Home

CTSH Compliance Test System User Manual

image

Contents

1. Figure 3 12 MX30 3Pi CTSHL and MX45 3Pi CTSHL with dual OMNI s Wiring Diagram Version 1 California Instruments Revision H 39 User Manual MX Series CTSH Compliance Test System 3 5 3 5 1 3 5 2 PACS 3 75 Unit The PACS 3 75 measurement module can be operated on either 115V or 230 V It requires less than 0 5 Amps to function Note Check the correct Line input voltage setting of the PACS 3 75 prior to applying line voltage If incorrect move the voltage selection to the correct position before applying power See paragraph 3 5 4 Mechanical Installation The PACS 3 75 is generally installed in the OMNI 3 75 cabinet from the factory The units are fan cooled drawing air in from the sides and exhausting at the rear The sides of the unit must be kept clear of obstruction and a 6 inch 152 mm clearance must be maintained to the rear for proper cooling EUT Connection Wiring See Figure 3 7 through Figure 3 11 for the various MXCTS configuration wiring diagrams The wire size used is dictated by the measured currents and voltages Any wire used must be rated for the maximum expected current and voltage The PACS 3 75 unit is rated for 75 RMS maximum per phase when the rear power termi
2. 0837 CABLE E 7003 2831 UN LX INPUT AND QUTPUT POWER CONNEC INSIDE THE CABINET BEHIND THE Li 7 5 Cy VY i a CY s m n A cass N vi source oa oa oc fe f AWN S MEDIE NY TN d ces eat PHASE INPUT AND OUTP INSIDE THE Figure 3 4 RS90 CTSH with OMNI 3 75 MX Wiring Diagram California Instruments Revision H 31 User Manual California Instruments MX Series CTSH Compliance Test System A101 MX45 iG FSB SYNC our 99900Q9 00 SYSTEM INTERFACE INTERFACE 7 AIBICIN EXTERNAL SENSE INPUT AND OUTPUT POWER CONNECTIONS ARE MADE INSIDE THE CABINET BEHIND THE FRONT COVER SINGLE PHASE OUTPUT TB1B 201 THREE PHASE OUTPUT 3 2 1 B 2 THREE PHASE INPUT F3 F2 F1 AC OUTPUT POWER A102 OMNI 3 37MX INTERFACE
3. 31 Figure 3 5 MX30 3Pi CTSHL MX45 3Pi CTSHL with dual OMNI s Wiring Diagram Version 2 32 Figure 3 6 MX60 3Pi CTSHL MX90 3Pi CTSHL with dual OMNI s Wiring Diagram 33 Figure 3 7 MX30 3Pi CTSH and MX45 3Pi CTSH Wiring Diagram Version 1 34 Figure 3 8 MX30 3Pi CTSL and MX45 3Pi CTSL with OMNI 3 37MX Wiring Diagram Version 1 35 Figure 3 9 MX30 3Pi CTSHL MX45 3Pi CTSHL with dual OMNI s Wiring Diagram Version 1 36 Figure 3 10 EUT Connection distance and wire 38 Figure 3 11 Power Connections for PACS 3 75 sssssssssssssseeseeenenenneeeennne nennt 40 Figure 3 12 Front and Rear Panel Views of the PACS 3 75 Module 41 Figure 3 13 Exacq Control Center 47 Figure 3 14 Card Device 48 Fig re 3 15 Test Panel oem ne deri ie scu dvo Helicase Ai rare 49 Fig re 3 16 Exacq DMM SCGIGer Dea dre te rece B d A RE edv 50 Figure 3 17 Exacq Scope Test 51 Figure 5 1 Harmonics Test Setup 62 Figure 5 2 Additonal Settings for Harmonics 64 Figure 5 3 Harmonics Test Window nennen enne rennen re
4. 129 131 templates PISSING 72 80 test data file harmonics 72 test margin ern iren 79 69 test parameters IEGWeSti dit amete 123 test reports EN 61000 4 13 48 95 61000 4 29 121 test results EN 61000 4 1 004000 87 EN 61000 4 14 101 61000 4 17 105 61000 4 28 116 test sequence EN 61000 4 4 4 448 98 EN 61000 4 17 104 EN 61000 4 28 114 test setup EN 61000 4 4 86 EN 61000 4 28 112 test time TICKS rent obs 79 69 top cover 0 tr rere rei rta 145 troubleshooting sen 142 unbalance voltage 107 user data TliGKOt B reed 79 2 2 69 variations frequency endet ei 112 VGA FESOIUTON 62 Vibrato N rete TN 129 131 voltage DC Ripple assii iiini 103 N 83 FIUCTUATIONS
5. 104 10 32 Test Sequence z uie ert SO PERDU EE RR des 104 10 4 Waveform Displayer eerte crap eo reete prie ret 105 10 5 TestRes lts s 1 up eee eO de exte diet ipee ire 105 10 6 User Observations note pete e el 106 10 7 Report Format 417 Test Files iced t de dra dece s dp o eects 106 10 8 Saving and Loading Test 106 11 EN 61000 4 27p Voltage 4 nnns 107 Tid Abo t This Chapter eee ede nette ome tutum ed e 107 DPAMACI uo Rm 108 11 3 Equipment GlassSificatiohs rre 109 11 4 Test Eovels niter epe 109 11 5 Waveform Display 110 11 6 Operator Observations Tab rirni iecit t 110 11 7 SourceS Reg lat r eire A E Ea UE aem ie cane RR eed Er tenete 110 11 8 Tes execution nie nien end DIU 110 11 9 Test Implementation and Test 111 11 10 Test Reports o iie ite tee te d eO PG IERI Ct ase I etre qe eat 111 12 EN 61000 4 28 Frequency 112 12 1 About This Chapter x eee petet E ee ro i RD Erie ER EE ED he dere 112 122 Test UM 113 12 3 T stSequence
6. LINE SOURCE NEUTRAL LOAD jJ CEN ME F POWER INPUT AC AC IN TBS TB4 THREE PHASE POWER INPUT 23 INPUT AND OUTPUT POWER CONNECTIONS ARE MADE GND 12 L3 EUT GND INSIDE THE CHASSIS UNDER THE TOP COVER oi LINE A103 PACS 3 75 CLK LCK BEBE gc COM Revision H Q CB101 35 e a amp n LOAD H E SINGLE PHASE INPUT Figure 3 5 MX30 3Pi CTSL MX45 SPi CTSL with OMNI 3 37MX Wiring Diagram Version 2 32 User Manual MX Series CTSH Compliance Test System A101 Mx45 A101 MX45 QQOQQOoc ug ce QQoooQeuuce SYSWM SYSWM SYSWM A N INTERFACE INTERFACE INTERFACE SENSE INPUT AND OUTPUT POWER CONNECTIONS ARE MADE INPUT AND QUIPUF POWER CONNECTIONS ARE MADE INSEDE THE CABINET BEHIND THE FRDNF COVER INSIDE THE CABINET BEHIND THE FRONT COVER SINGLE PHASE OUTPUT SINGLE PHASE OUTPUT 2 1 BIA FREE INPUT 2 4 F3 F2 1 3 2 1 CHASSIS 2 1 WARES PHASE POWER INPUT POWER INPUT A102 3 37 INTERFACE SOURCE LINE SOURCE NEUTRAL jejeje N p L POWER CONNECTIONS ARE MADE UNDER NPUT AND QUIPUT INSIDE THE CHASSIS THE TOP COVER
7. 5 The need to test for immunity of products against voltage dips and interruptions was prompted by studies of electric utility availability The results shown in Table 2 6 were found in this study UNIPEDE study 91 en 50 02 From this data it is clear that most disruptions are short in nature about 5 to 10 periods and no more than 60 below nominal Occasionally however extended periods of complete power loss occur It is suggested that this test data also be used as a guide in selecting appropriate test levels Why Do You Have to Test The EN 61000 4 11 affects a large set of products specifically Electrical and electronic equipment having a rated input current not exceeding 16 A per phase Thus most single and three phase AC powered equipment used in domestic and light industrial settings fall in this category In fact around 95 of all electrical equipment in household and light industrial applications require no more than 16 A per phase In Europe this implies real apparent levels of 230 V 16 A 3680 VA with real power either at the same or a lower level Specifically excluded are all DC powered products battery operated devices and 400 Hz AC equipment Avionics These products will be covered in future IEC standards At this time meeting the EN 61000 4 11 standard is required for most products to obtain the CE Mark required to market products in the European Union California Instruments MXCTS system
8. 25 Table 5 1 IEC Harmonics Setup Parameters 63 Table 5 2 IEC Harmonics Advanced Setup 65 Table 5 3 IEC Harmonics Replay 74 Table 6 1 IEC Flicker Replay 82 Table 17 1 Required Calibration Equipment esee 135 California Instruments Revision H 10 User Manual MX Series CTSH Compliance Test System 1 1 1 Introduction Manual Organization This manual describes the operation of the California Instruments Compliance Test System Software when used in conjunction with the CTS hardware Its primary function is as a reference manual If you have a question about a specific screen or how to perform a certain task turn to the appropriate section of the manual The manual is organized in accordance with the normal test procedure you would follow when testing for IEC compliance Some assumptions were made when producing this documentation Specifically it is assumed that you are familiar with the EN 61000 3 12 and EN 61000 3 11 standards and their requirements Some background information on the IEC standards covered by the CTS system is included in chapter 2 This information is subject to change however as standards do change We recommend you stay current with evolving test standards and regulations Furthermore it is also assumed that you are familiar with operating
9. A MADE INSIDE THE CABINET BEHND THE FRONT SINGLE PHASE OUNPUT a 2 1 102 SOMNI 5 75 POWER CONNECTIONS ARE MADE BEHIND THE REAR COVER INPUT AND OUTPUT POWER PDE THE CHASSH UNDER THE A103 5 2 75 LINE CB102 70 INPUT INSIDE A102 OMNI 3 75 Figure 3 2 MX60 3Pi CTSH and MX90 3Pi CTSH Wiring Diagram California Instruments Revision H 29 User Manual California Instruments MX Series CTSH Compliance Test System 8590 ta INPUT AND OUTP INSIDE THE CABIN 5 27 gt a E NEUTRAL ant 00 C 3 N M E Wut ac INPUT AND OUTPUT P INSIDE THE Figure 3 3 RS90 CTSL with OMNI 3 37MX Wiring Diagram Revision H 30 User Manual MX Series CTSH Compliance Test System
10. 12 ta M d 14 descriptions oie 12 harmonics alas nA Es Nae dbo vans Gee 11 60 15 acc E 70 ACCESS ge o epe He nep pn 23 description ANSI addiess s e cceli Me 23 ur 12 15 disks 20 Nos Seca tet a cud ate Ratan 53 61000 3 44 522152 23 22 20 SPAY IEC Tests 85 123 distribution disks alow ee 53 test parameters led 123 EMISSIONS eren e tiit 129 131 IEEE 488 EN 61000 4 11 044 1 21 83 Bus Controller 44 compliance eene 84 IMMUNI i a ape Oreste ne 129 131 test resulls 87 impedance gianna ieee hrti x eo exo eS ECT 20 130 EN 61000 4 13 44 49 00 0 0 2 22 HOIST OCG 20 130 EN 61000 4 14 22 96 130 California Instruments Revision G 147 User Manual INI File IEG TeSIS etary den SEE 123 installation siio cer de er esr ee dx 24 CTSMXH 53 MXGUI 55 Interharmonics 22 LED ifidiCators a ute eet testicles 142 main window MICK O
11. 16 24 IEC 61000 8 12 Hl rmohnio8 ort rr REESE t igngib Oa Sei rix Fe Re 16 2 5 61000 21 20 2 6 EN 61000 4 11 Voltage Dips and eene 21 27 EN 61000 4 13 Interharmonics and Harmonics Immunity 22 2 8 EN 61000 4 14 Voltage 22 2 9 EN 61000 4 17 DC Ripple essessessessseeeeseene ennt nnne sinn adidasa anaiari 22 2 10 EN 61000 4 27p Three Phase Voltage 22 2 11 EN 61000 4 28 Voltage Frequency 22 2 12 EN 61000 4 29p DC Voltage Dips Interruptions and 22 253 23 3 System Installation ond a 24 34 AboutThis Chapter Dea e i Ee ge E 24 3 2 Hardware Installation eene eue eque dde det mn dete den 24 3 3 PO Requiremerits iem cere ete ee Re ge qe nek Du Dep e Dex 25 34 2 ERR ERN 25 3 5 PACS 3275 0 eue E RUD BIN 37 3 6 cF nctional Test uiti A 42 3 7 Data Acquisition Card Installation PCI Card emn 43 9 8 CTISMXET Software Installation x error Rr 53 3 9 Source Control Software Inst
12. California instruments Insert the CIC651 in the CD ROM drive The setup exe program should start if the CD ROM drive is configured for AutoStart If not double click on the Setup exe program to launch the installation wizard Select the CI401PCI CIA03PCI Card Driver Installation and click on the Run Setup button Follow the installation prompts for the Driver installation to install the A D Card drivers If your system was supplied with a NI PCI 6034E card instead install the card drivers from the NI DAQ CD Rom instead 3 7 3 Installing the PCI A D Card Following the procedure outlined below to install the PCI card in the test system PC 1 2 3 4 5 Disconnect your PC from any main power If possible wear a grounded wrist strap to prevent ESD damage to the PC and the A D Card and place the PC cabinet on a firm ESD safe working surface Remove the cover of the PC cabinet following the directions provided by the PC manufacturer Locate the PC s PCI bus expansion slots The Cl400PCI requires a single 32 bit PCI slot Using a suitable screwdriver typically Phillips 2 remove the cover plate for the slot you opted to use in step 4 The A D card has its own cover plate so the one you remove may be saved or discarded at your own discretion You will need to re use the screw however so make sure you do not loose it Carefully remove the PCI card from its protective bag and hold it along the top edge Take care not to touc
13. EN IEC 61000 4 13 Harmonics and Interharmonics Immunity Draft Test File Run Help Wavetorms Test Levels Voltage THD Waveform Display Resonance Points Observations EUT EMC Class Nominal settings Phase mode C Class 1 User X Unom 2300 Three Phase c Class 2 Fnom 50Hz C Class 3 C 60 Hz Test step selection Options 7 Prompt operator for EUT status after each test step Overswing Curve Test 725 Reference Impedance Flat Top Curve Test Output OH Frequency Sweep Test Voltage distortion pre test Individual Harmonics and Source Regulation PASS Meister Curve Test User Data Tested by Test department EUT Temp 25 c Humi 95 Comment Test Site Press Counting down second 17 of 120 sec dwell 54112005 8 21 Figure 8 1 EN 61000 4 13 Test Window California Instruments Revision H 91 User Manual MX Series CTSH Compliance Test System 8 2 Tab Controls The IEC 61000 4 13 Harmonics and Interharmonics test offers range of sub tests and user options We recommend you familiarize yourself with the actual standard document IEC standards are available through www iec ch The following help screens contain information on setting test options using the available 413 tab controls located along the top of the IEC 61000 4 13 test window Description Tab User selected test options EUT classes and test steps F
14. O O O Ae Max input permanent no damage if 75 00 Arms lt 200 Apeak PACS 3 75 Max Crest Factor at max current 75 2 5 1 A Range California Instruments Revision G 126 User Manual MX Series CTSH Compliance Test System Power oso w Apparent Power Range PAGSS75 oono _ Ren V Power Factor Rme Accuracy 4 mew Crest Factor ______________ Measurement Specification Unt Crest Factor mme LL mw Rage SH Ren amp Harmonic Analysis Range Fundamental to 40 Accuracy Fundamental 0 05 FS 0 05 kHz Accuracy Harmonics 0 1 0 1 kHz Measurement window 10 or 12 periods Range 0 1 10 Pst ms m mw Je ee e Range 999 a T Flicker California Instruments Revision G 127 User Manual MX Series CTSH Compliance Test System 15 3 PACS 3 75 General Specifications The PACS 3 75 unit creates the mechanical and electrical interface between the AC source the EUT and the PC It provides the necessary isolation and signal conditioning to perform the measurements needed Pacsmoa less than 0 6 115v less than 0 3A 230v Weight
15. 136 17 6 Installing New CTSMXH Calibration rennen 139 18 Principle Of Oper tiOr tuti ete eec 140 18 1 General u enema Agde te ese t 140 19 2 ACCPOW E ete tava das roi e ep ut ere ads an a a 140 18 3 PACS 3 75 Measurement Unit rientro einer dee eee race adn 140 18 4 OMNI 3 75 Impedance 5i eerte tute et ennt eun tek admet n Spe Rec inna 140 18 5 CTSMX SOMWANG urit rode Marte ea ee i MO RR ED AER EHE Ege rite andes 140 eSI 142 19 1 Y 142 19 2 es A a a aes 142 19 3 Basic Operation is E 142 19 4 Advanced Troubleshooting 145 Eth d A D tr de 147 California Instruments Revision H 8 User Manual MX Series CTSH Compliance Test System List of Figures Figure 3 1 MX30 3Pi CTSH and MX45 3Pi CTSH Wiring Diagram Version 2 28 Figure 3 2 MX60 3Pi CTSH and MX90 3Pi CTSH Wiring 29 Figure 3 3 MX30 3Pi CTSL MX45 3Pi CTSL with OMNI 3 37MX Wiring Diagram Version 2 30 Figure 3 4 MX60 3Pi CTSL and MX90 3Pi CTSL with OMNI 3 37MX Wiring
16. A test report can be printed from stored data in this mode The actual date and time the data was recorded will be shown on the report in addition the report print date and time 5 12 2 To play back test on a different PC from the test system PC proceed as follows 1 10 If not already done install a copy of the CTSMXH Software on the other PC When launched the absence of a data acquisition system will be detected and flagged This is normal Transfer the data files to the PC used for replay either using a network connection or disk From the File menu select the Open Data File entry This brings up the standard file open dialog box Locate and select the file to be replayed Harmonics files start with the letter H flicker files start with the letter F Click on the Open button to open the test data file This will bring up the test window To start the replay process click on the Start button The data displayed will be taken from the stored data files The replay mode is indicated in the title of the CTSMXH Software The buffer rate and speed at which data is replayed can be controlled using the various settings in the Options menu This may be required to adjust to the speed of the PC used The replay process can be halted at any time by clicking on the Stop button This will stop the data at the buffer number shown in the lower left corner Once stopped the data can be stepped forward or backward at various rates usin
17. Once a test is running the Start button changes to a Stop button Also any menus will be disabled while a test is in progress as pulling down a menu under Windows will cause the application to halt which would result in data loss Stop button Upper left Stop the acquisition process The Stop button can be used to abort a test corner prematurely The data files will be closed and will only contain data up to the point at which the test was aborted Test log will indicate if the test completed normally or was aborted by the user California Instruments Revision H 69 User Manual MX Series CTSH Compliance Test System Report button Upper left The Print Summary button generates a test report in an MS Word doc file corner This report contains both the voltage and current waveform and the harmonics display graph It also includes the current and voltage harmonics in absolute values and as a percentage of the applied IEC limits Power Upper left These button controls may be used to turn the AC power source output on Buttons corner or off The configuration can be set to use automatic power on off automatic on manual off or manual on and off control of the AC source If no AC source control option is selected the operator has to use the front panel of the AC source instead and this button will not be available In manual mode the operator must click on the Power On button to turn on power to the EUT The data in the Window Data frame o
18. ree O he EDO ETE ee en iar ain ed las 114 12 4 chante haan eite edet ip ep hr deba 115 125 TestODliOns e Ieri eee T e ore dee tete eine dere 115 12 6 Tes ReSUNS 116 AMETS INC 116 California Instruments Revision H 7 User Manual MX Series CTSH Compliance Test System 13 EN 61000 4 29p DC Dips and Interruptions 117 13 1 om as tee uet paeem dee 118 13 2 Setting nominal values o DE c dea repente 119 13 3 testSequence ore eene ORBE 119 13 4 T st Optlons i iae ree e ED 120 19 5 Test EXecUtion em aerem edet qt eoe iique ee qe EH Te EE NERA 120 13 6 Test C ela 120 19 7 61000 4 29 Test Reports emt Er eere erae nere emis 121 13 8 Source Requirements tret dutch cM dro dun 122 14 Customizing EN 61000 4 13 Test 123 T41 About This Chap c 123 14 2 IEG413 413 a a eee Acadia as ea dee nen 123 14 3 Sample File IEC 413 449 une ach Cre 124 15 x nno tenete edu ce a tec
19. Equipment that is unlikely to produce long term flicker based on its typical operating cycle need not be tested for Plt This can significantly reduce the test time If you are unsure however of the EUT s behavior you are advised to perform a 2 hour test 120 minutes to verify compliance with IEC 61000 3 11 Test Data Files The CTSMXH Software can save the flicker test waveform and result during the test if the saving option is enabled The file will be saved in the data files subdirectory For test 25 the file will be F 000025 cts data This file can be replayed later with the same software Setting the Test Margin The CTS system offers the user the choice of setting a test margin around the IEC limits This means a user specified factor can be applied to the IEC test limits The default value used is 100 96 which essentially means the actual IEC limits are applied to determine a pass or fail result This is the mode to use for actual compliance testing Setting this margin to a value below 100 96 can be useful for pre compliance testing Selecting a lower margin means the test is more stringent If the EUT can pass the more stringent test it is more than likely to pass when submitted to an independent test lab Setting the margin above 100 means you are loosening the limits allowing EUT s to pass that would normally fail This mode is not recommended Running the Flicker Test Before starting a test make sure all user fields a
20. eti orte 96 INtErUpONS ics an ai s 83 107 Variation 83 Warranty 5 inepti tte He aeneo entes 5 window MICK Ol ect tere 76
21. 2014 COPYRIGHT Under the copyright laws this publication may not be reproduced or transmitted in any form electronic or mechanical including photocopying recording storing in an information retrieval system or translating in whole or in part without the prior written consent of California Instruments Corporation California Instruments Corporation 1997 2014 Warning regarding Medical and Clinical use of California Instruments products California Instruments products are not designed with components and testing intended to ensure a level of reliability suitable for use in the treatment and diagnosis of human beings California Instruments products are NOT intended to be used to monitor or safeguard human health and safety in medical or clinical treatment and California Instruments assumes no responsibility for this type of use of its products or software California Instruments Revision H 5 User Manual MX Series CTSH Compliance Test System Table of Contents O e 11 1 1 Manual Organization Wa ee eee es do ree Lu ieee tees 11 1 2 Compliance Test System 12 2 ECT OStiING me 15 2 About This Chapter tere Se n Ree o Rege qr RE Feo NER d Een on E Rue 15 22 e EMG DIIGClIVO en E eer ed e OUI D pere 15 2 9 MWhydo you have to test oci desee ciens es iiec cute
22. Show data for Phase Two cycle three phase currents Legend Data for this window Frequency 215 2701 2107 L d facto Current Harmonics X Total Power kW 44 w 30 E o Vaistorion Gms 20 amp 15 Test Number c 10 Test Result 5 Line Quality Window time 4 8 12 16 20 24 28 32 36 40 Progress 66 0 complete Harmonic Phase A The average level of Harmonics 11 is 87 33 of 100 steady state limit Fase A The peak level of Harmonics WIS 150 steady state mt Test Margin 100 Test Duration 1440 min fi quipment under test Tested Tested by Comment Comment Customer Customer information Test replay started Current window 199 9 28 02 11 05 REAL OR REPLAY Limit Data Update Information Limit Update Time and Date 6 1 99 on 12 00 00 Limit Updated by None Figure 5 3 Harmonics Test Window Start button Upper left Starts harmonics test using presently selected parameters Once a test is corner running parameters cannot be changed Starting a test also causes data to be written to the test data file if data recorded is enabled Each time a test is run a new sequential Test Number is assigned Results for each test are automatically logged Data for each test is only recorded if this option is selected in the Additional Setup screen
23. 107 AD card EN 61000 4 28 22 112 specifications sese 126 lest r sulls iore e 116 test 4040401111 114 2227 HER MEER 11 112 130 EN 610004 Itsen ai a 22 117 calibration EPES dite ath ch ae 135 ESD Rrasasuanauasauuauasauuuasaauuasunananunuaseusanuanasanuasasanauuasauusunuase 43 procedure tnt 136 European UNION 3 terre detnr d tides 16 required 2 0444022 135 EUT GE marcis s atte ete dete ce 129 131 P 19 ej iue ve Pe 13 fields alates 13 2 76 M MEE MEE 13 130 at 25 Sa 20 84 standard h nth tectae 20 components 2 ertet rece rep nre vs 12 fl uctuations Configuration Mh RT EE E E ETE 96 E 132 iati a 132 ee CGS CONTENTS 6 26 controls graph flicker WINKOW 76 69 copyright Mor or 5 voltage and CUITENK cccccccccccccccccceccceceuccucceuueceens 69 CTS voltage 69
24. EN 61000 4 13 Harmonics and Interharmonics 4 88 Sal Aboutthis Ghapter emat euim EUH 88 8 2 Tab Gontrol8 nee acm nee slain de dte 89 8 37 Te8UtSOlUp zi EE 90 8 4 Test Seguente E E eed 90 8 5 Test Besults ru o eet e Gan re A AE 94 8 6 Measurements scien RR Hee ie Re ete Hur 95 8 7 EN 61000 4 13 Test Reports ette dee rene eto e a e dl id ripped des 95 9 EN 61000 4 14 Voltage Fluctuations enne entres 96 91 About Thi Chapter ree ea eet trie ede co LER 96 92 Test Setup seus tenute A o Mes nme 97 9 3 Test Sequence scm aie d dere de ete i ee run te eere OR ERR e eden dete ow eue ever 98 9 4 Testbevele IC DRE EUER ee 99 9 5 y Test OptlOls Ern E os Reds 100 9 6 Test Execution 2 er eet etae eO ede te e ordered dip ip eris arat ice aaa Ege edes 100 9 7 Test Parameter File Creation and 101 9 8 usce n redet nectit a pit n dt eed de EE deca dece 101 9 0 Report Format 414 Test Fil s e me edere ei P oir 102 10 EN 61000 4 17 DC 103 10 1 About This Chapter 33 29i teme edu mee 103 PAK I SOeC
25. More than one 429 file may reside in the IEC_Test directory or any other directory The operator may select the one to run from the File Open dialog California Instruments Revision G 117 User Manual MX Series CTSH Compliance Test System 13 1 Test Setup The following parameters and controls are available for executing the EN 61000 4 29 test Parameter Control Description Nominal DC voltage Opening this window will set the upper voltage range parameter to the present steady state voltage setting of the DC supply If required a new value can be entered for use during the test At the end of the test the DC Supply will remain at this voltage level The upper voltage range value entered cannot exceed the selected voltage range Note that DC voltage variations to levels above 100 96 of Unom may require selection of the high voltage range The lower voltage range must be set to the lowest EUT rated Vdc If the EUT voltage range is less than 20 96 of its low range value a single Vdc level may be used Sequence Available sequences for selection are Voltage Dips and Interruptions Voltage Variations Either one or both sequences can be selected for execution Output Select The output selection is shown to the left If a 3 phase AC DC power source model is used this field allows selection of output channel A B C or all three channels outputs The same test sequence is applied to all selected outputs For single phase power s
26. Publ IEC 725 Considerations on reference impedances for use in determining the disturbance characteristics of household appliances and similar electrical equipment IEC 868 1986 Flicker meter Functional and design specifications IEC 868 Amendment 1 1990 Flicker meter Functional and design specifications IEC 868 0 1991 Part 0 Evaluation of flicker severity IEC 61000 3 2 IEC 61000 3 3 Part 2 Limits Section 2 Limits for harmonic current emissions equipment input current lt 16 A per phase Part 3 Limits Section 3 Limitation of voltage fluctuations and flicker in low voltage supply systems for equipment with rated current lt 16 A IEC 61000 3 11 2002 Part 11 Limits Section 3 Limitation of voltage fluctuations and flicker in low voltage supply systems for equipment with rated current lt 75 A IEC 61000 3 12 2205 Part 12 Limits Section 2 Limits for harmonic current emissions equipment input current lt 75 A per phase EN 61000 4 7 1996 General guide on harmonics amp inter harmonics New version expect early 2002 Copies of complete IEC standards may be obtained from at International Electrotechnical Commission IEC P O Box 131 1211 Geneva 20 Switzerland Phone 41 22 919 0300 Fax 41 22 919 0228 Web www iec ch or in the USA American National Standards Institute ANSI Sales Department 11 West 42nd Street New York NY
27. The exterior of the power source or the PACS 3 75 unit may be cleaned with a cloth dampened with a mild detergent and wrung out Disconnect mains power before cleaning Do not spray water or other cleaning agents directly at the equipment 19 2 General This section describes the suggested maintenance and troubleshooting procedure The troubleshooting procedure is divided into two sections The first section deals with basic operation and connection of the equipment The second section requires opening the PACS 3 75 unit and using the Test Points and a simple Digital Multimeter to troubleshoot the unit down to the circuit level Only a qualified electronic technician should attempt this level of troubleshooting CAUTION VOLTAGES 312 VAC MAY BE PRESENT CERTAIN SECTIONS OF THE PACS 3 75 MEASUREMENT UNIT WARNING THIS EQUIPMENT CONTAINS POTENTIALLY LETHAL VOLTAGES DEATH CONTACT MAY RESULT IF PERSONNEL FAIL TO OBSERVE SAFETY PRECAUTIONS DO NOT TOUCH ELECTRONIC CIRCUITS WHEN POWER IS APPLIED 19 3 Basic Operation 19 3 1 No Power To EUT CONDITION POSSIBLE CAUSE REMEDY No power to EUT Line voltage or power source not at expected value Verify power line voltage is correct Verify power source voltage is at programmed value AC source voltage OK Incorrect input wiring at TB4 Check for wrong No power to EUT terminals or poor connections AC source voltage OK Incorrect output wiring from TB3 Check output Inpu
28. harmonics are affected due to AC voltage distortion In this case distortion compensation is automatically applied which is shown on the left hand side of the main window When displaying the current harmonics the actual harmonic currents from the second through the fortieth for each acquisition window are shown in green The IEC test limits are shown using a red line Note that this red line always displays the 100 IEC test limits during Steady State testing regardless of the user specified test margin which is used for the Pass or Fail determination see Setting the Test Margin found in paragraph 5 7 3 Note The fundamental current is not shown in the harmonics graphs as there is no test limit for the fundamental 5 8 3 Aborting a Test Tests in progress can be aborted at any time by clicking on the Stop button Aborted test data files will be marked as incomplete California Instruments Revision H 73 User Manual MX Series CTSH Compliance Test System 5 9 Printing Test Reports The Report button allows you to print both on screen graphs displays and current and voltage harmonics test result data to an MS Word document This provides a test report that displays the test setup the Pass or Fail result and a graph of the voltage and current waveform as well as the worst case values for each of the current harmonics The Report button is available at the end of a test run or any time a test is aborted with the Stop button In
29. m California Instruments Revision H December 2014 Copyright 1997 2014 By California Instruments Allrights reserved P N 7003 972 CTSH Compliance Test System User Manual TEL 1 858 450 0085FAX 1 858 458 0267 Email sales ppd ametek com Web Site http www programablepower com California Instruments Revision H User Manual MX Series CTSH Compliance Test System AN AN SAFETY SUMMARY These power system components contain high voltage and current circuits that are potentially lethal The following safety guidelines must be followed when operating or servicing this equipment These guidelines are not a substitute for vigilance and common sense California Instruments assumes no liability for the customer s failure to comply with these requirements APPLYING POWER AND GROUNDING Verify the correct voltage is applied to the equipment Verify that the input power cord to the PACS 3 75 unit is plugged into a properly grounded utility outlet Verify that the input power line to the AC power source used is connected to a properly grounded utility outlet FUSES Use only fuses of the specified current voltage and protection speed Do not short out the fuse holder or use a repaired fuse The PACS 3 75 unit uses a North American ferrule type input fuse rated at 0 5A and 250Volts Fast Acting The OMNI 3 75 PSU unit uses a North American ferrule type input fuse rated at 0 5A and 250Volts Fast Acting For MX Fuse in
30. 10036 Phone 212 642 4900 Fax 212 302 1286 California Instruments Revision H 23 User Manual MX Series CTSH Compliance Test System 3 3 1 3 2 3 2 1 3 2 2 System Installation About This Chapter This chapter provides information on system installation and covers both the hardware connections that need to be made between the various components and the software setup Proper installation of all hardware components and software modules is required to successfully use the MXCTS system Some experience with AC power systems and PC s running Windows is assumed Hardware Installation Unpacking Inspect the unit for any possible shipping damage immediately upon receipt If damage is evident notify the carrier DO NOT return an instrument to the factory without prior approval Do not destroy the packing container until the unit has been inspected for damage in shipment AC Source Refer to the MX Series or RS Series User Manual provided with the AC Source The main power requirements for the CTS are dictated by the AC power sources used and the power levels that the Equipment Under Test will demand Consult the MX Series Power source manual for input current and input wiring requirements California Instruments Revision H 24 User Manual MX Series CTSH Compliance Test System 3 3 PC Requirements The CTS system requires a PC to operate The included CTSMXH Software must be installed on a PC capable or acquiring and proc
31. 19 4 5 Power On Troubleshooting Voltage Sense 1 Connect the DMM common to TP1 2 Connect the other DMM lead to TP2 This is the phase A voltage sense output 3 Apply a test voltage to the PACS 3 75 input terminals TB4 Use Neutral and ph A 4 The reading at TP2 should be 1 100 of the input voltage For example if 120 V rms is applied at TB4 then there should be 1 20V rms at TP2 5 Connect the other DMM lead This is the phase B voltage sense output 6 Apply a test voltage to the PACS 3 75 input terminals TB4 Use Neutral and ph B 7 The reading at should be 1 100 of the input voltage For example if 120 V rms is applied at TB4 then there should be 1 20V rms at 8 Connect the other DMM lead to TP4 This is the phase C voltage sense output 9 Apply a test voltage to the PACS 3 75 input terminals TB4 Use Neutral and ph C 10 The reading at TP4 should be 1 100 of the input voltage For example if 120 V rms is applied at TB4 then there should be 1 20V rms at TP4 11 If any of these test points do not have the correct voltage on them the board is malfunctioning and it must be serviced 19 4 6 Power On Troubleshooting Current Sense 1 Connect the DMM common to TP1 2 Connect the other DMM lead to TP6 This is the phase A current sense output 3 Apply a 4A test current to the PACS 3 75 input terminals TB4 Use Neutral and ph A 4 The reading at TP6 should be 496mV Amp of input current For exa
32. 98 RXL 2x Channel 0 Polarity 1 DC Volts 0 0000 S Exacq Enumerator P Cera nn Cete Cube Digital IO Figure 3 18 Exacq Test Panel You can run the Exacq Bench software to do a further functional check of the CTS hardware and interconnect cable between the A D card and the PACS CTS signal conditioning unit Close the Exacq Control Center window Start the application called Exacq Bench from this new Exacq program group on the Windows Start menu Make sure the PACS is powered up and the A D card cable is properly attached to both the card and the PACS Of course the power source needs to be operating and must supply an appropriate voltage to the measurement system California Instruments Revision H 52 User Manual MX Series CTSH Compliance Test System You may now apply a load to the CTS Typically this will be the 230 Volt 50 Hz supply voltage that is used to power the products to be tested This voltage is routed to logical channel 0 of the A D card a differential input amplifier and a 100 1 attenuation factor in the PACS On the Exacq Bench menu bar select Instrument Volt Meter Thus the Exacq Bench DVM function will display approximately 1 00 volt for a 100 Volt AC voltage setting of the power source such as may be used in Japan see the example of the DVM function below The display should be about 2 30 Volt rms for a 230 Volt 50
