Home

86A193FF03-High performance clustering-2011-10

image

Contents

1. Frame Server HCA Connector Switch Connector 10 12 1 C65 T3 3 L10 C10 10 12 1 C65 T4 4 L10 C10 10 12 2 C66 T1 5 L10 C10 10 12 2 C66 T2 6 L10 C10 10 12 2 C66 T3 7 L10 C10 10 12 2 C66 T4 8 L10 C10 Fabric management server 1 1 Port 1 1 L21 C1 Fabric management server 1 1 Port 2 2 L21 C1 Fabric management server 1 2 Port 1 3 L21 C1 Fabric management server 1 2 Port 2 4 L21 C1 Fabric management server 2 1 Port 1 5 L21 C1 Fabric management server 2 1 Port 2 6 L21 C1 Fabric management server 2 2 Port 1 7 L21 C1 Fabric management server 2 2 Port 2 8 L21 C1 Fabric management server 3 1 Port 1 1 L22 C1 Fabric management server 3 1 Port 2 2 L22 C1 Fabric management server 3 2 Port 1 3 L22 C1 Fabric management server 3 2 Port 2 4 L22 C1 Fabric management server 4 1 Port 1 5 L22 C1 Fabric management server 4 1 Port 2 6 L22 C1 Fabric management server 4 2 Port 1 7 L22 C1 Fabric management server 4 2 Port 2 8 L22 C1 8 Connector terminology gt LxCx Leaf Connector There are backup fabric management server in this example For maximum availability the backup is connected to a different leaf from the primary Example configurations 9125 F2A compute servers and 8203 E4Astorage servers This information provides possible configurations using only 9125 F2A compute servers and 8203 E4Astorage servers The most significant difference between the examples in Exam
2. 16 Power Systems High performance clustering Table 12 Management subsystem server consoles and workstations continued Hosts Software hosted Server type Operating system User Connectivity Service laptop Serial interface to Laptop User experience Switch service 85 232 to switch switch provider Note This is not System preveden PETEM administrator as part of the cluster It is provided by the user or the site NTP server NTP Site preference Site preference Not applicable e Cluster VLAN e Service VLAN xCAT Extreme Cluster Administration Toolset xCAT is a system administrator tool for monitoring and managing the cluster The following table provides an overview of xCAT Table 13 xCAT overview Description Documentation Extreme Cluster Administration Toolset xCAT is used by the system admin to monitor and manage the cluster xCAT documentation When to use For the fabric use xCAT to e Monitor remote logs from the switches and Fabric Management Servers e Remotely run commands on the switches and Fabric Management Servers After configuring the switches and Fabric Management Servers IP addresses remote syslogging and creating them as devices xCAT can be used to monitor for switch events and xdsh to their CLI Host xCAT Management Server How to access Use CLI or GUI on the xCAT Management Server Fabric
3. a Make sure that the sensor is set up with usr bin Issensor e Use it without a parameter to see which sensors are set up e Use it with the required sensor name to see details on where that sensor is being run e Unless yon have chosen to set it up otherwise it must be sais HOS FACETS fabric notices b Make sure that the condition is set ap with usr bin Iscondition e use it without a parameter to check the state of the various conditions gt Monitored or Not Monitored e use it with the specific condition as a parameter The SelectionString tells you which sensor it is monitoring e The condition must be associated with the sensor c Make sure that the response is linked to the condition with usr bin Iscondresp e Use it without a parameter to see the complete list of condition response combinations e Use it with a specific condition as a parameter and you would get a list of responses associated with that condition e The response and condition must be linked 7 You must restart the RSCT subsystem according to the RSCT Users Guide 8 If the problem has not been fixed call your next level of support Event not in xCAT MS var log xcat syslog fabric notices Use this procedure if an expected event is not in the remote syslog file 228 Power Systems High performance clustering If an expected event is not in the remote syslog file for notices on the xCAT MS var log xcat syslog fabric notices do the following p
4. Other exceptions on switch or HCA ports Contact your next level of support If anything is done to change the hardware or software configuration for the fabric use Re establishing Health Check baseline on page 244 The following table is used for any symptoms observed by using hardware light emitting diodes LEDs on HCAs and switches These include switch LEDs that are virtualized in the Chassis Viewer Table 84 Hardware or Chassis Viewer LEDs symptoms Symptom Procedure or Reference LED is not lit on switch port See Diagnosing link errors on page 210 LED is not lit on HCA port See Diagnosing link errors on page 210 Red LED that is not on a switch port or HCA See the Switch Users Guide and the QLogic Troubleshooting Guide switch component Other switch LED conditions on non port LEDs See the Switch Users Guide and the QLogic Troubleshooting Guide switch component Then _use Diagnosing problems on page 213 Other HCA LED conditions See the IBM systems service information Then use Diagnosing and repairing IBM system problems on page 213 The following is a table of symptoms of problems reported by Fast Fabric tools Health check files are found by default on the fabric management server in the var opt iba analysis baseline latest lt savedate gt Refer to theFast Fabric Toolset Users Guide for details Problems
5. Subnet Manager within the Fabric Manager Subnet Manager on page 11 Phyp POWER Hypervisor on page 12 Device Drivers HCADs Device drivers on page 12 Host Stack IBM host stack on page 12 The following figure shows the main components of the fabric data flow 6 Power Systems High performance clustering Figure 2 Main components in fabric data flow The following figure shows the high level software architecture Figure 3 High level software architecture The following figure shows a simple InfiniBand configuration illustrating the tasks the software layers the windows and the hardware The host channel adapter HCA shown is intended to be a single HCA card with four physical ports However the figure could also be interpreted as a collection of physical HCAs and a port for example two cards each with two ports Figure 4 Simple configuration with InfiniBand To gain a better understanding of InfiniBand fabrics see the following documentation e The InfiniBand standard specification from the InfiniBand Trade Association e Documentation from the switch vendor IBM GX or GX host channel adapter The IBM GX or GX host channel adapter HCA provides server connectivity to InfiniBand fabrics When you attach an adapter to a GX or GX bus you can gain higher bandwidth to and from the adapter You also can gain better network performance than attaching an adapte
6. e Review the previous setup instructions to ensure that they were performed correctly paying close attention to the setup of the JOY SIO conf file Recall that you were using the logger command such that the Fabric Management Server would be the source of the log entry g Use the procedure in that you were using the logSyslogTest command such that the switches were the source of the log entry h Verifying switch remote logging ends here This procedure ends here Remote syslogging to an xCAT MS ends here High performance computing clusters using InfiniBand hardware 119 Using syslog on RedHat Linux based xCAT MS Use this procedure to setup syslog to direct log entries from the fabric management server and switches Note Do not use this procedure unless you were directed here from another procedure If the level of Linux on the xCAT MS uses syslog instead of syslog ng use the following procedure to set up syslog to direct log entries from the fabric management server and switches instead of the one documented in Remote Syslogging and Event Management for xCAT on Linux After completing this procedure return to the procedure from which you were sent and continue after the steps that set up syslog ng and runs the monerrorlog command 1 Set up a sensor for syslog fabric notices file using the monerrorlog command but change the default priority filter to f_fabnotices and the monitored file to syslog fabric notic
7. f Rcv state machine discard packet PortRevErr a Malformed packet PortRcvPhysicalRemote P7ECZ510 0 Figure 24 PortRevErrors Note One important consideration in investigating combinations of errors is to ensure that you understand the thresholds that are being used Thresholds used by iba_report are included in the output You do not want to be in a situation where the threshold for PortRcvErrors is considerably different from the threshold for SymbolErrors In fact the two thresholds must typically be the same InfiniBand Trade Association spec allows 10 bit error rate However the QLogic and IBM component designs are such that the expected bit error is between 10 and 10 This translates into an error threshold of 10 errors over a 24 hour period Performance impact Because PortRcvErrors occur only on data transfers there is a performance impact caused by them It is possible that multiple packets beyond the corrupted packet must be retransmitted to guarantee in order delivery Therefore the impact is very much dependent on the application traffic pattern Threshold minimum actionable 2 Threshold maximum in 24 hours 10 SymbolErrorCounter The SymbolErrorCounter is the most basic and common indicator of errors on a link High performance computing clusters using InfiniBand hardware 269 It indicates that an invalid combination of bits was received While it is possible to get other lin
8. Table 78 Possible issues found in health check changes files continued Issue Description and possible actions Port Attributes Inconsistent This indicates that the attributes of a port on one side of a link have changed such as PortGuid Port Number Device Type and others The inconsistency would be caused by connecting a different type of device or a different instance of the same device type This would also occur after replacing a a faulty device If the configuration has changed purposely since the most recent baseline and this difference is reflected here save the original baseline and rerun the baseline as instructed in Re establishing Health Check baseline on If a faulty device was replaced this would be a reason to re establish the baseline If this difference was not intended you must rectify the difference to prevent future health checks from reporting the same difference from the baseline This is a specific case of Different See the Different issue SM Attributes Inconsistent This indicates that the attributes of the node or port running an SM in the fabric have changed such as NodeGuid Node Description Port Number Device Type ans others The inconsistency would be caused by moving a cable changing from host based subnet management to embedded subnet management or vice versa or by replacing the HCA in the fabric management server If the configuratio
9. 10g 0x00025500000da080 lt gt 0x00066a00d90003d6 10g 0x00025500000da081 SW SW SW SW SW SW SW SW SW SW SW SW IBM Sil IBM IBM Sil IBM IBM Sil IBM IBM Sil IBM logical switch 1 verStorm logical switch 2 logical switch 1 verStorm logical switch 2 logical switch 1 verStorm logical switch 2 logical switch 1 verStorm logical switch 2 High performance computing clusters using InfiniBand hardware 9024 DDR GUID 0x00066a00d90003d6 9024 DDR GUID 0x00066a00d90003d6 9024 DDR GUID 0x00066a00d90003d6 9024 DDR GUID 0x00066a00d90003d6 173 You can see in the swap in the previous example by charting out the differences in the following table The logical switch 2 lines happen to be extraneous information for this example because their connections are not shown by diff this is a result of using C 1 Switch Port Connected to HCA port in baseline Connected to HCA port in latest 0x00066a00d90003d6 15 SW 0x00025500000d8b80 1 SW IBM 0x00025500000da080 1 SW SilverStorm 9024 DDR logical switch 1 IBM logical switch 1 0x00066a00d90003d6 14 SW 0x00025500000d8b80 1 SW IBM 0x00025500000da080 1 SW SilverStorm 9024 DDR logical switch 1 IBM logical switch 1 Querying status You can query fabric status in several ways The following methods can be used to query the status of the fabric e Check logs on the xCAT MS as described in Monitoring fabric logs from the xCAT Cl
10. Hardware light emitting diodes LEDs The switches and host channel adapters HCAs have LEDs Service Focal Point This is the standard reporting mechanism for IBM Power Systems servers that are managed by HMCs Chassis Viewer LED This is a graphical user interface GUI that runs on the switch and is accessible from a web browser It provides virtual LEDs that represent the switch hardware LEDs Fast Fabric Toolset There are 2 ways the Fast Fabric Toolset reports fabric problems The first is from a report output The other is in a health check output Customer reported problem This is any problem that the customer reports without using any of the reporting mechanisms Fabric Viewer This is a GUI that provides a view into current fabric status The following logs usually must not be accessed when remote logging and xCAT Event Management are enabled However sometimes they might be required to be captured for debug purposes Fabric Notices log on xCAT MS This is an intermediate log where Notice or higher severity log entries from switches and Subnet Managers are received through syslogd on the xCAT MS This is located on the xCAT MS in the file var log xcat syslog fabric notices For xCAT this is a pipe on a Linux MS and thus cannot be viewed normally Reading from the pipe causes event management to lose events Info log on xCAT MS This is an optional intermediate log whe
11. IBM GX or GX host channel adapter on page 7 Note This procedure has some steps that are specific to operating system type AIX or Linux This must do with querying the HCA device from the operating system For AIX the adapter is called ibaX where X is a number 0 through 3 For Linux the adapter is call ehcaX where X is a number 0 through 3 A log entry like the following example is reported with the physical being reported Here the physical information is underlined and in bold Note the Node type in italics it is a switch Apr 15 09 25 23 c924hsm ppd pok ibm com local6 notice c924hsm iview_sm 26012 c924 hsm MSG NOTICE SM c924hsm port 1 COND 4 Disappearance from fabric NODE SW SilverStorm 9024 DDR GUID 0x00066a00d90003d3 port 11 0x00066a00d90003d3 DETAIL Node type switch The format of the switch node is name port GUID The following procedure finds the physical switch connection and node and HCA port and location The preceding log would be used as an example and example results from any queries would also be provided 1 Get the switch GUID and port gt GUID 0x00066a00d90003d3 port 11 2 Logon to the fabric management server 3 Find the Logical switch name This query returns the switch side of a link as the second port of the link and the logical switch port as the first port in the link a If the baseline health check has been run use the following command If it has not been run
