Home

SRI CHS11 CHUTE HEIGHT SENSOR

image

Contents

1. Notes 1 1 5 sq mm 16 AWG insulated stranded copper wires 2 Use BELDEN 9841 cables CASE POSITION 3 Use BELDEN 9539 cables SINGLE CHUTE DUAL CHUTE Figure 2 Single chute installation wiring example Installation Example Dual Chute CHUTE HEIGHT SENSOR CHS SEE TABLE X1 LINK BELOW FOR POSITION LINK POSITION 24V INSTRUMENT PWR SUPPLY POWER INSTRUMENT PWR SUPPLY RETURN DC VOLTS LEVEL INDICATING LEVEL INDICATING CONTROLLER B CONTROLLER A CHUTE PUTS A OUTPUTS Li see Note 2 le see Note 2 see Note 1 see Note 1 240V AC SUPPLY N 240V AC SUPPLY N 240V AC SUPPLY L 240V AC SUPPLY L 1A 240 V 1A 240 V FAST BLOW FAST BLOW RELAYS CHUTE B JUNCTION JUNCTION CHUTE A BOX 3 BOX see Note 1 see Note 3 see Note 3 see Note 1 SENSORS Notes 1 1 5 sq mm 16 AWG insulated stranded copper wires CASE POSITION 2 Use BELDEN 9841 cables 3 Use BELDEN 9539 cables SINGLE CHUTE DUAL CHUTE Figure 3 Dual chute installation wiring example sa This section provides a concise guide on how to configure and adjust the CHS11 for a
2. Parameter Setting Single Chute Value Dual Chute Value Chute Configuration Chute A Only Chutes A and B Num Sensors in A Enter the number of electrodes wired to electrode inputs 1 to 8 Num Sensors in B Enter the number of electrodes wired to electrode inputs 9 16 Detection Mode A Mode 0 Mode 0 Detection Mode B Mode 0 Damping Factor A 1 second 1 second Damping Factor B 1 second Threshold A 50 50 Threshold B 50 Hysteresis Low A 30 30 Hysteresis Low B 30 Hysteresis High A 70 70 Hysteresis High B 70 Zero Adjust A 50 50 Zero Adjust B 50 Span Adjust A 50 50 Span Adjust B 50 EN NOTE Ly If the CHS11 is put into single chute configuration the B values will not apply 5 4 Adjusting the Trimpots to a Default Position Adjust the trimpots so they are mid scale i e in the middle of the range of rotation The trimpots are located on the CHS11 module and are labelled VR1 A and VR2 B If the application is a single chute only the A trimpot needs to be adjusted Observe the LCD which should display an output in per cent for either one or both chutes and check that the output is zero and the output graphic is showing that no sensors are ON If the output is not 096 turn the trimpots slowly anticlockwise until the output shows that no sensors are covered and the output 096 22 sa 5 5 Adjusting the Analog Output Zero and Span Monitor the analog output A using a suitable instrument In
3. ceeds 8 3 2 2 Non Insulated Electrodes a ree et eer rete m EU Pe Ve ra EU P e SEDE vn tte mn ee LU eR 8 3 2 3 Electrode Insulation o nre po Gr rr ennemie et iere kien quere reae n reae teretes d reu 10 B A CHUTE FACE ic aes D 11 3 2 5 Number of Electrodes recorte te terreri vacetetdescderaneasaljeaceauiansmnateieeesscdecens Ea aaaea EE aiaa 12 3 2 6 Highest and Lowest Electrodes esse 12 3 2 7 Electrode Spacing and Position ceret iere reete ee us Ene hunted Meet tete edes AL n 12 4 0 Electrical Installation rrr or at o Dr ORO Dr e Feria cep eii et reir est korr aa teu inte br pe ates 15 4 1 General Information iet cave etr teret rece e e cepere e Hr Oe red AN E ive eve RS 15 4 1 1 Power Supply and Internal Fuse iii 15 LEAL M Q tiess 15 4 2 Wiring CONMOCTIONS de 16 423 Supply Voltage Inp t 3 re e Pec o e ve e e mte voee ee te 17 4 2 2 4 20mA Analog Outputs E Se ag en 17 4 2 3 Relay Contact OUTPUTS arree 17 4 2 4 Electrode CONNECTIONS iinr E E eet A N N eee leve NENA ES 17 4 3 Power Oh Checks ase rent oat au Rd iem go P ne I eI ea nima gre 18 5 0 Commissioning inr Dn e etie iate ess top rene bass de cain secuattse sce
4. 2013 Sugar Research Institute page 6 sa Details of the CHS11 dimensions weight and mounting are provided in Section 1 1 of this manual The CHS11 is designed for mounting in a control cabinet must not be installed without appropriate protection from the factory environment l a NOTE 1 The maximum cable length from any chute electrode to a CHS11 is 25 meters 3 1 Chutes and electrodes The CHS11 functions by measuring conductivity between electrodes and the steel wall of the chute The presence of material e g bagasse or prepared feed touching both the steel wall and an array of electrodes positioned vertically in the chute causes a low resistance path for electric current to flow This allows the CHS11 to determine that material is present The low resistance of the bagasse is mostly due to the presence of moisture Each CHS11 can be used to monitor one or two chutes It is possible to have sixteen electrodes in a single chute because there is a limit of sixteen electrode inputs When one CHS11 is used to measure the level in two chutes dual chute mode then each chute may have a maximum of eight electrodes The CHS11 requires an even number of electrodes for correct operation For example in single chute mode 10 12 14 or 16 electrodes shouyld be used In dual chute mode each chute can have 2 4 6 or 8 electrodes Copyright 2013 Sugar Research Institute page 7 sa 3 2 Electrodes The CHS11 offer
5. sa 9 3 10 Zero Adjust The zero adjust parameter see illustration below is used to adjust the 4 milliamp output signal when the output is at 0 Details are provided in Section 3 of this manual 9 3 11 Span Adjust The span adjust parameter see illustration below is used to adjust the 20 milliamp output signal when the output is at 100 More details are provided in Section 3 of this manual 9 3 12 Configuration Error The CHS11 stores parameters in non volatile memory so they are maintained when the power is off Parameters are verified when the CHS11 is powered up or when it enters configuration mode If any parameter is not valid then the CHS11 will display the Config Error message see illustration below When this occurs and the Enter button is pressed the CHS automatically resets all invalid parameters to a default value 43 sa sa 10 0 Troubleshooting Installation and operation of the CHS11 must be in accordance with the Specifications Mechanical and Electrical Installation sections of this manual 10 1 Self test Function A self test function is provided to allow testing and checking of the electronics and connections To enter the self test mode press and hold the Enter button as power is applied to the CHS11 electronics The self test function performs the following actions e The relay outputs are turned on in a staircase sequence 16 steps e The LCD shows the number of active rela
6. e Providing a digital input to a control system e g a programmable controller to display the state of each sensor at an operator interface Other logic processing performed by the PLC DCS could be implemented to suit a specific application The CHS11 would be in Mode 4 no logic processing e Controlling a row of lights near the chute or in a control panel allowing factory operators to see from a distance the level of material in the chute e High and low alarm indication could be used for outputs to indicate chute empty chute low chute high and chute full 8 2 Material Presence Detection The CHS11 comprises 16 sensors that can be used to detect the presence of material When configured for operation in Mode 4 there is no logic processing and the relay outputs show the state of each sensor For example if sensors 1 3 7 and 15 are covered then relays 1 3 7 and 15 will be active and the other relays will be inactive It is therefore possible to use the CHS11 as a 16 channel sensor for level or presence detection Some example applications are e Electrodes are fitted in the walls of tanks with one electrode per tank When the material rises to a high level the electrode becomes covered and the relay operates to provide an alarm indication of the high tank level e Electrodes are fitted in the walls of 8 tanks with each tank having two electrodes one at the top and one at the bottom The relays can be used for high and low le
7. CHS11 to be used in dual chute configuration where the sensitivity in one chute may differ from that required on the second chute It is possible to use separate sensitivity adjustments for single chute installations An example where this would be useful is where the lower eight electrodes require a low sensitivity but the electrodes towards the top of the chute require more sensitivity The limitation when used in single chutes is that each trimpot A adjusts the sensitivity for sensor inputs 1 to 8 and trimpot B for sensor inputs 9 to 16 8 5 Irregular Electrode Spacing The CHS11 produces an output signal that is linear with the number of electrodes covered If the electrodes are spaced at the same distance between electrodes the output signal will be linear with the vertical distance in the chute It is possible to mount the electrodes at distances proportional to the cross sectional area of the chute so that the CHS11 output signal is proportional to the chute volume In addition it is possible to space the electrodes at irregular intervals to linearise the output signal with another process variable 36 sa 9 1 Keypad Three buttons are provided on the CHS11 module for setting options and adjusting parameters The position and names of the buttons are shown in Figure 13 The switches are placed at the bottom right hand corner of the CHS11 module see Figure 13 The configuration of the keypad functions is provided in Table 6 CON