33. Compliance Test System AVTRON GND MX45 3Pi AC IN AC OUT PACS 3 75 UNIT Pentium 1 GHz ith Cl400PCI i CI68C Figure 17 2 Three Phase Calibration Setup California Instruments Revision G 138 User Manual MX Series CTSH Compliance Test System 17 6 Installing New CTSMXH Calibration Data If you have send in the MXCTSH system for calibration at a remote calibration lab or at California Instruments the PC normally used to run the CTS system will typically not have the new calibration on it when you receive the PACS 3 75 and A D card back The new calibration data will be received on a floppy disk or emailed to you as an alternative To install the new calibration data proceed as follows 1 Insert the calibration disk received into floppy drive A Open your Windows Explorer and select drive A Copy the Ctsmxh Calibration cts file located in the floppy root directory Paste this file to the C root of the PC that operates the CTS system a Run the CTSMXH program Upon launch the CTSMXH program will detect the calibration data file which should have a newer date and time stamp that the calibration data currently in use If so the program will automatically read the new cal file and update its calibration database 6 You can verify that the new calibration data has been loaded by selecting the View Calibration Info menu Summary information for calibration 2 PC A D Card
34. Current amp dmax Test x 4 x 1 33 po E Voltage 24 x Test 4 120 Volts Load Test Limit ers C Single Phase European Limit X f Three Phase Wye C Japanese Limit Volts User Input EUT Equipment under test Test Margin 100 Tested by Tested by Test Duration min 10 Comment Comment Customer Customer information Status 9 28 02 11 00AM REALORREPLAY 7 Figure 6 1 Flicker Setup Window California Instruments Revision H 78 User Manual MX Series CTSH Compliance Test System CTS MXH Replay an Earlier Flicker Test All parameters ioj x Ur File Edit View Options Test Help lal x Stop Continue Power Show data for Phase Two cycle waveforms mengenal Data for this window 300 Frequency 42 M Phe E Va 2 2 wore 00 co E 5 6 viis 0 000 0 000 0 000 Hat 1 68 1 72 RMS Voltage of this window TestResult MENZTIEEN Window time Win 4 195 of 201 10 20 30 40 50 60 70 80 90 100 Half cycle gt gt Time ms gt dt NENEETEIEXEE Time gt dt Test Margin 2 100 Test Duration 1440 min 120 quipment under test Tested by Tested by Voltage RMS volt Comment Customer
35. Customer information Replay suspended 9 28 02 11 07AM REALORREPLAY 7 Figure 6 2 Flicker Test Window The flicker test window has several user accessible fields and controls The following table briefly describes the purpose of each field and control California Instruments Revision H 79 User Manual MX Series CTSH Compliance Test System Field Control Power button Upper left corner Start button Upper left corner Stop button Upper left corner Report Button Upper left Used to produce a test report in WORD A WORD must be installed to corner generate the report Power Button Upper left Can manually toggle the power on off A PC to power source corner communication is needed before it is enabled Left Panel Displays signal frequency V rms volt Left Panel Displays Voltage rms value Test Start Time Left panel Highest 4 Left panel Highest dmax Left panel Highest Left panel Highest Psti Left panel Highest Left panel Test Status Center panel Voltage rms U t dmax California Instruments Center panel Center panel Click on Power to toggle the power source output voltage unless power source is already programmed to 230V The Flicker module can be configured to turn off the power after every test in that case therefore the user will have to click Power On before starting the test Starts the flicker test using presently selected parameters Once a test is r
36. EN 61000 4 28 Test 114 Figure 13 1 EN 61000 4 29 Test 117 Figure 16 1 Cal and Configuration Data 133 Figure 17 1 MXCTSH Calibration Program Main 5 136 Figure 17 2 Three Phase Calibration 138 Figure 19 1 Location of AC Sensor Assy 5004 700 in PACS 3 75 144 California Instruments Revision H 9 User Manual MX Series CTSH Compliance Test System List of Tables Table 2 1 Stage 1 current emission limits for simplified connection of equipment values are based on a minimum value 33 17 Table 2 2 Stage 2 current emission limits for single phase interphase and unbalanced three phase equipment 17 Table 2 3 Stage 2 current emission limits for balanced three phase 18 Table 2 4 Stage 2 current emission limits for balanced three phase equipment with given phase angle conditions pA E M 18 Table 2 5 Harmonics Test narinaa di danena aeiiae aneao deiina 19 Table 2 6 Average public utility disturbances per annum in Europe 21 Table 3 1 PC Pentium Athlon Processor Speed
37. EUT connection type Stage The user should determine the nature of the EUT based on his knowledge of the product It should be noted that the user must ensure that the total test time applied is sufficient to cover a complete operating cycle of the EUT Note The user is responsible for selecting the correct connection type and test method for the EUT The CTS software does not have any means to determine this based on measuring the EUT current or power 5 3 Device Test Classes The IEC 61000 3 12 test standard defines EUT test classes by connection type called stages The following connection stages are defined Stage Description Stage 1 Simplified connection Stage 2 Connection based on network and equipment data Stage 3 Connection submitted to the local supply authority Equipment shall be assessed for connection in accordance with the requirements for the three stages specified above Stage 1 Simplified connection Equipment complying with the harmonic currents emission limits into the public supply system defined for Stage 1 connection can be connected at any point of the supply system provided the short circuit ratio Rsce is equal to or higher than 33 Stage 2 Connection based on network and equipment data For equipment not complying with the emission limits for Stage 1 connection higher emission values are allowed provided the short circuit ratio Rsce is 33 Stage 3 Connection submitted to the local
38. Hen eui e 126 15 1 About This Chapter oen ti elena deviates 126 15 2 PACS 3 75 Measurement 126 15 3 PACS 3 75 General 44 4 110440400 estne 128 15 4 PACS 3 75 Environmental eerte 129 15 5 PACS 9 75 Regulatolty 5 Ln eurn eei HUI Fee 129 15 6 Flicker Reference enne nennen nennen nennen nnne nennen nnne 130 15 7 OMNI 3 75 Specifiations te ce tree d teet aee tere aaa eden 130 15 8 OMNE3 75 Envirorimental Fr dta 131 15 9 OMNE3 75 Reg latoty nh c ia Ma an Ae lea a dina tidal dena 131 16 Configuration Options ea cer thee deed da ERE 132 16 1 Aboutthis Chapler e ete ten eh 132 16 2 Accessing the Calibration and Configuration 132 135 17 1 About This 135 11 2 7 Galibrationa sse SR ALI eL 135 17 3 Install A D Cardin PG oiii ence ecce rera e exe i bank dede det 136 17 4 PBACS 9 75 Calibration Setup rr mr Eee 136 17 5 Configuration Procedure 1 eniin deann ttn inea nime n tne an bre ni sre e baee
39. Hz input voltage Note that the system calibration will eliminate small errors due to hardware tolerances Thus the ratio is not necessarily exactly 100 1 Exacg Bench E File Edit Instrument Window Help Volt Meter 10 00 Mode EE Analog In Channel B Device Number 2 Figure 3 19 Exacq DMM Screen California Instruments Revision H 53 User Manual MX Series CTSH Compliance Test System Of course you may also use the oscilloscope function of the Bench to display the time domain signals Refer to the appropriate section of this manual to identify all the signals and channel numbers but for this example channel 0 is for voltage and channels 1 2 3 are the parallel three current signals In the figure below channel 0 and 3 are displayed channel 3 is the most sensitive current channel The CTS power source was Set to 230 Volt 50 Hz and a resistive load with a dimmer set to approximately 90 degrees firing angle was applied The yellow current signal was 2 0 Amp rms and the red voltage was 230 Volt The settings for the scope channels and time base function were adjusted to obtain the display as shown in the figure Upon completion of the above tests you may proceed with installing the CTS software modules that were supplied with your system Exacq Bench File Edit Instrument Window Help Time Base Trigger Level END Source SEC DI
40. ID 1229206821 PACS serial number Pacs Power source used for calibration MX45 3Pi A D base frequency 16006742 Calibration Date 03 17 2002 Calibration Time 2 19 43 PM Calibration performed ci You can save the calibration disk if needed although annual re calibration of the system is recommended California Instruments Revision G 139 User Manual MX Series CTSH Compliance Test System 18 Principle Of Operation 18 1 General The Compliance Test System is a power measurement and power analyzer system The three basic building blocks are e AC power either line power or typically Cl power source to provide the proper voltage and frequency for the test at hand e PACS 3 75 measurement unit This device measures the actual current and voltages under test and conditions the signals to be compatible with the Analog to Digital data conversion card CTSMXH Software The software is the final link to the user It translates the data from the AD card into viewable and readable measurements in a GUI format 18 2 AC Power The AC power source provides precise control of voltage and frequency is needed as in IEC regulatory testing 18 3 PACS 3 75 Measurement Unit The PACS 3 75 measurements module uses Hall Effect current sensors to isolate and scale a sense voltage that is an accurate and linear function of the current being measured The sensing amplifiers uses differential sensing to reduce common mode
41. Instruments Revision H 50 User Manual MX Series CTSH Compliance Test System The new data acquisition card will appear as a node in the LocalSystem Hardware PCI PXI branch of the System tree Click on this node The serial number and logical device number will display in the Configuration pane The logical device number is the identification that application software such as the CTS uses to specify which hardware device will be used This device number should only be changed if you have multiple A D cards in the PC See F Otherwise leave the number as is In the event this is necessary you may change the assigned device number by clicking on the configuration tab and selecting a new number using the device number edit igure 3 14 below control Only knowledgeable users should make changes to these settings Exacq Control Center File Edit View Help alale System ardware 1 1 Exacq CM 2210 DAO Board 1 1 1 1932443BX ZX 440BX ZX CPU to PCI 98932443BXJZX 440BX ZX PCI to AGP 1932371 EB MB ISA Bridge 232371 AB EB MB PIIXA E M EIDE C 1932371 AB EB MB PIIXA E M USB Ct 9893237 EB Power Management wSYMF740C 25 11 Audio WSExacg 2210 Board National Instruments Xpert 98 RXL 2x S Enumerator California Instruments
42. MXGUI Windows software To accommodate changes in the specification test levels and duration can be changed by the operator or loaded from disk if needed EN 61000 4 27p Three Phase Voltage Unbalance MXCTS system supports pre compliance EN 61000 4 27 testing The EN 61000 4 27 testis implemented in the MXGUI Windows software To accommodate changes in the specification test levels and duration can be changed by the operator or loaded from disk if needed EN 61000 4 28 Voltage Frequency Variations The MXCTS system supports full compliance EN 61000 4 28 testing The EN 61000 4 28 testis implemented in the MXGUI Windows software To accommodate changes in the specification test levels and duration can be changed by the operator or loaded from disk if needed EN 61000 4 29p DC Voltage Dips Interruptions and Variations TheMXCTS system supports pre compliance EN 61000 4 29testing The EN 61000 4 29testis implemented in the MXGUI Windows software To accommodate changes in the specification test levels and duration can be changed by the operator or loaded from disk if needed California Instruments Revision H 22 User Manual MX Series CTSH Compliance Test System 2 13 References Additional information on IEC norms and requirements may be obtained from the following sources You may also check for the latest IEC related information on California Instruments web site at www calinst com Document Number Date of Title
43. Notes 4 Select MX45 CTSH Series under E MX45 CTSH Series IEC 61000 3 11 GUI Software Instrument Drivers Compliance Test Systems in the left Supported Operating Systems hand side Model Series pane 5 Next select the GUI Software Tab on MS Windows 98 2000 XP the right hand side Then click on the Execute Selection button at the bottom of the screen 6 This will bring up the CTSMX Setup Selector which is used to copy the required calibration data to the user s PC Select the version of the CTSMX you want to install in this case CTSMXH System Software Installation PCI 7 Remove the CIC651 installation CD and replace it with the Calibration Data CD that came with the CTS system Click on Run Setup and wait for the calibration data to be copied This will take very little time Install MXCTSH GUI Rev 1 1 0 2 Program 10 6 2004 5 36 49 PM You will now be prompted to re insert the CIC651 installation CD ROM 10 Remove the Calibration CD and replace it with the CIC651 installation CD The CI browser may reappear when you close the CD drive door as your CD drive may be set to autorun You can either ignore or close the second instance of the CI Browser program 11 Click the OK button to confirm that the CIC651 CD is back in the CD ROM drive This will launch the CTSMXH installation program 12 Follow the on screen installation program prompts to complete the CTSMXH system softwar
44. Version 1 California Instruments Revision H 37 User Manual MX Series CTSH Compliance Test System X X N TRN TRIG FST8 JUT N EXTERNAL SENSE SINGLE PHASE OUTPUT 7318 THREE PHASE OUTPUT TBA THREE PHASE INI HI ac a A 102 3 37 E N INTERFACE SOURCE LINE NEUTRAL FAN LOAD AIAIBIB CIC E SINGLE PHASE Ss POWER INPUT AC OUT AC IN TBS 34 m nas gt A103 5 3 T SINGLE PHASE A 21 POWER INPUT Figure 3 11 MX30 3Pi CTSL and MX45 SPi CTSL with OMNI 3 37MX Wiring Diagram Version 1 California Instruments Revision H 38 User Manual MX Series CTSH Compliance Test System uuu
45. Voltage Range The input voltage range is 0 to 312V rms L N The 1 phase or 3 phase voltage is applied to input terminal block TB4 N Current Range The maximum input current is 75 A rms Frequency may not be 50Hz depending on power source used and application California Instruments Revision G 128 User Manual 15 4 15 5 PACS 3 75 Environmental MX Series CTSH Compliance Test System PACS 3 75 Regulatory Parameter Parameter Specification Operating Temp 0 degrees to 40 degrees Celsius Storage Temp 0 degrees to 70 degrees Celsius Humidity Operating lt 90 RH up to 40 C Storage lt 90 RH up to 40 C lt 75 RH up to 70 C Insulation Rated to Installation Category Over voltage Category II Vibration Designed to meet NSTA 1A transportation levels Shock Designed to meet NSTA 1A transportation levels Specification Electromagnetic Emissions and Immunity Acoustic Noise Designed to meet EN50081 1 and EN50082 1 European Emissions and Immunity standards as required for the CE mark 60 dBA maximum 1 meter Safety Designed to meet EN61010 1 European safety standards as required for the CE mark Revision G 129 California Instruments User Manual MX Series CTSH Compliance Test System 15 6 Flicker Reference Impedances Flicker measurements require the use of a reference impedance according to IEC 725 Since this reference impedance has
46. a personal computer under the Microsoft Windows environment The manual is organized as follows Chapter 1 Describes the organization of the user manual and provides brief overview of the CTS system components Chapter 2 Provides an overview of the relevant IEC regulations and how compliance testing to these regulations is implemented in the CTSMXH Software Chapter 3 Covers installation of the hardware and software components required to operate the CTS system Proper installation of both hardware and software is essential This chapter walks the user through the hardware setup and the software installation process one step at a time Chapter 4 Overview of the program s menu structure Chapter 5 Covers EN 61000 3 12 harmonics testing This chapter provides step by step instructions on how to set up the correct test mode and perform the necessary steps to perform a quasi stationary or transitory Harmonics test on the EUT Chapter 6 Covers EN 61000 3 11 Voltage fluctuations testing This chapter provides step by Step instructions on running a voltage fluctuation or flicker test Chapter 7 Covers EN 61000 4 11p Voltage Dips and Variations immunity testing Chapter 8 Covers EN 61000 4 13 standard Voltage Fluctuations immunity testing Draft version Chapter 9 Covers EN 61000 4 14 standard Voltage Fluctuations immunity testing Chapter 10 Covers EN 61000 4 17 standard DC Ripple immunity testing Chapter 11 Covers EN 61000 4 27p stan
47. a value in between may be used to test the EUT If the range exceeds 20 the test has to be performed at both upper and lower range settings The MXGUI will allow the operator to select single value testing but will prompt a warning if the values entered represent a greater than 20 96 range Pre Test Delay For both Dips Interruptions and Variations runs it is possible to specify a pre test delay This is a period expressed in seconds during which the Vdc nominal value will be applied to the EUT before the actual test sequence starts 13 5 Test Execution The selected test mode can be started by pulling down the Run menu and selecting All or by clicking on the Start button During test execution no changes to test parameters are allowed The test progress can be monitored at the bottom of the window in the status bar The progress through each sequence can be monitored as well as each test step currently executing is highlighted 13 6 Test Results There is no way for the MXGUI to determine the outcome of this test as a clear definition of a failure can not be given The draft standard called out the following possible test results The test results shall be classified on the basis of the operating conditions and functional specifications of the equipment under test as in the following unless different specifications are given by product committees or product specifications a Normal performance within the specification limits b Temp
48. adjust to the speed of the PC used The replay process can be halted at any time by clicking on the Stop button This will stop the data at the buffer number shown in the lower left corner Once stopped the data can be stepped forward or backward at various rates using the VCR style buttons in the lower left corner A test report can be printed from stored data in this mode The actual date and time the data was recorded will be shown on the report in addition the report print date and time 6 5 3 Flicker Replay Options Data replay capability is an important diagnostic feature of the MXCTSH system The end user has a great deal of control over the replay process These user settings are located in the Options menu The following options are available to control the replay process EI We Recall Type This option offers four choices for playback of data Data is stored in acquisition windows or buffers For Harmonics acquisition windows are either 10 12 or 16 cycles For Flicker acquisition windows are 1 second Available recall choices are 1 1 Every Window Every acquistion windowis shown acquisition Every acquistion windowis shown is shown Every failed distorted Only acquisition windows with one or more failures are Window shown California Instruments Revision H 84 User Manual MX Series CTSH Compliance Test System Menu Item Recall Size Replay Delay Display Rate California Instruments Descr
49. and test report headers can be selected from the Option IEC Test Report menu but needs to be done before opening the IEC 429 test screen The selected format Printer Text File or MS Word applies to all IEC immunity tests MS Word reports are automatically saved in the C Program Files California Instruments Mxgui Reports directory California Instruments Revision G 121 User Manual MX Series CTSH Compliance Test System 13 8 Source Requirements The EN 61000 4 29 imposes certain requirements on the DC test generator used Not all of these requirements can be met with the MX Series AC DC power source The following restrictions apply Capability Standard Requirement MX Series Output voltage range 0 360 0 400 Ripple content lt 1 96 of output voltage Rise and fall time into 100 Ohm resistive between 1 and 50 usec 0 3 V usec load load Output current steady state up to 25 25A Note The use of a test generator with higher or lower voltage or current capability is allowed provided that the other specifications are preserved The test generator steady state power current capability shall be at least 20 96 greater than the EUT power current ratings This means that for many EUT s a 25 A capable generator is not needed However since the rise and fall time requirements may not be met under all circumstances this is a pre compliance test only For full compliance test applications the test generator must
50. be changed to 1 California Instruments Revision H 55 User Manual MX Series CTSH Compliance Test System 3 8 CTSMXH Software Installation Once the card drivers have been installed the CTSMXH Software can be installed next The A D card requires a device driver to be installed This device driver is part of the National Instruments NI DAQ driver and is provided on a separate CD ROM If you did not install the PCI driver and A D go back to section 3 7 The MXCTSH system software is supplied on a CD ROM The CD ROM contains compressed files that are needed to operate MXCTS system properly Since these files are in compressed form they should not be copied to your PC s hard disk since they will not function in this form Instead the setup program that is included on the CD ROM should be used to install all the files An additional CD ROM is provided containing the system calibration data To install the CTSMXH Software proceed as follows 1 Insert the CIC651 CD ROM into your CD ROM drive and wait a moment for the drive to recognize the CD 2 The program should start automatically If not select Start Run from the Windows Start menu and type D setup exe assuming your CD ROM is the D drive 3 The CI CD ROM Browser as shown California Instruments CTSMXH CD Browser Rey 1 2 DER to the right should now appear on 9 PP Sunc oda Sten wv California Instruments Screen Compliance Test Systems Manuals Application
51. be tested for compliance with the test generator requirements California Instruments Revision G 122 User Manual MX Series CTSH Compliance Test System 14 Customizing EN 61000 4 13 Test Parameters 141 About This Chapter This chapters covers describes how to modify aspects of EN61000 4 immunity testing to accommodate different product committee requirements The available 61000 4 tests implemented in the MXGUI program are based on the most recent officially published test standard Future changes in test levels can be accommodated without the need to upgrade the MXGUI program To allow for some level of customization the MXGUI will accept different test parameters that can be edited by the user 14 2 1EC413 413 File IEC 1000 4 13 EN 61000 4 13 section header Parameters that apply only to Flat Top Curve Fcurv lev 90 Flat Curve Level at 9096 dwe 120 Flat Curve Dwell time in seconds Fcurv pau 5 Flat Curve Pause in seconds Parameters that apply only to Over Swing Curve Oswcurv_dwe 120 Over Swing Curve Dwell time in seconds Oswcurv_pau 5 Over Swing Curve Pause in seconds Oswcurv3_lev 6 Over Swing Curve of third harmonic level at 6 Oswcurv3_phs 180 Over Swing Curve of third harmonic phase test of 180 degrees Oswcurvb lev 4 Over Swing Curve of fifth harmonic level at 4 Oswcurv5_phs 0 Over Swing Curve of fifth harmonic phase test of 0 degree Parameters that apply to Frequency Sweep Swefreg1 lev 3 Sweep Freque
52. by protected supplies such as uninterruptible power supplies filers or surge suppressors Class 2 Applies to points of common coupling PCCs for consumer systems and in plant points of common coupling IPCs in the industrial environment in general The compatibility levels in this class are identical to those of public networks Class 3 Applies only to IPCs in industrial environments It has higher compatibility levels than those of class 2 for some disturbance phenomena This class should be considered when any of the following conditions are met a major part of the load is fed through converters welding machines are present large motors are frequently started loads vary rapidly Testing is not recommended for Class 1 equipment Test level X specifications are to be agreed upon by the manufacturer and user Test Levels for environmental Class 2 and 3 equipment are defined by the generic standard A user class X user with test level equal or higher than those of level 2 may be set as well Test Levels The test sequence implemented by this test consists of a series of voltage and phase unbalance variations consistent with commonly found phenomena on the public utility power grid The objective of this test is to evaluate a product for immunity from such variations Voltage unbalances are applied at different levels for different product categories The user must determine the product class and select the appropriate t
53. computer interface method Non matching power source or no computer interface View bus Disable front panel MX Series AC power source with RS232C interface control during tests Verify Source View Modify Impedances Data saving to hard drive option f Do not save any data Tests not replayable later Save measurement results Sample and hold Time filter options No sample and hold circuit phase correction will be performed fiber duster fac ies iseck rs Sample and hold circuit exists Figure 5 2 Additonal Settings for Harmonics Test The following settings are available from this dialog window Setting _ Pre test time This is the time during which to apply power to the EUT before staring the harmonics measurements This capability may be used to skip any startup behavior of the EUT that may affect the outcome of the test High EUT inrush currents that exceed the AC Source s maximum peak current capability can result in high voltage distortion This would invalidate the test The Pre test time setting can be used to hold off measurements until after the EUT has reached a steady state condition Source Control The CTS system is normally supplied with a suitable AC power source to provide stable AC power to the EUT The Source Control section of the additional setup dialog is used to configure the CTS system for the AC Source used Only support for the MX Series power sources is provided in
54. defined test levels Test levels for class 2 and 3 are implemented in the MXGUI while test levels for class X may be set by the user in the 413 413 file Note that EN 61000 4 13 is presently only in draft form and as such hardware and or software changes to this test option may be required at a future date EN 61000 4 14 Voltage Fluctuations The EN 61000 4 14 is aimed at testing a product for immunity against voltage fluctuations that can occur on the public utility The nature of the voltage fluctuations is different from those tested under EN 61000 4 1 1 however The fluctuations covered in this standard are less severe and involve typical high and low line conditions California Instruments CTS system supportsfull compliance EN 61000 4 14testing The EN 61000 4 14 testisimplementedinthe MXGUI Windows software To accommodate changesinthe specification testlevels and duration can be changed by the operator or loaded from disk if needed EN 61000 4 17 DC Ripple The EN 61000 4 17 is aimed at testing a DC powered product for immunity against voltage ripple Ripple is often caused by feed through from the AC input section of a DC supply and exhibits itself as a small AC signal riding on the DC output The EN 61000 4 17 standards covers test levels and frequencies for testing the immunity of DC products against such phenomena The CTS system supports full compliance EN 61000 4 17 testing The EN 61000 4 17 testis implemented in the
55. energy consumption increases industrialized nations have become increasingly concerned with the future availability of energy Reducing energy consumption by using more energy efficient lighting and motor drive systems is one approach being taken by European US and Japanese governments The need of more efficient electrical systems however typically requires the use of sophisticated semi conductor based electronic circuits that produce current harmonics This in turn effects power quality which is an increasing problem on public utility networks As lighting systems with electronic ballasts and equipment with switching power supplies such as computers TV s fax machines and printers proliferate power quality deteriorates The same is true for PWM controller motor drives The International Electrical Committee IEC has released standards dealing with the low frequency public supply system Initial standards were 555 2 Harmonics and 555 3 Flicker which have since been refined and are now available as 1 61000 3 2 and IEC 61000 3 3 respectively Effective January 1 1996 most electrical devices sold within the member countries of the European Union EU must meet these standards as governed by the EMC directive Recently a higher power version of IEC 61000 3 3 called IEC 61000 3 11 was released to cover testing of EUT s up to 75 A per phase A similar harmonics standard IEC 61000 3 12 is in the works but has not been released at the time of this m
56. for Stage 1 connection can be connected at any point of the supply system provided the short circuit ratio Rsce is equal to or higher than 33 California Instruments Revision H 16 User Manual MX Series CTSH Compliance Test System Stage 2 Connection based on network and equipment data For equipment not complying with the emission limits for Stage 1 connection higher emission values are allowed provided the short circuit ratio is gt 33 Stage 3 Connection submitted to the local supply authority If the conditions of neither stage 1 nor stage 2 are fulfilled the supply authority may accept the connection of the equipment on the basis of the predicted effects of such a connection being within the local supply requirements This has to be negotiated with the local supply utility by the end user of the EUT The defined connection stages have different allowable current harmonics limits The following tables show the test limits for each connection type Stage 1 Minimal Rsce Admissible individual Admissible harmonic current harmonic current In l1 distortion factors l rated fundamental current In harmonic current component Table 2 1 Stage 1 current emission limits for simplified connection of equipment values are based on a minimum value of Rsce equal to 33 Stage 2 Minimal Rsce Admissible individual Admissible harmonic current harmonic current 1 11 distortion factors Note 1 The relative value of e
57. format used can be direct output to a printer output to a text file or generation of an MS Word report The desired report format can be selected from the Options menu under IEC Report Setup MS Word reports are automatically saved in the C Program Files California Instruments MXGUMReports directory California Instruments Revision G 116 User Manual MX Series CTSH Compliance Test System 13 EN 61000 4 29p DC Dips and Interruptions Pre compliance IEC 61000 4 29 DC Dips Interruptions and Variations Precompliance Test File Edit Run Help Test Setup Dips and Interruptions variations Operator Observations __ Dip to unom 0 Output User Data Tested by rest department EUT 25 95 Comment Test Site Press Ready 10 03 2001 5 03 4 Figure 13 1 61000 4 29 Test Window The EN 61000 4 29 implementation in the MXGUI is based on the EN 61000 4 29 standard dated march 24 2000 This test is offered as a pre compliance level test only Not all the DC supply rise and fall time and maximum current requirements can be met under all conditions See paragraph 13 8 for details Test parameters can be changed if needed using the parameter data entry grid Several generic test parameter files are distributed with the MXGUI program These files can be edited as well EN 61000 4 29 Test setup parameter files use a 429 extension
58. highest total harmonic content You can increase the test time up to 24 hours if needed The test period needs to be set long enough to cover the entire operating cycle of the unit under test This is particularly important for the transitory harmonics tests Avoid setting the test time longer than necessary as it only decreases your test throughput Data File Size Data is recorded during the test As the test time increases the file size of the data stored increases After a user defined period of time during which all data is recorded the rate of data recording is decreased to limit file size growth During this second phase of the test only data buffers that have one or more limit failures and the two buffers leading up to this event are saved to disk See Configuration Options for details on setting the recording change time California Instruments Revision H 64 User Manual MX Series CTSH Compliance Test System 5 5 Running a Harmonics Test Starting the MXCTSH main program brings up the test setup screen This MXCTSH main program window automatically sizes to a SVGA display resolution of 800 x 600 pixels Larger screen resolutions are supported but the controls on the main window will not size to any resolution above 800 x 600 Note For correct harmonics and flicker measurement operation make sure that the PACS 3 75 and PC are operated from the same supply outlet A harmonics test is always started by setting the desired
59. local utility The CTS system will provide test data which documents the amount of current harmonics emissions produced by the EUT No limits are applied in this mode so there is no pass or fail test result in this case California Instruments Revision H 18 User Manual MX Series CTSH Compliance Test System 2 4 2 2 4 3 EUT Category Abbreviations used The following connection types are supported using the abbreviations shown in the table Abbreviation Meaning CSPNBTPE Connection Single Phase amp Non Balanced Three Phase Equipment CBTPE Connection Balanced Three Phase Equipment CBTPEUSC Connection Balanced Three Phase Equipment Under Specified Conditions If different Sce values apply to each category EUT they will be shown between brackets immediately following these abbreviations in the Limit drop down control IEC 61000 3 12 Test Times The test time used to run a Harmonics test is determined by the nature of the EUT Under the test standard four test times observation periods are allowed depending on the nature of the EUT All are aimed at ensuring repeatability of test results when tests are performed under the same conditions and on the same test system Repeatability for this purpose is defined as results that are within 5 Available observation periods are Table 2 5 Harmonics Test Times Type of equipment behavior Observation period Quasi stationary Toss Of sufficient duration to meet the re
