config IP Q 105 MVIBBMCMEthernet Config IP 1 102 MVIBBMCMEthernet Config IP 2 0 MVIBBMCMEtheret Config IP 3 132 MVIBBMCMEtheret Config Netmask MVIBBMCMEthemet Config Netmask 0 255 MVIS6MCMEtheret Config Netmask 1 255 MVIBBMCMEthernet Config Netmask 2 255 MVIBBMCMEthemet Config Netmask 3 0 1 MVIBBMCMEthemet Config G ateway O 192 MVIBBMCMEthemet Config ateway 1 168 MVIBBMCMEthemet Config G ateway 2 0 MVIBBMCMEthernet Config G ateway 3 1 To check the status of the message refer to the READETHERNETMSG tag ReadEthemetMSG IET ReadEthemetMSG Flags 1680220 ReadEthemetMSG Ew Rea
28. RJ45 Connector for CAT5 cable Link and Activity LED indicators Auto crossover cable detection Shipped with Unit 5 foot Ethernet Straight Thru Cable Gray ProSoft Technology Inc Page 117 of 199 June 18 2014 MVI56E MCM ControlLogix Platform User Manual Modbus Communication Module 6 2 Functional Overview 6 2 1 About the Modbus Protocol Modbus is a widely used protocol originally developed by Modicon in 1978 Since that time the protocol has been adopted as a standard throughout the automation industry The original Modbus specification uses a serial connection to communicate commands and data between Master and Slave devices on a network Later enhancements to the protocol allow communication over other types of networks Modbus is a Master Slave protocol The Master establishes a connection to the remote Slave When the connection is established the Master sends the Modbus commands to the Slave The MVIS6E MCM module can work as a Master and as a Slave The MVI56E MCM module also works as an input output module between itself and the Rockwell Automation backplane and ControlLogix processor The module uses an internal database to pass data and commands between the processor and Master and Slave devices on Modbus networks 6 2 2 Backplane Data Transfer The MVI56E MCM module communicates directly over the ControlLogix backplane Data is paged between the module and the ControlLogix proc
29. Word Offset Description Length 0 9998 1 1 to 247 Spare 247 Cold Boot Block 9999 This block is sent from the ControlLogix processor to the module output image when the module is required to perform the cold boot hardware reset operation This block is sent to the module when a hardware problem is detected by the ladder logic that requires a hardware reset The following table describes the format of the Cold Boot block Block Request from Processor to Module Word Offset Description Length 0 9999 1 1 to 247 Spare 247 MVI56E MCM Remote Master Control The MVI56E MCM can receive special function block codes from a remote Master on the network to control the module using specific values written to regions of this block The module can respond to the following requests Write configuration to processor Warm boot Cold boot The remote Master controls the module by writing one of the following values to register 15400 Modbus address 55401 Block ID Description 9997 Write configuration in database to the processor and warm boot the module 9998 Warm boot the module 9999 Cold boot the module The control register is reset to 0 after the operation is executed with the exception of the 9997 command If the module fails to successfully transfer the configuration to the processor it will place one of the following error codes in the control register Page 132 of 199 ProSoft Technology In
30. fe RSLogix 5000 My Controller 1756 171 20 12 MainProgram MainRoutine Fie Edt View Search Logic Communications Tools Window Help 5 the v 43 YR Qa E Path 48 ETHIP 210 13 169 Backplane 0 dk Y gt 4 Favorites Aion X K K Timerioourter 3B 3 Controller Controller Controller Tags Add On MVISE MCM C3 Controller Fauk Hander Chhax modules Power Up Handler AOISEMCM Tasks copy Rung Add On modules 8 ManTask AOISEMCM MainProgram Connection Input 4 1 Data Program Tags Delete Rung Connection Locat1 0 MainRoutine 23 Unscheduled Programs Phases Add Rung Motion Groups Edit Rung Ungrouped Axes Edit Rung Comment Add On Instructions ETE Data Types et uno User Defined Export Rungs is 08 Strings 0 Add On Defined i Cy Predefined 0 Module Defined G Trends 1 0 Configuration 1756 Backplane 1756 4 ffa 0 1756471 My Controller 9 1 1756 MooULE mcm i VE REG Go To Add Ladder Element Alt Ins 8 Select the MVIBGEMCM ADDON RuNG V2 8 L5X file and then click IMPORT Import Rungs Desktop Documents 3 My Computer My Recent my Network Places Documents EY toni Desktop My Documents My Computer
31. 00 oo oo F7 8 02 10 00 ZTRICTTITIITIITIITTITT TT TT TT TT TT TT TT TT TT TT R 02 2 03 00 129 00 00 00 00 00 00 TT TT frl TT TT_TT_TT__TT_ lt R gt lt 02 gt lt 10 gt 0A 00 0A 60 3F _TT__TT_ El The lt R gt means that the module is transitioning the communications line to a transmit state All characters shown in brackets are characters being sent out by the module The R shows when the module is done transmitting data and is now ready to receive information back And finally all characters shown the brackets is information being received from another device by the module After taking a minute or two of traffic capture stop the Data Analyzer pale Click to stop Data Analyzer Page 110 of 199 ProSoft Technology Inc June 18 2014 MVI56E MCM ControlLogix Platform Diagnostics and Troubleshooting Modbus Communication Module User Manual 5 8 Reading Status Data from the Module The MVI56E MCM module returns a 33 word Status Data block that can be used to determine the module s operating status This data is located in the module s database at registers 15270 to 15302 and at the location specified in the configuration This data is transferred to the ControlLogix processor continuously with each read block For a complete listing of the status data object refer to MVI56E MCM
32. 3100 Each block contains the Slave node addresses to disable The following table describes the structure of the block Block Request from Processor to Module Word Offset Description Length 0 3000 or 3100 1 1 Number of Slaves in Block 1 2 to 201 Slave indexes 200 202 to 247 Spare 46 The module will respond with a block with the same identification code received and indicate the number of Slaves acted on with the block The following table describes the format of the response block Block Response from Module to Processor Word Offset Description Length 0 Reserved 1 1 Write Block ID 1 2 Number of Slaves processed 1 3 to 248 Spare 246 249 3000 or 3100 1 Page 124 of 199 ProSoft Technology Inc June 18 2014 MVI56E MCM ControlLogix Platform Reference Modbus Communication Module User Manual Ladder logic can be written to override the value in the Slave status table to enable the Slave state value of 1 by sending a special block Port 1 Slaves are enabled using block 3001 and Port 2 Slaves are enabled using block 3101 Each block contains the Slave node addresses to enable The following table describes the format for this block Block Request from Processor to Module Word Offset Description Length 0 3001 or 3101 1 1 Number of Slaves in Block 1 2 to 201 Slave indexes 200 202 to 247 Spare 46 The module will respond with a block with the same identification
33. 4 Slot ControlLogix Chassis Slot Create In C Program Files Rackwell Software RSLogix SOOOSENU w20 Bin Security Authority No Protection 1 6 1 Before You Import the Add On Instruction Note This section only applies if your processor is using RSLogix 5000 version 16 or higher If you have an earlier version please see Using the Sample Program RSLogix 5000 Version 15 and earlier page 180 Two Add On Instructions are provided for the 156 module The first is required for setting up the module the second is optional Copy the files from the ProSoft Solutions DVD or download them from www prosoft technology com Save them to a convenient location in your PC such as Desktop or My Documents File Name Description 56 AddOn Rung v2 8 L5X A L5X file containing Add On Instruction user defined newer version may be available at data types controller tags and ladder logic required www prosoft technology com to configure the MVIS6E MCM module MVI56 E MCM Optional AddOn Rung v 2 Optional L5X file containing additional Add On L5X A newer version may be available at Instruction with logic for changing Ethernet www prosoft technology com configuration and clock settings ProSoft Technology Inc Page 15 of 199 June 18 2014 Start Here MVI56E MCM ControlLogix Platform User Manual Modbus Communication Module About the Optional Add On Instruction The Optional Add On Instruction p
34. CmdReq INT Total number of command list requests sent CmdResp INT Total number of command list responses received CmdErr INT Total number of command list errors Requests INT Total number of requests for port Responses INT Total number of responses for port ErrSent INT Total number of errors sent ErrRec INT Total number of errors received ProSoft Technology Inc June 18 2014 Page 157 of 199 MVI56E MCM ControlLogix Platform User Manual Modbus Communication Module MCMBIkStat This object stores the block transfer statistics for the module Name Data Type Description Read INT Total number of read block transfers Write INT Total number of write block transfers Parse INT Total number of blocks parsed Event INT Total number of event blocks received Cmd INT Total number of command blocks received Err INT Total number of block transfer errors 6 7 5 MCMCONTROL This object contains the attributes to define a Master command An array of these objects is used for each port Name Data Type Description WarmBoot BOOL Warm Boot ColdBoot BOOL Cold Boot BPLastRead INT Index of last read block BPLastWrite INT Index of last write block BlockIndex INT Computed block offset for data table ReadDataSize DINT Size of Read Data Array DINT Maximum read block WriteDataSize DINT Size of Write Data Array
35. Configuration as Modbus Slave MVI56E MCM ControlLogix Platform User Manual Modbus Communication Module Once again the COP statement will take as many of the Source elements required to fill the Dest tag for the length specified Therefore the COP statement will take MCM DATA READDATA O TO 19 to fill the READ FLOATS 0 TO 9 3 4 1 Enron Daniel Float Configuration Sometimes it is necessary for the module to emulate Enron or Daniel floating point addressing Copying the data to the MCM DATA WRITEDATA array and from the MCM DAT A READDATA array is the same as described in the section above The main difference is the addressing of the module For example an Enron Float device is required to access address 47001 for floating point data and each Modbus register would emulate a single float value does not require 2 Modbus addresses for 1 float value A Master device requiring this type of addressing would require that for every count of 1 the MVI56E MCM module responds to the request message with 4 bytes one 32 bit REAL value To emulate this addressing the module has the parameters MCM CONFIG PORTX FLOATFLAG FLOATSTART and FLOATOFFSET Value Description FloatFlag Tells the module to use the FloatStart and FloatOffset parameters listed below FloatStart Determines what starting address on the Modbus network to treat as floating point data A value of 7000 will signal the module that address 47001
36. Connection Parameters Assembly Instance Size Name MVI56 Input 1 250 E 16 bit Description a Output 2 248 16 bit Configuration 4 0 E 8 bit Comm Format Data INT Status Input Slot 1 E Status Offline Cancel pply Help 3 In the SLOT field use the up and down arrows on the right side of the field to select the slot number where the module will reside in the rack and then click OK Page 184 of 199 ProSoft Technology Inc June 18 2014 MVI56E MCM ControlLogix Platform Reference Modbus Communication Module User Manual RSLogix will automatically apply the slot number change to all tags variables and ladder logic rungs that use the MVI56E MCM slot number for computation Adjust the Input and Output Array Sizes Note The following steps are only required if you are using the sample ladder logic RSLogix version 15 or older rather than the Add On Instruction RSLogix version 16 or newer 1 Click ReadData to open ladder file and go to rung 2 of this file 2 Change the High Limit on the LIM statement to allow for 5 blocks of data as shown in the following illustration 1000 registers 200 registers per block 5 blocks of data CPT 2 Limit Test CIRC Compute Low Limit Dest MCM CONTROL Backplane LastRead 0 Test MCM CONTROL Backplane LastRead Expression MCM CONTROL Backplane LastRead 1 200 e 0 High Limit COP I Copy File m
37. DNPNET MVIS6E FLN MVIS6E GSC Action Required MVIS6E MCM MVIS6E MCMR MVIS6E MNET MVIS6E MNETC MVIS6E MNETCR MVIS6E MNETR MVIS6E PDPMV1 MVIS6E SIE 3 Inthe Product Line Filter area of the dialog box select MVI56E In the Select Module Type dropdown list select MVIS6E MCM and then click OK to save your settings and return to the ProSoft Configuration Builder window 5 4 3 Assigning an IP Address in the Project In this step you assign an IP address for the MVI56E MCM module using ProSoft Configuration Builder This becomes the permanent IP address for the module after you download the configuration to the module refer to Downloading the Project to the Module page 98 The module s default IP address is 192 168 0 250 1 Determine the network settings for your module with the help of your network administrator if necessary You will need the following information address fixed IP required o Subnet mask o Gateway address Note The gateway address is optional and is not required for networks that do not use a default gateway ProSoft Technology Inc Page 81 of 199 June 18 2014 Diagnostics and Troubleshooting MVI56E MCM ControlLogix Platform User Manual Modbus Communication Module 2 Start ProSoft Configuration Builder 3 Select the MVI56E MCM icon and then click the symbol to expand the MVI56E MCM tree 4 Right click ETHERNET CONFIGURATION to open the shortcut menu
38. Instruction sseen m 173 6 9 4 Reading the Ethernet Settings from the Module 176 6 9 5 Writing the Ethernet Settings to the 177 6 9 6 Reading the Clock Value from the 179 6 9 7 Writing the Clock Value to the Module ssseeem em 179 6 10 Using the Sample Program RSLogix 5000 Version 15 and earlier 180 ProSoft Technology Inc June 18 2014 Page 7 of 199 Contents MVI56E MCM ControlLogix Platform User Manual Modbus Communication Module 6 10 1 Using the Sample Program in a New 181 6 10 2 Using the Sample Program an Existing Application 186 7 Support Service amp Warranty 195 7 1 Contacting Technical Support 195 7 2 Warranty Informatlon cec er pd er P d EM EGO MEER 196 Index 197 Page 8 of 199 ProSoft Technology Inc June 18 2014 MVI56E MCM ControlLogix Platform Start Here Modbus Communication Module User Manual 1 Start Here In This Chapter System Requirements 9 Deployment 10 Package lt eterne enne 12 Setting
39. Int amp ddress 1000 MCM CONFIG Port MasterCmd U Polllnt 0 MCM CONFIG Portl MasterCmd 0 Count 10 MCM CONFIG Portl MasterCmd 0 Swap 0 MCM CONFIG Portl MasterCmd 0 Node 1 MCM CONFIG Portl MasterCmd O Func 3 MCM CONFIG Port MasterCmd 0 Dev amp ddress 0 ProSoft Technology Inc Page 41 of 199 June 18 2014 Configuration as a Modbus Master MVI56E MCM ControlLogix Platform User Manual Modbus Communication Module Label Description Enable 1 The module will send the command every time it goes through the command list IntAddress 1000 Places the data read from the Slave device into the module at address 1000 IntAddress 1000 of the module memory will be copied into the tag MCM DATA READDATA O Count 10 Reads 10 consecutive registers from the Slave device Node 1 Issues the Modbus command to node 1 on the network Func 3 Issues Modbus Function Code 3 to Read Holding Registers DevAddress 0 Function Code 3 DevAddress of 0 will read address 40001 Along with a count of 10 this command reads 40001 to 40010 2 3 2 Head Input Registers 3x Modbus Function Code 4 Like the 4x holding registers 3x input registers are used for reading analog values that are 16 bit register values You can also use these registers to store Floating Point Data Handling Modbus Master page 46 Unlike the 4x registers 3x registers are Read Only Below is a sample command to read Modbus addresses 30021
40. MEM CONFIG Porti MasterCmd 6 Swap 0 MCM CONFIG Portl MasterCmd 5 Node 1 MCM CONFIG Porti MasterCmd 5 Func 6 MCM CONFIG Portl MasterCmd 5 Dev amp ddress 1040 Label Description Enable 1 The module will send the command every time it goes through the command list IntAddress 5 Writes the data from address 5 of the module memory to the Slave device Based on the MCM CONFIG MopDEr configuration this will take the data from MCM DATA WniTEDATA 5 and write that information out to the Slave device Count 1 Writes 1 register 16 bit to the Slave device ProSoft Technology Inc Page 45 of 199 June 18 2014 Configuration as a Modbus Master MVI56E MCM ControlLogix Platform User Manual Modbus Communication Module Label Description Node 1 Issues the Modbus command to node 1 on the network Func 2 Issues Modbus Function Code 6 to write a single register DevAddress 1040 Function Code 6 DevAddress of 1040 will write to address 41041 of the 2 4 Modbus Slave device 2 3 8 Preset Write Multiple Registers 4x Modbus Function Code 16 Used to write to Modbus Holding Registers 4xxxx this function code will write multiple registers to the Slave device The Enable code can be set to a value of 1 for a continuous write or a value of 2 to write the data to the Slave device only when the data associated with the IntAddress field has changed Below is a sample command to write Mod
41. Port 94 Contacting Technical Support 195 Content Disclaimer 2 Copying the Controller Tags 191 Copying the Sample Ladder Logic 189 Copying the User Defined Data Types 188 Creating a New RSLogix 5000 Project 14 Creating the Module 16 Customizing the Memory 61 D Data Analyzer 107 Data Analyzer Tips 109 Data Flow Between MVI56E MCM Module and ControlLogix Processor 134 DB9 to RJ45 Adaptor Cable 14 143 Defining Module in Configuration 186 Deployment Checklist 10 Diagnostics Function Code 08 167 Diagnostics and Troubleshooting 67 75 76 Download the IP Address through ClPconnect 83 Downloading the Project to the Module 81 98 Downloading the Sample Program to the Processor 30 185 E Editing the Controller Tags 192 Enron Daniel Float Configuration 64 Ethernet Cable Configuration 139 Ethernet Cable Specifications 138 Ethernet LED Indicators 75 Ethernet Performance 139 Event Command 54 Event Command Blocks 1000 to 1255 or 2000 to 2255 122 EventCmd 158 159 Example 1 Local Rack Application 85 Example 2 Remote Rack Application 89 Example and State Diagram 168 F Floating Point Data Handling Modbus Master 41 42 46 Floating Point Data Handling Modbus Slave 62 63 Force Write Multiple Coils 0x Modbus Function Code 15 44 Force Write Single Coil 0x Modbus Function Code 5 44 Force Multiple C
42. RSLogix resets your data values refer to the backup copy of your program to re enter your configuration parameters 3 Next navigate to CONTROLLER TAGS and double click to open an edit window Click the MONITOR TAGS tab at the bottom of the edit window ProSoft Technology Inc Page 27 of 199 June 18 2014 Start Here MVI56E MCM ControlLogix Platform User Manual Modbus Communication Module 1 7 4 Click to expand the MCM CONFIG MODDEF section and then change the READREGONT parameter from 600 to 1000 MCM MCM CONFIG PT MCM CONFIG ModDef fite MCM CONFIG ModDef writeStartReg 0 MCM CONFIG ModDet WriteRegCnt 600 MCM CONFIG ModDef ReadStartReg 1000 MCM CONFIG ModDef ReadRiegCnt v Hp 5 Save and download the sample program to the processor 6 Go Online with the ControlLogix processor and then toggle the MCM CONTROL WARMBOOT bit to download the configuration to the MVI56E MCM module Note Any changes made to the MCM CONFIG or WriteData arrays must be downloaded to the MVI56E MCM module The use of the MCM CONTROL WarmBoot or MCM CONTROL ColdBoot bit will cause the MVI56E MCM module to re read the configuration from the ControlLogix processor To modify the WRITEDATA array follow the steps in this topic but substitute WRITEDATA for ReadData throughout Also make sure that the READDATA and WRITEDATA arrays do not overlap in the module memory For example if your application requires 20
43. Slave In most applications the use of floating point data requires no special handling 1 Copy the data to and from the 156 module with a tag configured as a data type REAL in the ControlLogix processor Each floating point value will occupy 2 registers on the Modbus network Some Master devices use Enron or Daniel Float data These types of floats require one Modbus register for each float in the module memory If your Master requires this addressing refer to the following section For standard floating point data handling the following is an example of copying 10 floats to the module 2 First configure a tag within the ControlLogix processor E MCM Floats REAL 10 3 Then configure a COP statement within the main routine to copy this tag to the module s MCM DAT A WRITEDATA array The length of the copy statement is determined by the Dest file size To copy 10 floats from the MCM_Write_Floats array to the MCM DATA WRITEDATA array the length of the COP statement must be set to a value of 20 To copy data from the MVIBGE MCM module to a floating point tag within the ControlLogix processor 1 Configure a tag within the ControlLogix processor as shown MCM_Read_Floats REAL 10 2 Then configure the COP statement to move data from the MCM DATA READDATA array and over to the new tag MCM READ FLOATS tag as shown here ProSoft Technology Inc Page 63 of 199 June 18 2014
44. Valid entries are 110 150 300 600 1200 2400 4800 9600 19200 28800 384 for 38400 bps 576 for 57600 bps and 115 for 115 200 bps 10 047 Parity This is the parity code to be used for the port Values are None Odd Even 10 048 Data Bits This parameter sets the number of data bits for each word used by the protocol Valid entries for this field are 5 through 8 10 049 Stop Bits This parameter sets the number of stop bits for each data value sent Valid entries are 1 and 2 10 050 RTS On This parameter sets the number of milliseconds to delay after RTS is asserted before the data will be transmitted Valid values are in the range of 0 to 65535 milliseconds 10 051 RTS Off This parameter sets the number of milliseconds to delay after the last byte of data is sent before the RTS modem signal will be set low Valid values are in the range of 0 to 65535 10 052 Minimum Response Time This parameter specifies the minimum number of milliseconds to delay before responding to a request message This pre send delay is applied before the RTS on time This may be required when communicating with slow devices 10 053 Use CTS Line This parameter specifies if the CTS modem control line is to be used If the parameter is set to 0 the CTS line will not be monitored If the parameter is set to 1 the CTS line will be monitored and must be high before the module will send data This parameter
45. a hub or switch using the grey cable or directly between your computer and the module using the red cable If you are still not able to establish a connection contact ProSoft Technology for assistance Page 102 of 199 ProSoft Technology Inc June 18 2014 MVI56E MCM ControlLogix Platform Diagnostics and Troubleshooting Modbus Communication Module User Manual 5 7 1 Diagnostics Menu The Diagnostics menu available through the Ethernet configuration port for this module is arranged as a tree structure with the Main menu at the top of the tree and one or more submenus for each menu command The first menu you see when you connect to the module is the Main menu ti Diagnostics Connection Log Module gt 2191 21 du MVISBE MCM Time 16 30 07 Esa BACKPLANE Select item within 5 for diagnostic information Config i Status Eig DATABASE asci Decimal Float Hex aa GENERAL Version MODBUS PORT 1 Contig Master Command List Master Command Status Slave Status List Status MODBUS PORT 2 Contig Master Command List 4 Master Command Status Lg Slave Status List Status Path Ethernet 105 102 0 106 5 7 2 Monitoring Backplane Information Use the BACKPLANE menu to view the backplane status information for the MVI56E MCM module Backplane Configuration Click Config to view current backplane
46. code received and indicate the number of Slaves acted on with the block The following table describes the format of this response block Block Response from Module to Processor Word Offset Description Length 0 Reserved 1 1 Write Block ID 1 2 Number of Slaves processed 1 3 to 248 Spare 246 249 3001 or 3101 1 Command Control Blocks 5001 to 5006 or 5101 to 5106 Command Control blocks place commands in the command list into the command queue Each port has a command queue of up to 325 commands for modules with firmware version 3 01 or higher and Add on Instruction version 2 8 or higher The module services commands in the queue before the Master command list This gives high priority to commands in the queue Commands placed in the queue through this mechanism must be defined in the Master command list Under normal command list execution the module will only execute commands with the Enable parameter set to one or two If the value is set to zero the command is skipped Commands may be placed in the command list with an Enable parameter set to zero These commands can then be executed using the Command Control blocks One to six commands can be placed in the command queue with a single request The following table describes the format for this block ProSoft Technology Inc Page 125 of 199 June 18 2014 MVI56E MCM ControlLogix Platform User Manual Modbus Communication Module B
47. command to read these 7 floats as follows MCM CONFIG Porti MasterCmd 0 MCM CONFIG Porti MasterCmd 0 Enable 1 MCM CONFIG Porti MasterCmd 0 IntAddress 1000 MCM CONFIG Port MasterCmd 0 Polllnt 0 MCM CONFIG Porti MasterCmd 0 Count 14 MCM CONFIG Portl MasterCmd 0 Swap 0 MCM CONFIG Porti MasterCmd 0 Node MCM CONFIG Portl MasterCmd 0 Func 3 MCM CONFIG Portl MasterCmd 0 DevAddress 260 Configure an array of 7 floats within the ControlLogix processor as shown in the following illustration MCM_Float_Data REAL 7 Float Page 48 of 199 ProSoft Technology Inc June 18 2014 MVI56E MCM ControlLogix Platform Configuration as a Modbus Master Modbus Communication Module User Manual The following COP statement will copy the data from MCM DATA READDATA 0 TO 13 into the array MCM_FLOAT_DATA O 6 1CM DATA ReadData 0 Dest MCM Float Data 0 The Length parameter is set to the number of Floating Point values that must be copied from the MCM DATA READDATA array 2 4 3 Write Floats to Slave Device To issue a Write command to Floating Point addresses use the configuration in the following table The table describes the Modbus Map for the Slave device Value Description Type 40261 KW Demand power Float upper 16 bits 40263 VAR Reactive Power Float upper 16 bits 40265 VA Apparent Power Float upper 16 bits 40267 Power Factor Float upper 1
48. count of 1 will send 4 bytes of data instead of the normal 2 bytes of data to a non Enron Daniel floating point register 1 First copy the floating point data from the ControlLogix processor into the MCM DATA WRITEDATA array used by the MVI56E MCM module Below is an example MCM Float Data 0 Dest MCM DATA WiriteData 0 Length 14 2 Thelength of this COP statement must now be 14 This will COP as many of the FLoAT DATA values required to occupy the MCM DATA WRITEDATA array for a length of 14 This will take 7 registers FLoaArT DATA 0 TO 6 and place that data into MCM DATA WRITEDATA O TO 13 ProSoft Technology Inc Page 51 of 199 June 18 2014 Configuration as a Modbus Master MVI56E MCM ControlLogix Platform User Manual Modbus Communication Module The following illustration shows the command required to write these 7 Floating Point values MCM CONFIG Port MasterCmd 0 5 MCM CONFIG Port MasterCmd D0 Enable 1 MCM CONFIG Port MasterCmd 0 Int amp ddress MCM CONFIG Portl MasterCmd U Polllnt MCM CONFIG Puitl M astieiCiid 0 Cuurit MCM CONFIG Port MasterCmd 0 Swap MCM CONFIG Portl MasterCmd D Node MCM CONFIG Porti MasterCmd 0 Func MCM CONFIG Port MasterCmd 0 Dev amp ddress Based on the IntAddress and the configuration within the MCM CONFIG MODDEF section for WriteStartReg and WriteRegCount the data from the tag MCM DATA WRITEDATA 0 TO 6 wil
49. database If the value specified in the range of 0 to 9940 the data will be placed in the user data area 10 006 to 10 009 Spare 6 5 2 Port 1 Setup Register Content Description 10 010 Enable This parameter defines if this Modbus Port will be used If the parameter is set to 0 the port is disabled A value of 1 enables the port 10 011 Type This parameter specifies if the port will emulate a Modbus Master device 0 a Modbus Slave device without pass through 1 a Modbus Slave device with unformatted pass through 2 a Modbus Slave device with formatted pass through and data swapping 3 or a Modbus Slave device with formatted pass through and no data swapping 4 10 012 Float Flag This flag specifies if the floating point data access functionality is to be implemented If the float flag is set to 1 Modbus functions 3 6 and 16 will interpret floating point values for registers as specified by the two following parameters 10 013 Float Start This parameter defines the first register of floating point data All requests with register values greater than or equal to this value will be considered floating point data requests This parameter is only used if the Float Flag is enabled 10 014 Float Offset This parameter defines the start register for floating point data in the internal database This parameter is only used if the Float Flag is enabled 10 015 Protocol This param
50. device without pass through 1 a Modbus Slave device with unformatted pass through 2 a Modbus Slave device with formatted pass through and data swapping 3 or a Modbus Slave device with formatted pass through and no data swapping 4 ProSoft Technology Inc June 18 2014 Page 147 of 199 User Manual MVI56E MCM ControlLogix Platform Modbus Communication Module Register Content Description 10 042 Float Flag This flag specifies if the floating point data access functionality is to be implemented If the float flag is set to 1 Modbus functions 3 6 and 16 will interpret floating point values for registers as specified by the two following parameters 10 043 Float Start This parameter defines the first register of floating point data All requests with register values greater than or equal to this value will be considered floating point data requests This parameter is only used if the Float Flag is enabled 10 044 Float Offset This parameter defines the start register for floating point data in the internal database This parameter is only used if the Float Flag is enabled 10 045 Protocol This parameter specifies the Modbus protocol to be used on the port Valid protocols are 0 Modbus RTU and 1 Modbus ASCII 10 046 Baud Rate This is the baud rate to be used on the port Enter the baud rate as a value For example to select 19K baud enter 19200
51. example MCM STATUS Prt2E rs Requests 5382 MCM STATLIS Prt2E ms Responses 5382 The REQUESTS field shows the number of request messages sent to the module as a Slave The RESPONSES field shows how many times the module has responded to a request message from the Modbus Master 4 2 1 MVI56E MCM Status Data Definition as a Slave This section contains a description of the members present in the MCM STATUS object This data is transferred from the module to the processor as part of each read block using the module s input image Sample Ladder Logic will copy this information from the LOCAL X I DATA OFFSET tag into the MCM STATUS array Offset Content Description 202 Program Scan Count This value is incremented each time a complete program cycle occurs in the module 203 to 204 Product Code These two registers contain the product code of MCM ProSoft Technology Inc Page 73 of 199 June 18 2014 Verify Communication MVI56E MCM ControlLogix Platform User Manual Modbus Communication Module Offset Content Description 205 to 206 Product Version These two registers contain the product version for the current running software 207 to 208 Operating System These two registers contain the month and year values for the program operating system 209 to 210 Run Number These two registers contain the run number value for the currently running softwa
52. for more information Port Status Use the Port Status menu to view status for Modbus Port 1 and Modbus Port 2 During normal operation the number of requests and responses should increment while the number of errors should not change Page 106 of 199 ProSoft Technology Inc June 18 2014 MVI56E MCM ControlLogix Platform Diagnostics and Troubleshooting Modbus Communication Module User Manual 5 7 6 Data Analyzer The Data Analyzer mode allows you to view all bytes of data transferred on each port Both the transmitted and received data bytes are displayed Use of this feature is limited without a thorough understanding of the protocol Configuring the Data Analyzer ofl alo mf um Click to configure Data Analyzer Select Timing Interval Time Ticks help you visualize how much data is transmitted on the port for a specified interval Select the interval to display or choose No Ticks to turn off timing marks Select the Communication Port to Analyze You can view incoming and outgoing data for one application port at a time Choose the application port to analyze Select the Data Format You can view incoming and outgoing data in Hexadecimal HEX or Alphanumeric ASCII format Starting the Data Analyzer exl Click to start Data Analyzer ProSoft Technology Inc Page 107 of 199 June 18 2014 Diagnostics and Troubleshooting MVI56E MCM ControlLogix Platform User Manual Modbus Co
53. format PDF for each module arranged in the same way as the Ladder Logic folder o The Utilities folder contains additional programs and tools required for some ProSoft modules Refer to your user manual to determine if you need to use or install any of these additional tools 3 In the Explorer window navigate to the files you need and then copy them to a location on your hard drive Download the manuals and sample program from the ProSoft Technology web site You can always download the latest version of the sample ladder logic and user manuals for the MVIS6E MCM module from the ProSoft Technology web site http Awww prosoft technology com prosoft support downloads From that link navigate to the download page for your module and choose the sample program to download for your version of RSLogix 5000 and your processor To determine the firmware version of your processor ProSoft Technology Inc Page 181 of 199 June 18 2014 MVI56E MCM ControlLogix Platform User Manual Modbus Communication Module Important The RSLinx service must be installed and running on your computer in order for RSLogix to communicate with the processor Refer to your RSLinx and RSLogix documentation for help configuring and troubleshooting these applications 1 Connect an RS 232 serial cable from the COM serial port on your PC to the communication port on the front of the processor 2 Start RSLogix 5000 and close any existing p
54. from a Slave device These are single bit addresses within a Modbus Slave device Unlike Coils the Input Coils are Read Only values and cannot be written to by a Modbus Master device Also like the Coils Oxxx the IntAddress field of this command is defined down to the bit level within the module memory Below is a sample command to read Modbus addresses 10081 to 10090 of node 1 on the Modbus network MCM CONFIG Port MasterCmd 3 Enable 1 MCM CONFIG Portl MasterCmd 3 Int amp ddress 16480 MCM CONFIG Porti MasterCmd 3 Polllnt 0 MCM CONFIG Port MasterCmd 3 Count 16 MCM CONFIG Port MasterCmd 3 Swap 0 MCM CONFIG Portl MasterCmd 3 Node 1 MCM CONFIG Portl MasterCmd 3 Func 2 MCM CONFIG Portl MasterCmd 3 Dev amp ddress 80 Label Description Enable 1 The module will send the command every time it goes through the command list IntAddress 16480 Places the data read from the Slave device into the module at address 16480 IntAddress 16480 of the module memory will be copied into the tag MCM DATA READDATA 30 bit16480 16 register 1030 Count 16 Reads 16 consecutive registers from the Slave device ProSoft Technology Inc June 18 2014 Page 43 of 199 Configuration as a Modbus Master MVI56E MCM ControlLogix Platform User Manual Modbus Communication Module Label Description Node 1 Issues the Modbus command to node 1 on the network Func 2 Iss
55. in Offset This parameter specifies the offset address in the internal Modbus database for network requests for Modbus function 1 5 or 15 commands For example if the value is set to 100 an address request of 0 will correspond to register 100 in the database 10 028 Holding Reg Offset This parameter specifies the offset address in the internal Modbus database for network requests for Modbus function 3 6 or 16 commands For example if a value of 50 is entered a request for address 0 will correspond to the register 50 in the database 10 029 Command Count This parameter specifies the number of commands to be processed by the Modbus Master Port Page 146 of 199 ProSoft Technology Inc June 18 2014 MVI56E MCM ControlLogix Platform Modbus Communication Module Reference User Manual Register Content Description 10 030 Minimum Command Delay This parameter specifies the number of milliseconds to wait between issuing each command This delay value is not applied to retries 10 031 Command Error Pointer This parameter sets the address in the internal Modbus database where the command error will be placed If the value is set to 1 the data will not be transferred to the database The valid range of values for this parameter is 1 to 9675 10 032 Response Timeout This parameter represents the message response timeout period in 1 millisecond increments This is the ti
56. is normally only required when half duplex modems are used for communication 2 wire Page 148 of 199 ProSoft Technology Inc June 18 2014 MVI56E MCM ControlLogix Platform Modbus Communication Module Reference User Manual Register Content Description 10 054 Slave ID This parameter defines the virtual Modbus Slave address for the internal database All requests received by the port with this address are processed by the module Verify that each device has a unique address on a network Valid range for this parameter is 1 to 255 247 on some networks 10 055 Bit in Offset This parameter specifies the offset address in the internal Modbus database for network requests for Modbus Function 2 commands For example if the value is set to 150 an address request of 0 will return the value at register 150 in the database 10 056 Word in Offset This parameter specifies the offset address in the internal Modbus database for network request for Modbus function 4 commands For example if the value is set to 150 an address request of 0 will return the value at register 150 in the database 10 057 Out in Offset This parameter specifies the offset address in the internal Modbus database for network requests for Modbus function 1 5 or 15 commands For example if the value is set to 100 an address request of 0 will correspond to register 100 in the database 10 058 H