8. Menu Reference section of this manual Once in configuration mode the user must go through all configuration screens before returning to the output screen There is no automatic timeout return to the output screen The entry to configuration mode can be aborted by pressing the Down button Section 4 of this manual provides a concise guide to setting the parameters for a typical installation A more detailed description and guidelines for use of the parameters are provided in the Menu Reference section 27 sa 6 2 Operation The operation of the CHS11 can be monitored using the output screen which displays the analog output values in per cent as well as a display of the sensors that are covered Examples of output screens for single and dual chute configuration are provided below Single chute configuration Dual chute configuration The outputs are shown on the display as a percentage and as a graphical display of covered sensors If in single chute configuration only the A output will be displayed In dual chute configuration both A and B outputs will be shown The graphical display resembles a bar graph which has more functionality because it can be used to show the sensors that the CHS11 determines to be covered 6 3 Sensor Detection and Logic Processing The operation of the CHS11 is described below with reference to the Figure 12 which illustrates a functional block diagram The CHS11 comprises 16 conductivity se
9. compromised 3 2 7 Electrode spacing and position A typical installation in a Donnelly chute has eight electrodes spaced at approximately 200mm centres in the wall of the chute The simplest method is to space the electrodes evenly between the highest and lowest electrodes although this is not the only option Refer to the Applications Guide in this manual for information on spacing the electrodes at irregular intervals To avoid the effects of excess water in the chute it is recommended to mount the electrodes ina diagonal or staggered geometry so that dripping water corrupts only one electrode Figure 5 illustrates some possible mounting positions Copyright 2013 Sugar Research Institute page 12 sb Figure 5 Two suggested methods of mounting electrodes Copyright 2013 Sugar Research Institute page 13 sb Copyright 2013 Sugar Research Institute page 14 sa 4 1 General information Section 1 1 of this user manual includes details of the power supply requirements analog output characteristics including load resistance and relay specifications Please refer to the terms electrode and sensor in the Glossary when reading this section 4 1 1 Power supply and internal fuse The CHS11 requires a clean stable 24 VDC power source Details of the input supply including the current consumption and ripple are
10. each sensor is displayed as it is measured by the detector In other words there is no logic processing So if one sensor is not covered with material it will Show as not covered The graphic display shows the output from the logic processing of the sensors but is not a bar graph The sensitivity adjustment may need to be changed because some sensors do not properly detect material Question Where is the internal fuse of the CHS11 located and what spares are available The CHS11 module has one resettable fuse that is soldered on the printed circuit assembly It is not field replaceable Question Why does the display not change when I hold down the Up or Down buttons There is no automatic increase or decrease feature on the CHS11 To change a parameter value you must push the button for every increase or decrease Question Why does the CHS11 display not show the output screen that is mentioned in the manual Make sure that the CHS11 is not in configuration mode The CHS11 does not automatically return to the output screen Press the Enter button to return to the output screen 49 sa Question What does it mean when get a Config Error message on the display The CHS stores parameters in non volatile memory so they are maintained when the power is off Parameters are verified when the CHS11 is powered up or when it enters the configuration mode If any parameter is not valid then the CHS11 will display the Config Error mess
11. has the following effects e The output state will change less rapidly if hysteresis low is decreased and or hysteresis high is increased This can be used to remove unwanted chatter in the digital outputs that may be caused by momentary air pockets or material contact with the electrode e Increasing hysteresis low and or decreasing hysteresis high means that the output state will be less resistant to change and may improve the speed of detection This may be useful in fast flowing chutes where the reaction time of the CHS11 to changes in the chute level needs to be short 7 2 Using the CHS11 for Materials other than Bagasse The majority of CHS11 applications will not require knowledge of the following information which provides details that may assist with difficult or irregular installations and applications Please refer to Section 5 for a description of the CHS11 operation and background information on the CHS11 sensor detection and processing functions and terminology 32 sa 7 2 1 Characteristics of the Material for Reliable Detection There are two main characteristics of materials that need to be considered in respect of suitability for CHS11 applications The first is the electrical conductivity which is usually dependent on the amount of moisture and presence of ionic compounds such as salts contained in the material Since the CHS11 has a conductivity detector that uses fixed values for threshold and sensitivity the
12. improve the mechanical connection of wiring to the electrodes it is recommended to terminate the screened cable inside a waterproof junction box mounted on or near the chute This allows more robust wires to be connected to the electrodes and the junction box Copyright 2013 Sugar Research Institute page 17 sa terminals Examples of a single chute installation wiring and dual chute installation wiring are provided in Figures 5 and 6 respectively 4 3 Power on checks When the cable installation is complete apply 24 volt power to the CHS11 and check the following e The PWR LED on the CHS Module illuminates showing that power is on and e The LCD illuminates the LCD is back lit and the output screen refer to Menu Reference for details appears on the LCD screen Copyright 2013 Sugar Research Institute page 18 Installation Example Single Chute CHUTE HEIGHT SENSOR CHS SEE TABLE BELOW FOR X1 LINK LINK POSITION POSITION 24V INSTRUMENT PWR SUPPLY INSTRUMENT PWR SUPPLY RETURN RELAYS see Note LEVEL INDICATING 24 7 CONTROLLER 240V AC SUPPLY N e 240V AC SUPPLY L mA CHUTE 1A 240 V mA OUTPUT i FAST BLOW see Note 2 CHUTE A JUNCTION see Note 1 Bre see Note 3 SENSOR S COM S16 S15 S14 S13 S12 S11 S10 s9 S8 S7 S6 S5 S4 S3 S2 SI
13. sa Table 4 Sensitivity Range for threshold setting Threshold Effective Sensitivity Range kQ 10 1 6 Minimum recommended setting 25 17 For wetter more conductive materials 50 50 Default setting for most applications 75 150 For drier less conductive materials 7 1 3 Hysteresis Adjustment A hysteresis algorithm is used to filter the results from the detector For example if one sensor was covered with material but suddenly experienced an air pocket the detector output may momentarily change to not covered The hysteresis algorithm filters out the momentary change and prevents the output state from chattering or changing too rapidly Each time the CHS11 scans a sensor the result from the detector is accumulated The hysteresis algorithm compares the accumulated value with the hysteresis high and hysteresis low parameters to determine the detection state for the sensor If the accumulated result is lower than hysteresis low the detection state is uncovered If the accumulated result is greater than hysteresis high the detection state is covered The default settings for hysteresis low is 30 which means that the detector output must be ON for less than 3 out of every 10 scans for the sensor to be uncovered The default for hysteresis high is 70 meaning that the detector output must be on for at least 70 of scans before the sensor is covered Changing the hysteresis parameters