12. If you must change the switch port amplitude settings and there are fewer ports that require a change from the default settings than those that should remain at the default settings perform the following steps 1 Log on to the fabric management server 2 Read the default amplitude setting from the switches cmdall C ismChassisSetDdrAmp itude which returns the settings for all ports You should note that the settings are different from the desired switch port amplitude settings If this not the case then you might stop this procedure and go to step d below 3 For each port that is common among all switch execute cmdall C ismPortSetDdrAmp1itude port 0x01010101 e For the 9024 switch IBM 7874 024 the format for the port is Cable x where x is the port number mow e For switches with leafs the format for the port is LxPy where x is the leaf number and p is the port number e You might want to use a for loop on the fabric management server command line to step through all of the ports Example for port in L12P11 L12P12 do ismPortSetDdrAmplitude port 0x01010101 done High performance computing clusters using InfiniBand hardware 141 4 For each port that is unique to a particular switch run the above ismPortSetDdrAmp1itude command as above but either log on to the switch or add the H switch chassis ip address parameter to the cmdall command so that it directs the command to the correct switch 5
13. 3 Edit to update the symbol errors threshold to the value in Table 77 on page 161 For example in the following you would see the default setting for SymbolErrorCounter and the setting for hour 12 in the file etc sysconfig iba iba_mon conf 12 Default SymbolErrorCounter SymbolErrorCounter 100 Using Table 77 on page 161 for hour 12 you would have the iba_mon conf 12 with the following symbol error threshold setting Error Counters Symbol ErrorCounter 5 4 Set up cron jobs to run the all_analysis command with different threshold files For example if you start the 24 hour interval at 6 a m the crontab would look like the following example Which assumes that the switch names begin with SilverStorm and that at 6 a m the C is used to reset the counters 0 6 FF_FABRIC_HEALTH s C o errors o slowlinks F nodepat SilverStorm sbin all_analysis c etc sysconfig iba iba_mon conf 0 0 10 sbin all_analysis c etc sysconfig iba iba_mon conf 4 0 14 x sbin all_analysis c etc sysconfig iba iba_mon conf 8 0 18 sbin all_analysis c etc sysconfig iba iba_mon conf 12 0 22 sbin all_analysis c etc sysconfig iba iba_mon conf 16 2 x x x sbin all_analysis c etc sysconfig iba iba_mon conf 20 5 Configure a cron job to run iba_report o errors to gather all non zero error counters once per hour a Configure a threshold file with thresholds set to 1 Name it etc sysconfig iba iba_mon con
14. If you have an embedded SM edit the entry to look like the following example export FF_ALL_ANALYSIS FF_ALL_ANALYSIS fabric chassis esm Using a pattern that matches the names of your switches set up the FF_FABRIC_HEALTH variable The following is an example which assumes that the default names were left in place The default names begin with SilverStorm It also removes the clear of errors that exceed threshold export FF_FABRIC_HEALTH FF_FABRIC_HEALTH s o errors 0 slowlinks F nodepat SilverStorm e The default upload directory for data collection is uploads In order to make this more consistent it must be either changed to HOME or some other standard for the site Change the following variable export UPLOADS DIR UPLOADS_DIR HOME e Also if applicable ensure that the etc sysconfig iba esm_chassis file has the list of switch IP addresses for switches that are running the Embedded SM The etc sysconfig iba ports file must have a list of ports on the fabric management server The format is a single line listing the HCA ports on the fabric management server that are attached to the subnets There should be one port per subnet The format for identifying a port is hca port If four ports are connected the ports file should have a single line like 1 1 1 2 2 1 2 2 Note While there is another format possible for the ports file the previous format is preferred because tools and methodologies for command
15. Tool or Command Comments cmdall To issue Command Line Interface CLI commands to all switches simultaneously Health check tools all_analysis fabric_analysis and other tools Use health check tools to check for problems during installation problem determination and repair You can also run them periodically to proactively check for problems or unexpected changes to the network by comparing current state and configuration with a baseline For more information see Health checking on Use to capture data for problem determination Use to ping all the switch chassis on the network to determine if they are accessible from the fabric management server iba_chassis_admin Use primarily to update firmware and reboot switches management firmware switch chassis management and embedded Subnet Manager iba_report Use to generate many different reports on all facets of fabric configuration and operation iba_reports Use to run iba_report against all of the subnets attached to an FM server It uses the ports listed in etc sysconfig iba ports fabric_info Gives a summary of fabric information such as counts of the number of HCAs CAs switch chips and links Fast Fabric Toolset menu iba_config Fast Fabric functions can be accessed by using the Fast Fabric Toolset menu which is a TTY menu This can be especially helpful in learning the power of Fast Fabric Impo
16. d If the number of symbol errors increase or other errors increase go to step 4 If there are HCA reported PortRcvErrors being reported and there are also PortRcvRemotePhysicalErrors do the following steps Otherwise go to step Note e For more details on PortRcvErrors see PortRcvErrors on page 268 For more details on PortRcvRemotePhysicalErrors see PortRcvRemotePhysicalErrors on page 271 e The HCA increments PortRcvErrors when various other link integrity problems are discovered These include PortRcvRemotePhysicalErrors a If the count of PortRcvErrors and PortRcvRemotePhysicalErrors is the same then ignore the PortRcvErrors and address only the PortRcvRemotePhysicalErrors Instructions for interpreting PortRcvRemotePhysicalErrors are in Interpreting remote errors on page 260 If you have other link integrity errors on this link continue through this procedure to address those first b If the count of PortRcvErrors is higher than PortRcvRemotePhysicalErrors then proceed with step 5 of this procedure However first determine and subtract the number of PortRcvRemotePhysicalErrors from the number of PortRcvErrors to determine how many of the PortRcvErrors correspond to the local link instead of a remote problem Then determine if the local PortRcvErrors exceeds the threshold 5 For LinkErrorRecovery LocalLinkIntegrityErrors PortRcvErrors and SymbolErrs not attributable to link training or rebooting and
17. on page 2 The following table indicates the components or units that are supported in an HPC cluster as of Service Pack 10 Table 25 Supported HPC components P7ECZ501 0 Component type POWER6 processor based servers POWER7 8236 Component Model feature or minimum level 2U high end server 9125 F2A High volume server 4U high 8203 E4A 8204 E8A Only IPoIB is supported on the 8203 and 8204 8236 755 full IB support Blade Server Model JS22 7988 61X Model JS23 7778 23X 24 Power Systems High performance clustering Table 25 Supported HPC components continued Component type Component Model feature or minimum level Operating system AIX 5L AIX 5 3 at Technology Level 5300 12 with Service Pack 1 AIX 5 3 is for POWER6 only AIX 6 1 POWERG AIX Version 6 1 with the 6100 01 Technology Level with Service Pack 1 POWER AIX 6LVersion 6 1 with the 6100 04 Technology Level with Service Pack 2 RedHat RHEL Red Hat 5 3 ppc kernel 2 6 18 128 2 1 el5 ppc64 Switch QLogic for existing customers only 9024 9040 9080 9120 9240 IBM 7874 024 7874 040 7874 120 7874 240 IBM GX HCAs IBM GX HCA for 9125 F2A 5612 IBM GX HCA for 8203 E4A and 8204 E8A 5616 SDR HCA 5608 5609 DDR HCA IBM GX HCA for 8236 E8C 5609 DDR HCA JS22 JS23 HCA Mellanox 4x Connect X HCA 8258 JS22 JS23 Pass thru module
18. running all_analysis is problematic when targeting a specific link Furthermore it queries much more than is required to cover just the error counter Therefore you want to mimic the all_analysis output format but use iba_report iba_report o errors c IBAMON h hca p hcaport gt TMPFILE If any errors reported in the tempfile Write to analysis log that there are errors that will be listed in var opt iba analysis timestamp fabric hca hcaport errors Copy the temp file to a permanent record using mv TMPFILE var opt iba analysis timestamp fabric hca hcaport errors Set HEALTHY 0 else Write to analysis log that there were no errors found See if need to do full error clear This will also drive deleting any existing link clear files if diffh 24 Run clearerrors script Delete all link clear files from list that was found above High performance computing clusters using InfiniBand hardware 281 if HEALTHY 0 write to analysis log file HEALTHCHECK problems else write to analysis log file HEALTHCHECK All OK 282 Power Systems High performance clustering Notices This information was developed for products and services offered in the U S A The manufacturer may not offer the products services or features discussed in this document in other countries Consult the manufacturer s representative for information on the products and services
19. 15 For xCAT xdsh nodegroup with all nodes that had previously missing HCAs v Isdev Cc adapter grep iba c If the HCA e Is still not visible to the system continue with the step e Is visible to the system continue with the procedure to verify that all HCAs are available to the LPARs If you have an HCA that was assigned to an LPAR but the HCA is not visible to the system a Go to SFP on the HMC controlling each server and review the error logs b Fix any events that are reported against each server or HCAs in that server Perform the following recovery procedure c If all of the interfaces in an LPAR are not configured use the procedure in Recovering all of the ibX interfaces in an LPAR in the AIX on page 236 d If only a single interface in an LPAR is not configured use the procedure in Recovering a single ibX interface in AIX on page 235 Verify all HCAs are available to the LPARs Run the following command to determine how many HCA interfaces are available for use For xCAT xdsh nodegroup with all nodes v Isdev Cc adapter grep ib grep Available wc If the number returned by the system e Matches the number of HCAs in the cluster continue with the procedure to with Verify all HCAs are available to the LPARs e Does not match the number of HCAs continue with this procedure Verify that all servers are powered on Run the following command to see which HCAs are visible
20. Any other typical xdsh command string can be used Note In the planning and installation phases one or more groups were created to be able to address multiple fabric management servers simultaneously Remotely accessing QLogic switches from the xCAT MS Remotely accessing switch commands from xCAT can be an important addition to the management infrastructure It effectively integrates the QLogic management environment with the IBM management environment By using the remote command execution you can run manual queries from the xCAT console without logging in the switch You can also write management and monitoring scripts that run from the xCAT MS which can improve productivity for the administration of the cluster fabric You can write scripts to act on nodes based on switch activity or act on switches based on node activity A list of xCAT remote command capabilities that support QLogic switches e xdsh execution is supported for QLogic switch e updatehwdev is supported for QLogic switch to transfer ssh keys from MS to QLogic switch e xdshbak command is supported for QLogic switch e xdsh z flag is supported for QLogic switch Display the exit status of the last remotely run e node group is supported for QLogic switch The switches use a proprietary Command Line Interface CLI For xCAT to work with the switch CLI certain profiles must be set up and there is also a new dsh command parameter that must be used to reference the swit
21. Cable the fabric management server to the cluster VLAN It must be on the same VLAN with the switches Before proceeding ensure that the fabric management server is cabled to the InfiniBand fabric and the switches are powered on F9 M4 Final fabric management server Configuration and Verification a If you are using a host based SM make sure that the embedded Subnet Managers are not running unless you plan to use both i Run the cmdall C smControl status command ii If one or more ESM is running stop it using the cmdall C smControl stop command iii Ensure that the ESM would not start on reboot by using the cmdall C smConfig startAtBoot no command b After starting the fabric manager using etc init d qlogic_fm start verify that the HCA cables are connected to the correct switches This assumes that the switches have had their IBNodeDesc set so that each switch can be identified in the iba_report output Power Systems High performance clustering 14 15 16 17 Run iba_report against each port in the etc sysconfig iba ports file For example e iba_report h 1 p 1 grep SW e iba_report h 2 p 2 grep SW c Verify correct security configuration for switches by ensuring that each switch has the required username password enabled i Run the cmdall C loginMode command ii The return value must be zero If not enable it iii Run the cmdall C loginMode 0 e command Set up passwordless s