57. messages CmdErrPtr Internal DB location to place command error list Each command will reserve one word for the command error code for that command See Verify Communication page 66 CMDERRPTR value should be within the range of the READDATA array See Backplane Configuration page 103 Page 36 of 199 ProSoft Technology Inc June 18 2014 MVI56E MCM ControlLogix Platform Configuration as a Modbus Master Modbus Communication Module User Manual Parameter Description Error Delay Counter This parameter specifies the number of poll attempts to be skipped before trying to re establish communications with a slave that has failed to respond to a command within the time limit set by the Response Timeout parameter After the slave fails to respond the master will skip sending commands that should have been sent to the slave until the number of skipped commands matches the value entered in this parameter This creates a sort of slow poll mode for slaves that are experiencing communication problems RespTO 0 to 65535 milliseconds response timeout for command before it will either reissue the command if RETRYCOUNT gt 0 If the RetryCount 0 or if the designated number of retries have been accomplished then the Master will move on to the next command in the list RetryCount Number of times to retry a failed command request before moving to the next command on the list Note To use up
58. on the port 213 Port 1 Command List This field contains the number of command errors processed Errors on the port These errors could be due to a bad response or command 214 Port 1 Requests This field contains the total number of messages sent from the port 215 Port 1 Responses This field contains the total number of messages received on the port 216 Port 1 Errors Sent This field contains the total number of message errors sent from the port 217 Port 1 Errors This field contains the total number of message errors Received received on the port 218 Port 2 Command List This field contains the number of requests made from this Requests port to Slave devices on the network 219 Port 2 Command List This field contains the number of Slave response messages Response received on the port 220 Port 2 Command List This field contains the number of command errors processed Errors on the port These errors could be due to a bad response or command 221 Port 2 Requests This field contains the total number of messages sent out the port 222 Port 2 Responses This field contains the total number of messages received on the port 223 Port 2 Errors Sent This field contains the total number of message errors sent out the port 224 Port 2 Errors This field contains the total number of message errors Received received on the port 225 Read Block Count This field contains the total number of read blocks transferred from the module to the processor 226 Write Bloc
59. point data to and from the Slave device you must add additional ladder to handle the conversion of the data to a REAL data type within the ControlLogix processor This is very easy to accomplish Page 46 of 199 ProSoft Technology Inc June 18 2014 MVI56E MCM ControlLogix Platform Configuration as a Modbus Master Modbus Communication Module User Manual The following topics show how to read or write data to a Slave device These topics also show when to use the Float Flag and Float Start parameters within the module configuration For all applications floating point data can be read from a device without any changes to the Float Flag and Float Start parameters You only need to configure these parameters to issue a Write command to a device that uses a single Modbus address such as 47001 to represent a single floating point value 2 4 1 Head Floating Point Data Here is the addressing of a Slave device with a parameter Energy Consumption that is shown as two registers 40257 and 40258 Value Description Type 40257 KWH Energy Consumption Float lower 16 bits 40258 KWH Energy Consumption Float upper 16 bits To issue a Read command to this parameter use the following configuration Parameter Value Description Enable 1 Sends the command every time through the command list IntAddress 1000 Places data at address 1000 of the module memory Based on the configuration in ModDef this will
60. put the data at the tag MCM DATA READDaTA O Polllnt 0 No delay for this command Count 2 Reads 2 consecutive registers from the Slave device These 2 Modbus registers will make up the Energy Consumption floating point value Swap 0 Swap Code Description 0 None No Change is made in the byte ordering 1234 1234 1 Words The words are swapped 1234 3412 2 Words amp Bytes The words are swapped then the bytes in each word are swapped 1234 4321 3 Bytes The bytes in each word are swapped 1234 2143 Node 1 Sends the command to Node 1 Func 3 Issues a Modbus Function Code 3 to Read Holding registers DevAddress 256 Along with the Function Code 3 DevAddress 256 will read Modbus address 40257 of the Slave device Along with the Function Code 3 DevAddress 256 will read Modbus address 40257 of the Slave device The above command will read 40257 and 40258 of the Modbus Slave 1 and place that data in MCM DATA READDATA O and 1 Within the controller tags section of the ControlLogix processor it is necessary to configure a tag with the data type of REAL as shown in the following illustration Energy Consumption REAL 1 Float ProSoft Technology Inc Page 47 of 199 June 18 2014 Configuration as a Modbus Master MVI56E MCM ControlLogix Platform User Manual Modbus Communication Module Copy data from the MCM DATA READDATA O and 1 into the tag ENERGY CONSUMPTION tha
61. select the Comm Format as DATA INT in the dialog box Failure to set the correct parameters will result in backplane communication problems between the module and the processor Module Properties Local 1756 MODULE 1 1 x Type 1756 MODULE Generic 1756 Module Parent Local Connection Parameters Assembly poen Size Name MVI56_MCM Input 50 16 bit Description Output 16 bit Configuration 0 8 bit Comm Format Data INT E T Slot 1 E Next gt Hep Help 4 Click the NEXT button and set the Request Packet Interval to 5 0ms as shown in the following illustration Module Properties Locak1 1756 MODULE 1 1 xi Requested Packet Interval RPI ms 0 2 750 0 ms Inhibit Module Major Fault On Controller If Connection Fails While Run Mode Module Fault Cancel lt Back Next gt Help 5 Click FINISH to save the module into your existing application Copying the User Defined Data Types Next copy the User Defined Data Types from the sample program to your existing program These data types contain configuration information status commands and other functions used by the program 1 Arrange the two RSLogix 5000 windows on your desktop so that they are side by side 2 In the CONTROLLER ORGANIZATION pane in the Sample Program expand the DATA TYPES folder until the list of User Defined data types is visible 3 I
62. the Add On Instruction RSLogix 5000 My Controller 1756 L71 20 12 MainProgram MainRoutine File Edit View Search Logic Communications Tools Window Help Os amp v 64a Offline D RUN Ex Path AB_ETHIP 2 10 1 3 163 Backplane 0 v i No Forces b MUN No Edits Ei 3 I b 8 lt gt X Favorites Add On Alarms X Bt X 1 5 E 8 els gt gt vo 23 Controller My Controller Controller Tags Add On MVISSE MCM 53 Controller Fault Handler modules Power Up Handler OISBMCM amp Tasks Add On MVIS6E MCM modules 6 MainTask AOISEMCM AOISSMCM CI 8 MainProgram Connection Input Locat1 1Data Program Tags Connection Output Local 1 0 Data MainRoutine Unscheduled Programs Phases B Motion Groups Ungrouped Axes 8 89 Add On Instructions AOIS6EMCM Optional Optional Parameters and Local Tags MVISSE MCM Optional Add On Ethernet Clock Logic AOISBEMCM Optional AOISBEMCM Optional C d AOIS6MCM MVISSMCMEthernet MVISGEMCMEthernet amp Data Types MVISEMCMClock MVISGEMCMClock __ a i User Defined ReadEthernetMSG ReadEthernetMSG CJ WriteEthernetMSG WriteEthernetMSG ReadClockMSG ReadClockMSG WriteClockMSG WriteClockMSG LJ MVISSE MCM Optional Hum lt Rung End of2 APP Page 174 of 199 ProSoft Technology Inc June 18 2014 MVI56E MCM ControlLogix Platform Refe
63. the sample configuration values for READSTARTREG and READREGONT this will be addresses 1000 to 1599 of the module memory Below are the sample configuration values MCM CONFIG ModDef ReadStartReg 1000 MCM CONFIG ModDef Read3egCnt 600 ProSoft Technology Inc Page 69 of 199 June 18 2014 Verify Communication MVI56E MCM ControlLogix Platform User Manual Modbus Communication Module Based on these values shown above a good place for the MCM CONFIG PORTX CMDERRPTR is address 1500 as shown MCM CONFIG Portl CmdCount MCM CONTIG Port MinCmd gt elay MCM CONFIG Port CmdE rPtr With the CMDERRPTR pointer set to address 1500 and the CMDCOUNT set to a value of 100 this will place your Command Error Data at addresses 1500 to 1599 of the module memory and because of the before mentioned configuration of the MCM CONFIG MODDEF READSTARTREG and READREGCNT parameters the command error data will be placed into the tags MCM DATA READDATA 500 TO 599 Each command configured in the MCM CONFIG PORTX MASTERCMD will occupy one register within the READDATA array Based on the sample configuration values the following table is true Error Code for Command ReadData Location MCM COMFIG Port1MasterCmd 0 MCM DATA ReadData 500 MCM CONFIG Port1MasterCmdq 1 MCM DATA ReadData 501 MCM COMFIG Port1MasterCmd 2 MCM DATA ReadData 502 MCM COMFIG Port1MasterCmd 3 MCM DATA ReadData 503 MCM COMFIG Port1MasterCmd 4
64. to 247 Spare 247 This will inform the module that the command has been processed and can be cleared from the pass through queue ProSoft Technology Inc Page 129 of 199 June 18 2014 MVI56E MCM ControlLogix Platform User Manual Modbus Communication Module Formatted Pass Through Blocks 9956 to 9959 If one or more of the Slave Ports on the module are configured for the Formatted Pass through mode the module will pass blocks with identification codes of 9956 to 9959 to the processor for each received write command Any Modbus function 5 6 15 or 16 commands will be passed from the port to the processor using these block identification numbers Ladder logic must handle the receipt of all Modbus write functions to the processor and must respond as expected to commands issued by the remote Modbus Master device The structure of these formatted Pass through blocks is shown in the following tables Function 5 Pass Through Block 9958 from Module to Processor Word Offset Description Length 0 0 1 1 9958 1 2 1 1 3 Bit Address 1 4 to 248 Modbus data received 245 249 9958 1 The ladder logic will be responsible for parsing and copying the received message and performing the proper control operation as expected by the Master device The processor must then respond to the Pass through block with a write block with the following format Response Block 9958 from Processor to Module
65. to 30030 of node 1 on the Modbus network MCM CONFIG Portl MasterCmd 1 Enable 1 MCM CONFIG Portl MasterCmd 1 Int amp ddress 1010 MCM CONFIG Portl MasterCmd 1 Polllnt 0 MCM CONFIG Portl MasterCmd 1 Count 10 MCM CONFIG Port MasterCmd 1 Swap 0 MCM CONFIG Port MasterCmd 1 Node 1 MCM CONFIG Portl MasterCmd 1 Func 4 MECM CONFIG Port MasterCmd 1 Dev amp ddress N Label Description Enable 1 The module will send the command every time it goes through the command list IntAddress 1010 Places the data read from the Slave device into the module at address 1010 IntAddress 1010 of the module memory will be copied into the tag 10 Count 10 Reads 10 consecutive registers from the Slave device Node 1 Issues the Modbus command to node 1 on the network Func 4 Issues Modbus Function Code 4 to Read Input Registers DevAddress 20 Function Code 4 DevAddress of 20 will read address 30021 Along with a count of 10 this command reads 30021 to 30030 2 3 3 Read Coil Status 0x Modbus Function Code 1 Modbus Function Code 1 reads the Coils addressed at 0001 to 9999 from a Slave device These are bit values that are read using Modbus Function Code 1 and can be written to using Function Code 5 or 15 Within a Slave device this is an individual bit value Thus the IntAddress field must be defined down to the bit level within your MasterCmd Page 42 of 199 Pr
66. value of 0 you will receive an error code of 44 To remove this error code you can change your MCM CONFIG PORTX CMDCOUNT parameter to the number of commands that are actually configured cycle power to the module or toggle the MCM CONTROL WARMBOOT or COLDBOOT bit to transfer the new values to the module Transferring the Command Error List to the Processor You can transfer the command error list to the processor from the module database To place the table in the database set the Command Error Pointer MCM PoRT1 CMDERRPTR parameter to the database location desired In the sample ladder the MCM PORT1 CMDERRPTR tag is set to a value of 1100 This will cause the error value of command 0 to be placed at database address 1100 Each command error value occupies one database word The error value for command 1 will be in location 1101 and the remaining values in consecutive database locations To transfer this table to the processor refer to Command Error Codes page 69 Make sure that the Command Error table is in the database area covered by the Read Data MCM MODDEF READSTARTREG and MCM MODDEF READREGCNT 4 1 3 MCM Status Data Status information can also be obtained from the 156 module by checking the MCM STATUS PRTXERRS location Below is a sample MCM STATUS PrtlErrs I MCM STATLIS PrtlErms CmdReq 1768 MCM STATUS PrtlEns CmdResp 1768 MCM STATUS PrtlErs CmdE rr MCM STATLIS PrtlE s Requests 1768 MCM STAT
67. 0 will establish communication with the processor You do not have to download through the processor s serial port as shown here You may download through any available network connection 2 When communication is established RSLogix 5000 will open a confirmation dialog box Click the DOWNLOAD button to transfer the sample program to the processor Download to the controller Name My_Controller Type 1756 L63 ControlLogix5563 Controller Path AB DF1 1 Security None Cancel Help 3 RSLogix 5000 will compile the program and transfer it to the processor This process may take a few minutes 4 When the download is complete RSLogix 5000 will open another confirmation dialog box If the key switch is in the REM position click OK to switch the processor from PROGRAM mode to RUN mode RSLogix 5000 Done downloading Change controller mode back to Remote Run No Note If you receive an error message during these steps refer to your RSLogix documentation to interpret and correct the error Page 30 of 199 ProSoft Technology Inc June 18 2014 MVI56E MCM ControlLogix Platform Start Here User Manual Modbus Communication Module 1 8 1 Configuring the RSLinx Driver for the PC COM Port When trying to connect serially if RSLogix is unable to establish communication with the processor follow these steps 1 Open RSLinx 2 Open the COMMUNICATIONS menu and click CONFIGURE DRIVERS
68. 00 words of WriteData starting at register O then your MCM CONFIG MODDEF READSTARTREG must be set to a value of 2000 or greater Connecting Your PC to the ControlLogix Processor There are several ways to establish communication between your PC and the ControlLogix processor The following steps show how to establish communication through the serial interface Note It is not mandatory that you use the processor s serial interface You may access the processor through whatever network interface is available on your system Refer to your Rockwell Automation documentation for information on other connection methods Page 28 of 199 ProSoft Technology Inc June 18 2014 MVI56E MCM ControlLogix Platform Start Here Modbus Communication Module User Manual 1 Connect the right angle connector end of the cable to your controller at the communications port Communications Port 2 Connect the straight connector end of the cable to the serial port on your computer ProSoft Technology Inc Page 29 of 199 June 18 2014 Start Here MVI56E MCM ControlLogix Platform User Manual Modbus Communication Module 1 8 Downloading the Sample Program to the Processor Note The key switch on the front of the ControlLogix processor must be in the REM or PROG position 1 If you are not already online with the processor in RSLogix 5000 open the Communications menu and then choose DOWNLOAD RSLogix 500
69. 0x0008 4 Protocol parameter is not valid 0x0010 5 Baud rate parameter is not valid 0x0020 6 Parity parameter is not valid 0x0040 7 Data bits parameter is not valid 0x0080 8 Stop bits parameter is not valid 0x0100 9 Slave ID is not valid 0x0200 10 Input bit or word output word and or holding register 0x0400 offset s are not valid 11 Command count parameter is not valid 0x0800 12 Spare 0x1000 13 Spare 0x2000 14 Spare 0x4000 15 Spare 0x8000 Correct any invalid data in the configuration for proper module operation When the configuration contains a valid parameter set all the bits in the configuration words will be clear This does not indicate that the configuration is valid for the user application Make sure each parameter is set correctly for the specific application Page 112 of 199 ProSoft Technology Inc June 18 2014 MVI56E MCM ControlLogix Platform Diagnostics and Troubleshooting Modbus Communication Module User Manual Note If the APP BP ACT and OK LEDs blink at a rate of every one second this indicates a serious problem with the module Call ProSoft Technology Support to arrange for repairs 5 10 Connect to the Module s Web Page The module s internal web server provides access to module status diagnostics and firmware updates 1 In ProSoft Discovery Service select the module to configure and then click the right mouse button to open a shortcut menu JA Prosoft Discovery Service Assign Tempora
70. 1009 41009 ReadData 8 1009 31010 41010 ReadData 9 1010 31011 41011 ReadData 10 1050 31051 41051 ReadData 50 1100 31101 41101 ReadData 100 1200 31201 41201 ReadData 200 1500 31501 41501 ReadData 500 1598 31599 41599 ReadData 598 1599 31600 41600 ReadData 599 The above addressing chart will work with many Modbus applications Values listed in the READDATA array for 31001 to 31600 are shown with an beside them Although these are valid addresses they will not work in the application The Master must issue a Write command to the addresses that correspond to the READDATA array For Modbus addresses 3xxxx these are considered Input registers and a Modbus Master does not have a function code for this type of data Page 60 of 199 ProSoft Technology Inc June 18 2014 MVI56E MCM ControlLogix Platform Modbus Communication Module Configuration as a Modbus Slave User Manual 3 2 2 Customizing the Memory Map In some cases the above memory map will not work for the application Sometimes a Master must read bits starting at address 0001 and also read a register starting at 40001 With the memory map in this Modbus Memory Map 59 this is not possible as WRITEDATA O is seen as both 0001 to 0016 and 40001 To accommodate this you can customize the starting location within the module for each device using the parameters shown below MCM CONFIG Port2 BitlnOffset 0 MCM CONFIG Port2 WordlnO
71. 103 Module Communication Error Codes 71 Module Configuration Block 9000 127 Monitoring Backplane Information 103 Monitoring Database Information 104 Monitoring General Information 105 Monitoring Modbus Port Information 105 111 MVI56E MCM Configuration Data 144 154 MVI56E MCM Database Definition 104 143 MVI56E MCM Remote Master Control 132 MVI56E MCM Status Data Definition 67 104 111 144 152 MVI56E MCM Status Data Definition as a Master 67 MVI56E MCM Status Data Definition as a Slave 73 MVI56E MCM User Defined Data Types 154 189 N Non Scrolling LED Status Indicators 77 Normal Data Transfer 120 Opening the Sample Program in RSLogix 181 Other Modbus Addressing Schemes 40 Overview 33 57 172 P Package Contents 12 Pass Through Blocks 62 129 Passthru 158 160 Pinouts 70 71 115 117 138 139 143 Port 1 Commands 150 Port 1 Setup 145 Port 2 Commands 150 Port 2 Setup 147 Port Configuration 35 106 Port Status 106 Preset Write Multiple Registers 4x Modbus Function Code 16 46 Preset Write Single Register 4x Modbus Function Code 6 45 Preset Multiple Registers Function Code 16 170 Preset Single Register Function Code 06 166 Product Specifications 115 R Read and Write Same Modbus Address Pass Through 65 Read Block 120 Read Coil Status Function Code 01 161 Read Coil Status 0x Modbus Function Co
72. 2 rh enorme mee caede 154 6 7 3 htt e ene demo tico ME d lores 157 6 7 4 Me XU IRURE 157 6 7 5 uL toten estu eR 158 6 7 6 Wil rii etx cit ursa ue treten rod 158 6 8 Modbus Protocol Specification ssssssssssssssseeeeeeenns 160 6 8 1 Commands Supported by the sse 160 6 8 2 Read Coil Status Function Code 01 161 6 8 3 Read Input Status Function Code 02 162 6 8 4 Read Holding Registers Function Code 03 163 6 8 5 Read Input Registers Function Code 04 164 6 8 6 Force Single Coil Function Code 05 165 6 8 7 Preset Single Register Function Code 06 166 6 8 8 Diagnostics Function Code 08 sse 167 6 8 9 Force Multiple Coils Function Code 15 169 6 8 10 Preset Multiple Registers Function Code 16 170 6 8 11 Modbus Exception 170 6 9 Using the Optional Add On Instruction sse enn 172 6 9 1 Before You 172 6 9 2 SRI Pr 172 6 9 3 Importing the Utility Add On
73. 2 30002 40002 WriteData 1 2 0033 to 0048 10033 to 10048 30003 40003 WriteData 2 3 0049 to 0064 10049 to 10064 30004 40004 WriteData 3 4 0065 to 0080 10065 to 10080 30005 40005 WriteData 4 5 0081 to 0096 10081 to 10096 30006 40006 WriteData 5 6 0097 to 0112 10097 to 10112 30007 40007 WriteData 6 7 0113 to 0128 10113 to 10128 30008 40008 WriteData 7 8 0129 to 0144 10129 to 10144 30009 40009 WriteData 8 9 0145 to 0160 10145 to 10160 30010 40010 WriteData 9 10 0161 to 0176 10161 to 10176 30011 40011 WriteData 10 ProSoft Technology Inc Page 59 of 199 June 18 2014 Configuration as a Modbus Slave MVI56E MCM ControlLogix Platform User Manual Modbus Communication Module MVI Address 1 4 Tag Address 50 0801 0816 10801 to 10816 30051 40051 WriteData 50 100 1601 to 1616 11601 to 11616 30101 40101 WriteData 100 200 3201 to 3216 13201 to 13216 30201 40201 WriteData 200 500 8001 to 8016 18001 to 18016 30501 40501 WriteData 500 598 9569 to 9584 19569 to 19584 30599 40599 WriteData 598 599 9585 to 9600 19585 to 19600 30600 40600 WriteData 599 600 to 999 N A N A N A N A Reserved 1000 31001 41001 ReadData 0 1001 31002 41002 ReadData 1 1002 31003 41003 ReadData 2 1003 31004 41004 ReadData 3 1004 31005 41005 ReadData 4 1005 31006 41006 ReadData 5 1006 31007 41007 ReadData 6 1007 31008 41008 ReadData 7 1008 3
74. 2 Command List This field contains the number of command errors Errors processed on the port These errors could be due to a bad response or command 221 Port 2 Requests This field contains the total number of messages sent out the port 222 Port 2 Responses This field contains the total number of messages received on the port 223 Port 2 Errors Sent This field contains the total number of message errors sent out the port 224 Port 2 Errors This field contains the total number of message errors Received received on the port 225 Read Block Count This field contains the total number of read blocks transferred from the module to the processor 226 Write Block Count This field contains the total number of write blocks transferred from the module to the processor 227 Parse Block Count This field contains the total number of blocks successfully parsed that were received from the processor 228 Command Event This field contains the total number of command event Block Count blocks received from the processor 229 Command Block This field contains the total number of command blocks Count received from the processor 230 Error Block Count This field contains the total number of block errors recognized by the module ProSoft Technology Inc June 18 2014 Page 153 of 199 User Manual MVI56E MCM ControlLogix Platform Modbus Communication Module Offset Content Description 231 Port 1 Current Error
75. 21 days Before you remove a module from its power source ensure that the battery within the module is fully charged the BATT LED on the front of the module goes OFF when the battery is fully charged If the battery is allowed to become fully discharged the module will revert to the default BIOS and clock settings Note The battery is not user replaceable or serviceable MVI56E MCM ControlLogix Platform Contents Modbus Communication Module User Manual Contents Your Feedback Please b edt etl et eue ate edi be tem Hes ER ge ute uad 2 Gron usTeaBIEIe nre m 2 Important Safety 3 Battery Life AdVISOLy i enc da id ga bd a iba ix giai tae v DEPO cE bab 4 1 Start Here 9 1 1 System Requiremiernts 2 n ciet Ee ee ERR deb deae cons dhe Pra Re EE d 9 1 2 Deployment Checklist itte rt rhe on khoe MEL IEEE d a tdg Ea 10 1 3 Package Contents t enn HE Hoa bd eg ER ER A Du Led eda aga 12 1 4 Setting JUPES etie D eH REEL RR ERR MO ERR ER e diss 12 1 5 Installing the Module in the Rack sssssseeee emm enn 13 1 6 Creating a New RSLogix 5000 Project sssssseeeenn enne 14 1 6 1 Before You Import the Add On Instruction ssssssssssssseeee 15 1 6 2 Creating the dne 16 1 6
76. 281 Port 1 Command List This field contains the number of command errors Errors processed on the port These errors could be due to a bad response or command 15 282 Port 1 Requests This field contains the total number of messages sent from the port 15 283 Port 1 Responses This field contains the total number of messages received on the port 15 284 Port 1 Errors Sent This field contains the total number of message errors sent from the port 15 285 Port 1 Errors Received This field contains the total number of message errors received on the port 15 286 Port 2 Command List This field contains the number of requests made Requests from this port to Slave devices on the network 15 287 Port 2 Command List This field contains the number of Slave response Response messages received on the port 15 288 Port 2 Command List This field contains the number of command errors Errors processed on the port These errors could be due to a bad response or command 15 289 Port 2 Requests This field contains the total number of messages sent out the port 15 290 Port 2 Responses This field contains the total number of messages received on the port 15 291 Port 2 Errors Sent This field contains the total number of message errors sent out the port 15 292 Port 2 Errors Received This field contains the total number of message errors received on the port 15 293 Read Block Count This field contains the total number of read blocks transferred from the module to the proce
77. 3 Import the Ladder Rung 19 1 6 4 Adding Multiple Modules Optional 22 1 6 5 Adjust the Input and Output Array Sizes 27 1 7 Connecting Your PC to the ControlLogix 28 1 8 Downloading the Sample Program to the 30 1 8 1 Configuring the RSLinx Driver for the PC COM 31 2 Configuration as a Modbus Master 33 2 1 d 33 2 2 34 2 2 1 Port Configuration es ul crt tor RR b rants ns eee ee eevee 35 2 2 2 Master Command Configuration sssssee eene 37 2 2 3 Other Modbus Addressing Schemes sssssssseeeeeee eere 40 2 3 Master Command eene 41 2 3 1 Read Holding Registers 4x Modbus Function Code 3 41 2 3 2 Read Input Registers Modbus Function Code 4 42 2 3 3 Read Coil Status Ox Modbus Function Code 1 42 2 3 4 Read Input Status 1x Modbus Function Code 2
78. 37 5 09760759E 035 5 74027813E 029 1 51029685E 026 3 97016299E 024 Hexadecimal DATABASE DISPLAY 0 to 99 HEXADECIMAL 0000 0001 2829 3031 4849 6869 8889 0809 2829 4849 6869 8889 0003 3435 Use the scroll bar on the right edge the window to view each page 100 words of data 5 7 4 Monitoring General Information Use the General Menu to view module version information MVI56E MCM gt GENERAL gt Version PRODUCT NAME CODE SOFTWARE REVISION LEVEL OPERATING SYSTEM REVISION RUN NUMBER PROGRAM SCAN COUNTER BACKPLANE DRIVER VERSION BACKPLANE API VERSION DEVICE TYPE PRODUCT CODE SERIAL NUMBER REVISION 1 0 MVIS56E MCM 7309 12 15001 0000FFF3 y Pa The values on this menu correspond with the contents of the module s Misc Status page 150 5 7 5 Monitoring Modbus Port Information Use the Modbus Port 1 and Modbus Port 2 menus to view the information for each of the MVI56E MCM module s Modbus application ports ProSoft Technology Inc June 18 2014 Page 105 of 199 Diagnostics and Troubleshooting MVI56E MCM ControlLogix Platform User Manual Modbus Communication Module Port Configuration Use the Port Configuration menu to view configuration settings for Modbus Port 1 and Modbus Port 2 The values on this menu correspond with the controller tags MCM CONFIG Port1 and MCMPort page 155 Master Command List Use the Master Command List menu to view the command
79. 49 and stores the newly received read block number DATA 249 into the LASTREAD variable Note The _READCONTROL routine handles the command control responses received from the module If command control event command or Slave status blocks are not going to be used in the application then the _READCONTROL rung rung 4 in the sample READDATA task and the READCONTROL and _WRITECONTROL ladder files may be removed If the module is configured for zero blocks it will send blocks with identification codes of zero and 1 These blocks will only contain status data and no user data will be included in these blocks The ladder obtains status information when the module is configured for either 1 or 0 blocks of read data If the module is configured with 0 for the ReadRegCnt then blocks 1 and 0 will be given by the module on the input image If the ReadRegCnt is 200 or less then you will receive block 0 and block 1 The ladder logic also determines if the new data received in the input image is user data If user data is present the ladder logic will place the data in the correct location in the processor s read data area MCM READDATA Up to 200 data words can be transferred in each block transfer In addition to the user data the block also contains important status data This data should be copied to the correct data area in the module MCM STATUS This status data can be used to determine the health of the MVIS6E MCM module This r
80. 6 bits 40269 VOLTS Voltage line to line Float upper 16 bits 40271 VOLTS Voltage line to neutral Float upper 16 bits 40273 AMPS Current Float upper 16 bits You must use a COP statement to copy the data from floating point data tags within the ControlLogix processor into the MCM DATA WRITEDATA array used by the 56 module Below is an example Copy File MCM Float Data 0 MCM DATA WriteData 0 h 14 The length of this COP statement must now be 14 This will COP as many of the FLoAT DATA values required to occupy the MCM DATA WRITEDATA array for a length of 14 This will take 7 registers FLoAT DATA 0 TO 6 and place that data into MCM DATA WRITEDATA O 13 You must configure the command to write all 7 floats 14 Modbus addresses as follows MCM CONFIG Portl MasterCmd O MCM CONFIG Port 0 Enable 1 MCM CONFIG Portl MasterCmd 0 IntAddress MCM CONFIG Port MasterCmd U Polllnt 0 MCM CONTFIG Porti MasterCmd 0 Count 14 MCM CONFIG Port MasterCmd O Swap MCM CONFIG Portl MasterCmd 0 Node 1 MCM CONFIG Port MasterCmd 0 Func 16 MCM CONFIG Porti MasterCmd 0 DevAddress 260 ProSoft Technology Inc Page 49 of 199 June 18 2014 Configuration as a Modbus Master MVI56E MCM ControlLogix Platform User Manual Modbus Communication Module The above command will take the data from MCM DATA WRITEDATA 0 13 an
81. 7 The Write Block ID is an index value used to determine the location in the module s database where the data will be placed Each transfer can move up to 200 words block offsets 1 to 200 of data ProSoft Technology Inc Page 121 of 199 June 18 2014 MVI56E MCM ControlLogix Platform User Manual Modbus Communication Module 6 2 4 Special Function Blocks Special function blocks are optional blocks used to control the module or request special data from the module The current version of the software supports the following special function blocks Event Command Slave Status Command Control Module Configuration Master Command Data List Pass Through Warm Boot Cold Boot Write Configuration Event Command Blocks 1000 to 1255 or 2000 to 2255 Event Command blocks send Modbus commands directly from the ladder logic to one of the Master Ports The following table describes the format for these blocks Block Request from Processor to Module Word Offset Description Length 0 1000 to 1255 or 2000 to 2255 1 1 Internal Address 1 2 Point Count 1 3 Swap Code 1 4 Modbus Function Code 1 5 Device Database Address 1 6 to 247 Spare 242 The block number defines the Modbus Port that will send the command and the Slave node that will respond to the command Blocks in the 1000 range are directed to Modbus Port 1 and blocks in the 2000 range are directed to Modbus Port 2
82. 756 ENBT 192 168 0 250 MVISEE Module 0 t 192 168 0 250 p 1 5 0 56 Add Rack Delete Rack i Construct CIP Path The Path Editor allows you to define the path between the PC and the MVIB56E MCM module The first connection from the PC is always a 1756 ENBT Ethernet IP module Each row corresponds to a physical rack in the CIP path Page 84 of 199 ProSoft Technology Inc June 18 2014 MVI56E MCM ControlLogix Platform Diagnostics and Troubleshooting Modbus Communication Module User Manual If the MVI56E MCM module is located in the same rack as the first 1756 ENBT module select RACK No 1 and configure the associated parameters If the MVIBGE MOM is available in a remote rack accessible through ControlNet or Ethernet IP include all racks by using the ADD RACK button Parameter Description Source Module Source module type This field is automatically selected depending on the destination module of the last rack 1756 CNB or 1756 ENBT Source Module IP Address IP address of the source module only applicable for 1756 ENBT Source Module Node Address Node address of the source module only applicable for 1756 CNB Destination Module Select the destination module associated to the source module in the rack The connection between the source and destination modules is performed through the backplane Destination Module Slot Number The slot number where th
83. 9 June 18 2014 Diagnostics and Troubleshooting User Manual MVI56E MCM ControlLogix Platform Modbus Communication Module 1 In ProSoft Configuration Builder right click the MVI56E MCM icon to open a shortcut menu 2 Onthe shortcut menu choose DIAGNOSTICS Default Project Default Location Delete Rename Copy Paste Choose Module Type Configure Verify View Configuration Write to Compact Flash Export Configuration File s Load Config File Add External File Change Module Type to MVIS6 MNET Download from PC to Device Upload from Device to PC Diagnostics 3 selaa In the Diagnostics window click the SET UP CONNECTION button i ial al be a Click to set up connection 4 In the Select Connection Type dropdown list choose 1756 ENBT The default path appears in the text box as shown in the following illustration Connection Setup Select Connection Type 2118 Ethemet ProSoft Discovery Service PDS ClPconnect 192 168 0 100 p 1 s 2 CIP Path Edit Test Connection Cancel Page 90 of 199 ProSoft Technology Inc June 18 2014 MVI56E MCM ControlLogix Platform Diagnostics and Troubleshooting Modbus Communication Module User Manual 5 Configure the path as shown in the following illustration and click CONSTRUCT CIP PATH to build the path in text format CIPconnect Path Editor
84. CM CONFIG ModDef writeRegCnt 600 MCM CONFIG ModDet ReadStartReg 1000 MCM CONFIG ModDef ReadRegCnt 600 MCM CONFIG ModDef BPFail 0 MCM CONFIG ModDef EnStatPtr 1 The WRITESTARTREG determines the starting register location for WRITEDATA 0 TO 599 and the WRITEREGCNT determines how many of the 10 000 registers to use for information to be written out to the module The sample ladder file will configure 600 registers for Write Data labeled MCM WRITEDATA O TO 599 Value Description WriteStartReg Determines where in the 10 000 register module memory to place the data obtained from the ControlLogix processor from the WriteData tags WriteRegCnt Sets how many registers of data the MVIS6E MCM module will request from the ControlLogix processor Because the module pages data in blocks of 200 words this number must be evenly divisible by 200 ReadStartReg Determines where in the 10 000 register module memory to begin obtaining data to present to the ControlLogix processor in the ReadData tags ReadRegCnt Sets how many registers of data the MVIS6E MCM module will send to the ControlLogix processor This value should also be a multiple of 200 BPFail Sets the consecutive number of backplane failures that will cause the module to stop communications on the Modbus network ErrStatPtr This parameter places the STATUS data into the database of the module This information can be read be the Modbus Master to know the st
85. Command List These values are used by the Master driver to determine the type of commands to be issued to the other nodes on the Modbus network After configuration the Master driver begins transmitting read and or write commands to the other nodes on the network If writing data to another node the data for the write command is obtained from the module s internal database to build the command Presuming successful processing by the node specified in the command a response message is received into the Master driver for processing Data received from the node on the network is passed into the module s internal database assuming a read command Status is returned to the ControlLogix processor for each command in the Master Command List Processor Memory Backplane Interface MCM Memory L ControlLogix Database Modbus Controller Tags Adressen i 0 400001 I X 4 I Register 1 Data 1 e a storage H Master Mode I I I 1 Command List Refer to Using the Sample Program in an Existing Application page 186 fora complete description of the parameters required to define the virtual Modbus Master Port Take care when constructing each command to ensure predictable operation of the module If two commands write to the same internal database address of the module the results will not be as desired All c
86. Communication Module 5 6 Downloading the Project to the Module Note For alternative methods of connecting to the module with your PC refer to Connecting Your PC to the Module page 83 In order for the module to use the settings you configured you must download copy the updated Project file from your PC to the module 1 2 3 In the tree view in ProSoft Configuration Builder right click the MVI56E MCM icon to open a shortcut menu Choose DOWNLOAD FROM PC DEVICE This opens the Download dialog box In the Download dialog box choose the connection type in the Select Connection Type dropdown box o Choose ETHERNET if you are connecting to the module through the Ethernet cable o Choose 1756 ENBT if you are connecting to the module through CIPconnect or RSWho Refer to Connecting Your PC to the Module page 83 for more information Note If you connected to the module using an Ethernet cable and set a temporary IP address the Ethernet address field contains that temporary IP address ProSoft Configuration Builder uses this temporary IP address to connect to the module Download files from PC to module STEP 1 Select Communication Path Select Connection Type Ethernet v Browse Device s Ethernet i192 168 0 250 Use Default IP CIPconnect STEP 2 Transfer File s DOWNLOAD Test Connection Click TEST CONNECTION to verify that the IP address allows access to the