14. typical application More detail is available in other sections of this manual including Section 5 5 1 Overview Prior to commissioning the CHS11 please check whether the mechanical and electrical installation is complete and the power on checks were satisfactory as described in Section 3 The steps for commissioning a typical CHS11 installation include are Setting the jumper link XT Entering settings at the CHS11 user interface Adjusting the trimpots to a default position Adjusting the analog output zero and span Viewing the operation in Mode 4 and Setting the mode of operation gum ww ND PB 5 2 Setting the Jumper Link The jumper link on the CHS11 selects one or two chutes as described in Table 1 below If the CHS11 is used in the single chute mode the jumper X1 must be fitted adjacent to the 1 text shown on the printed circuit board For dual chute mode fit X1 to the pins adjacent to 2 Table 1 Jumper link selections Configuration X1 position Single Chute T Dual Chute 2 21 sa 5 3 Entering Default Settings at the CHS11 User Interface Please refer to the Menu Reference section of this manual for a concise reference to the user interface buttons and LCD screens Use the interface to set the following values in Table 2 before commencing the commissioning process Table 2 Default settings for CHS user interface
15. uos mg Sa Sel 00 000 00 Dno mW Heelies lla na 6m mma oD pith 800 OOO BOONMO OF Ta nor nano mma nonum na a 00 cm um an AODH Yp lm 00 os oo n nenne umma a 00 og oa meme 0g 23099 Se ang uhr Deenee maroo amp oo 00 OOO ano 2 na meroa noa ano mna meroa ma mesoo 4 mna 8005 mma EHE na ems umm Mee Oo 00 ems nog te 00 uma 00 OOO e onem 5 en eu ez ez 000000 seni ALO MNO ON S90 SO e De ne nan ct SON 2 DOSANE On 0 0e Monnet Figure 4 Functional Block Diagram of CHS11 29 sa sa The installation and configuration of a typical CHS11 application is described in the preceding sections of this manual mechanical installation electrical installation and commissioning This section provides some guidelines and background information on the use of a CHS11 for applications other than for monitoring the height of material in a feed chute It also describes how to use the damping threshold and hysteresis parameters 7 1 Damping Threshold and Hysteresis Parameters 7 1 1 Using the Damping Parameter The analog outputs are proportional to the number of sensors As one sensor turns on the output will increase by an amount equal to 100 the number of sensors When the CHS11 is configured for a single chute with 16 sensors and each sensor turns on the output will change by around 6 In addition each analog output has a resolution of 10 bits and includ
16. AD SUGAR RESEARCH INSTITUTE SRI CHS11 CHUTE HEIGHT SENSOR Instruction and Operation Manual SRI provides a range of services to the sugar milling and sugar refining industry worldwide These include 61 7 3138 9400 www sri org au commercial research and development operator and supervisor training consulting process control and instrumentation factory and plant design boiler optimisation CFD and DEM analysis and chemical services 61 7 3138 9409 sugarresearch Copyright 2013 Sugar Research Institute info sri org au sugar_research Sugar Research Institute PO Box 15758 City East QLD 4002 Australia Phone 61 7 3138 9400 Fax 61 7 3138 9409 Email info sri org au nRigcELCCclerlluugqprlme 1 2 0 Specifications seniri ienaa asunat na Sanie tea REM EE EA EREA Oarra Ria 3 2 1 Chute Height Sensor 11 Electronics Module orir E a A o E E AN ASETE 3 2 2 Optional AC Power SUpply cccesccsscssssecsssecssesseecsaeecuecsseesseecsaeecueesesssseesneeeseessescsaeeseseseaeessseesaceseseeeeesseseeseneseeessneees 5 pEEESCuuadese tc c ain ee 5 EXT IERIBCIBRAGCIFEImMC 7 31 dgoe ce R etai 7 pad Iq DIM n 8 3 2 1Insulated Electrodes 21554
17. FIGURE CHUTE A Up Down Enter Sensitivity Figure 13 Configuration switches on CHS11 module Table 5 Configuration keypad functions Button Function Enter Press to enter configuration mode and to scroll to the next menu item Up Increase the displayed value or answer Yes to the question on the LCD Also use to toggle between two options e g single or dual chute configuration Down Decrease the displayed value or answer No to the question on the LCD 37 sa 9 2 Flowchart of LCD Screens Figure 14 outlines a flowchart of the user interface display operation with detail of each screen Denes S 00 SA MIE XKL ON up en sim om L___ lasse yen onan hell S Ome hoon S Sua Q HOO Ila OO yO oT 00e S 1Q I 19 p I Figure 5 Flowchart of LCD Screens sa 9 3 LCD Screens 9 3 1 Output Screen The output screen is shown after the CHS11 is powered up and is then the default display If the CHS11 is configured for single chute mode the screen will appear like this The first line of the screen shows that the output from the CHS11 which can range from 0 to 100 The second line shows a graphical representation of the sensors In the example presented above the CHS11 has been configu
18. age When this occurs and the Enter button is pressed the CHS11 automatically resets all invalid parameters to a default value 50 sa Damping The CHS11 includes a first order low pass filter algorithm that is used to smooth the output signal Damping refers to the time constant used for the analog outputs which include a first order low pass filter For example when damping is set to 30 seconds the output signal will fall to 37 of the initial value 30 seconds after the output state has changed Detection State The detection state Used describes which sensors are covered with bagasse and those that are not covered It is determined by comparing the signal from the detection electronics against the threshold setting Electrode Steel electrodes are fitted to the chute and connected to the CHS11 electronics to detect the material presence Hysteresis The method used by the CHS11 to determine if a sensor is covered with material includes scanning the sensor a number of times On each scan the signal from the detection electronics is used to update an algorithm that has programmable hysteresis for determining whether the sensor is on or off The output from this algorithm determines the detection state for each sensor The CHS11 has two hysteresis values hysteresis high and hysteresis low A hysteresis high value of 100 means that the signal from the detection electronics must show that the sensor is covered for every scan
19. ay contact 16 N O Relay contact 16 Common Chute AmA Analog Output A Chute B mA Analog Output B Chute AmA Analog Common A Chute B mA Analog Common B 24 24Vdc Supply Input 24 24Vdc Supply Input 0 Supply Common 0 Supply Common Copyright 2013 Sugar Research Institute page 16 sa 4 2 1 Supply voltage input Four terminals are provided for the connection of the 24VDC supply Two are positive and two are negative or common The voltage supply may be floating or ground referenced 4 2 2 4 20mA analogue outputs There are two 4 20 milliamp analogue outputs referred to as Output A and Output B When in single chute configuration only the A output is used The B output will be active but remain at approximately 4 milliamps When being in dual chute configuration both outputs A and B are used The analogue outputs of the CHS11 are isolated from the input supply but share a same common negative for both outputs There are two terminals for each output One terminal is for the current output and one for the signal return common The two common terminals are connected internally A single or twin twisted pair cable with screen for individual pairs and an overall screen is recommended for connection to the analog outputs An example of a suitable cable type is Belden 9841 single pair and Belden 9842 twin pair For details please refer to www belden com 4 2 3 Relay contact
20. before the detection state for the sensor is covered A hysteresis high value of 70 means that the detection state will be covered if 70 or more scans show the sensor is covered Similarly a hysteresis low value of 20 means that if 20 of scans show that a sensor is covered the detection state for the sensor will be not covered Output State The CHS11 includes algorithms to convert the detection state into an output state based on the mode setting The output state is used to control the relays and to generate the analog output The two output states are on and off 51 sa Parameter A parameter in the CHS11 is a value which is stored in non volatile memory and used by the CHS11 during operation to perform specific operations Parameters can be changed at the user interface Examples include the number of sensors the detection threshold and hysteresis Scan Scanning To determine the detection state the CHS11 circuitry regularly scans each sensor in a continuous sequence Threshold The CHS11 compares the conductivity of each sensor with a threshold value If the measurement is less than the threshold the sensor detection state is covered If the measurement is above the threshold the detection state is not covered 52