60. may even be used for this purpose More often than not however the use of an AC source with well defined specifications is recommended to obtain repetitive test data and eliminate the possibility of flicker caused by line fluctuations not load current fluctuations The MXCTS system uses the MX Series power source which meets these requirements To simulate the resistance and inductance of the low voltage distribution systems the IEC 61000 3 11 requires a specific AC source output impedance to be used This reference impedance as specified in IEC 725 is defined in such a way that it approximates a typical distribution network impedance Individual countries may require the use of a different reference impedance that more closely resembles the actual impedance of that countries specific distribution network Most European countries use the specified reference impedance value however Since the actual reference impedance values would result in very how power dissipation at currents up to 75 A per phase the CTS uses a test impedance with a value recommended by the IEC 61000 3 11 standard The flicker data is automatically scaled based on the value of the test impedance Ztest to Zref This provides for a lower level of dissipation which makes the impedance more cost effective The test impedance is provided by the OMNI 3 75 which is housed in its own cabinet and needs to be placed directly next to the MX RS Series power source to keep power cab
61. model number CIC 651 is owned by Ametek PPS and is protected by United States copyright laws and international treaty provisions Therefore you must treat the software like any other copyrighted material Software Revisions Revision codes in the Help About screen of the CTSMXH Software indicate the current revision Minor changes to the software such as bug fixes usually do not require a change to the manual Therefore the revision number of the software you received with the CTS system may be higher than the software revision number shown below In this case the information in the manual still applies Software changes that require a manual change will be accompanied either by a new edition of the manual or an errata sheet documenting the changes This manual applies to software revision upto 2 5 8 revision 1 x includes the A D from Exacq Technologies If you are using a software revision less than 2 5 8 check www programmablepower com for upgrade information The CTS software revisions can be shown by selecting the Help About screen CTSMXH software revision 2 0 x or higher only supports the new National Instruments M Series cards PCI 6220 PCI 6250 Printing History The manual printing date indicates the current edition The printing date changes with each new edition or update Update packets or change sheets may be issued between editions to correct or add information Minor corrections incorporated at reprint do not
62. noise pick up before it is sent to the interface connector for transmission to the host PC To sense the applied voltage another set of differential amplifiers are used together with high precision sense resistors to provide high CMRR The sense resistors are of high enough impedance to limit any leakage current to under 0 5mA 18 4 OMNI 3 75 Impedance The OMNI 3 75 provides the required lumped impedance Ztest for IEC 61000 3 11 Flicker testing of EUT s up to 75 A RMS per phase 18 5 CTSMXH Software The CTSMXH Software is designed to work with the data acquisition card s digital samples of voltage and current Numerous data channels are scanned sequentially and the software then calculates many parameters using Fast Fourier Transforms and displays them in the Graphical User Interface In addition to numerical outputs of voltage current power etc the software also displays real time graphics of voltage and current California Instruments Revision G 140 User Manual MX Series CTSH Compliance Test System CAUTION VOLTAGES UP TO 480 VAC AND 650 VDC MAY BE PRESENT IN CERTAIN SECTIONS OF THE COMPANION POWER SOURCES THIS EQUIPMENT GENERATES POTENTIALLY LETHAL VOLTAGES DEATH ON CONTACT MAY RESULT IF PERSONNEL FAIL TO OBSERVE SAFETY PRECAUTIONS DO NOT TOUCH ELECTRONIC CIRCUITS WHEN POWER IS APPLIED California Instruments Revision G 141 User Manual MX Series CTSH Compliance Test System 19 Service 19 1 Cleaning
63. or the File Print menu EN 61000 4 13 Test Reports The EN 61000 4 13 test module produces a test report when the Print Report button is clicked Reports can also be printed from the File Print menu Test reports include all selected test parameters and options The report format used can be direct output to a printer or generation of an MS Word report The desired report format can be selected from the Options menu under IEC Report Setup A sample section of an EN 61000 4 13 test report is shown below MS Word reports are automatically saved in the C Program Files California Instruments Mxgui Reports directory California Instruments Revision H 98 User Manual MX Series CTSH Compliance Test System 9 EN 61000 4 14 Voltage Fluctuations 9 1 About This Chapter This chapters covers testing a device for compliance with the EN 61000 4 14 Voltage Fluctuations test standard This test is supported through the MXGUI AC source control program 61000 4 14 Voltage Fluctuations Test DE XI File Edit Run Help Test Setup Voltage Fluctuation Levels Operator Observations stop _ TestLevel 3 LevelRepeats Delay Repeat 8 1 1 Print Report 1 EN F 9 Output OH User Data Tested by rest department EUT 25 Hum 95 Comment Generic 1000 4 14 test Level 1 Test Site Press Ready 100
64. set here is displayed in the graphs Available rates range from Every Acquisition to All the way to the End The last setting means the data is read from disk all at once and only the last buffer is displayed at the end of replay The user can then back up recall using the VCR style keys in the lower left corner of the screen 4 7 Test Menu The Test menu offers the following sub menu choices Clears the existing test data from memory and brings up the test setup screen for both Harmonics and Flicker test Replay an existing test Brings up the list of tests that can be replayed Select a test setup from Allows test setup information from any test in the test list to be copied to a Test List new test setup Edit View Fixed Allows editing of power level or current for test limits that are a function of references EUT power and or EUT current See Get new reference entry under Options menu California Instruments Revision H 62 User Manual MX Series CTSH Compliance Test System 5 Harmonics Testing 5 1 About This Chapter This chapters covers testing a device for compliance with the IEC 61000 3 12 Harmonics standard A review of the possible EUT classes is provided to assist the user in determining the appropriate device class to use Once the device class has been established the appropriate test module is used to perform the tests 5 2 Test Selection The processing of current harmonics is dependent on the selected
65. specified for class 2 and 3 only Class X test levels may be defined by specific product standards Environment Class Unom Nominal Voltage Unom 10 Unom 10 no test required no test required no test required 8 Unom 8 Unom 8 Unom 12 96 Unom 12 96 Unom 12 Unom Class X Open but must be higher than Open but must be Open but must be Level 2 higher than Level 2 higher than Level 2 California Instruments Revision H 10 User Manual MX Series CTSH Compliance Test System 9 5 9 6 Test Options The EN 61000 4 14 test standards specifies two alternate methods for changing the voltage between test levels Stepping or Slewing The operator can select either method using the two test options shown in the test Test Setup frame Step Mode If this option is selected each fluctuation consists of stepping the voltage up or down in five steps of one signal period each 20 msec for 50 Hz 16 6 ms for 60 Hz starting at a 0 phase angle and holding the voltage at this altered level for a 2 second period and stepping it back up or down to its nominal value 5 periods t 2sec Slew Mode period 1if nam If this option is selected each fluctuation consist of slewing the voltage up or down over a quarter period 5 Figure 9 3 EN 61000 4 14 Voltage Step mode msec for 50 Hz 4 msec for 60 Hz starting at a 90 degree phase angle and holding the voltage at this altered level for a 2 second pe
66. supply authority If the conditions of neither stage 1 nor stage 2 are fulfilled the supply authority may accept the connection of the equipment on the basis of the predicted effects of such a connection being within the local supply requirements This has to be negotiated with the local supply utility by the end user of the EUT California Instruments Revision H 63 User Manual MX Series CTSH Compliance Test System 5 3 1 5 4 Reference Fundamental Current Selections The fundamental current reference settings provide the following options e If the Ref Fund Curr I 1 checkbox is checked then the test limit will be based on the measured referenced fundamental current e If the Ref Fund Curr I 1 checkbox is checked then the operator has to enter a rated reference fundamental current value with the range from 1 to 75A The test limit will then be based on the entered referenced fundamental current e The Compare to 11 checkbox will be enabled only if the Ref Fund Curr I 1 checkbox is selected If the Compare to 11 checkbox is NOT checked then the test will basically use the entered referenced fundamental current for limit calculation regardless of the actual measured fundamental current e If the Compare to I1 measure checkbox is checked then the test will compare the entered value with the measured value If the difference between the entered value and the measured
67. supports pre compliance EN 61000 4 11 testing using the MX Series AC power source with the addition of the 41 1 firmware option The test sequencer andreport generation for EN 61000 4 11 is provided through the MXGUI Windows software To accommodate changesin the specification test levels and duration can be set by the operator or loaded from disk if needed California Instruments Revision H 21 User Manual MX Series CTSH Compliance Test System 2 7 2 8 2 9 2 10 2 11 2 12 EN 61000 4 13 Interharmonics and Harmonics Immunity Test The EN 61000 4 13 is presently only in draft form and the implementation used in the MXCTS system uses applies to the first draft of the immunity test specification The purpose of this test is to verify a EUT s immunity to signaling frequencies that may be present on the AC line These signaling frequencies are not always harmonically related to the fundamental frequency As such this test applies both harmonics and interharmonic frequencies in addition to the fundamental AC voltage The generation of interharmonics requires the addition of an independent signal generator in the MX Series AC power source Option 413 If this optional 413 interharmonics generator hardware option is present in the MX the EN 61000 4 13 test window will be available from the MXGUI program The EN 61000 4 13 draft specification calls out test levels for three product classes class 2 3 and X Class X involved user
68. test time and if any Window result is failed during a test Test result will be Fail In other words this field is Fail latching Source Bottom Left This field displays overall AC Source voltage distortion status for the test Qualification so far At the end of the test this field indicates if the AC Source failed the voltage distortion test at any time during the test The VTHD indication is given to notify the user of a possible problem with the AC source voltage distortion which may invalidate the test results The test will not be aborted however if the voltage distortion is too high Start Time Bottom Left This field always shows the start time of the test in progress The test duration is shown in the bottom panel See also the of test completed indication and the progress bar below the Start Time field of test Left panel During test execution this field displays the percentage of the test that completed has been completed Once this number reaches 100 the test will terminate normally If the user clicks on the Stop button instead it will display the point at which the test was aborted Test Margin Bottom The test margin can be set by the user if a pre compliance test is needed and the user wants to set more stringent limits The test margin number defaults to 100 to use the exact IEC limits A lower percentage will means the EUT has to pass lower test limits more stringent The value of this field ra
69. the CTSMXH Software If the AC source used is not supported by the program manual mode should be selected and the source should be set up by the end user Available options are Use the AC source This option may be needed if the AC Line is used or the AC from its front panel source used does not offer remote control capabilities This only way of operating puts more responsibility on the operator to ensure the correct power is applied during the test RS232C control Used with AC Sources that have RS232C control capability The Verify Source must be used to make sure the AC Source can be found The AC source must be connected using the serial cable provided and must be powered up The View Bus button may be used to bring up the command trace for trouble shooting purposes if the presence of source cannot be verified When using remote control the user can select to have the front panel locked California Instruments Revision H 67 User Manual MX Series CTSH Compliance Test System Setting Description O 2 25 or not by setting the Disable checkbox IEEE 488 control This selection requires the presence of a National Instruments IEEE 488 controller card or compatible card in the PC This interface is not supplied as part of the CTS system but may be added as an option The Verify Source must be used to make sure the AC Source can be found The AC source must be powered up The View Bus button may be used
70. value exceeds 10 then the test will use the measured value for limit calculation instead of the entered value e f the difference between the entered value and the measured value falls within 10 then the test will use the entered value for limit calculation Test Times The test time used to run a Harmonics test is determined by the nature of the EUT Under the test standard four test times observation periods are allowed depending on the nature of the EUT All are aimed at ensuring repeatability of test results when tests are performed under the same conditions and on the same test system Repeatability for this purpose is defined as results that are within 5 96 Available observation periods are Type of equipment behavior Observation period Quasi stationary Tobs of sufficient duration to meet the requirements for repeatability Short cycles Tcycle lt 2 5 min Toss gt 10 cycles reference method or Tobs of sufficient duration or synchronization to meet the requirements for repeatability Synchronization means that the total observation period is sufficiently close to including an exact integral number of equipment cycles such that the requirements for repeatability are met Tos of sufficient duration to meet the requirements for repeatability Long cyclic Tcycle 2 5 min Full equipment program cycle reference method or a representative 2 5 min period considered by the manufacturer as the operating period with the
71. you are ready to install it in an available PCI slot of the host PC This will minimize the chance of damage due to electrostatic discharge When you finally do remove the card from the bag make sure you are wearing a wrist ground strap and hold the card by its edge to avoid touching any of the components There are no jumpers of DIP switch settings on the PCI A D card as all configuration data is retained in EEPROM Note that the National Instruments CD ROM with the NIDAQ drivers is included with the NI PCI 6034E or PCI 6220 PCI 6250 card If your system was supplied with this A D card YOU MUST USE THE NI CD ROM to install the A D card drivers For systems supplied with an Exacq A C card the card driver is on the same CD ROM as the MXCTSH software The correct order of installation is 1 Install the PCI Card drivers first 2 Turn off the PC and install the PCI A D card in an available PCI slot 3 Reboot the PC and let Windows find the A D card and complete installation of the drivers 4 Install the CTSMXH software from the CIC651 CD ROM California Instruments Revision H 46 User Manual MX Series CTSH Compliance Test System 3 7 2 Installing the PCI Card Driver Software CTSMX Setup Selector 1 5 0 Setup Configuration C Exacg POI 4 0 Card Driver Installation not install for MI series Install MI Series A O Card driver from National Instr CD C CTSMesH System Software Installation PCI Bun Setup Lil Close
72. 000 Calibration information for individual channels Maximum Curent Limits fChanO Phase1Votage These integers camesponding Select a channel here Ehan 0 Phase 1 Votage to haf of 16 bRA D values Scale of PACS Vots or Amps per volt to A D card fioo 40 200 Amps 32000 System DC offset integer trom when physical quantity is zero 24 1040 Amps 32000 System sensitivity coefficient vokage per unt of 16 bi 1 527924 04 lt 10 Amps 22000 Valuer System Configuration 1 European Singe phase Three phase NoCl power source 250 DMNI included in the PACS bas tol Inductive uH 795 47 C External OMNI exists Source with Programmable impedence AMX Power Source 2 0 0 AMX Source with Programmable impedence Orignal calibration information 1 Calbration Date Update Information Calibration Time and Dale 3 04 32 PM on 6 20 01 Colbration Update Time and Date 8 43 32 on 6 27 01 Calibration Pesformed by cx Calibration Updated by F tuning Figure 16 1 Cal and Configuration Data Screen Description Displays information on the A D card and base sampling frequency Individual voltage and current channels have calibration coefficients which are calculated automatically when running the Calibration module See section 0 Normally there is no need to edit these values Calibration information The CTS sy
73. 000 3 11 standard sets limits for voltage fluctuations caused by electrical apparatus with a current level up to 16 Amps per phase The standard describes a human flicker perceptibility curve that defines the upper limit for acceptable flicker This curve plots the percentage of voltage fluctuation against the amount of voltage fluctuations per minute As is the case for the Harmonics standards the Flicker standard dates back several years and was rooted in the IEC 555 3 specification Today however the IEC 61000 3 11 standard should be used to evaluate equipment Note that low power equipment generally does not cause Flicker and therefore often can be exempted from this requirement The standard permits the equipment manufacturer to prove via analysis that their products are unlikely to cause voltage fluctuations This analysis becomes part of a Technical Construction File TCF which in turn may be used to obtain product certification IEC 61000 3 11 Flicker Test AC Source Requirements As is the case with Harmonics testing the IEC 61000 3 11 standard imposes requirements on the AC source that is used Some of these requirements are similar and less severe than those imposed under IEC 61000 3 12 For example total harmonic distortion of the voltage can be 3 for Flicker testing as opposed to only 1 25 for harmonics testing The voltage regulation needs to be better than 2 which is not a problem for most AC sources In rare cases the line voltage
74. 1000 4 1 Some EN 61000 4 tests are pre compliance only California Instruments Revision H 14 User Manual MX Series CTSH Compliance Test System 2 2 1 2 2 IEC Testing About This Chapter This chapter provides some background information on the various IEC test standards that apply to AC powered products It also reviews some of the test equipment requirements that are important when testing for IEC compliance Note that this information is subject to change as IEC standards change over time This overview is by no means comprehensive and is only provided for reference If the reader is not familiar with IEC test requirements for AC powered products we strongly recommend consulting information on this subject that is available through other sources References are provided at the end of this chapter The standards covered in this chapter include those which the CTS system is capable of testing specifically e IEC 61000 3 12 Harmonics e IEC 61000 3 11 Flicker e EN 61000 4 11p Voltage Dips and Variations pre compliance requires option 411 on MX EN 61000 4 13 Interharmonics and Harmonics Immunity Test requires option 413 on MX e EN 61000 4 14 Voltage Fluctuations e EN 61000 4 17 DC Ripple e EN 61000 4 27p AC Voltage Unbalance pre compliance e EN 61000 4 28 Frequency Variations EN 61000 4 29p DC Voltage Dips and Variations pre compliance The EMC Directive As the world population grows and the overall
75. 1000 4 13 test run Voltage Waveform Time Domain This Tab displays the voltage waveform as captured at the EUT by the MX Series data acquisition system This information is updated every couple of seconds and allows the user to monitor the stimulus applied to the EUT This TAB is only used for display purposes and contains no user controls Resonance Points During the test run the voltage waveform is captured and displayed in the Waveform display Tab page This allows the user to determine if the EUT continues to operate There may be effects on the EUT such as reboots or processor lockups that cannot be seen by observing the EUT load current Frequency is not measured as it remains at the nominal frequency specified The resonance points Tab displays the EUT current as a function of the harmonic and interharmonic frequencies applied to the EUT during the test This information is displayed both numerically in the table on the left and graphically in the chart on the right Those points that meet the criteria for a resonance point are listed in the table directly below the graph Note that there may not be any resonance points on a given EUT In that case this table will be empty The total number of resonance points found is shown between the graph and the resonance point table The are no user controls or settings on this Tab as it is used for data display only Test results may be printed to the default Windows printer using the print button
76. 3 Output ON Select Deselect ll User Data Tested by Test department EUT xp4o0 25 95 Comment Generic IEC 61000 4 11 Test Site Lab Press 26 Executing 10 second delay after repeat 3 at step 3 6 24 2005 9 25 AM Figure 7 1 EN 61000 4 11 Test Window California Instruments Revision H 86 User Manual MX Series CTSH Compliance Test System 7 3 Compliance Statement Based on the hardware specifications of the AC source in use not all requirements for EN 61000 4 11 test generators may be met In particular the 1 to 5 microsecond rise and fall time called out in the specification is not met by most AC sources This is unlikely to have any effect on the outcome of the test however A unit that fails a voltage dropout with a 80 microsecond rise and fall time will not likely pass the same dropout performed at 5 microseconds rise and fall times and vice versa Also the 500 Amps inrush current capability is not met This requirement does not have to be met if the unit under test does not draw more inrush current than the AC source can deliver The peak current pre test option may be used to verify inrush capability of the source for the unit under test California Instruments Revision H 87 User Manual MX Series CTSH Compliance Test System 7 4 Specifying test sequences for Dips and Variations The EN 61000 4 11 test suite consists of two types of tests Dips and Interruptions Sim
77. 3 2001 5 54PM 5 Figure 9 1 EN 61000 4 14 Test Window The EN61000 4 14 implementation in the MXGUI is based on the EN61000 4 14 standard dated 1999 02 and Amendment 1 dated 2001 07 Test levels and times can be changed if needed through the use of one or more filename 414 Fluc files in the IEC Test directory California Instruments Revision H 99 User Manual MX Series CTSH Compliance Test System 9 2 Test Setup The following parameters and controls are available for executing the EN 61000 4 14 test Nominal voltage Opening this window will set this parameter to the present steady state voltage setting of the AC source If required a new value can be entered for use during the test At the end of the test the AC source will remain at this voltage level If needed the program will switch the AC source to the high voltage range and close the output relay when the test is started Nominal frequency Opening this window will set this parameter to the present steady state frequency setting of the AC source If required a new value can be entered for use during the test At the end of the test the AC source will remain at this frequency Test Method See under Test Options below Source Regulation See under Test Options below EUT Class The EUT class determines the test levels used Class selection is done by loading the correct class file from disk Phase Mode The phase mode is determined by the AC source configuration This mo
78. 3 X Help Table 4 Connection for balanced three phase equip under specified cond Voltage 5th Harmonic Phase Angle meets table 4 criteria 120 Volts Load Test Limit C Single Phase European Limit 230 Volts C Three Phase Wye Japanese Limit Other Volts Default User Input EUT Equipment under test Test Margin 2c 100 Tested by Tested by Test Duration min 1 5 Comment Comment Customer Customer information 10 6 2006 10 386 4M REAL OR REPLAY Figure 5 1 Harmonics Test Setup Screen California Instruments Revision H 65 User Manual MX Series CTSH Compliance Test System The following checklist shows all available setup options for a Harmonics test Field Description Purpose Test Category Select between Harmonics or Flicker test To include interharmonics select the Inter Harm check box Frequency Choose 50 Hz or 60 Hz This choice will be used to program the AC source output frequency If no AC source is available or the AC source control option has not been selected the measured frequency is checked against the user setting and an error message is generated if a discrepancy is detected For IEC compliance testing 50 Hz should be selected Test Class Select the appropriate test class for the equipment under test See paragraph 5 3 for test class selection Voltage Select the correct line voltage Default choices are 115 and 230 V RMS Line to
79. A103 PACS 3 75 CLK LCK A ourpur power lt 28 AC Figure 3 6 MX60 3Pi CTSL MX90 3Pi CTSL with OMNI 3 37MX Wiring Diagram California Instruments Revision H 33 User Manual MX Series CTSH Compliance Test System ATO 4545 DD Jes MOA PACS 3 78 11 TE i ss PM B gs AC QUTPUT POWER Bc Figure 3 7 MX30 3Pi CTSHL MX45 3Pi CTSHL with dual OMNI s Wiring Diagram Version 2 California Instruments Revision H 34 User Manual MX Series CTSH Compliance Test System ATO 45 INTERFACE SOURCE LINE SOURCE A103 OMNI 3 37MX NEUTR INPUT AMD OUTPUT TE CONNECTIONS CHASSIS UNDER TRE TOP 104 PACS 3 75 CLK LCK AC OUTPUT POWER ps fj COM Figure 3 8 MX60 3Pi CTSHL and MX90 3Pi CTSHL with dual OMNI s Wiring Diagram California Instruments Revision H AC OUT AC IN LINE LINE a4 5 5 QUU dodo oo o D LOAD LOAD ia Mif HH P102 wevr 35 User Manu
80. AC source to the high voltage range and close the output relay when the test is started Opening this window will set this parameter to the present steady state frequency setting of the AC source If required a new value can be entered for use during the test At the end of the test the AC source will remain at this frequency See under Test Options below The test levels used are determined by the EUT class Class selection is done by loading the correct class file from disk Note that there is no Phase selection in this test as the programmed frequency always applies to all available phases Starts the EN 61000 4 28 test using the parameters set by the user Test progress is shown at the bottom of the window The sequence numbers shown correspond to those in the illustration Aborts test in progress Revision G 113 User Manual MX Series CTSH Compliance Test System 12 3 Test Sequence The test sequence implemented by this test consists of a series of frequency variations consistent with commonly found phenomena on the public utility power grid The objective of this test is to evaluate a product for immunity from such variations Frequency variations are applied at different levels for different product categories The user must determine the product class and select the appropriate test level During the test run frequency changes are applied at the zero degree phase angle of the waveform Both up and down shifts of the freque
81. AMAGES RESULTING FROM LOSS OF DATA PROFITS USE OF PRODUCTS OR INCIDENTAL OR CONSEQUENTIAL DAMAGES EVEN IF ADVISED OF THE POSSIBILITY THEREOF This limitation of liability of California Instruments will apply regardless of the form of action whether in contract or tort including negligence The warranty provided herein does not cover damages defects malfunctions or service failures caused by owner s failure to follow California Instruments installation operation or maintenance instructions owner s modification of the product owner s abuse misuse or negligent acts and power failures surges fire flood accident actions of third parties or other events outside reasonable control SOME STATES DO NOT ALLOW LIMITATIONS ON THE LENGTH OF AN IMPLIED WARRANTY OR THE EXCLUSION OR LIMITATION OF INCIDENTAL OR CONSEQUENTIAL DAMAGES SO THE ABOVE LIMITATION OR EXCLUSIONS MAY NOT APPLY TO YOU THIS WARRANTY GIVES YOU SPECIFIC LEGAL RIGHTS AND YOU MAY ALSO HAVE OTHER RIGHTS WHICH VARY FROM STATE TO STATE If any part of this Agreement shall be determined by a court to be invalid illegal or unenforceable the remaining provisions shall in no way be affected or impaired thereby GOVERNING LAW This Agreement and Limited Warranty are governed by the laws of the state of California without regard to conflict of law provisions INSTALLATION AND OR USE OF THIS PROGRAM CONSTITUTES ACCEPTANCE OF THESE TERMS AND RESTRICTIONS BY THE USER 1997
82. ARM2_PHS 0 INDHARM3_LEV 8 INDHARM3_PHS 0 INDHARM4_LEV 1 5 INDHARM4_PHS No test INDHARM5_LEV 9 INDHARM5_PHS 0 INDHARM6_LEV No test INDHARM6_PHS No test INDHARM7_LEV 7 5 INDHARM7_PHS 0 INDHARM8_LEV No test INDHARM8_PHS No test INDHARM9 LEV 2 5 INDHARM9 PHSzNotest INDHARM10_LEV No test INDHARM10_PHS No test INDHARM11_LEV 5 INDHARM11_PHS Notest INDHARM12_LEV No test Revision G INDHARM12_PHS No test INDHARM13_LEV 4 5 INDHARM13_PHS No test INDHARM14_LEV No test INDHARM14_PHS No test INDHARM15_LEV No test INDHARM15_PHS No test INDHARM16_LEV No test INDHARM16_PHS No test INDHARM17_LEV 3 INDHARM17_PHS No test INDHARM18_LEV No test INDHARM18_PHS No test INDHARM19_LEV 2 INDHARM19_PHS No test INDHARM20_LEV No test INDHARM20_PHS No test INDHARM21_LEV No test INDHARM21_PHS No test INDHARM22_LEV No test INDHARM22_PHS No test INDHARM23_LEV 2 INDHARM23_PHS No test INDHARM24_LEV No test INDHARM24_PHS No test INDHARM25_LEV 2 INDHARM25_PHS No test INDHARM26_LEV No test INDHARM26_PHS No test INDHARM27_LEV No test INDHARM27_PHS No test INDHARM28_LEV No test INDHARM28_PHS No test INDHARM29_LEV 1 5 INDHARM29_PHS No test INDHARM30_LEV No test INDHARM30_PHS No test INDHARM31_LEV 1 5 INDHARM31_PHS No test INDHARM32_LEV No test INDHARM32_PHS No test INDHARM33_LEV No test INDHARM33_PHS No test INDHARM34_LEV No test INDHARM34_PHS No test INDHARM35_LEV 1 5 INDHARM35_PHS No test INDHARM36_LEV No test INDHARM36_PHS No test INDHARM37_LE
83. All measurements in the CTS System are performed through a dedicated data acquisition card that needs to be installed in the host PC The PC that this card is being installed in must have at least 512 Mbyte of RAM memory for the card and software program to work correctly This section provides the necessary installation procedure for both hardware and software of the PCI version A D Card The PCI card is a Windows compliant Plug n Play card that requires a single PCI slot in the test system PC The card driver is installed along with the CTSMXH Software 3 7 4 Unpacking and Handling The following items are included as part of the PCI Card e A D conversion board Cl401PCI or CI403PCI Exacq A D card Or e A D conversion board National Instruments PCI 6034E Series with NI DAQ CD Rom Or A D conversion board National Instruments 6220 6250 M Series with NI DAQ CD Rom e 681037 pin adapter cable HD68 High Density male to DB37 male connector Verify that all components are available The CTS system will not operate if any of these items are missing If any item is missing or visibly damaged contact California Instruments customer service department immediately Refer to page 3 for details on contacting California Instruments Retain the original packaging material for the card and its accessories in the event you ever need to return the PCI A D card to California Instruments Keep the PCI card in its protective anti static bag until
84. Device Number Technologie Figure 3 17 Exacq Card Device Number Revision H q 51 User Manual MX Series CTSH Compliance Test System You are now ready to verify that the A D card functions properly in your PC To do so select the Test tab in the Configuration panel This will bring up the test panel see illustrations Figure 3 15 Figure 3 16 and Figure 3 17 on following pages This test panel can be used to test all analog input channels and analog output channels as well as the digital IO lines You can test Channel 0 zero as shown below Assuming you have connected the interface cable to the PACS signal conditioning unit and the PACS receives the supply from the power source the display will look similar to the figure below Assuming the card functions properly installation and configuration of the Exacq data acquisition hardware and software is now complete Exacq Control Center Eile Edit View Help ale System laS Local System z Info Configure Test Analog Input CE ees OSEE Channel 0 Range 10 00 to 10 00 ElgjSystem PXI 932443 440BX ZX CPU to PCI 8982443BX ZX 440BX ZX PCI to AGP 32371 EB MB PIIX4E M ISA Bridge 9532371 AB EB MB PIIX4 E M EIDE C 932371 AB EB MB PIIX4 E M USB Cc 98332371EB Power Management S YMF740C DS 1L Audio WSExacq 2210 Board National Instruments Analog Output Xpert