87. Config Y ear 0 MVIBBMCMClock Config Month 0 MVIBBMCMClock Config D ay 0 MVISEMCMClock Config Hour D MVIBBMCMClack Config Minute MVIBBMCMClock Config Seconds 0 The bit will be automatically reset and the current clock value will be copied to MVIB56MCMCLock CoNFIG controller tag as follows MVISEMCMClock Um 9 0 5 0 MVIS6MCMClock Config MYI56MCMClock Config Y ear 2008 MVIBBMCMLlock Config Month ll MVIBBMCMClock Config D ay 12 MVIBBMCMClock Config Hour 15 MVIBBMCMClock Config Minute 38 MVIBBMCMClock Config Seconds 9 To check the status of the message refer to the READCLOCKMSG tag ReadClockMSG fie ReadClockMSG Flags 1680220 ReadClockMSG EW 0 ReadClockMSG ER 0 ReadClockMSG DN 1 ReadClockMSG ST 0 ReadClockMSG EN 0 ReadClockMSG TO 0 ReadClockMSG EN_CC 1 ReadClockMSG ERR 16 0000 ReadClockMSG EXERR 16 0000_0000 ReadClockMSG ERR_SRC 0 ReadClockMSG DN_LEN 24 6 9 7 Writing the Clock Value to the Module Expand the MVIS6MCMCLOCK controller tag Set the new Clock value in MVIS6MCMCLOCK CONFIG ProSoft Technology Inc Page 179 of 199 June 18 2014 MVI56E MCM ControlLogix Platform User Manual Modbus Communication Module Move a value of 1 to MVIS6MCMCLOCK WRITE MVIBEMCMClock m MVIS6MCMClock Read 0 MYIS6EMCM Clock w rite MVIBBMCMClock Config M
88. Controller Fault Handler 8 Power Up Handler End amp Tasks amp MainTask MainProgram A Program Tags EB MainRoutine Gi Unscheduled Programs Motion Groups Add Rung Ungrouped Axes Edit Rung Add On Instructions Data Types Cg User Defined LLLA Gi Strings 0 Add On Defined 0 Predefined 0 Module Defined Trends 1 0 Configuration 1756 Backplane 1756 44 0 1756463 My Controller B 1 1756 MoDULE 56 GoTo Cti G Add Ladder Element Alt Ins MainRoutine f 4 Rung End ofO ProSoft Technology Inc Page 173 of 199 June 18 2014 MVI56E MCM ControlLogix Platform User Manual Modbus Communication Module 2 Navigate to the folder where you saved MVI56 E MCM Optional AddOn Rung v1 2 L5X and select the file Import Rungs Look in Desktop my Documents Tt My Computer amp 9 My Network Places C3Mvi1S6E MCM B H mvIS6 E MCM_AddOn_Rung_v2_8 L5x MVIS amp E MCM Optional AddOn Rung vl 2 L5X Desktop My Documents File MVIS amp E MCM Optional AddOn Rung v1 2L v Files of type MLF L5 Files containing Into E Mainf Overwrite Selected Rungs 3 In the IMPORT CONFIGURATION window click OK The Add On Instruction is now visible in the ladder logic Observe that the procedure has also imported data types and controller tags associated to
89. Default Location folder The following illustration shows the PCB window with a new project n Untitled ProSoft Configuration Builder army File View Project Tools Help Default Project Status Informat Default Location Default Module Please Select Module Type E Default Module Unknown Product Line Last Change Never Last Download Never lt n LI Module Information Last Change Never Last Download Never Application Rev OS Rev Loader Rev MAC Address ConfigEdit version 4 1 0 Build 4 m Module configuration Module Module Type Module Name Default Module Ready Default Module Your first task is to add the MVIS6E MCM module to the project 1 Use the mouse to select DEFAULT MODULE in the tree view and then click the right mouse button to open a shortcut menu Page 80 of 199 ProSoft Technology Inc June 18 2014 MVI56E MCM ControlLogix Platform Diagnostics and Troubleshooting Modbus Communication Module User Manual 2 On the shortcut menu select CHOOSE MODULE TYPE This action opens the Choose Module Type dialog box Choose Module Type Product Line Filter C PLX4000 PLX6000 MVI46 C MVI56 C MVI71 C PLX5000 C PLX30 C MVI69 MVIS6E C PTQ C MVI69E C MVI69L C All Search Module Type STEP 1 Select Module Type Module Definition 156 101 MVIS6E 61850S MVIS6E
90. E or CHANGE CONTROLLER button This action opens the Change Controller dialog box N Changing the controller type will change delete and or invalidate the controller properties and other project data that is not valid for the new controller type From Type 1756 53 ControlLogix5563 Controller Revision 13 25 r To Type 1756 L63 ControlLogix5563 Controller 4 Revision 13 Cancel 4 Open the TYPE dropdown list and then select your ControlLogix controller 5 Select the correct firmware revision for your controller if necessary 6 Click OK to save your changes and return to the previous window Selecting the Slot Number for the Module The sample application is for a module installed in Slot 1 in a ControlLogix rack The ladder logic uses the slot number to identify the module If you are installing the module in a different slot you must update the ladder logic so that program tags and variables are correct and do not conflict with other modules in the rack To change the slot number 1 In the CONTROLLER ORGANIZATION list select the module 1 1756 MODULE MVI56 and then click the right mouse button to open a shortcut menu 2 Onthe shortcut menu choose PROPERTIES This action opens the MODULE PROPERTIES dialog box W Module Properties Locak1 1756 MODULE 1 1 Lx General Connection Module Info Backplane Type 1756 MODULE Generic 1756 Module Parent Local
91. FaIL Sets the consecutive number of backplane failures that will cause the module to stop communications on the Modbus network Typically used when the module is configured as a Slave ERRSTATPTR Also used mainly when the module is configured as a Slave This parameter places the STATUS data into the database of the module Page 34 of 199 ProSoft Technology Inc June 18 2014 MVI56E MCM ControlLogix Platform Configuration as a Modbus Master Modbus Communication Module User Manual The sample configuration values configure the module database to store WRITEDATA O to 599 in registers to 599 and READDATA O TO 599 in registers 1000 to 1599 as shown in the following illustration MVI56 MCM ControlLogix Internal Reg Processor Address IntAddress MCM WriteData 0 MCM WriteData 1 MCM WriteData 598 Data to write to MCM WriteData 599 600 to 999 not the attached used in sample slave devices MCM ReadData 0 pr gram MCM ReadData 1 MCM ReadData 598 Data read from MCM ReadData 599 the attached 1600 to 4999 slave devices not used in the sample program 2 2 1 Port Configuration The MCM CONFIG PORTX controller tags are used when the module is configured as a Modbus Master device Port 1 and Port 2 each have their own set of parameters to configure MCM CONFIG MCM CONFIG ModDef MCM CONFIG Port2 Note Any changes made within the MCM CONFIG array must be downloaded to the MVI56E
92. IP MVIBBMCMEthernet Config IP 0 MVIBSBMCMEthernet Config IP 1 MVIBBMCMEthernet Config IP 2 MVIBBMCMEthemet Config IP 3 MVIBBMCMEthemet Config Netmask MVIBBMCMEthermet Config Netmask 0 MVIBBMCMEthermet Config Netmask 1 MVIBBMCMEthermet Config Netmask 2 MVIBBMCMEthemet Config Netmask 3 MVIBBMCMEthemet Config Gateway MVIBBMCMEthermet Config G ateway 0 MVIBBMCMEthemet Config G ateway 1 MVIBBMCMEthemet Contig Gateway 2 MVIBEMCMEthemet Config Gateway 3 we OO 105 102 132 255 255 255 192 168 To check the status of the message refer to the WRITEETHERNETMSG tag WiteEthemetMSG WiiteEthemetMSG Flags WriteE themetMSG EW WriteE thernetMSG ER WiiteEthemetMSG DN WiiteEthemetMSG ST WiiteEthemetMSG EN WriteEthemetMSG TO WriteE thernetMSG EN_CC WiiteEthemetMSG ERR WiiteEthemetMSG EXERR WriteE thernetMSG ERR_SRC WriteEthernetMSG DN_LEN WiiteEthemetMSG REG LEN 16 0220 1680000 1680000 0000 0 0 _24 178 of 199 ProSoft Technology Inc June 18 2014 MVI56E MCM ControlLogix Platform Reference Modbus Communication Module User Manual 6 9 6 Reading the Clock Value from the Module Expand the MVIS6MCMCLOCK controller tag and move a value of 1 to MVI56MCMCLOocK READ MVI56MCMClock MVI56MCMClock Read MVIBGMCMClock Write 0 MVIS6MCMClock Config Tessy MYI56MCMClock
93. June 18 2014 Page 39 of 199 Configuration as a Modbus Master MVI56E MCM ControlLogix Platform User Manual Modbus Communication Module Label Description DevAddress Specifies the Modbus Slave address for the registers associated with that command This is the offset address for the Modbus Slave device With Modbus to read an address of 40001 what will actually be transmitted out port is Function Code 03 one byte with an address of 00 00 two bytes This means that to read an address of 40501 use Func 3 with a DevAddress of 500 This applies to Modbus addresses 10001 to 47999 Below is a definition that will help with your DevAddress configuration Function Codes 1 5 or 15 DevAddress Modbus address in device 0001 Example Modbus address 0001 DevAddress 0 Modbus address 1378 DevAddress 1377 Function Code 2 DevAddress Modbus address in device 10001 Example Modbus address 10001 DevAddress 0 Modbus address 10345 DevAddress 344 Function Codes 3 6 or 16 DevAddress Modbus address in device 40001 Example Modbus address 40001 DevAddress 0 Modbus address 40591 DevAddress 590 Function Code 4 DevAddress Modbus address in device 30001 Example Modbus address 30001 DevAddress 0 Modbus address 34290 DevAddress 4289 2 2 3 Other Modbus Addressing Schemes While the above information will handle most devices some device manufacturers show their Modbus addressing diff
94. LIS Prtl Ems Responses 1768 MCM STATUS PrtTEms ErrSent MCM STATUS PrtlEms ErrRec Page 72 of 199 ProSoft Technology Inc June 18 2014 MVI56E MCM ControlLogix Platform Verify Communication Modbus Communication Module User Manual 4 2 If your system is working correctly you will see CMDREQ CMDRESP REQUESTS and RESPONSES all incrementing together If you see that CMDERR is incrementing determine what command is causing the error using the error code defined in the previous Command Error Codes page 69 and correct the issue causing the error Note This information is not as detailed as the individual error codes but they can help to troubleshoot your application Also within the MCM STATUS location is the parameters for Last Error and Previous Error shown below MCM STATUS Portl LastE rr 2 MCM STATUS Portl PreviousEtr 1 This indicates the command index that last generated an error and does not indicate a command currently in error In the above example a value of 2 in PORT1LASTERR indicates that the last error was generated by MCM PORT1MASTERCMD 2 This does not indicate that this command is currently in error The value in MCM STATUS PORT1 PREVIOUSERR indicates that before MASTERCMD 2 generated an error MCM PORT1 MASTERCMD 1 posted an error Verify Slave Communications For verifying the communications to the module as a Slave you can monitor the STATUS tags under the PRTXERRS section Below is an
95. MCM DATA ReadData 504 MCM CONFIG Port1MasterCmd 98 MCM DATA ReadData 598 MCM CONFIG Port1MasterCmd 99 MCM DATA ReadData 599 To know where to look for the error data you need to know what the individual error codes are The following tables describe the possible error codes for the module Standard Modbus Protocol Errors Code Description Illegal Function Illegal Data Address Illegal Data Value Failure in Associated Device Acknowledge 6 Busy Rejected Message The Standard Modbus Protocol Errors are error codes returned by the device itself This means that the Slave device understood the command but replied with an Exception Response which indicates that the command could not be executed These responses typically do not indicate a problem with port settings or wiring The most common values are Error Code 2 and Error Code 3 Page 70 of 199 ProSoft Technology Inc June 18 2014 MVI56E MCM ControlLogix Platform Verify Communication Modbus Communication Module User Manual Error Code 2 means that the module is trying to read an address in the device that the Slave does not recognize as a valid address This is typically caused by the Slave device skipping some registers If you have a Slave device that has address 40001 to 40005 and 40007 to 40010 you cannot issue a read command for addresses 40001 to 40010 function code 3 DevAddress 0 Count 10 because addr
96. MCM module by setting the WARMBOOT or COLDBOOT bit or cycling power to the module Any parameters not mentioned in this section are not used when the module is configured as a Modbus Master Verify that you are in MONITOR TAGS mode Then use the scroll bar at the bottom of the window to view a description of each parameter The following table uses that information ProSoft Technology Inc Page 35 of 199 June 18 2014 Configuration as a Modbus Master User Manual MVI56E MCM ControlLogix Platform Modbus Communication Module Parameter Description Enabled 1 ENABLE PORT 0 DISABLE PORT Type 0 1 SLAVE 2 SLAVE WITH UNFORMATTED PASS THROUGH 3 SLAVE FORMATTED PASS THROUGH WITH DATA SWAPPING 4 SLAVE FORMATTED PASS THROUGH WITH NO DATA SWAPPING Protocol 0 1 MopBus ASCII Baudrate Sets the baud rate for the port Valid values for this field are 110 150 300 600 1200 2400 4800 9600 19200 384 or 3840 for 38 400 baud 576 or 5760 for 57 600 baud and 115 1152 or 11520 for 115 200 baud Parity 0 None 1 Odd 2 Even DataBits Modbus RTU mode 8 Modbus ASCII mode 8 or 7 StopBits Valid values are 1 or 2 RTS On 0 to 65535 milliseconds to delay after RTS line is asserted on the port before data message transmission begins This delay can be used to allow for radio keying or modem dialing before data transmission begin
97. Port MasterCmd 5 Func 15 MCM CONFIG Port MasterCmd 5 DevAddress Label Description Enable 2 The module will send the command to the Slave device only when the data associated within the IntAddress of the MVIS6E MCM module memory has changed IntAddress 320 Writes the data in bit 320 of the module memory to the Slave device Based on the MCM CONFIG MopbDEF setting this would be the data MCM DATA WRiTEDATA 20 0 to 20 15 in the ladder logic Count 16 Writes 16 consecutive bits to the Slave device Node 1 Issues the Modbus command to node 1 on the network Func 15 Issues Modbus Function Code 15 to write multiple coils DevAddress 0 Function Code 15 DevAddress of 0 will read address 0001 Along with a count of 16 this command writes to 0001 to 0016 2 3 7 Preset Write Single Register 4x Modbus Function Code 6 Used to write to Modbus Holding Registers 4xxxx this function code will write a single register to the Slave device The Enable code can be set to a value of 1 for a continuous write or a value of 2 to write the data to the Slave device only when the data associated with the IntAddress field has changed Below is a sample command to write Modbus addresses 41041 of node 1 on the Modbus network MCM CONFIG Port MasterCmd 5 Enable 1 MCM CONFIG Portl MasterCmd 6 IntAddress 5 MCM CONFIG Port 6 0 MCM CONFIG Portl MasterCmd 6 Count 1
98. Port 2 Commands 2600 15270 to 15359 55271 55350 Misc Status Data 80 ProSoft Technology Inc Page 143 of 199 June 18 2014 MVI56E MCM ControlLogix Platform User Manual Modbus Communication Module Register Range ModbusLow Modbus High Content Size 15350 to 15359 55351 55360 Port 1 Aux Setup 10 15360 to 15369 55361 55370 Port 2 Aux Setup 10 15400 55401 Command Control 1 The User Data area holds data collected from other nodes on the network Master read commands or data received from the processor write blocks Additionally this data area is used as a data source for the processor read blocks or other nodes on the network write commands Detailed definition of the miscellaneous status data area can be found in MVI56E MCM Status Data Definition page 152 Definition of the configuration data areas can be found in the data definition section of this document and in MVIS56E MCM Configuration Data page 144 Command Control page 152 shows the Database register definition in a table for the Command Control block 6 5 MVI56E MCM Configuration Data This section contains listings of the 156 module s database related to the module s configuration This data is available to any node on the network and is read from the ControlLogix processor when the module first initializes 6 5 1 Backplane Setup Register Content Description 10 000 Write Start Reg This param
99. ProSoft T1TECHNWNOEOGTY Where Automation Connects MVI56E MCM ControlLogix Platform Modbus Communication Module J June 17 2014 USER MANUAL Your Feedback Please We always want you to feel that you made the right decision to use our products If you have suggestions comments compliments or complaints about our products documentation or support please write or call us ProSoft Technology 5201 Truxtun Ave 3rd Floor Bakersfield CA 93309 1 661 716 5100 1 661 716 5101 Fax www prosoft technology com support prosoft technology com 2014 ProSoft Technology Inc All rights reserved MVI56E MCM User Manual June 17 2014 ProSoft Technology is a registered copyright of ProSoft Technology Inc All other brand or product names are or may be trademarks of and are used to identify products and services of their respective owners In an effort to conserve paper ProSoft Technology no longer includes printed manuals with our product shipments User Manuals Datasheets Sample Ladder Files and Configuration Files are provided on the enclosed DVD and are available at no charge from our web site http www prosoft technology com Content Disclaimer This documentation is not intended as a substitute for and is not to be used for determining suitability or reliability of these products for specific user applications It is the duty of any such user or integrator to perfor
100. Problem Description Steps to take Processor Fault Verify the module is securely plugged into the slot that has been configured for the module in the I O Configuration of RSLogix Verify the slot location in the rack has been configured correctly in the ladder logic Processor I O LED This indicates a problem with backplane communications A problem could flashes exist between the processor and any installed I O module not just the MVI56E DNPNET Verify all modules in the rack are configured correctly Module Errors Problem Description Steps to take Module Scrolling LED This indicates that backplane transfer operations are failing Connect to display lt Backplane the module s Configuration Debug port to check this Status gt condition To establish backplane communications verify the following items reads ERR processor is in RUN or REM RUN mode The backplane driver is loaded in the module module is configured for read and write data block transfer The ladder logic handles all read and write block situations module is properly configured in the processor I O configuration and ladder logic OK LED remains RED The program has halted or a critical error has occurred Connect to the communication port to see if the module is running If the program has halted turn off power to the rack remove the card from the rack and re insert the card in the rack and then restore power to th
101. R TAGS dialog box in each instance of RSLogix 5000 click the EDIT TAGS tab located at the bottom of the dialog box 4 Inthe Sample Program select the line containing the tag structure Controller Tags MVIS6MCM controller Scope fJ MvIBEMCM Show Show Alias For Base Tag Data 4B 1756_MODULE C 0 AB 1756 MODULE INT Description Local 1 1 Local1 0 A Edit Tags Rip 7 Monitor Tags 5 Drag the tag structure to the blank line at the bottom of the list in the EDIT TAGS tab in your existing program Editing the Controller Tags MVI56E MCM module configuration is stored in the MCM CONFIG structure in the CONTROLLER TAGS dialog box The sample program configures the module as a Modbus Master on Port 1 and a Modbus Slave on Port 2 To edit the module configuration in the Controller Organization pane expand the CONTROLLER folder and then double click CONTROLLER TAGS This action opens CONTROLLER TAGS MVI56MCM as shown in the following illustration Scope fj MVI56MCM Show 1 3 Controller 156 A Controller Tags E3 Controller Fault Handler H 8 H Local 1 C Power Up Handler _ Tasks FF Locali l 22 68 MainTask 1 1 0 C MainProgram MCM E MCM CONFIG _ E MCM CONFIG ModDef E MCM CONFIG ModDef Wiite MCM CONFIG M
102. ReadData 50 ProSoft Technology Inc June 18 2014 Page 61 of 199 Configuration as a Modbus Slave MVI56E MCM ControlLogix Platform User Manual Modbus Communication Module MVI Address 1 4 Tag Address 1100 1601 to 1616 40091 ReadData 100 1200 3201 to 3216 40191 ReadData 200 1500 8001 to 8016 40491 ReadData 500 1598 9569 to 9584 40589 ReadData 598 1599 9585 to 9600 40590 ReadData 599 With the offset parameters listed above the Modbus Master could read from coils 10001 to 10176 using the tags MCM DATA WRITEDATA 0 TO 9 The Master could also read from address 30001 to 30490 and the data contained in those Modbus addresses would come from the tags MCM DATA WRITEDATA 10 TO 499 within the ControlLogix program The Master could then write to coils addressing 0001 to 0160 and this data would reside within the ControlLogix program in tags MCM DATA READDATA O 9 The Master could then write to registers using Modbus addresses 40001 to 40590 and this information would reside in addresses MCM DATA READDATA 10 TO 599 Note The offset parameter only sets the starting location for the data As shown above if the Master issues a Write command to address 40001 the data will go into the ControlLogix processor at address MCM DATA READDATA 10 Likewise a Write To bit address 0161 will also change to address MCM DATA READDATA 10 0 within the program Be care
103. Response from Module to Processor Word Offset Description Length 0 Reserved 1 1 6000 to 6012 and 6100 to 6112 1 2to9 Command Definition 8 10 to 17 Command Definition 8 18 to 25 Command Definition 8 26 to 33 Command Definition 8 34 to 41 Command Definition 8 42 to 49 Command Definition 8 ProSoft Technology Inc Page 133 of 199 June 18 2014 User Manual MVI56E MCM ControlLogix Platform Modbus Communication Module Word Offset Description Length 50 to 57 Command Definition 8 58 to 65 Command Definition 8 66 to 73 Command Definition 8 74 to 81 Command Definition 8 82 to 89 Command Definition 8 90 to 97 Command Definition 8 98 to 105 Command Definition 8 106 to 113 Command Definition 8 114 to 121 Command Definition 8 122 to 129 Command Definition 8 130 to 137 Command Definition 8 138 to 145 Command Definition 8 146 to 153 Command Definition 8 154 to 161 Command Definition 8 162 to 169 Command Definition 8 170 to 177 Command Definition 8 178 to 185 Command Definition 8 186 to 193 Command Definition 8 194 to 201 Command Definition 8 202 to 248 Spare 47 249 6000 to 6012 and 6100 to 6112 1 Each of these blocks must be handled by the ladder logic for proper module operation 6 2 5 Data Flow Between MVI56E MCM Module and ControlLogix Processor The following topics describe the flow of data betwee
104. Source Local 1 Data 2 Dest MCM DATA ReadData MCM CONTROL Backplane LastRead Length 200 Tod c m 3 Verify the change to this rung Toggle the Ei object within RSLogix 5000 4 Save and download ladder to the processor 5 When Online with the ControlLogix processor toggle the MCM CONTROL WARMBOOT bit to download the changes to the processor Downloading the Sample Program to the Processor Note The key switch on the front of the ControlLogix module must be in the REM position 1 If you are not already online to the processor open the COMMUNICATIONS menu and then choose DOWNLOAD RSLogix will establish communication with the processor 2 When communication is established RSLogix will open a confirmation dialog box Click the DOWNLOAD button to transfer the sample program to the processor Download Lx Download to the controller Name Controller Type 1755 L63 17 6 M13 4 ControlLogix5563 Controller Path AB_ lt DriverName gt Security None A The controller is in Remote Run mode The mode will be changed to Remote Program prior to download Cancel Help ProSoft Technology Inc Page 185 of 199 June 18 2014 MVI56E MCM ControlLogix Platform User Manual Modbus Communication Module 3 RSLogix will compile the program and transfer it to the processor This process may take a few minutes 4 When the download is complete RSLogix will ope
105. Status Data Definition page 152 5 8 1 Viewing the Error Status Table Command execution status and error codes for each individual command are stored in a Master Command Status Error List held in the module s internal memory There are several ways to view this data View Command Status Slave Status and Port Status in the Monitoring Modbus Port Information page 105 Configure the Command Error Pointer parameter lt CmdErrPtr gt to copy the status error values into the User Database area of module memory this table to a section of the ReadData area where you can view it in the READDATAARRAY tag array in the ControlLogix controller tag database You can use these values for communications status monitoring and alarming lt CMDERRPTR gt MCM CONFIG PORTX CMDERRPTR lt READDATAARRAY gt MCM DATA READDATA X These variables would hold the literal tag names in the sample program or Add On Instruction Use these variables to accommodate future ladder or tag changes while maintaining backward compatibility 5 9 Configuration Error Codes During module configuration download the OK and APP LEDs will cycle through various states If the OK LED remains RED and the APP LED remains OFF or RED for a long period of time look at the configuration error words in the configuration request block The structure of the block is shown in the following table Offset Description Length 0 R
106. The Slave address is represented in the block number in the range of 0 to 255 The sum of these two values determines the block number The other parameters passed with the block are used to construct the command The Internal DB Address parameter specifies the module s database location to associate with the command Point Count parameter defines the number of points or registers for the command The Swap Code is used with Modbus function requests to change the word or byte order Modbus Function Code has one of the following values 1 2 3 4 5 6 15 or 16 Device Database Address is the Modbus register or point in the remote Slave device to be associated with the command Page 122 of 199 ProSoft Technology Inc June 18 2014 MVI56E MCM ControlLogix Platform Reference Modbus Communication Module User Manual When the command receives the block it will process it and place it in the command queue The module will respond to each command block with a read block The following table describes the format of this block Block Response from Module to Processor Word Offset Description Length 0 Reserved 1 1 Write Block ID 1 2 0 Fail 1 Success 1 3 to 248 Spare 246 249 1000 to 1255 or 2000 to 2255 1 Word two of the block can be used by the ladder logic to determine if the command was added to the command queue of the module The command will only fail if the comma
107. Untitled ProSoft Configuration Builder File View Project Tools Help Default Project Default Location MVIS6E MCM 2 Comment iE Ethernet Confiquration Copy 5 On the shortcut menu select CONFIGURE This opens the EDIT WATTCP dialog box Edit WATTCP my_ip 192 168 0 250 netmask 255 255 255 0 gateway 192 168 0 1 Comment Definition Default private class 3 address Reset Tag Reset All 6 Use this dialog box to enter the 56 module s permanent IP Address MY_IP subnet mask NETMASK and default gateway GATEWAY 7 Click OK to save the updated Ethernet configuration in the project Page 82 of 199 ProSoft Technology Inc June 18 2014 MVI56E MCM ControlLogix Platform Diagnostics and Troubleshooting Modbus Communication Module User Manual 5 5 Connecting Your PC to the Module 5 5 1 Download the IP Address through ClPconnect You can use ClPconnect to connect a PC to the ProSoft Technology MVI56E MCM module over Ethernet using Rockwell Automation s 1756 ENBT EtherNet IP module This allows you to configure the MVIS6E MCM network settings and view module diagnostics from a PC RSLinx is not required when you use ClPconnect All you need are The IP addresses slot numbers of any 1756 ENBT modules in the path slot number of the MVI56E MCM in the destination ControlLogix chassis the last ENBTx and cha
108. Use CTS Line set to Y then a jumper is required between the RTS and the CTS lines on the port connection ProSoft Technology Inc Page 141 of 199 June 18 2014 Reference MVI56E MCM ControlLogix Platform User Manual Modbus Communication Module RS 232 Application Port Cable No Handshaking DB 9 Male RS 232 Device mw s L wo mo 2 tro RTS RTS CTS jumper must be installed if CTS line CTS monitoring enabled Signal Signal Common Common 6 3 5 RS 422 The RS 422 interface requires a single four or five wire cable The Common connection is optional depending on the RS 422 network devices used The cable required for this interface is shown below RS 422 Application Port Cable DB 9 Male RS 422 Device TxD ro TxD s H ro Signal Signal Common Common RxD TxD RxD tw 6 3 6 RS 485 Application Port s The RS 485 interface requires a single two or three wire cable The Common connection is optional depending on the RS 485 network devices used The cable required for this interface is shown below RS 485 Application Port Cable DB 9 Male RS 485 Device TxD RxD TxD RxD TxD RxD TxD RxD Signal 5 Signal Common Common Page 142 of 199 ProSoft Technology Inc June 18 2014 MVI56E MCM ControlLogix Platform Reference Modbus Communication Module User Manual Note Terminating resistors are generally not required on the RS 485 network
109. VIS6MCMClock Config Year 2008 MVIBBMCMClock Config Month 11 MVIBBMCMClock Config D ay 12 MVIBBMCMClock Config Hour 15 MVIS6MCMClock Config Minute 38 MVIBBMCMClock Config Seconds 9 The bit will be automatically reset to 0 MVIBBMCMClock MVI5BMCMClock Read 0 MVIS6MCMClock Write 0 MYI5S6MCMClock Config MYVI56MCMClock Config Year 2008 MYVI56MCMClock Config Month 11 MVIBBMCMClock Config D ay 12 MVIBBMCMClock Config Hour 15 MVIBBMCMClock Config Minute 38 MVIBBMCMClock Config Seconds 9 To check the status of the message refer to the WRITECLOCKMSG tag WriteClockMSG fissi WiiteClockMSG Flags 1640220 WriteClockMSG EW 0 WriteClockMSG ER 0 WriteClockMSG DN 1 WriteClockMSG ST 0 WriteClockMSG EN 0 WriteClockMSG TO 0 WriteClockMSG EN_CC 1 WriteClockMSG ERR 16 0000 WiiteClockMSG EXERR 16 0000_0000 WriteClockMSG ERR_SRC 0 WriteClockMSG DN_LEN 0 WiriteClockMSG REG LEN 24 6 10 Using the Sample Program RSLogix 5000 Version 15 and earlier The sample program included with your 156 module contains predefined controller tags configuration information data types and ladder logic that allow the module to communicate between the ControlLogix processor and a network of Modbus devices For most applications the sample program will work without modification Page 180 of 199 ProSoft Technology Inc June 18 2014 MVI56E MCM ControlLogix Platfo
110. _WriteControl 191 0 00 Return Query Data 167 A About the Modbus Protocol 118 About the Optional Add On Instruction 16 Adding Multiple Modules Optional 22 Adjust the Input and Output Array Sizes 185 Adjust the Input and Output Array Sizes Optional 27 57 Assigning Temporary IP Address 83 94 Assigning an IP Address in the Project 81 96 B Backplane Configuration 36 103 Backplane Data Transfer 118 Backplane Setup 144 Backplane Status 103 Battery Life Advisory 4 Before You Begin 20 172 Before You Import the Add On Instruction 11 15 C Cable Connections 138 Choosing the Controller Type 183 Clearing a Fault Condition 77 CmdControl 158 159 CoilArray 160 Cold Boot Block 9999 132 Command Control 53 144 152 Command Control and Event Command 52 Command Control Blocks 5001 to 5006 or 5101 to 5106 125 Command Error Codes 69 72 73 106 Command List Entry Errors 72 Commands Supported by the Module 160 Configuration as a Modbus Master 33 193 Configuration as a Modbus Slave 57 193 Configuration Data Transfer 126 Configuration Error Codes 111 Configuring the Data Analyzer 107 Configuring the RSLinx Driver for the PC COM Port 31 Connect to the Module s Web Page 16 113 Connecting Your PC to the ControlLogix Processor 28 Connecting Your PC to the Module 83 98 Connecting Your PC to the Module s Ethernet
111. address function code starting address and number of registers to be loaded Adr Func Hi Addr Lo Addr Quantity Error Check Field 11 10 00 87 00 02 56 6 8 11 Modbus Exception Responses When a Modbus Master sends a request to a Slave device it expects a normal response One of four possible events can occur from the Master s query If the server device receives the request without a communication error and can handle the query normally it returns a normal response If the server does not receive the request due to a communication error no response is returned The Master program will eventually process a timeout condition for the request If the server receives the request but detects a communication error parity LRC CRC no response is returned The Master program will eventually process a timeout condition for the request If the server receives the request without a communication error but cannot handle it for example if the request is to read a non existent output or register the server will return an exception response informing the Master of the nature of the error The exception response message has two fields that differentiate it from a normal response Page 170 of 199 ProSoft Technology Inc June 18 2014 MVI56E MCM ControlLogix Platform Reference Modbus Communication Module User Manual Function Code Field In a normal response the server echoes the function code of the origin
112. al DB offset to bit input data Slave WordlnOffset INT Internal DB offset to word input data Slave OutOffset INT Internal DB offset to bit output data Slave HoldOffset INT Internal DB offset to holding register data Slave CmdCount INT Command list count Master MinCmdDelay INT 0 65535 mSec minimum time between each command Master CmdErrPtr INT Internal DB location to place command error list Master RespTO INT 0 65535 mSec response timeout for command Master RetryCount INT Retry count for failed request Master ErrorDelayCntr INT 0 65535 Command cycle count if error Master Reserved INT Reserved Previously was UseGuardBand parameter InterCharacterDelay INT 0 65535 mSec time between characters to signal end of message Fcn990ffset INT Internal DB offset to function 99 counter MCMCmd This object contains the attributes to define a Master command An array of these objects is used for each port Name Data Type Description Enable INT 0 Disable 1 Continuous 2 Event Command IntAddress INT Module s internal address associated with the command Pollint INT Minimum number of seconds between issuance of command 0 65535 Sec Count INT Number of registers associated with the command Swap INT Swap code used with command Node INT Node address of the target device on the network Func INT Function code for the command DevAddress INT Address in device associated with the command Hexadec
113. al request in the function code field of the response All function codes have a most significant bit MSB of 0 their values are all below 80 hexadecimal In an exception response the server sets the MSB of the function code to 1 This makes the function code value in an exception response exactly 80 hexadecimal higher than the value would be for a normal response With the function code s MSB set the Master s application program can recognize the exception response and can examine the data field for the exception code Data Field In a normal response the server may return data or statistics in the data field any information that was requested in the request In an exception response the server returns an exception code in the data field This defines the server condition that caused the exception The following table shows an example of a Master request and server exception response Request Response Field Name Hex Field Name Hex Function 01 Function 81 Starting Address Hi 04 Exception Code 02 Starting Address Lo A1 Quantity of Outputs Hi 00 Quantity of Outputs Lo 01 In this example the Master addresses a request to server device The function code 01 is for a Read Output Status operation It requests the status of the output at address 1245 04A1 hex Note that only that one output is to be read as specified by the number of outputs field 0001 If the output address is non existent in the se
114. ation will be suspended on the port for Error Delay Counter scans ProSoft Technology Inc June 18 2014 Page 149 of 199 Reference MVIS6E MCM ControlLogix Platform User Manual Modbus Communication Module Register Content Description 10 064 Error Delay Counter This parameter specifies the number of poll attempts to be skipped before trying to re establish communications with a slave that has failed to respond to a command within the time limit set by the Response Timeout parameter After the slave fails to respond the master will skip sending commands that should have been sent to the slave until the number of skipped commands matches the value entered in this parameter This creates a sort of slow poll mode for slaves that are experiencing communication problems 10 065 to 10 069 Spare 6 5 4 Port 1 Commands Register Content Description 10 070 to 10 077 Command 1 This set of registers contains the parameters for the first command in the Master command list Refer to Master Command Configuration page 37 10 078 to 10 085 Command Z2 Command Z2 data set 12 662 to 12 669 Command 325 Command 325 data set Note To use up to 325 commands your MVI56E MCM module needs to have firmware version 3 01 or higher and your MVIBGE MCM Add On Instruction needs to be version 2 8 or higher Earlier versions support up to 100 commands 6 5 5 Port 2 Commands Register Content
115. atus of the module Page 58 of 199 ProSoft Technology Inc June 18 2014 MVI56E MCM ControlLogix Platform Modbus Communication Module Configuration as a Modbus Slave User Manual With the sample configuration the following is the layout of the tags and addressing ControlLogix Processor MCM WriteData 0 MCM WriteData 1 MCM WriteData 598 MCM WriteData 599 MCM ReadData 0 MCM ReadData 1 MCM ReadData 598 MCM ReadData 599 MVI56 MCM Internal Reg Address IntAddress 600 to 999 not used in sample program 1600 to 4999 not used in the sample program Data to be read by the attached master device from the CLX processor Data to be written from the attached master device to the CLX processor The sample configuration values configure the module database for WRITEDATA O TO 599 to be stored in the module memory at register 0 to 599 and READDATA O TO 599 to be stored in the module memory at registers 1000 to 1599 as shown above 3 2 1 Modbus Memory Map Based on the configuration described above below is the default Modbus address for the module Each register within the module can be accessed as a Oxxx bit address 1xxxx bit address 3xxxx register address or 4xxxx register address MVI Address 1 4 Tag Address 0 0001 to 0016 10001 to 10016 30001 40001 WriteData 0 1 0017 to 0032 10017 to 1003