21. continuous 2A Recommended operating conditions Input supply voltage 24 VDC Input supply voltage ripple lt 0 1V Power supply rating no derating 15 W Ambient temperature 25 5 C Ambient humidity 55 1096RH Electrode interface and conductivity detector characteristics Specification Min Typical DEA Unit Cable length from CHS to electrodes 25 metres Detection signal frequency 1 92 kHz Detection signal amplitude no load 5 Vok pk Threshold adjustment limits 0 5 Vok pk Sensor scan rate 24 Hz Detection signal source impedance approx 360 50k Q Sensitivity adjustment range 50k Q Bagasse moisture content 45 Copyright 2013 Sugar Research Institute page 3 Supply Specification Typical Operating supply voltage range 20 24 26 VDC Allowable ripple and noise at input 0 2 V Supply current at 24 VDC 0 05 0 4 A Voltage protection clamping voltage 31 45 VDC Self resetting fuse break current at 20 C 1 8 A Self resetting fuse hold current at 20 C 0 9 A Analogue outputs Specification Min Typical Max Unit Source voltage with supply voltage of 24 VDC 24 VDC Load resistance 0 250 1000 Q Limits of zero 4 mA adjustment 3 3 4 9 mA Limits of full scale 20 mA adjustment 19 22 mA Relay outputs Specification Min Typical DEA Rated contact current 2 A Rated contact p
22. crease the Zero Adjust A parameter refer to Menu Reference section for details until the instrument reads 4 0mA Now connect an earth to the highest electrode in each chute and observe that all sensors are ON at the LCD output screen The earth may be connected at the CHS11 or to the electrode wiring Finally adjust the Span Adjust A parameter so that the output reads 20mA Repeat this process for analog output B for a dual chute configuration and adjust the parameters Zero Adjust B and Span Adjust B In addition remove the earth wire from the top electrode 5 6 Viewing Operation in Mode 4 Now use the user interface to set the mode to 4 for both chutes if in dual chute configuration This allows the detection state see Glossary to be viewed and problem sensors can be identified At this stage in the commissioning process there needs to be some method of observing the output from the CHS11 and the level of material in the chute simultaneously A basic way of achieving this is to have an observer viewing the number of electrodes covered and a second person commissioning the CHS11 When material is flowing through the chute under normal operating conditions observe the graphical representation of the sensors on the LCD and compare it with the observed level in the chute As the chute fills and empties the graphical representation should indicate sensors turning on and off 5 7 Adjusting the Sensitivity Trimpots Adjust the tr
23. eel wall may cause a low resistance path when bagasse is not present Excess water may be water that flows condenses upon or collects on the inside or outside surface of the steel wall It may also be water that becomes trapped in the gaps between the electrodes insulators and steel wall The plastic widow should be approximately 200 mm wide and long enough to house the required number of electrodes The electrodes should be positioned along the centre line of the plastic sheeting and fitted without insulators In order to mount the electrodes 10 mm diameter holes must be drilled in the sheeting 3 2 1 Insulated electrodes Insulated electrodes may also be used but they are not preferred as the electrical pathway between electrode and chute is much shorter Insulated electrodes are made from stainless steel and have a low profile inside the chute to prevent unwanted material build up around the electrode They allow simple direct to bulkhead mounting and have two plastic insulation spacers for electrical isolation from the body of the chute A crimp lug and locknut are provided with the electrode for connection of the cable to the electrode Figure 3 illustrates the mounting arrangement of electrode in the chute wall Insulators are supplied with each electrode and are manufactured from a plastic that is resistant to heat moisture and mechanical stress Mounting the electrodes using the spacers requires a 16 mm diameter hole to be cut through t
24. es a damping algorithm that can be adjusted using the damping parameter to reduce the effects of the step changes The algorithm is a first order low pass filter and hence increasing the damping time also delays the output response from the analog outputs As a result it is normal to observe some minor step changes in the output signal as the chute level changes This will be most obvious when the output is recorded on a trend chart 7 1 2 Using the Thershold Parameter The CHS11 conductivity detector functions by generating an AC signal that is fed to the electrode inputs through the sensitivity trimpot adjustable from 0 to 50k ohms When material causes an electrical contact between an electrode input and the sensor common a voltage divider is formed by the sensitivity trimpot and the material This divided voltage is measured by the CHS11 and when it is reduced by an amount equivalent to the threshold the conductivity detector will show that material is present Usually the threshold is set to 5096 which means that material will be detected when it is the same resistance as the sensitivity trimpot setting When the threshold is reduced the material must be more conductive to be detected Increasing the threshold may allow less conductive material to be detected It is recommended that the threshold is set between 1096 and 9096 The effective detection sensitivity range for a given threshold setting is provided in Table 5 31
25. es to be fitted in the wall of each chute Using more than eight electrodes will give a better resolution of the output signal When used in single chute mode a CHS11 can process inputs from up to sixteen electrodes in the chute When used in dual chute mode a CHS11 can process inputs from up to eight electrodes in each chute NOTE The CHS11 requires an even number of electrodes in each chute 3 2 6 Highest and lowest electrodes The positions of the highest and lowest electrodes in the electrode array depend on these factors e The CHS11 will indicate that the chute is 100 full when all electrodes are covered If the highest electrode is placed too high in the chute it may be that the top electrode is never covered and signal resolution is reduced e If the highest electrode is placed too low the top electrode may be covered often If the relay output of that electrode is used for alarm purposes e g a high chute level alarm there may be too many false alarms e The CHS11 will indicate that the chute is 0 full when no electrodes are covered If the lowest electrode is placed too low in the chute there may be an increased chance of false detection of material Thus lower areas of the chute may be prone to excess water or to material not being cleared away when the chute is empty e If the lowest electrode is placed too high in the chute the ability to use the output signal for alarm purposes low chute level alarm may be
26. h is used to minimise level detection errors if sensors are stuck or behave erratically Please refer to the Menu Reference section of this manual for a description of the modes of operation The output from the logic processor is held in memory registers called the output state The LCD output screen shows the output state which is used by the analog and digital outputs Each digital output is turned on when the corresponding sensor is ON The analog output block uses the number of sensors parameter to scale the output signal The output is proportional to the number of sensors that are ON For example if the number of sensors is set to 12 and the output states for 6 sensors are ON then the analog output will be 12 milliamps 50 o Oeean Oo o Oo o o o Ts 10336 2 ame mme 00 09000500 She Il 5 Gerh ONE AE nono o S A AMON zx o ZE o en Oo o Azo seo Oo Oo o SMO MMO Om o4 0OO0O4 eon ON mm Dno mo swannenone D nenas wo az O lt os Do qas 00 om nga nano OOO 00 mung 00 0000 ums ums menm nnm men s pma