22. Clustering systems by using InfiniBand hardware on Provides references to information resources an overview of cluster components and the supported component levels Cluster information resources on page Provides a list of the various information resources for the key components of the cluster fabric and where they can be obtained These information resources are used extensively during your cluster implementation so it is important to collect the required documents early in the process Fabric communications on page 6 Provides a description of the fabric data flow Management subsystem function overview on page 13 Provides a description of the management subsystem Supported components in an HPC cluster on page 24 Provides a list of the supported components and pertinent features and the minimum shipment levels for software and firmware Cluster planning on page 26 Provides information about planning for the cluster and the fabric Cluster planning overview on page 27 Provides navigation through the planning process Required level of support firmware and devices on Provides the minimum ship level for firmware and devices and provides a website to obtain the latest information Server planning on page 29 Planning InfiniBand network cabling and configuration on page 30 and Management subsystem planning on page 54
23. Fabric management server IP addresses 10 1 1 14 10 1 1 15 Switch logging is UDP protocol port 514s 514 default Switch chassis IP address 10 1 1 16 10 1 1 17 10 1 1 18 10 1 1 19 Notice Info Sensor Condition Response File or named pipe File or named pipe var log xCAT var log xCAT AIXSyslogSensor LocalAIXNodeSyslog LogNodeErrorLogEntry fabric syslog notices fabric syslog info Notes High performance computing clusters using InfiniBand hardware 91 QLogic fabric management worksheets Use this worksheet to plan QLogic Fabric Management This worksheet highlights information that is important for management subsystem integration in high performance computing HPC clusters with an InfiniBand network It is not intended to replace the planning instructions found in the QLogic Installation and Planning Guides To plan thoroughly for QLogic Fabric Management complete the following worksheets e General QLogic Fabric Management worksheet e Embedded Subnet Manager worksheet if applicable e Fabric management server worksheet Table 63 General QLogic Fabric Management worksheet General QLogic Fabric Management worksheet Host based or embedded SM LMC 2 is preferred MTU Chassis Broadcast MTU rate for broadcast Fabric management server names and addresses on cluster VLAN Embedded Subnet Manager Switches Primary Subnet Managers location B
24. GUID port Example results gt grep A 1 Og 0x00025500103a7200 1 var opt iba analysis basel ine fabric l ink 60g 0x000255001024d900 1 CA IBM G2 Logical HCA lt gt 0x000255001024d902 2 SW IBM G2 Logical Switch 1 9 The logical switch port is in the last line of the results of the query Get the name for the logical switch This tells you which logical switch attaches to the physical switch port Also record the logical switch GUID lt gt logical switch GUID port SW logical switch name IBnodeDescription Example results Logical Switch 1 Logical Switch GUID 0x0025501024d902 10 To find the physical location of the logical switch port use the logical switch number and iba device found preceding with the Table 91 on page 207 Example Results iba0 ehca0 and logical switch 1 map to C65 Tl 11 Find the physical switch connection to the logical switch a If the baseline health check has been run use the following command If it has not been run use step f grep A 1 Og GUID var opt iba analysis baseline fabric links b If the baseline health check has not been run you must query the live fabric by using the following command iba_report o links grep A 1 Og GUID Example results gt grep A 1 Og 0x00025500103a7202 var opt iba analysis basel ine fabric links 20g 0x000255001024d902 1 SW IBM G2 Logical Switch 1 lt gt 0x00066a00d90003d3 3 SW SilverStorm 9024 DDR GUID 0x00066a00d90003d3 The phy
25. The following worksheet can be used to plan for each leaf 86 Power Systems High performance clustering Table 54 Example Planning worksheet for Director or core switch with more than 24 ports leaf configuration 2 of 4 Leaf_1 Leaf __2 Ports Connection Ports Connection 1 f01n01 C65 T1 1 02n01 C65 T1 2 01n02 C65 T1 2 02n02 C65 T1 3 01n03 C65 T1 3 02n03 C65 T1 4 01n04 C65 T1 4 02n04 C65 T1 5 01n05 C65 T1 5 02n05 C65 T1 6 01n06 C65 T1 6 02n06 C65 T1 7 01n07 C65 T1 7 02n07 C65 T1 8 01n08 C65 T1 8 02n08 C65 T1 9 01n09 C65 T1 9 02n09 C65 T1 10 f01n10 C65 T1 10 f02n10 C65 T1 11 f01n11 C65 T1 11 f02n11 C65 T1 12 f01n12 C65 T1 12 f02n12 C65 T1 Table 55 Example Planning worksheet for Director or core switch with more than 24 ports leaf configuration Leaf _7 Leaf _8 _ Ports Connection Ports Connection 1 07n01 C65 T1 1 08n01 C65 T1 2 07n02 C65 T1 2 08n02 C65 T1 3 07n03 C65 T1 3 08n03 C65 T1 4 07n04 C65 T1 4 08n04 C65 T1 5 07n05 C65 T1 5 08n05 C65 T1 6 07n06 C65 T1 6 08n06 C65 T1 7 07n07 C65 T1 7 08n07 C65 T1 8 07n08 C65 T1 8 08n08 C65 T1 9 07n09 C65 T1 9 08n09 C65 T1 10 07n10 C65 T1 10 08n10 C65 T1 11 f07n11 C65 T1 11 08n11 C65 T1 12 07n12 C65 T1 12 08n12 C65 T1 A similar pattern to the previous worksheets is used for the next three
26. Voltaire High Performance InfiniBand Pass Through Module for IBM BladeCenter 3216 Cable CX4 to CX4 For Information seq Cables on page QSFP to CX4 For Information seq Cables on page Management node for InfiniBand IBM System x 3550 1U high 7978AC1 one IBM System x 3650 2U high 7979AC1 HCA for management node QLogic Dual Port 4X DDR InfiniBand PCIe HCA QLogic InfiniBand Fabric Suite Fabric QLogic host based Fabric Manager 5 0 3 0 3 Manager embedded not preferred QLogic OFED host stack Fast Fabric Toolset Switch firmware QLogic firmware for the switch 4 2 4 2 1 xCAT AIX or Linux 2 3 3 High performance computing clusters using InfiniBand hardware 25 Table 25 Supported HPC components continued Component type Component Model feature or minimum level Hardware Management Console HMC POWERG HMC V7R3 5 0M0 HMC with fixes MH01194 MH01197 MH01204 and V7R3 5 0M1 HMC with MH01212 HMC build level 20100301 1 POWER7 V7R7 1 1 HMC with Fix pack AL710_03 Cluster planning Plan a cluster that uses InfiniBand technologies for the communications fabric This information covers the key elements of the planning process and helps you organize existing detailed planning information When planning a cluster with an InfiniBand network you bring together many different devices and management tools to form a cluster The following are major c
27. there is a sample worksheet to help you coordinate tasks among installation teams and members Related concepts Hardware Management Console on page 18 You can use the Hardware Management Console HMC to manage a group of servers Installation coordination worksheet Use this worksheet to coordinate installation tasks High performance computing clusters using InfiniBand hardware 73 Each organization can use_a separate installation worksheet and the worksheet can be completed by using the flow shown in Figure 11 on page 71 It is good practice for each individual and team participating in the installation review the coordination worksheet ahead of time and identify their dependencies on other installers Management console installation steps M2 M4 from Figure 11 on page 71 have multiple tasks associated with each of them You can also review the details for them in Figure 12 on page 100 and see where you can assign different individuals to those tasks that can be performed simultaneously Table 39 Sample Installation coordination worksheet Organization Task Task description Prerequisite tasks Scheduled date Completed date The following table is an example of a completed installation coordination worksheet Table 40 Example Completed installation coordination worksheet Organization IBM Service Task Task description Prerequisite tasks Scheduled date Com
28. 2 Read the default amplitude setting from the switches cmdall C ismChassisSetDdrAmp itude which returns the settings for all ports You should note that the settings are different from the desired switch port amplitude settings If this not the case then you might stop this procedure and go to step d below 3 Change to the new setting issue cmdal C ismChassisSetDdrAmplitude 0x01010101 4 The next steps will set the ports that should remain at the default settings back to the default settings Remember that the links to the fabric management server must probably remain at default settings 5 For each port that is common among all switch run the command cmdal1 C jismPortSetDdrAmplitude port 0x01010101 e For the 9024 switch IBM 7874 024 the format for the port is Cable x where x is the port number mom e For switches with leafs the format for the port is LxPy where x is the leaf number and Woon p is the port number e You might want to use a for loop on the fabric management server command line to step through all of the ports Example for port in L12P11 L12P12 do ismPortSetDdrAmplitude port 0x01010101 done 6 For each port that is unique to a particular switch run the above ismPortSetDdrAmp1itude command as above but either log on to the switch or add the H switch chassis ip address parameter to the cmdall command so that it directs the command to the correct switch 7 Go to step d below
29. 2 1 1 C65 T2 2 L2 C1 2 1 1 C65 T3 3 L2 C1 2 1 1 C65 T4 4 L2 C1 2 1 2 C66 T1 1 L14 C1 2 1 2 C66 T2 2 L14 C1 2 1 2 C66 T3 3 L14 C1 2 1 2 C66 T4 4 L14 C1 2 2 1 C65 TI 1 L2 C2 2 2 1 C65 T2 2 L2 C2 2 2 1 C65 T3 3 L2 C2 2 2 1 C65 T4 4 L2 C2 2 2 2 C66 T1 1 L14 C2 2 2 2 C66 T2 2 L14 C2 High performance computing clusters using InfiniBand hardware 37 Table 31 Example topology gt 120 9125 F2As in 10 frames with 8 HCA connections in 4 InfiniBand subnets continued Frame Server HCA Connector Switch Connector 2 2 2 C66 T3 3 L14 C2 2 2 2 C66 T4 4 L14 C2 Continue through to the last server in the frame 2 12 1 C65 T1 1 L2 C12 2 12 1 C65 T2 2 L2 C12 2 12 1 C65 T3 3 L2 C12 2 12 1 C65 T4 4 L2 C12 2 12 2 C66 T1 1 L14 C12 2 12 2 C66 T2 2 L14 C12 2 12 2 C66 T3 3 L14 C12 2 12 2 C66 T4 4 L14 C12 Continue through to the last frame 10 1 1 C65 T1 1 L10 C1 10 1 1 C65 T2 2 L10 C1 10 1 1 C65 T3 3 L10 C1 10 1 1 C65 T4 4 L10 C1 10 1 2 C66 T1 1 L22 C1 10 1 2 C66 T2 2 L22 C1 10 1 2 C66 T3 3 L22 C1 10 1 2 C66 T4 4 L22 C1 10 2 1 C65 Tl 1 L10 C2 10 2 1 C65 T2 2 L10 C2 10 2 1 C65 T3 3 L10 C2 10 2 1 C65 T4 4 L10 C2 10 2 2 C66 T1 1 L22 C2 10 2 2 C66 T2 2 L22 C2 10 2 2 C66 T3 3 L22 C2 10 2 2 C66 T4 4 L22 C2 Continue through to the last s
30. Also ensure that udp ip 0 0 0 0 port 514 is in the src stanza and is not commented out You must use udp to receive logs from switches and the fabric management server Note The ip 0 0 0 0 entry indicates that the server allows entries from any IP address For added security you might want to specify each switch and fabric management server IP address in a separate line You must use the appropriate protocol as defined previously udp ip 192 9 3 42 port 514 udp ip 192 9 3 50 port 514 With syslog ng you must configure AppArmor to allow syslog ng to access the named pipe file var log xcat syslog fabric notices to which the remote syslog entries are directed Syslog ng requires read write permission to named pipes i Edit the syslog ng file for AppArmor etc apparmor d sbin syslog ng ii Add var log xcat syslog fabric notices wr just before the closing brace in the sbin syslog ng stanza Optionally to handle INFO entries also add var log xcat syslog fabric info wr For example sbin syslog ng include lt abstractions base gt var run syslog ng pid w var log xcat syslog fabric notices wr Note There would be many more INFO events than NOTICE events d Restart AppArmor using the etc init d boot apparmor restart command e Set up a sensor for the syslog fabric notices file by copying the default and changing the default priority filter and monitored file using the following step
31. And because the IBM GX or GX HCAs also present themselves as multiple logical devices because they can be virtualized For more information see IBM GX or GX host channel edapier on page 7 Conidering these restrictions you might want to restrict embedded Subnet Manager use to subnets with only one model 9024 switch in them If you plan to use the embedded Subnet Manager you need the fabric management server for the Fast Fabric Toolset For more information sce Planning Fast Fabric Toolset on page eal you use ESM it does not eliminate the need for a fabric management server The need for a backup fabric management server is not as great but it is still preferred You might find it simpler to maintain host based Subnet Manager code than embedded Subnet Manager code You must obtain a license for the embedded Subnet Manager since it is keyed to the switch chassis serial number Figure 9 Typical Fabric Manager configuration on a single fabric management server Figure 10 Typical fabric management server configuration with eight subnets The key parameters for which to plan for the Fabric Manager are Note If a parameter applies to only a certain component of the fabric manager that are noted as in the following section Otherwise you must specify that parameter for each component of each instance of the fabric manager on the Fabric Management Server Components of the fabric manager are subnet manager SM performa
32. Go to step d below If you must change the switch port pre emphasis settings and there are more ports that require a change from the default settings than those that should remain at the default settings perform the following steps 1 Log on to the fabric management server 2 Read the default amplitude setting from the switches cmdall C ismChassisSetDdrAmp itude which returns the settings for all ports You should note that the settings are different from the desired switch port amplitude settings If this not the case then you might stop this procedure and go to step d below 3 Change to the new setting issue cmdall C ismChassisSetDdrPreemphasis 0x00000000 4 The next steps wpuld set the ports that should remain at the default settings back to the default settings Remember that the links to the fabric management server probably must remain at default settings 5 For each port that is common among all switch run the command cmdal1 C ismPortSetDdrPreemphasis port 0x00000000 e For the 9024 switch IBM 7874 024 the format for the port is Cable x where x is the port number mow e For switches with leafs the format for the port is LxPy where x is the leaf number and ma p is the port number e You might want to use a for loop on the fabric management server command line to step through all of the ports Example for port in L12P11 L12P12 do ismPortSetDdrAmplitude port 0x00000000 done 6 For ea