116. bus addresses 41051 to 41060 of node 1 on the Modbus network MCM CONFIG Port MasterCmd 7 Enable MCM CONFIG Port MasterCmd Int amp ddress 30 MCM CONFIG Port MasterCma Polllnt 0 MasterCmd 7 Count 10 MCM CONFIG Porti MasterCmd 7 Swap 0 MCM CONFIG Portl MasterCmd Node 1 MCM CONFIG Portl MasterCmd Func 16 MCM CONFIG Porti MasterCmd DevAddress 1050 Label Description Enable 2 The module will send the command only when the data associated with the IntAddress of the module has changed IntAddress 30 Writes the data from Internal Address 30 of the module memory to the Slave device Based on the MCM CONFIG MobDEF configuration this will write the data from MCM DATA WRITEDATA 30 To 39 to the Slave device Count 10 Writes 10 consecutive registers to the Slave device Node 1 Issues the Modbus command to node 1 on the network Func 16 Issues Modbus Function Code 16 to write Holding Registers DevAddress 1050 Function Code 16 DevAddress of 1050 will write address 41051 Along with a count of 10 this command writes 41051 to 41060 of the Slave device Floating Point Data Handling Modbus Master In many applications it is necessary to read or write floating point data to the Slave device The sample program only provides an INT array for the ReadData and Write Data array 16 bit signed integer value In order to read write floating
117. c June 18 2014 MVI56E MCM ControlLogix Platform Reference Modbus Communication Module User Manual Error Code Description 0 No error transfer successful 1 Error transferring general configuration information 2 Error transferring Modbus Port 1 Master command list 3 Error transferring Modbus Port 2 Master command list Ladder logic must handle the 9997 command No ladder logic is required for the warm or cold boot commands Write Configuration Block 9000 and 6000 to 6003 or 6100 to 6103 This special function is used to update the processor s module configuration information when the module s configuration has been altered by a remote Master The remote Master writes a block code 9997 to module register 15400 Modbus Address 55401 causing the module to write its current configuration to the processor Ladder logic must handle the receipt of these blocks The first write block from the module contains a value of 9000 in the first word Block Response from Module to Processor Word Offset Description Length 0 Reserved 1 1 9000 1 2to7 Backplane Setup 6 8 to 32 Port 1 Configuration 25 33 to 57 Port 2 Configuration 25 58 to 60 Port 1 Configuration continued 3 61 to 63 Port 2 Configuration continued 3 64 to 248 Spare 185 249 9000 1 Blocks 6000 to 6012 and 6100 to 6112 contain the Master Command List Data for ports 1 and 2 respectively Block
118. ceeded by transient disturbances of more than 4096 This device must be used only with ATEX certified backplanes D Before operating the reset switch be sure the area is known to be non hazardous Agency Approvals and Certifications Agency RoHS ATEX CSA CE CSA CB Safety cULus GOST R Lloyds 56 CE O SO Ex 3G nA T4 Gc 0 lt lt 60 25 lt lt 70 C XT models only I Equipment intended for above ground use not for use in mines 3 Category 3 equipment investigated for normal operation only G Equipment protected against explosive gasses lt cULus gt E183151 Class I DIV 2 groups A B C D T5 for all models 0 C to 60 C 25 C to 70 C XT models only Battery Life Advisory Note Modules manufactured after April 1st 2011 do not contain a battery For modules manufactured before that date the following applies The module uses a rechargeable Lithium Vanadium Pentoxide battery to back up the real time clock and CMOS settings The battery itself should last for the life of the module However if left in an unpowered state for 14 to 21 days the battery may become fully discharged and require recharging by being placed in a powered up ControlLogix chassis The time required to fully recharge the battery may be as long as 24 hours Once it is fully charged the battery provides backup power for the CMOS setup and the real time clock for approximately
119. configuration settings including Read Start Read Count Write Start Write Count Error Status Pointer The settings on this menu correspond with the MCM CONFIG MODDEF controller tags in the ModDef Settings page 58 Backplane Status Use the Status menu to view current backplane status including ProSoft Technology Inc Page 103 of 199 June 18 2014 Diagnostics User Manual nd Troubleshooting MVI56E MCM ControlLogix Platform Modbus Communication Module Number of retries Backplane status Fail count Number of words read Number of words written Number of words parsed Error count Event count Command count During normal operation the read write and parsing values should increment continuously while the error value should not increment The status values on this menu correspond with members of the 156 Status Data Definition page 152 5 7 3 Monitoring Database Information Use the Database menu to view the contents of the MVIS6E MCM module s internal database The data locations on this menu corresponds with the MVI56E MCM Database Definition page 143 You can view data in the following formats ASCII DATABASE DISPLAY 0 to hm Q o eem RHO RHO Decimal STIAS ncOUodgdogouodo DATABASE DISPLAY 0 to 99 DECIMAL 29404 0 8225 10281 16449 18505 24673 26729 32639 30583 1 2057 8225 10281 16449 18505 24673 26729 32639 32125 31611 31097 30583
120. connect 192 168 0 100 1 5 2 CIP Path Edit Test Connection Cancel 5 If the Test Connection is successful click CONNECT to display the Diagnostics menu in the Diagnostics Window f Diagnostics Connection Log Module daly MVI5GE MCM Time 16 30 07 5 28 BACKPLANE Select item within MvIS56E MCM for diagnostic information i Contig Status 5 48 DATABASE ASCII i Decimal Float Hex E a GENERAL i Version lg MODBUS PORT 1 i Config i Master Command List f Master Command Status i Slave Status List i Status Eaa MODBUS PORT 2 Contig Master Command List i Master Command Status i Slave Status List Status Path Ethernet 105 102 0 106 ProSoft Technology Inc Page 101 of 199 June 18 2014 Diagnostics and Troubleshooting MVI56E MCM ControlLogix Platform User Manual Modbus Communication Module If PCB is unable to connect to the module 1 Click the BROWSE DEVICE S button to open the ProSoft Discovery Service Select the module then right click and choose SELECT FOR PCB Discovery Service Assign Temporary IP Device Details Remove Temporary IP View modules webpage Select For PCB Click the search icon to begin the browse 2 Close ProSoft Discovery Service and click the CONNECT button again 3 If these troubleshooting steps fail verify that the Ethernet cable is connected properly between your computer and the module either through
121. contains the following tasks MainRoutine The MAINROUTINE checks for the presence of new read data from the module for the processor The module cycles through its list of read blocks to transfer data from the module to the processor Whenever new data is available the module will set the value for the block in the module s input image LOCAL 1 I DATA 249 The ladder logic must constantly scan this input word for a new value The ladder logic should only perform the READDATA and WRITEDATA tasks in that order when a new value is present in LOCAL 1 I DATA 249 otherwise data may be lost or scrambled If the new data is available the LASTREAD and word 249 will not be equal This will force the program to call the READDATA subroutine to process the new data received After the new data is placed in the Modbus Data Table the program will send new data to the module using the WRITEDATA subroutine ProSoft Technology Inc Page 189 of 199 June 18 2014 MVI56E MCM ControlLogix Platform User Manual Modbus Communication Module ReadData The READDATA task handles all new data and status information received from the module and placing it in the proper location in the processor Data is transferred from the module to the processor using the module s input image LOCAL 1 I DATA This task should set the last read block number MCM1 BP LastRead to the current block number sent from the module LoCAL 1 I DATA 2
122. control point and never send the clear state The SCADA system expects the local logic to reset the control bit Pass through must be used to simulate this mode The following illustration shows the data flow for a Slave Port with pass through enabled Processor Memory _ Backplane Interface MCM Module Control ogix Controller Tags Pei Register Data storage Status rom Module Status Master Driver In the Master mode the MVI56E MCM module issues read or write commands to Slave devices on the Modbus network These commands are user configured in the module via the Master Command List received from the ControlLogix processor or issued directly from the ControlLogix processor event command control Command status is returned to the processor for each individual command in the command list status block The location of this status block in the module s internal database is user defined Page 136 of 199 ProSoft Technology Inc June 18 2014 MVI56E MCM ControlLogix Platform Reference Modbus Communication Module User Manual The following illustration describes the flow of data to and from the module 4 5 Driver 9999 Status from Module 1 onfigura Data Event Cmd Data Command Control The Master driver obtains configuration data from the ControlLogix processor The configuration data obtained includes the number of commands and the Master
123. d write this information to the Slave device node 1 addresses 40261 to 40274 2 4 4 Head Floats with Single Modbus Register Address Enron Daniel Float Some Modbus Slave devices use a single Modbus address to store 32 bits of data This type of data is typically referred to as Enron or Daniel Floating Point A device that uses this addressing method may have the following Modbus Memory Map Address Data Type Parameter 47001 32 bit REAL Demand 47002 32 bit REAL Reactive Power 47003 32 bit REAL Apparent Power 47004 32 bit REAL Power Factor 47005 32 bit REAL Voltage Line to Line 47006 32 bit REAL Voltage Line to Neutral 47007 32 bit REAL Current This type of device uses one Modbus address per floating point register To read these values from the Slave device configure the following command within the module MCM CONFIG Portl MasterCmd O Ese MCM CONFIG Porti MasterCmd 0 Enable 1 MCM CONFIG Port MasterCmd 0 Int amp ddress 1000 MCM CONFIG Port MasterCmd 0 Pollint MCM CONTFIG Portl MasterCmd 0 Count MCM CONFIG Portl MasterCmd 0 Swap MCM CONFIG Port MasterCmd 0 1 MCM CONFIG Port MasterCmd 0 Func 3 MCM CONFIG Porti MasterCmd 0 DevAddress 0 Notice that the count is now set to a value of 7 Because the Slave device utilizes only 7 Modbus addresses a count of 7 will cause the Slave to respond with 14 registers 28 bytes of information Important This co
124. dEthemetMSG ER 0 ReadEthemelMSG DN 1 ReadEthemetMSG ST 0 ReadEthemetMSG EN 0 ReadEthemetMSG TO 0 ReadEthemetMSG EN_CC 1 ReadEthemetMSG ERR 1680000 ReadEthemetMSG EXERR 16 0000_0000 ReadEthemetMSG ERR_SAC 0 ReadEthemnetMSG DN LEN 24 6 9 5 Writing the Ethernet Settings to the Module Expand the MVIS6MCMETHERNET controller tag Set the new Ethernet configuration in MVIS6MCMETHERNET CONFIG ProSoft Technology Inc Page 177 of 199 June 18 2014 User Manual MVI56E MCM ControlLogix Platform Modbus Communication Module Move a value of 1 to MVIBGMCMETHERNET WRITE MVIBBMCMEthemet MVISBMCMEthemet Read MVISBMCMEthemet Write MVIBBMCMEthernet Config MVIBBMCMEthemet Config IP MVIBSBMCMEthernet Config IP Q MVIBBMCMEtheret Config IP 1 MVIBBMCMEthemet Config IP 2 MVIBBMCMEthernet Config IP 3 MVIBBMCMEthemet Config Netmask MVIBBMCMEthernet Config Netmask 0 MVIBBMCMEthemet Config Netmask 1 MVIBBMCMEthermet Config Netmask 2 MVIBBMCMEtheret Config Netmask 3 MVIBBMCMEthemet Config Gateway MVIBBMCMEthermet Config G ateway 0 MVIBBMCMEthemet Config G ateway 1 MVIBBMCMEthemet Config G ateway 2 MVIBEMCMEthemet Config Gateway 3 After the message is executed the MVIB6MCMETHERNET WhITE bit resets to 0 MVIBBMCMEthernet MVI56MCME thernet Read MVI5S6MCMEthernet Write MVI56MCME themet Config MVIBBMCMEthemet Config
125. de 1 42 Read Floating Point Data 47 Read Floats with Single Modbus Register Address Enron Daniel Float 50 Read Holding Registers Function Code 03 163 Read Holding Registers 4x Modbus Function Code 3 41 Read Input Registers Function Code 04 164 Read Input Registers 3x Modbus Function Code 4 42 Read Input Status Function Code 02 162 Read Input Status 1x Modbus Function Code 2 43 Read Multiple Floating Point Registers 48 50 ReadData 190 Reading Status Data from the Module 111 Reading the Clock Value from the Module 179 Reading the Ethernet Settings from the Module 176 Reference 115 RS 232 Modem Connection Hardware Handshaking Required 140 Null Modem Connection Hardware Handshaking 141 198 199 ProSoft Technology Inc June 18 2014 MVI56E MCM ControlLogix Platform Support Service amp Warranty Modbus Communication Module User Manual Null Modem Connection No Hardware Write Configuration Block 9000 and 6000 to 6003 or Handshaking 141 6100 to 6103 133 RS 232 Application Port s 140 Write Floats to Slave Device 49 RS 422 142 Write to Enron Daniel Floats 51 RS 485 and RS 422 Tip 143 WriteData 190 RS 485 Application Port s 142 Writing the Clock Value to the Module 179 S Writing the Ethernet Settings to the Module 177 Y Scrolling LED Status Indicators 76 Selecting the Slot Number for the Module 184 Your Feedback Pleas
126. e 2 Setting Jumpers 12 Setting Up ProSoft Configuration Builder 78 Setting Up the Project 79 Slave Configuration 62 Slave Driver 135 Slave Status Blocks 3000 to 3003 or 3100 to 3103 106 123 Slave Status List 106 SlavePollStatus 158 159 Special Function Blocks 122 Standard Modbus Protocol Errors 70 Start Here 9 Starting the Data Analyzer 107 Stopping the Data Analyzer 108 Sub function Codes Supported 167 Support Service amp Warranty 195 System Requirements 9 T The Diagnostics Menu 103 Transferring the Command Error List to the Processor 72 Troubleshooting the LEDs 78 U Unformatted Pass Through Blocks 9996 129 Using RSWho to Connect to the Module 92 Using the Diagnostics Menu in ProSoft Configuration Builder 99 Using the Optional Add On Instruction 16 172 Using the Sample Program RSLogix 5000 Version 15 and earlier 11 15 180 Using the Sample Program in a New Application 181 Using the Sample Program in an Existing Application 120 126 135 137 186 Util 154 158 V Verify Communication 36 67 Verify Slave Communications 73 Verifying Master Communications 67 Viewing the Error Status Table 111 Warm Boot Block 9998 132 Warranty Information 196 Write Block 121 ProSoft Technology Inc Page 199 of 199 June 18 2014
127. e and the second part contains information required to interface to the Modbus slave device 6 8 2 Read Coil Status Function Code 01 Query This function allows the user to obtain the ON OFF status of logic coils used to control discrete outputs from the addressed Slave only Broadcast mode is not supported with this function code In addition to the Slave address and function fields the message requires that the information field contain the initial coil address to be read Starting Address and the number of locations that is interrogated to obtain status data The addressing allows up to 2000 coils to be obtained at each request however the specific Slave device may have restrictions that lower the maximum quantity The coils are numbered from zero coil number 1 7 zero coil number 2 7 one coil number 3 two and so on The following table is a sample read output status request to read coils 0020 to 0056 from Slave device number 11 Note This is the structure of the message being sent out to the Modbus network The byte values below are in hexadecimal display Adr Func Data Start PtHi Data Start PtLo Data Of Pts Data Of PtsLo Error Check Field 0B 01 00 13 00 25 CRC Response An example response to Read Coil Status is as shown in the table below The data is packed one bit for each coil The response includes the Slave address function code quantity of data characters the data characters and error check
128. e destination MVI56E module is located To use the ClPconnect Path Editor follow these steps 1 2 3 Configure the path between the 1756 ENBT connected to your PC and the MVI56E MCM module o Ifthe module is located in a remote rack add more racks to configure the full path o path can only contain ControlNet or Ethernet IP networks o The maximum number of supported racks is six Click CONSTRUCT CIP PATH to build the path in text format Click OK to confirm the configured path Example 1 Local Rack Application For this example the MVIS6E MCM module is located in the same rack as the 1756 ENBT that is connected to the PC MVI56E Module 1756 ENBT Ethernet ProSoft Technology Inc Page 85 of 199 June 18 2014 Diagnostics and Troubleshooting MVI56E MCM ControlLogix Platform User Manual Modbus Communication Module Rack 1 Slot Module Network Address 0 ControlLogix Processor 1 Any 2 MVI56E MCM 3 1756 ENBT IP 192 168 0 100 1 In ProSoft Configuration Builder right click the MVI56E MCM icon to open a shortcut menu 2 On the shortcut menu choose DIAGNOSTICS Default Project Ei Default Location h MEE uu Rename Copy Paste Choose Module Type Configure Verify View Configuration Write to Compact Flash Export Configuration File s Load Config File Add External File Change Module Type to MVI56 MNET Download from PC
129. e for read and write data within the 156 module You will use these data read and write locations in the IntAddress tag within each Master Command Configuration page 37 The following illustration shows the values from the sample program MCM CONFIG ModDef Tanah MCM CONFIG ModDef writeStartReg 0 MCM CONFIG ModDef writeRegCnt 600 MCM CONFIG ModDef ReadStartReg 1000 MCM CONFIG ModDef ReadRegCnt 600 MCM CONFIG ModDef BPFail 0 MCM CONFIG ModDef E rStatPtr 1 The WRITESTARTREG tag determines the starting register location for the WRITEDATA O to 599 array The WRITEREGCNT tag determines how many of the 10 000 registers to use to send data to the module The sample ladder file uses 600 registers for write data labeled MCM WRITEDATA O to 599 Label Description WRITESTARTREG Specifies where in the 10 000 register module memory to place data sent from the WriteData tags in the ControlLogix processor WRITEREGCNT Specifies how many registers of data the MVIS6E MCM module will request from the ControlLogix processor Because the module pages data in blocks of 200 words this number must be evenly divisible by 200 READSTARTREG Specifies which registers in the module s read data area to send to the ReadData tags in the ControlLogix processor READREGCNT Sets how many registers of data the MVIS6E MCM module will send to the ControlLogix processor This value should also be a multiple of 200 BP
130. e rack Setting Up ProSoft Configuration Builder ProSoft Configuration Builder PCB provides a convenient way to configure diagnose and troubleshoot your MVIS6E MCM module 5 4 1 Installing ProSoft Configuration Builder The ProSoft Configuration Builder PCB software is used to configure the module You can find the latest version of the ProSoft Configuration Builder PCB on our web site http www prosoft technology com or you can install it from the ProSoft Solutions DVD The installation filename contains the PCB version number For example 4 1 0 4 0206 EXE Page 78 of 199 ProSoft Technology Inc June 18 2014 MVI56E MCM ControlLogix Platform Diagnostics and Troubleshooting Modbus Communication Module User Manual If you are installing PCB from the ProSoft website 1 Open a browser window and navigate to http Awww prosoft technology com pcb 2 Click the download link for ProSoft Configuration Builder and save the file to your Windows desktop 3 After the download completes double click the file to install If you are using Windows 7 right click on the PCB installation file and click RUN AS ADMINISTRATOR Follow the instructions that appear on the screen 4 Ifyou want to find additional software specific to your MVIS6E MCM enter the model number into the website search box and press the Enter key If you are installing PCB from the ProSoft Solutions DVD 1 Insert the ProSoft Solutions DVD into y
131. ed responses received errors and so on 4 1 1 MVI56E MCM Status Data Definition as a Master This section contains a description of the members present in the MCM STATUS object This data is transferred from the module to the processor as part of each read block using the module s input image Sample Ladder Logic will copy this information from the LOCAL X I DATA OFFSET tag into the MCM STATUS array Offset Content Description 202 Program Scan Count This value is incremented each time a complete program cycle occurs in the module 203 to 204 Product Code These two registers contain the product code of MCM 205 to 206 Product Version These two registers contain the product version for the current running software 207 to 208 Operating System These two registers contain the month and year values for the program operating system ProSoft Technology Inc Page 67 of 199 June 18 2014 Verify Communication MVI56E MCM ControlLogix Platform User Manual Modbus Communication Module Offset Content Description 209 to 210 Run Number These two registers contain the run number value for the currently running software 211 Port 1 Command List This field contains the number of requests made from this Requests port to Slave devices on the network 212 Port 1 Command List This field contains the number of Slave response messages Response received
132. efinition 25 to 32 Command Definition 33 to 40 Command Definition 41 to 48 Command Definition 49 to 56 Command Definition 57 to 64 Command Definition 65 to 72 Command Definition 73 to 80 Command Definition 81 to 88 Command Definition 89 to 96 Command Definition 97 to 104 Command Definition 105 to 112 Command Definition 113 to 120 Command Definition 121 to 128 Command Definition 129 to 136 Command Definition 137 to 144 Command Definition 145 to 152 Command Definition 153 to 160 Command Definition 161 to 168 Command Definition 169 to 176 Command Definition 177 to 184 Command Definition 185 to 192 Command Definition 193 to 200 Command Definition CO CO C Oo OC CH OOo CM OO OO 128 199 ProSoft Technology Inc June 18 2014 MVI56E MCM ControlLogix Platform Reference Modbus Communication Module User Manual Pass Through Blocks The Pass through Mode allows a Modbus Slave port to pass write commands received from a host directly across the backplane to the ControlLogix processor for handling by ladder logic Although this feature requires more ladder logic in order to implement a solution there are certain situations where this functionality can be usef
133. erently The two most common schemes are six digit addressing 400101 301000 etc and some devices show their addressing already as an offset address the address that actually goes out on the Modbus communication line This is an example Actual Values Input Registers Addresses 0200 to 0 1 STATUS 0200 Switch Input Status 0201 LED Status Flags 0202 LED Attribute Flags 0203 Output Relay Status Flags If your device manufacturer gives you addressing like this Input Registers then you will use Function Code 4 and then place the address shown in the DevAddress field Also most manufacturers that show this type of addressing will list the address in hex as is the case with the device shown above So for this example device use Func 4 Input Registers with a DevAddress of 512 decimal 200h to read the Switch Input Status value Why does my Slave show addressing such as 400 001 or 301 345 For the 6 digit addressing use the same function codes and configuration as configured above just the starting address has changed Page 40 of 199 ProSoft Technology Inc June 18 2014 MVI56E MCM ControlLogix Platform Configuration as a Modbus Master Modbus Communication Module User Manual Below is a definition that will help with your DevAddress configuration Function Codes 1 5 or 15 DevAddress Modbus address in device 0001 Example Modbus address 0001 DevAddress 0 Modbus address 1378 DevAddress 1377
134. erforms the following tasks Read Write Ethernet Configuration Allows the processor to read or write the module IP address subnet mask and network gateway IP address Read Write Module Clock Value Allows the processor to read and write the module clock settings The module s free running clock also stores the last time that the Ethernet configuration was changed or the last time the module was restarted or rebooted The date and time of the last change or restart is displayed on the scrolling LED during module power up start up sequence For more information see Using the Optional Add On Instruction page 172 Note You can also set the date and time from the module s Connect to the Module s Web Page page 113 Important The Optional Add On Instruction supports only the two features listed above You must use the regular MVIS6E MCM Add On Instruction for all other features including backplane transfer and Modbus data communication 1 6 2 Creating the Module 1 Add the MVIS6E MCM module to the project In the CONTROLLER ORGANIZATION window select I O CONFIGURATION and click the right mouse button to open a shortcut menu On the shortcut menu choose NEW MODULE amp 1 0 Configuration 11756 Backplane 1756 fq 0 1756463 FJ New Module 16 199 ProSoft Technology Inc June 18 2014 MVI56E MCM ControlLogix Platform Modbus Communication Module Start Here User Manua
135. ernet port for network configuration and diagnostics with Auto Cable Crossover Detection User definable module data memory mapping of up to 10 000 16 bit registers ProSoft Technology Inc Page 115 of 199 June 18 2014 MVI56E MCM ControlLogix Platform User Manual Modbus Communication Module ClPconnect enabled network diagnostics and monitoring using ControlLogix 1756 ENxT modules and EtherNet IP pass thru communications Sample Ladder Logic or Add On Instruction AOI used for data transfers between module and processor and for module configuration 4 character scrolling alphanumeric LED display of status and diagnostic data in plain English ProSoft Discovery Service PDS software finds the module on the network and assigns a temporary IP address to facilitate module access 6 1 2 General Specifications Modbus Master Slave Communication Baud rate 110 to 115K baud Parameters Stop bits 1 or 2 Data size 7 or 8 bits Parity None Even Odd RTS timing delays 0 to 65535 milliseconds Modbus Modes RTU mode binary with CRC 16 ASCII mode with LRC error checking Floating Point Floating point data movement supported including configurable Data support for Enron Daniel and other implementations Modbus Function 1 Read Coil Status 15 Force Write Multiple Coils Codes Supported 2 Read Input Status 16 Preset Write Multiple 3 Read Holding Registers Holding Registers 4 Read Input Regist
136. ers 17 Report Slave ID Slave Only 5 Force Write Single Coil 22 Mask Write Holding 6 Preset Write Single Register Slave Only Holding Register 23 Read Write Holding 8 Diagnostics Slave Only Registers Slave Only Responds to Subfunction 00 6 1 3 Functional Specifications The MVI56E MCM will operate on a Local or Remote rack For remote rack applications with smaller data packet size please refer to the MVIS6E MCMR product ClPconnect enabled for module and network configuration using 1756 ENxT module with EtherNet IP pass through communications Supports Enron version of Modbus protocol for floating point data transactions 4 digit LED Display for English based status and diagnostics information PCB includes powerful Modbus network analyzer Error codes network error counters and port status data available in user data memory Page 116 of 199 ProSoft Technology Inc June 18 2014 MVI56E MCM ControlLogix Platform Reference Modbus Communication Module User Manual Slave Specifications The MVI56E MCM module accepts Modbus function code commands of 1 2 3 4 5 6 8 15 16 17 22 and 23 from an attached Modbus Master unit A port configured as a Modbus Slave permits a remote Master to interact with all data contained in the module This data can be derived from other Modbus Slave devices on the network through a Master port or from the ControlLogix processor Master Specifications A po
137. es normal data transfer operation If there are errors in the configuration the module sends the processor a read block with configuration error codes Block Response from Module to Processor Word Offset Description Length 0 Reserved 1 1 9000 1 2 Module Configuration Error Code 1 3 Port 1 Configuration Error Code 1 4 Port 2 Configuration Error Code 1 5 to 248 Spare 244 249 2 or 3 1 Any errors must be corrected before the module will start operating ProSoft Technology Inc June 18 2014 Page 127 of 199 User Manual MVI56E MCM ControlLogix Platform Modbus Communication Module Master Command Data List 6000 to 6012 or 6100 to 6112 Each port on the module can be configured as a Modbus Master device containing its own list of 325 commands for modules with firmware version 3 01 or higher and Add on Instruction version 2 8 or higher The commands are read from the processor using the following Write Block IDs Modbus Port 1 6000 to 6012 and Modbus Port 2 6100 to 6112 The module will sequentially poll for each block from the processor Ladder logic must handle all of the data transfers The following table describes the structure of each block Configuration Block from Processor to Module Word Offset Description Length 0 6000 to 6012 and 6100 to 6112 1to8 Command Definition 9 to 16 Command Definition 17 to 24 Command D
138. eserved 1 1 9000 1 2 Module Configuration Errors 1 3 Port 1 Configuration Errors 1 4 Port 2 Configuration Errors 1 5 to 248 Spare 244 249 2 or 3 1 The bits in each configuration word are shown in the following table The module configuration error word has the following definition ProSoft Technology Inc Page 111 of 199 June 18 2014 Diagnostics and Troubleshooting MVI56E MCM ControlLogix Platform User Manual Modbus Communication Module Bit Description Value 0 Read block start value is greater than the database size 0x0001 1 Read block start value is less than zero 0x0002 2 Read block count value is less than zero 0x0004 3 Read block count start is greater than the database size 0x0008 4 Write block start value is greater than the database size 0x0010 5 Write block start value is less than zero 0x0020 6 Write block count value is less than zero 0x0040 7 Write block count start is greater than the database size 0x0080 8 0x0100 9 0x0200 10 0x0400 11 0x0800 12 0x1000 13 0x2000 14 0x4000 15 0x8000 The port configuration error words have the following definitions Bit Description Value 0 Type code is not valid Enter a value from 0 Master to 1 0x0001 Slave 1 The float flag parameter is not valid 0x0002 2 The float start parameter is not valid 0x0004 3 The float offset parameter is not valid
139. ess 40006 is not a valid address for this Slave Instead try reading just one register and see if the error code goes away You can also try adjusting your DevAddress 1 as some devices have a 1 offset An Error Code of 3 is common on Modbus Write Commands Function Codes 5 6 15 or 16 Typically this is because you are trying to write to a parameter that is configured as read only in the Slave device or the range of the data you are writing does not match the valid range for that device Refer to the documentation for your Slave device or contact ProSoft Technical Support for more help with these types of error codes Module Communication Error Codes Code Description 1 CTS modem control line not set before transmit 2 Timeout while transmitting message 11 Timeout waiting for response after request 253 Incorrect Slave address in response 254 Incorrect function code in response 255 Invalid CRC LRC value in response Module Communication Errors are generated by the MVIS6E MCM module and indicate communication errors with the Slave device Error Code 11 indicates that the module is transmitting a message on the communications wire However it is not receiving a response from the addressed Slave This error is typically caused by one or more of the following conditions Parameter mismatch for example the module is set for 9600 baud Slave is set for 19 200 parity is set to none Slave is expecting e
140. essor across the backplane using the module s input and output images The update frequency of the images is determined by the scheduled scan rate defined by the user for the module and the communication load on the module Typical updates are in the range of 2 to 10 milliseconds This bi directional transference of data is accomplished by the module filling in data in the module s input image to send to the processor Data in the input image is placed in the Controller Tags in the processor by the ladder logic The input image for the module is set to 250 words This large data area permits fast throughput of data between the module and the processor The processor inserts data to the module s output image to transfer to the module The module s program extracts the data and places it in the module s internal database The output image for the module is set to 248 words This large data area permits fast throughput of data from the processor to the module Page 118 of 199 ProSoft Technology Inc June 18 2014 MVI56E MCM ControlLogix Platform Reference Modbus Communication Module User Manual The following illustration shows the data transfer method used to move data between the ControlLogix processor the MVIS6E MCM module and the Modbus Network ControlLogix Processor MVI56E MCM Module ControlLogix Processor Controller Tags Status Read Data Modbus Port Drivers Backplane Driver ne Special Control Tran
141. etected an internal error or is being initialized If the LED remains RED for over 10 seconds the module is not working Remove it from the rack and re insert it to restart its internal program ERR Red Not used 5 2 Clearing a Fault Condition Typically if the OK LED on the front of the module turns RED for more than ten seconds a hardware problem has been detected in the module or the program has exited To clear the condition follow these steps kRON correctly oo Turn off power to the rack Remove the card from the rack Verify that all jumpers are set correctly If the module requires a Compact Flash card verify that the card is installed ControlLogix controller If the module s OK LED does not turn GREEN verify that the module is inserted completely into the rack If this does not cure the problem contact ProSoft Technology Technical Support Re insert the card in the rack and turn the power back on Verify correct configuration data is being transferred to the module from the ProSoft Technology Inc June 18 2014 Page 77 of 199 Diagnostics and Troubleshooting MVI56E MCM ControlLogix Platform User Manual Modbus Communication Module 5 3 5 4 Troubleshooting the LEDs Use the following troubleshooting steps if problems occur when the module is powered up If these steps do not resolve the problem please contact ProSoft Technology Technical Support Processor Errors
142. eter specifies the Modbus protocol to be used on the port Valid protocols are 0 Modbus RTU and 1 Modbus ASCII 10 016 Baud Rate This is the baud rate to be used on the port Enter the baud rate as a value For example to select 19K baud enter 19200 Valid entries are 110 150 300 600 1200 2400 4800 9600 19200 28800 384 for 38400 bps 576 for 57600 bps and 115 for 115 200 bps 10 017 Parity This is the parity code to be used for the port Values are None Odd Even 10 018 Data Bits This parameter sets the number of data bits for each word used by the protocol Valid entries for this field are 5 through 8 10 019 Stop Bits This parameter sets the number of stop bits for each data value sent Valid entries are 1 and 2 ProSoft Technology Inc June 18 2014 Page 145 of 199 User Manual MVI56E MCM ControlLogix Platform Modbus Communication Module Register Content Description 10 020 RTS On This parameter sets the number of milliseconds to delay after RTS is asserted before the data will be transmitted Valid values are in the range of 0 to 65535 milliseconds 10 021 RTS Off This parameter sets the number of milliseconds to delay after the last byte of data is sent before the RTS modem signal will be set low Valid values are in the range of 0 to 65535 10 022 Minimum Response Time This parameter specifies the min
143. eter specifies the starting register in the module where the data transferred from the processor will be placed Valid range for this parameter is 0 to 9999 10 001 Write Reg Count This parameter specifies the number of registers to transfer from the processor to the module Valid entry for this parameter is O to 10000 10 002 Read Start Reg This parameter specifies the starting register in the module where data will be transferred from the module to the processor Valid range for this parameter is O to 9999 10 003 Read Reg Count This parameter specifies the number of registers to be transferred from the module to the processor Valid entry for this parameter is 0 to 10000 10 004 Backplane Fail This parameter specifies the number of successive transfer errors that must occur before the communication ports are shut down If the parameter is set to zero the communication ports will continue to operate under all conditions If the value is set larger than 0 1 to 65535 communications will cease if the specified number of failures occur Page 144 of 199 ProSoft Technology Inc June 18 2014 MVI56E MCM ControlLogix Platform Modbus Communication Module Reference User Manual Register Content Description 10 005 Error Status Pointer This parameter specifies the register location in the module s database where module status data will be stored If a value less than zero is entered the data will not be stored in the
144. f 8 coils The 3 left most bits are provided as zeros to fill the 8 bit format 6 8 3 Read Input Status Function Code 02 Query This function allows the user to obtain the ON OFF status of discrete inputs in the addressed Slave PC Broadcast mode is not supported with this function code In addition to the Slave address and function fields the message requires that the information field contain the initial input address to be read Starting Address and the number of locations that are interrogated to obtain status data The addressing allows up to 2000 inputs to be obtained at each request however the specific Slave device may have restrictions that lower the maximum quantity The inputs are numbered form zero input 10001 zero input 10002 one input 10003 two and so on for a 584 The following table is a sample read input status request to read inputs 10197 to 10218 from Slave number 11 Note This is the structure of the message being sent out to the Modbus network The byte values below are in hexadecimal display Adr Func Data Start PtHi DataStartPtLo Data of Pts Hi Data of Pts Lo Error Check Field 0B 02 00 C4 00 16 CRC Page 162 of 199 ProSoft Technology Inc June 18 2014 MVI56E MCM ControlLogix Platform Reference Modbus Communication Module User Manual Response An example response to Read Input Status is as shown in the table below The data is packed one bit for each input The response inc