27. he chute wall Before fitting the electrodes liberally coat the steel wall around the electrode mounting holes with a sealing compound such as Silastic Coat the inside and outside surface of the wall to prevent moisture collecting under the plastic insulator Finally fit the electrode with the insulator and wipe off the excess compound after tightening the nut Copyright 2013 Sugar Research Institute page 10 Figure 1 Mounting arrangement of electrode in the chute wall 3 2 4 Chute face The choice of electrode positioning is determined by the feeding characteristics of the material into the chute The electrodes must be positioned in a face of the chute where the material firmly contacts the chute wall without air pockets and is cleanly removed from the wall when the chute level falls Efforts should be made to try to locate the electrodes where water is not expected to flow on either surfaces of the chute Electrodes in the lower part of the chute should not be located where material tends to build up and hang Figure 4 provides examples of faces where electrodes could be mounted and faces where electrodes should not be mounted Figure 4 Examples of possible electrode positions Copyright 2013 Sugar Research Institute page 11 sa 3 2 5 Number of electrodes To be effective in mill control a CHS11 typically requires eight electrod
28. he parameters for Chute B will not be displayed and cannot be changed because they will have no effect on the operation of the CHS11 In addition changing the configuration between single and dual chute configuration requires the X1 jumper selection on the CHS11 module to be changed Please refer to Section 3 for more details 9 3 4 Number of Sensors The number of sensors may be set for single and dual chute applications at the following screens The number of sensors is adjustable in steps of 2 sensors with a minimum of 4 sensors The maximum number of sensors is 16 in a single chute configuration and 8 per chute for a dual chute configuration 40 sa 9 3 5 Detection Mode The effect of the detection mode setting is described in Section 5 of this manual The illustration below shows the current setting the example shows Mode 1 in the second line and the range that may be set between 0 and 4 Table 7 provides the detection mode and respective logic processing Table 7 Detection Mode and Logic Processing Mode Logic Processing 0 Scan from bottom sensor to top sensor Find the first sensor not covered and then set the output state for that sensor and all other higher sensors to OFF 1 Scan from top sensor to bottom sensor Find the first sensor covered and then set the output state for that sensor and all other lower sensors to ON 2 Scan from bottom sensor to top sensor Find two consecutive sensors tha
29. impot and note that there is an A trimpot VR1 and a B trimpot VR2 For single chute applications only adjust the A trimpot For dual chute configuration adjust A first and complete the commissioning before adjusting B Adjust the sensitivity whilst monitoring the output screen and the level of material in the chute until the CHS11 reliably shows the correct output This should be performed over the entire range of operating conditions If the material is wet less sensitivity is required and as the material becomes drier the sensitivity may need to be increased The final sensitivity setting should accommodate both the wet and dry conditions i NOTE Increasing the sensitivity means turning the trimpot anticlockwise and decreasing the sensitivity means turning the trimpot clockwise 23 sb 5 8 Check for Problematic Sensors An Example The following example shows a dual chute application where Chute A was full of material and Chute B was empty Sensors 3 and 4 were found to be the problem in Chute A because some air pockets have been formed in the material around the electrodes In this scenario Sensor 4 in Chute B was observed to be always on even when the sensitivity trimpot was turned almost fully clockwise An example of how to check for problematic sensors is provided below For the example presented above solutions were found for Chutes A and B Chute A Solution It was discovered that Chute A
30. listed in Section 1 1 The CHS11 includes an internal self resetting fuse for supply protection which is not field replaceable 4 1 2 Relays There are 16 relay contact outputs that correspond to the 16 electrodes see Figure 6 The maximum contact current and voltage for the relay contacts are provided in Section 1 1 of this manual CHS11 SUGAR RESEARCH INSTITUTE Figure 6 Relay outputs NOTE Relay contacts are not suitable for mains level voltages 110 240 VAC Use a separate relay with the appropriate rating if switching mains level voltages Copyright 2013 Sugar Research Institute page 15 sa 4 2 Wiring Connections The CHS11 uses screw terminals for the connection of power supply input relay contacts analogue outputs and electrode inputs The terminal numbers and connections are shown in Table 1 Terminal connections Terminal Function Terminal Function S1 Electrode 1 Input S2 Electrode 2 Input S3 Electrode 3 Input S4 Electrode 4 Input Com Electrode Common B S5 Electrode 5 Input S6 Electrode 6 Input S7 Electrode 7 Input Electrode 8 Input Com Electrode Common A Relay contact 1 N O R1 Du fumer R5 Relay contact 5 N O Relay contact 9 N O R9 R13 Relay contact 13 N O Relay contact 5 Common 5C as eme Relay contact 13 Common 13C rs Relay contact 8 N O Relay contact 8 Common Rel
31. n of each individual sensor The output will change erratically if the sensor detection does not operate properly For example if the sensitivity has not been adjusted to suit the range of operating conditions e g bagasse moisture content presence may not be properly detected at some or all sensors Refer to the Commissioning section for more details 46 sa Symptom The LCD shows that all sensors are OFF even when the chute is full or the LCD shows that some sensors are OFF even when material is contacting the electrode Possible Cause and Remedy If the sensitivity is too low sensitivity trimpot is too far clockwise material may not be properly detected Check whether the sensitivity adjustment has been set as described in the Commissioning section of this manual The electrode wiring may be faulty or incorrectly installed Check whether the electrode wiring is properly connected and the sensor common connection is connected to the chute The Threshold parameter may be set incorrectly This will most likely be the case if the setting is too low A threshold of 50 is recommended for most applications For special applications please refer to the Applications section of this manual for more details on the threshold parameter The electrodes may not have good physical contact with the material This may occur if the electrodes are fitted in a location where the material has large air pockets or if the electrode
32. ngular opening is cut in the steel side of the Donnelly chute front back or side surface to suit the specific site conditions This arrangement shown in figure 3 gives good separation between the chute wall and the electrode There is less chance of short circuiting via water tracks or material buildup around the electrode Typical electrode arrangement _ MATERIAL 77 LEXAN MR 5 6mm Thick or similar Figure 2 Arrangement of electrodes and polyacarbonate windows in a Donnelly chute NOTE 2 A number of individual windows may be used in one chute in order to place the electrodes in the best location Using clear polycarbonate windows can help when commissioning the CHS11 because the level of material can be observed and compared with CHS11 output Copyright 2013 Sugar Research Institute page 9 sa 3 2 3 Electrode insulation Good insulation of the electrodes is very important because any path of electric current that flows between the electrode and steel wall other than through the material may cause false detection For example e Any metallic contact between an electrode and the steel wall will cause a very low resistance The CHS will falsely indicate that material bagasse is present at that electrode The CHS11 has no means to determine whether a low resistance is due to metallic contact or contact by the bagasse e Excess water around the electrode or between the electrode and st