33. If a switch component is repaired see and repairing switch component problems on page Record the location of the change and see Diagnosing link errors on page 210 Health check file fabric diff chassis diff esm diff hostsm diff file and indicates configuration change 1 Record the location of the changes See the Fast Fabric Toolset Users Guide for details If the change is expected Re establishing N perform Health Check baseline on page 244 4 Ifthe change is not expected perform Diagnosing configuration changes on page 213 w Health check chassis diff esm diff hostsm diff file and indicates firmware change Health check stderr file 1 Record the location of the changes 2 See the Fast Fabric Toolset Users Guide for details 3 If the change is expected perform Re establishing Health Check baseline on page 244 4 If the change is not expected perform Updating code on page 176 This is a problem with health checking Check the link to the subnet Check the cluster virtual local area network VLAN for problems Use Capture data for Fabric Manager and Fast Fabric problems on page 196 Contact your next level of support for QLogic software problems Error reported on a link from health check or iba_report See Diagnosing link errors on page 210 The following table is used
34. Provides the planning requirements for the main subsystems Copyright IBM Corp 2011 1 Table 1 High level view of the cluster implementation process and associated information continued Content Description Planning installation flow on page 68 Provides guidance in how the various tasks relate to each other and who is responsible for the various planning tasks for the cluster This information also illustrates how certain tasks are prerequisites to other tasks This topic assists you in coordinating the activities of the installation team Planning worksheets on page 76 Provides planning worksheets that are used to plan the important aspects of the cluster fabric If you are using your own worksheets they must cover the items provided in these worksheets Other planning Installing a high performance computing with an InfiniBand network on page 96 Provides procedures for installing the cluster Cluster Fabric Management on page 152 Provides tasks for managing the fabric Cluster service on page 183 Provides high level service tasks This topic is intended to be a launch point for servicing the cluster fabric components Planning installation worksheets Provides blank copies of the planning worksheets for easy printing Clustering systems by using InfiniBand hardware This information provides planning and installation details to hel
35. RSCT is no longer required for IBM Power HPC Clusters This topic is for clusters that still rely on RSCT for InfiniBand network status monitoring Both IP and InfiniBand use the term subnet These are two distinctly different entities as described in the following paragraphs The IP addresses for the host channel adapter HCA network interfaces must be set up So that no two IP addresses in a given LPARs are in the same IP subnet When planning for the IP subnets in the cluster as many separate IP subnets can be established as there are IP addresses on a given LPAR The subnets can be set up so that all IP addresses in a given IP subnet are connected to the same InfiniBand subnet If there are n network interfaces on each logical partition connected to the same InfiniBand subnet then n separate IP subnets can be established Note This IP subnetting limitation does not prevent multiple adapters or ports from being connected to the same InfiniBand subnet It is only an indication of how the IP addresses must be configured Management subsystem planning This information is a summary of the planning required for the components of the management subsystem This information is a summary of the service and cluster VLANs Hardware Management Console HMC Systems Management application and Server vendor Fabric Management applications AIX NIM server and Linux Distribution server And pointers to key references in planning the management subsys
36. The total number of management Ethernet addresses is driven by the switch model Recall except for the 7874 024 QLogic 9024 each management spine has its own IP address in addition to the chassis address 7874 024 QLogic 9024 has one address 7874 240 QLogic 9240 has from four no redundancy to six full redundancy addresses Recall there are two hemispheres in this switch model and each has its own chassis address All other models have from two no redundancy to three addresses e For topology and cabling see Planning InfiniBand network cabling and configuration on Chassis MTU must be set to an appropriate value for each switch in a cluster For more information see Planning maximum transfer unit MTU on page 51 For each subnet you must plan a different GID prefix For more information see Planning for global identifier prefixes on page 52 You can assign a name to each switch which would be used as the IB Node Description It can be something that indicates its physical location on a machine floor You might want to include the frame and slot in which it resides The key is a consistent naming convention that is meaningful to you and your service provider Also provide a common prefix to the names This helps the tools filter on this name in the IB Node Description Often the customer name or the cluster name is used as the prefix If the servers have only one connection per InfiniBand subne
37. VLAN The units can be verified and discovered on the service VLAN The basic unit operation is verified The cabling for the InfiniBand network is connected o N Oo e ONS The InfiniBand network topology and operation is verified Figure 11 on page 71 shows a breakdown of the tasks by major subsystem The following list illustrates the preferred order of installation by major subsystem The order minimizes potential problems with performing recovery operations as you install and also minimizes the number of reboots of devices during the installation 1 Management consoles and the service VLAN Management consoles include the HMC any server running xCAT and a Fabric Management Server 2 Servers in the cluster 3 Switches 4 Switch cable installation 70 Power Systems High performance clustering By breaking down the installation by major subsystem you can see how to install the units in parallel Or how you might be able to perform some installation tasks for on site units while waiting for other units to be delivered It is important that you recognize the key points in the installation where you cannot proceed with one subsystems installation task before completing the installation tasks in the other subsystem These are called as merge points and are illustrated by using the inverted triangle symbol in Figure 11 The following items are some of the key merge points 1 The management consoles must be installed and confi
38. and not filter f_iptables destination fabinfo_xcat udp xCAT MS IP address port 514 log source src filter f_fabinfo destination fabinfo_xcat Note If you want to logon to more than one xCAT MS or to another server make sure to change the destination handle of the statement for each instance and then refer a different one for each log statement For example fabinfo_xCAT1 and fabinfo_xCAT2 would be good handles for logging to different xCAT MS 4 5 d Restart the syslog daemon using the etc init d syslog restart command If the syslog daemon is not running use the etc init d syslog start command e You have now setup the fabric management server to remotely log to the xCAT MS You are able to verify fabric management server remote logging operation when you get to step 4 on page 118 L3 M4 Point the switch logs to the xCAT MS a Do not proceed until you have installed configured and cabled the fabric management server to the service VLAN as described in Installing and configuring vendor or IBM InfiniBand switches You must also have installed configured and cabled the xCAT MS as described in b Use the switch documentation to point the switch to a remote syslog server If you want to use the command line interface use substep i If you want to use the Chassis Viewer use substep ii In either case you must also run substep iii 1 From the switch command line or Fast Fabric Toolset s cmdall ru
39. currently available in your area Any reference to the manufacturer s product program or service is not intended to state or imply that only that product program or service may be used Any functionally equivalent product program or service that does not infringe any intellectual property right of the manufacturer may be used instead However it is the user s responsibility to evaluate and verify the operation of any product program or service The manufacturer may have patents or pending patent applications covering subject matter described in this document The furnishing of this document does not grant you any license to these patents You can send license inquiries in writing to the manufacturer The following paragraph does not apply to the United Kingdom or any other country where such provisions are inconsistent with local law THIS INFORMATION IS PROVIDED AS IS WITHOUT WARRANTY OF ANY KIND EITHER EXPRESS OR IMPLIED INCLUDING BUT NOT LIMITED TO THE IMPLIED WARRANTIES OF NON INFRINGEMENT MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE Some states do not allow disclaimer of express or implied warranties in certain transactions therefore this statement may not apply to you This information could include technical inaccuracies or typographical errors Changes are periodically made to the information herein these changes will be incorporated in new editions of the publication The manufacturer may make improvements and
40. e Switches e HCAs or channel adapters CAs e End ports e Ports e Subnet Managers Note The count of the number of resources is given by an individual Subnet Manager If there are multiple subnets you must add up the results from the master Subnet Manager on each subnet Counting switches Use this procedure to count the number of switches on your fabric Physical switches generally come in two varieties 1 24 port base switch 2 Director level switches with spines and leafs These are composed of 48 ports or more With the IBM GX host channel adapter HCA you can get a logical switch per each physical port This is what connects the logical HCAs to the physical ports which yield the capability to virtualize the HCA A physical switch is constructed by using one or more switch chips A switch chip has 24 ports used to construct the fabric A base 24 port switch needs only one switch chip to yield 24 ports The director level switches such as the 9120 use cascading switch chips that are interconnected to yield a larger number of ports supported by a given chassis This introduces the concept of leaf boards that have the cables and then spines that interconnect the various leaf boards thus allowing where the data can flow in any cable port of the switch and out to any other cable port The key is to remember that there are 24 ports on a switch 248 Power Systems High performance clustering Each spine has two switch chips To m
41. eae OR oO ee ek woe D a B27 Event not in xCAT MS var log xcat syslog fabric no s BOS a Be Bee ee ee ee Event not in xCAT MS var log xcat syslog fabric info 2 1 1 1 ee ee ee ee 230 Event not in log on fabric management server 1 ee ee eee ee ee 2B Event notin switch l g s 2 s os ek opo ee ee a ee e DBD Reconfiguring xCAT event management eA Me Soe ee een ee Ok ee ae ee oe Reconfiguring xCAT on the AIX operating system 4B amp Sb amp de oe oe 2 et oe Ce oe be do 282 Reconfiguring xCAT on the Linux operating system a Be Geen ah cee fen cee ee eo ee Recovering from an HCA phere a logical partition from activating S hy Beis ch oS te oe wt ee cm 24285 Recovering ibX interfaces b Se p ee OR Boe Boe we a k amp oe w amp 3 5 235 Recovering a single ibX interface i in AIX Bt b de Bed Oe Oe A eR A BR A Soe ek ow we ZOOS Recovering all of the ibX interfaces in an LPAR in the AIX Zor o amp p Be oe as oe oa 2 oe o amp 2286 Recovering an ibX interface tcp_sendspace and tcp_recvspace ww ww ee ee 287 Recovering ml0 mi AIX a 2 e fos Bod b bd a a oe oe PO ek we eR 4287 Recovering Im IMAX s op dee g eas al oR dee da Ee ce a ae a ee le ee ee 287 Recovering ehcaX interfacesin Linux s s so v e sogor um osode a oeo e e E o e a a a a a 237 Recovering a single ibX interface in Linux Sogou Pe a 8 2 p 4 a f e 4 237 Recovering all of the ibX interfaces in an LPAR in fhe Ginx a GA o
42. from the xCAT MS by using the xdsh command to the fabric management server and the switches Running remote commands is an important addition to the management infrastructure since it effectively integrates the QLogic management environment with the IBM management environment For more details see xCAT2IBsupport pdf The following are some of the benefits for running remote commands e You can do manual queries from the xCAT MS console without logging on to the fabric management server or switch e Writing management and monitoring scripts that run from the xCAT MS which can improve productivity for administration of the cluster fabric For example you can write scripts to act on nodes based on fabric activity or act on the fabric based on node activity e Easier data capture across multiple Fabric Management Servers or switches simultaneously The following items can be considered to plan for remote command execution e xCAT must be installed e The fabric management server and switch addresses are used e The Fabric Management Server and switches would be created as nodes e Node attributes for the Fabric Management Server would be nodetype FabricMS e Node attributes for the switch would be nodetype IBSwitch Qlogic e Node groups can be considered for All the fabric management servers example ALLFMS All primary fabric management servers example PRIMARYFMS All of the switches example ALLSW A separate subnet group