145. fer to the Master Because the data transfer of the 156 module cannot be bidirectional when the Master issues a Modbus Write command in Pass Through mode the MVIS6E MCM module builds a special block of information This block is then parsed by the ladder logic and the value written from the Modbus Master is then updated in the MCM DATA WRITEDATA array Note You should only use Pass Through mode when there is no other option as there is a drawback to this mode that is not present in the standard mode ProSoft Technology Inc Page 57 of 199 June 18 2014 Configuration as a Modbus Slave MVI56E MCM ControlLogix Platform User Manual Modbus Communication Module Because the module must wait for the ladder logic to confirm receiving the new data from the Master if the Master issues consecutive write commands the module cannot process the second write command until it has finished with the first command This will cause the module to respond with an error code of 6 module busy on the Modbus network 3 2 ModDef Settings To configure Modbus Slave mode use the MCM CONFIG MODDEF settings This section specifies which of the MVI56E MCM module s 10 000 registers of memory to send from the ControlLogix processor to the 156 module WriteData and which registers to send from the 156 module to the ControlLogix processor ReadData MCM CONFIG ModDef vom MCM CONFIG ModDef writeStartReg 0 M
146. ffset 10 MCM CONFIG Port2 QutOffset 1000 MCH CONFIG Port2 HoldOffset 1010 Parameter Value Description BitlnOffset Defines the starting address within the module for 1xxxx Modbus addressing A value of 0 sets 10001 to 10016 as address 0 in the MVIS6E MCM module WordInOffset Defines the starting address within the module memory for registers OutOffset 1000 Defines the starting address within the module for Oxxx coils HoldOffset 1010 Defines the starting address within the module for 4xxxx addressing Based on the configuration described above for the ModDef section of the module and the values specified for the offset parameters below is the Modbus addressing map for the module MVI Address 1 4 Tag Address 0 10001 to 10016 WriteData 0 1 10017 to 10032 WriteData 1 9 10145 to 10160 WriteData 9 10 10161 to 10176 30001 WriteData 10 11 10177 to 10192 30002 WriteData 1 1 100 11601 to 11616 30091 WriteData 100 200 13201 to 13216 30191 WriteData 200 500 18001 to 18016 30491 WriteData 500 598 19569 to 19584 30489 WriteData 598 599 19585 to 19600 30490 WriteData 599 600 to 999 N A N A N A N A Reserved 1000 0001 to 0016 ReadData 0 1001 0017 to 0032 ReadData 1 1009 0145 to 0160 ReadData 9 1010 0161 to 0176 40001 ReadData 10 1011 0177 to 0192 40002 ReadData 1 1 1050 0801 to 0816 40041
147. ft Configuration Builder select the module and then click the right mouse button to open a shortcut menu Default Project ai Default Location h ProSoft Technology Inc Page 99 of 199 June 18 2014 Diagnostics and Troubleshooting MVI56E MCM ControlLogix Platform User Manual Modbus Communication Module 2 Onthe shortcut menu choose DIAGNOSTICS Default Project 2 Default Location D a d Delete Rename Copy Choose Module Type 3 Inthe Diagnostics window click the SET UP CONNECTION button o a aeos Click to set up connection 4 Inthe Connection Setup dialog box click the TEST CONNECTION button to verify that the module is accessible with the current settings Connection Setup Select Connection Type X Ethemet 182 168 0 253 ProSoft Discovery Service PDS Browse Device s S ELS Test Connection Cancel Page 100 of 199 ProSoft Technology Inc June 18 2014 MVI56E MCM ControlLogix Platform Diagnostics and Troubleshooting Modbus Communication Module User Manual You can also use ClPconnect to connect to the module through a 1756 ENBT by choosing 1756 ENBT the SELECT CONNECTION TYPE list Refer to Using ClPconnect to Connect to the Module for information on how to construct a CIP path Connection Setup Select Connection 91718 v Ethernet ProSoft Discovery Service PDS CiP
148. ful not to overlap your data You may want leave additional registers bits unused to allow for future expansion in the program 3 3 Slave Configuration Any parameters not mentioned in this section are not used when the module is configured as a Modbus Master Value Description Enabled 17 enable port 0 disable port Type 1 Modbus Slave Port The module also supports a variety of Pass Through modes See Pass Through Blocks page 129 for more information FloatFlag As a Slave emulates Enron Daniel style floats See Floating Point Data Handling Modbus Slave page 63 for more information FloatStart Register offset in message for floating data point See Floating Point Data Handling Modbus Slave page 63 for more information Protocol 0 Modbus RTU mode 1 Modbus ASCII mode Baudrate Sets the baud rate for the port Valid values for this field are 110 150 300 600 1200 2400 4800 9600 19200 384 or 3840 for 38 400 baud 576 or 5760 for 57 600 baud and 115 1152 or 11520 for 115 200 baud Parity 0 None 1 Odd 2 Even DataBits 8 Modbus RTU mode 8 or 7 Modbus ASCII mode Page 62 of 199 ProSoft Technology Inc June 18 2014 MVI56E MCM ControlLogix Platform Configuration as a Modbus Slave Modbus Communication Module User Manual Value Description StopBits Valid values are 1 or 2 SlavelD Valid values are 1 to 247 3 4 Floating Point Data Handling Modbus
149. function code starting address and quantity of coils forced Adr Func Hi Addr Lo Addr Quantity Error Check Field 0B OF 00 13 00 0 The writing of coils Modbus function 15 will be accomplished regardless of whether the addressed coils are disabled or not Coils that are not programmed in the controller logic program are not automatically cleared upon power up Thus if such a coil is set ON by function code 15 and even months later an output is connected to that coil the output is hot ProSoft Technology Inc Page 169 of 199 June 18 2014 MVI56E MCM ControlLogix Platform User Manual Modbus Communication Module 6 8 10 Preset Multiple Registers Function Code 16 Query Holding registers existing within the controller can have their contents changed by this message a maximum of 60 registers However because the controller is actively scanning it also can alter the content of any holding register at any time The values are provided in binary up to the maximum capacity of the controller 16 bit for the 184 384 and 584 unused high order bits must be set to zero Note Function codes 5 6 15 and 16 are the only messages that will be recognized as valid for broadcast Adr Func Hi LoAdd Quantity Byte Hi Lo Hi Lo Data Error Check Add Cnt Data Data Data Field 11 10 00 87 00 02 04 00 0 01 02 Response The normal response to a function 16 query is to echo the
150. g to open the MESSAGE CONFIGURATION TAG 5 Click the COMMUNICATION tab and click the BROWSE button as follows Message Configuration ReadEthernetMSG Configuration Communication Tag Path 1 0 1 0 Enable Enable Waiting Start Done Done Length 0 Code Extended Code Timed Out Eror Path Eror Text OK Cancel Appl ProSoft Technology Inc Page 175 of 199 June 18 2014 MVI56E MCM ControlLogix Platform User Manual Modbus Communication Module 6 Select the module to configure the message path Message Configuration ReadEthernetMSG Configuration Communication Tag Path 1 0 1 0 Message Path Browser Path MCM 23 1 0 Configuration 1756 Backplane 1756 44 f 0 1756 L63 My Controller 8 1 1756 MODULE 6 9 4 Reading the Ethernet Settings from the Module Expand the MVIS6MCMETHERNET controller tag and move a value of 1 to MVIB6MCMETHERNET READ MVIBBMCMEthemet feo MYVI56MCME thernet Read MVIBSBMCMEthemet Write MVIS6MCMEthemet Config ls oe MVI56MCME thernet Config IP MVIBBMCMEthemet Config IP 0 MVIBBMCMEthemet Config IP 1 MVIS6MCMEthemet Config P 2 MVIS6MCMEtheret Config P 3 MVIS6MCME thermet Config Netmask dona MVIBBMCMEthemet Config Netmask U MVIBBMCMEthemet Config Netmask 1 MVI56MCME thernet Config Netmask 2 MVI56MCME themet Config
151. guration lt 85 Find Find Within Final Name Import Content fa MainT ask amp MainProgram da MainRoutine Rungs References 33 19 Tags Add On Instruction Data Types hd 4 Other Components Errors W amings Configure Tag References ADIBEMNETC Use Existing ADIBBMNETC sed ADIBEMNE Local1 l Use Existing 1 Local 1 1 LI 1756 M Local 1 0 Use Existing 3 Show Al Tags MNETC Use Existing A amp OISBMNETC AOISBMNETC Add On for M Local 1 C 4B 1756_MODULE C 0 8 1 1 1 AB 1756 MODULE INT 8 Hp Locat1 0 AB 1756 MODULE INT 4 2 46 1756_MODULE C 0 8 28756 Local 2 0 AB 1756 MODULE INT 8 MNETC MNETCMODULEDEF This defines th _ Controller Page 22 of 199 ProSoft Technology Inc June 18 2014 MVI56E MCM ControlLogix Platform Start Here Modbus Communication Module User Manual 2 Select 1756 MODULE If you re using a controller revision of 16 or less expand OTHER in the SELECT MODULE dialog box and then select the 1756 MODULE Select Module Catalog Module Discovery Favorites Hide Filters 2 Module Type Vendor Filters Allen Bradley o generic gt Module Type Category Filters D008 Communication
152. h order bits and the second the low order bits Because the Slave interface device is normally serviced at the end of the controller s scan the data reflects the register content at the end of the scan Some Slaves limit the quantity of register content provided each scan thus for large register quantities multiple transmissions are made using register content from sequential scans In the example below the registers 40108 to 40110 have the decimal contents 555 0 and 100 respectively Adr Func ByteCnt LoData LoData Error Check Field 0B 03 06 02 2 00 00 00 64 6 8 5 Read Input Registers Function Code 04 Query Function code 04 obtains the contents of the controller s input registers from the Modbus 3x range These locations receive their values from devices connected to the I O structure and can only be referenced not altered from within the controller The addressing allows up to 125 registers to be obtained at each request however the specific Slave device may have restrictions that lower this maximum quantity The registers are numbered for zero 30001 zero 30002 one and so on Broadcast mode is not allowed The example below requests the contents of register 3009 in Slave number 11 Note This is the structure of the message being sent out to the Modbus network The byte values below are in hexadecimal display Adr Func Data Start Reg Data S
153. he 8 bit format 6 8 4 Read Holding Registers Function Code 03 Query Read Holding Registers 03 allows the user to obtain the binary contents of holding registers 4xxxx in the addressed Slave The registers can store the numerical values of associated timers and counters which can be driven to external devices The addressing allows up to 125 registers to obtained at each request however the specific Slave device may have restriction that lower this maximum quantity The registers are numbered form zero 40001 zero 40002 one and so on The broadcast mode is not allowed The example below reads registers 40108 through 40110 from Slave number 11 Note This is the structure of the message being sent out to the Modbus network The byte values below are in hexadecimal display Adr Func Data Start Reg Hi Data Start Reg Lo Data of Regs Data ofRegsLo Error Check Field 0B 03 00 6B 00 03 CRC ProSoft Technology Inc Page 163 of 199 June 18 2014 MVI56E MCM ControlLogix Platform User Manual Modbus Communication Module Response The addressed Slave responds with its address and the function code followed by the information field The information field contains 1 byte describing the quantity of data bytes to be returned The contents of the registers requested DATA are two bytes each with the binary content right justified within each pair of characters The first byte includes the hig
154. he ControlLogix chassis Use the same technique recommended by Rockwell Automation to remove and install ControlLogix modules You can install or remove ControlLogix system components while chassis power is applied and the system is operating However please note the following warning Warning When you insert or remove the module while backplane power is on an electrical arc can occur An electrical arc can cause personal injury or property damage by sending an erroneous signal to the system s actuators This can cause unintended machine motion or loss of process control Electrical arcs may also cause an explosion when they happen in a hazardous environment Verify that power is removed or the area is non hazardous before proceeding Repeated electrical arcing causes excessive wear to contacts on both the module and its mating connector Worn contacts may create electrical resistance that can affect module operation 1 Align the module with the top and bottom guides and then slide it into the rack until the module is firmly against the backplane connector ProSoft Technology Inc Page 13 of 199 June 18 2014 Start Here MVI56E MCM ControlLogix Platform User Manual Modbus Communication Module MVI56E Module v 2 With a firm steady push snap the module into place 3 Check that the holding clips on the top and bottom of the module are securely in the locking holes of the rack 4 Make note of the slot location You mu
155. he other bits in the INT registers from being affected Pass Through Block 9959 from Module to Processor Word Offset Description Length 0 0 1 1 9959 1 2 Number of Words 1 3 Word Address 1 4 to 53 Data 50 54 to 103 Mask 50 104 to 248 Spare 145 249 9959 1 The ladder logic will be responsible for parsing and copying the received message and performing the proper control operation as expected by the Master device The processor must then respond to the Pass through block with a write block with the following format Response Block 9959 from Processor to Module Word Offset Description Length 0 9959 1 1 to 247 Spare 247 This will inform the module that the command has been processed and can be cleared from the pass through queue ProSoft Technology Inc Page 131 of 199 June 18 2014 MVI56E MCM ControlLogix Platform User Manual Modbus Communication Module Warm Boot Block 9998 This block is sent from the ControlLogix processor to the module output image when the module is required to perform a warm boot software reset operation This block is commonly sent to the module any time configuration data modifications are made in the controller tags data area This will cause the module to read the new configuration information and to restart The following table describes the format of the Warm Boot block Block Request from Processor to Module
156. hecklist Before you begin configuring the module consider the following questions Your answers will help you determine the scope of your project and the configuration requirements for a successful deployment 1 Are you creating a new application or integrating the module into an existing application Most applications can use the Sample Add On Instruction or Sample Ladder Logic without any edits to the Sample Program 2 Which slot number in the chassis will the 156 module occupy For communication to occur you must enter the correct slot number in the sample program 3 Are RSLogix 5000 and RSLinx software installed RSLogix and RSLinx are required to communicate to the ControlLogix processor 1756 L1 L55 L61 amp L63 Sample Ladder programs are available for different versions of RSLogix 5000 4 How many words of data do you need to transfer in your application from ControlLogix to Module to ControlLogix from Module Page 10 of 199 ProSoft Technology Inc June 18 2014 MVI56E MCM ControlLogix Platform Start Here Modbus Communication Module User Manual The MVI56E MCM module can transfer a maximum of 10 000 16 bit registers to and from the ControlLogix processor The Sample Ladder transfers 600 words to the ControlLogix processor into the Read Data array and obtains 600 words from the ControlLogix processor from the Write Data array 5 Will you be using the module as a Modbus Master or Modbus Slave Will
157. ial port to work with the selected driver 5 When you see the message Auto Configuration Successful click the OK button to dismiss the dialog box Note If the auto configuration procedure fails verify that the cables are connected correctly between the processor and the serial port on your computer and then try again If you are still unable to auto configure the port refer to your RSLinx documentation for further troubleshooting Steps Page 32 of 199 ProSoft Technology Inc June 18 2014 MVI56E MCM ControlLogix Platform Configuration as a Modbus Master Modbus Communication Module User Manual 2 Configuration as a Modbus Master In This Chapter DONE UI cR 33 3 ModDet Setllngs iier ertet Ente enis 34 Master Command Examples 41 Floating Point Data Handling Modbus 46 Command Control and Event 52 2 1 Overview This section describes how to configure the module as a MODBUS MASTER device The Master is the only device on a Modbus network that can initiate communications A Master device issues a request message and then waits for the Slave to respond When the Slave responds or when a timeout has occurred the Modbus Master will then execute the next command in the list The following RSLog
158. ill print a TT for every xx milliseconds of no data on the line Usually 10milliseconds is the best value to start with To save a capture file of your Diagnostics session 1 After you have selected the Port Format and Tick we are now ready to start a capture of this data Click to capture the Diagnostics session to a log file 2 When you have captured the data you want to save click again to stop capturing data Click to stop capturing You have now captured and saved the file to your PC This file can now be used in analyzing the communications traffic on the line and assist in determining communication errors The log file name is PCB Log txt located in the root directory of your hard drive normally Drive C Now you have everything that shows up on the Diagnostics screen being logged to a file called PCB Log txt You can email this file to ProSoft Technical Support for help with issues on the communications network ProSoft Technology Inc Page 109 of 199 June 18 2014 Diagnostics and Troubleshooting User Manual MVI56E MCM ControlLogix Platform Modbus Communication Module To begin the display of the communications data start the Data Analyzer When the Data Analyzer is running you should see something like this Diagnostics Connection Log Module asl solae MVISGE MCM 5 BACKPLANE Config Status afa DATABASE ASCII Decimal Float Hex 5 GENERAL Version a MODBUS PORT 1
159. imal format can be used to enter values above 32767 Page 156 of 199 ProSoft Technology Inc June 18 2014 User Manual MVI56E MCM ControlLogix Platform Modbus Communication Module 6 7 3 MCMDATA Contains Read Data data read from the module to the processor and Write Data data written from the processor to the module Name Data Type Description ReadData INT 600 Data read from the module to the processor WriteData INT 600 Data written from the processor to the module 6 7 4 MCMSTATUS This status data is returned on each read block and can be used to detect proper module operation Name Data Type Description PassCnt INT Program cycle counter Product INT 2 Product Name Rev INT 2 Revision Level Number OP INT 2 Operating Level Number Run INT 2 Run Number Prt1Errs MCMPortErrors Port 1 error statistics page 157 Prt2Errs MCMPortErrors Port 2 error statistics Blk MCMBIkStat page Block transfer statistics 158 Port1LastErr INT Last command index that received an error on Port 1 Port1PreviousErr INT Previous Command index that received an error on Port 1 Port2LastErr INT Last command index that received an error on Port 2 Port2PreviousErr INT Previous Command index that received an error on Port 2 MCMPortErrors This object stores the port statistics for an MVI56E MCM port Name Data Type Description
160. imum number of milliseconds to delay before responding to a request message This pre send delay is applied before the RTS on time This may be required when communicating with slow devices 10 023 Use CTS Line This parameter specifies if the CTS modem control line is to be used If the parameter is set to 0 the CTS line will not be monitored If the parameter is set to 1 the CTS line will be monitored and must be high before the module will send data This parameter is normally only required when half duplex modems are used for communication 2 wire 10 024 Slave ID This parameter defines the virtual Modbus Slave address for the internal database All requests received by the port with this address are processed by the module Verify that each device has a unique address on a network Valid range for this parameter is 1 to 255 247 on some networks 10 025 Bit in Offset This parameter specifies the offset address in the internal Modbus database for network requests for Modbus Function 2 commands For example if the value is set to 150 an address request of 0 will return the value at register 150 in the database 10 026 Word in Offset This parameter specifies the offset address in the internal Modbus database for network request for Modbus function 4 commands For example if the value is set to 150 an address request of 0 will return the value at register 150 in the database 10 027 Out
161. ing Data is packed with one bit for each coil 1 ON 0 OFF The low order bit of the first character contains the addressed coil and the remainder follow For coil quantities that are not even multiples of eight the last characters is filled in with zeros at high order end The quantity of data characters is always specified as quantity of RTU characters that is the number is the same whether RTU or ASCII is used ProSoft Technology Inc Page 161 of 199 June 18 2014 MVI56E MCM ControlLogix Platform User Manual Modbus Communication Module Because the Slave interface device is serviced at the end of a controller s scan data reflects coil status at the end of the scan Some Slaves limit the quantity of coils provided each scan thus for large coil quantities multiple PC transactions must be made using coil status from sequential scans Adr Func Byte Data Coil Data Coil Data Coil Data Coil Data Coil Error Count Status20to Status28to Status36to Status44to Status 52to Check 27 35 43 51 56 Field 0B 01 05 CD 6B B2 OE 1B CRC The status of coils 20 to 27 is shown as CD HEX 1100 1101 Binary Reading left to right this shows that coils 27 26 23 22 and 20 are all on The other coil data bytes are decoded similarly Due to the quantity of coil statuses requested the last data field which is shown 1B HEX 0001 1011 Binary contains the status of only 5 coils 52 to 56 instead o
162. ions for testing or changing the DISABLE state of discrete inputs or outputs Where applicable this may be accomplished via device specific Program commands In ProSoft products this is only accomplished through ladder logic programming Coils that are reprogrammed in the controller logic program are not automatically cleared upon power up Thus if such a coil is set ON by function Code 5 and even months later an output is connected to that coil the output is hot 6 8 7 Preset Single Register Function Code 06 Query This Function Code allows you to modify the contents of a Modbus 4x range in the Slave This writes to a single register only Any holding register that exists within the controller can have its contents changed by this message However because the controller is actively scanning it also can alter the content of any holding register at any time The values are provided in binary up to the maximum capacity of the controller Unused high order bits must be set to zero When used with Slave address zero Broadcast mode all Slave controllers will load the specified register with the contents specified Note Functions 5 6 15 and 16 are the only messages that will be recognized as valid for broadcast Note This is the structure of the message being sent out to the Modbus network The byte values below are in hexadecimal display The example below is a request to write the value 3 to register 40002 in slave 11
163. is not loaded on processor Module is located in a different slot than the one configured in the ladder logic AOl Processoris not in RUN or REM RUN mode Last config lt date gt Indicates the last date when the module changed its IP address You can update the module date and time through the module s web page or with the MVI56E Optional Add On Instruction Config P1 P2 Modbus mode After power up and every reconfiguration the module will Port type Baud lt Parity gt display the configuration of both ports The information Data bits Stop Bits RS consists of Interface ID Slave gt Cmds Modbus mode RTU ASCII Master Port type Master Slave Baud 115200 57600 38400 19200 9600 4800 2400 1200 600 300 Parity None Even Odd Data bits 7 8 Stop bits 1 2 RS Interface RS 232 RS 422 RS 485 D Slave Modbus Address Configured Modbus Master Commands Operation Messages After the initialization step the following message pattern will be repeated lt Backplane Status gt lt IP Address gt lt Backplane Status gt lt Port Status gt Code Message lt Backplane Status gt OK Module is communicating with processor ERR Module is unable to communicate with processor For this scenario the lt Port Status gt message above is replaced with Processor faulted or is in program mode lt IP Address gt Module IP address lt Port S
164. ite Same Modbus Address Pass Through 65 3 1 Overview When configuring the module as a Slave you will be providing whoever is programming the Master side of the communications with a Modbus Memory Map Note If you are using the Sample Ladder Logic the transfer of data is already done Information that is to be read by the Modbus Master device will be placed in the MCM DATA WRITEDATA array as this will be pushed out to the module so that values from the ControlLogix processor can be read by the Modbus Master Information that must be written to the ControlLogix processor from the Modbus Master device will be placed into the MCM DATA READDATA array To configure module as a Modbus Slave you must determine how much data you must transfer to and from the module to the Modbus Master The sample ladder file is configured to transfer 600 16 bit registers in each direction If more than that is required please see Adjust the Input and Output Array Sizes Optional page 27 Find out if the Master can read from one Modbus address and write to another Modbus address or if the Master must use the same address to read and write data points If a Modbus command must bypass the read and write areas of the slave s memory area and send Modbus commands directly to another device on the Modbus network for example to a PLC you must use Pass Through mode This allows the MCM DATA WRITEDATA array to be used for all data trans
165. ix controller tags contain the Modbus Master configuration You must configure all three sets of controller tags 1 The MODDEF controller tags set up the backplane communication between the MVIS56E MCM module and the ControlLogix processor These settings include register addresses for ReadData and WriteData You can configure up to 10 000 data registers in the module to exchange data with the ControlLogix processor 2 The PORT1 PORT 2 controller tags configure the Modbus application serial port This set of controller tags configures serial communication parameters such as baud rate data bits and stop bits They also contain settings to configure the port as a Modbus Master or a Modbus Slave 3 PORT1MASTERCOMMAND and PORT2MASTERCOMMAND controller tags define a polling table command list for the Modbus Master This set of tags contains the addresses for devices on the network the types of data Modbus Function Codes to read and write with those devices and the location to store the data within the module s 10 000 data registers MCM CONFIG MCM CONFIG ModDef MCM CONFIG Portl MCM CONFIG Port2 MCM CONFIG Portl MasterCmd MCM CONFIG Port2MasterCmd ProSoft Technology Inc Page 33 of 199 June 18 2014 Configuration as a Modbus Master MVI56E MCM ControlLogix Platform User Manual Modbus Communication Module 2 2 Settings MCM CONFIG MOoDDEr tag defines the 10 000 data registers to us
166. k Count This field contains the total number of write blocks transferred from the module to the processor 227 Parse Block Count This field contains the total number of blocks successfully parsed that were received from the processor 228 Command Event This field contains the total number of command event Block Count blocks received from the processor 229 Command Block This field contains the total number of command blocks Count received from the processor 230 Error Block Count This field contains the total number of block errors recognized by the module 231 Port 1 Current Error Fora Master Port this field contains the command index number of the most recently executed command that failed To find what kind of error occurred see the Command Error List entry for this command index number Page 68 of 199 ProSoft Technology Inc June 18 2014 MVI56E MCM ControlLogix Platform Verify Communication Modbus Communication Module User Manual Offset Content Description 232 Port 1 Last Error For a Master Port this field contains the command index number of the previous most recently executed command that failed To find what kind of error occurred see the Command Error List entry for this command index number 233 Port 2 Current Error Fora Master Port this field contains the command index number of the most recently executed command that failed To find what kind of error occurred see the Command Error List entry for
167. l This action opens the SELECT MODULE dialog box Enter generic in the text box and select the GENERIC 1756 MODULE If you re using a controller revision of 15 or less expand OTHER in the SELECT MODULE dialog box and then select the GENERIC 1756 MODULE Select Module Type Catalog Module Discovery Favorites generic Communication Catalog Number Description lt 3 of 125 Module Types Found Close on Create Module Type Category Filters 1756 MO8SEG 8 Axis Generic SERCOS Interface 1756 MODULE Generic 1756 Module MVIBGE GSC Generic ASCII Serial Communication Interface Clear Filters Hide Filters 2 Module Type Vendor Filters Allen Bradley lt 0008 Add to Favorites Create Close Help 2 Click CREATE This action opens the NEW MODULE dialog box New Module Type 1756 MODULE Generic 1756 Module Parent Local Connection Parameters Assembly Instance Size Name Input 1 250 1654 Description Slot 1 Open Module Properties Output 2 248 16 bit Configuration 4 0 E 8 59 Comm Format Data INT v Cancel 3 In the NEW MODULE dialog box enter the following values Parameter Value NAME MCM DESCRIPTION Enter a description for the module Example Modbus Communication Module FoRMAT Select DATA INT ProSoft Tech
168. l be written to Modbus addresses 47001 to 47007 of the Slave device node 1 Note A swap code may be required to put the data in the proper format for the Slave device 2 5 Command Control and Event Command You can use Command Control and Event Commands in Modbus Master mode to change the command execution based on some conditions in ladder The module goes through the command list sequentially For example module executes MCM CONFIG PoRT1MASTERCMD 0 After completing that command it will then execute MCM CONFIG PoRT1MASTERCMD 1 then MCM CONFIG PORT1MASTERCMD 2 and so on You can use Command Control and Event Command to issue a command at the top of the command queue interrupting the regular command list execution You would typically use Command Control and Event Command to issue a reset to a device on a once a day basis poll for end of hour data issue special commands on the startup of a process or the changing of a batch Important Because these special command blocks will interrupt the normal polling list you should use them sparingly to avoid interrupting your normal data transfer Make sure that the data to be written to the device contains the latest value from the WriteData tag that corresponds to the Command Control or Event Command Page 52 of 199 ProSoft Technology Inc June 18 2014 MVI56E MCM ControlLogix Platform Configuration as a Modbus Master Modbus Communication Module User Man
169. l command blocks will interrupt the normal polling list you should use them sparingly to avoid interrupting your normal data transfer Make sure that the data to be written to the Slave contains the latest value from the WriteData tag that corresponds to the Event Command The following illustration describes the structure of the EventCmd block MCM UTIL EventCmd fone MCM LITIL E ventCmd E ventCmdT rigger MCM LITIL E ventCmd E ventCmdPending 0 MCM UTIL E ventCmd PortNumber 1 MCM UTIL E ventCmd SlaveAddress 1 MCM UTIL E ventCmd IntemalDBAddress 1100 MCM UTIL E ventCmd PointCount 10 MCM LITIL E ventCmd SwapCode MCM UTIL E ventCmd ModbusFunctionCode 3 MCM UTIL EventCmd DeviceDBAddress 276 MCM UTIL E ventCmd E ventCmdStatusRetumed MCM UTIL EventCmd EventBlockID Parameter Value Description EventCmd Trigger 1 1 trigger the Event Command EventCmdPending Used EventCommand is executed once PortNumber 1 Module Port to send command out to SlaveAddress 1 Modbus Slave ID command to be issued to InternalDBAddress 1100 1100 will place the data read into MCM DATA ReadData 100 PointCount 10 Consecutive register bits to read or write with the command SwapCode 0 Swap code used with command ModbusFunctionCode 3 Function Code 3 is read 4xxxx holding registers DeviceDBAddress 276 Address in the Slave device to read With Function Code 3 DeviceDBAddress of 276 the module will read s
170. lave Cable Connections The application ports on the MVIS6E MCM module support RS 232 RS 422 and RS 485 interfaces Please inspect the module to ensure that the jumpers are set correctly to correspond with the type of interface you are using Note When using RS 232 with radio modem applications some radios or modems require hardware handshaking control and monitoring of modem signal lines Enable this in the configuration of the module by setting the UseCTS parameter to 1 6 3 1 Ethernet Cable Specifications The recommended cable is Category 5 or better A Category 5 cable has four twisted pairs of wires which are color coded and cannot be swapped The module uses only two of the four pairs The Ethernet ports on the module are Auto Sensing You can use either a standard Ethernet straight through cable or a crossover cable when connecting the module to an Ethernet hub a 10 100 Base T Ethernet switch or directly to a PC The module will detect the cable type and use the appropriate pins to send and receive Ethernet signals Ethernet cabling is like U S telephone cables except that it has eight conductors Some hubs have one input that can accept either a straight through or crossover cable depending on a switch position In this case you must ensure that the switch position and cable type agree Page 138 of 199 ProSoft Technology Inc June 18 2014 MVI56E MCM ControlLogix Platform Reference Modbus Communication Mod
171. list settings for Modbus Port 1 and Modbus Port 2 The values on this menu correspond with the controller tags MCM CONFIG PoRT1MASTERCMD and MCM CONFIG Port2MasterCmd Use the scroll bar on the right edge of the window to view each Modbus Master command Note The Master Command List is available only if the port is configured as a Modbus Master Master Command Status Use the Master Command Status menu to view Master command status for Modbus Port 1 and Modbus Port 2 A zero indicates no error A non zero value indicates an error Refer to Command Error Codes page 69 for an explanation of each value Slave Status List Use the Slave Status List menu to view the status of each Slave connected to the Modbus Master port Slaves attached to the Master Port can have one of the following states 0 The Slave is inactive and not defined in the command list for the Master Port 1 The Slave is actively being polled or controlled by the Master Port This does not indicate that the Slave has responded to this message 2 The Master Port has failed to communicate with the Slave device Communications with the Slave is suspended for a user defined period based on the scanning of the command list 3 Communications with the Slave has been disabled by the ladder logic No communication will occur with the Slave until this state is cleared by the ladder logic Refer to Slave Status Blocks 3000 to 3003 or 3100 to 3103 page 123
172. lock Request from Processor to Module Word Offset Description Length 0 5001 to 5006 or 5101 to 5106 1 1 Command index MCM CONFIG PoRTXMAsTERCMD command 1 index value 2 Command index MCM CONFIG PoRTXMAsTERCMD command 1 index value 3 Command index MCM CONFIG PoRTXMAsTERCMD command 1 index value 4 Command index MCM CONFIG PoRTXMAsTERCMD command 1 index value 5 Command index MCM CONFIG PoRTXMAsTERCMD command 1 index value 6 Command index MCM CONFIG PoRTXMAsTERCMD command 1 index value 7 to 247 Spare 241 Blocks in the range of 5001 to 5006 are used for Modbus Port 1 and blocks in the range of 5101 to 5106 are used for Modbus Port 2 The last digit in the block code defines the number of commands to process in the block For example a block code of 5003 contains 3 command indexes for Modbus Port 1 The Command index parameters in the block have a range of 0 to 99 and correspond to the Master command list entries The module responds to a Command Control block with a block containing the number of commands added to the command queue for the port The following table describes the format for this block Block Response from Module to Processor Word Offset Description Length 0 Reserved 1 1 Write Block ID 1 2 Number of commands added to command queue 1 3 to 248 Spare 246 249 5000 to 5006 or 5100 to 5106 1 Configuration Data Transfer When the module perfor
173. lt 8 v lt Catalog Number Description 1756 M BSEG 8 Axis Generic SERCOS Interface 1756 MODULE Generic 1756 Module MVIBBE GSC Generic ASCII Serial Communication Interface lt gt 3 of 125 Module Types Found Add to Favorites Close on Create Create Close Help 3 Fill the module properties as follows Parameter Value NAME Enter a module identification string Example MCM_2 DESCRIPTION Enter a description for the module Example ProSoft Modbus Communication Module Comm FORMAT Select DATA INT SLOT Enter the slot number in the rack where the MVIS6E MCM module is located INPUT ASSEMBLY INSTANCE 1 INPUT SIZE 250 OUTPUT ASSEMBLY INSTANCE 2 OurPur SIZE 248 CONFIGURATION ASSEMBLY INSTANCE 4 CONFIGURATION SIZE 0 4 Click OK to confirm The new module is now visible 25 1 0 Configuration g 1756 Backplane 1756 A4 0 1756 163 My Controller 8 1 1756 MODULE fs 2 1756 MODULE 2 ProSoft Technology Inc Page 23 of 199 June 18 2014 Start Here MVI56E MCM ControlLogix Platform User Manual Modbus Communication Module Expand the TASKS folder and then expand the MAINTASK folder In the MAINPROGRAM folder double click to open the MAINROUTINE ladder Select an empty rung in the routine and then click the right mouse button to open a shortcut menu On the shortcut menu choose IMPORT RUNGS