33. nsing channels which may be used in a single chute or split into 8 8 channels for a dual chute configuration When in dual chute configuration the detection state and output state registers are split into two groups of eight and the logic processing and outputs are independent for each group For brevity the following descriptions refer to only to single chute configuration because the principle of operation is very similar for the dual chute configuration Each electrode is scanned in turn by connecting the electrode to the conductivity detector for a brief period of time The measured conductivity is compared with the threshold value a parameter that is normally set to 5096 and if the conductivity is greater than the threshold the detector output is on The recommended method of adjusting the detection is to change the sensitivity using a trimpot rather than the threshold parameter A programmable hysteresis algorithm is used to filter any momentary changes in conductivity A sensor is the combination of the electrode sensitivity trimpot detector and hysteresis algorithm The output from the hysteresis algorithm is directed to memory registers that hold the detection state for each sensor The detection state can be either covered or uncovered The term covered means that material was detected and uncovered means that material was not detected 28 sa The detection state is used as input for the logic processor whic
34. of this manual for more details on the threshold parameter 47 sa sa 11 0 Frequently Asked Questions FAQ Question What are the cable specifications for the installation of the CHS11 Analog Outputs single or twin twisted pair instrumentation cable with screens for individual pairs and an overall screen is recommended An example of suitable cable type is Belden 9841 single pair and Belden 9842 twin pair For details please refer to www belden com Electrode connections use a multi pair overall screened cable suitable for industrial environments Recommended types include Belden 9539 9 conductors each of 24 AWG which allows for connection of eight electrodes plus one wire for sensor common The length of the cable should not exceed 25 meters The screen at the chute end of the cable should be unconnected The screen at the CHS11 module end of the cable should be connected to the power supply common To improve mechanical connection of the wires to the electrodes it is recommended to terminate the screened cable inside a waterproof junction box mounted on or near the chute This allows more robust wires to be connected to the electrodes and then to the junction box terminal e g 1 5 mm plastic insulated stranded copper wire Please refer back to the Electrical Installation for more details Question Why does the display show that some sensors are not covered This may happen when the CHS11 is in Mode 4 which means that
35. or level indication and for chute height control Sixteen SPST relay outputs each corresponding to an electrode provide a discrete indication of chute height using lights or for connection to digital inputs of an automation system The user interface consists of a liquid crystal display and three push button keypad It shows the output as a percentage and as a graphical representation of chute height and allows the CHS11 to be configured by setting the number of electrodes threshold hysteresis mode and other parameters There are 16 electrode inputs for connection to sensors in one or two chutes Up to 16 sensors may be connected in one chute and 8 8 when connected to two chutes The CHS11 includes two independent sets of configuration parameters for independent operation when used to measure level in two chutes Aside from the user interface there are two manual adjustments one per chute required to set the sensitivity of the detection circuitry f b NOTE The minimum moisture content of bagasse for consistent detection by the CHS11 is 4596 Bagasse any drier than this cannot be reliably detected Copyright 2013 Sugar Research Institute page 1 sb Copyright 2013 Sugar Research Institute page 2 sb Fr 2 0 Specifications 2 1 CHS11 processing unit Absolute maximum ratings Supply voltage input continuous 28 VDC Voltage on any sensor inputs 50 VDC Voltage on current outputs 36 VDC Relay contact current
36. outputs A single normally open dry relay contact is available for each sensor Each relay contact closes if its corresponding sensor is covered P NOTE There are no internal fusing on the relay outputs and external fuses required to limit the current to the value listed in Section 1 1 4 2 4 Electrode connections The physical arrangement of electrodes is illustrated in Section 2 of this manual A crimp lug and locknut are provided with the electrode for connection of 1 5 mm plastic insulated multi strand copper wires to the electrode Each electrode requires one wire A connection must also be made between the steel chute and the CHS11 sensor common input Two inputs are provided on the CHS11 for the sensor common for connections If the CHS11 is used in single chute configuration only one sensor common input needs to be connected For dual chute configuration both chutes need to be connected to the sensor common inputs The sensor common must be connected using one of the conductors in the screened cable The wiring between the CHS11 and the electrodes should be multi pair overall screened cable suitable for industrial environments Recommended types include Belden 9539 9 conductors each of 24 AWG The length of the cable should not exceed 25 meters The screen at the chute end of the cable should be left open circuit and the screen at the CHS11 end of the cable should be connected to the power supply common To
37. owchart of LCD SCrEONS Re Henri dlstt nrestrrser ter dnenea ea ot rene e este etes titre Rate tanins sente d tan rene 38 9 3 LED SCheOINS evs 39 eme UII 39 9 3 2 Config re CHS11 SCr en tne ec rec eei terr e eer re teni vt eene ette ees 39 9 3 3 Number of Chutes Selectii rr m 40 9 3 4 Number Of Sensots cucine oed tne Re ree bed Ee oL n HR e ua Ie ni ea nca Mie Ra RE Tu Pr ee RM CR Sa EASE E Raa aE a geb RE RR pud 40 9 3 5iDetection ofer 41 9 3 6 DE Lau ee 41 3 7 Waits rollo APEA EDE AE ESTE AE A O sieste init sag suave lane sets chart delete etes ce ue vacd 42 QO SiS MACC 42 9 3 9 Hysteresis High ce iet n etna ede RAISING BINE UN HEISE HIT 42 93 10 Z ro I rene es 43 DS TL Span Ao UE MESPE n 43 93 12 Configuration EITOF aii rer ir ne te en FELIS IHE IH PO GAR TEE Re ER HER Eee Roe ERE FREUE TERR vi Peces ide pee Ree Pe CERE 43 10 0 Troubleshootihg eic etm eii ht c b eh dva re nt ben ee ee rte 45 10 1 Self test dares 45 10 2 Troubleshooting Guides m Eneee Ent 45 11 0 Frequently Asked Questions FAQ sisi 49 12 0 ETSI r 51 Copy
38. ower 60 W Rated contact voltage AC 24 VAC Rated contact voltage DC 30 VDC NOTE Relay contacts are not suitable for mains level voltages 110 240 VAC Use a separate relay with the appropriate rating if switching mains level voltages Copyright 2013 Sugar Research Institute page 4 Environmental conditions Specification Min Typical Storage temperature range 0 70 C Operating temperature range 5 50 C Ambient humidity 20 70 RH Vibration 10 to 60 Hertz 0 02 G Shock Not permissible Physical characteristics Dimensions Protection rating Material Mounting Weight approximate 2 2 AC power 210 x 90 x 60 mm WxHxD IPOO Polycarbonate 35mm DIN 0 3 kg The CHS11 is designed for a nominal 24 VDC input supply If this is not available a suitable modular power supply unit is needed in close proximity to the CHS11 The following output specifications are required Specification Output voltage 24 VDC Output voltage tolerance 10 Rated output current no temperature derating 1 A Output ripple at full load 0 2 VDC 2 3 Processing unit enclosure The CHS11 is a DIN rail mounted unit designed for mounting in a control cabinet If mounted in the field a suitable IP rated enclosure is required Copyright 2013 Sugar Research Institute page 5 sb Copyright
39. proximately 4 mA it is most likely that the wrong output has been connected Make sure that the Analog output A not B is connected for single chute applications e f the CHS11 is configured for dual chute and the analog outputs appear abnormal then check that the connections from the outputs to the user equipment are not swapped e The load resistance may be too high outputs must be terminated with a resistance in the range listed in the Specifications section of this manual e 24 volt power may be disconnected to the CHS inspect the power on the LED at the CHS11 module it should be on e Check the analog output matches the output percentage displayed on the LCD output screen e Check that the connection is not reverse polarity Symptom As the chute fills the output changes erratically Possible Cause and Remedy It is normal to observe some minor step changes in the output signal as the chute level changes This is because the analog output is proportional to the number of sensors as one sensor turns on the output will step up The damping adjustment is provided to reduce the effects of the step changes but it also delays the response of the CHS11 If the electrode wiring is not connected in the correct sequence the output will behave erratically as the chute fills and empties This can be checked by following the procedures detailed in the Commissioning section where the CHS11 is put into Mode 4 to check the operatio