85. During test execution the of test completed field on the left of the main window displays the percentage of the test that has been completed Once this number reaches 100 the test will terminate normally If you click on the Stop button instead it will display the point at which the test was aborted During the test execution the CTSMXH Software will continuously evaluate the EUT current harmonics against the appropriate class limits The Pass or Fail indication is updated in real time If the test fails early in a long test period you may elect to abort the test prematurely rather than waiting till the end Voltage and Current Waveform Graphs The top graph continuously displays two signal periods of the AC voltage yellow and current green waveforms For Classes A and D tests it also shows the special current wave shape template in red Alternate display modes can be selected from the drop down combo at the top of the graph Voltage and Current Harmonics Graphs The bottom graph serves a dual purpose During the test run it can be used to show either the current or the voltage harmonics In either mode the IEC test limits are displayed using a red line for the current harmonic limits and a green line for the voltage harmonic limits California Instruments Revision H 72 User Manual MX Series CTSH Compliance Test System Note The voltage harmonic limits apply to the AC source qualification and may indicate that the current
86. N 250821 for software version 2 0 x or later Cl403PCl PCI card National Instruments M Series PCI 6250 A D card 1 Ms sec for three phase systems P N 250822 for software version 2 0 x or later The data acquisition system samples all voltage and current channels at a high sampling rate and provides the data to the CTSMXH Software for further processing The PACS 3 75 provides a single voltage input channel and three current input channels for each phase to the PC This allows for current range changing California Instruments Revision H 13 User Manual MX Series CTSH Compliance Test System on the fly There is no need for the user to select a current range as the software automatically uses the most suitable range available for the current signal 1 2 4 CTSMXH Software Functions The CTSMXH Software application supports IEC 61000 3 12 and IEC 61000 3 11 compliance testing requirements using an intuitive graphical user interface from which you can e Set up and run compliance level tests The setting up of many IEC details is facilitated through the use of embedded standards expertise e Collect real time test data from the CTS System e Display and monitor real time test results Save test results to disk for analysis using other programs e Replay previously recorded test data and single step through the data frame by frame e Print reports and graphs in MS Word formats 1 2 5 MXGUI Source GUI Functions The CTS system al
87. R 76 maintenance nnne 142 manual HISTORY 3 2 cuore 11 measurements 126 MXGUI software 55 NOW 3 OMNI 3 75 Versions sss 27 PACS specifications 4 eto eer 128 PACS 9 75 5 ideis entia eoi ec 12 13 parameters IEC 1000 4 1 4 2 2222 123 PNNTIAG 3 8 ee ede ote t nere cte trea 71 Ref Funds QUIT s c rc Eras 61 reference 20 23 report problems printing 72 80 templates 72 80 resolution displays ise 62 Ripple pom 103 Safety etn 129 131 sample CI INI 124 e MERI MN 129 131 software license iic ede 3 rta eren ert price RE 3 software installation MXQGU ttt ette eet tes 55 software 08 000 3 Specifications ecce eee a Deere oat 126 measurements 126 kenn eei 128 California Instruments MX Series CTSH Compliance Test System Temperature operating storage
88. Test Figure 3 13 EUT Connection distance and wire gauge Front Panel Connections and Controls A DB37 PC Interface Connector is located on the front panel This connector is in parallel with the rear panel connector Either one can be used to connect to the A D card in the PC Use front panel interface connector if rear panel access is difficult The ON LED indicates The PACS 3 75 module is powered up Note Even if the PACS 3 75 unit is powered down the AC input terminals may still be live if the applied source has not been shut down The front panel power switch located on the left hand side of the PACS 3 75 unit energizes the measurement circuits PACS 3 75 AC Input Supply The AC input to the PACS 3 75 unit is on the right side of the rear panel The molded cord plugs into the combination range change fuse holder assembly The AC power input module has a red plastic fuse holder that also serves as the input voltage range selecting device The selected voltage range 115V or 230V is displayed through a small rectangular window To change the fuse 1 Remove power cord from input module 2 Pry cover loose with a small screwdriver 3 Pull out fuse holder prying with a screwdriver will be necessary 4 Replace 1 2 A fuse and reassemble in reverse order To change input range Remove power cord from input module Pry cover loose with a small screwdriver Pull out fuse holder prying with a screwdriver will be ne
89. ULT IF PERSONNEL FAIL TO OBSERVE SAFETY PRECAUTIONS DO NOT TOUCH ELECTRONIC CIRCUITS WHEN POWER IS APPLIED 19 4 1 Switch Off Unit Disconnect High Voltage Switch off the PACS 3 75 unit with the front panel power on off switch Also disconnect or remove any AC voltage applied to the rear connection terminals TB3 and TB4 19 4 2 Removing Top Cover Remove the screws securing the top cover and remove the top cover 19 4 3 Initial Inspection Perform a visual inspection of the unit and ensure all the connectors are properly mated and there are no loose or broken wires Check the interface cable going from the AC sensor assembly 5004 700 to the front and rear panels 19 4 4 Power On Troubleshooting DC Supplies MR Do not touch any parts inside the unit during these tests as they will be live and dangerous Always wear safety glasses 1 Connect a DMM common test lead to TP1 on the 5004 700 AC sensor assembly TP1 is the circuit common for all DC supplies and test signals Connect the other DMM lead to the cathode of diode CR4 Switch on the PACS 3 75 unit with the front panel switch Verify the DC voltage at CR4 cathode is 15V Connect the other DMM lead to the anode of diode CR5 Verify the DC voltage is 15V If either of these voltages are not as specified the board will not function properly and will need to be serviced oa fF California Instruments Revision G 145 User Manual MX Series CTSH Compliance Test System
90. V Position Pre Capture Auto 3 Pg Post Capture Position Coupling Visible Ref Line CHI All Channels Probe Probe f 10x 100 CIA 10x 100x Analog In Channel U Analog In Channel A Device Number B Figure 3 20 Exacq Scope Test Panel California Instruments Revision H 54 User Manual MX Series CTSH Compliance Test System 3 7 5 CTS GPIB Software Setting Conflict For NI PCI 6034E Card Users only Each time the CTS is run a function is called to initialize the A D card This call Init_DA_brds actually does more than A D initialization It also sends some commands to the instrument with GPIB address 1 when using a NI GPIB controller The AC source if used over the IEEE 488 bus is factory set to address 1 This may cause a problem unless the IEEE 488 address on the power source is changed to an address other than 1 The address can be left at 1 on the power source if needed by changing the visaconf ini file This file is typically residing in c vxipnp win95 nivisa directory If not located in this directory use the Windows Explorer Find function to locate this file This file is not distributed with the CTS software It is installed when the National Instruments GPIB software is installed There is a line under GPIB VXI CONFIG DisableAutoFind 0 The 0 needs to
91. V 1 5 INDHARM37_PHS No test INDHARM38_LEV No test INDHARM38_PHS No test INDHARM39_LEV No test INDHARM39_PHS No test INDHARM40_LEV No test INDHARM40_PHS No test INDHARM_DWE 5 INDHARM_PAU 1 Interharmonics test INTERHARM1_LEV 2 5 INTERHARM2_LEV 5 INTERHARM3_LEV 3 5 124 User Manual MX Series CTSH Compliance Test System INTERHARM4_LEV 2 INTERHARM_PAU 1 INTERHARMS_LEV 1 5 INTERHARM_DWE 5 California Instruments Revision G 125 User Manual MX Series CTSH Compliance Test System 15 Specifications 15 1 About This Chapter This chapters provides the technical specifications of the MXCTS measurement system and the Power Analysis and Conditioning System unit PACS 3 75 If the CTS system you have includes an AC power source refer to the separate AC source user manual that shipped with the AC source Note All specifications listed in the manual are valid at an ambient temperature of 23 5 and apply after a 15 minute warm up period 15 2 PACS 3 75 Measurement Specifications The MXCTS measurement system is implemented using a high speed Analog to Digital PCI plug in board This board needs to be installed properly in order to function according to the specification listed here Measurement Specification Unit Bandwidth Bandwidth O Anti Aliasing 60 dB at 5 KHz V Ves mv weown O o d T eunen ranges auo ranor O Ae
92. XCTS systems are factory calibrated before shipment so adjustment should not be needed until after the first year of use Note For calibration at the factory the A D card must be returned with the PACS 3 75 A special calibration program is included in the CTSMXH Software suite to facilitate calibration and store the calibration constants This module is called Calibration and is available from the CTS MXH program menu selection The program screen is shown on the next page Make appropriate selection before clicking on the Calibrate button Upon Clicking the Calibration button you will be given step by step instructions to complete the calibration At the end of a calibration the Accept button will be available Clicking on it will cause the software to save the calibration data and printout a calibration log file 17 2 1 Required Calibration Equipment To perform the CTS measurement system calibration the following equipment is required Equipment Description Digital AC Multimeter Agilent 34401A DMM or equivalent with traceable calibration Resistive Load Bank Avtron K565 or equivalent The load resistor range must be able to handle 2 60A RMS or higher for PACS 3 75 and be rated for the power levels used Current Shunt 100A Current shunt 0 05 96 accuracy or better e g Isotek Table 17 1 Required Calibration Equipment California Instruments Revision G 135 User Manual MX Series CTSH Compliance Test Sys
93. abort click Cancel Do you want to continue the installation Note To operate the AC source through the IEEE 488 interface it may be necessary to install the IEEE 488 controller card drivers on the same PC Refer to the setup instructions supplied with the IEEE controller card Calibration Data distributed on Floppy Disk On older CTS systems the calibration data for each system was distributed on Floppy disk As this old medium is rapidly disappearing CD ROM is used on newer systems If the calibration data you received was provided on floppy disk instead of CD ROM you will have to copy the following file from this floppy to your hard drive root directory Usually C using Windows Explorer CTSMXH calibration dat California Instruments Revision H 57 User Manual MX Series CTSH Compliance Test System 3 9 AC Source Control Software Installation If the CTS system you purchased contains a California Instruments AC power source it will have included additional AC source control software as well Note The AC source control software is not required to perform harmonics and flicker tests It is required to perform any of the IEC 1000 4 tests however This software is supplied with its own user manual and we recommend you familiarize yourself with this user manual also when electing to use the AC source control software The AC source control software is supplied on CD ROM CIC496 Select the MX Series using the installer progr
94. al MX Series CTSH Compliance Test System Cum uy M Ne INPUT AND OUTPUT POWER CONNECTIONS ARE MADE INSIDE THE CABINET BEHIND THE LOWER REAR PANEL 3 PHISE INPUT POWER A102 UT POWER INSIDE THE CABINET BEHND THE ac OUTPUT POWER 4 P AC OUTPUT POWER 1 dc Figure 3 9 RS90 CTSHL with dual OMNI s Wiring Diagram California Instruments Revision H 36 User Manual MX Series CTSH Compliance Test System SYSTEM SYSTEM 2 THREE PHASE OUTPUT TE A THREE PHASE INPUT 2 p Fi aa CHASSI E hs THREE PHASE POWER RCE Te Taia T 1 3 1 22 N INTERFACE CHASSIS SYPASS El VN AC IN FAN Figure 3 10 MX30 3Pi CTSH and MX45 3Pi CTSH Wiring Diagram
95. allation sese 55 4 Progam eet EE IEEE e ERE DER RAE 56 4 1 Abo tthis Chapter in REIR ee UG HARE ARA I tt E AR 56 42 MaimMenusx iee itte tee C Ce agebat da daher aito ads 56 4 3 IINE cade 56 44 SIE DEBE RH OE EIER RR ER 57 4 5 ViewMOnUs incer e necem 58 46 Options Menlo eiie RC Coe Pep Da oer eaqui eur b rri die Gite da iade ed 58 4 7 EE 59 5 7 HARMONICS Testing a abb eoe enger teu us 60 5 1 About This Chapter za cine ei ei pe td po re pedo oe n Pee dover eo eed boo 60 5 2 Test Selection iiu oto etre ede te be ee diet pee 60 5 3 Device Test Classe inne eode aco dee eene o tee Pope ee dev et eee 60 BAe Test TiTieS s t incdus 61 5 5 Runnirig a Harmonics Testis iere eet epe m dE eR RC egt Penis 62 5 6 X Additional Setup Parameters for 64 5 7 Main Harmonics Test Window Operation sess enne nere 66 5 8 Running the Harmonics espe tin eeu x gru Et usec dette qa an Y mta ue 69 5 9 Printing Test Reports soon fed REO 71 5 10 Har
96. am to install the MXGUI program To install the AC source control software proceed as follows 1 c Insert the 496 CD ROM in the PC s CD ROM drive If the drive is configured for autoboot the Cl CD ROM Browser program should pop up on screen If not run the SETUP EXE program In the left window of the CD browser locate the AC Source series for the AC source supplied with the CTS system Click on the Programs Tab on the right and select Windows 32 bit Click on the Install button at the bottom center to run the setup program Follow the on screen prompts of the installation program The setup program will now run and display a dialog box that shows the default directory for the AC source control software that is MXGUI on the current drive At this time you can accept the default directory by clicking on the OK button or enter a different directory If the directory you enter does not already exist it will be created At the end of the installation process a message will be displayed indicating the installation is complete You can now remove the CD ROM California Instruments Revision H 58 User Manual MX Series CTSH Compliance Test System 4 4 1 4 2 4 3 Program Menus About this Chapter This chapter provides an overview of the CTSMXH program menus You may read this chapter to familiarize yourself with the menus available in the program for harmonics and flicker testing or proceed direct
97. ance which ceases after the disturbance ceases and from which the equipment under test recovers its normal performance without operator intervention c Temporary loss of function or degradation of performance the correction of which requires operator intervention d Loss of function or degradation of performance which is not recoverable owing to damage to hardware or software or loss of data As a general rule the test result is positive if the equipment shows its immunity for the duration of the application of the test and at the end of the tests the EUT fulfills the functional requirements established in the technical specification The user has to make this determination by observing the 1000 44 test At the end of a test run the following dialog box is n isplayed Click on the Help button to display the pass fail criteria 92 Is the equipment under test still functional Shown above _ se California Instruments Revision G 101 User Manual MX Series CTSH Compliance Test System 9 9 Report Format 414 Test Files The EN 61000 4 14 test module produces a test report when the Print Report button is clicked Reports can also be printed from the File Print menu Test reports include all selected test parameters and options A sample test report is shown below The report format used can be direct output to a printer output to a text file or generation of an MS Word report The desired report form
98. andards as required for the mark Acoustic Noise 72 dBA maximum 1 meter Safety California Instruments Designed to meet EN61010 1 European safety standards as required for the CE mark Revision G 131 User Manual MX Series CTSH Compliance Test System 16 Configuration Options 16 1 16 2 About this Chapter The CTSMXH Software allows many parameters and operational characteristics to be customized to meet changing test standards and standard interpretations Rather than providing a rigid programmed method most of the operational characteristics such as IEC test limits test window times and filter characteristics are data base driven A skilled operator may access the data in this data base and customize the system to his or her specific needs Furthermore if changes occur in one or more of the applicable test standards it is possible to incorporate such changes without the need to upgrade the software version The Calibration and Configuration module is a separate program utility which is distributed as part of the CTSMXH Software suite and may be used to access the configuration data base It is located in the CTSMXH program directory This chapter covers the configuration parameters only For information on calibration settings and period calibration refer to chapter 0 Accessing the Calibration and Configuration Database The Configuration utility is provided to allow the operato
99. anual s release California Instruments Revision H 15 User Manual MX Series CTSH Compliance Test System 2 3 2 4 2 4 1 Why do you have to test In general these IEC directives do not have the legal force of law However the European Union EU has issued Euro Norms in the context of these IEC directives that are legally binding and are enforced by the EMC Police The relevant enforceable standards are EN61000 3 2 and EN61000 3 3 which supersede EN60555 2 and EN60555 3 respectively These standards are also known under the IEC designator IEC 61000 3 2 and IEC 61000 3 3 Recently the universal EN 61000 convention has been adopted for all IEC standards Individual member countries have issued identical national norms either in their native language or in English which carry the same legal enforceability Other countries such as Japan and the USA are in the process of adopting similar standards Penalties for violating these norms range from hefty fines to jail time In cases where the manufacturer is not located in the EU his distributor or authorized agent will be held liable Local customs agencies can stop equipment that does not meet these IEC norms at the border Compliance testing of equipment is performed by accredited laboratories run by European government agencies assigned with enforcing these norms Also competing vendors have been known to submit failing test results on competitors products to local governments to force p
100. at can be selected from the Options menu under IEC Report Setup MS Word reports are automatically saved in the C Program Files California Instruments MXGUI Reports directory California Instruments Revision G 102 User Manual MX Series CTSH Compliance Test System 10 EN 61000 4 17 DC Ripple 10 1 About This Chapter This chapters covers testing a device for compliance with the EN 61000 4 17 DC Voltage Ripple test standard This test is supported through the MXGUI AC source control program The EN 61000 4 17 implementation in the MXGUI is based on the EN 61000 4 17 standard dated 1999 06 Test levels and ripple frequency can be changed if needed or set to one of the pre defined test levels IEC 61000 4 17 DC Ripple Test e erce 15 Eg 900 Test department Figure 10 1 EN 61000 4 17 Test Window California Instruments Revision G 103 User Manual MX Series CTSH Compliance Test System 10 2 Test Setup The following parameters and controls are available for executing the EN 61000 4 17 test Nominal DC voltage This is the rated nominal DC supply voltage to the EUT Both a high and low DC voltage range can be specified as well When selected the test will run at the selected voltage levels This can any combination of nominal high and low Line frequency This sets the nominal AC line frequency The ripple frequency will be a multiple of the AC Line frequency Output Select For three phase s
101. atus bar Note that the default phase rotation of the MX Series AC power systems is A 0 B 240 and C 120 counter clock wise For the IEC 61000 4 27 the phase rotation must be set to A 0 120 and C 240 This is best done with the power to the EUT off If the test is started and the MX phase rotation is not A 0 120 and C 240 a warning will appear prompting the operator to confirm the change in phase rotation Selecting No will abort the test with no change to the source output Selecting Yes will result in the phase rotation being changed before the test starts If the phase rotation is already correct no message appears AC Source GUI32 9 WARNING To run the IEC 61000 4 27 test the phase 9 rotation of the power source has to be changed to 0 20 and i 120 and C 240 This requires the output to be turned off momentarily Do you wish to proceed Yes or No California Instruments Revision G 110 User Manual MX Series CTSH Compliance Test System 11 10 Test Implementation and Test Sequence For each test step the specified voltage and phase angles will be applied for the time specified At the onset of each voltage phase step the source voltage is captured by the power source s data acquisition system Once the specified time has elapsed the voltage and phase angles are set back to their nominal values and the captured waveform data is transferred and displayed This data will be visible until t
102. ay be set for all classes Note that this Tab is only relevant if either the Flat Top or Over Swing test steps are selected in the Test Setup tab California Instruments Revision H 96 User Manual MX Series CTSH Compliance Test System 8 4 2 Test Level Settings 8 5 The Test Levels Tab may be used to preview the Class 2 and Class 3 frequency ranges and test levels For class X this information may be edited Dwell times and pause times may be set for all classes The following minimum and maximum values in seconds for dwell and pause times apply Note that these values are queried from the AC source if present and may change if the firmware on the AC source is updated As default these times are set to their minimum values Sweep Frequency Dwell pe p Note that this Tab is only relevant if either the Flat Top or Over Swing test steps are selected in the Test Setup tab Test Results There is no way for the MXGUI to determine the outcome of this test as a clear definition of a failure can not be given The draft standard calls out the following possible test results The test results shall be classified on the basis of the operating conditions and functional specifications of the equipment under test as in the following unless different specifications are given by product committees or product specifications a Normal performance within limits specified by the manufacturer requestor or purchaser b Tempora
103. be entered for use during the test At the end of the test the AC source will remain at this voltage level If needed the program will switch the AC source to the high voltage range and close the output relay when the test is started Nominal frequency Opening this window will set this parameter to the present steady state frequency setting of the AC source Available selections are 50 Hz or 60 Hz At the end of the test the AC source will remain at this frequency EUT Class The EUT class determines the test levels used Test number Allows selection of one or more test numbers If all test numbers are selected they will be executed in sequential order Performance Criterion This selection will be used to indicate in the test report how the outcome of the test was evaluated The criteria are explained here Execution Parameters Number of sequences to run A number of one indicates that the test level selected will be run one time per phase rotation for a total of 3 times A number greater than one will result in repeating the same phase rotation that many times Delay between sequences in minutes A delay of 3 minutes minimum is required between tests This value may be extended if desired Pre test delay in seconds Time to wait in seconds between applying power to EUT and starting the first test sequence Phase Mode This test is only valid when the power system is in three phase mode so no phase mode selection is available The phas
104. but in case there are more cards present contact the factory for details concerning multi card configuration Card Reference numbers Cl Designation Exacq P N System 2110 Single phase systems Cl403PCl CM2210 Three phase systems After installing the PCI card turn the computer back on When Microsoft Windows starts up it should discover the new A D device Next you need to test the A D card in your computer and configure the A D card for use with the CTS software After the PC starts up you will have a new Program Group called Exacq Start the application called Exacq Control Center from this new Exacq program group on the Windows Start menu See Figure 3 13 below Control Center File Edit View Help alale System Configuration IE Local System Ir Configure Test Serial Number 580331000256 Device Number 1 PXI Exacg CM 2210 DAO Board 1 1 83932443BX ZX 440BX ZX CPU to PCI 832443BX ZX 440BX ZX PCI to AGP 2932371 EB MB PIIXAE M ISA Bridge 32371 AB EB MB PIIX4 E M EIDE C 932371 AB EB MB PIIX4 E M USB Cc 98932371 EB Power Management SY MF740C 25 11 Audio WSExacq CM 2210 Board National Instruments Xpert 98 RXL 2x ElsjSoftware S Exacq Enumerator EU ven Cuneo Canta Figure 3 16 Exacq Control Center Screen California
105. cause a new edition Decembler 2014 Revision H Trademarks Windows 7 Windows Vista Windows 2000 Windows XP and MS Excel are registered trademarks of Microsoft Corporation Contacting California Instruments To contact California Instruments use any of the communication channels listed here 9250 Brown Deer Road San Diego CA 92121USA 858 450 0085 7 00 AM 4 00 PM Pacific Standard Time Voice Mail 24 hours 858 458 0267 Email sales ppd ametek com Web site www programmablepower com California Instruments Revision H 3 User Manual MX Series CTSH Compliance Test System WARRANTY INFORMATION Ametek PPS warrants each instrument manufactured by them to be free from defects in material and workmanship for a period of one year from the date of shipment to the original purchaser Excepted from this warranty are fuses and batteries that carry the warranty of their original manufacturer where applicable CALIFORNIA INSTRUMENTS will service replace or adjust any defective part or parts free of charge when the instrument is returned freight prepaid and when examination reveals that the fault has not occurred because of misuse abnormal conditions of operation user modification or attempted user repair Equipment repaired beyond the effective date of warranty or when abnormal usage has occurred will be charged at applicable rates CALIFORNIA INSTRUMENTS will submit an estimate for such charges befo
106. ce control program The EN61000 4 28 implementation in the MXGUI is based on the EN61000 4 28 standard dated 1999 11 and Amendment 1 dated 2001 07 Test levels and durations can be changed if needed through use of one or more filename 428 Vars files in the IEC_Test directory ER EN IEC 61000 4 28 Frequency Variations Test Iof x File Edit Run Help Test Setup Frequency Variations Operator Observations Sian Freg change Transition Hold Level Repeats Delay Repeat EN Print Report EN Output 40 User Data Tested by rest department eur Temp 25 95 Comment Generic IEC 1000 4 28 Freq Yars Test Level 4 Test Site Press Ready 10032001 6 02PM 4 Figure 12 1 EN 61000 4 28 Test Window California Instruments Revision G 112 User Manual 12 2 TestSetup MX Series CTSH Compliance Test System The following parameters and controls are available for executing the EN 61000 4 28 test Control Field Nominal voltage Nominal frequency Source Regulation EUT Class Phase Mode Start California Instruments Opening this window will set this parameter to the present steady state voltage setting of the AC source If required a new value can be entered for use during the test At the end of the test the AC source will remain at this voltage level If needed the program will switch the
107. ce voltage If needed the CTSMXH software will compensate for voltage distortion that would affect the harmonic current results This will be indicated Note that the overall EUT test results is repeated in the header of this page This pass or fail does not apply to the AC source Report Templates Test reports are based on report templates Each test mode harmonics or flicker and phase mode single or three phase requires a different report template The CTSMXH program selects the correct template automatically so this is transparent to the user All report templates are distributed with the program and are located in the following directory C Program Files California Instruments Ctsmxh report_files templates If these files are accidentally moved deleted or damaged report printing will not function and the template files have to be restored This may be done by re installing the program if needed Harmonics Test Data Files The CTSMXH Software can be configured to log test data to a file The file format used is proprietary but can be converted at the end of the test to an ASCII text file with tab delimited fields for voltage current power peak current and all the current harmonics This data is recorded in real time or three to four times a second Longer test times will result in larger test data files and reports If you increase the test time make sure you have sufficient hard disk space available to accommodate these long tes
108. cessary California Instruments Revision H 41 User Manual MX Series CTSH Compliance Test System 4 Orient the red fuse holder so that the desired voltage shows through the window While holding the two fuses in the holder reinsert the fuse module and close the cover The MX CTSH system as shipped from the factory will generally have the PACS 3 75 line cord connected to the IEC320 AC input socket on the inside of the OMNI 3 75 cabinet The other end of the line cord plugs into the AC input of the PACS 3 75 unit is on the right side of its rear panel The molded cord plugs into the combination range change fuse holder assembly 3 5 5 Measurement Input Output Connections The AC power input to be measured must pass through the cable strain relief clamp at AC INPUT and then to connector TB4 located just behind the rear panel Similarly the wires from TB3 are routed through the cable clamp at AC OUTPUT to the Equipment Under Test 3 5 6 PC Interface Clock and Lock Interface The PC interface connector accepts the DB 37 interface cable that goes to the PC with the AD Card and the CTSMXH Software This connector is available on both the front and the back of the PACS 3 75 Either one can be used to connect to the PC A D CIC400PCI 401 or 4 Note When connecting the high density 68 pin connector to the back of the A D card in the PC make sure to align the cable plug with the A D card connector carefull
109. d however If a different PC is used to play back data the data files have to be transferred to this PC first The test data files are stored in the following directory C Program Files California Instruments CtsmxhWData files 5 12 1 To play back test on the actual test system PC proceed as follows 1 From the Test Menu select Replay an existing test This will bring up a table showing all tests ever run on this system California Instruments Revision H 75 User Manual MX Series CTSH Compliance Test System Select the test you want to replay by clicking on its row If data for this test was stored and is available the Replay Test button at the bottom will be enabled Click on the Replay Test button to start the replay process This will bring up a standard Harmonics or Flicker test screen To start the replay process click on the Start button The data displayed will be taken from the stored data files The replay mode is indicated in the lower right corner on the status bar The buffer rate and speed at which data is replayed can be controlled using the various settings in the Options menu This may be required to adjust to the speed of the PC used The replay process can be halted at any time by clicking on the Stop button This will stop the data at the buffer number shown in the lower left corner Once stopped the data can be stepped forward or backward at various rates using the VCR style buttons in the lower left corner
110. dard Voltage Unbalance immunity testing Chapter 12 Covers EN 61000 4 28 standard Frequency Variations immunity testing Chapter 13 Covers EN 61000 4 29p DC Voltage dips and Variations immunity testing Chapter 14 Covers EN 61000 4 customization to allow for future revisions of these standards and to accommodate different product categories California Instruments Revision H 11 User Manual MX Series CTSH Compliance Test System 1 2 Chapter 15 Provides the technical specifications for the Power Analysis and Conditioning System PACS 3 75 unit which is a key component of the CTS system For technical specifications on the AC source supplied with the CTS system refer to the AC source manual provided Chapter 16 Overview of available configuration options Chapter 17 Overview of calibration procedures Chapter 18 Provides theory of operation information Chapter 19 Provides service and troubleshooting procedures Compliance Test System Description The California Instruments Compliance Test System is a complete IEC AC power test system that covers many of the IEC regulatory test standards involving AC and or DC powered equipment To ensure maximum flexibility of both the hardware and the software required to create a turn key system the CTS system uses a modular structure consisting of the following components Programmable MX Series or RS90 series AC power source The AC source provides AC power at the user specified frequency and v
111. de cannot be changed from this window To change phase mode close this window and use the main front panel control window to select the desired phase mode first Starts the EN 61000 4 14 test using the parameters set by the user Test progress is shown at the bottom of the window The sequence numbers shown correspond to those in the illustration Aborts test in progress California Instruments Revision H 10 User Manual MX Series CTSH Compliance Test System 9 3 Test Sequence The test sequence implemented by this test consists of a series of voltage fluctuations consistent with commonly found phenomena on the public utility power grid The objective of this test is to evaluate a product for immunity from such fluctuations Voltage fluctuations are applied at different levels for different product categories The user must determine the product class and select the appropriate test level During the test run voltage changes are applied as specified by the selected test mode and for specified periods of time The test sequence can be programmed by setting the nominal voltage in the test level which is the change from the nominal voltage in the number of times each test level repeats consecutive 5 second periods and the delay between each set of test levels Finally each step in the sequence data grid can be repeated 1 or more times A Delay of 1 means the set it only run once The various columns in the test data setup are s