43. lt gt 0x00066a00d90003d6 14 SW SilverStorm 9024 DDR GUID 0x00066a00d90003d6 30g 0x00025500000da100 1 CA IBM logical HCA 0 25 29 10g 0x00025500000da080 1 SW IBM logical switch 1 lt gt 0x00066a00d90003d6 14 SW SilverStorm 9024 DDR GUID 0x00066a00d90003d6 10g 0x00025500000da081 1 SW IBM logical switch 2 lt gt 0x00066a0007000ced 8 SW SilverStorm 9120 GUID 0x00066a00020001d9 Leaf 1 Chip A 30g 0x00025500000da100 1 CA IBM logical HCA 0 You can see in the swap in the previous example by charting out the differences in the following table HCA Port Connected to switch port in baseline Connected to switch port in latest 0x00025500000da080 IBM logical switch 1 1 SW 0x00066a0007000ced 8 SW SilverStorm 9120 GUID 0x00066a00020001d9 Leaf 1 0x00066a00d90003d6 14 SW SilverStorm 9024 DDR GUID 0x00066a00d90003d6 0x00025500000da081 1 SW IBM logical switch 2 0x00066a00d90003d6 14 SW SilverStorm 9024 DDR GUID 0x00066a00d90003d6 0x00066a0007000ced 8 SW SilverStorm 9120 GUID 0x00066a00020001d9 Leaf 1 An example of what might be seen when swapping two ports on the same switch FORO IR RR RK xxx 17 19 10g 0x00025500000d8b80 lt gt 0x00066a00d90003d6 10g 0x00025500000d8b81 17 19 10g 0x00025500000d8b80 lt gt 0x00066a00d90003d6 10g 0x00025500000d8b81 FORO RRR xxx 25 27 eK 10g 0x00025500000da080 lt gt 0x00066a00d90003d6 10g 0x00025500000da081 25 27
44. or home root uploads it depends on the user setup on the fabric management server This directory would be referenced as lt captureall_dir gt You can also include a file name and path to store the output file e For more information about captureall see Fast Fabric Toolset documentation Get data from the switches captureall F lt chassis file with switches listed gt Various hosts files must have been configured which can help you target subsets of Fabric Management Servers In order to direct data capture from particular switches by using the command line parameters instead of a chassis file you can use C H list of switches High performance computing clusters using InfiniBand hardware 195 4 By default data would be captured to files in the uploads directory below the current directory when you run the command 5 Get Health check data from a Baseline health check var opt iba analysis baseline b Latest health check var opt iba analysis latest c From failed health check runs var opt iba analysis lt timestamp gt Using script command to capture switch CLI output You can collect data directly from a switch command line interface CLI If you are directed to collect data directly from a switch CLI typically you would capture the output by using the script command which is available on both Linux and AIX The script command captures the standard output stdout from the telnet or ssh session with the switch and
45. regulations In the United States IBM has a process for the collection of this battery For information call 1 800 426 4333 Have the IBM part number for the battery unit available when you call C003 Power and cabling information for NEBS Network Equipment Building System GR 1089 CORE The following comments apply to the IBM servers that have been designated as conforming to NEBS Network Equipment Building System GR 1089 CORE The equipment is suitable for installation in the following e Network telecommunications facilities e Locations where the NEC National Electrical Code applies The intrabuilding ports of this equipment are suitable for connection to intrabuilding or unexposed wiring or cabling only The intrabuilding ports of this equipment must not be metallically connected to the interfaces that connect to the OSP outside plant or its wiring These interfaces are designed for use as intrabuilding interfaces only Iype 2 or Type 4 ports as described in GR 1089 CORE and require isolation from the exposed OSP cabling The addition of primary protectors is not sufficient protection to connect these interfaces metallically to OSP wiring Note All Ethernet cables must be shielded and grounded at both ends The ac powered system does not require the use of an external surge protection device SPD The dc powered system employs an isolated DC return DC I design The DC battery return terminal shall not be connected to the chass
46. switch ports must be configured in groups of three 4x ports to act as a single 12x link If you are configuring links at 12X go to C3 Otherwise go to C4 Prerequisites for C2 are W2 and C1 Configure 12x groupings on switches This must be done before attaching HCA ports Assure that switches remain powered on before attaching HCA ports Prerequisite is a Yes to decision point C2 C4 Attach the InfiniBand cable ends to the HCA ports Prerequisite is either a No decision in C2 or if the decision in C2 was Yes then C3 must be done first Complete V1 through V3 to verify the cluster networking topology and operation V1 This involves checking the topology by using QLogic Fast Fabric tools There might be different methods for checking the topology Prerequisites for V1 are M4 S7 W6 and C4 V2 V3 You must also check for serviceable events reported to the HMC Furthermore an all to all ping is suggested to exercise the InfiniBand network before putting the cluster into operation A vendor might have a different method for verifying network operation However you can consult the HMC and address any open serviceable events If a vendor has discovered and resolved a serviceable event then the serviceable event must be closed Prerequisite for V2 is V1 You must contact service numbers to resolve problems after service representatives leave the site In the Installation coordination worksheet
47. 1 egrep v iba icm do chdev 1 i a superpacket on a tcp_recvspace 524288 a tcp_sendspace 524288 a srq_size 16000 a state up done Note The preceding command modifies all of the HCA devices To modify a specific device such as ib0 use a command similar to the following example chdev 1 ibO0 a superpacket on a tcp_recvspace 524288 a tcp_sendspace 524288 a srq_size 16000 a state up 3 Verify the configuration by using the following steps a Verify that the device is set so that superpackets are on High performance computing clusters using InfiniBand hardware 239 for i in Isdev grep Infiniband awk print 1 egrep v ibalicm do echo i lsattr El i egrep super done Note To verify a single device such as ib0 use the Isattr El ib egrep mtu super command The MTU must return 65532 b Now you can check the interfaces for the HCA devices ibx and ml0 by using the following command netstat in grep v link awk print 1 2 The results must look like the following example where the MTU value is in the second column Name Mtu en2 1500 ibO 65532 ibl 65532 ib2 65532 ib3 65532 ib4 65532 ib5 65532 ib6 65532 ib7 65532 mlQ 65532 100 16896 100 16896 c If you are running a host based Subnet Manager to check multicast group creation on the fabric management server run the following command For IFS 5 use the following steps 1 Check for multicast mem
48. 1 1 Multicast Information GID Oxff12601bf ff f0000 0x0000000000000016 GID Oxff12401bf ff f0000 0x0000000000000016 Fabric 1 2 Multicast Information GID Oxff12601bf ff f0000 0x0000000000000016 GID Oxff12401bf ff f0000 0x0000000000000016 Fabric 2 1 Multicast Information GID Oxff12601bf ff f0000 0x0000000000000016 GID Oxff12401bf ff f0000 0x0000000000000016 Fabric 2 2 Multicast Information GID Oxff12601bf ff f0000 0x0000000000000016 GID Oxff12401bf ff f0000 0x0000000000000016 2 Check for MTU and link rate Typically you use the MTU and rate that are considered to be in error because that should return fewer things Generally these return only the fabric management server HCA links The following example shows checking for 2 K MTU and SDR speeds iba_reports o links F mtu 2048 To check for MTU of 2048 iba_reports o links F rate 10g To check for SDR speeds 6 Return to the procedure that directed you to this sub procedure This sub procedure ends here RedHat rpms required for InfiniBand Use this procedure only when installing the RedHat rmps required for InfiniBand High performance computing clusters using InfiniBand hardware 135 1 Confirm that the rpms listed in the following table are installed by using the rpm command as in the following example root on c697f1sq01 etc sysconfig network gt rpm qa grep i ofed Refer the notes at the end of the table The indications in th
49. 7 8 9 10 PortRcvConstraintErrors 3 4 5 6 7 8 9 10 LocalLinkIntegrityErrors 1 1 1 1 2 2 2 3 ExcessiveBufferOverrunErrors 1 1 1 1 2 2 2 3 VL15Dropped 0 0 0 0 0 0 0 0 Cronjobs At regular intervals you must clear the error counters because the thresholds are not time based but simple count based thresholds The time period between error counter clears are every 24 hours Two examples would be presented 1 querying at 4 hour intervals and 2 querying at 1 hour intervals The following procedure shows how to set up a 24 hour monitoring cycle at 4 hour intervals The default port error counter thresholds are defined in the etc sysconfig iba iba_mon conf file Multiple instances of this file would be created each configured to an appropriate set of thresholds based on the time period which it would be used and based on the thresholds in the Table 77 table 1 Save the original file by using the command cp p etc sysconfig iba iba_mon conf etc sysconfig iba iba_mon conf original 2 Create a file for each time period throughout a 24 hour cycle This helps you to point to a specific threshold for that time period This would help reduce false callouts of suspected faulty links Because High performance computing clusters using InfiniBand hardware 161 you must reference these files with the all_analysis script command name them based on the time period in which they would be used such as iba_mon conf time period
50. After being corrected rerun the health checks to look for further errors latest fabric 0 0 comps changes diff This indicates that the components in the fabric or their SMA configuration has changed Review the file and as necessary compare the latest fabric 0 0 comps file with baseline fabric 0 0 comps As necessary correct missing nodes ports which are down and port misconfigurations After being corrected rerrun the health checks to look for further errors If the change was expected and permanent rerun a baseline when all other health check errors have been corrected Finally review the results of the chassis_analysis file If chassis configuration has changed the chassis_analysis chassis_analysis the FF_CHASSIS_CMDS and FF_CHASSIS_HEALTH configuration setting selects which chassis commands are used for the analysis When using the default setting for this parameter review the files in the following order latest chassis hwCheck ensure that this file indicates all chassis are operating properly with the required power and cooling redundancy If there are problems correct them but other analysis files can be analyzed first When any problems are corrected rerun the health checks to verify the correction 166 Power Systems High performance clustering latest chassis fwVersion changes diff This file indicates the chassis firmware version has changed If this was not an expected change correct the chassis firmware before
51. ExcessiveBufferOverruns not attributed to configuration problems You must isolate the problem by performing the procedure A pyle bacco ca poner pes ee first decide the severity of the situation to determine if it is necessary to isolate and repair the problem immediately or if it might be deferred Note For more details on LinkErrorRecover see LinkErrorRecoveryCounter on page 266 information about LocalLinkIntegrityErrors see LocalLinkIntegrityErrors on page 267 a If an IBM GX HCA is reporting only SymbolErrors the problem might be deferred until the next maintenance window or until the HCA begins reporting other errors This is because the errors are occurring only on idle characters and are not impacting performance If the SymbolErrs are being reported at a high rate there is more probability that data packets would eventually be affected This does not apply to switch reported SymbolErrors For more High performance computing clusters using InfiniBand hardware 257 Note By design the IBM GX HCA increases the PortRcvError count if SymbolErrors occur on data packets If a SymbolError occurs on an idle character the PortRcvError would not be incremented Therefore HCA SymbolErrors reported in the absence of other errors indicates that the errors are occurring only on idle patterns and therefore are not impacting performance Any LinkErrorRecovery ExcessiveBufferOverruns not attributed to configuration problems
52. FE For more details sel Vabric manacer orl and the QLogic Fabric Manager Users Guide When more than one HSM is configured to manage a fabric the priority SM_x_priority is used to determine which one manages the subnet at a given time The wanted master or primary can be configured with the highest priority The priorities are 0 through 15 with 15 being the highest In addition to the priority parameter there is an elevated priority parameter SM_x_elevated_priority that is used by the backup when it takes over for the master More details are available in the following explanation of key parameters It is common practice in the industry for the terms Subnet Manager and Fabric Manager to be used interchangeably because the Subnet Manager performs the most vital role in managing the fabric e The HSM license fee is based on the size of the cluster that it covers See the vendor documentation and website referenced in Cluster information resources on page 2 e The following items are embedded Subnet Manager ESM considerations IBM is not qualifying the embedded Subnet Manager High performance computing clusters using InfiniBand hardware 57 If you use an embedded Subnet Manager you might experience performance problems and outages if the subnet has more than 64 IBM GX or GX HCA ports attached to it This is because of the limited compute power and memory available to run the embedded Subnet Manager in the switch