40. re is a limit to the range of conductivity that the material may have for good detection If for example the material is sometimes very wet and other times dry it may be difficult to set the sensitivity adjustment that will provide consistent detection The second characteristic of importance is the physical characteristics of the material Physical contact needs to be made between the material and each electrode to allow the CHS11 to detect conductivity between the material and to the chute sensor common The material also needs to fall cleanly away from the electrode surface when the chute level falls 7 2 2 Electrode Surface Area The CHS11 detects the conductivity between each electrode and the material in the chute Increasing the electrode surface area has the same effect as increasing the sensitivity Some CHS11 applications may require special electrodes with larger surface area and therefore greater conductivity so that the material can be properly detected Examples of materials that may require large surface area electrodes include those comprised of spherical particles 7 2 3 Using the CHS11 with Non conductive Materials The CHS11 may be used with other forms of detectors such as those described in Section 7 under Interfacing with Proximity and Limit Switches 33 sa sa 8 1 Using the Relay Outputs There are 16 relay contact outputs that correspond to the 16 electrodes Typical uses for the relay outputs include
41. re sometimes a problem The problem can VV J m occur for more than one sensor at the same time Excess water is sometimes a problem The problem never J m T x occurs for more than one sensor at a time Excess water is sometimes a problem The problem can m T occur for more than one sensor at the same time Excess water and air pockets are sometimes a problem x x x x vv TN NOTE pockets and excess water In this case it is recommended that the electrodes T M The logic processing is not effective when trying to resolve the combination of air should be relocated or the source of excess water removed 25 sa sa 6 1 Configuration The CHS11 is configured using the LCD and three button keypad which are located on the CHS11 electronics module board inside the enclosure The LCD shows a number of parameter and options that can be set to suit specific applications m NOTE Prior to the commissioning and configuration of the CHS11 the procedures outlined in Section 3 of this manual must be completed 6 1 1 Entering Configuration Mode The CHS11 enters configuration mode when the enter button is pressed at the configure CHS11 screen see below When the CHS11 is in configuration mode parameters can be changed and adjusted There is no interruption to normal operation of the CHS11 in the configuration mode The sequence of screens is explained in the
42. red with 16 sensors Sensors 1 to 4 are ON and sensors 5 to 16 are OFF In dual chute mode the output screen will appear like this The display shows that Chute A and Chute B are both configured for 8 sensors Chute A is full all eight sensors are ON and Chute B is empty all eight sensors are OFF 9 3 2 Configure CHS11 Screen By pressing the Enter button when the output screen is shown the CHS11 configuration screen will be displayed which allows the user to enter the configuration mode or return to the output screen The Firmware Version is also displayed here as show in the following example By pressing the Up button the CHS11 will enter the configuration mode Note that the CHS11 will continue to scan the sensors and produce outputs when the CHS11 is in configuration mode so there is no interruption to the operation of the CHS11 Once being in configuration mode the user must go through all configuration screens before returning to the output screen see Figure 14 Pressing the Down button will abort entry to the configuration mode and the output screen will be displayed 39 sa 9 3 3 Number of Chutes Selection This screen allows the user to select either single chute or dual chute configuration Pressing the Up button will toggle between the two options which appear as follows Note that changing this option will change the way the configuration screens are displayed If in single chute mode i e Chute A Only t
43. right 2013 Sugar Research Institute page ii sa The SRI CHS11 Chute Height Sensor measures the level of prepared cane or bagasse in a Donnelly chute feeding a sugar cane crushing mill Unlike other level sensors the CHS11 does not require a clear line of sight to the material surface so accuracy is not affected by steam vapor or material feeding into the top of the chute The CHS11 operates by measuring the electrical conductivity of an array of electrodes mounted in the wall of the chute The outputs are proportional to the number of electrodes covered with material A user interface is provided so that the CHS11 can be configured to suit a range of applications One CHS can be used to measure the level in one or in two chutes Conductivity is detected when the bagasse comes in contact with metallic electrodes mounted within the wall of the chute The presence of the bagasse causes the electrodes to be electrically connected to the body of the metallic chute The CHS11 electronics measures a small electric current that is fed to each electrode and detects if the current is greater than a threshold indicating that the electrode is covered The CHS11 includes a number of features to improve the reliability of detection including programmable threshold and hysteresis It also has a logic processor that can be configured to ensure that the CHS11 provides the most faithful indication of chute height The two 4 20mA current outputs can be used f
44. s Parameters seen 31 7 11 Using the Dambping Pafaimetels ie e eerte he heredi ent ix esas cessed AEAEE e ara aaia 31 7 1 2 Using the Thershold Parameter sise 31 7 1 3 Hysteresis AdjUStmieLit 5 6 x rrr beret E ve erdt ree A Bie Hd RS b RS 32 7 2 Using the CHS11 for Materials other than Bagasse rs 32 7 2 1 Characteristics of the Material for Reliable Detection ss 33 7 2 2 Electrode Surface Area centre RH saesae ranei aae eaa e tL A AEEA SE Oa bete SER ea LAT Ra ee LER e PEE SEN UR s ua ER Eee Rn te 33 7 2 3 Using the CHS11 with Non conductive Materials 33 8 0 Application Briefs monere ricette Ri niaaa KE Nea ae e Te RADO enns dpi era aana Fea ed ieo AE note tnt ee 35 8 1 Using the Relay Outputs eerie edt be etiarn ates re ade xia teste A EE Reese Te utere inu aas asic qa helene le 35 8 2 Material Presence Detection sise 35 8 3 Interfacing with Proximity and Limit Switches sise 36 84 Split Sensitivity Adjustment ede ice tec eco reda gerk nado asi cg a Aaea ANa A sme eraa sA ESEE ps andes Nai Eis gra 36 8 5 Irregular Electrode Spacing cccscccssceesseesecsseecenecsseesssecsaeecsusesseesensesueesaeecuecsaeessaeesseesssesuaeeseaeeseesceaeesenesseessnsseneesenes 36 9 0 Keypad and LCD Reference er eicere eter ite Le sdb anne ode tte ant eue ane coal ape cR e EE eva lee ane d ni 37 LAN Taro M 37 9 2 Fl
45. s have been coated with some form of insulating material Check the installation with reference to the Mechanical Installation section of this manual Symptom The LCD shows that all sensors are ON even when the chute is empty or the LCD shows that some sensors are ON even when material is not contacting the electrode Possible Cause and Remedy This may occur if the sensitivity is too high sensitivity trimpot is too far anticlockwise Check whether the sensitivity adjustment has been set as described in the Commissioning section of this manual The electrodes may be incorrectly installed or the electrode insulators may have failed Check the installation with reference to the Mechanical Installation section of this manual Material may be deposited on the electrodes or water may have gathered within the spaces between the electrode insulators and the steel chute This will cause an unwanted path for electric current to flow and will result in false sensor detection The electrode wiring may be faulty or incorrectly installed Check that the electrode wiring is connected properly and the sensor common connection is connected to the chute Check for short circuits between the electrode wiring and sensor common and to earth The threshold parameter may be set incorrectly This will most likely be the case if the setting is too high A threshold of 50 is recommended for most applications Refer to the Applications section