112. ded in the test data file and in any reports that are printed Tested by Bottom This field can be used to enter information about the operator The Tested panel by field contents will be included in the test data file and in any reports that c are printed California Instruments Revision H 81 User Manual MX Series CTSH Compliance Test System 6 3 1 6 3 2 6 3 3 6 3 4 6 3 5 Entering User Data Prior to running a test you should enter information concerning the EUT the person or department performing the test and any other information that may be relevant to interpreting or using the test results obtained from the CTS system Several fields are provided for this purpose along the bottom of the main test window The information entered in these fields is added to the test data file and any reports that are printed The date and time of the test run is automatically added based on the PC s real time clock Selecting the Test Period The default test time for Flicker tests is 120 minutes which provides 12 short term flicker values of 10 minutes each The user can set the test time anywhere from 0 5 minutes to 1440 minutes or up to 24 hours if needed The test period needs to be set long enough to cover the entire operating cycle of the unit under test If a test time less than 120 minutes is entered the will be evaluated using 12 Psti values and deeming the non measured 10 minute periods to have a zero Psti
113. device for pre compliance with the EN 61000 4 11 Voltage Dips and Variations test standard This test is supported through the 411 firmware option on the MX Series and the MXGUI AC source control program 7 2 Standard Revisions and EUT Classes The MX Series 411 option supports both the first 1994 06 and the second edition 2004 03 of the IEC 61000 4 11 test standard as of firmware revision 0 31 Older firmware revisions only support the first edition Contact support 2calinst com for upgrade information If Edition 2 is supported the standard revision can be selected Generic tests files are distributed with the MXGui program for both editions of the test standard Files applicable to Edition 2 0 have ED20 in their file name Do not mix these files as the data setup will not be correct if you do To load a test file select the Mode Dips or Vars and test standard revision first then use the File Open menu to load the test parameters Test parameters can be a function of the EUT class The different files provided with the program cover the various EUT classes The relevant EUT class 1 2 3 or X is listed in the file names Efl EN IEC 61000 4 11 Voltage Dips Interruptions and Variations Test File Edit Run Help Test Setup TestLevels Operator Observations 1 Include 1 Include 1 Include 1 Include 1 Include 1 Include 1 Include 1 Include 1 Include 1 Include Vv In de 3 3 3 3 3 3 3
114. e If the save data option is not enabled in the additional setup window for Flicker there is no way to replay a test later The Pass or Fail result of any run on the actual test system PC is always logged however If a different PC is used to play back data the data files have to be transferred to this PC first The test data files are stored in the following directory C Program Files WXCalifornia Instruments CtsmxhWData files To play back test on the actual test system PC proceed as follows 1 From the Test Menu select Replay an existing test This will bring up a table showing all tests ever run on this system 2 Select the test you want to replay by clicking on its row If data for this test was stored and is available the Replay Test button at the bottom will be enabled 3 Click on the Replay Test button to start the replay process This will bring up a standard Harmonics or Flicker test screen 4 start the replay process click on the Start button data displayed will be taken from the stored data files The replay mode is indicated in the lower right corner on the status bar California Instruments Revision H 83 User Manual MX Series CTSH Compliance Test System The buffer rate and speed at which data is replayed can be controlled using the various settings in the Options menu This may be required to adjust to the speed of the PC used The replay process can be halted at any time by clicking on the Stop b
115. e setup 13 Once completed you can remove the CD ROM You may have to reboot the computer after the software installation This will be indicated at the end of the installation program California Instruments Revision H 56 User Manual MX Series CTSH Compliance Test System 3 8 1 CTSMX Setup Selector 1 5 0 Setup Configuration Exacg PCI A D Card Driver Installation Do not install for NI M series Install NI M Series amp D Card driver from National Instr CD C CTSMXH System Software Installation PCI Run Setup W California Instruments The installation program will create a new entry in the Programs Menu called CTS MXH This menu has several sub menu entries one for the main test program and several for the calibration and configuration programs as well as a few utility programs We recommend you keep the calibration and installation CD ROM s in a safe place in case you ever need to re install the CTSMXH Software If the calibration data is not found during the installation process you still have to option of continuing with the software installation A dialog box will prompt you to abort Cancel or continue OK If you continue the calibration data will have to be provided later Calibration Data Copy Error Failed to copy the calibration data file From the Cal Data CD ROM To continue installation of the CTSMXH software re insert the CTS software CD in the CD Drive and click the OK button To
116. e 19 cabinet with a 43 height This cabinet should be placed next to the MX 45 3Pi or RS90 and connected via the System Interface with the provided DB 37 to DB 37 cable CI P N 7003 283 1 The OMNI 3 75 has its own IEC320 AC power input for bias power The front panel On Off rocker switch located at the bottom of the cabinet is used to turn the OMNI on or off Note that if the OMNI is turned off the power connection between the MX 45 3Pi RS90 and the PACS 3 75 measurement unit is opened For compliance testing the OMNI 3 75 must be turned on The OMNI 3 75 can operate in one of two modes Bypass mode This mode is used during harmonics test Flicker mode This mode is used during flicker test The mode is controlled by the CTSMXH Software through the MX power source remote control interface from the PC The MX in turn uses the system interface to the back of the OMNI 3 75 to select the requested OMNI mode 3 4 2 Front Panel Controls OMNI On Off p Switch OMNI 3 75 Connect Breaker OMNI 3 37MX OMNI 3 75 Connect Manual Mode Breaker Control The front panel contains the AC power On Off switch the BYPASS or ENGAGE status lights and a manual MODE switch button The mode switch button is normally disabled and the OMNI 3 75 state is controlled through the MX system interface The ON LED indicates the OMNI 3 75 module is powered up Note The OMNI 3 75 must be turned on to operate in either m
117. e File Print menu Test reports include all selected test parameters and options A sample test report is shown below The report format used can be direct output to a printer or generation of an MS Word report The desired report format can be selected from the Options menu under IEC Report Setup MS Word reports are automatically saved in the C Program Files California Instruments Mxgui Reports directory 10 8 Saving and Loading Test Setups Frequently used test setups can be save to disk by using the File Save or File Save As menu entries Setup files for EN 61000 4 17 tests have a 417 file extension To select a previously saved test setup use the File Open menu entry and select the desired file from the file open dialog California Instruments Revision G 106 User Manual MX Series CTSH Compliance Test System 11 EN 61000 4 27p Voltage Unbalance 111 About This Chapter This chapters covers testing a device for compliance with the EN 61000 4 27 Voltage Unbalance in three phase AC power systems test standard This test is supported through the MXGUI AC source control program This test only applies to three phase EUT s as it involves voltage and phase unbalance between three phases of a three phase supply network The EN 61000 4 27 implementation in the MXGUI is based on the EN 61000 4 27 standard dated 2000 08 Test levels and durations can be changed if needed through use of one or more filename 427 files in the IEC_Test direct
118. e forwarded to us by fax or email Fax 858 458 0267 Email repair ppd ametek com CALIFORNIA INSTRUMENTS will prepare an estimate of repair cost and repair the instrument when authorized by the claim agent Please include model number and serial number when referring to the instrument SPARE PARTS To order spare parts user manuals or determine the correct replacement part for your California Instruments products please contact the Customer Service department by phone at 1 800 733 5427 or by email parts ppd ametek com California Instruments Revision H 4 User Manual MX Series CTSH Compliance Test System LIMITATION OF WARRANTY California Instruments believes the information contained in this manual is accurate This document has been carefully reviewed for technical accuracy In the event that technical or typographical errors exist California Instruments reserves the right to make changes to subsequent editions of this document without prior notice to holders of this edition The reader should consult California Instruments if errors are suspected In no event shall California Instruments be liable for any damages arising out of or related to this document or the information contained in it CALIFORNIA INSTRUMENTS PROVIDES NO WARRANTIES EXPRESS OR IMPLIED AND SPECIFICALLY DISCLAIMS ANY WARRANTY OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE OF THIS SOFTWARE AND DOCUMENTATION CALIFORNIA INSTRUMENTS WILL NOT BE LIABLE FOR D
119. e mode is always three phase Start Starts the EN 61000 4 27 test using the parameters set by the user Test progress is shown at the bottom of the window The sequence numbers shown correspond to those in the illustration Stop Aborts test in progress All IEC 61000 4 tests require setting of the rated nominal voltage and frequency of the EUT The nominal values must be entered in the Test Setup Vnom and Fnom data fields before starting a test When the IEC 61000 4 test windows is first opened the present AC source settings are automatically loaded as the nominal values These values are overridden by selecting each data entry field and typing in a new value or by loading a test parameter file from the File Open menu Thus test data file also contain the nominal voltage and frequency values to be used California Instruments Revision G 108 User Manual MX Series CTSH Compliance Test System 11 3 11 4 Equipment Classifications In Annex B of the standard the EUT operating environment classifications are defined based on IEC 61000 2 4 The classifications are as follows Class 1 Applies to protected supplies with compatibility levels lower than public network levels It relates to the use of equipment which is very sensitive to disturbances in the power supply for instance the instrumentation of technological laboratories some automation and protection equipment some computers etc This equipment is normally supplied
120. e used and to implement those IEC tests that run on the AC source specifically the EN 61000 4 immunity tests The AC source output is connected to AC input terminal at the rear of the PACS 3 75 unit The PACS 3 75 AC output rear terminals are used to connect the EUT All user interactions with the CTS system are accomplished through the CTSMXH and MXGUI software There are virtually no front panel controls required to operate the CTS system California Instruments Revision H 12 User Manual MX Series CTSH Compliance Test System 1 2 1 1 2 2 1 2 3 AC Source Models The CTS system is supplied with one of the following MX RS Series programmable AC power sources e MX30 3Pi CTSH e MX45 8Pi CTSH e MX60 3Pi 2 CTSH Two cabinet MX master auxiliary power source e MX90 3Pi 2 CTSH Two cabinet MX master auxiliary power source e RS90 CTSH No other MX RS Series power source models are supported by the CTSMXH Software This user manual generally refers to the power source as a MX45 3Pi model as it is most common Where relevant the other power source system configurations will be covered specifically In general operation of the CTSH system is the same for any of these four configurations Note The CTS systems are rated for a maximum current of 75 amps rms per phase Damage to the standard PACS 3 75 units can occur if higher currents are present Care must be taken to not exceed this rating when using the system directly with the utility l
121. electing each data entry field and typing in a new value or by loading a test file from the File Open menu Thus test data files also contain the nominal Vdc voltage to be used 13 3 Testsequence The test sequence implemented by this test consists of a series of DC voltage dips to less than DC nominal or interruptions dip to zero volt It is also possible to select voltage variations which cause the DC voltage to change at a programmed rate to a specified level and then return at the same or a different rate to the nominal DC level The objective of this test is to evaluate a product for immunity from such dips interruptions and variations These dips and variations can be applied at different levels and durations for different product categories The user must determine the product class and select the appropriate test file The selected levels and durations are visible on screen and can be edited and saved to a new setup file if needed This allows a library of test files for specific product categories to be created The 429 file loaded determines the test levels and DC nominal values used It can also contain information on the EUT and operator The maximum number of steps that can be defined is 100 for both Dips Interruptions and Variations These parameters can be entered on screen by the operator or loaded from disk To load a new test or test class select the File Open menu The default location for IEC test files is C Program Fil
122. ersion 1 schematics Figure 3 7 through Figure 3 9 Note This wiring supports EUT load currents up to 75 Arms For higher power EUT s used with the MX the PACS 3 75 should not be left in the circuit Instead EUT s that require higher currents should be connected directly to either the MX output or the OMNI 3 75 AC Output which are both rated for higher currents than the PACS 3 75 In this case harmonics and flicker testing is not supported California Instruments Revision H 27 User Manual MX Series CTSH Compliance Test System A101 MX45 000000690 SYNC N A102 OMNI 3 75 INPUT AND POWER CONNECTIONS ARE MADE INSIDE prie BEHIND THE REAR COVER INPUT AND OUTPUT POWER COMMELTIONS ARE MADE IMSIDE THE CHASSIS UNEIER THE TOP ATOS 5 3 75 AC OUTPUT POWER Figure 3 1 MX30 3Pi CTSH MX45 3Pi CTSH Wiring Diagram Version 2 INSIDE A102 OMNI 3 75 SEE California Instruments Revision H 28 User Manual MX Series CTSH Compliance Test System ATO 45 ATO x45 C 1 Ce p CER GEE HEH 29 S CER EE p 7003 283 1 ao OUTPUT POWER COMMECTIONS ARE MADE DE THE CABIMET BEHIND THE FRONT SINGLE PHASE OUTPUT 2 WAREE PHASE INPUT 2 INPUT AND QUIPUT POWER
123. es California Instruments Mxgui lEC_Test The following duplicate sets of EN 61000 4 29 test files are distributed with the MXGUI program For PC s using US Windows Settings period as decimal separator use the following files Generic IEC 1000 4 29 Voltage Variations 429 Generic IEC 1000 4 29 Voltage Dips 429 Generic IEC 1000 4 29 Voltage Dips Ints and Vars 429 Generic IEC 1000 4 29 Voltage Dips and Interruptions 429 Generic IEC 1000 4 29 Short Interruptions 429 California Instruments Revision G 119 User Manual MX Series CTSH Compliance Test System For PC s using European Windows Settings comma as decimal separator use the following files Euro Generic IEC 1000 4 29 Voltage Variations 429 Euro Generic IEC 1000 4 29 Voltage Dips 429 Euro Generic IEC 1000 4 29 Voltage Dips Ints and Vars 429 Euro Generic IEC 1000 4 29 Voltage Dips and Interruptions 429 Euro Generic IEC 1000 4 29 Short Interruptions 429 The user may create as many test files as desired using the data entry grid Changes made can be saved using the File Save As menu entry 13 4 Test Options Nominal Voltage Mode The EN 61000 4 29 test standard allows testing at a single nominal Vdc value if the voltage range of the EUT is less than 20 of the low range value Thus if an EUT has a nominal input range from 100 to 110 Vdc the range is 10 V which is only 10 of the low range value 10 100 10 In this case either the upper or lower limit value or
124. essing data in real time to ensure no gap acquisition as required by both the harmonics and flicker test standards NOTE It is recommended to purchase the required PC from Ametek PPS using the CIC PC PCX option This ensures a Suitable PC with the software pre installed and tested will be furnished with the system for turnkey operation This option also includes a monitor and printer If this option is not ordered the PC to be used with the system should be shipped to Ametek PPS prior to delivery for integration and test In this case it is the customer s responsibility to ensure the provided PC meets the performance criteria outlined below The PC requirements will depend to some extend on the following factors The phase mode Three phase systems require more CPU power than single phase systems e type of A D card used A PCI slot is required e The Windows operating system used Windows 2000 and Window XP imposes more overhead on data transfer than Windows 98SE operating systems Windows ME is not supported From time to time a newer version of the MXCTSL software may be released New versions are tested only with contemporary operating systems As such it may be required to upgrade to a newer operating system to support the latest version of the MXCTSL software Presently MXCTSL 1 3 0 0 has been tested only on Windows XP platforms e For report generation a of MS Word is required The MS Word version supported i
125. est level During the test run voltage and phase changes are applied The voltage levels and phase shifts are determined by the values set in the data entry grid The various columns in the test data setup are as follows Number of the test There are three possible tests 1 2 and 3 Output Indicates phase voltage for which level and phase is to be applied For each test number the test will be repeated three time using the following phase rotations ABC BCA CAB Indicates voltage level to change to in of nominal voltage 50 to 150 Phase angle to shift to for each test number and phase in degrees 0 to 360 Ku2 Unbalance factor This value is shown for reference only and is based on the test levels and phase shifts It is not directly used to program the AC source Time s Time in seconds to hold the unbalance condition 0 0 to 9999 These parameters can be entered on screen by the operator or loaded from disk To load a new test or test class select the File menu The default location for IEC test files is California Instruments Revision G 109 User Manual MX Series CTSH Compliance Test System C Program Files California Instruments MXGUI IEC_Test The following four EN 61000 4 27 test files are distributed with the MXGUI program File Name Test Class Class2 427 Class3 427 ClassX 427 X The user may create as many test files as desired using the data entry grid Changes made can be saved using
126. ests the special wave shape template is displayed in the same graph using red The percentage of the EUT current outside the template is shown directly below the graph Harmonics Bottom The Harmonics graph panel can be used to display the current harmonics Graph right panel green and test limits red during the test It is also possible to toggle this display to show the AC voltage harmonics The drop down control located at the top of the Harmonics graph panel can be used to select alternate display modes Legend buttons Graph The Legend buttons can be used to display a pop up window that shows panels the color coding used in each graph California Instruments Revision H 71 User Manual MX Series CTSH Compliance Test System 5 7 1 5 7 2 5 7 3 5 8 5 8 1 5 8 2 Entering User and or Customer Data Prior to running a test you should enter information concerning EUT the person or department performing the test and any other information that may be relevant to interpreting or using the test results obtained from the CTS system Several fields are provided for this purpose along the bottom of the main test window If the test is performed on behalf of a third party the customer data field may be used to document the customer name The information entered in these fields is added to the test data file and any reports that are printed The date and time of the test run are automatically added based on the PC s rea
127. evels can be set in the Test levels Tab but must be equal than or higher than class 3 levels Nominal Settings These values are normally obtained from the AC source s steady state setting when the test window is opened They can be changed before running a test if needed Note however than frequencies other than 50 or 60 Hz are not covered by the test standard Test Step Selection There are four main test categories that may be selected Consult the test standard for details on each step Any combination of these four choices can be made Test Options Prompt for EUT status When checked the program will prompt the operator for a Pass or Fail determination after each test step selected in the Test Step Selection box has been run If this option is turned off all test will be run and this dialog will only appear when all test are completed IEC 725 Reference Impedance If needed the IEC 725 Flicker reference impedance may be used during the EN 61000 4 13 test Voltage THD When checked the test program performs an AC Source voltage distortion pre test and displays the result in the Voltage THD Tab Source Regulation When checked the test program will checked the AC Source output voltage regulation with the EUT connected to ensure the AC source meets the test standard requirements User Data The fields at the bottom of the Tab may be used to enter information on the person or entity performing the test the EUT and any other comments that
128. evice has passed the self test You can run Test Panels to do a further functional check of the CTS hardware and interconnect cable between the A D card and the PACS CTS signal conditioning unit Highlight NI 6250 Dev1 select Test Panels set Channel Name to Dev1 aiO set Mode to continuous set Input Configuration to RSE set Rate Hz to 10000 Make sure the PACS is powered up and the A D card cable is properly attached to both the card and the PACS Of course the power source needs to be operating and must supply an appropriate voltage to the measurement system Set the power source to 230 Volt 50 Hz This voltage is routed to logical channel 0 of the A D card via a differential input amplifier and a 100 1 attenuation factor in the PACS The display should be about 2 30 Volt rms for a 230 Volt 50 Hz input voltage See below picture for detail Test Panels NI PCI 6250 Dev1 Analog Input Digital 1 0 Counter 120 nnel Devi fail 09 10000 Amplitude vs Samples Chart Auto scale chart 7 2 34 2 na 0 ate 2 34 4 1 d 307k 308k Value 3 24 California Instruments Revision H 49 User Manual MX Series CTSH Compliance Test System Ex Technologi After installing the A D card an available PCI slot you must configure the card for operation in the CTS Generally the PCI card will be the only A D card to be used in your PC
129. formation refer to the MX Series User Manual P N 7003 960 DO NOT OPERATE IN A VOLATILE ATMOSPHERE Do not operate the system in the presence of flammable gases or fumes DO NOT TOUCH ENERGIZED CIRCUITS Disconnect power cables before servicing this equipment Even with the power cable disconnected high voltage can still exist on some circuits Discharge these voltages before servicing Only qualified service personnel may remove covers replace components or make adjustments DO NOT SERVICE ALONE Do not remove covers replace components or make adjustments unless another person who can administer first aid is present DO NOT EXCEED INPUT RATINGS Do not exceed the rated input voltage or frequency Additional hazards may be introduced because of component failure or improper operation DO NOT MODIFY INSTRUMENT OR SUBSTITUTE PARTS Do not modify these instruments or substitute parts Additional hazards may be introduced because of component failure or improper operation MOVING THE POWER SOURCE When moving the power source observe the following 1 Remove all AC power to system components 2 Use at least two people and do not attempt to lift the MX power source cabinet to prevent injury Use the rolling casters or a forklift only California Instruments Revision H 2 User Manual MX Series CTSH Compliance Test System CTSMXH Software License Your CTSH Test System was shipped with one copy of the CTSMXH Software This software
130. formation included on the harmonic test report will be a function of the selected test mode and EUT connection stage The following fields provide this information Heading Test category Selected Stage and EUT type Current Test Result Summary Test Result Overall Pass or Fail result I THD pk Current distortion and applicable limit PWHD Partial weighted harmonic current distortion and applicable limit Highest parameters recorded during the test V_RMS EUT Voltage Line to Neutral Peak Maximum peak current recorded Fund Maximum fundamental current recorded 11 Power Maximum power level recorded RMS Maximum RMS current recorded Crest Factor Power Factor Harmonic Currents Table Harmonic number Only harmonics for which limits apply are shown Harms Avg Average harmonics value 1 5 sec smoothing filter applied 10096 Limit Absolute current value of 100 limit for each harmonic of Limit Percent of 100 limit for each harmonic Harms Max Maximum harmonic value recorded during test 15096 Limit Absolute current value of 150 limit for each harmonic of Limit Percent of 150 limit for each harmonic maximum Status Individual harmonics pass or fail result based on 100 and 150 limits Voltage Source Verification Data California Instruments Revision H 74 User Manual MX Series CTSH Compliance Test System 5 10 5 11 5 12 The third page of the report contains data on the sour
131. g 100 buffers the replay can be stopped and reversed up to 100 buffers The recall size ranges from 0 to 1000 buffers Selects the time to wait between display data buffers during replay mode On a fast PC it may be useful to increase this time or the replay will run by too fast to see anything meaningful Available delay times between buffers are 0 0 seconds for the fastest speed to 5 0 seconds for the slowest speed During delay you can click on the pause button to pause This setting determines how many buffers are skipped for display purposes While all data buffers are read from disk only the selected buffer interval set here is displayed in the graphs Available rates range from Every Acquisition to All the way to the End The last setting means the data is read from disk all at once and the last buffer is displayed right away The user can then back up using the VCR style keys in the lower left corner of the screen Table 5 3 IEC Harmonics Replay Settings Revision H 77 User Manual MX Series CTSH Compliance Test System 6 Flicker Testing 6 1 6 2 6 3 About This Chapter This chapter covers testing a device for compliance with the IEC 61000 3 11 Flicker standard The relevant IEC Flicker test part is described in detail Principle of Operation The MXCTSH Flicker software acquires stores processes and analyzes the EUT data in real time and provides continuous display updates on all Flicker parameters Voltage t
132. g the VCR style buttons in the lower left corner A test report can be printed from stored data in this mode The actual date and time the data was recorded will be shown on the report in addition the report print date and time California Instruments Revision H 76 User Manual MX Series CTSH Compliance Test System 5 12 3 Harmonics Replay Options Data replay capability is an important diagnostic feature of the MXCTSH system The end user has a great deal of control over the replay process These user settings are located in the Options menu The following options are available to control the replay process Menu Item Recall Type Recall Size Replay Delay Display Rate California Instruments Description This option offers four choices for playback of data Data is stored in acquisition windows or buffers For Harmonics acquisition windows are either 10 or 12 cycles For Flicker acquisition windows are 1 second each Available recall choices are Every Window Every acquisition window is shown Every failed distorted Only acquisition windows with one or more failures are Window shown Every Failed Source Only acquisition windows with compensated voltage are Window shown Every Failed Current Only Window Amount of acquisition buffers or windows to be loaded from disk to memory during playback The more windows are loaded the further the user can back up in the data stream during playback Thus when selectin
133. h the gold finger edge connectors at the bottom Insert the card carefully in the selected slot making sure the DB68 connector clears the slot in the back of the PC Press down firmly along the top edge of the board to make sure the board is seated properly in the PCI slot connector It may help to rock the board gently or start from one end of the edge connector Install the screw you removed in step 5 and secure the PCI board to the PC slot by its cover plate If you plan to use an IEEE 488 Controller to communicate with the AC Source and have not installed one in the host PC yet now would be a good time to do so Follow the Bus Controller manufacturer s instructions for installation 10 Replace the PC s cover following the directions provided by the PC manufacturer California Instruments Revision H 47 User Manual MX Series CTSH Compliance Test System 3 7 4 Testing the PCI Card MXCTSH must be installed first before performing a A D card testing After MXCTSH is installed the PC must be rebooted The new hardware should be detected automatically at boot by the Windows operating system Follow the on screen prompts to finish installation of the A D card Note When connecting the high density 68 pin connector to the back of the A D card in the PC make sure to align the cable plug with the A D card connector carefully so as not to bent any pin The connector should insert easily If undue force is needed the plug may not be aligned pro
134. he next step when it is updated Each step number will be applied for a different phase rotation in the sequences shown below This means the operator does not have to reconnect the EUT three times using a different phase connected at each test number The phase rotations used are as follows Sequence Ua to L1 Ub to L2 Uc to L3 Ua to L2 Ub to L3 Uc to L1 Ua to L3 Ub to L1 Uc to L2 The test numbers executed are determined by the test selection in the main setup screen Any combination of test number 1 2 and 3 may be selected by placing a check mark in the appropriate box Test Reports The EN 61000 4 27 test module produces a test report when the Print Report button is clicked or the File Print menu is selected Test reports include all selected test parameters and options Note that IEC reports can be generated using one of three alternative methods See the options menu for details The IEC 61000 4 27 report generator supports direct printer output or output to a MS Word document The waveform display that is included in the report is the one that was captured at the last unbalance applied to the EUT California Instruments Revision G 111 User Manual MX Series CTSH Compliance Test System 12 EN 61000 4 28 Frequency Variations 12 1 About This Chapter This chapters covers testing a device for compliance with the EN 61000 4 28 Frequency Variations test standard This test is supported through the MXGUI AC sour
135. higher The following table summarizes the EMC classes and test level relationships Test Level Environment classification Frequency Variation Level X Product class specific Open but must be higher than test level 2 Test Options The voltage regulation of the AC Source can be verified by selecting the Include Source Regulation Check check box This will cause the AC load to measure its output using the built in measurement system at all the frequency extremes that will be applied to the EUT during the test The measured output voltage must be within the source regulation limits specific the EN 61000 4 28 standard If so a PASS indication will be shown in green to the right of the option box If not a FAIL indication will be shown in red If the source regulation check fails check the system connections For higher power loads make sure the external sense lines are used to sense the voltage at the EUT terminals Tests are started using the Start button or the Run All menu California Instruments Revision G 115 User Manual MX Series CTSH Compliance Test System 12 6 Test Results There is no way for the CIGUI to determine the outcome of this test as a clear definition of a failure can not be given The draft standard called out the following possible test results The test results shall be classified on the basis of the operating conditions and functional specifications of the equipment under test as in the following
136. hown in the figure below In this example the following parameters were specified in the data entry grid Unom Test Level 100 8 Level Repeat Delay Repeat 60 1 3 61000 4 14 Voltage Variations Application Unom 110 95 Test Level Unom 100 7 Test Tost OR i i Level Level i i i 1 Unom 90 E RE 1 1 i i 1 i 1 Tm Note Generic amt m i et rh 1 t defaults iTi i T1 t Td Td sp Td Td Repeats 3 T1 5sec Fixed i 60sec Delay 4 7 Level Repeats 3 Level 5 3 Figure 9 2 EN 61000 4 14 Test Sequence Note that the sequence of voltage changes is different if the Unom is at 100 than at any other value At 100 Unom the voltage changes occur in both positive and negative directions alternating If the test level is set to a negative value and Unom is 100 the voltage changes are reversed These parameters can be entered on screen by the operator or loaded from disk To load a new test or test class select the File menu The default location for IEC test files is C Program Files California Instruments MxguMEC Test The following four EN 61000 4 14 test files are distributed with the MXGUI program File Name Test Class Generic IEC 1000 4 14 Test Class 2 414 Fluc Class 2 Generic IEC 1000 4 14 Test Class 3 414 Fluc Class 3 The user may create as