53. Fabric code level of 4 3 or higher continue with this procedure b Record the switch nodeGUID and port which are the second and third fields in the error counter report and has a form like 0x00066a0007000de7 The following example is of an IBM HCA Logical Switch reporting symbol errors and the switch nodeGUID and port are underlined and in a bold font In this case the nodeGUID is 0x00066a0007000de7 and the port is 3 20g 2048 0x00025500106d1602 1 SW IBM G2 Logical Switch 1 SymbolErrorCounter 1092 Exceeds Threshold 6 lt gt 0x00066a0007000de7 3 SW SilverStorm 9080 c938f4q101 Leaf 3 Chip c Find the LID associated with this nodeGUID by substituting nodeGUID in the following iba_report command In this example the LID is 0x000c Also note the subnet in which it was found In this case it is 1 1 or HCA 1 gt cnm02 for h in 1 2 do for p in 1 2 do echo h p iba_report h h p p o comps 2 gt amp 1 egrep NodeGUID Type SW LID Linear grep A 1 nodeGUD grep LID done done Le LID 0x000c LinearFDBCap 49152 LinearFDBTop 467 MCFDBCap 1024 1 2 2 1 2 2 d Disable the switch port by using the switch LID switch port and the fabric manager HCA and port mentioned in the preceding section found sbin iba_portdisable 1 lid m switch_port h h p p High performance computing clusters using InfiniBand hardware 253 e Re enable the switch port by using the switch LID switch port and the fabric manage
54. Fast Fabric Toolset the QLogic documentation references concepts like head nodes and other nodes This is because the QLogic documentation assumes the use of the QLogic provided stack on all nodes in a cluster IBM System p clusters do not use the QLogic stack on any server other than the fabric management server The fabric management server can be considered the equivalent to the head node running only the OFED IB stack QLogic IB tools QLogic Fast Fabric and QLogic FM e If you are updating from IFS 4 to IFS 5 there is a change in the FM configuration file The old file etc sysconfig iview_fm config is a flat file with an attribute entry for each instance of the individual components of the FM The new file etc sysconfig qlogic_fm xml is an XML file that contains sections for attributes that are common across the various components and instances of components of FM and sections for each instance Review the QLogic Fabric Manager Users Guide section on Fabric Manager Configuration If you are familiar with IFS 4 you would want to review the Mapping Old Parameters section of the QLogic Fabric Manager Users Guide to understand how the old configuration file attributes map to the new ones e If you are updating from IFS 4 to IFS 5 OFED drivers would be updated from 1 3 to 1 4 0 2 4 The installation performs this update e Additional details regarding these comments can be found in the Qlogic IFS5 QLogic InfiniBand Fabric
55. Fast Fabric Toolset Users Guide to interpret the diff file 7 If you intended to swap ports do the following Otherwise go to the next step a You will need to take another baseline so that future health checking will not fail Use the procedure in Re establishing Health Check baseline on page 244 b Inspect the cable labels If necessary change them to reflect the latest configuration c Then exit this procedure 8 If you did not intend to swap ports swap them back and go back to the beginning of this procedure to verify that you have been successful in swapping the ports back to their original configuration This procedure ends here Diagnosing swapped switch ports Swapping of ports might be inconsequential or it might cause performance problems it all depends on which ports get swapped An in depth analysis of whether a swap can cause performance problems is outside of the scope of this document However a rule of thumb applied here is that swapping ports between subnets is not desirable If switch ports have been swapped this would be uncovered by the Fast Fabric Health Check when it compares the latest configuration with the baseline configuration You must interpret the diff output between the latest and baseline configuration to see if a port swap has occurred In general when switch ports are swapped they are swapped between ports on the same switch chassis Switch ports that appear swapped between switch ch
56. GUID would allow for a match to be made when you do not have the port GUID information available from the ibstat n command 198 Power Systems High performance clustering For xCAT xdsh nodegroup with all servers v ibstat n grep GUID grep 1st seven bytes of GUID You would have enough information to identify the physical HCA and port with which you are working Once you know the server in which the HCA is populated you can issue an ibstat p to the server and get the information about exactly which HCA matches exactly the GUID that you have in hand End of AIX LPAR section Do the following for Linux LPARs In Linux the following commands are used to query port and node GUIDs from a Linux LPAR e ibv_devinfo v returns attributes of the HCAs and their ports ibv_devinfo v grep node_guid would return the node GUID ibv_devinfo v egrep GID port would return GIDs for ports The first 8 bytes are a GID mask and the second are the port GUID e ibv_devinfo l returns the list of HCA resources for the LPAR e ibv_devinfo d HCA resource returns the attributes of the HCA given in HCA resource The HCA resource names are returned in ibv_devinfo l e ibv_devinfo i port number returns attributes for a specific port e man ibv_devinfo to get more details on ibv_devinfo In order to use xCAT to get all HCA GUIDs in Linux LPARs use the following command string which assumes that all of your se
57. GX HCA connectivity in AIX check the HCA status by running the Isdev C grep ib script An example of good results for verifying a GX HCA would be similar to the following example ibaO Available Infiniband host channel adapter Fabric verification This information describes how to run a fabric verification application and check for faults to verify fabric operation Recommendations for fabric verification applications are found the IBM Clusters with the InfiniBand Switch website referenced in EM Clusters with the InfiniBand Switch You can also choose to run your own application You must consider how much of the application environment you must start before running your chosen application The preferences on the IBM Clusters with the InfiniBand Switch web site should require a minimal application environment and thus allow for verifying the fabric as early as possible in the installation process If you choose to run your own application use the verification steps outlined in Fabric verification procedure on page 151 rocedure on page 151 jas part of your fabric verification procedure Fabric verification responsibilities Unless otherwise agreed upon running the Fabric Verification tool is the customers responsibility IBM service is responsible for replacing faulty or damaged cables with IBM part numbers that are attached to IBM serviceable servers Otherwise either vendor service or the customer is responsible for
58. Guide The following items are the key steps to the installation a Untar the QLogic tarball b Run the install script using the appropriate flags as described in the QLogic documentation Note Do not enable IPoIB on the fabric management server or do not install the IPoIB capability Otherwise the multicast groups might be negatively affected by IPoIB on the fabric management server setting up groups that are not valid for the compute and I O servers on the fabric c Restart to start the QLogic OFED Stack 6 F5 M2 Set up the Fast Fabric Toolset by completing the following tasks 106 Power Systems High performance clustering Configure the Fast Fabric Toolset according to the instructions in the Fast Fabric Toolset Users Guide When configuring the Fast Fabric Toolset consider the following application of Fast Fabric within high performance computing HPC clusters e The master node referred in the Fast Fabric Toolset Users Guide is considered to be Fast Fabric Toolset host in IBM HPC clusters e Do not set up rsh and ssh access to the servers from the Fast Fabric Toolset host because xCAT would be used for remote server access e Do not use the message passing interface MPI performance tests because they are not compiled for the IBM host stack e High Performance Linpack HPL is not applicable for the IBM host stack e Use only parameters that list switch chassis and never issue commands to hosts Update the followi
59. High performance computing clusters using InfiniBand hardware 219 Verify HCAs ends here Checking system configuration in Linux You can check your system configuration with the Linux operating system Verifying the availability of processor resources To verify the availability of processor resources perform the following steps He Run the following command For xCAT xdsh nodegroup with all nodes v grep processor proc cpuinfo wc 1 This command must return the total number of processors available in the cluster if it does not a Verify that all servers are powered on b Fix any problems with dsh or xdsh not being able to reach all logical partitions c Find out which processors are not available by first determining which servers do not have the full number of processors configured For xCAT xdsh nodegroup with all nodes v grep processor proc cpuinfo wc 1 grep v correct number of processors d When you have narrowed down the problem to particular nodes run the following command and determine which processors are missing For xCAT xdsh nodegroup with nodes with a problem v grep processor proc cpuinfo e After you have identified the problem processors check SFP on the HMC controlling the server and complete the required service actions If no serviceable events are found try any isolation procedures for unconfigured processors that are found in the System Service Guide f When a
60. In the Properties dialog click the HCA tab 4 Using its physical location find and select the HCA of interest Click Configure Enter the GUID index and Capability settings If this is a new installation obtain these settings from the installation plan information If this is a repair see the setting that you previously recorded in step 2 on page 147 7 If the replacement HCA is in a different location than the original HCA clear the original HCA information from the partition profile by choosing the original HCA by its physical location and clicking Clear 148 Power Systems High performance clustering Note If the following message occurs when you attempt to assign a new unique GUID you might be able to recover from this error without the help of a service representative A hardware error has been detected for the adapter U787B 001 DNW45FD P1 Cx You cannot configure the device at this time Contact your service provider The Service Focal Point can be accessed on your HMC see the Start of callA procedure in Service Guide for the server and perform the indicated procedures Check the Service Focal Point and look for reports that are related to this error Perform any recovery actions that are indicated If you cannot recover from this error contact your service representative 5 After the server is started verify that the HCA is recognized by the operating system For more information see Verifying the installed Infi
61. Instead it provides a few examples intended to 180 Power Systems High performance clustering illustrate how iba_report might be used for detailed monitoring of cluster fabric resources Much more detail is available in the QLogic Fast Fabric Users Guide Table 80 Suggested iba_report parameters Parameter Description d 10 This parameter provides extra detail that you would not see at the default detail level of 2 You might find it useful to experiment with the detail level when developing a query Often d 5 is the most detail that you can extract from a given command S This parameter includes statistics counters in the report In order to ensure good performance of iba_report anytime the s parameter is used you must use the F nodepat switch name pattern parameter to avoid querying non existent counters in the Logical HCAs i seconds This parameter causes a query to statistics counters after waiting the number of seconds specified in the parameter Often this is used along with the C to clear the counters This implies the s parameter F focus info You can focus iba_report on a single resource or group of resources that match the filter described in the focus info See the Fast Fabric Users Guide for details on the many different filters that you can use like e portguid e nodeguid e nodepat for patterns to search for h hca and p port Used in conjunction these point
62. LEDs Table 85 on page 189 Symptoms being reported by the Fast Fabric Toolset including those reported by periodic health checks and user run commands Table 86 on page 191 Events being reported by Service Focal Point on the HMC High performance computing clusters using InfiniBand hardware 187 Table 82 Descriptions of Tables of Symptoms continued Table Description Table 87 on page 191 All other events including those reported by the operating system and users The following table is used for events reported in the xCAT MS Fabric Event Management Log tmp systemEvents on the xCAT MS The xCAT auditlog might point to that file Furthermore it is a reflection of switch logs and Subnet Manager logs so this table can be used for switch logs and Subnet Manager logs also For details on how to interpret the logs see Interpreting switch vendor log formats on page 207 Before performing procedures in any of these tables familiarize yourself with the information provided in Cluster service on page 183 which provides general information about diagnosing problems and the service subsystem Table 83 xCAT MS Fabric Event Management log symptoms Symptom Procedure or Reference Switch Chassis Management Logs Has CHASSIS string in entry Switch chassis log entry See the Switch Users Manual and contact QLogic Subnet Manager Logs Have SM string in the entry Link do
63. LPAR in the AIX on page 236 Recovering ehcaX interfaces in Linux There are several levels at which you can recover ehcaX interfaces which are the interfaces to the host channel adapter HCA in the Linux operating system You can recover a single ehcaX interface or all of the ehcaX interfaces by using the following procedures 1 Recovering a single ibX interface in Linux 2 Recovering all of the ibX interfaces in an LPAR in the Linux on page 238 Recovering a single ibX interface in Linux This procedure is used to recover a single ibX interface when using the Linux operating system To recover a single ibX interface in the Linux operating system perform the following procedure 1 To recover a single ibX interface first try to take down the interface and then bring it back up using the following commands a ifconnfig ibX down b ifconfig ibX up High performance computing clusters using InfiniBand hardware 237 2 If these commands do not recover the ibX interface check for any error messages in the dmesg resp attribute in the var log messages file And perform the appropriate service associated with the error messages 3 If the problem persists contact your next level of support Recovering all of the ibX interfaces in an LPAR in the Linux Use this procedure to recover all of the ibX interfaces in a logical partition in the Linux operating system To recover all of the ibX interfaces in a Linux partition