174. ludes the Slave address function code quantity of data characters the data characters and error checking Data is packed with one bit for each input 1 ON O OFF The lower order bit of the first character contains the addressed input and the remainder follow For input quantities that are not even multiples of eight the last characters is filled in with zeros at high order end The quantity of data characters is always specified as a quantity of RTU characters that is the number is the same whether RTU or ASCII is used Because the Slave interface device is serviced at the end of a controller s scan data reflects input status at the end of the scan Some Slaves limit the quantity of inputs provided each scan thus for large coil quantities multiple PC transactions must be made using coil status for sequential scans Adr Func Byte Data Discrete Input Data Discrete Input Data Discrete Input Error Check Field Count 10197 to 10204 10205 to 10212 10213 to 10218 0B 02 03 AC DB 35 CRC The status of inputs 10197 to 10204 is shown as AC HEX 10101 1100 binary Reading left to right this show that inputs 10204 10202 and 10199 are all on The other input data bytes are decoded similar Due to the quantity of input statuses requested the last data field which is shown as 35 HEX 0011 0101 binary contains the status of only 6 inputs 10213 to 102180 instead of 8 inputs The two left most bits are provided as zeros to fill t
175. m the processor to the module Each image has a defined structure depending on the data content and the function of the data transfer as defined below 6 2 3 Normal Data Transfer Normal data transfer includes the paging of the user data found in the module s internal database in registers 0 to 9999 and the status data These data are transferred through read input image and write output image blocks Refer to Using the Sample Program in an Existing Application page 186 for a description of the data objects used with the blocks and the ladder logic required The structure and function of each block is discussed below Read Block These blocks of data transfer information from the module to the ControlLogix processor The following table describes the structure of the input image Read Block from Module to Processor Word Offset Description Length 0 Reserved 1 1 Write Block ID 1 to 50 1 2 to 201 Read Data 200 202 Program Scan Counter 1 203 to 204 Product Code 2 205 to 206 Product Version 2 207 to 208 Operating System 2 Page 120 of 199 ProSoft Technology Inc June 18 2014 MVI56E MCM ControlLogix Platform Reference Modbus Communication Module User Manual Word Offset Description Length 209 to 210 Run Number 2 211 to 217 Port 1 Error Status 7 218 to 224 Port 2 Error Status 7 225 to 230 Data Transfer Status 6 231 Port 1 Current Error Index 1 232 Por
176. m the appropriate and complete risk analysis evaluation and testing of the products with respect to the relevant specific application or use thereof Neither ProSoft Technology nor any of its affiliates or subsidiaries shall be responsible or liable for misuse of the information contained herein Information in this document including illustrations specifications and dimensions may contain technical inaccuracies or typographical errors ProSoft Technology makes no warranty or representation as to its accuracy and assumes no liability for and reserves the right to correct such inaccuracies or errors at any time without notice If you have any suggestions for improvements or amendments or have found errors in this publication please notify us No part of this document may be reproduced in any form or by any means electronic or mechanical including photocopying without express written permission of ProSoft Technology All pertinent state regional and local safety regulations must be observed when installing and using this product For reasons of safety and to help ensure compliance with documented system data only the manufacturer should perform repairs to components When devices are used for applications with technical safety requirements the relevant instructions must be followed Failure to use ProSoft Technology software or approved software with our hardware products may result in injury harm or improper operating results Failure to observe thi
177. mands per block PortNumber 1 MVI56E MCM Port number Master Commandlndex 0 to 324 0 to 324 Stores the command index for Command Control block CmdsAddedToQueue Number of commands added to queue This is the confirmation that the Command Control block has completed successfully CmdControlBlocklD Temporary variable to calculate control block ID number CmdCntrolPending Aux control command prevents a second request before acknowledgement is received Note For RSLogix version 15 and lower the ladder logic necessary for the successful execution of this block is contained in the _WriteControl ladder file rung 4 and in the _ReadControl ladder file rung 2 ProSoft Technology Inc Page 53 of 199 June 18 2014 Configuration as a Modbus Master User Manual MVI56E MCM ControlLogix Platform Modbus Communication Module 2 5 2 Event Command Event Command allows you to add commands directly to the command queue interrupting the normal polling sequence of the module Unlike Command Control Event Commands do not return an error code into the location defined by the MCM CONFIG PORTX CMDERRPTR value You do not need to define Event Commands in the regular command list Event Command adds a command to the top of the 56 module s command queue that is not defined within the command list Within an Event Command block you define a Modbus command to add to the queue Important Because these specia
178. mation on diagnostics and troubleshooting in the following forms LED status indicators on the front of the module provide information on the module s status Status data contained in the module can be viewed in ProSoft Configuration Builder through the Ethernet port Status data values are transferred from the module to the processor 5 1 Ethernet LED Indicators The Ethernet LEDs indicate the module s Ethernet port status as follows LED State Description Data OFF Ethernet connected at 10Mbps duplex speed AMBER Solid Ethernet connected at 100Mbps duplex speed Link OFF No physical network connection is detected No Ethernet communication is possible Check wiring and cables GREEN Solid Physical network connection detected This LED must be ON solid or Blinking for Ethernet communication to be possible ProSoft Technology Inc Page 75 of 199 June 18 2014 Diagnostics and Troubleshooting MVI56E MCM ControlLogix Platform User Manual Modbus Communication Module 5 1 1 Scrolling LED Status Indicators The scrolling LED display indicates the module s operating status as follows Initialization Messages Code Message Boot DDOK Module is initializing Ladd Module is waiting for required module configuration data from ladder logic to configure the Modbus ports Waiting for Processor Connection Module did not connect to processor during initialization Sample ladder logic AOI
179. me that a port configured as a Master will wait before re transmitting a command if no response is received from the addressed Slave The value is set depending upon the communication network used and the expected response time of the slowest device on the network 10 033 Retry Count This parameter specifies the number of times a command will be retried if it fails If the Master Port does not receive a response after the last retry the Slave devices communication will be suspended on the port for Error Delay Counter scans 10 034 Error Delay Counter This parameter specifies the number of poll attempts to be skipped before trying to re establish communications with a slave that has failed to respond to a command within the time limit set by the Response Timeout parameter After the slave fails to respond the master will skip sending commands that should have been sent to the slave until the number of skipped commands matches the value entered in this parameter This creates a sort of slow poll mode for slaves that are experiencing communication problems 10 035 to 10 039 Spare Reserved for future use 6 5 3 Port 2 Setup Register Content Description 10 040 Enable This parameter defines if this Modbus Port will be used If the parameter is set to 0 the port is disabled A value of 1 enables the port 10 041 Type This parameter specifies if the port will emulate a Modbus Master device 0 a Modbus Slave
180. messages on the communications system but not respond to them This can affect the outcome of your application program if it depends upon any further exchange of data with the remote device Generally the mode is forced to remove a malfunctioning remote device from the communications system Sub function Codes Supported Only Sub function 00 is supported by the MVI56E MCM module 00 Return Query Data The data passed in the request data field is to be returned looped back in the response The entire response message should be identical to the request Sub function Data Field Request Data Field Response 00 00 Any Echo Request Data ProSoft Technology Inc Page 167 of 199 June 18 2014 MVI56E MCM ControlLogix Platform User Manual Modbus Communication Module Example and State Diagram Here is an example of a request to remote device to Return Query Data This uses a sub function code of zero 00 00 hex in the two byte field The data to be returned is sent in the two byte data field A5 37 hex Request Response Field Name Hex Field Name Hex Function 08 Function 08 Sub function Hi 00 Sub function Hi 00 Sub function Lo 00 Sub function Lo 00 Data Hi A5 Data Hi A5 Data Lo 37 Data Lo 27 The data fields in responses to other kinds of queries could contain error counts or other data requested by the sub function code Page 168 of 199 ProSoft Technology Inc Ju
181. mmand will still occupy 14 register within the MCM DATA READDATA array You must not use addresses 1000 to 1013 in the IntAddress field for any other Modbus Master commands The COP statement for this type of data is the same as shown in Read Multiple Floating Point Registers page 48 MCH DATA ReadData 0 MCM Float Data 0 Page 50 of 199 ProSoft Technology Inc June 18 2014 MVI56E MCM ControlLogix Platform Configuration as a Modbus Master Modbus Communication Module User Manual 2 4 5 Write to Enron Daniel Floats To issue a Write command to Enron Daniel Floats use the Float Flag and Float Start parameters within the ModDef controller tags The following table describes the addresses that will be written to by the module Address Data Type Parameter 47001 32 bit REAL Demand 47002 32 bit REAL Reactive Power 47003 32 bit REAL Apparent Power 47004 32 bit REAL Power Factor 47005 32 bit REAL Voltage Line to Line 47006 32 bit REAL Voltage Line to Neutral 47007 32 bit REAL Current Configure the Float Start and Float Flag parameters as shown MCM CONFIG Portl FloatFlag MCM CONFIG Portl FloatStait The Float Flag causes the module to use the FloatStart parameter to determine which DevAddress requires a write command to issue double the number of bytes With the above configuration any DevAddress gt 7000 is known to be floating point data Therefore a
182. mmunication Module The following illustration shows an example of the Data Analyzer output Diagnostics Connection Log Module MVI56E MCM Time 08 45 43 84 BACKPLANE lt 2D gt lt 00 gt lt 2E gt lt 00 gt lt 2F gt lt 00 gt lt 30 gt lt 00 gt lt 31 gt lt 16 gt lt E0 gt lt R gt _TT__TT_ 05 10 00 28 00 0A Contig c1 82 TT TT TT TT TT p TT TT TT TT a m m m p p p yg gy gg e T Status TT_ lt R gt lt 06 gt lt 04 gt lt 00 gt lt 32 gt lt 00 gt lt 0A gt lt D0 gt lt 75 gt lt R gt _ afa DATABASE oo o0 t 0 00 00 00 00 00 TT 00 00 00 00 00 993 G asci oo 00 F3 97 TT TT TT TT TT TT TT TT TT TT TT TT TT TT TT TT Decimal _ __ __ __ __ __ __ _ lt gt lt 06 gt lt 10 gt lt 00 gt lt 32 gt lt 00 gt lt 0 gt lt 14 gt lt 00 gt lt 32 gt lt 00 gt lt 33 gt lt 00 gt Float lt 34 gt lt 00 gt lt 3 5 gt lt 00 gt lt 36 gt lt 00 gt lt 3 7 gt lt 00 gt lt 38 gt lt 00 gt lt 39 gt lt 00 gt lt 3A gt lt 00 gt lt 3B gt lt 1LE gt lt 26 gt lt R gt _TT_TT_ Hex 06 10 00 32 00 oa EO 76 TT TT TT TT TT TT TT TT TT TT TT TT TT ur 117 T TT a Eus gj Version R TT 01 03 14 00 TT 00 00 00 00 00 00
183. module If the connection succeeds click DOWNLOAD to transfer the Ethernet configuration to the module Page 98 of 199 ProSoft Technology Inc June 18 2014 MVI56E MCM ControlLogix Platform Diagnostics and Troubleshooting Modbus Communication Module User Manual If the Test Connection procedure fails you will see an error message To correct the error follow these steps 1 Click OK to dismiss the error message 2 Inthe Download dialog box click BROWSE DEVICE S to open ProSoft Discovery Service i Discovery Service Assign Temporary IP Device Details Remove Temporary IP View modules webpage Select For PCB Click the search icon to begin the browse 3 Select the module and then click the right mouse button to open a shortcut menu On the shortcut menu choose SELECT FOR PCB 4 Close ProSoft Discovery Service 5 Click DOWNLOAD to transfer the configuration to the module 5 7 Using the Diagnostics Menu in ProSoft Configuration Builder The Diagnostics menu available through the Ethernet configuration port for this module is arranged as a tree structure with the Main menu at the top of the tree and one or more submenus for each menu command The first menu you see when you connect to the module is the Main menu Tip You can have a ProSoft Configuration Builder Diagnostics window open for more than one module at a time To connect to the module s Configuration Debug Ethernet port 1 In ProSo
184. ms a restart operation it will request configuration information from the ControlLogix processor This data is transferred to the module in specially formatted write blocks output image The module will poll for each block by setting the required write block number in a read block input image Refer to Using the Sample Program in an Existing Application page 186 for a description of the data objects used with the blocks and the ladder logic required The format of the blocks for configuration is given in the following topics Page 126 of 199 ProSoft Technology Inc June 18 2014 MVI56E MCM ControlLogix Platform Reference Modbus Communication Module User Manual Module Configuration Block 9000 On boot up the module sends a request for configuration information to the processor The request block has a Block ID of 9000 Block Request from Module to Processor Word Offset Description Length 0 Reserved 1 1 9000 1 2 to 248 Spare 247 249 9000 1 The processor responds by sending a block with general configuration information to the module Configuration Block from Processor to Module Word Offset Description Length 0 9000 1 1to6 Backplane Setup 6 7 to 31 Port 1 Configuration 25 32 to 56 Port 2 Configuration 25 57 to 59 Port 1 Aux Configuration 3 60 to 62 Port 2 Aux Configuration 3 63 to 247 Spare 185 If the configuration information is valid the module commenc
185. n another confirmation dialog box Click OK to switch the processor from PROGRAM mode to RUN mode RSLogix 5000 N Done downloading Change controller mode back to Remote Run Note If you receive an error message during these steps refer to your RSLogix documentation to interpret and correct the error 6 10 2 Using the Sample Program in an Existing Application 1 Open the Sample Ladder Logic in RSLogix 5000 2 Start another instance of RSLogix 5000 and then open your existing application You will be adding the MVIS6E MCM module definition and then copying controller tags ladder logic and user defined data types from the sample application into your existing application Defining Module in Confiquration Note You cannot perform this procedure while you are online to the controller Page 186 of 199 ProSoft Technology Inc June 18 2014 MVI56E MCM ControlLogix Platform Reference Modbus Communication Module User Manual 1 In the CONTROLLER ORGANIZATION list in RSLogix 5000 click the right mouse button on the I O CONFIGURATION icon to open a shortcut menu On the shortcut menu choose NEW MODULE This action opens the SELECT MODULE TYPE dialog box Controller Controller A Controller Tags Z3 Controller Fault Handler Z3 Power Up Handler Tasks MainTask E MainProgram 29 Unscheduled Programs 27 5 Motion Groups Ungrouped Axes m Cl
186. n the ControlLogix processor MVI56E MCM module and nodes on the Modbus network Each port on the module can be configured to emulate a Modbus Master device or a Modbus Slave device independently from the configuration of the other port Only the module database is shared between ports The sections below discuss the operation of each mode Page 134 of 199 ProSoft Technology Inc June 18 2014 MVI56E MCM ControlLogix Platform Reference Modbus Communication Module User Manual Slave Driver The Slave Driver Mode allows the module to respond to data read and write commands issued by a Master on the Modbus network The following illustration describes the flow of data to and from the module 4 5 Processor Memory Backplane Interface MCM Module ControtLogix Database Modbus Controller Tags Addresses i 0 40001 1 1 Register 1 Data i Register i eme storage D 1 hy Mode Driver 9 9999 ac th nts Status from Module The Modbus Slave Port driver receives the configuration information from the ControlLogix processor This information configures the serial port and defines the Slave node characteristics Additionally the configuration information contains data that can be used to offset data in the database to addresses requested in messages received from Master units A Host device such as a Modicon PLC or an HMI application issue
187. n the Sample Program window select one data type at a time and then drag the data type to the User Defined data types folder in your existing program Page 188 of 199 ProSoft Technology Inc June 18 2014 MVI56E MCM ControlLogix Platform Reference Modbus Communication Module User Manual 4 Repeat these steps until you have copied all of the data types from the sample program into your existing application Note Data types prefixed with an underscore _ are used in optional routines and need not be copied unless your application requires them Refer to MVIS6E MCM MVI56E MCM User Defined Data Types page 154 for a description of the usage for each data type Copying the Sample Ladder Logic Next copy the Sample Ladder Logic from the sample program to your existing program 1 In the CONTROLLER ORGANIZATION pane the Sample Program expand the TASKS folder until the list of program routines is visible B Controller 156 A Controller Tags 29 Controller Fault Handler Power Up Handler E Tasks cm MainTask MainProgram I Program Tags B WriteData B PassThru ReadControl writeControl E Unscheduled Programs Motion Groups Trends Data Types E I O Configuration 2 Inthe Sample Program window select one routine at a time and then drag the routine to the MainProgram folder in your existing program 3 Save your program The sample program
188. nd queue for the port is full 325 commands for each queue for modules with firmware version 3 01 or higher and Add on Instruction version 2 8 or higher Slave Status Blocks 3000 to 3003 or 3100 to 3103 Slave status blocks send status information of each Slave device on a Master Port Slaves attached to the Master Port can have one of the following states 0 The Slave is inactive and not defined in the command list for the Master Port 1 The Slave is actively being polled or controlled by the Master Port This does not indicate that the Slave has responded to this message 2 The Master Port has failed to communicate with the Slave device Communications with the Slave is suspended for a user defined period based on the scanning of the command list 3 Communications with the Slave has been disabled by the ladder logic No communication will occur with the Slave until this state is cleared by the ladder logic Slaves are defined to the system when the module initializes the Master command list Each Slave defined will be set to a state of one in this initial step If the Master Port fails to communicate with a Slave device retry count expired on a command the Master will set the state of the Slave to a value of 2 in the status table This suspends communication with the Slave device for a user specified scan count ERRORDELAYCNTR value in the MCMPORT object for each port Each time a command in the list is scanned that ha
189. ne 18 2014 MVI56E MCM ControlLogix Platform Reference Modbus Communication Module User Manual 6 8 9 Force Multiple Coils Function Code 15 Query This Function Code forces each coil Modbus Ox range in a consecutive block of coils to a desired ON or OFF state Any coil that exists within the controller can be forced to either state ON or OFF However because the controller is actively scanning unless the coils are disabled the controller can also alter the state of the coil Coils are numbered from zero coil 00001 zero coil 00002 one and so on The desired status of each coil is packed in the data field one bit for each coil 12 ON 0 OFF The use of Slave address 0 Broadcast Mode will force all attached Slaves to modify the desired coils Note Functions 5 6 15 and 16 are the only messages other than Loopback Diagnostic Test that will be recognized as valid for broadcast The following example forces 10 coils starting at address 20 13 HEX The two data fields CD 1100 and 00 0000 000 indicate that coils 27 26 23 22 and 20 are to be forced on Note This is the structure of the message being sent out to the Modbus network The byte values below are in hexadecimal display Adr Func HiAdd Lo Quantity Byte Data Coil Status Data Coil Status Error Check Add Cnt 20 to 27 28 to 29 Field 0B OF 00 13 00 0 02 00 Response The normal response will be an echo of the Slave address
190. nology Inc June 18 2014 Page 17 of 199 Start Here MVI56E MCM ControlLogix Platform User Manual Modbus Communication Module Parameter Value SLOT Enter the slot number the rack where the MVIS6E MCM module is located INPUT ASSEMBLY INSTANCE 1 INPUT SIZE 250 OUTPUT ASSEMBLY INSTANCE 2 OurPur SIZE 248 CONFIGURATION ASSEMBLY INSTANCE 4 CONFIGURATION SIZE 0 Important You must select the COMM FORMAT as DATA INT in the dialog box otherwise the module will not communicate over the backplane of the ControlLogix rack 4 Click OK to continue 5 Edit the Module Properties Select the REQUESTED PACKET INTERVAI value for scanning the I O on the module This value represents the minimum frequency at which the module will handle scheduled events This value should not be set to less than 1 millisecond The default value is 5 milliseconds Values between 1 and 10 milliseconds should work with most applications Wil Module Properties Local 1 1756 MODULE 1 1 General Connection Module Info Backplane Requested Packet Interval RPI b o d ms 0 2 750 0 ms Inhibit Module Major Fault On Controller If Connection While in Run Mode Module Fault Status Offline Cancel Page 18 of 199 ProSoft Technology Inc June 18 2014 MVI56E MCM ControlLogix Platform Start Here Modbus Communication Module User Manual 6 Click OK to save the module and close the dialog bo
191. oSoft Technology Inc June 18 2014 MVI56E MCM ControlLogix Platform Modbus Communication Module Configuration as a Modbus Master User Manual Below is a sample command to read Modbus addresses 0321 to 0480 of node 1 on the Modbus network MCM CONFIG Port MasterCmd 2 Enable 1 MCM CONFIG Port MasterCmd 2 Int amp ddress 16320 MCM CONFIG Port MasterCmd 2 Polllnt 0 MCM CONFIG Port MasterCmd 2 Count 160 MCM CONFIG Port MasterCmd 2 Swap 0 MCM CONFIG Port MasterCmd 2 Node 1 MCM CONFIG Port MasterCmd 2 Func 1 MCM CONFIG Port MasterCmd 2 Dev amp ddress 320 Label Description Enable 1 The module will send the command every time it goes through the command list IntAddress 16320 Places the data read from the Slave device into the module at address 16320 IntAddress 16320 of the module memory will be copied into the tag MCM DATA READDATA 20 because 16320 represents a bit address within the memory of the 156 module 16320 16 register 1020 Count 160 Reads 160 consecutive bits from the Slave device Node 1 Issues the Modbus command to node 1 on the network Func 1 Issues Modbus Function Code 1 to Read Coils DevAddress 320 Function Code 1 DevAddress of 320 will read address 0321 Along with a count of 160 this command reads 0321 to 0480 2 3 4 Read Input Status 1x Modbus Function Code 2 Use this command to read Input Coils
192. odDef rite Ca Unscheduled Programs 51 4 Motion Groups Ungrouped Axes C3 Trends 5 69 Data Types 2 88 User Defined EE MCM CONFIG ModDef Read fj MCMBIkStat FE MCM CONFIG ModDef Read McMCmd EE MCM CONFIG ModDef BPF ail MCMCONFIG T MCMCONTROL EE MCM CONFIG ModDef EriSta 6 T FE MCM CONFIG Portl 192 199 MVI56E MCM ControlLogix Platform Modbus Communication Module ProSoft Technology Inc June 18 2014 MVI56E MCM ControlLogix Platform Reference Modbus Communication Module User Manual configure a Modbus Master refer to Configuration as a Modbus Master page 33 configure a Modbus Slave refer to Configuration as a Modbus Slave page 56 Note In order for any of the new values entered into these fields to be used by the module you must restart the module WarmBoot ColdBoot or cycle power ProSoft Technology Inc Page 193 of 199 June 18 2014 MVI56E MCM ControlLogix Platform User Manual Modbus Communication Module Page 194 of 199 ProSoft Technology Inc June 18 2014 MVI56E MCM ControlLogix Platform Support Service amp Warranty Modbus Communication Module User Manual 7 Support Service amp Warranty In This Chapter Contacting Technical 195 Warranty 1
193. oils Function Code 15 169 Force Single Coil Function Code 05 165 Formatted Pass Through Blocks 9956 to 9959 130 Function 15 131 ProSoft Technology Inc June 18 2014 Page 197 of 199 Support Service amp Warranty User Manual MVI56E MCM ControlLogix Platform Modbus Communication Module Function 5 130 Function 6 and 16 130 Functional Overview 118 Functional Specifications 116 G General Specifications 115 General Specifications Modbus Master Slave 116 H Hardware Specifications 117 Import the Ladder Rung 19 Important Safety Information 3 Importing the Utility Add On Instruction 173 Installing ProSoft Configuration Builder 78 Installing the Module in the Rack 13 MainRoutine 189 Master Command Configuration 34 37 150 Master Command Data List 6000 to 6012 or 6100 to 6112 128 Master Command Examples 41 Master Command List 106 138 Master Command Status 106 Master Driver 136 Status Data 72 MCMBlkStat 157 158 154 156 154 MCMCONTROL 154 158 160 154 157 MCMModule 154 155 MCMModuleDef 154 MCMPort 106 154 155 MCMPortErrors 157 MCMSTATUS 154 157 Misc Status 105 150 Modbus Exception Codes 171 Modbus Exception Responses 170 Modbus Memory Map 59 61 119 Modbus Protocol Specification 160 ModDef Settings 34 58
194. olding Reg Offset This parameter specifies the offset address in the internal Modbus database for network requests for Modbus function 3 6 or 16 commands For example if a value of 50 is entered a request for address 0 will correspond to the register 50 in the database 10 059 Command Count This parameter specifies the number of commands to be processed by the Modbus Master Port 10 060 Minimum Command Delay This parameter specifies the number of milliseconds to wait between issuing each command This delay value is not applied to retries 10 061 Command Error Pointer This parameter sets the address in the internal Modbus database where the command error will be placed If the value is set to 1 the data will not be transferred to the database The valid range of values for this parameter is 1 to 9675 10 062 Response Timeout This parameter represents the message response timeout period in 1 millisecond increments This is the time that a port configured as a Master will wait before re transmitting a command if no response is received from the addressed Slave The value is set depending upon the communication network used and the expected response time of the slowest device on the network 10 063 Retry Count This parameter specifies the number of times a command will be retried if it fails If the Master Port does not receive a response after the last retry the Slave devices communic
195. oller My Controller Controller Tags Controller Fault Handler Power Up Handler E um Poth AB ETHIP 2 10 1 3 185 Backplane 0 4 b B eod Add On MVISBE MCM modules AOISBMCM Tasks amp amp MainTask amp MainProgram A Program Tags ITITTI 29 Unscheduled Programs Phases Motion Groups E Ungrouped Axes Add On Instructions E AOIS6MCM E Data Types G Trends Yo Configuration 5 1756 Backplane 1756 44 fa 0 1756 L63 My Controller 9 1 1756 MoDULE Add On MVISBE MCM modules AOISBMCM AOISBMCM Connection Input Local 1 1 Data Connection_Output Local 1 0 Data MCM MCM MainRoutine lt Rung 0 of 1 The procedure has also imported new User Defined Data Types Controller Tags and the Add On Instruction for your project 4 HH too ict 88 gt Favorites Add on 7 Save the application and then download the sample ladder logic into the processor ProSoft Technology Inc June 18 2014 Page 21 of 199 Start Here User Manual MVI56E MCM ControlLogix Platform Modbus Communication Module 1 6 4 Adding Multiple Modules Optional Important If your application requires more than one MVI56E MCM module in the same project follow the steps below 1 In the I O CONFIGURATION folder click the right mouse button to open a shortcut menu and then choose NEW MODULE import Confi
196. ology Inc June 18 2014 MVI56E MCM ControlLogix Platform Diagnostics and Troubleshooting Modbus Communication Module User Manual 2 Click the right mouse button to open a shortcut menu On the shortcut menu choose DIAGNOSTICS Lg Default Project Ga Default Location 56E MCM Delete Rename Copy Choose Module Type View Configuration Export Configuration File s Load Config File Download from PC to Device Upload From Device to PC Diagnostics 3 Inthe Diagnostics window click the SET UP CONNECTION button Pal 25 9 Click to set up connection ProSoft Technology Inc Page 95 of 199 June 18 2014 Diagnostics and Troubleshooting MVI56E MCM ControlLogix Platform User Manual Modbus Communication Module 4 Inthe Connection Setup dialog box click the BROWSE DEVICE S button to open the ProSoft Discovery Service Right click the module icon and then choose ASSIGN TEMPORARY IP Prosoft Discovery Service Device Details Remove Temporary IP View module s webpage Select for PCB Click the search icon to begin the browse 5 The module s default IP address is usually 192 168 0 250 Choose an unused IP within your subnet and then click OK A Assign Temporary IP Address DER Temporary IP 192 168 0 253 0 Network Mask 255 255 255 Important The temporary IP address is only valid until the next time the module is initialized For information on how to
197. ommand to the Slave device Valid values for this field are as follows 1 Read Coil Status This will read Modbus addresses 0001 to 9999 These bit values indicate coil status Use Function Code 5 or 15 to write to these registers 2 Read Input Coils This will read Modbus addresses 10001 to 29999 Like Function Code 1 these are also bit values but Function Code 2 values are Read Only data values Use Function Code 5 or 15 to write to these registers 3 Read Holding Registers This will read Modbus addresses 40001 to 47999 This is a 16 bit word value Use Function Codes of 6 and 16 to write to these registers 4 Read Input Registers This will read Modbus addresses 30001 to 39999 These are also 16 bit word values but are Read Only data The Modbus Master cannot write to these registers 5 Force Write Single Coil Status This will write to Modbus addresses 0001 to 9999 This command will write to only one coil Use Function Code 15 to write to multiple coils 6 Preset Write Single Register This will write to Modbus addresses 40001 to 47999 This command writes a single register value out to a Slave device Use Function Code 16 to write to multiple registers 15 Force Write Multiple Coil This will write multiple coil values to the Slave addresses 0001 to 9999 16 Preset Write Multiple Register This will write multiple register values to the Slave device at addresses 40001 to 49999 ProSoft Technology Inc
198. ommands containing invalid data are ignored by the module ProSoft Technology Inc Page 137 of 199 June 18 2014 MVI56E MCM ControlLogix Platform User Manual Modbus Communication Module 6 3 Master Command List In order to function in the Master Mode you must define the module s Master Command List This list contains up to 325 individual entries for module firmware versions 3 01 and higher and Add on Instruction version 2 8 or higher with each entry containing the information required to construct a valid command A valid command includes the following items Command enable mode 0 disabled 1 continuous or 2 conditional Slave Node Address Command Type Read or Write up to 125 words 16000 bits per command Database Source and Destination Register Address The addresses where data will be written or read Count The number of words to be transferred 1 to 125 on FC 3 4 or 16 Select the number of bits on FC 1 2 15 As the list is read in from the processor and as the commands are processed an error value is maintained in the module for each command This error list can be transferred to the processor The following tables describe the error codes generated by the module Note 125 words is the maximum count allowed by the Modbus protocol Some field devices may support less than the full 125 words Check with your device manufacturer for the maximum count supported by your particular s
199. ommon PINS RS 232 Modem Connection Hardware Handshaking Required This type of connection is required between the module and a modem or other communication device RS 232 Application Port Cable Modem Connection DB 9 Male RS 232 Device c RxD 2 ro RTS RTS CTS CTS Signal Signal Common Common DTR DTR The Use CTS Line parameter for the port configuration should be set to Y for most modem applications Page 140 of 199 ProSoft Technology Inc June 18 2014 MVI56E MCM ControlLogix Platform Reference Modbus Communication Module User Manual RS 232 Null Modem Connection Hardware Handshaking This type of connection is used when the device connected to the module requires hardware handshaking control and monitoring of modem signal lines RS 232 Application Port Cable Hardware Handshaking DB 9 Male RS 232 Device RxD RxD TxD RTS CTS CTS RTS Signal 5 Signal Common Common DTR DSR DCD RS 232 Null Modem Connection No Hardware Handshaking This type of connection can be used to connect the module to a computer or field device communication port RS 232 Application Port Cable No Handshaking DB 9 Male RS 232 Device Note For most null modem connections where hardware handshaking is not required the Use CTS Line parameter should be set to N and no jumper will be required between Pins 7 RTS and 8 CTS on the connector If the port is configured with the
200. on 15 and earlier refer to Using the Sample Program RSLogix 5000 Version 15 and earlier page 180 Most applications can use the Sample Ladder Logic without modification ProSoft Technology Inc Page 11 of 199 June 18 2014 Start Here MVI56E MCM ControlLogix Platform User Manual Modbus Communication Module 1 3 1 4 Package Contents The following components are included with your 156 module and are all required for installation and configuration Important Before beginning the installation please verify that all of the following items are present Qty Part Name Part Number Part Description 1 MVI56E MCM Module MVI56E MCM Modbus Communication Module 1 Cable RL CBL025 5 foot Ethernet Straight Through Cable Gray 2 Cable Cable 14 RJ45 For DB9 Connection to Module s DB9 Male Adapter Application Serial Port cable 2 Adapter 1454 9F Two Adapters DB9 Female to Screw Terminal For RS422 or RS485 Connections to Port 1 and 2 of the Module 1 ProSoft Solutions DVD 001 Contains ProSoft Configuration Builder DVD PCB and ProSoft Discovery Service PDS for the MVI5GE MCM modules If any of these components are missing please contact ProSoft Technology Support for replacement parts Setting Jumpers There are three jumpers located at the bottom of the module The first two jumpers P1 and P2 set the serial communication mode RS 232 RS 422 or RS 485 The following illustra
201. on the Modbus network is the starting location for Modbus floating point data Every address will occupy 2 registers within the modules database FloatOffset Determines the address within the module to which to associate the data from the FloatStart section Here is a sample configuration for the module MCM CONFIG Port2 FloatFlag 1 MCM CONFIG Port2 FloatStart 7000 MCM CONFIG Port2 FloatOffset 100 With the above configuration this would be the addressing for the module Module Address Modbus Address Tag Address 100 47001 MCM DATA WriteData 100 102 47002 MCM DATA WriteData 102 104 47003 MCM DATA WriteData 104 110 47006 MCM DATA WriteData 110 120 47011 MCM DATA WriteData 120 200 47051 MCM DATA WriteData 200 300 47101 MCM DATA WriteData 300 500 47201 MCM DATA WriteData 500 Page 64 of 199 ProSoft Technology Inc June 18 2014 MVI56E MCM ControlLogix Platform Configuration as a Modbus Slave Modbus Communication Module User Manual 3 5 Read and Write Same Modbus Address Pass Through In some applications the Modbus Master must be able to read and write to the same Modbus address within the module This is not possible for normal Slave communication as data can either be read from the WriteData array or written to the ReadData array but not both Pass Through mode allows the Modbus Master to bypass the module s internal memory and then read and write directly to the p
202. ontrol Event Command and Slave status blocks are sent to the module in this task Copying the Controller Tags Next copy the Controller Tags from the sample program to your existing program The sample program includes the following tags in the MCM structure MCM MODDEr configures the database in the module The module uses this database to store input and output data transferred between the processor and the Modbus devices connected to the 156 module MCM PoRT1 and MCM PoRT2 configure the module s serial ports for Modbus communications The sample program configures Port 1 as a Modbus Master and Port 2 as a Modbus Slave 1 and 2 configure the Modbus Master commands for the module These commands are active only if a port is configured as a Modbus Master MCM READDATA contains data read by the ControlLogix processor from the MVI56E MCM module MCM WRITEDATA contains data read from the ControlLogix processor to the module s internal database ProSoft Technology Inc Page 191 of 199 June 18 2014 User Manual The remaining controller tags contain error and status information and special commands to execute 1 In the CONTROLLER ORGANIZATION pane in each instance of RSLogix 5000 expand the CONTROLLER folder 2 Double click the CONTROLLER TAGS icon in each instance of RSLogix 5000 This action opens the CONTROLLER TAGS dialog box 3 In the CONTROLLE
203. ontrolLogix Ethernet lt 5 Select the module and then click OK ProSoft Technology Inc Page 93 of 199 June 18 2014 Diagnostics and Troubleshooting MVI56E MCM ControlLogix Platform User Manual Modbus Communication Module 5 5 3 Connecting Your PC to the Module s Ethernet Port With the module securely mounted connect one end of the Ethernet cable to the CONFIG E1 Port and the other end to an Ethernet hub or switch accessible from the same network as your PC Or you can connect directly from the Ethernet Port on your PC to the CoNFIG E1 Port on the module Assigning a Temporary IP Address This procedure assigns a temporary IP address so that you can use the ProSoft Configuration Builder to download a configuration file containing the permanent IP address Important ProSoft Configuration Builder locates MVIb6E MCM modules through UDP broadcast messages These messages may be blocked by routers or layer 3 switches In that case ProSoft Discovery Service will be unable to locate the modules To use ProSoft Configuration Builder arrange the Ethernet connection so that there is no router layer 3 switch between the computer and the module OR reconfigure the router layer 3 switch to allow routing of the UDP broadcast messages 1 Inthe tree view in ProSoft Configuration Builder select the MVI56E MCM module 3 Default Project 2 Default Location h EDEN Page 94 of 199 ProSoft Techn