137. i Time for increasing voltage ts Time at reduced voltage Figure 7 3 EN 61000 4 11 Voltage Variation specification Edition 2 0 California Instruments Revision H 88 User Manual MX Series CTSH Compliance Test System 7 5 Test Setup The following parameters and controls are available for executing the EN 61000 4 11 test Standard Revision Select Edition 1 0 or Edition 2 0 as appropriate The edition primarily affects the voltage variation mode data entry method and the timing of the voltage variations as indicated in Figure 7 2 and Figure 7 3 above Nominal Voltage Opening the IEC 61000 4 11 test window will set this parameter to the present steady state frequency setting of the AC source If required a new value can be entered for use during the test At the end of the test the AC source will remain at this frequency Nominal Frequency Opening the IEC 61000 4 11 test window will set this parameter to the present steady state voltage setting of the AC source If required a new value can be entered for use during the test At the end of the test the AC source will remain at this voltage Test Type Available test types are Dips and Variations Phase Mode The phase mode used is shown below the class selection This mode cannot be changed from this window To change phase mode close this window and use the main front panel control window to select the desired phase mode first Run Starts the EN 61000 4 11 test using the parame
138. icker value found so far during the test Each Short Term Flicker severity is evaluated over period of 10 minutes The threshold of irritability is Pst 1 and this value is used as the PASS FAIL limit Displays the highest Long Term Flicker value Plt found so far during the test The period is 120 minutes and is calculated using successive Psti values The threshold of irritability for long term flicker is 0 65 and this value is used as the PASS FAIL limit This field provides a visual indication of the test result A Green field with Pass indicates the EUT passes the Flicker test a Red field with Fail indicates the EUT causes too much flicker Note that the condition of this field is affected by the user selected test margin To use the actual IEC test limits the test margin should be set to 100 96 Displays the Root Mean Square voltage of the AC source output for each acquisition window Acquisition windows are 10 ms for 50 Hz EUT s and 8 ms for 60 Hz EUT s Displays the present Maximum relative voltage change dmax in This represents the difference between the maximum and minimum rms values of the voltage change characteristic relative to the nominal voltage The Revision H 80 User Manual MX Series CTSH Compliance Test System Field Control standard requires that dmax must be less than or equal to 4 for the EUT to PASS dc in 96 Center Displays the present Relative Steady State voltage change de in 96 This pa
139. ide the cabinet To access these connections the rear panel screen of the OMNI 3 75 needs to be removed The recommended wire gauge is 4 Output power from the OMNI 3 75 must be routed to the PACS 3 75 input connector TB4 To access the PACS 3 75 AC input and output connections the rear top cover of the PACS 3 75 must be removed This wiring is generally installed at the factory and should already be in place Wire size used is AWG 6 which is the maximum size supported by the PACS 3 75 connectors Note that the wire fits very tightly in theTB4 connector It may be necessary to twist stranded wires firmly to make the wire fit the connector opening The EUT connections can be made at TB3 AC OUT of the PACS 3 75 The wire size should be AGW 6 also To gain access to power connector TB3 the access panel located on the top rear of the PACS 3 75 unit must be removed Remove the four screws holding the connector access panel in place and remove the panel Once input and output wiring is complete reattach the connector access panel The connection diagram is shown in Figure 3 7 Note that is the PACS 3 75 is installed in the OMNI 3 75 cabinet the wiring between the OMNI 3 75 output and the PACS 3 75 input is inside the cabinet in contrast to what is shown on the drawing Wiring diagrams for other possible systems configurations are shown in Figure 3 3 through Figure 3 6 For older systems with out circuit breakers on the OMNI 3 75 cabinet refer to V
140. ime domain data is collected the rms voltage value is calculated for each half period of the signal or every 10 mseconds and the measurement data is written to disk for 100 consecutive acquisition periods or once every second This allows the operator to monitor the progress of the flicker test and should a failure occur before the end of the test run abort the test if needed Since flicker test can run for several hours this will avoid needless waiting for tests to finish on a EUT that already failed the IEC requirements In order to run the real time Flicker test you need a 1 2 GHz Pentium PC or better This is due to the amount of data that needs to be processed to perform flicker evaluation Slower PC s will not be able to process the data in real time Running a Flicker Test Running a flicker test is similar to running a harmonics test Launch MXCTSH and select flicker test in the set up screen Then select appropriate test parameters and click OK to continue You will be presented with a test screen similar to that of harmonics CTS MXH Test Set up Screen lal xj File Edit View Options Test Help Test Category Frequency Inter Harm C Harmonics EN IEC61000 3 12 50Hz Flicker per EN IEC61000 3 11 60 Hz Cancel Test Parameters gt Restore All imet parameters Additional Setup C dt dmax and Pst Dmax X dc dt and dmax only 4 z 7 InBush
141. ine or with the higher power source configurations PACS 3 75 Unit The Power Analysis and Conditioning System provides the required electrical and mechanical interface between the AC source the user s equipment under test and the data acquisition PC system This allows all signal connections to be made easily and conveniently The PACS 3 75 unit has several AC power input and output connections as well as an interface connector to the PC based data acquisition system PC Based Data Acquisition System updated for new PCI data acquisition All measurements required for IEC testing are performed by the data acquisition system that resides on the user s PC The measurement card needs to be installed in an available slot and the software needs to be installed All signal connections between the PC and the PACS 3 75 unit are made with a single 37 pin to 68 pin a supplied with the system The following data acquisition cards are supported by the CTSMXH software CI400PCI PCI card NI 6032 4E No longer provided on new system shipments but still supported by MXCTSH software revision 1 0 Technologies 2110 PCI A D 250 Ks sec for single phase systems P N 250803 Cl403PCl PCI card Exacq Technologies CM2210 PCI A D card 1 Ms sec for three phase systems P N 250797 401 National Instruments Series 6220 A D 250 Ks sec for single phase systems P
142. iption Every Failed Source Only acquisition windows with high AC source Window distortion are shown Every Failed Current Only Window Amount of acquisition buffers or windows to be loaded from disk to memory during playback The more windows are loaded the further the user can back up in the data stream during playback Thus when selecting 100 buffers the replay can be stopped and reversed up to 100 buffers The recall size ranges from 0 to 1000 buffers Selects the time to wait between display data buffers during replay mode On a fast PC it may be useful to increase this time or the replay will run by too fast to see anything meaningful Available delay times between buffers are 0 0 seconds for the fastest speed to 5 0 seconds for the slowest speed This setting determines how many buffers are skipped for display purposes While all data buffers are read from disk only the selected buffer interval set here is displayed in the graphs Available rates range from Every Acquisition to All the way to the End The last setting means the data is read from disk all at once and the last buffer is displayed right away The user can then back up using the VCR style keys in the lower left corner of the screen Table 6 1 IEC Flicker Replay Settings Revision H 85 User Manual MX Series CTSH Compliance Test System 7 EN 61000 4 11p Voltage Dips and Variations Pre compliance 7 1 About This Chapter This chapters covers testing a
143. itive if the equipment shows its immunity for the duration of the application of the test and at the end of the tests the EUT fulfills the functional requirements established in the technical specification The user has to make this determination by observing the unit under test At the end of a test run the following dialog box is displayed Click on the Help button to display the pass fail criteria shown above California Instruments Revision G 105 User Manual MX Series CTSH Compliance Test System 10 6 User Observations E IEC 61000 4 17 DC Ripple Test OY x File Run Help 5 Test Setup Waveform Display Operator Observations tart Observations This window can be used by the operator to enter any observations made on the EUT The contents of this window will be incorporated in the test report Output User Data Tested by rest department EUT Comment Ready 04 5 2000 1 40PM 2 Figure 10 3 61000 4 17 User Observation Data Entry Window The MXGUI provides a data entry window for the operator Observations made about the EUT can be entered in this window before during and after a test run Any information entered by the operator in this window will be incorporated in the test report when printed 10 7 Report Format 417 Test Files The EN 61000 4 17 test module produces a test report when the Print Report button is clicked Reports can also be printed from th
144. l time clock Selecting the Test Period The test period should be set appropriately for the test mode selected and the EUT at hand For details on setting the correct harmonics test time refer to paragraph 5 4 For flicker tests the default is 10 minutes You can increase the test time up to 24 hours if needed Setting the Test Margin The CTS system offers the user the choice of setting a test margin around the IEC limits This means a user specified factor can be applied to the IEC test limits The default value used is 100 which essentially means the actual IEC limits are applied to determine a pass or fail result This is the mode to use for actual compliance testing Setting this margin to a value below 100 can be useful for pre compliance testing Selecting a lower margin means the test is more stringent If the EUT can pass the more stringent test it is more than likely to pass when submitted to an independent test lab Setting the margin above 100 means you are loosening the limits allowing EUT s to pass that would normally fail This mode is not recommended Running the Harmonics Test Before starting a test make sure all user fields are set correctly Changes to these fields are no longer possible once a test is in progress Also make sure the EUT is connected to the AC output of the PACS 3 75 unit and the correct AC line voltage is programmed on the AC source A test run is started by clicking on the Start button
145. lass Environment Applies to protected supplies with compatibility levels lower than public network levels It relates to the use of equipment which is very sensitive to disturbances in the power supply for instance the instrumentation of technological laboratories some automation and protection equipment some computers etc This equipment is normally supplied by protected supplies such as uninterruptible power supplies filers or surge suppressors Class 2 Applies to points of common coupling PCCs for consumer systems and in plant points of common coupling IPCs in the industrial environment in general The compatibility levels in this class are identical to those of public networks Class 3 Applies only to IPCs in industrial environments It has higher compatibility levels than those of class 2 for some disturbance phenomena This class should be considered when any of the following conditions are met a major part of the load is fed through converters welding machines are present large motors are frequently started loads vary rapidly Testing is not recommended for Class 1 equipment Test level X specifications are to be agreed upon by the manufacturer and user Test Levels 2 3 and 4 defined in the standard are applied to environmental Class 2 and 3 equipment Test Level 3 is defined for interconnected networks and Level 4 for non interconnected networks islands for example where the frequency variations can be much
146. lat top curve and Over swing curve definitions Sweep frequency ranges and test levels AC Source voltage distortion monitor display AC Source measured output waveform display Resonance Points EUT current as a function of frequency and resonance point summary The buttons on the left hand side of the window may be used to start and stop a test run and print a test report Test parameters for Class X EUT s may be stored on and loaded from disk This can be done using the File Save and File Open menus The results of a frequency sweep may be saved to disk for later recall as well Data files have a dat extension to distinguish them from a test setup file 413 extension The Load and Save Data entries in the File menu are used for this purpose California Instruments Revision H 92 User Manual MX Series CTSH Compliance Test System 8 3 Test Setup The Test Setup Tab contains several controls that allow the user to configure the EN 61000 4 13 test to be run on the EUT The various settings are as follows Parameter Description Phase mode The available phase mode is shown in the top right corner and cannot be changed For single phase systems phase A is always used as it is the only phase For three phase systems all stimuli are applied to all three phases EUT EMC Class The test standard distinguishes between four classes of EUT class 1 through 3 and a user defined class X The user must select class 1 2 3 or X Class X l
147. le lengths as short as possible Note that the OMNI 3 75 test impedance for the CTS system is matched to the California Instruments MX RS power source output impedance Do not use third party reference impedance networks with the CTS system as the combined AC source and network impedance may not match the IEC 61000 3 1 1 requirement California Instruments Revision H 20 User Manual MX Series CTSH Compliance Test System 2 5 2 2 6 2 6 1 When to Test for IEC 61000 3 11 As mentioned it may not be necessary to test every product for IEC 61000 3 11 If the maximum RMS current per phase of the EUT is less than 16 Arms per phase the IEC 61000 3 3 test should be used Requires optional CTSMXL Software CIC652 For loads having an rms current draw of more than 16 Amps per phase it is generally recommended to verify conformance to IEC 61000 3 11 however unless the EUT passes under IEC 61000 3 3 EN 61000 4 11p Voltage Dips and Variations The EN 61000 4 11 is an immunity test for low voltage equipment to ensure reliable operation when connected to the public distribution system This test requires an AC source that is capable of generating specific voltage variations and voltage dips The unit under test must not sustain any damage from such occurrences nor cause unsafe conditions Table 2 6 Average public utility disturbances per annum in Europe DEPTH DURATION 2 DURATON nominal Ut ms ES
148. ly to the relevant chapter for the test you want to run and use this chapter only as a reference Main Menus Many of the CTS system capabilities are accessible through the menus located at the top of the main window These menus are organized in the following groupings Click on any menu to view the sub menu items MENU DESCRIPTION File Open close and save test setups and data files Also allows printing of test reports Edit Used to cut and paste graphs to other Windows programs or edit the report header text View Allows test setups or a list of all tests performed with the system to be displayed A link to the California Instruments web site is provided on this menu as well Options Several run time and replay settings can be controlled from this menu Test Starts a new test allows replay of a previously recorded test or display harmonics information of the most recent test Help On line help and Program information Note When a test is in progress the menus are not available until after the test is completed This prevents the test from being suspended while the user pulls down a menu which is an unavoidable Windows issues File Menu The File menu offers the following sub menu choices 2 data and brings up the test setup screen to start new harmonics or flicker test Open Data File Opens a previously recorded data file from disk The data file can be either created on this computer or created on anothe
149. many test files as desired using the data entry grid Changes made can be saved using the File Save As menu entry California Instruments Revision H 10 User Manual 9 4 Test Levels MX Series CTSH Compliance Test System In Annex B of the draft standard the EUT operating environment classifications are defined based on IEC 61000 2 4 The classifications are as follows Class Environment Applies to protected supplies with compatibility levels lower than public network levels It relates to the use of equipment which is very sensitive to disturbances in the power supply for instance the instrumentation of technological laboratories some automation and protection equipment some computers etc This equipment is normally supplied by protected supplies such as uninterruptible power supplies filers or surge suppressors Applies to points of common coupling PCCs for consumer systems and in plant points of common coupling IPCs in the industrial environment in general The compatibility levels in this class are identical to those of public networks Applies only to IPCs in industrial environments It has higher compatibility levels than those of class 2 for some disturbance phenomena This class should be considered when any of the following conditions are met a major part of the load is fed through converters welding machines are present large motors are frequently started loads vary rapidly Test levels are
150. may be relevant This information will be incorporated in the test report User selected EUT Class test steps options and nominal values are all included on the EN 61000 4 13 test reports 8 4 Test Sequence The EN 61000 4 13 standard specifies the test flow diagrams shown in the next two pages per EUT test class 1 2 or 3 The operator is responsible for following the correct flow diagram California Instruments Revision H 93 User Manual MX Series CTSH Compliance Test System cee Start Class 1 2 arpropriate test rnnfig iratinr Perform 2 1 Test Harrronic combination latcuve and Overswing UM Yes Meister Any furctional 226 uM pc anomalles raquired Lrve required Yes 4 Parform 8 2 2 Test Perorm 8 2 4 Test Frequency Sweep Meister Curve Any functional Ary functional anomalle s anoma les pu ud No 5 Yes Perorm 8 2 3 Test Individual Harmonics Interharmonic Yes Any fu lena Na gt anomalies a Test Completed FAIL 3ecordFR esu ts Test Corr pleted PASS RecordResults Figure 8 2 EN 61000 4 13 Flow Chart Class 1 and 2 EUT s California Instruments Revision H 94 User Manual MX Series CTSH Compliance Test System M a Start Class 3 f Determine appropriate 88 lt cantiguration Perform 8 2 1 Test Harmonic c
151. minutes to complete At the end the program will inform the operator of the result and match this against the AC source s capability See paragraph 0 7 7 Test Results There is way for the MXGUI to determine the outcome of this test as a clear definition of a failure can not be given The draft standard called out the following possible test results The test results shall be classified on the basis of the operating conditions and functional specifications of the equipment under test as in the following unless different specifications are given by product committees or product specifications a Normal performance within the specification limits b Temporary degradation or loss of function or performance which is self recoverable c Temporary degradation or loss of function or performance which requires operator intervention or system reset d Degradation or loss of function which is not recoverable due to damage of equipment components or software or loss of data As a general rule the test result is positive if the equipment shows its immunity for the duration of the application of the test and at the end of the tests the EUT fulfills the functional requirements established in the technical specification The user has to make this determination by observing the unit under test 7 8 Report Format 411 Test Files The EN 61000 4 11 test module produces a test report when the Print Report button is clicked Repor
152. monics Test Data Files 1 72 bz Three Phase Ea EEEE A 72 5 12 Replay EE 72 6 Flicker 75 63 About This Chapter cred tea ree nete RR Ee 75 6 2 Principle of Operation eie E EUH 75 6 3 Running a Flicker Test cio dcn e n Dear aii 75 6 4 Test 80 6 5 Flicker Replay oeste ete Lite ND Rx guid dh ehe tap ce Cua Rota ga are 80 California Instruments Revision H 6 User Manual MX Series CTSH Compliance Test System 7 EN 61000 4 11p Voltage Dips and Variations 83 TA AboutThis Ohapler 2 ipu 83 7 2 Standard Revisions and EUT 83 723 SCompliance Statement erre HE CERERI Re eR 84 7 4 Specifying test sequences for Dips and Variations eene 85 725 Test SoetUps iui seo ete pto Cute ipee iue deberem 86 746 s ed le pee dee he edna 87 7 7 TesthRes lts e fter nee D e do d Edge 87 7 9 Report Format 411 Test Files eee mee deni be dra 87 8
153. mple with 4 0A rms applied at 4 then there should be 1 984V rms at TP6 5 Connect the other DMM lead to TP8 This is the phase B current sense output 6 Apply a 4A test current to the PACS 3 75 input terminals TB4 Use Neutral and ph B 7 The reading at TP8 should be 496mV Amp of input current For example with 4 0A rms applied at TB4 then there should be 1 984V rms at TP8 8 Connect the other DMM lead to TP10 This is the phase C current sense output 9 Apply a 4A test current to the PACS 3 75 input terminals TB4 Use Neutral and ph C 10 The reading at TP10 should be 496mV Amp of input current For example with 4 0A rms applied at 4 then there should be 1 984V rms at TP10 11 If these sense voltages are not obtained then the board is malfunctioning and it must be serviced California Instruments Revision G 146 User Manual MX Series CTSH Compliance Test System Index AD cad sve eee ORE ML 135 test 8 4 4 000004944 101 test 98 abbreviations 19 97 70 22 103 SOUE nnd sine ie 13 testresu lls 4 4 eee cedere ter 105 control program 14 test sequence 104 ACOUSTIC see Ete 129 131 test 104 acquisition system 2 13 EN61000 4 27 esee oes 22
154. n the left side of the main harmonics screen applies to successive acquisition buffers Acquisition buffers are 320 ms for 50 Hz EUT s and 266 67 ms for 60 Hz EUT s if the 16 Cycle window size is selected If the 10 12 cycle window size is selected the buffer size is 200 msec Frequency Hz Left panel Displays the AC signal frequency in Hz If the frequency is not 50 or 60 HZ F will appear in the field of VTHD and Source Qual The test will continue however but the results may not be valid Voltage RMS Left panel Displays the Root Mean Square voltage of the AC source output for each acquisition buffer Current RMS Left panel Displays the Root Mean Square current to the EUT for each acquisition window peak Left panel Displays the peak current value of the EUT current If the EUT produces no harmonic currents the peak current is V2 times the RMS current Fund Left panel Displays the value of the fundamental current of the EUT for each acquisition window The fundamental current is the current at 50 Hz or 60 Hz only without any contributions from higher order harmonic currents If the EUT produces no harmonic currents the fundamental current will be the same as the rms current Crest Factor Left panel Displays the crest factor of the EUT current Crest factor is the ratio between the peak current and the RMS current VA Power Left panel Displays the apparent power consumption of the EUT for each acquisition window Powe
155. nals are used and therefore AWG 6 is recommended The wire gauge for the wiring between the MX30 or MX45 and OMNI 3 75 input should be AWG 4 and is supplied with the MXCTS system For MX60 or MX90 CTS systems sets of AWG4 wires of equal length must be run from both cabinets and tied together at the OMNI 3 75 AC input terminal block The PACS 3 75 is rated for 75 A max and as such requires the use of at least AWG 6 wire gauge or larger diameter to connect to the EUT Caution It is important to keep the distance between the PACS 3 75 output and the EUT as short as possible to avoid adding additional wiring impedance to the test setup This is particularly important for flicker test measurements as the wire impedance will affect the level of any voltage fluctuations caused by the EUT Try to limit any output wiring to no more than 5 feet 1 5 meters or use larger diameter wire as the distance to the EUT increases Refer to Figure 3 10 N Caution Be sure to replace the small rear top cover on the PACS 3 75 unit after the wiring has been installed otherwise insufficient cooling of internal components may result Refer to Figure 3 11 California Instruments Revision H 40 User Manual MX Series CTSH Compliance Test System 3 5 3 3 5 4 AC Source or OMNI Load Connection PACS 3 Rear Panel View AC OUT baa Keep Wire Length short lt 5 ft Use proper wire gauge Equipment Under
156. ncy Level of first range at 396 Swefreq2 lev 10 Sweep Frequency Level of second range at 1096 Swefreq3 lev 5 Sweep Frequency Level of third range at 596 Swefreg4 lev 5 Sweep Frequency Level of fourth range at 596 Swefreq5 lev 2 Sweep Frequency Level of fifth range at 2 Swefreq dwe 300 Sweep Frequency Dwell time in seconds Swefreg1 stp 5 Sweep Frequency Step size of first range in Hz Swefreq2 stp 10 Sweep Frequency Step size of second range in Hz Swefreq3 stp 10 Sweep Frequency Step size of third range in Hz Swefreg4 stp 10 Sweep Frequency Step size of fourth range in Hz Swefreq5 stp 25 Sweep Frequency Step size of fifth range in Hz Parameters that apply only to Individual Harmonics Indharm2 lev 3 Individual harmonics Level for nth second harmonic in Indharm2 phs 0 Individual harmonics Phase for nth second harmonic in degree Indharm dwe 5 Individual harmonics Dwell time in second Indharm pau 5 Individual harmonics Pause in second Parameters that apply only to Interharmonics Meisterfreqx lev 4 Harmonic level for meister curve where x 1 through 5 Meisterfregx stp 4 Frequency step size for meister curve where x 1 through 5 Meisterfreqx dwe 4 Meister curve harmonics Dwell time in second Meisterfregx pau 4 Meister curve harmonics Pause in second Meisterfreqx lev 4 Harmonic level for meister curve where x 1 through 5 Parameters that apply only to Interharmonics Interharm1 lev 2 5 Interharmonics Level for first range a
157. ncy are performed Test levels and test times are displayed in the test parameter data entry grid The various columns in the test data setup are shown in the figure below In this example the following parameters were specified in the data entry grid Ty Repeat 3 4 4 Fnom 50 Hz secs gt lt q gt Ttrans lt gt Hold Time Level ee sec 120 secs eve 15 Repeat 2 60 secs Figure 12 2 EN 61000 4 28 Test Sequence These parameters can be entered on screen by the operator or loaded from disk To load a new test or test class select the File menu The default location for IEC test files is C Program Files California Instruments Mxgui lEC_ Test The following four EN 61000 4 28 test files are distributed with the MXGUI program File Name Test Class Generic IEC 1000 4 28 Freq Vars Test Level 2 428 Vars Level 2 Generic IEC 1000 4 28 Freq Vars Test Level 3 428 Vars Level 3 Generic IEC 1000 4 28 Freq Vars Test Level 4 428 Vars Level 4 The user may create as many test files as desired using the data entry grid Changes made can be saved using the File Save As menu entry California Instruments Revision G 114 User Manual MX Series CTSH Compliance Test System 12 4 12 5 Test Levels In Annex B of the draft standard the EUT operating environment classifications are defined based on IEC 61000 2 4 The classifications are as follows C
158. nel represents the difference between two adjacent steady state voltages relative to the nominal voltage The standard requires that d must be less than or equal to 3 for the EUT to PASS Center Displays the present Long Term Flicker value for Pst period number n The panel Plt period is 120 minutes and is calculated using successive Psti values The threshold of irritability for long term flicker is 0 65 and this value is used as the PASS FAIL limit Instant Pst Center Displays the instantaneous Short Term Flicker value At the end of each 10 panel minute period this value will be the Pst for the period Psti Center Displays the present Short Term Flicker value for period n The Short Term panel Flicker severity is evaluated over a period of 10 minutes The threshold of irritability is Pst 2 1 and this value is used as the PASS FAIL limit Select Test Test This combo box allows one of three test modes to be selected selection e Test all Flicker parameters e Test de and dt only e Test Pst only Test Margin This field allows the user to set the test margin from 50 to 150 Additional information on setting a test margin is shown later in this chapter Graph Display Graph The graph panel is used to display either dc and d or Ut rms as a function panel of time The user can change display modes using the Graph mode drop down box located directly above the graph itself Graph mode Display The Flicker module allows the user to t
159. neutral A user defined value may be entered by selecting the Other option This setting is used to program the AC power source output voltage If no AC source is available or the AC source control setting in the advanced setup screen has not been selected the operator is responsible for ensuring the correct line voltage is applied to the EUT Load Selects single or three phase mode Note that a WYE connection must be made between the MX and the PACS 3 75 even if the three phase load is a delta load Test Limit The MXCTSH retains a database of harmonic current test limits This setting selects the limit set to use Available options are European and Japanese For normal IEC testing the European option should be selected Cycles per This option may be used to change the measurement window between 16 and 10 or 12 window periods The present standard requires the use of a 16 period acquisition window Future standards are in place for this to be 10 periods at 50 Hz and 12 periods at 60 Hz for a 200 msec at either line frequency To meet the existing IEC 61000 3 12 standard the 16 period acquisition window should be selected EUT This field may be used to enter information about the equipment under test This field is used to hold a default value Tested by This field may be used to enter operator information This field is used to hold a default value Comment Comment field for general use This field is used to hold a default value C
160. ng this test hazardous voltages will be present on the AC input and output connections during this test Refer to Figure 3 7 for detailed installation diagrams 1 Connect a current transformer to the neutral wire going into the AC input port at TB4 on the rear of the PACS 3 75 unit Connect the CT output to a DMM to read the actual input current 2 Connect a DMM to the line and neutral connections at TB4 inside the rear panel 3 Connect a 10 Q load to the rear panel AC outlet port at TB3 phase A to Neutral 4 Enable the AC power input to the PACS 3 75 unit whether from the line or from a power source Apply 120Volts AC at 60Hz 5 Start the CTSMXH Software in harmonics mode and measure the load current and voltage from the MXCTSH GUI Verify the GUI readings and the external DMM readings for current and voltage are within 196 of each other 6 Turn off AC source output and repeat steps 2 through 5 for phases B and C suitable three phase load is available all three phases can be checked at once In the unlikely event the system does not pass the functional test refer to the calibration procedure in section 17 or refer to the service procedure in Section 19 If the problem cannot be resolved call California Instruments customer satisfaction department for further assistance California Instruments Revision H 45 User Manual MX Series CTSH Compliance Test System 3 7 Data Acquisition Card Installation PCI Card Version
161. nges from 50 to 150 Note that the limit lines in the Graph always display the 100 IEC limits The test margin is only used for Pass or Fail determination Test Duration Bottom The test duration is the total test time selected by the user This value can be set from 0 to 1440 minutes 24 hours This value should be set before starting the test as it cannot be changed while a test is in progress If the duration is 0 minutes then only one window will be acquired EUT Bottom This field can be used to enter information about the unit under test The EUT field contents will be included in the test data file and in any reports that are printed Comments Bottom This field can be used to enter any information about the test The Comments field contents will be included in the test data file and in any reports that are printed Tested by Bottom This field can be used to enter information about the operator The Tested by field contents will be included in the test data file and in any reports that are printed Customer This field can be used to enter information on a customer if you are running tests for a third party The Customer field contents will be included in the test data file and in any reports that are printed Voltage and Top right This graph displays the AC voltage and current waveforms At all times Current Graph panel two periods of the AC signal are displayed The voltage is shown in yellow the current in green For Class D t
162. ode Max Current 275 0 Impedance 50 Hz in Flicker Mode Phase 0 15 0 150 0 10 0 100 lt 5 Controls and Indicators erin Bmessmodeled California Instruments Revision G 130 User Manual MX Series CTSH Compliance Test System Line Input Line Voltage 115 10 230 Vact10 Line Current 200 mA 115 Vac 60 Hz 110 mA 230 Vac 50 Hz Line Frequency 47 63 Hz Fuse Rating 0 25 A slow acting 115 Vac 0 125 A slow acting 230 Vac Mechanical SSS menses 15 8 OMNI 3 75 Environmental Parameter Specification Operating Temp 0 degrees to 40 degrees Celsius Protection OMNI will dis engage if internal heat sink temperature exceeds 95 C Re engages once temperatures declines below threshold Storage Temp 0 degrees to 70 degrees Celsius Humidity Creepage and Clearance Operating Storage 9096 RH up to 40 C 9096 RH up to 40 C lt 75 RH up to 70 C Rated for Pollution Degree 2 Insulation Vibration Shock Rated to Installation Category Over voltage Category I Designed to meet NSTA 1A transportation levels Designed to meet NSTA 14A transportation levels 15 9 OMNI 3 75 Regulatory Parameter Specification Electromagnetic Emissions and Immunity Designed to meet EN50081 1 and EN50082 1 European Emissions and Immunity st