64. LocalLinkIntegrityErrors must be addressed as soon as possible because they indicate noisy links PortRcevErrors and SymbolErrors reported by switches might be deferred if there are no observable performance issues being reported However watch the links closely 6 Any other issues with the Link Integrity category of errors are not covered here I must be reported to your next level of support along with the following information a A copy of the error report b The time of the last clear of the error counters C d Any actions that were taken Information about any outside events that might influence the state of the link such as e CEC power cycle CEC checkstop e A cable being pulled or reseated e A switch being power cycled or rebooted e A leaf being reseated e An event in SFP that has the HCA in the FRU list e A power event that would have brought down the CEC e A power event in the switch The following figure is intended as a high level reference for those who already have a working knowledge of the details and theories in the preceding procedure The novice might also find it useful in learning the preceding procedure 258 Power Systems High performance clustering LinkDowned gt ExcessiveBufferOverrun Yes PortRevErrors by HCA MTU or VLs changed _ Repair MTU or VL settings PortRcvRemotePhysErrs gt Yes SymbolErrors by HCA are caused by reboot Isol
65. MS as a remote syslog server from the fabric management server by completing the following steps Note It is assumed that you are using syslogd on the xCAT MS If you are using another syslog application like syslog ng you must set up things differently but these instructions can be useful in understanding how to set up the syslog configuration a Do not proceed until you have installed configured and cabled the fabric management server to the service VLAN as in Installing the fabric management server on page 105 You must also have installed configured and cabled the xCAT MS as described in Installing the xCAT b Logon to the fabric management server c Edit the etc syslog conf some Linux levels use etc syslog ng syslog ng conf file 1 If the Fabric Management server is using syslog instead of syslog ng use substep ii If the Fabric Management server is using syslog ng instead of syslog use substep iii 2 For syslog add the following lines to the end of the file Remove brackets when entering the xCAT MS IP address send IB SM logs to xCAT MS xCAT IP address local6 put xCAT MS IP address 3 For syslog ng add the following to the end of the file Use udp as the transfer protocol You must configure syslog ng on the xCAT MS to accept one or the other or both Fabric Info from local6 to xCAT MS xCAT IP address filter f_fabinfo facility local6 and level info notice alert warn err crit
66. QLogic switches you can use the Fast Fabric Toolset to verify topology Alternatively you can use the Chassis Viewer and Fabric Viewer Figure 11 High level cluster installation flow Important In each task box of there is also an index letter and number These indexes indicate the major subsystem installation tasks and you can use them to cross reference between the following descriptions and the tasks in the figure The tasks indexes are listed before each of the following major subsystem installation items U1 Site setup for power and cooling including proper floor cutouts for cable routing M1 S1 W1 Place units and frames in their correct positions on the data center floor This includes but is not limited to HMCs fabric management servers and cluster servers with HCAs I O devices and storage devices and InfiniBand switches You can physically place units on the floor as they arrive However do not apply power or cable units to the service VLAN or to the InfiniBand network until instructed to do so Management console installation steps M2 through M4 have multiple tasks associated with each of them Review the details in Installing and configuring the management subsystem on page 98 to see where you can assign different people to those tasks that can be performed simultaneously M2 Perform the initial management console installation and configuration This includes HMCs fabric management server and DHCP service for the
67. REMOTE_IPADDR STARTMODE onboot c Restart the server 3 Verify the configuration a Verify that the device is set so that superpackets are on for i in Isdev grep Infiniband awk print 1 egrep v ibalicm do echo i lsattr El i egrep super done Note To verify a single device like ib0 use 1sattr El ibO egrep mtu super command The MTU must return 65532 b Now you can check the interfaces for the HCA devices ibx and ml0 by using the following command netstat in grep v link awk print 1 2 The results must look like the following example where the MTU value is in the second column Name Mtu en2 1500 ibO 65532 ibl 65532 242 Power Systems High performance clustering ib2 65532 ib3 65532 ib4 65532 ib5 65532 ib6 65532 ib7 65532 mlO 65532 100 16896 100 16896 c If you are running a host based Subnet Manager to check multicast group creation on the fabric management server run the following commands For IFS 5 use the following setps 1 Check for multicast membership At least one group must be returned per InfiniBand subnet iba_showmc egrep Fabric GID Fabric 1 1 Multicast Information GID Oxff12601bf ff f0000 0x0000000000000016 GID Oxff12401bf ff f0000 0x0000000000000016 Fabric 1 2 Multicast Information GID Oxff12601bf ff f0000 0x0000000000000016 GID Oxff12401bf ff f0000 0x0000000000000016 Fabric 2 1 Multicast Information GID Oxff12601bf f
68. a device powered off Link failure causing a device to be unreachable Firmware level change Isolating link problems Use this information to isolate InfiniBand fabric problems When you are isolating InfiniBand fabric problems you want to check log entries that are a few minutes before and after the event you are diagnosing This is to see if these events are associated and which of the entries might be the root cause The general InfiniBand isolation flow follows For a detailed procedure see page 210 1 Within a few minutes before or after an event see how many other events are reported 2 If there are multiple link errors first check for a common source This can be complex if non associated errors are reported at about the same time For example if a host channel adapter HCA fails and a switch link fails that is not connected to the HCA you must be careful to not associate the two events a Map all link errors so that you can determine which switch devices and which HCAs are involved You must map HCA GUIDs to physical HCAs and the servers in which they are populated so that you can check the Hardware Management Console HMC for serviceable events for adapter errors that might have caused link errors For mapping of HCAs see General mapping of IBM HCA GUIDs to physical HCAs on page 197 b Look for a switch internal error in the var log xcat errorlog xcat MS hostname file This file contains possible serv
69. and communication issues between the Fabric Viewer and parts of the fabric manager Typically Fabric Viewer is used interactively and shutdown after a session This would prevent the ability to effectively use email notification If you want to use this function you must have a copy of Fabric Viewer running continuously for example on the Fabric Management Server Documentation When to use Fabric Viewer Users Guide Set up during installation so that you can be notified of events as they occur Host Wherever Fabric Viewer is running How to access Setup for email notification is done on the fabric viewer The email is accessed from wherever you have directed the fabric viewer to send the email notifications Management subsystem networks The devices in the management subsystem are connected through various networks All of the devices in the management subsystem are connected to at least two networks over which their applications must communicate Typically the site connects key servers to a local network to provide remote access for managing the cluster The networks are shown in the following table Table 24 Management subsystem networks overview Type of network Details Service VLAN The service VLAN is a private Ethernet network which provides connectivity between the FSPs BPAs xCAT MS and the HMCs to facilitate hardware control Cluster VLAN The cluster VLAN or network is an Ethe
70. and the link to it would be shown as Missing in fabric links changes and fabric comps changes files If the item is still to be part of the configuration check for faulty connections or unintended changes to configuration files on the fabric management server Look for any Unexpected or Different items that might correspond to this item This would be in cases where the configuration of an item has changed in a way that makes it difficult to determine precisely how it has changed Node Attributes Inconsistent This indicates that the attributes of a node in the fabric have changed such as NodeGuid Node Description Device Type and others The inconsistency would be caused by connecting a different type of device or a different instance of the same device type This would also occur after replacing a faulty device If the configuration has changed purposely since the most recent baseline and this difference is reflected here save the original baseline and rerun the baseline as instructed in Re establishing Health Check baseline on If a faulty device was replaced this would be a reason to re establish the baseline If this difference was not intended you must rectify the difference to prevent future health checks from reporting the same difference from the baseline This is a specific case of Different See the Different issue 170 Power Systems High performance clustering
71. and to other Fabric Management Servers you must update the etc sysconfig fastfabric conf file with the correct password for admin The following procedure assumes that the password is xyz Detailed instructions are provided in the Fast Fabric Users Guide a Edit the etc sysconfig fastfabric conf file and ensure that the following lines are in the file and are not commented out FF_LOGIN_ METHOD and FF_PASSWORD are used for fabric management server access FF_CHASSIS_ LOGIN METHOD and FF_CHASSIS_ ADMIN PASSWORD are used for switch chassis access export FF LOGIN METHOD FF_LOGIN METHOD telnet export FF_PASSWORD FF_PASSWORD export FF CHASSIS LOGIN METHOD FF CHASSIS LOGIN METHOD telnet export FF_CHASSIS_ADMIN PASSWORD FF_CHASSIS ADMIN PASSWORD xyz b Run the chmod 600 etc sysconfig fastfabric conf command This ensures that only root can use the Fast Fabric tools and also only root can see the updated password It is a good practice to enter the configuration information for the server in its etc motd file Use the information from the QLogic fabric management worksheets on page 92 If you want to monitor the fabric by running the health check on a regular basis review periodic fabric health checking on page 158 Do not set this up until the fabric has been installed and verified High performance computing clusters using InfiniBand hardware 111 This procedure ends here Set up remote logging R
72. as for any IBM Power Systems cluster The following table is a quick reference for the various management hosts or consoles in the cluster including who is intended to use them and the networks to which they are connected Table 12 Management subsystem server consoles and workstations Hosts Software hosted Server type Operating system User Connectivity xCAT MS xCAT IBM System p AIX Admin Cluster virtual local IBM System x Linux ait network VLAN e Service VLAN Fabric e Fast Fabric IBM System x Linux e System InfiniBand sone cael Tools administrator Cluster VLAN e Host based e Switch service same as Fabric Manager provider switches recommended e Fabric viewer optional Hardware Hardware IBM System x Proprietary IBM CE e Service VLAN Management Management Console HMC Console for System Cluster VLAN managing IBM administrator or public systems VLAN y optional Switch Chassis Switch chassis Proprietary System Cluster VLAN firmware administrator Chassis bea N 7 requires public Chassis viewer Switch service Jotwork access Embedded provider Fabric Manager optional System e System User preference User preference System Network access to administrator administrator administrator management workstation workstation servers e Fabric viewer optional e Launch point into management servers Note This launch point requires network access to other servers optional
73. assuming that you have an issue with the external 480 V ac power to the servers Details on how to complete each step have been omitted To finalize the procedure you need the vendor switch User Manual the Fabric Management Users Guide and the server service information Example commands are shown but they must be verified with the latest User Manuals and service information If there is a compelling reason for completing a certain step or for doing a step at a certain time in the procedure a comment follows it with the reason why 1 To reduce the number of events in the logs for the resulting link downs shut down the Subnet Managers e Why Excessive log entries can mask real problems later and also cause problems with extensive debugging by upper levels of support 2 EPO the IBM systems running on external 480 V ac power Depending on the nature of the EPO you can leave the switches up if adequate cooling and power can be supplied to them a If you cannot leave the switches running then if you have stopped the embedded Subnet Managers you can shut down the switches at any time You must either power off at a circuit breaker or remove all of the switch power cables because they have no physical or virtual power switches b If you must power off the fabric management servers and you can do it before the IBM systems and the vendor switches that would eliminate the requirement to shut down Subnet Managers e Why Consider the implic