46. s wide sensitivity adjustment to cater for many different variations of electrode placements and arrangements If the CHS11 is to be used to replace an existing conductivity based chute height system it is likely the existing electrodes may be reused Nonetheless SRI offers two types of electrodes for new installations or for situations where existing electrode arrays cannot be reused Non insulated electrodes are preferred because they offer the best insulation properties when mounted in a polycarbonate sheet which in turn gives highest adjustment and best height indication outcomes If non insulated electrodes are not suitable SRI can also provide insulated electrodes suitable for direct mounting in the chute The electrode array depends on e The number of chutes to monitor single chute or dual chutes e The method of electrode insulation e Which face of the chute to install the electrodes sides front or back e The number of electrodes e The positions of the highest and lowest electrodes in the chute and e The spacing and position of each electrode 3 2 1 Non insulated electrodes The preferred non insulated domed electrode is shown in Figure 2 Figure 1 Preferred domed electrode Copyright 2013 Sugar Research Institute page 8 sa The preferred method of insulation is to use a 6mm polycarbonate sheet window to mount a series of the domed electrodes shown in figure 2 A recta
47. t are not covered and set the output state for those sensors and all higher sensors to OFF 3 Scan from top sensor to bottom sensor Find two consecutive sensors that are covered and set the output state for those sensors and all lower sensors to ON 4 No logic processing the output state is the same as the detection state 9 3 6 Damping The output signal damping see illustration below is described in Section 5 of this manual The range of setting is from 1 to 30 seconds See the Application section of this manual for more detail 41 sa 9 3 7 Threshold The detection threshold for the sensors see illustration below is described in Sections 5 6 and 7 of this manual It is normally set to a default value of 50 The sensor detection is adjusted using the sensitivity trimpots When the range of sensitivity adjustment is not sufficient it is possible to adjust the detection threshold 9 3 8 Hysteresis Low Hysteresis low is a parameter used by the sensor detection algorithm Normally it is set to 30 see illustration below and this is the recommended setting for most applications Please refer to the Applications section of this manual for more details 9 3 9 Hysteresis High Hysteresis high is a parameter used by the sensor detection algorithm Normally it is set to 70 see illustration below and this is the recommended setting for most applications Please refer to the Applications section of this manual for more details 42
48. tutore deren een a ee Le e em EIE d 21 LN 21 5 2 Setting the Jumper LINK coit vet rr EE RR e Ree Dera tein este E encens dieses eve ivit veste citons el enon na 21 5 3 Entering Default Settings at the CHS11 User Interface sise 22 5 4 Adjusting the Trimpots to a Default Position sise 22 5 5 Adjusting the Analog Output Zero and Span ss 23 5 6 Viewing Operation in Mode 4 eene nennen enne eiaa aari anaa eet Aae enana tentes enn nnns entrent 23 5 7 Adjusting the Sensitivity Trimpots rcs nrettnpeic dnte tento La une enoi eksais ek ra lean na annum une aea era aL a Eaa 23 5 8 Check for Problematic Sensors An Example iii 24 5 9 Setting the Mode of OperatiOri 2 rin e t eerie seien rte vo ge e ente v Re es 25 6 0 Configuration and Operation iere cette anten eene NECS ERA ange Ee ekia i snae abo nu Renan edge nin eu Gun Na pes praed 27 Gel Config ratiOni soi ae edi RR eR EM Sun Rene E irm ere peti eH vU eie rper e ene 27 6 1 1 Entering Configuration Mode ais ertet etr tte tee i te i te cree sien vv edt die com 27 Copyright 2013 Sugar Research Institute pagei Mecum 28 6 3 Sensor Detection and Logic Processing iii 28 7 0 nmi en bon 31 7 1 Damping Threshold and Hysteresi
49. vel alarms for each tank e Electrodes are fitted to 4 chutes with each chute having 4 electrodes fitted as described in Section 2 of this manual The relay outputs are connected to the digital inputs of a control system which converts the digital signals into levels of 0 25 50 75 100 di i NOTE For each of the examples provided above the analog outputs would not provide a meaningful signal 35 sa 8 3 Interfacing with Proximity and Limit Switches Because CHS11 electrodes detect conductivity the sensor inputs can be connected to any circuitry or sensing element that has low conductivity in one state e g ON and high conductivity in another state e g OFF Please observe the specifications in Section 1 1 for the electrode inputs Ideally the external circuitry will be from a voltage free contact Examples of devices that may be connected between the electrode inputs and electrode common terminals include e Relays e Proximity switches e g capacitive inductive or ultrasonic e Photoelectric sensors with a volt free output e Limit switches and e Push buttons selector switches and other operator controls 8 4 Split Sensitivity Adjustment As described in Section 3 the CHS11 module has a jumper link labelled X1 and two trimpots VR1 and VR2 that allow separate sensitivity adjustment for sensors 1 to 8 and 9 to 16 The intended use of the separate adjustments is to allow the
50. was configured for Detection Mode 1 Thus new electrodes were fitted to a different position at a later time in a location where the physical contact with the material was improved Chute B Solution The chute was emptied and the inside and outside surfaces were inspected and found to be free of excess water Hence the electrode for Sensor 4 was removed and the insulator inspected in order to check for direct metallic contact between the electrode and chute wall The electrode was refitted in accordance with the instructions in Section 2 of this manual and the problem was resolved 24 sa 5 9 Setting the Mode of Operation For most applications the mode of operation should be set according to the criteria presented in Table 4 which usually requires viewing the operation in Mode 4 In the criteria below air pockets means that the CHS11 indicates that one or more sensors are OFF when the level in the chute is above those sensors Excess water means that the CHS11 shows that one or more sensors are ON when the level in the chute is observed to be lower than the sensors Table 3 Mode of operation criteria Mode gt Criteria 0 1 2 3 4 All sensors properly detect the presence and absence of material There are no problems observed from excess water Y Y v Y v x or from air pockets Air pockets are sometimes a problem The problem never VV m L occurs for more than one sensor at a time Air pockets a
51. ys e The analog outputs are ramped to match the relay settings e The sequence is repeated until the Enter button is pressed and e The speed of the sequence can be changed by pressing the Up or Down buttons 10 2 Troubleshooting Guides Symptom The LCD shows a CONFIG ERROR message Possible e The CHS11 stores parameters in non volatile memory so they are maintained Cause and when the power is switched off If that memory is corrupted then the Config Remedy Error message is displayed Press the Enter button to automatically restore the parameter to a default value Symptom There is nothing shown at the LCD and the LCD backlight is not lit Possible Cause and Remedy Check that voltage is present at the CHS by opening the cabinet and checking the power on LED at the Module If the LED is on then power is available check the LCD cable connections at the rear of the LCD and at the Module connection If the LED is off then power is not available at the input of the CHS or there may be some fault within the input protection portion of the Module Remove power from the CHS and reapply whilst viewing the power on the LED on the Module Check that the 24 volt power connection is not reverse polarity 45 sa Symptom The 4 20 mA output does not function as expected Possible Cause If the CHS11 is configured for single chute and the analog output is always and Remedy ap

Download Pdf Manuals

image

Related Search

Related Contents

FT TENSIOMETRE POIGNET DEC 2014  User Manual - CCTV Cameras  GALAXY S4用2ndバッテリ 充電スロット付きクレードル  Installation Instructions / User`s Manual NAXA00101DB  Samsung 763MB Computer Monitor User Manual  Digital Video Enhancer and Duplicator Model CT  Topspin User Guide CHs - Pascal-Man  Gembird KBS-P7-DE    

Copyright © All rights reserved.
Failed to retrieve file