163. ode In the powered off state power connections between the MX and the PACS 3 75 are disconnected open The front panel power switch is located on the left hand bottom side of the OMNI 3 75 cabinet front There is a built in delay for engaging or disengaging the contactors when turning the OMNI 3 75 on and off California Instruments Revision H 26 User Manual MX Series CTSH Compliance Test System 3 4 3 3 4 4 OMNI 3 75 Hardware Versions Note that original versions of the OMNI 3 75 version 1 did not have front panel circuit breakers that enable disconnection of the OMNI output to the PACS input Later versions of the OMNI 3 75 version 2 do have either one or two front panel breakers These breakers replace the need to manually connect and disconnect one of the other OMNI in MXCTSHL systems that contain both an OMNI 3 75 and an OMNI 3 37MX Note The MXCTSHL systems have both OMNI s OMNI 3 75 and OMNI 3 37MX Only one of the two circuit breakers should be turned on connected at one time If both are on the two OMNI s will be in parallel and the correct reference impedance will not be present Thus always connect close only one of the two circuit breakers on the OMNI 3 75 cabinet at a time The circuit breakers provide additional protection against over current for each of the relevant OMNI circuits and PACS Wiring Power from the MX three phase output connector should be routed to the OMNI AC Input terminal block ins
164. of its low range value a single Vdc level may be used If the user selects only one of the two DC levels and the delta between them exceeds 20 of the low DC range a warning message will appear notifying the user of this condition As a rule both voltage must be selected for testing when this prompt appears Sequence Select Available sequences for selection are Voltage Dips and Interruptions California Instruments Revision G 118 User Manual MX Series CTSH Compliance Test System Field Control Description Voltage Variations Either one or both sequences can be selected for execution Output Select The output selection is shown to the left If a 3 phase AC DC power source model is used this field allows selection of output channel A B C or all three channels outputs The same test sequence is applied to all selected outputs For single phase power systems this field defaults to channel A Start Starts the EN 61000 4 29 test using the parameters set by the user Test progress is shown at the bottom of the window Abort Aborts test in progress 13 2 Setting nominal values The EN 61000 4 29 test requires setting of the rated nominal DC voltage of the EUT The nominal values must be entered in the Test Setup Nom Vdc data field before starting a test When the EN 61000 4 test windows is first opened the present DC voltage setting is automatically loaded as the nominal Vdc value This value is overridden by s
165. of the screen Calibration Info Displays a summary window of the Card serial number PACS 3 75 serial number frequency calibration and last calibration date Options Menu The Options menu offers the following sub menu choices Get new reference for For Harmonics tests with a limit set that is a function of the power level each test current of the EUT a new reference can be established for each test run Alternatively the last used reference can be preserved for subsequent test This menu entry toggle between these two available modes Generate ASCII Files at When selected this option causes tab delimited ASCII files to be generated at the end of test the end of the test from the binary data files recorded during the test run ASCII files take up more space but can be opened using other application programs All the ASCII files will be in the sub directory ASCII files Please note that even if this item is not selected conversion from a binary test file to ASCII files can also be accomplished using the ASCII converter program Convert data to ASCII supplied as part of the CTSMXH program suite Show Banner at the end When selected this option causes a large banner Green when PASS Red of test when FAIL to appear on the screen of the PC This banner can be seen from across the room to notify a lab operator that the test run has been completed Recall Type Valid for data replay only This option offers four choices f
166. oggle between two display modes mode One mode shows the dc and dt as a function of time The other mode Print panel shows the Ut rms value as a function of time Each mode shows a time windows of about 2 seconds and is updated once every 2 seconds Test File Bottom This fields shows the currently selected test data file It also provides a File panel button which can be used to change the selected test data file The test data file is the file to which new data will be written while a test is running Once a test is started this button in disabled as the test data file cannot be changed while it is in use by the program Note that the actual file name may be too long to fit in the space provided on screen If this is the case use the File button to display the file dialog box which will allow you to see the entire path and file name Test Duration Bottom The test duration is the total test time selected by the user This value can panel be set from 0 5 minutes 30 seconds to 1440 minutes 24 hours Note that a Pst and or All parameter test requires a test time of at least 10 minutes The default test time is set to 10 minutes T Bottom This field can be used to enter information about the unit under test The panel EUT field contents will be included in the test data file and in any reports that are printed Comments Bottom This field can be used to enter any information about the test The panel Comments field contents will be inclu
167. oltage The MX RS Series AC source also offers over current protection to avoid damaging a load that exhibits a failure The MX RS power source is a three phase unit The following power source configurations are currently supported on MX CTSH systems e MX30 3Pi CTSH e MX45 3Pi CTSH e MX60 3Pi 2 CTSH Two cabinet MX master auxiliary power source e MX90 3Pi 2 CTSH Two cabinet MX master auxiliary power source e RS90 CTSH This user manual generally refers to the power source as a MX45 3Pi model as it is most common Where relevant the other power source system configurations will be covered specifically In general operation of the CTSH system is the same for any of these four configurations Power Analysis and Conditioning System unit The PACS 3 75 unit creates the electrical and mechanical interface between the AC source the Equipment Under Test EUT and the PC based data acquisition system It provides the necessary signal conditioning and isolation for the acquisition system PC Based data acquisition system The data acquisition system uses a fast Analog to Digital conversion card that plugs into an available card slot in the user s PC The CTSMXH Software controls all aspects of the A D card and processes the data for IEC test purposes CTSMXH Software The CTSMXH Software implements the harmonics and flicker IEC tests In addition to the CTSMXH Software the California Instruments MXGUI program is used to control the AC and DC sourc
168. ombinatio Flatcurve and Overswin1g Yas C Any functional gt Perform 8 2 2 anomalies Frequency weep ee anomalies lt functional gt aromalies Perforn 8 24 Tes Perom 8 2 3 es W eister C 1rva Ir dividual Harmaniz ge lt fanction al s anomalies A Perfarm 8 2 3 Test Only table 1 Odd multiple of 3 harmonics Test Comp eted California Instruments Any functional FAIL Record Resulis IN aromalies 7 Record 3031 wa we Td Test Comp eted PASS Figure 8 3 EN 61000 4 13 Flow Chart Class 3 EUT Revision H 95 User Manual MX Series CTSH Compliance Test System 8 4 1 The EN 61000 4 13 test suite consists of four types of tests Flat top Curve Simulates specific waveform at the nominal voltage and frequency Over Swing Curve Simulates specific waveform at the nominal voltage and frequency Frequency Sweep Simulates frequency swept or stepped at a rate no less than 5 minutes per decade Individual harmonics amp Simulates sinusoidal voltage superimposed on the fundamental voltage for 5 Inter harmonics second at each frequency in a range from 2X to 40X fundamental Meister Curve Special frequency sweep test to be used in countries where mains signaling and or ripple control is applied The user must select the de
169. or playback of data Data is stored in acquisition windows or buffers For Harmonics acquisition windows are either 10 or 12 cycles For Flicker acquisition windows are 1 second Available recall choices are Every Window Every acquisition window is shown Every Only acquisition windows with current failure or failed distorted distorted source are shown Window Every Failed Source Only acquisition windows with high AC source Window distortion are shown California Instruments Revision H 61 User Manual MX Series CTSH Compliance Test System Every Failed Current Only acquisition windows with current failure are Window shown Recall Size Amount of acquisition buffers or windows to be loaded from disk to memory during playback The more windows are loaded the further the user can back up in the data stream during playback Thus when selecting 100 buffers the replay can be stopped and reversed up to 100 buffers The recall size ranges from 0 to 1000 buffers Replay Delay Selects the time to wait between display data buffers during replay mode On a fast PC it may be useful to increase this time or the replay will run by too fast to see anything meaningful Available delay times between buffers are 0 0 seconds for the fastest speed to 5 0 seconds for the slowest speed Display Rate This setting determines how many buffers are skipped for display purposes While all data buffers are read from disk only the selected buffer interval
170. orary degradation or loss of function or performance which is self recoverable c Temporary degradation or loss of function or performance which requires operator intervention or system reset d Degradation or loss of function which is not recoverable due to damage of equipment components or software or loss of data California Instruments Revision G 120 User Manual MX Series CTSH Compliance Test System As a general rule the test result is positive if the equipment shows its immunity for the duration of the application of the test and at the end of the tests the EUT fulfills the functional requirements established in the technical specification The user has to make this determination by observing the unit under test At the end of the test the GUI will pop up a dialog box asking the operator to assess the state of the EUT If the EUT is still functional the operator may answer Yes when prompted If not he should answer no The response to this query is incorporated as a PASS or FAIL result in the test report IEC 61000 4 29 Is the equipment under test still Functional 13 7 61000 4 29 Test Reports At the end of a test run the operator can generate a test report by clicking on the Print report button 61000 4 29 test reports include all test setup information and test results User provided information at the bottom of the 4 29 screen is included as well The report format
171. ory E 61000 4 27 Voltange and Phase Unbalance Immunity Precompliance Test File Run Help T Test Setup Test Levels Waveform Display Operator Observations Stor 0 000 o Print Report F Output OH a G User Data Tested by Test department EUT Temp 25 95 Comment Generic IEC61000 4 27 Test sequence for Test Site Press sequence aborted by user 10 03 2001 5 59 Figure 11 1 EN 61000 4 27 Test Window California Instruments Revision G 107 User Manual MX Series CTSH Compliance Test System 11 2 Test Setup The required IEC 61000 4 27 test parameters must be entered in the test data entry grid before running a test Previously stored test files can be loaded from the File Open menu Test files use a 427 file extension and only files with this extension can be loaded The MXGUI is distributed with a pre defined test parameter files for the generic IEC 61000 4 27 product classes 2 and 3 Additional test parameter files e g for test level x can be created by the user by editing the data entry grid and saving the new data under a user specified name The following parameters and controls are available for executing the IEC 61000 4 27 test Field Control Description Nominal voltage Opening this window will set this parameter to the present steady state voltage setting of the AC source If required a new value can
172. perly or one or more pins may be bent Check the plug and connector carefully before installing the supplied cable between the PACS 3 75 and the PC E Series DAQ Board Once the PCI A D card is installed and the PC has been re booted you should see a Measurement and Automation icon on the desktop Double click on it and expand the Devices and Interfaces tree you will now see the PCI card you installed as shown in the screen below EX Exploring 6034 Device 1 Go Favorites Took Help Back Up Properties Delete Test Panel Address aai PCI 6034E Device 1 Folders x Type Value Description 7 Desktop 2 Device Number Atribute 1 The NI DAQ device number 19 8 My Computer Number Atribute OxBBDASB The serial number of the device H E My Documents E e Intemet Explorer 19 55 Network Neighborhood A Measurement amp Automation Data Neighborhood 5 Devices and Interfaces mi 1 6034 Device 1 H Scales i Recycle Bin M Series DAQ Board Launch Measurement and Automation select NI DAQmx Devices 6250 Dev1 ee ee ae re Gea 9 De Basics a Select Self Test and you should get the pop up message below California Instruments Revision H 48 User Manual MX Series CTSH Compliance Test System Success The d
173. port Printing a test report in MS Word MS Word must be installed on the PC used Terminates and exits the CTSMXH program 4 4 Edit Menu The Edit menu offers the following sub menu choices Copy Top Graph Copies a bitmap image of the top graph displayed to the Windows Clipboard From there it can be pasted into other Windows programs Copy Bottom Graph Copies a bitmap image of the bottom graph displayed to the Windows Clipboard From there it can be pasted into other Windows programs Edit Header The Header is printed at the top of each report page This sub menu brings up a dialog box that allows the header to be edited For testing on behalf of a third party this feature allows the test lab name to be printed on each report page California Instruments Revision H 60 User Manual MX Series CTSH Compliance Test System 4 5 4 6 View Menu The View menu offers the following sub menu choices Test Setup Brings up a overview of all selected test setting for the current test This is a display window only and no fields can be changed in this mode To change setup option close the active test window and select Perform a new Test from the Test menu Test List Brings up a display grid showing all tests ran to date on the test system PC For each test a time stamp test type and pass fail result is shown Any test for which data was recorded can be played back by selecting it and clicking on the replay button at the bottom
174. quirements for repeatability Short cycles Tcycle lt 2 5 gt 10 cycles reference method Tobs of sufficient duration or synchronization to meet the requirements for repeatability Synchronization means that the total observation period is sufficiently close to including an exact integral number of equipment cycles such that the requirements for repeatability are met Random Toss Of sufficient duration to meet the requirements for repeatability Long cyclic Tcycle 2 5 min Full equipment program cycle reference method or a representative 2 5 min period considered by the manufacturer as the operating period with the highest total harmonic content You can increase the test time up to 24 hours if needed The test period needs to be set long enough to cover the entire operating cycle of the unit under test This is particularly important for the transitory harmonics tests Avoid setting the test time longer than necessary as it only decreases your test throughput California Instruments Revision H 19 User Manual MX Series CTSH Compliance Test System 2 5 2 5 1 IEC 61000 3 11 Flicker Flicker standards are imposed to limit voltage variations caused by loads connected to the low voltage supply network that would cause lights connected to the same circuit to flicker A complex measurement approach outlined in IEC 868 was devised to correlate voltage fluctuations to a human perceptibility factor P The IEC 61
175. r Watts Left panel Displays the real power consumption of the EUT for each acquisition window Power Factor Left panel Displays the ratio between real power and VA power of the EUT for each acquisition window Window Result Left panel Indicates if the present acquisition buffer current harmonics exceed the selected EUT current limits If one or more acquisition buffers report a failure the overall test result will fail This field will typically toggle between good and fail during the test run VTHD Left panel Provides information on the AC voltage distortion If the source voltage is affected by the EUT harmonics currents distortion compensation will be used and indicated in this field Test Number Bottom Left Each test run is assigned a sequential test number The number for the current test is displayed in this field This allows individual test results to be tracked Test Result Bottom Left This field provides a visual indication of the test result A Green field with Pass indicates the EUT current harmonics are below the limit a Red field with Fail indicates the EUT current harmonics are above the limit Note that the condition of this field is affected by the user selected test margin California Instruments Revision H 70 User Manual MX Series CTSH Compliance Test System To use the actual IEC test limits the test margin should be set to 100 This field depends on the Window results of all the windows up to this
176. r Zref This information is contained on page 2 The overall EUT pass or fail result is shown below the header on the first page The first page contains plots for Pst 1 through 12 and Plt provided the test time is sufficiently long to produce multiple Psti s and a The parameter section following the graph s lists the measured flicker parameters their equivalent test limits and a pass or fail evaluation for each The parameter section also contains the calculated dc Pst and Report Templates Test reports are based on report templates Each test mode harmonics or flicker and phase mode single or three phase requires a different report template The CTSMXH program selects the correct template automatically so this is transparent to the user All report templates are distributed with the program and are located in the following directory C Program Files California Instruments Ctsmxh report_files templates If these files are accidentally moved deleted or damaged report printing will not function and the template files have to be restored This may be done by re installing the program if needed Flicker Replay Mode The CTSMXH Software can be used to replay previously recorded test data This replay can be done on the same test system that was used to record the original data or on an altogether different PC In order to replay a test the data acquired during the test needs to be saved to a CTS native data fil
177. r computer Open Setup File Opens a setup file This allows a new test to be run with the exact same setup parameters The setup file can either be created through Save Test Setup menu action or extracted from an existing test data California Instruments Revision H 59 User Manual MX Series CTSH Compliance Test System Save Test Setup Saves only the setup information in effect The setup file name depends on the setup For example a steady state Class D test would have a name of Steady_D cts_setup Save Test Data Saves all data from the most recent test run A test must be run first with data saving enabled When data saving is enabled a test will produce a binary file H xxxxxx cts_data harmonics or F xxxxxx cts_data Flicker where xxxxxx is the test number Save test data menu action actually make a copy of that binary file to the specified file name and location The file name used will be the same as used for the previous save operation unless this is the first save after a test run In that case the user will be prompted for a file name Save Test Data As Saves a copy of the most recent test run binary data to a new file name The user will be prompted for a name to use Report Generate data needed for a test report and if MS Word is installed on the PC used allows producing viewing printing a test report in MS Word Report Preview Previewing a test report in MS Word MS Word must be installed on the PC used Print Re
178. r to view calibration and configuration parameters contained in this database Only authorized users can change any of these values if properly logged in Upon launching the Configuration exe program you will be prompted for your name and password A history of all users and dates at which the configuration data has been changed is retained for audit purposes Enter user information i D X Your name Password View Update calibration information Cancel and exit program The correct password is cal_lock If no password an incorrect password is specified the operator can only view configuration data but not change any of it After entering the correct name and password the data can be both viewed and changed if needed Click on the View Update Limit Information button to access the configuration database California Instruments Revision G 132 User Manual MX Series CTSH Compliance Test System 16 2 1 Calibration and Configuration Data The following calibration and configuration data is available to the user If the correct password has been entered this information can be updated If not it can only be viewed Any changes will be logged and time stamped so an audit trail is available View update calibration information Calbrabon Number 14 A D ceed Serial Number 12714734 A D Base Frequency Hz 13999552 PACS serial number Pacs curent tensloimer Source Serial Number 5
179. re commencing repair if so requested SERVICE PROCEDURE If a fault develops notify CALIFORNIA INSTRUMENTS at repair ppd ametek com or its local representative giving full details of the difficulty including the model number and serial number On receipt of this information service information or a Return Material Authorization RMA number will be given Add the RMA number furnished to the shipping label Pack the instrument carefully to prevent transportation damage affix label to shipping container and ship freight prepaid to the factory CALIFORNIA INSTRUMENTS shall not be responsible for repair of damage due to improper handling or packing Instruments returned without RMA No or freight collect may be refused at California Instruments discretion Instruments repaired under Warranty will be returned either via prepaid surface freight or low cost airfreight at California Instruments discretion Instruments repaired outside the Warranty period will be returned freight collect Ex Works CALIFORNIA INSTRUMENTS 9250 Brown Deer Road San Diego CA 92121 If requested an estimate of repair charges will be made before work begins on repairs not covered by the Warranty DAMAGE IN TRANSIT The instrument should be tested when it is received If it fails to operate properly or is damaged in any way a claim should be filed immediately with the carrier The claim agent should obtain a full report of the damage and a copy of this report should b
180. re set correctly Changes to these fields are no longer possible once a test is in progress Also make sure the EUT is connected to the AC output of the PACS 3 75 unit and the correct AC line voltage is programmed on the AC source A test run is started by clicking on the Start button During the test execution the CTSMXH Software will continuously evaluate EUT Flicker against the appropriate IEC limits The Pass or Fail indication is updated in real time If the test fails early in a long test period you may elect to abort the test prematurely rather than wait till the end California Instruments Revision H 82 User Manual MX Series CTSH Compliance Test System 6 4 6 5 6 5 1 Printing Test Reports The CTSMXH Software can produce an MS Word based report At the end of test the report button will be enabled Clicking on the Report button will generate information needed for a report and present an option to generate a report in MS Word The amount of information and graphs included on the report will vary by test type and will also be a function of the total test time If the test time is too short some data may not be available and will not be included The report header contains information regarding the test selection and EUT nominal parameters It also reports on the values of the Ztest impedance used This information is set using the configuration screen The Ztest values are used to calculate the equivalent flicker values fo
181. riod and slewing 4 EUE HERERTERS back up or down to its nominal value The voltage regulation of the AC Source can be verified by selecting the Include Source Regulation Check check box This will cause AC load to measure its output using the built in measurement system at all the voltage Test Level from Unom extremes that will be applied to the EUT during test The measured output voltage must be within the source regulation limits specific the oe EN 61000 4 14 standard If so a PASS indication Figure 9 4 EN 61000 4 14 Voltage Slew Mode will be shown in green to the right of the option box If not a FAIL indication will be shown in red If the source regulation check fails check the system connections For higher power loads make sure the external sense lines are used to sense the voltage at the EUT terminals Test Execution The selected test mode can be started by pulling down the Run menu and selecting All or by clicking on the Start button During test execution no changes to test parameters are allowed The test progress can be monitored at the bottom of the window in the status bar California Instruments Revision G 100 User Manual MX Series CTSH Compliance Test System 9 7 9 8 Test Parameter File Creation and Limits New tests can be created by editing the data entry grid The following test parameters are available for each test step Note that the number of test
182. rosecution and a competitive advantage in the market place Conformance to the EMC low voltage directive is indicated by the CE mark Note however that the CE mark includes MORE than just IEC 61000 3 2 and IEC 61000 3 3 More recently work has been done on testing of higher power EUT s in particular up to 75 A per phase This has resulted IEC 61000 3 1 1 for flicker A standard for harmonics of these EUTs is still in the works The MXCTSH supports the draft version of the IEC 61000 3 12 standard at this time IEC 61000 3 12 Harmonics Harmonics standards are imposed to limit current harmonics produced by equipment connected to the public utility network The IEC 61000 3 12 standards seeks to impose standards for maximum allowable current harmonics emissions The standard is presently still in draft form 2002 but is expected to be harmonized IEC 61000 3 12 Test Limits The IEC 61000 3 12 test standard defines EUT test classes by connection type called stages The following connection stages are defined Stage Description Stage 1 Simplified connection Stage 2 Connection based on network and equipment data Stage 3 Connection submitted to the local supply authority Equipment shall be assessed for connection in accordance with the requirements for the three stages specified above Stage 1 Simplified connection Equipment complying with the harmonic currents emission limits into the public supply system defined
183. ry loss of function or degradation of performance which ceases after the disturbance ceases and from which the equipment under test recovers its normal performance without operator intervention c Temporary loss of function or degradation of performance the correction of which requires operator intervention d Loss of function or degradation of performance which is not recoverable owing to damage to hardware or software or loss of data As a general rule the test result is positive if the equipment shows its immunity for the duration of the application of the test and at the end of the tests the EUT fulfills the functional requirements established in the technical specification The user has to make this determination by observing the unit under test At the end of the test the GUI will pop up a IEC 1000 4 13 dialog box asking the operator to assess the state of the EUT This prompt can be selected to appear after each 22 Is the equipment under test still functional sub test as by setting the Prompt operator for EUT Status after each test step option The operator may answer when prompted If not he should answer no The response to this query is incorporated as a PASS or FAIL result in the test report 1 California Instruments Revision H 97 User Manual MX Series CTSH Compliance Test System 8 6 8 6 1 8 6 2 8 7 Measurements The following measurements are performed during the IEC 6
184. s Word 9 0 Word 2000 Older versions of MS Word may no longer work when upgrading to the latest MXCTSL software version In that case a newer version of MS Word may have to be installed The matrix below shows the required minimum process clock rate These clock rates apply to either Celeron Pentium Pentium 4 AMD Athlon and Klamath based PC s The values shown are minimum values not recommended values To allow future expansion it may be advisable to plan on using a faster PC Other minimum PC requirements are e Windows 7 Windows XP Other versions of Windows operating systems are no longer supported e size 4 Gbytes e SVGA 800 x 600 minimum resolution 256 or more colors e disk drive of 50 GByte size or more CPU Intel i5 dual core 2 5GHz or faster PC Processor speed matrix shown minimum clock speeds not recommended clock speeds for the PC A faster PC can be used This assumes other applications and or screen savers that take up processor time are generally closed Mode A D Card Win 7 Table 3 1 PC Pentium Athlon Processor Speed Requirement California Instruments Revision H 25 User Manual MX Series CTSH Compliance Test System 3 4 OMNI 3 75 Unit The OMNI 3 75 Ztest impedance provides 0 15 0 15 Ohms for each phase and 0 10 0 10 Ohm for the neutral This Ztest is required for IEC 61000 3 11 flicker test 3 41 Mechanical Installation The OMNI 3 75 is contained in a separat
185. se is open Replace fuse The interface cable between the PACS 3 75 and the PC is not properly seated in its mating connectors Reinsert connectors Check for any bent pins The Sensor Circuit board assembly inside the PACS 3 75 module is defective See next section California Instruments Revision G 143 User Manual MX Series CTSH Compliance Test System AC SENSOR ASSEMBLY 5004 700 D California Instruments e TB3 TB4 GESCS SES 65262640 60526765 12 15 12 6 6 6 S Sy AC OUT ACIN J GND GND UNE Figure 19 1 Location of AC Sensor Assy 5004 700 in PACS 3 75 Revision G 144 User Manual MX Series CTSH Compliance Test System 19 4 Advanced Troubleshooting If it is suspected that the AC sensor circuit board inside the PACS 3 75 unit is defective it will be necessary to remove the top cover of the unit and perform some basic tests to determine if the circuit is functioning properly See Figure 33 for location CAUTION VOLTAGES 312 VAC ARE PRESENT CERTAIN SECTIONS OF THIS POWER EQUIPMENT WARNING 5 EQUIPMENT CONTAINS POTENTIALLY LETHAL VOLTAGES DEATH CONTACT MAY RES
186. series with the neutral wire between the PACS 3 75 unit and the load bank 3 Connect the Voltage DMM at the AC IN terminals on the PACS 3 75 unit TB4 17 5 Configuration Procedure 1 Start the Calibration module located in the Compliance Test System Program group called Calibration See Figure 17 1 2 Fill in the information for PACS 3 75 serial Power source to be used for the calibration and your name or ID Make all other appropriate selections before clicking on the Calibrate button California Instruments Revision G 136 User Manual MX Series CTSH Compliance Test System 3 Once the Calibrate button is clicked the software will prompt you to fill in a table recording the equipment and measurement instruments to be used for this calibration When this is completed the program will provide you with the step by step instructions Follow these instructions until the Accept button is enabled If you did not follow the instructions during the calibration or the software is aborted for some other reason you may have to redo the entire calibration Please note that the calibration data is not saved until the Accept button is pressed 4 Please note that when calibrating a three phase PACS all three channels will be calibrated together The software will do all three voltage channels all high current range channels all mid range channels and then all low range channels 5 When calibrating the voltage channels you will be asked
187. set nennen nnns Figure 6 1 Flicker Setup Fig re 6 2 Flicker Test Window eite teinte tmi te e aer er tei stiches ete Figure 7 1 EN 61000 4 11 Test Window Figure 7 2 EN 61000 4 11 Voltage Variation specification Edition 1 0 85 Figure 7 3 EN 61000 4 11 Voltage Variation specification Edition 2 0 85 Figure 7 4 IEC61000 4 11 Test Setup nennen nennen rennen nennen 86 Figure 8 1 EN 61000 4 13 Test 88 Figure 8 2 EN 61000 4 13 Flow Chart Class 1 and 2 EUT s 2 91 Figure 8 3 EN 61000 4 13 Flow Chart Class 92 Figure 9 1 EN 61000 4 14 Test Window 96 Figure 9 2 EN 61000 4 14 Test 98 Figure 9 3 EN 61000 4 14 Voltage Step eene 100 Figure 10 1 EN 61000 4 17 Test 103 Figure 10 2 EN 61000 4 17 Waveform Acquisition WindOow eese 105 Figure 10 3 EN 61000 4 17 User Observation Data Entry 106 Figure 11 1 EN 61000 4 27 Test 107 Figure 12 1 EN 61000 4 28 Test 112 Figure 12 2
188. sired EMC Class and test type before executing the test If choosing class X the user can change any parameters but the levels have to be at least as high as those for Class 2 The total test time using the default dwell times are as follows Flat Top Curve test Dwell time 120 sec Pause time 5 sec Over Swing Curve test Dwell time 120 sec Pause time 5 sec Frequency Sweep test Dwell time 300 sec per decade 2 5 750 sec Individual harmonics Dwell time 5 sec per harmonic 40 200 sec Pause time 1 sec per harmonic 40 40 sec Inter harmonics Dwell time 5 sec per harmonic 40 200 sec Pause time 1 sec per harmonic 40 40 sec Meister Curve Dwell time 10 sec per frequency step 147 1470 sec Pause time 0 sec Changes made to dwell times and test levels can be saved using the File Save menu There are two 413 files distributed with the MXGUI program The Class2 413 and Class3 413 files are read only files and can not be edited or changed These files contain all parameters which are determined by the product standard When changing the Dwell and Pause times for Class 2 or Class 3 the user has to save the file under a different name Test Waveform Settings The Waveforms Tab may be used to preview the Class 2 and Class 3 Flat top and Overswing waveforms For class X the waveform parameters may be entered in the controls to the left of the waveform display Dwell times and pause times m