204. or For a Slave Port this field contains the value of the last error code returned For a Master Port this field contains the index of the command with an error 15 303 to 15 350 Spare 15 351 Port 1 InterCharacterDelay 0 to 65535 milliseconds time between characters to signal end of message 15 352 Port 1 Fcn 99 Offset Internal DB offset to Function 99 counter 15 353 to 15 360 Spare 15 360 Spare 15 361 Port 2 0 to 65535 milliseconds time between characters InterCharacterDelay to signal end of message 15 362 Port 2 Fcn 99 Offset Internal DB offset to Function 99 counter 15 363 to 15 399 Spare 6 5 7 Command Control Register Content Description 15 400 Command Code Enter one of the valid control command codes in this register to control the module 9997 9998 or 9999 MVI56E MCM Status Data Definition This section contains a description of the members present in the MCM STATUS object This data is transferred from the module to the processor as part of each read block Offset Content Description 202 Program Scan Count This value is incremented each time a complete program cycle occurs in the module 203 to 204 Product Code These two registers contain the product code of 205 to 206 Product Version These two registers contain the product version for the current running software Page 152 of 199 ProSoft Technology
205. our computer s DVD drive and wait for the ProSoft Installation program to start 2 If the ProSoft Installation program does not start open the Windows file Explorer navigate to the DVD and double click on the ProSoft DVD exe file 3 Navigate to the MVI56E MCM selection using the PLATFORM and PRODUCT selections 4 Click PROSOFT CONFIGURATION BUILDER 5 Follow the instructions that appear on the screen 5 4 2 Setting Up the Project To begin start PROSOFT CONFIGURATION BUILDER PCB M Microsoft Update Set Program Access and Defaults WO Windows Catalog x Accessories Windows Update v Ei Administrative Tools lc ProSoft Technology 7 ProSoft Configuration Builder Documents e Internet Explorer ProSoft Transport Path Editor gt Settings b Paint ProSoft Discovery Service 4 Search o Windows Media Player Help and Support Run Shut Down ProSoft Technology Inc Page 79 of 199 June 18 2014 Diagnostics and Troubleshooting MVI56E MCM ControlLogix Platform User Manual Modbus Communication Module If you have used other Windows configuration tools before you will find the screen layout familiar PCB s window consists of a tree view on the left and an information pane and a configuration pane on the right side of the window When you first start PCB the tree view consists of folders for Default Project and Default Location with a Default Module in the
206. oved from the module to the processor while the Write Data area is moved from the processor to the module You can configure the start register and size of each area The size of each area you configure must match the Add On Instruction controller tag array sizes for the READDATA and WRITEDATA arrays The MVI56E MCM sample program is configured for 600 registers of READDATA and 600 registers of WRITEDATA which is sufficient for most application This topic describes how to configure user data for applications requiring more than 600 registers of ReadData and WriteData In this example we will expand both the Read and Write Data sizes to 1000 Important Because the module pages data in blocks of 200 registers at a time you must configure your user data in multiples of 200 registers Caution When you change the array size RSLogix may reset the MCM tag values to zero To avoid data loss be sure to save your settings before continuing 1 In the CONTROLLER ORGANIZATION window expand the DATA TYPES and USER DEFINED folders and then double click MCMDATA This action opens an edit window for the MCMDATA data type SJ Data Types Ca User Defined CmdControl CoilArray EventCmd MCMBlkStat MCMCmd MCMCONFIG MCMCONTROL BEEBE 2 Inthe edit window change the value of the READDATA array from INT 600 to INT 1000 as shown and then click APPLY Members Name Data Type ReadD ata i WriteData INT 600 tof eto Note If
207. p Motion Groups Edt Rung C3 Ungrouped Axes G Add On Instructions Data Types 08 User Defined x 08 Strings 08 Add On Defined E 08 Predefined 8 Module Defined G Trends 1 0 Configuration 2 e 1756 Backplane 1756 A4 ffa 0 1756 171 My Controller 9 1 1756 MoDULE Import Rungs Rung End ofO APP Add Ladder Element Alt Ins ProSoft Technology Inc Page 19 of 199 June 18 2014 Start Here MVI56E MCM ControlLogix Platform User Manual Modbus Communication Module 4 Navigate to the location on your PC where you Before You Begin page 15 the Add On Instruction for example My Documents or Desktop Select the MVI56EMCM_ADDON_RUNG_V2 8 L5xX file Import Rungs Look in Desktop Documents 4 9 My Computer My Recent my Network Places Documents toni tir tye Rie File name MVISEMCM_AddOn_Rung_v2_8 L8X Files of type My Emm Files containing Places in b Overwrite Selected Rungs This action opens the IMPORT CONFIGURATION dialog box Click TAGS under MAINROUTINE to show the controller tags that will be created Note that if you are using a controller revision number of 16 or less the IMPORT CONFIGURATION dialog box does not show the IMPORT CONTENT tree Wil Import Configuration T Find Within Final Name Import Content MainT ask Configure Tag References pur
208. pecial characters Character Definition Data enclosed in these characters represent data received on the port lt gt Data enclosed in these characters represent data transmitted on the port lt gt These characters inserted when the RTS line is driven high on the port lt R gt These characters are inserted when the RTS line is dropped low on the port lt CS gt These characters are displayed when the CTS line is recognized high _TT_ These characters are displayed when the Time Tick is set to any value other than No Ticks Stopping the Data Analyzer asl pale Click to stop Data Analyzer Important When in analyzer mode program execution will slow down Only use this tool during a troubleshooting session Before disconnecting from the Config Debug port please stop the data analyzer This action will allow the module to resume its normal high speed operating mode Page 108 of 199 ProSoft Technology Inc June 18 2014 MVI56E MCM ControlLogix Platform Diagnostics and Troubleshooting Modbus Communication Module User Manual Data Analyzer Tips For most applications HEX is the best format to view the data and this does include ASCII based messages because some characters will not display in the Diagnostics window and by capturing the data in HEX we can figure out what the corresponding ASCII characters are supposed to be The Tick value is a timing mark The module w
209. program 1 On the Connected to Go Online dialog box click the Select File button 2 Choose the sample program file that matches your firmware version and then click the Select button 3 RSLogix will load the sample program The next step is to configure the correct controller type and slot number for your application Choosing the Controller Type The sample application is for a 1756 L63 ControlLogix 5563 Controller If you are using a different model of the ControlLogix processor you must configure the sample program to use the correct processor model 1 Inthe Controller Organization list select the folder for the controller and then click the right mouse button to open a shortcut menu 2 Onthe shortcut menu choose PROPERTIES This action opens the Controller Properties dialog box fi Controller Properties MVI56 imi xi Date Time Advanced SFC Execution File Redundancy Nonvolatile Memory General Serial System Protocol User Protocol Major Faults Minor Faults Vendor Allen Bradley Type 1756 L55 ControlLogix5555 Controller Change Type Revision 11 25 Change Revision Name MVI56 Example Logic forthe MVI56 module Description Chassis Type Slot 0 ProSoft Technology Inc Page 183 of 199 June 18 2014 MVI56E MCM ControlLogix Platform User Manual Modbus Communication Module 3 Click the CHANGE TYP
210. r from module to PLC ReadRegCnt INT Number of registers to transfer from module BPFail INT Determines module operation if BP fails O continue 20 number of retries before comm shutdown ErrStatPtr INT Internal DB start register for status data 1 Ignore MCMPort This object contains the serial port configuration for the MVIS6E MCM module Name Data Type Description Enabled INT 0 Port Disabled 1 Port Enabled Type INT 0 Master 1 Slave 2 Slave pass through 3 Slave formatted pass through data swapped 4 Slave form pass through FloatFlag INT OzNo floating point data 1 Use floating point data FloatStart INT Register offset in message for floating point data FloatOffset INT Internal DB offset to start of floating point data Protocol INT 0 Modbus RTU 1 Modbus ASCII Baudrate INT Baudrate for port 110 to 115 2K Parity INT 0 None 1 Odd 2 Even 3 Mark 4 Space DataBits INT 5 to 8 data bits StopBits INT 1 or 2 stop bits RTSOn INT 0 65535 mSec delay before data RTSOff INT 0 65535 mSec delay after data MinResp INT 0 65535 mSec minimum time before response to request ProSoft Technology Inc June 18 2014 Page 155 of 199 MVI56E MCM ControlLogix Platform User Manual Modbus Communication Module Name Data Type Description UseCTS INT OzNo 1 Yes to use CTS modem line SlavelD INT 1 255 Modbus Node Address Slave BitlnOffset INT Intern
211. re 214 Port 1 Requests This field contains the total number of messages sent from the port 215 Port 1 Responses This field contains the total number of messages received on the port 216 Port 1 Errors Sent This field contains the total number of message errors sent from the port 217 Port 1 Errors This field contains the total number of message errors Received received on the port 221 Port 2 Requests This field contains the total number of messages sent out the port 222 Port 2 Responses This field contains the total number of messages received on the port 223 Port 2 Errors Sent This field contains the total number of message errors sent out the port 224 Port 2 Errors This field contains the total number of message errors Received received on the port 225 Read Block Count This field contains the total number of read blocks transferred from the module to the processor 226 Write Block Count This field contains the total number of write blocks transferred from the module to the processor 227 Parse Block Count This field contains the total number of blocks successfully parsed that were received from the processor 228 Command Event This field contains the total number of command event Block Count blocks received from the processor 229 Command Block This field contains the total number of command blocks Count received from the processor 230 Error Block Count This field contains the total number of block errors recognized by the module 231 Po
212. rence Modbus Communication Module User Manual You will notice that new tags have been imported four MESSAGE tags MVIB6MCMCLock and 156 tags f RSLogix 5000 My_ Controller 1756 171 20 12 Controller Tags My_Controller controller Eile Edit View Search Logic Communications Tools Window Help ae amp Boo v B0 E YF aq Offline D F RUN uv Path _ 2 10 1 3 18 amp 0 v amp 4 No Forces ok Energy Storage No Edits 8 gt Favorites lt Satety Controller Organizer Scope My_Controller Shove All Tags Controller My Controller A Controller Tags Alias For Controller Fault Handler ADISSEMCM_Optional ADISBEMCM Opti Power Up Handler ADISSMCM ADISEMCM Tasks 05 _2 ADISEMCM s Locabt C 1756 MODUL 2 Local 1756 MODUL MEER Locat1 0 AB 1756_MODUL Unscheduled Programs Phases MCM MCMModuleDef 3 53 Motion Groups MCM 2 MCMModuleDef Ungrouped Axes F MVISSEMCM Clock MCMClockT ype MVIB amp EMCMEIhemet MCMEthemetT ype Parameters and Local Tags ReadClockMSG MESSAGE Logic ReadEthemetMSG MESSAGE amp 156 WriteClockMSG MESSAGE p pee WiiteE themetMSG MESSAGE er ine gt lt seniedoid gt Monitor Tags Tags lt 4 Inthe Add On Instruction click the button next to each MSG ta
213. rm Reference Modbus Communication Module User Manual 6 10 1 Using the Sample Program in a New Application Opening the Sample Program in RSLogix The sample program for your MVIS6E MCM module includes custom tags data types and ladder logic for data I O status and command control For most applications you can run the sample program without modification or for advanced applications you can incorporate the sample program into your existing application The ProSoft Solutions DVD provides one or more versions of the sample ladder logic The version number appended to the file name corresponds with the firmware version number of your ControlLogix processor The firmware version and sample program version must match The ProSoft Solutions DVD included in the package with the module contains ladder logic product manuals and utility programs for all ProSoft Technology products Copy the manuals and sample program from the DVD 1 Insert the ProSoft Solutions DVD into the DVD drive of your PC Wait for the startup screen to appear 2 On the startup screen click Product Documentation This action opens Explorer window Files are arranged by type o The Ladder Logic folder contains sample programs for each module arranged by processor type and then by product name The sample programs for your module are in the ControlLogix MVI56 MVI56E MCM folder o The Manuals folder contains product manuals and datasheets in Adobe Acrobat Reader
214. rocessor using only the WriteData array The basic theory of pass through is that the ladder logic will constantly be updating values in the MVIS6E MCM module memory using the WriteData array When the Master issues a Write command the module will build a special block of data This block of data is then presented to the ladder logic and then copied back into the WriteData array The following illustration shows Pass Through operation of the module Processor MVI56 MCM MODBUS NETWORK thom WriteData array ea aps read by Master Modbus Master values in Data from device MCM Data WriteData array pushed to module WriteData array Master issues Write command Module builds PassThru aep block to send to CLX processor Note For RSLogix version 15 and lower the ladder logic necessary for the successful execution of this block is contained in the subroutine _PassThru Pass Through should only be used when required If a Master issues a Write command to the module the module must build a special block of information Then it waits for confirmation from the ladder logic that the block has been processed Note If the module is waiting for the block to be processed by the ladder and the Master device issues another Write command the module will return an Error Code of 6 module busy This error causes the ladder not to process data written by the Master
215. roject that may be loaded 3 Open the Communications menu and choose Go Online RSLogix will establish communication with the processor This may take a few moments 4 When RSLogix has established communication with the processor the Connected To Go Online dialog box will open Minor Faults Redundancy Nonvolatile Memory Options General Date Time Major Faults Condition The project file Controller ACD was not found in your project directory Connected Controller Controller Name Controller Controller Type 1756 155 1756 M13 A ControlLogix5555 Controller Comm Path AB DF1 1 Security lt None gt Offline Project wy Cancel Help 5 On the Connected Go Online dialog box click the General tab This tab shows information about the processor including the Revision firmware version In the following illustration the firmware version is 11 32 Connected To Go Online Lx Minor Faults Redundancy Nonvolatile Memory Options General Date Time Major Faults Vendor Allen Bradley Type 1756 L55 A 1756 M13 A ControlLogix5555 Controller Revision 11 32 Name Description Chassis Type Slot Mode Select File Cancel Help Page 182 of 199 ProSoft Technology Inc June 18 2014 MVI56E MCM ControlLogix Platform Reference Modbus Communication Module User Manual 6 Select the sample ladder logic file for your firmware version To open the sample
216. rt 1 Current Error Fora Slave Port this field contains the value of the most recently returned error code 232 Port 1 Last Error For a Slave Port this field contains the value of the previous most recently returned error code 233 Port 2 Current Error Fora Slave Port this field contains the value of the most recently returned error code 234 Port 2 Last Error For a Slave Port this field contains the value of the previous most recently returned error code Page 74 of 199 ProSoft Technology Inc June 18 2014 MVI56E MCM ControlLogix Platform Diagnostics and Troubleshooting Modbus Communication Module User Manual 5 Diagnostics and Troubleshooting In This Chapter Ethernet LED Indicators ssee mme 75 Clearing a Fault Condition 77 Troubleshooting the 1 78 Setting Up ProSoft Configuration 78 Connecting Your PC to the Module essem 83 Downloading the Project to the 98 Using the Diagnostics Menu in ProSoft Configuration Builder 99 Reading Status Data from the Module 111 Configuration Error emm 111 Connect to the Module s Web 113 The module provides infor
217. rt configured as a virtual Modbus Master device on the 156 module actively issues Modbus commands to other nodes on the Modbus network 325 commands are supported on each port Additionally the Master ports have an optimized polling characteristic that polls slaves with communication problems less frequently The ControlLogix processor ladder logic can issue commands directly from ladder logic or actively select commands from the command list to execute under ladder logic control Note To use up to 325 commands your MVI56E MCM module needs to have firmware version 3 01 or higher and your MVIS56E MCM Add On Instruction needs to be version 2 8 or higher Earlier versions support up to 100 commands 6 1 4 Hardware Specifications General Specification Description Backplane Current Load 800 mA 5 VDC 3 mA 24 VDC Operating Temperature 0 to 60 C 32 F to 140 F Storage Temperature 40 to 85 C 40 F to 185 F Extreme Harsh Environment MVI56E MCMXT comes with conformal coating Shock 30 g operational 50 g non operational Vibration 5 g from 10 to 150 Hz Relative Humidity 5 to 95 without condensation LED Indicators Battery Status ERR Application Status APP Module Status OK 4 Character Scrolling Alpha Shows Module Version IP Port Client Server Numeric LED Display Setting Port Status and Error Information Communication Ethernet port Ethernet Port 10 100 Base T
218. rver device the server will return the exception response with the exception code shown 02 This specifies an illegal data address for the Slave Modbus Exception Codes Code Name Meaning 01 Illegal Function The function code received in the query is not an allowable action for the Slave This may be because the function code is only applicable to newer devices and was not implemented in the unit selected It could also indicate that the Slave is in the wrong state to process a request of this type for example because it is unconfigured and is being asked to return register values ProSoft Technology Inc Page 171 of 199 June 18 2014 User Manual MVI56E MCM ControlLogix Platform Modbus Communication Module Code Name Meaning 02 Illegal Data Address The data address received in the query is not an allowable address for the Slave More specifically the combination of reference number and transfer length is invalid For a controller with 100 registers a request with offset 96 and length 4 would succeed a request with offset 96 and length 5 will generate exception 02 03 Illegal Data Value A value contained in the query data field is not an allowable value for Slave This indicates a fault in the structure of the remainder of a complex request such as that the implied length is incorrect It specifically does not mean that a data item submitted for storage in a regis
219. ry IP Device Details Remove Temporary IP View module s webpage Click the search icon to begin the browse 2 Onthe shortcut menu choose VIEW MODULE S WEBPAGE TECHNOLOGY FUNCTIONS Firmware Modbus Master Slave Module for ControlLogix MVI56E MCM Set Date amp Time RESOURCES Module Name ProSoft Ethernet Address MAC 00 0D 8D 00 7B D3 Technology Support IP Address 10 1 2 202 Product Revision 3 01 002 2 6 25 21 Firmware Version Date 10 17 12 01 Serial Number 00001806 Modbus Status Starting Organization Uptime 00 01 24 Technical Homepage Automation ProSoft Technology Inc Page 113 of 199 June 18 2014 Diagnostics and Troubleshooting MVI56E MCM ControlLogix Platform User Manual Modbus Communication Module Page 114 of 199 ProSoft Technology Inc June 18 2014 MVI56E MCM ControlLogix Platform Reference Modbus Communication Module User Manual 6 Reference In This Chapter Product nennen 115 Functional 118 Cable Connections sss eee 138 MVI56E MCM Database Definition 143 MVI56E MCM Configuration 144 MVI56E MCM Status Data Definition 152 MVI56E MCM User Defined Data
220. s RTS Off 0 to 65535 milliseconds to delay after data message is complete before RTS line is dropped on the port Use CTS Line No or Yes This parameter is used to enable or disable hardware handshaking The default setting is No hardware handshaking CTS Line not used Set to No if the connected devices do not need hardware handshaking Set to Yes if the device s connected to the port require hardware handshaking most modern devices do not If you set this parameter to Yes be sure to pay attention to the pinout and wiring requirements to be sure the hardware handshaking signal lines are properly connected otherwise communication will fail CmdCount 0 325 commands This parameter sets the number of commands to execute from the command list Setting to zero 0 will disable all command polling Setting to a value less than the number of configured commands will limit polling to the number of commands specified by this parameter Setting to a value greater than the number of configured commands will cause invalid command errors to be reported for the unconfigured commands Minimum Command Delay 0 65535 milliseconds The amount of delay in milliseconds to be inserted after receiving a Slave response or encountering a response timeout before retrying the command or sending the next command on the list Use this parameter to slow down overall polling speed and spread out commands on networks with Slaves that require additional gaps between
221. s a read or write command to the module s node address The port driver qualifies the message before accepting it into the module After the module accepts the command the data is immediately transferred to or from the internal database in the module If the command is a read command the data is read from the database and a response message is built If the command is a write command the data is written directly into the database and a response message is built After the data processing has been completed in Step 2 the response is issued to the originating Master node Counters are available in the Status Block that permit the ladder logic program to determine the level of activity of the Slave Driver Refer to Using the Sample Program an Existing Application page 186 for complete list of the parameters that must be defined for a Slave Port ProSoft Technology Inc Page 135 of 199 June 18 2014 MVI56E MCM ControlLogix Platform User Manual Modbus Communication Module An exception to this normal mode is when the pass through mode is implemented In this mode all write requests will be passed directly to the processor and will not be placed in the database This permits direct remote control of the processor without the intermediate database This mode is especially useful for Master devices that do not send both states of control For example a SCADA system may only send an on command to a digital
222. s blocks are not going to be used in the application then the WRITECONTROL rung rung 7 the sample WRITEDATA task and the READCONTROL and _WRITECONTROL ladder files may be removed PassThru Use this optional task to send pass through data between the processor and the Modbus devices connected to the MVIS6E MCM module Pass Through functionality allows the Modbus Master to read and write the same Modbus address on a Modbus Slave If pass through mode is not chosen then the attached Modbus Master device must read from one set of Modbus register bits and write to another set of Modbus register bits Pass Through mode takes a Modbus write command Function Codes 5 6 15 and 16 and passes that to the ControlLogix processor The pass through ladder logic then parses that information and updates the MCM DATA WRITEDATA array with the new value that has been written by the Modbus Master ReadControl Use this optional task to get status and event data from the Modbus devices connected to the MVIS5GE MCM module Special command blocks requested from the module in the _WriteControl routine are processed and handled in this routine If command control event command or Slave status blocks are not going to be used in the application then this rung and the ReadControl and WriteControl ladder files may be removed WriteControl Use this optional task to send commands to the Modbus devices connected to the MVIB6E MCM module Command C
223. s information can result in injury or equipment damage 2014 ProSoft Technology All Rights Reserved Printed documentation is available for purchase Contact ProSoft Technology for pricing and availability North America 1 661 716 5100 Asia Pacific 603 7724 2080 Europe Middle East Africa 33 0 5 3436 87 20 Latin America 1 281 298 9109 Important Safety Information North America Warnings Warning Explosion Hazard Substitution of components may impair suitability for Class Division 2 Warning Explosion Hazard When in Hazardous Locations turn off power before replacing or rewiring modules C Warning Explosion Hazard Do not disconnect equipment unless power has been switched off or the area is known to be nonhazardous D Suitable for use in Class Division 2 Groups A B C and D Hazardous Locations or Non Hazardous Locations ATEX IECEx Warnings and Conditions of Safe Usage Power Input and Output I O wiring must be in accordance with the authority having jurisdiction A Warning Explosion Hazard When in hazardous locations turn off power before replacing or wiring modules B Warning Explosion Hazard Do not disconnect equipment unless power has been switched off or the area is known to be non hazardous C These products are intended to be mounted in an ATEX IECEx Certified tool secured IP54 enclosure The devices shall provide external means to prevent the rated voltage being ex
224. s the address of a suspended Slave the delay counter value will be decremented When the value reaches zero the Slave state will be set to one This will enable polling of the Slave Block ID Description 3002 Request for first 128 Slave status values for Modbus Port 1 3003 Request for last 128 Slave status values for Modbus Port 1 3102 Request for first 128 Slave status values for Modbus Port 2 3103 Request for last 128 Slave status values for Modbus Port 2 ProSoft Technology Inc Page 123 of 199 June 18 2014 MVI56E MCM ControlLogix Platform User Manual Modbus Communication Module The following table describes the format of these blocks Block Request from Processor to Module Word Offset Description Length 0 3002 to 3003 or 3102 to 3103 1 1 to 247 Spare 246 The module will recognize the request by receiving the special write block code and respond with a read block with the following format Block Response from Module to Processor Word Offset Description Length 0 Reserved 1 1 Write Block ID 1 2 to 129 Slave Poll Status Data 128 130 to 248 Spare 119 249 3002 to 3003 or 3102 to 3103 1 Ladder logic can be written to override the value in the Slave status table It can disable state value of 3 by sending a special block of data from the processor to the Slave Port 1 Slaves are disabled using block 3000 and Port 2 Slaves are disabled using block
225. se it causes an error 48000 65536 17536 You need to enter 17536 in the Internal Address parameter for this command The Poll Interval Polllnt is the number of seconds that a Master device will wait before issuing this command Sets how many continuous words Function Codes 3 4 and 16 or bits Function Codes 1 2 and 15 to request from the Slave device Valid values are 1 to 125 words for function codes 3 4 and 16 while you can specify a range of 1 to 2000 for function codes 1 2 and 15 Note These values are the maximum allowed in the Modbus protocol Some devices may support fewer words or bits than the maximum allowed Typically used when reading floating point data swaps the data read from the Slave device before it is placed into the module memory For example you receive 4 bytes of data from the Slave ABCD 0 No swapping ABCD 1 Word pairs switched CDAB 2 Bytes and words switched DCBA 3 Bytes swapped BADC Node address of the device on the network to read data from or write data to Valid addresses are 1 to 247 Address 0 is reserved for broadcast write commands will broadcast a Write command to all devices on the network Page 38 of 199 ProSoft Technology Inc June 18 2014 MVI56E MCM ControlLogix Platform Configuration as a Modbus Master Modbus Communication Module User Manual Label Func Description Determines the Modbus function code that to issue in the c
226. set the module s permanent IP address see Assigning an IP Address in the Project page 81 Page 96 of 199 ProSoft Technology Inc June 18 2014 MVI56E MCM ControlLogix Platform Diagnostics and Troubleshooting Modbus Communication Module User Manual 6 Close the ProSoft Discovery Service window Enter the temporary IP in the Ethernet address field of the Connection Setup dialog box then click the TEST CONNECTION button to verify that the module is accessible with the current settings Connection Setup Select Connection Type s Ethernet 192 168 0 253 ProSoft Discovery Service PDS Browse Device s CiPconnect Test Connection Cancel Ifthe Test Connection is successful click CONNECT The Diagnostics menu displays in the Diagnostics window f Diagnostics Connection Log Module Time 16 30 07 Eaa BACKPLANE Select item within 5 for diagnostic information Config i Status Eaa DATABASE Ll asci E Decimal Float Hex sa GENERAL Version sa MODBUS PORT 1 Config Master Command List i Master Command Status Slave Status List Status 21 485 MODBUS PORT 2 Config i Master Command List j Master Command Status Slave Status List i Status Path Ethernet 105 102 0 106 ProSoft Technology Inc Page 97 of 199 June 18 2014 Diagnostics and Troubleshooting MVI56E MCM ControlLogix Platform User Manual Modbus
227. sfers Blocks Data from Processor a 2 lt Stave data areas i a gt Driver to output image Ev Passthrough Logic Mode As shown in the illustration above all data transferred between the module and the processor over the backplane is through the input and output images Ladder logic must be written in the ControlLogix processor to interface the input and output image data with data defined in the Controller Tags All data used by the module is stored in its internal database This database is defined as a virtual Modbus data table with addresses from 0 to 15999 The database is translated into a Modbus data table according to which a Modbus command is received or sent Refer to Modbus Memory 59 for more information ProSoft Technology Inc Page 119 of 199 June 18 2014 MVI56E MCM ControlLogix Platform User Manual Modbus Communication Module The following illustration shows the layout of the module s internal database structure 10 000 registers for user data 0 Register Data 9999 6000 words of configuration and 10000 status data Status and Config 15999 Data contained in this database is paged through the input and output images by coordination of the ControlLogix ladder logic and the MVIS56E MCM module s program Up to 248 words of data can be transferred from the module to the processor at a time Up to 247 words of data can be transferred fro
228. single bit to the device Function Code 5 will 1 support a count of 1 Node 1 Issues the Modbus command to node 1 on the network Func 5 Issues Modbus Function Code 5 to write a single coil DevAddress 512 Function Code 5 DevAddress of 512 will read address 0513 2 3 6 Force Write Multiple Coils 0 Modbus Function Code 15 Use this function code to write multiple Coils in the Oxxx address range This function code sets multiple Coils within a Slave device using the same Modbus command Not all devices support this function code Refer to your Slave device documentation before implementing this function code This function code will also support the Enable code of 2 to write the data to the Slave device only when the data associated within the IntAddress field of the module has changed The IntAddress is once again defined down to the bit level as a Function Code 15 is a bit level Modbus function Page 44 of 199 ProSoft Technology Inc June 18 2014 MVI56E MCM ControlLogix Platform Configuration as a Modbus Master Modbus Communication Module User Manual Below is a sample command to write Modbus addresses 0001 to 0016 of node 1 on the Modbus network MCM CONFIG Port MasterCmd 5 Enable 2 MCM CONFIG Port MasterCma 5 IntAddress 320 MCM CONFIG Port MasterCma 5 Polllnt 0 MCM CONFIG Port MasterCmd 5 Count 16 MCM CONFIG Portl MasterCmd 5 Swap MCM CONFIG Port MasterCmad 5 Node 1 MCM CONFIG
229. ssis in the path If you do not have this information you can still assign the IP address to the module refer to Assigning a Temporary IP Address page 94 To use ClPconnect follow these steps 1 Inthe tree view in ProSoft Configuration Builder right click the MVI56E MCM icon to open a shortcut menu 2 On the shortcut menu choose DIAGNOSTICS g Default Project a Default Location Delete Rename Copy Choose Module Type View Configuration Export Configuration File s Load Config File Download from PC to Device Upload From Device to PC 3 Inthe Diagnostics window click the SET UP CONNECTION button Ll Mei Click to set up connection ProSoft Technology Inc Page 83 of 199 June 18 2014 Diagnostics and Troubleshooting MVI56E MCM ControlLogix Platform User Manual Modbus Communication Module 4 Inthe Select Connection Type dropdown list choose 1756 ENBT The default path appears in the text box as shown in the following illustration Connection Setup Select Connection Type Zi Ethemet ProSoft Discovery Service PDS ClPconnect t192 168 0 100 p 1 s 2 CIP Path Edit Test Connection Cancel 5 Click CIP PATH EDIT to open the C Pconnect Path Editor dialog box CIPconnect Path Editor f Connect PATH EDITOR Source Module IP Source Module Node Destination Module Source Module parE Address Destination Module Slot Number 1
230. ssor 15 294 Write Block Count This field contains the total number of write blocks transferred from the module to the processor 15 295 Parse Block Count This field contains the total number of blocks successfully parsed that were received from the processor 15 296 Command Event Block This field contains the total number of command Count event blocks received from the processor 15 297 Command Block Count This field contains the total number of command blocks received from the processor ProSoft Technology Inc June 18 2014 Page 151 of 199 User Manual MVI56E MCM ControlLogix Platform Modbus Communication Module 6 6 Register Content Description 15 298 Error Block Count This field contains the total number of block errors recognized by the module 15 299 Port 1 Current Error For a Slave Port this field contains the value of the current error code returned For a Master Port this field contains the index of the currently executing command 15 300 Port 1 Last Error For a Slave Port this field contains the value of the last error code returned For a Master Port this field contains the index of the command with the error 15 301 Port 2 Current Error For a Slave Port this field contains the value of the current error code returned For a Master Port this field contains the index of the currently executing command 15 302 Port 2 Last Err
231. st identify the slot in which the module is installed in order for the sample program to work correctly Slot numbers are identified on the green circuit board backplane of the ControlLogix rack 5 Turn power ON Note If you insert the module improperly the system may stop working or may behave unpredictably Note When using the MVI56E MCMXT you must use the 1756 A5XT or 1756 A7LXT chassis In these chassis modules are spaced further apart than in standard ControlLogix chassis Blank spacers are inserted between active modules 1 6 Creating a New RSLogix 5000 Project 1 Open the FILE menu and then choose NEW f amp RSLogix 5000 0 Edit View Search Logic Communications Tools Wit B p Open Ctrl 0 2 Select your ControlLogix controller model 3 Select the REVISION of your controller Depending on the revision there may be some small differences in the appearance of dialog boxes from the ones shown in this Guide 4 Enter a name for your controller such as My Controller 5 Select your ControlLogix chassis type Page 14 of 199 ProSoft Technology Inc June 18 2014 MVI56E MCM ControlLogix Platform Start Here Modbus Communication Module User Manual 6 Select SLOT 0 for the controller 7 Click OK New Controller Vendor Allen Bradley Type 1756 L63 ControlLogix5563 Controller Revi NN C Redundancy Enabled Name My Controller Description Chassis Type 1756 44
232. struction o Version 15 or lower must use Sample Ladder available from www prosoft technology com Rockwell Automation RSLinx communication software version 2 51 or higher ProSoft Configuration Builder PCB included ProSoft Technology Inc Page 9 of 199 June 18 2014 Start Here MVI56E MCM ControlLogix Platform User Manual Modbus Communication Module Pentium Il 450 MHz minimum Pentium 733 MHz or better recommended Supported operating systems o Microsoft Windows Vista o Microsoft Windows XP Professional with Service Pack 1 or 2 o Microsoft Windows 7 Professional 32 or 64 bit o Microsoft Windows 2000 Professional with Service Pack 1 2 or 3 o Microsoft Windows Server 2003 128 Mbytes of RAM minimum 256 Mbytes of RAM recommended 100 Mbytes of free hard disk space or more based on application requirements 256 color VGA graphics adapter 800 x 600 minimum resolution True Color 1024 x 768 recommended DVD drive Note The Hardware and Operating System requirements in this list are the minimum recommended to install and run software provided by ProSoft Technology Other third party applications may have different minimum requirements Refer to the documentation for any third party applications for system requirements Note You can install the module in a local or remote rack For remote rack installation the module requires EtherNet IP or ControlNet communication with the processor 1 2 Deployment C
233. t 1 Last Error Index 1 233 Port 2 Current Error Index 1 234 Port 2 Last Error Index 1 235 to 248 Spare 14 249 Read Block ID 1 The Read Block ID is an index value used to determine the location of where the data will be placed in the ControlLogix processor controller tag array of module read data Each transfer can move up to 200 words block offsets 2 to 201 of data In addition to moving user data the block also contains status data for the module This last set of data is transferred with each new block of data and is used for high speed data movement The Write Block ID associated with the block requests data from the ControlLogix processor Under normal program operation the module sequentially sends read blocks and requests write blocks For example if the application uses three read and two write blocks the sequence will be as follows R1W1 R2W2 R3W1 R1W2 R2W1 R3W2 R1W1 This sequence will continue until interrupted by other write block numbers sent by the controller or by a command request from a node on the Modbus network or operator control through the module s Configuration Debug port Write Block These blocks of data transfer information from the ControlLogix processor to the module The following table describes the structure of the output image Write Block from Processor to Module Word Offset Description Length 0 Write Block ID 1 to 50 1 1 to 200 Write Data 200 201 to 247 Spare 4
234. t has a data type of REAL Use a COP statement within the ladder logic Here is an example teadData 0 Energy Consumption ength 1 g Because the tag MCM DATA READDATA 0 should only be used within the above command an unconditional COP statement can be used Notice the length of the COP statement is a value of 1 Within a Rockwell Automation processor a COP statement will copy the required amount of Source values to fill the Dest tag for the Length specified Therefore the above statement will copy ReadData 0 and 1 to fill the 32 bits required for the tag Energy Consumption Note Do not use a MOV statement A MOV will convert the data from the Source register to the destination register data type This would create a data casting statement and will result in the loss or corruption of the original data 2 4 2 Head Multiple Floating Point Registers The following table is an example to read Multiple Floating Point values and device addresses The table shows 7 consecutive floating point values 14 Modbus addresses Value Description Type 40261 KW Demand power Float upper 16 bits 40263 VAR Reactive Power Float upper 16 bits 40265 VA Apparent Power Float upper 16 bits 40267 Power Factor Float upper 16 bits 40269 VOLTS Voltage line to line Float upper 16 bits 40271 VOLTS Voltage line to neutral Float upper 16 bits 40273 AMPS Current Float upper 16 bits Configure the
235. tBit INT MBMsgLen INT MBMsg SINT 500 MBControl1 MCMCONTROL page 158 MBControl2 MCMCONTROL page 158 MBScratch INT 3 CoilArray page Conversion from Bool to INT data types 160 CoilArray Conversion to INT values Name Data Type Description Boolean BOOL 416 Conversion from Bool to INT data types 6 8 Modbus Protocol Specification The following pages give additional reference information regarding the Modbus protocol commands supported by the 156 6 8 1 Commands Supported by the Module The format of each command in the list depends on the Modbus Function Code being executed The following table lists the functions supported by the module Function Definition Supported Supported Code Master Slave 1 Read Coil Status X X 2 Read Input Status X X 3 Read Holding Registers X X 4 Read Input Registers X X 5 Set Single Coil X X 6 Single Register Write X X 8 Diagnostics X 15 Multiple Coil Write X X 16 Multiple Register Write X X 17 Report Slave ID X Page 160 of 199 ProSoft Technology Inc June 18 2014 MVI56E MCM ControlLogix Platform Reference Modbus Communication Module User Manual Function Definition Supported Supported Code Master Slave 22 Mask Write 4X X 23 Read Write X Each command list record has the same general format The first part of the record contains the information relating to the communication modul
236. tart Reg Lo Data of Regs Hi Data of Regs Lo Error Check Field 0B 04 00 08 00 01 CRC Page 164 of 199 ProSoft Technology Inc June 18 2014 MVI56E MCM ControlLogix Platform Reference Modbus Communication Module User Manual Response The addressed Slave responds with its address and the function code followed by the information field The information field contains 1 byte describing the quantity of data bytes to be returned The contents of the registers requested DATA are 2 bytes each with the binary content right justified within each pair of characters The first byte includes the high order bits and the second the low order bits Because the Slave interface is normally serviced at the end of the controller s scan the data reflects the register content at the end of the scan Each PC limits the quantity of register contents provided each scan thus for large register quantities multiple PC scans are required and the data provided is from sequential scans In the example below the register 3009 contains the decimal value 0 Adr Func ByteCount Data Input Reg Hi Data Input Reg Lo Error Check Field 0B 04 02 00 00 E9 6 8 6 Force Single Coil Function Code 05 Query This Function Code forces a single coil Modbus 0x range either ON or OFF Any coil that exists within the controller can be forced to either state ON or OFF However because the controller is actively scanning unless the coil is disabled
237. tarting at address 40277 in the Slave device EventCmdStatusReturned Return value of 0 Fail 1 Success EventBlockID Block ID number for the module to recognize the Event Command Slave address and Port number to send the command out Page 54 of 199 ProSoft Technology Inc June 18 2014 MVI56E MCM ControlLogix Platform Configuration as a Modbus Master Modbus Communication Module User Manual Note For RSLogix version 15 and lower the ladder logic used for the Event Command blocks is contained in WriteControl rung 5 and _ReadControl rung 4 within the sample ladder file Note Event Command blocks can only send 1 command to the command queue per block Note Event Commands like Command Control take priority over commands in the normal command list ProSoft Technology Inc Page 55 of 199 June 18 2014 MVI56E MCM ControlLogix Platform User Manual Modbus Communication Module Page 56 of 199 ProSoft Technology Inc June 18 2014 MVI56E MCM ControlLogix Platform Configuration as a Modbus Slave Modbus Communication Module User Manual 3 Configuration as a Modbus Slave In This Chapter Se OVerVIewW 5 ies eoo D TO Le tete e nd eco ie 57 ModDef esent 58 lt Slave Configuration 62 Floating Point Data Handling Modbus 63 Read and Wr
238. tatus gt OK Port is communicating without error Master Slave Communication Errors port is having communication errors Refer to Diagnostics and Troubleshooting page 75 for further information about the error Page 76 of 199 ProSoft Technology Inc June 18 2014 MVI56E MCM ControlLogix Platform Modbus Communication Module Diagnostics and Troubleshooting User Manual 5 1 2 Non Scrolling LED Status Indicators The non scrolling LEDs indicate the module s operating status as follows LED Label Color Status Indication APP Red or Green OFF The module is not receiving adequate power or is not securely plugged into the rack May also be OFF during configuration download GREEN The 56 is working normally RED The most common cause is that the module has detected a communication error during operation of an application port The following conditions may also cause a RED LED The firmware is initializing during startup The firmware detects an on board hardware problem during startup Failure of application port hardware during startup module is shutting down module is rebooting due to a ColdBoot or WarmBoot request from the ladder logic or Debug Menu OK Red or Green OFF The module is not receiving adequate power or is not securely plugged into the rack GREEN The module is operating normally RED The module has d
239. te the module IP address netmask and gateway values Page 172 of 199 ProSoft Technology Inc June 18 2014 MVI56E MCM ControlLogix Platform Reference Modbus Communication Module User Manual Note This is an optional feature You can perform the same task through PCB ProSoft Configuration Builder Even if your PC is in a different network group you can still access the module through PCB by setting a temporary IP address Read Write Module Clock Value Allows the processor to read and write the module clock settings The module clock stores the last time that the Ethernet configuration was changed The date and time of the last Ethernet configuration change is displayed in the scrolling LED during module power up Important The Optional Add On Instruction only supports the two features listed above You must use the sample ladder logic for all other features including backplane transfer of Modbus data 6 9 3 Importing the Utility Add On Instruction 1 Right click on an empty rung in the main routine of your existing ladder logic and choose IMPORT RUNGS f amp RSLogix 5000 My Controller 1756 L63 MainProgram MainRoutine Ele Edit View Search Logic Communications Tools Window Help S 21 z g le 018 Offline Iren Path vA No Forces No Edits quim gt D 15 Favorites 907 X Alarms A Tmencounter Ki A Controller Tags
240. ter has a value outside the expectation of the application program because the Modbus protocol is unaware of the significance of any particular value of any particular register 04 Slave Device Failure An unrecoverable error occurred while the Slave was attempting to perform the requested action 05 Acknowledge Specialized use in conjunction with programming commands The Slave has accepted the request and is processing it but a long duration of time will be required to do so This response is returned to prevent a timeout error from occurring in the Master The Master can next issue a poll program complete message to determine if processing is completed 06 Slave Device Busy Specialized use in conjunction with programming commands The Slave is engaged in processing a long duration program command The Master should retransmit the message later when the Slave is free 6 9 Using the Optional Add On Instruction 6 9 1 Before You Begin Make sure that you have installed RSLogix 5000 version 16 or later Download the Optional Add On file MVI56 E MCM Optional AddOn Rung v 2 L5X from www prosoft technology com or copy it from the ProSoft Solutions DVD Save a copy in a folder in your PC 6 9 2 Overview The Optional Add On Instruction Rung Import contains optional logic for MVI56E applications to perform the following tasks Read Write Ethernet Configuration Allows the processor to read or wri
241. th AB_ETHIP 2 10 1 3 189 Backplane VU p TOF Energy Storage ri 8 lt gt 85 Controller My Controller IB Controler Tags Add On MVISGE MCM Controller Faut Hander modules Power Up Handler AOISSMCM 3 Tasks Add On MVISBE MCM modules 8 ManTask AOISBMCM GJ OB MainProgram Connection Input LocatiiData Connection Output Local 1 0 Deta MCM MCM Program Tags MainRoutine Unscheduled Programs Phases 9 Motion Groups Ungrouped Axes Add On Instructions amp 2 AOISSMCM Add On MVIS8E MCM modules Data Types _2 CJ 08 User Defined Connection Input Locat21Data 08 Strings Connection Output Local 2 0 Data i amp G Add On Defined MCM 2 amp Predefined Module Defined G Trends 1 0 Configuration 1756 Backplane 1756 A4 ff 0 1756 171 My Controller f 1 1756 MooULE a Add On MVIS6E MCM modules The setup procedure is now complete Save the project and download the application to your ControlLogix processor Page 26 of 199 ProSoft Technology Inc June 18 2014 MVI56E MCM ControlLogix Platform Start Here Modbus Communication Module User Manual 1 6 5 Adjust the Input and Output Array Sizes Optional The module internal database is divided into two user configurable areas Read Data Write Data The Read Data area is m
242. the controller can also alter the state of the coil Coils are numbered from zero coil 0001 zero coil 0002 one and so on The data value 65 280 HEX sets the coil ON and the value zero turns it OFF all other values are illegal and does not affect that coil The use of Slave address 00 Broadcast Mode forces all attached Slaves to modify the desired coil Note Functions 5 6 15 and 16 are the only messages that are recognized as valid for broadcast The example below is a request to Slave number 11 to turn ON coil 0173 Note This is the structure of the message being sent out to the Modbus network The byte values below are in hexadecimal display Adr Func Data Coil Hi Data Coil Lo Data On off Ind Data Error Check Field 0B 05 00 AC FF 00 CRC ProSoft Technology Inc Page 165 of 199 June 18 2014 MVI56E MCM ControlLogix Platform User Manual Modbus Communication Module Response The normal response to the Command Request is to re transmit the message as received after the coil state has been altered Adr Func Data Coil Hi Data Coil Lo Data On Off Data Error Check Field 0B 05 00 AC FF 00 CRC The forcing of a coil via Modbus function 5 is accomplished regardless of whether the addressed coil is disabled or not n ProSoft products the coil is only affected if the necessary ladder logic is implemented Note The Modbus protocol does not include standard funct
243. this command index number 234 Port 2 Last Error For a Master Port this field contains the command index number of the previous most recently executed command that failed To find what kind of error occurred see the Command Error List entry for this command index number 4 1 2 Command Error Codes The MVI56E MCM module will return an individual error code for every command configured within the MCM CONFIG PORTXMASTERCNMD section The location of these error codes are determined by the parameter MCM CONFIG PORTX CMDERRPTR This parameter determines where in the module s 10 000 register database the error codes for each command will be placed The amount of error codes returned into the database is determined by the MCM CONFIG PORTX CMDCOUNT parameter therefore if the maximum number of commands have been selected 325 then 325 registers will be placed into the module memory Note To use up to 325 commands your MVI56E MCM module needs to have firmware version 3 01 or higher and your MVIBGE MCM Add On Instruction needs to be version 2 8 or higher Earlier versions support up to 100 commands To be useful in the application these error codes must be placed within the MCM DAT A READDATA array Once again the configuration the MCM CONFIG MODDEF section for READSTARTREG and READREGCOUNT determine which of the 10 000 registers will be presented to the ControlLogix processor and placed in the tag MCM DATA READDATA array Based on
244. tion shows the 156 jumper configuration with the Setup Jumper OFF The Setup Jumper acts as write protection for the module s firmware In write protected mode the Setup pins are not connected and the module s firmware cannot be overwritten The module is shipped with the Setup jumper OFF If you need to update the firmware apply the Setup jumper to both pins Page 12 of 199 ProSoft Technology Inc June 18 2014 MVI56E MCM ControlLogix Platform Start Here Modbus Communication Module User Manual Note If you are installing the module in a remote rack you may prefer to leave the Setup pins jumpered That way you can update the module s firmware without requiring physical access to the module 1 5 Installing the Module in the Rack Make sure your ControlLogix processor and power supply are installed and configured before installing the MVI56E MCM module Refer to your Rockwell Automation product documentation for installation instructions Warning You must follow all safety instructions when installing this or any other electronic devices Failure to follow safety procedures could result in damage to hardware or data or even serious injury or death to personnel Refer to the documentation for each device you plan to connect to verify that suitable safety procedures are in place before installing or servicing the device After you have checked the placement of the jumpers insert the MVIS6E MCM into t
245. to 325 commands your MVI56E MCM module needs to have firmware version 3 01 or higher and your MVIBGE MCM Add On Instruction needs to be version 2 8 or higher Earlier versions support up to 100 commands 2 2 2 Master Command Configuration This topic describes the communications with the Master Port and the Slave devices that are connected to that port Verify you are in MONITOR TAGS mode Then use the scroll bar at the bottom of the window to view a description of each parameter MCM MCM CONFIG MCM CONFIG ModDef MCM CONFIG Portl MCM CONFIG Port2 MCM CONFIG Portl MasterCmd MCM CONFIG Port MasterCmd O MCM CONFIG Portl MasterCmd U Enable MCM CONFIG Port MasterCmd U Int amp ddress 1000 MCM CONFIG Porti MasterCmd U Polllnt 0 MCM CONFIG Portl MasterCmd 0 Count 10 MCM CONFIG Portl MasterCmd 0 S wap 0 MCM CONFIG Port MasterCmd 0 Node 1 MCM CONFIG Portl MasterCmd O Func 3 MCM CONFIG Port MasterCmd 0 Dev amp ddress 0 m le 1 ProSoft Technology Inc June 18 2014 Page 37 of 199 Configuration as a Modbus Master User Manual MVI56E MCM ControlLogix Platform Modbus Communication Module Label Enable IntAddress Pollint Count Swap Node Description 0 Disabled Command will not be executed but can be enabled using command control option in ladder logic 1 Enabled Command is enabled and will be sent out to the target de
246. to Device Upload from Device to PC Diagnostics 3 Inthe Diagnostics window click the SET UP CONNECTION button gt 15 nl Click to set up connection Page 86 of 199 ProSoft Technology Inc June 18 2014 MVI56E MCM ControlLogix Platform Diagnostics and Troubleshooting Modbus Communication Module User Manual 4 Inthe Select Connection Type dropdown list choose 1756 ENBT The default path appears in the text box as shown in the following illustration Connection Setup Select Connection Type Ethemet ProSoft Discovery Service PDS sesuai ClPconnect t192 168 0 100 p 1 s 2 CIP Path Edit Test Connection Cancel 5 Configure the path as shown in the following illustration and click CONSTRUCT CIP PATH to build the path in text format CIPconnect Path Editor a s f Connect PATH EDITOR Source Module IP Source Module Node Destination Modul Destination Module Address Address SU Slot Number BN vseener 192 168 0100 MEN MVIS6 Module 2 Source Module t 192 168 0 100 p 1 5 2 Add Rack Delete Rack Construct CIP Path OK Cancel 6 Click OK to close the C Pconnect Path Editor and return to the Connection Setup dialog box ProSoft Technology Inc Page 87 of 199 June 18 2014 Diagnostics and Troubleshooting MVI56E MCM ControlLogix Platform User Manual Modbus Communication Module Check the new path in the Connection Set
247. ual 2 5 1 Command Control Command Control allows you to issue a command already defined in the Master command list but disabled and enable that command for a single pass Command Control has a distinct advantage over Event Command in that it will still return an error code for that command as configured in MCM CONFIG PORTX CMDERRPTR Up to 6 commands may be enabled at the same time The following illustration shows how to configure Command Control using the MCM UTIL CMDCONTROL object in the ladder logic MCM UTIL CmdControl een MCM LITIL CmdControl T riggerCmdCntrl MCM UTIL CmdControl Number0 Commands MCM UTIL CmdControl PortNumber MCM UTIL CmdControl Commandindex MCM UTIL CmdControl Commandindex 0 MCM LITIL CmdControl Commandlndes 1 MCM UTIL CmdControl Commandindex 2 MCM UTIL CmdControl Commandindex 3 MCM LITIL CmdControl Commandlndes 4 MCM UTIL CmdControl Commandlndex 5 MCM UTIL CmdControl CmdsAddedT oQueue MCM UTIL CmdControl CmdControlBlockID MCM LITIL CmdControl CmdCntrlPending oleie6ine o The following configuration will place 6 commands into the command queue MCM CONFIG PORT1MASTERCMD 0 to MCM CONFIG PORT1MASTERCMD 5 will be enabled with this configuration Error codes for each command are placed in the Error Status table Tag Value Description TriggerCmdCntrl 1 1 will execute the Command Control NumberOfCommands 6 Number of com
248. ude Chinese English Europe location in Toulouse France Tel 33 0 5 34 36 87 20 E mail support EMEA prosoft technology com Languages spoken include French English Europe location in Dubai UAE Tel 971 4 214 6911 E mail mea prosoft technology com Languages spoken include English Hindi North America location in California Tel 1 661 716 5100 E mail support prosoft technology com Languages spoken include English Spanish Latin America Oficina Regional Tel 1 281 2989109 E Mail latinam prosoft technology com Languages spoken include Spanish English Latin America location in Puebla Mexico Tel 52 222 3 99 6565 E mail soporte prosoft technology com Languages spoken include Spanish Brasil location in Sao Paulo Tel 55 11 5083 3776 E mail brasil prosoft technology com Languages spoken include Portuguese English Warranty Information For complete details regarding ProSoft Technology s TERMS amp CONDITIONS OF SALE WARRANTY SUPPORT SERVICE AND RETURN MATERIAL AUTHORIZATION INSTRUCTIONS please see the documents on the Product DVD go to www prosoft technology legal Documentation is subject to change without notice Page 196 of 199 ProSoft Technology Inc June 18 2014 MVI56E MCM ControlLogix Platform Modbus Communication Module Support Service amp Warranty User Manual Index _PassThru 191 ReadControl 191
249. ues Modbus Function Code 2 to Read Input Coils DevAddress 80 Function Code 2 DevAddress of 80 will read address 10081 Along with a count of 16 this command reads 10081 to 10096 2 3 5 Force Write Single Coil 0 Modbus Function Code 5 Used to write a Coil of a Slave device these are single bit addresses within a Modbus Slave device The IntAddress field of this command is defined down to the bit level within the module memory and should come from an area of memory that has been defined within the MCM DATA WRITEDATA area this is configured within MCM CONFIG MoDDEF Below is a sample command to write Modbus addresses 0513 of node 1 on the Modbus network only when the data associated with the IntAddress has changed MCM CONFIG Port MasterCmd 4 Enable 2 MCM CONFIG Portl MasterCmd 4 Int amp ddress 160 MEM CONFIG Porti MasterCmd 4 Polllnt 0 MCM CONFIG Portl MasterCmd 4 Count 1 MCM CONFIG Portl MasterCmd 4 Swap 0 MCM CONFIG Portl MasterCmd 4 Node 1 MCM CONFIG Portl MasterCmd 4 Func 5 MCM CONFIG Portl MasterCmd 4 Dev amp ddress 512 Label Description Enable 2 The module will send the command only when the data within the IntAddress field of the module has changed IntAddress 160 Will write the data to the Slave device when the value at WriteData 10 0 has changed Because this is a bit level command the IntAddress field must be defined down to the bit level Count 1 Will write a
250. ul Some of these situations include 1 When the slave needs to know when it has been written to 2 When the acceptance of data may require some conditioning 3 When the host s write data registers must overlap the read register space Unformatted Pass Through Blocks 9996 If one or more of the Slave Ports on the module are configured for the unformatted pass through mode the module will pass blocks with identification codes of 9996 to the processor for each received write command Any Modbus function 5 6 15 and 16 commands will be passed from the port to the processor using this block identification number Ladder logic must handle the receipt of all Modbus write functions to the processor and to respond as expected to commands issued by the remote Modbus Master device The structure of the unformatted Pass through block is shown in the following table Pass Through Block 9996 from Module to Processor Word Offset Description Length 0 0 1 1 9996 1 2 Number of bytes in Modbus message 1 3 Data address 1 4 to 248 Modbus message received 245 249 9996 1 The ladder logic will be responsible for parsing and copying the received message and performing the proper control operation as expected by the Master device The processor must then respond to the Pass through block with a write block with the following format Response Block 9996 from Processor to Module Word Offset Description Length 0 9996 1 1
251. uld not be accessed by user application 6 7 2 MCMCONFIG This object contains the data types that apply to the configuration of the module Refer to 156 Configuration Data page 144 for a complete description of each element in this object Name Data Type Description ModDef MCMModule page Module Definition 155 Port1 MCMPort page Port 1 configuration settings 155 Port2 MCMPort Port 2 configuration settings Port1 MasterCmd MCMCmd page Master commands for Port 1 ignore if port is 156 configured for slave mode Page 154 of 199 ProSoft Technology Inc June 18 2014 MVI56E MCM ControlLogix Platform Modbus Communication Module Reference User Manual Name Data Type Description Port2MasterCmd MCMCmd 325 Master commands for Port 2 ignore if port is configured for slave mode Note To use up to 325 commands your MVI56E MCM module needs to have firmware version 3 01 or higher and your MVIBGE MCM Add On Instruction needs to be version 2 8 or higher Earlier versions support up to 100 commands MCMModule This object contains the information used to define the data movement between the module and the processor Name Data Type Description WriteStartReg INT Start reg to transfer from PLC to module WriteRegCnt INT Number of registers to write from PLC ReadStartReg INT Start reg to transfe
252. ule User Manual Refer to Ethernet Cable Configuration page 139 for a diagram of how to configure Ethernet cable 6 3 2 Ethernet Cable Configuration Note The standard connector view shown is color coded for a straight through cable Crossover cable Straight through cable RJ 45 PIN RJ 45 PIN Pin 1 RJ 45 PIN RJ 45 PIN 1 Rx 3 Tx X 1 Rx 1 2 Rx 6 Tx 2 Rx 2 Tx 3 Txt 1 Rx 3 Txt 3 Rx 6 2 Rx 6 Tx 6 Rx 12345678 87654321 6 3 3 Ethernet Performance High Ethernet traffic may impact MCM performance consider one of these options Use managed switches to reduce traffic coming to module port Use ClPconnect for these applications and disconnect the module Ethernet port from the network ProSoft Technology Inc Page 139 of 199 June 18 2014 MVI56E MCM ControlLogix Platform User Manual Modbus Communication Module 6 3 4 RS 232 Application Port s When the RS 232 interface is selected the use of hardware handshaking control and monitoring of modem signal lines is user definable If no hardware handshaking will be used here are the cable pinouts to connect to the port DB9 Female to DB9 Female null modem cable DB9 Male to RJ45 Plug ProSoft Cable 15 or other ProSoft Cable 14 PIN2 RxD TxD RxD RxD PIN2 s _ E TxD RxD TxD TxD S i 2 Signal Signal Sic 1 Signal PINS common Common Commen c
253. um __ Import Operation amp P Aias For Data Type _ Description Lis E MainRoutine Rungs References AOISEMCM Create 015 se ADIBBMCM A Local1 l Undefined Locali dy Add On Instruction Local1 0 Undefined Local1 0 d Types MCM Create MEM MCMModul Page 20 of 199 ProSoft Technology Inc June 18 2014 Start User Manual MVI56E MCM ControlLogix Platform Modbus Communication Module 5 If you are using the module in a different slot or remote rack edit the connection input and output variables that define the path to the module Edit the text in the FINAL NAME column NAME column for controller revision 16 or less For example if your module is located in slot 3 change Local 1 l in the above picture to Local 3 l Do the same for Local 1 O If your module is located in Slot 1 of the local rack this step is not required 6 Click OK to confirm the import RSLogix will indicate that the import is in progress Importing Creating routine Prescan When the import is completed the new rung with the Add On Instruction will be visible as shown in the following illustration f RSLogix 5000 My Controller 1756 L63 20 11 MainProgram MainRoutine Ef File Edit View Search Logic Communications Tools Window Help 5 t amp 0 m RUN 4 Y E p_ E oK BAT Gio Controller Organizer Contr
254. ung computes offset into the Modbus Data Table for the received data block and to store the data into the Modbus Data Table If the requested block is within the valid range of data blocks for the Modbus Data Table the offset into the table is computed as Block ID number 1 200 This is the starting offset in the Modbus Data Table where the 200 bits of data will be stored When the processor receives a pass through block the received data will be handled at the Pass Thru routine If the module is being used as a Modbus Master PortX Type 0 or a standard Modbus Slave Port X Type 1 then this rung of logic and the PassThru routine are not required If the module is being used as PortX Type 2 to 4 then this rung and ladder routine is required WriteData The WriteData task sends data from the processor to the MVIS6E MCM module Data is transferred from the processor to the module using the module s output image LOCAL 1 O DATA This task should store the currently requested data set in the module s MCM BP LASTWRITE data object This object is used in all subsequent ladder logic in case the input word LOCAL 1 I DATA 1 changes during processing Page 190 of 199 ProSoft Technology Inc June 18 2014 MVI56E MCM ControlLogix Platform Reference Modbus Communication Module User Manual Note The _WRITECONTROL routine handles the command control blocks sent to the module If command control event command or Slave statu
255. unless you are experiencing communication problems that can be attributed to signal echoes or reflections In these cases installing a 120 ohm terminating resistor between pins 1 and 8 on the module connector end of the RS 485 line may improve communication quality RS 485 and RS 422 Tip If communication in the RS 422 or RS 485 mode does not work at first despite all attempts try switching termination polarities Some manufacturers interpret and or polarities differently 6 3 7 DB9 to RJ45 Adaptor Cable 14 Cable Assembly J1 o 8 o J1 Vv me Vv J2 N DCD S TXD EN 2 i RXD RXD 4 59 i TXD e i i DTR GND GND GND NS oo DSR RXD 125 i RTS i E A jf CTS TXRXD TXD 3 IS Y Wiring Diagram 6 4 MVI56E MCM Database Definition This section contains a listing of the internal database of the MVIS6E MCM module This information can be used to interface other devices to the data contained in the module Register Range Modbus Low Modbus High Content Size 0 to 5999 40001 50000 User Data 10000 10000 to 10009 50001 50010 Backplane Configuration 10 10010 to 10039 50011 50040 Port 1 Setup 30 10040 to 10069 50041 50070 Port 2 Setup 30 10070 to 12669 50071 52670 Port 1 Commands 2600 12670 to 15269 52671 55270
256. up dialog box Connection Setup Select Connection 9118 Ethernet Sea ProSoft Discovery Service PDS E ClPconnect 192 168 0 100 1 5 2 CIP Path Edit Test Connection Cancel 8 Click TEST CONNECTION to verify that the physical path is available The following message should be displayed upon success Connection Setup Select Connection 29138 v ProSoft Configuration Builder Successfully Connected 192 168 0 100 1 5 2 CIP Path Edit Test Connection Cancel 9 Click OK to close the Test Connection pop up and then click CONNECT to close the Connection Set up dialog box The Diagnostics menu is now connected through ClPconnect Page 88 of 199 ProSoft Technology Inc June 18 2014 MVI56E MCM ControlLogix Platform Diagnostics and Troubleshooting Modbus Communication Module User Manual Example 2 Remote Rack Application For this example the MVIS6E MCM module is located a remote rack accessible through ControlNet as shown in the following illustration 1756 CNB 1756 ENBT Ethernet ControlNet Rack 1 Slot Module Network Address 0 ControlLogix Processor 1 1756 CNB Node 1 2 1756 ENBT IP 192 168 0 100 3 Any Rack 2 Slot Module Network Address 0 Any 1 Any 2 Any 3 Any 4 Any 5 1756 CNB Node 2 6 MVI56E MCM ProSoft Technology Inc Page 89 of 19
257. ven and so on Wiring problem for example the port jumper on the module is set incorrectly or and lines on RS485 are switched The Slave device is not set to the correct address for example the Master is sending a command to Slave 1 and the Slave device is configured as device 10 With a 11 error code check all of the above parameters wiring and settings on the Slave device Also make sure that you cycle power to the module or toggle the MCM CONTROL WARMBOOT or COLDBOOT bit to transfer the values in the MCM CONFIG array to the module Error codes of 253 to 255 typically indicate noise on RS485 lines Make sure that you are using the proper RS485 cable with termination resistors installed properly on the line If termination resistors are installed try removing them as they are usually only required on cable lengths of more than 1000 feet ProSoft Technology Inc Page 71 of 199 June 18 2014 Verify Communication MVI56E MCM ControlLogix Platform User Manual Modbus Communication Module Command List Entry Errors Code Description 41 Invalid enable code 42 Internal address gt maximum address 43 Invalid node address lt 0 or gt 255 44 Count parameter set to 0 45 Invalid function code 46 Invalid swap code The above error codes indicate that the module has detected an error when parsing the command For all commands that have not been configured all parameters set to a
258. vice 2 Conditional Write Only for Func 5 15 6 or 16 data will be sent to the target device only when the data to be written has changed Determines where in the module s 10 000 register database the data will be stored to or written from For a Read command this will determine after information has been read from a Slave where it will be placed in the module database For read commands you should configure this for a location that is configured for READDATA The internal database location for the READDATA and WRITEDATA tags is determined by the configuration in the MCM ModDef tag location For write data the INTADDRESsS determines where to obtain the information to write to the Slave device This must be a location that is configured as WRITEDATA Note When using a bit level command you must define this field at the bit level For example when using a function code 1 2 for a Read command you must have a value of 16000 to place the data in MCM ReadData 0 register 1000 16 bits per register 16000 This controller tag is a 16bit signed integer This means you can only enter values of 32768 to 32767 in the tag If a value to be entered is above the 32767 but below 65535 threshold it will display as a negative value in the tag Simply subtract 65536 from the value to get the acceptable value to enter into the tag Example You need to use an Internal bit Address of 48000 but you cannot enter 48000 into the tag becau
259. x Notice that the module now appears in the CONTROLLER ORGANIZATION window 3 6 Controller My Controller A Controller Tags Controller Fault Handler Power Up Handler 23 Tasks 5 68 MainTask Cg MainProgram Z3 Unscheduled Programs 29 Motion Groups Ungrouped Axes Add On Instructions Data Types 5 User Defined Strings Add On Defined 0 Predefined oe Module Defined Trends 2 5 1 0 Configuration 65 1756 Backplane 1756 A4 fa 0 1756 163 Controller 8 1 6 3 Import the Ladder Rung 1 In the CONTROLLER ORGANIZATION window expand the TASKS folder and subfolders until you reach the MAINPROGRAM folder 2 In the MAINPROGRAM folder double click to open the MAINROUTINE ladder 3 Select an empty rung in the routine and then click the right mouse button to open a shortcut menu On the shortcut menu choose IMPORT RUNGS fe RSLogix 5000 My Controller 1756 1 71 20 12 MainProgram MainRoutine Ef Fie Edt View Search Logic Communications Tools Window Help Bau 6 eo 245 E YR QQ 0 M RUN E Path AB_ETHIP 2 10 1 3 189 Backplane VO gt E oK p 7 Energy Storage F yo lt gt j Favorites Radon K tmerKourter Controller My Controller Controller Tags E Controller Faut Handeer Power Up Handler amp Tasks 6 ManTask C MainProgram Program Tags MainRoutine 31 Unscheduled Programs Phases Add Rung am
260. x installed on your PC to use this feature You also need an ENBT module set up in the rack For information on setting up the ENBT module see Using ClPconnect to Connect to the Module 1 Inthe tree view in ProSoft Configuration Builder right click the MVI56E MCM module 2 From the shortcut menu choose DOWNLOAD FROM PC TO DEVICE Page 92 of 199 ProSoft Technology Inc June 18 2014 MVI56E MCM ControlLogix Platform Diagnostics and Troubleshooting Modbus Communication Module User Manual 3 In the Download dialog box choose 1756 ENBT from the Select Connection Type dropdown box Download files from PC to module STEP 1 Select Communication Path Select Connection Type 1756 ENBT v Ethernet CIPconnect t 192 168 0 100 p 1 5 0 56 CIP Path Edit RSWho STEP 2 Transfer File s DOWNLOAD Abort Test Connection 9l 4 Click RSWHO to display modules on the network The 156 module will automatically be identified on the network Browse Device Autobrowse Refresh es z Browsing node 0 found tation Linx Gateways Ethernet B_ETH 1 Ethernet 00 01 06 10 1 2 221 1756 ENET B 1756 ENET B GSC_v16 1756 ENBT A 10 1 2 254 1756 EN2T 1756 EN2T B 105 102 0 65 1756 1756 9 Backplane 1756 A7 A Fs 00 1756 L55 A LOGIXS555 GSC v1t 01 1756 module MYIS6E GSC 06 1756 ENBT A B ETH 4 Ethernet B ETHIP 1 Ethernet ompactLogix Ethernet
261. you be transferring data using Modbus RTU or Modbus ASCII Modbus is a Master Slave network Only one Master is allowed on the serial communications line max 32 devices RS485 The Master is responsible for polling data from the Slaves on the network 6 For a Modbus Master what Slave Device Addresses and Modbus Data Addresses do you need to exchange data with on the Modbus network For a Modbus Master you must know the Slave Device Address number of each Slave device to poll You also need the Modbus address for example coil 00001 register 40001 of the data to read from or write to each Slave device 7 For a Modbus Slave how many words or bits of data do you need to send to the Master device The MVI56E MCM module can send data to a Modbus Master as Ox coil data 1x input coil data 3x input registers and 4x holding registers The sample program transfers 600 16 bit words or 9600 bits to the ControlLogix processor and 600 16 bit words or 9600 bits from the ControlLogix processor 8 Serial Communication Parameters for the Modbus network Baud rate Data bits Parity Stop bits Required for both Master and Slave configurations 9 Wiring type to use RS232 422 or 485 Configured by Setting Jumpers Required for proper implementation of the module in Master and Slave configurations Note If you are using RSLogix 5000 version 16 or newer refer to Before You Import the Add On Instruction page 15 For RSLogix 5000 versi

Download Pdf Manuals

image

Related Search

Related Contents

Sleeper Bus Service for the UA Men`s Tennis Team    Fujitsu ESPRIMO P900 0-Watt  The Empressa S550 LED Digital Steam Press  libretto - Joannes  Wave 1/2« Bedienungsanleitung l Operating instructions L Mode d  LE NOMBRE D`OR    SK – ECM - Sabiana    

Copyright © All rights reserved.
Failed to retrieve file