189. so includes an AC source control software package This Graphical User Interface program can be used to control the AC source from the same PC using either the RS232C or IEEE 488 interface An IEEE 488 interface is not included with the CTS system The PC must have an available RS232C port to use the RS232C control interface to the source In the absence of a suitable interface the user can operate the AC source from the front panel This does not affect the ability to run harmonics and flicker tests It does however preclude the use of the EN 61000 4 immunity tests which are only available through the MXGUI AC source control program Note on Interface conflicts If the MXGUI program is set up to use the same serial or IEEE 488 port any address to communicate with the AC source as the CTSMXH Software it is not possible to have both the CTSMXH Software and the MXGUI software running at the same time This is due to the fact that both programs would attempt to use the same interface to control the AC source If this is the case close one program before opening the other If IEEE 488 is used to control the AC source with the MXGUI and RS232C is selected on the MXCTSH or vice versa both programs can be open at the same time but care should be taken not to control the source from both programs at the same time This setup is not recommended however Use either program in turn depending on the task at hand MXCTSH for EN 61000 3 and MXGUI for EN 6
190. stem uses three current ranges for maximum resolution and Maximum Current accuracy of current harmonics measurements The range coefficients are Limits used to set the cross over points of these current ranges These values should not be change by the user California Instruments Revision G 133 User Manual MX Series CTSH Compliance Test System Field Description These fields set the flicker reference impedance values when using programmable impedance They are also used to set the Ztest impedance values of the OMNI 3 75 These values are used by the flicker software to scale the test results to the IEC 725 flicker reference impedance For single phase mode they should be set to 250 and 796 For three phase mode to 150 and 477 Impedance If the programmable impedance of the MX30 3Pi or MX45 3Pi is used these values will be used to program the MX45 Note than the maximim R and L settings for the MX30 3Pi or MX45 3Pi are 200 mOhm and 200 uH Values used may differ between European and Japanese standards The Japanese standard presently requires the use of the reference impedance for both harmonics and flicker tests During harmonics tests this will result in high voltage distortion This conflict has not been resolved at this time System This setting determines if a reference impedance is used and if so which Configuration type Available choices are No Cl power Select this option if you are not using a Cl AC Source or ha
191. steps is limited to 100 steps which should be more than adequate to cover any possible product standard Field Description Range Specifies the percentage of Unom to use for this test step 50 to 150 Typical values are 100 110 and 90 for a 0 10 and 10 change Test Level Specifies the percentage change from Unom to apply for this 20 to 20 96 test step Test levels are defined for different product classes Level Repeats Number of times specified test level is applied at this step 1 to 100 Normally this value is set to 3 Each test level is applied for 2 seconds and repeats in 5 second window The rise and fall times are set to 5 cycles each Delay s Time is seconds between successive repeats of this test 0 1 to 999 9 sec step Repeats Number of times this test step is repeated Normally this 1 to 100 value is set to 3 Test Results There is no way for the CIGUI to determine the outcome of this test as a clear definition of a failure can not be given The draft standard called out the following possible test results The test results shall be classified on the basis of the operating conditions and functional specifications of the equipment under test as in the following unless different specifications are given by product committees or product specifications a Normal performance within limits specified by the manufacturer requestor or purchaser b Temporary loss of function or degradation of perform
192. t 2 5 Interharm2 lev 5 Interharmonics Level for second range at 596 Interharm3 lev 3 5 Interharmonics Level for third range at 3 596 Interharm4 lev 2 Interharmonics Level for fourth range at 296 Interharmb lev 1 5 Interharmonics Level for fifth range at 1 5 Interharm dwe 5 Interharmonics Dwell time in second Interharm pau 1 Interharmonics Pause in second California Instruments Revision G 123 User Manual MX Series CTSH Compliance Test System 143 Sample File IEC413 413 Following is a listing of the default IEC411 413 file shipped with the MXGUI program If for some reason your 413 file is lost or you would like to restore it to its original condition use the values shown here California Instruments 1000 4 13 Class 2 Flat Curve test FCURV_LEV 90 FCURV_DWE 120 FCURV_PAU 5 Over Swing Curve test OSWCURV_DWE 120 OSWCURV_PAU 5 OSWCURV3_LEV 6 OSWCURV3_PHS 180 OSWCURV5_LEV 4 OSWCURV5_PHS 0 Sweep Frequency test SWEFREQ1_LEV 3 SWEFREQ2_LEV 10 SWEFREQ3_LEV 5 SWEFREQ4_LEV 5 SWEFREQ5 LEV 2 SWEFREQ DWE 300 SWEFREQ1_STP 5 SWEFREQ2_STP 10 SWEFREQ3_STP 10 SWEFREQ4_ STP 10 SWEFREQ5_STP 25 Meister Curve test MEISTERFREQ1_LEV 4 MEISTERFREQ1_STP 5 MEISTERFREQ2_LEV 10 MEISTERFREQ2_STP 10 MEISTERFREQ3_LEV 4500 MEISTERFREQ3_STP 10 MEISTERFREQ4_LEV 4500 MEISTERFREQ4_STP 10 MEISTERFREQ5_LEV 4500 MEISTERFREQ5_STP 25 MEISTERFREQ_DWE 10 MEISTERFREQ_PAU 0 Individual Harmonic test INDHARM2_LEV 3 INDH
193. t files The rate at which data is written to disk can be decreased to avoid excessive file sizes The point at which the program will reduce the rate of data storage can be set in the configuration Should a test failure occur while the CTSMXH program is in this reduced data rate recording mode full rate data recording resumes for a specified number of acquisition buffers This always provides detailed information around the time of the failure These recording rate settings can be set in the miscellaneous section of the configuration program Three Phase Testing Three phase testing is similar to single phase testing described above except that three line voltages and three line currents are being measured simultaneously and displayed in the CTSMXH Software GUI The three phase mode screens are virtually identical in function and form to the single phase screens The user can view one phase at a time or all three phases simultaneously Replay Mode The CTSMXH Software can be used to replay previously recorded test data This replay can be done on the same test system that was used to record the original data or on an altogether different PC In order to replay a test the data acquired during the test needs to be saved to a CTS native data file If the save data option is not enabled in the additional setup window for Harmonics there is no way to replay a test later The Pass or Fail result of any run on the actual test system PC is always logge
194. t regular intervals during the test and can be displayed by selecting the Waveform Display tab IEC 61000 4 17 DC Ripple Test OL x Ele Run Help Test Setup Operator Observations Stop Print Report VDC VI 100 00 DCA 10 000 POWER _ 1000 0 Output OH DEMO MODE ONLY User Data Tested by Test department euT Temp 25 c Hum 95 Comment Test Site Press Counting down second 3 of 10 sec pre test time 10 04 2001 E 3 47 2 Figure 10 2 61000 4 17 Waveform Acquisition Window 10 5 Test Results There is no way for the CIGUI to determine the outcome of this test as a clear definition of a failure can not be given The draft standard called out the following possible test results The test results shall be classified on the basis of the operating conditions and functional specifications of the equipment under test as in the following unless different specifications are given by product committees or product specifications a Normal performance within the specification limits b Temporary degradation or loss of function or performance which is self recoverable c Temporary degradation or loss of function or performance which requires operator intervention or system reset d Degradation or loss of function which is not recoverable due to damage of equipment components or software or loss of data As a general rule the test result is pos
195. t wiring is OK wiring from TB3 or verify cable and plug going to Still no power to EUT EUT is good California Instruments Revision G 142 User Manual MX Series CTSH Compliance Test System 19 3 2 Power Source Shuts Down CONDITION POSSIBLE CAUSE REMEDY The power source shuts down when the EUT load is If the companion power source shuts down when the applied EUT load is applied it is very likely that the power source is being severely overloaded Any severe overload will cause the MX to fold back the output voltage or trip off depending of the selected Current protection mode The power source shuts down immediately when it is Another possible cause of shutdown is a short circuit in programmed to the test voltage the EUT wiring or EUT load Make sure neutral and line wires don t form a short circuit 19 3 3 Power Source Overload Light On CONDITION POSSIBLE CAUSE REMEDY Overload light on power source is on When the overload light is on the power source is close to faulting or folding back the output voltage Adjust EUT loading if possible to keep power source within its ratings 19 3 4 No Signal To PC Interface CONDITION POSSIBLE CAUSE REMEDY EUT is being driven properly and voltage and current is The PACS 3 75 front panel power switch is not on Turn present but the CTSMXH Software GUI shows zero on switch check ON LED current or zero voltage or otherwise incorrect measurement readings The Ye Amp input fu
196. tem Calibration Pile x 5 PACS serial number Power source info Extemal OMNI exists C No Cl power source Cabredo d accept _ OMNI included in the PACS GEEH ETS system CT source Ci Source with Programmable Impedance C 951 Internal values 5 3 C External low range European Frequency External on mid range C Japanese mOhms 150 Ameri 9 ae External on high rangs LH 47 2 Scale Amps en Val AD Waveform 1 0 0 0 210 0 0 31010 0 gt 41010 0 E 5 0 0 0 51 0 0 0 7 0 0 0 8 0 0 0 48 9 0 10 0 0 0 1 2 3 4 11 0 0 0 Time Card Serial Base frequency after iterations Hz Figure 17 1 MXCTSH Calibration Program Main Screen 17 3 Install A D Card in PC For PACS 3 75 units shipped with the PCI A D card the PACS 3 75 unit must be calibrated with the PCI data acquisition card and interconnect cable supplied with the system Install the PCI card into the test computer and connect it to the rear terminal of the PACS 3 75 with the supplied cable 17 44 PACS 3 75 Calibration Setup To calibrate the CTS measurement system proceed as follows 1 Configure the test set up as shown in Figure 17 2 Please note that only a single phase A C source is needed to calibrate a three phase PACS unit 2 Connect the current shunt or current transformer in
197. ters set by the user Test progress is shown at the bottom of the window The sequence numbers shown correspond to those in the illustration Aborts test in progress EN IEC 61000 4 11 Voltage Dips Interruptions and Variations Test File Edit Run Help Test Setup Test Levels Operator Observations Test mode v Dips and Interruptions 230 0 Fnom 5000 Hz C Voltage Variations Test Options Include Peak Current test 0000 Standard Revision Ex 61000 4 11 Ed 1 0 1994 F ECB1000 4 11 Ed 2 0 2004 Output ON User Data Tested by Test department EUT Temp 25 95 Comment Test Site Press Ready 6 28 2005 2 12 PM Figure 7 4 IEC61000 4 11 Test Setup screen California Instruments Revision H 89 User Manual MX Series CTSH Compliance Test System 7 6 Test Options The operator may select one or more of the following options before starting the test Include Peak Current Test The test standard requires that the AC generator used has the ability to deliver 500 Amps of inrush current to the EUT This is neither economical nor practical Instead the EUT inrush current can be determined using a prescribed test method If the EUT inrush current is 70 or less of the AC sources capability the AC source may be used for full compliance testing Setting this option determines the EUT inrush current using the standard method The test takes about 12
198. the File Save As menu entry Waveform Display Tab This tab displays the three phase output voltage waveforms and their respective phase angles Each phase is shown in a different color This waveform capture is started 10 msec prior to each voltage and phase change and covers a period of about 100 msec The last unbalance data display is incorporated in the test report Operator Observations Tab This tab may be used to enter any comments concerning the EUT behavior Any text entered on this page will become part of the test report Note that this information is not saved any where other then as part of the test report Source Regulation The voltage regulation of the AC Source is always verified The voltage regulation check verifies AC source voltage regulation at the beginning of each test under load as called out in the test standard The voltage regulation must be less than 2 The measured output voltage must be within the source regulation limits specific in the EN 61000 4 27 standard If the source regulation check fails check the system connections For higher power loads make sure the external sense lines are used to sense the voltage at the EUT terminals Test execution The selected test mode can be started by pulling down the Run menu and selecting All or by clicking on the Start button During test execution no changes to test parameters are allowed The test progress can be monitored at the bottom of the window in the st
199. to be matched to the output of the AC source used a reference impedance matched to the MX power source must be used For MXCTSH systems the OMNI 3 75 is required For MXCTSL systems the OMNI 3 37MxX is recommended For MXCTSHL systems both OMNI s may be used although only one can be controlled from the CTSMXH or CTSMXL software while the other must be operated in manual mode from it s front panel If both OMNI s are present only one can be used at a time This is controlled through a set of circuit breakers on the front panel of the OMNI 3 37 cabinet There is one circuit breaker for each OMNI present Close the breaker for the OMNI that is to be used depending on the test IEC 61000 3 3 or IEC 61000 3 11 used Refer to the MXCTSL User Manual P N 7003 973 for OMNI 3 37MX specifications rnm OMNI 3 37MX 3 0 24 0 15 Phase _ OMNI 3 75 3 0 15 0 15j Phase 15 7 3 75 Specifications The MXCTS systems based on the MX Series and require the use of an external reference impedance The OMNI 3 75 can be controlled by the CTSMXH Software through the MX GPIB or RS232C interface This requires connection of the MX System interface cable to the back panel of the OMNI 3 75 If configured as such the CTSMXH software can switch the OMNI 3 75 from bypass to flicker automatically depending on what test is being run Reference Impedance Phases Flicker Mode Max Current 75 Useable range 2 0 75A Bypass M
200. to bring up the command trace for trouble shooting purposes if the presence of source cannot be verified When using remote control the user can select to have the front panel locked or not by setting the Disable checkbox Test Data Test data for each test can be saved to disk for later replay or report generation If this option is not selected the test cannot be replayed later or printed For most situations it is recommended to save the test data For debugging sessions it may be acceptable to turn off this option to preserve disk space This option does not apply to the CTS system Time filter duration This value should be set for 1 5 seconds to comply with the IEC 61000 3 12 for transitory standard Future standard changes may require this value to be changed Sample and Hold harmonics filtering Table 5 2 IEC Harmonics Advanced Setup Parameters California Instruments Revision H 68 User Manual MX Series CTSH Compliance Test System 5 7 Main Harmonics Test Window Operation Upon closing the Main setup window the harmonics test window will appear Tests are executed from this window and test results are displayed in real time This main harmonics test window has a limited number of controls the function of which is explained in the table below CTS Replay an Earlier Test Stage 1 Simplied Connection 33 Edit View Options Test Help E 8 Stop Power
201. to provide a 230V 50Hz input However when calibrating the current channels it is not necessary to keep the voltage input at the same level In addition the calibration on current channels is in the sequence of 60 Arms 200 App 24 Arms 40 App and 4 Arms 10 App The software does not do auto ranging in the process This means that even if you apply 2 Arms when you are doing 60Arms 200App range channel s the software will still perform the corresponding calibration The drawback of doing so is that the calibration accuracy may be compromised 6 When the Accept button becomes available and is clicked at the end of calibration the software will save the data in text file with the name of C Ctsmxh calibration dat In addition it will generate calibrate log in the CTS directory and print out a hardcopy of this file automatically It will also save the calibration information in a database Further it will ask you if you want to copy the calibration data to floppy and back up the files on the network If you answer yes it will perform all the copying and backup for you automatically The back up directory is that stored in log dir txt file and a sub directory of PACS 3 75 s information you entered before you click on the calibrate button 7 f you copied the calibration data to the floppy remove disk from drive and write the PACS 3 75 serial number on the floppy disk California Instruments Revision G 137 User Manual MX Series CTSH
202. ts can also be printed from the File Print menu Test reports include all selected test parameters and options A sample test report is shown below The report format used can be direct output to a printer output to a text file or generation of an MS Word report The desired report format can be selected from the Options menu under IEC Report Setup MS Word reports are automatically saved in the C Program Files California Instruments MxguiMReports directory California Instruments Revision H 90 User Manual MX Series CTSH Compliance Test System 8 61000 4 13 Harmonics and Interharmonics 8 1 About this Chapter The IEC 61000 4 13 Harmonics and Inter harmonics test offers range of sub tests and user options We recommend you familiarize yourself with the actual standard document IEC standards are available through www iec ch The 2002 03 version of the IEC 61000 4 13 standard is implemented on the MX Series starting with revision 0 31 firmware If the firmware in the MX Series AC source is less than 0 31 the Meister curve function will not be available Contact California Instruments customer service for upgrade information support calinst com The MXGui will automatically disable the Meister curve function if it detects older firmware The EN 61000 4 13 implementation in the MXGUI is based on a first edition of the EN 61000 4 13 standard This test window is available only if the MX Series unit connected has the 413 option installed
203. type and EUT class Other settings involve the desired nominal voltage and frequency and test window size The figure below shows the typical settings for a class A test Please note the six fields at the bottom of the set up screen are grouped as Default user input The values you entered in these fields are not necessarily for the particular test you are about to perform When you click OK you will be presented with a measurement screen where you can enter similar information that is specific for the test The Default User Input here is intended to facilitate the situations where a group of tests are to be performed where the information in Default User Input are applicable to all the tests in the group Note If both the CTSMXH program and the MXGUI are configured to use the same Com port or IEEE 488 bus controller to control the AC source it is important that both programs not be active at the same time Having both programs open at the same time could cause an interface conflict CTS MXH Test Set up Screen File Edit view Options Test Help Test Category EE Frequency nter Harm Harmonics per 61000 3 12 50Hz C Flicker per EN IEC61000 3 11 60Hz Cancel Test Class Restore iv Ref Fund Curr 1 1 5 000 Amp iv Compare to 1 Additional Setup Table 2 Connection for single phase amp non balanced three phase equipment 33 X C Table 3 Connection for balanced three phase equipment 3
204. ulates short interruptions in AC supply Voltage Variations Simulates slow changes in AC supply The user must select the desired test type before executing the test Since both test types require a number of test parameters the test sequence parameters must be entered in the data entry grid or loaded from disk using the File Open menu entry Note that the EN 61000 4 11 specification is based on common types of AC line disturbances found on the European utility network The test voltage levels and dip durations required to perform an EN 61000 4 11 tests is not uniquely defined Instead Figure 7 2 EN 61000 4 11 Voltage Variation different test levels and durations are specification Edition 1 0 allowed for various product categories Product committees set these test levels For this reason the test parameters used by the MXGUI for the EN 61000 4 11 test sequences can be specified by the user or loaded from disk This allows unlimited customization of both voltage interruptions and voltage variations tests Up to 100 sequences of voltage dips at various levels phase angles and duration can be specified Voltage variations can be defined by level rise time fall time and hold time Refer to Figure 7 2 and Figure 7 3 for an illustration of how these parameters affect the V RMS output under the different standard revisions Ur r m s 100 Key td Time for decreasing voltage t
205. unless different specifications are given by product committees or product specifications a Normal performance within limits specified by the manufacturer requestor or purchaser b Temporary loss of function or degradation of performance which ceases after the disturbance ceases and from which the equipment under test recovers its normal performance without operator intervention c Temporary loss of function or degradation of performance the correction of which requires operator intervention d Loss of function or degradation of performance which is not recoverable owing to damage to hardware or software or loss of data As a general rule the test result is positive if the equipment shows its immunity for the duration of the application of the test and at the end of the tests the EUT fulfills the functional requirements established in the technical specification The user has to make this determination by observing the 10004 28 under test At the end of a test run the following dialog box is m displayed Click on the Help button to display the pass fail 2 Is the equipment under test stil functional Criteria shown above 12 7 Test Reports The EN 61000 4 28 test module produces a test report when the Print Report button is clicked Reports can also be printed from the File Print menu Test reports include all selected test parameters and options A sample test report is shown below The report
206. unning parameter cannot be changed Starting a test also causes data to be written to the test data file Stop the acquisition process The Stop button can be used to abort a test prematurely The data files will be closed and will only contain data up to the point at which the test was aborted This field always shows the start time of the test in progress The test duration is shown in the bottom panel Displays the highest Relative Steady State voltage change de in found so far during the test This represents the difference between two adjacent steady state voltages relative to the nominal voltage The standard requires that must be less than or equal to 3 for the EUT to PASS Displays the highest Maximum relative voltage change dmax in found so far during the test This represents the difference between the maximum and minimum rms values of the voltage change characteristic relative to the nominal voltage The standard requires that dmax must be less than or equal to 4 for the EUT to PASS Displays the highest Relative voltage change characteristic 9 This value represents the change in rms voltage relative to the nominal voltage as a function of time and between periods when the voltage is a steady state condition for at least 1 second The standard requires that di must be less than 3 for the EUT to PASS although it is permitted to be between 3 and 4 for less than 200 msec Displays the highest Short Term Fl
207. ustomer If the test is performed on behalf of a third party information about the entity for which the test is performed may be entered here This field is used to hold a default value Test Margin Determines at what scale factor the harmonic test limits will be applied For most situations this value should be set to 100 If testing is done for pre compliance setting a lower margin will provide an extra margin of safety against system tolerances of different test systems This field is used to hold a default value Test Duration Enter the total test time For Steady State Harmonics the default test time is 1 0 minute For Transitory Harmonics the default test time is 2 5 minutes For flicker tests the default time is 10 minutes Maximum test time is 1440 minutes or 24 hours This field is used to hold a default value Table 5 1 IEC Harmonics Setup Parameters California Instruments Revision H 66 User Manual MX Series CTSH Compliance Test System 5 6 Additional Setup Parameters for Harmonics If this is first time using the MXCTSH system it may be necessary to check the Additional Setup settings These settings can be displayed by clicking on the Additional Setup button on the right hand side of the main setup window Additional Setup This setup should be performed after the main set up is completed Close Waiting time after the power source is tumed on and before data collection begins sec Help Power source and
208. utton This will stop the data at the buffer number shown in the lower left corner Once stopped the data can be stepped forward or backward at various rates using the VCR style buttons in the lower left corner A test report can be printed from stored data in this mode The actual date and time the data was recorded will be shown on the report in addition the report print date and time 6 5 2 play back test on a different PC from the test system PC proceed as follows 1 10 11 If not already done install a copy of the CTSMXH Software on the other PC When launched the absence of a data acquisition system will be detected and flagged This is normal Transfer the data files to the PC used for replay either using a network connection or disk From the File menu select the Open Data File entry This brings up the standard file open dialog box Locate and select the file to be replayed Harmonics files start with the letter H flicker files start with the letter F Click on the Open button to open the test data file This will bring up the standard setup screen showing the settings that were used to acquire this data Click on OK to proceed to the main test window To start the replay process click on the Start button The data displayed will be taken from the stored data files The buffer rate and speed at which data is replayed can be controlled using the various settings in the Options menu This may be required to
209. ve no OMNI source impedance Select this option if you have an OMNI 3 75 connected to the MX through External OMNI the system interface cable exists Also select this option if you have an OMNI 3 37MX controlled from the front panel AC Source with Select this option if the programmable impedance of the MX30 or MX45 is Programmable used in addition to external reference impedance In this mode the external Impedance OMNI has to be engaged either manually or through the MX front panel Original Calibration Shows original calibration date of CTS system Information Calibration Data Update Information Shows the last date the system calibration data was changed and by whom California Instruments Revision G 134 User Manual MX Series CTSH Compliance Test System 17 Calibration 17 1 About This Chapter This chapter covers two basic functions System calibration and system configuration Single phase calibration is covered first and additional steps for three phase calibration are also covered System configuration is then covered detailing the steps to properly set up the AC power source If the CTS system you have includes an AC power source refer to the separate user manual that shipped with the AC source for service and calibration information 17 2 Calibration The MXCTS system uses a precision measurement system that requires periodic calibration The recommended calibration interval is one year All M
210. ven harmonics shall not exceed 16 n 95 Note 2 Linear interpolation between successive values is permitted Note 3 In the case of unbalanced three phase equipment these values apply to each phase rated fundamental current In harmonic current component Table 2 2 Stage 2 current emission limits for single phase interphase and unbalanced three phase equipment California Instruments Revision H 17 User Manual MX Series CTSH Compliance Test System Minimal Rsce Admissible individual Admissible harmonic current harmonic current In li distortion factors Note 1 The relative value of even harmonics shall not exceed 16 n Note 2 Linear interpolation between successive Rsce values is permitted rated fundamental current In harmonic current component Table 2 3 Stage 2 current emission limits for balanced three phase equipment Minimal Rsce Admissible individual Admissible harmonic current harmonic current l l distortion factors 96 96 Note 1 The relative value of even harmonics shall not exceed 16 n 956 Note 2 Linear interpolation between successive values is permitted rated fundamental current In harmonic current component Table 2 4 Stage 2 current emission limits for balanced three phase equipment with given phase angle conditions Stage 3 No specific limits apply for stage 3 connection equipment The connection of the equipment must be negotiated with the
211. y so as not to bent any pin The connector should insert easily If undue force is needed the plug may not be aligned properly or one or more pins may be bent Check the plug and connector carefully before installing the supplied cable between the PACS 3 75 and the PC The CLOCK and LOCK BNC connectors are available for future interface capabilities to Cl power sources California Instruments Revision H 42 User Manual MX Series CTSH Compliance Test System 133 ep T84 California Instruments xi AC OUT AC IN Li 2 2 WE y NEUT NEUT sg LINE CND Figure 3 14 Power Connections for PACS 3 75 Revision H 43 User Manual MX Series CTSH Compliance Test System C INTERFACE INPUT INPUT POWER FUS Figure 3 15 Front and Rear Panel Views of the PACS 3 75 Module California Instruments Revision H 44 User Manual MX Series CTSH Compliance Test System 3 6 Functional Test If it is desired to perform a functional test of the system the following procedure can be used However the AD signal card and the CTSMXH Software must first be installed for proper operation See installation instructions later in this section CAUTION Work carefully when performi
212. ystems the output select enables one of three outputs or all three The default is channel phase A EUT Test Levels The test levels used are determined by the EUT class Available levels are 2 5 10 or 15 A user defined test level from 0 to 25 may be set as well Ripple Frequency This fields sets the multiplier for the ripple frequency Available settings are 1 2 3 6 Auser defined multiplier is available as well Test Time The default test time is 10 minutes If more than one DC Voltage level is selected the test time increases with this amount for each selected level The test time can be set as low as 1 minute or as high as 9999 min Starts the EN 61000 4 14 test using the parameters set by the user Test progress is shown at the bottom of the window The sequence numbers shown correspond to those in the illustration Aborts test in progress 10 3 Test Sequence The test sequence implemented by this test consists of the application of an AC ripple of specified peak to peak value in percent of the DC voltage at a frequency determined by the multiplier times the AC Line frequency for a set period of time The ripple waveform consists of a sinusoidal linear waveshape as shown below The objective of this test is to evaluate a product for immunity from such ripple California Instruments Revision G 104 User Manual MX Series CTSH Compliance Test System 10 4 Waveform Display The DC output waveform is acquired a
213. ystems this field defaults to channel A Start Starts the EN 61000 4 29 test using the parameters set by the user Test progress is shown at the bottom of the window Abort Aborts test in progress The required EN 61000 4 29 test parameters must be entered in the test data entry grid before running a test Previously stored test files can be loaded from the File Open menu Test files use a 429 file extension and only files with this extension can be loaded The MXGUI is distributed with pre defined test parameter files for the generic EN 61000 4 29 test sequences Additional test parameter files e g for specific product categories can be created by the user by editing the data entry grid and saving the new data under a user specified name The following parameters and controls are available for executing the EN 61000 4 29 test Field Control Description Nominal DC voltage Opening this window will set the upper voltage range parameter to the present steady state voltage setting of the DC supply If required a new value can be entered for use during the test At the end of the test the DC Supply will remain at this voltage level The upper voltage range value entered cannot exceed the selected voltage range Note that DC voltage variations to levels above 100 96 of Unom may require selection of the high voltage range The lower voltage range must be set to the lowest EUT rated Vdc If the EUT voltage range is less than 20

Download Pdf Manuals

image

Related Search

Related Contents

KOHLER K-T11077-4E-CP Installation Guide    形式:R5-NP2  こんなときは  Atomic Accessories DSA.171 game console accessory  FM Stereo/AM RDS Radio B A  Put goldair logo here  BA-SA Combi 920 e 240707_rev  Cuisinière Installation et emploi Fornuis Installatie en    

Copyright © All rights reserved.
Failed to retrieve file