74. bytes 0x00025500103a7202 becomes 0002 5500 103a 7202 b Drop the last 2 bytes from the GUID 00 02 55 00 10 3a for AIX 0002 5500 103a 72 for Linux c Run the following command to find the server and adapter number for the HCA e For AIX use the following information 200 Power Systems High performance clustering From xCAT xdsh nodegroup with a list of AIX nodes v ibstat p grep p 1st seven bytes of GUID grep iba Example results gt dsh v N AIXNodes ibstat p grep p 00 02 55 00 10 3a 72 grep iba c924flec10 ppd pok ibm com IB PORT 1 INFORMATION iba c924flec10 ppd pok ibm com IB PORT 2 INFORMATION iba d For Linux use the following information From xCAT xdsh nodegroup with a list of Linux nodes v ibv_devinfo grep B1 1st seven bytes of GUID grep ehca Example results gt dsh v N AIXNodes ibv_devinfo grep B1 0002 5500 103a 72 grep ehca hca_id ehcad e The server is in the first field and the adapter number is in the last field c924flecl0 ppd pok ibm com and iba0 in AIX or ehca0 in Linux f To find the physical location of the logical switch port use the logical switch number and iba device found preceding with the Table 91 on page 207 Example Results jiba ehcaO and logical switch 1 map to C65 T1 Therefore c924flec10 C65 T1 is attached to port 3 of SilverStorm 9024 DDR GUID 0x00066a00d90003d3 This procedure ends here Finding devices based on a known lo
75. cables 12 connected to spines 1 for management number of connected cables 24 port switch chip 1 number of connected cables 1 for management number of connected cables PCI HCAs Number of connected cables Logical switch 1 1 number of LPARs 1 physical port 1 for management 1 for each LPAR that uses this HCA Counting Subnet Managers Use this information to count the number of Subnet Managers on the fabric The number of Subnet Managers is equal to one master plus the number of standbys on the subnet Counting devices example This example shows how the number of devices on a fabric is calculated For this example the configuration for the subnet is shown in the following table Table 96 Example configuration Quantity Devices Connectivity 1 9024 switch 5 HCA connections 4 connections to the 9120 1 9120 switch 5 HCA connections 4 connections to the 9024 3 9125 F2A 1 IBM GX HCAs per node 3 IBM GxX host channel adapters HCAs 1 connection to 9024 1 connection to 9120 2 InfiniBand Management Hosts 1 two port PCI HCA per host 2 PCI HCAs 1 connection to 9024 1 connection to 9120 The resulting report from the master Subnet Manager is shown in the following table DETAIL 25 SWs 5 HCAs 10 end ports 353 total ports 4 SM s Table 97 Report from the master Subnet Manager Resource Count Calculation Switches 25 1 per 9024 12 leaf ch
76. call the appropriate file at the correct time based on the time since the most recent error counter clear Output files for health check Learn about the output files for the Fast Fabric Health Check The Fast Fabric Health Check output files are documented in the Fast Fabric Toolset Users Guide The following information provides some of the key aspects of the output files For more information about configuration see Installing the fabric management server on page 105 e The location of the output files is configurable in the etc sysconfig fastfabric conf file e The default location of output files is var opt iba analysis baseline latest lt savedata gt The FF_ANALYSIS_DIR variable defines the output directory with the default of var opt iba analysis Problems reported in the baseline directory must be fixed first and then a new baseline must be taken as instructed in Re establishing Health Check baseline on page 244 The full results of the health check including the most recent configuration files are found in the latest directory The lt savedate gt directories are only generated when an error is found during a health check other than a baseline health check Only the files that indicate problems are saved in this directory All other files can be assumed to match the corresponding files in the baseline directory e The Filename type of health check fast fabric command suffix fabric basically S
77. capabilities of products not produced by this manufacturer should be addressed to the suppliers of those products All statements regarding the manufacturer s future direction or intent are subject to change or withdrawal without notice and represent goals and objectives only Copyright IBM Corp 2011 283 The manufacturer s prices shown are the manufacturer s suggested retail prices are current and are subject to change without notice Dealer prices may vary This information is for planning purposes only The information herein is subject to change before the products described become available This information contains examples of data and reports used in daily business operations To illustrate them as completely as possible the examples include the names of individuals companies brands and products All of these names are fictitious and any similarity to the names and addresses used by an actual business enterprise is entirely coincidental If you are viewing this information in softcopy the photographs and color illustrations may not appear The drawings and specifications contained herein shall not be reproduced in whole or in part without the written permission of the manufacturer The manufacturer has prepared this information for use with the specific machines indicated The manufacturer makes no representations that it is suitable for any other purpose The manufacturer s computer systems contain mechanisms designed to
78. checking on page 157 e In addition to running the Fast Fabric Toolset health checks it is suggested that you query error counters using iba_reports o errors F nodepat switch IB node description pattern c config file at least once every hour Run this checks with a configuration file that has thresholds turned to 1 for all but the V15Dropped and PortRcvSwitchRelayErrors which can be commented out or set to 0 For more information see Health checking on page 157 e You must configure the Fast Fabric Toolset health checks to use either the hostsm_analysis tools for host based fabric management or esm_analysis tools for embedded fabric management e If you are using host based fabric management you are required to configure Fast Fabric Toolset to access all of the Fabric Management Servers running Fast Fabric e If you do not choose to set up passwordless ssh between the Fabric Management Server and the switches you must set up the fastfabric conf file with the switch chassis passwords e The configuration setting planned here can be recorded in QLogic fabric management worksheets on page 92 Planning for Fast Fabric Toolset ends here Planning for fabric management server With QLogic switches the fabric management server is required to run the Fast Fabric Toolset which is used for managing and monitoring the InfiniBand network With QLogic switches unless you have a small cluster it is preferred that you use
79. complete the following steps 1 Run the etc init d openibd restartcommand Note This stops all devices remove all OFED modules and reload them 2 Verify that the interfaces are up and running by using theifconfig grep ib command 3 If the interfaces are not started yet run the etc init d network restartcommand to power on the network of ibX interfaces Recovering to 4K maximum transfer units in the AIX Use this procedure if your cluster is running with 4 KB maximum transfer units MTUs but it has already been installed and is not currently running at 4K MTU This procedure is only valid for clusters by using the AIX operating system To complete the recovery to 4K MTU the following overall tasks must be completed 1 Configure the Subnet Manager to 4K MTU 2 Set the host channel adapter HCAs to 4K MTU 3 Verify that the subnet is set up properly The detailed procedures for these tasks are given in the following section 1 Configure the Subnet Manager for 4K MTU If you are running a host based Subnet Manager complete the following steps Note These instructions are written for recovering a single fabric management server subnet at a time a Log on to the fabric management server b Stop the Subnet Manager by using the following command For IFS 5 etc init d qlogic_fm stop c Verify that the Subnet Manager is stopped by running the ps ef grep iviewcommand d If you are using IFS 5 edit the fabric manager conf
80. connections in 8 InfiniBand subnets continued Frame Server HCA Connector Switch Connector 2 1 2 C66 T3 7 L1 C2 2 1 2 C66 T4 8 L1 C2 2 2 1 C65 Tl 1 L2 C2 2 2 1 C65 T2 2 L2 C2 2 2 1 C65 T3 3 L2 C2 2 2 1 C65 T4 4 L2 C2 2 2 2 C66 T1 5 L2 C2 2 2 2 C66 T2 6 L2 C2 2 2 2 C66 T3 7 L2 C2 2 2 2 C66 T4 8 L2 C2 Continue through to the last server in the frame 2 12 1 C65 T1 1 L12 C2 2 12 1 C65 T2 2 L12 C2 2 12 1 C65 T3 3 L12 C2 2 12 1 C65 T4 4 L12 C2 2 12 2 C66 T1 5 L12 C2 2 12 2 C66 T2 6 L12 C2 2 12 2 C66 T3 7 L12 C2 2 12 2 C66 T4 8 L12 C2 Continue through to the last frame 10 1 1 C65 Tl 1 L1 C10 10 1 1 C65 T2 2 L1 C10 10 1 1 C65 T3 3 L1 C10 10 1 1 C65 T4 4 L1 C10 10 1 2 C66 T1 5 L1 C10 10 1 2 C66 T2 6 L1 C10 10 1 2 C66 T3 7 L1 C10 10 1 2 C66 T4 8 L1 C10 10 2 1 C65 T1 1 L2 C10 10 2 1 C65 T2 2 L2 C10 10 2 1 C65 T3 3 L2 C10 10 2 1 C65 T4 4 L2 C10 10 2 2 C66 Tl 5 L2 C10 10 2 2 C66 T2 6 L2 C10 10 2 2 C66 T3 7 L2 C10 10 2 2 C66 T4 8 L2 C10 Continue through to the last server in the frame 10 12 1 C65 Tl 1 L10 C10 10 12 1 C65 T2 2 L10 C10 42 Power Systems High performan ce clustering Table 33 Example topology gt 140 9125 F2As in 10 frames with 8 HCA connections in 8 InfiniBand subnets continued
81. contracted Fault reporting mechanisms Problems with the cluster can be identified through several mechanisms that are part of the management subsystem Faults problems can be surfaced through the fault reporting mechanisms found in the following table For more details on the management subsystem that supports these reporting mechanisms see Management subsystem function overview on page 13 Additional information is available in For xCAT MS Vendor log flow to xCAT event management on page 23 and Monitoring fabric logs from the xCAT Cluster Management server on Table 81 Fault reporting mechanisms Reporting Mechanism Description Fast Fabric health check results Used to monitor fabric port error counters switch hardware problems and configuration changes These are located on the fabric management server in var opt iba analysis High performance computing clusters using InfiniBand hardware 183 Table 81 Fault reporting mechanisms continued Reporting Mechanism Description xCAT Event Management Fabric Log Used to monitor and consolidate Fabric Manager and switch error logs This is located on the xCAT MS in tmp systemEvents or xCAT eventlog This log is part of the standard event management function It is accessed by using the lsevent command It is a summary point for RSCT and xCAT event management For xCAT it can help point to saved log entries
82. dependent of the completion of steps in another major task or procedure that is being performed by another person Before proceeding obtain the following documentation e Server Installation documentation including applicable Worldwide Custom Install Instructions WCII e Host channel adapter HCA installation topics from the IBM Power Systems Hardware Information Center Server installation and configuration information for expansion This information is for installing server and configuring information for expansion If this is a new installation skip this section High performance computing clusters using InfiniBand hardware 123 If you are adding or expanding InfiniBand network capabilities to an existing cluster by adding servers to the cluster then you must approach the Server installation and configuration a little differently than with a new cluster flow The flow for Server installation and configuration is based on a new cluster installation but it would indicate where there are variances for expansion scenarios The following table outlines how the new cluster installation is affected altered by expansion scenarios Table 70 New cluster installation expansion scenarios Scenario Effects Adding InfiniBand hardware to an existing cluster Configure the LPARs to use the HCAs switches and HCAs e Configure HCAs for switch partitioning Adding new servers to an existing InfiniBand network Perform this
83. difference was not intended you must rectify the difference to prevent future health checks from reporting the same difference from the baseline This is a specific case of Different See the Different issue Unexpected This indicates that an item is in this instance of health check output but it not in the baseline This might indicate that an item was broken when the baseline was taken or a configuration change has added the item to the configuration If you have added this item to the configuration save the original baseline and rerun the baseline as instructed Re establishing Health Check baseline on page 244 For example if you have added an HCA connection it would be shown as Unexpected in fabric links changes and fabric comps changes files Look for any Missing or Different items that might correspond to this item This would be in cases where the configuration of an item has changed in a way that makes it difficult to determine precisely how it has changed Interpreting health check diff files This information is used to interpret the difference between the baseline health check and the current health check If the results files of a Fast Fabric Health Check include any file named diff then there is a difference between the baseline and the current health check This file is generated by the health check comparison algorithm by using the diff command with the first fil
84. does not matter for these purposes The first table illustrates cabling 12 servers in a single frame with eight 7874 024 switch The second table illustrates cabling 240 servers in 20 frames to eight 7874 240 switches Table 29 Example topology gt 12 9125 F2As in 1 frame with 8 HCA connections Frame Server HCA Connector Switch Connector 1 1 1 C65 T1 1 C1 1 1 1 C65 T2 2 Cl 1 1 1 C65 T3 3 C1 1 1 1 C65 T4 4 C1 1 1 2 C66 Tl 5 Cl 1 1 2 C66 T2 6 C1 1 1 2 C66 T3 7 C1 1 1 2 C66 T4 8 Cl 1 2 1 C65 T1 1 C2 1 2 1 C65 T2 2 C2 1 2 1 C65 T3 3 C2 1 2 1 C65 T4 4 C2 1 2 2 C66 Tl 5 C2 1 2 2 C66 T2 6 C2 1 2 2 C66 T3 7 C2 1 2 2 C66 T4 8 C2 Continue through to the last server in the frame 1 12 1 C65 Tl 1 C12 1 12 1 C65 T2 2 C12 1 12 1 C65 T3 3 C12 1 12 1 C65 T4 4 C12 1 12 2 C66 T1 5 C12 1 12 2 C66 T2 6 C12 1 12 2 C66 T3 7 C12 1 12 2 C66 T4 8 C12 1 Connector terminology 7874 024 C connector number High performance computing clusters using InfiniBand hardware 33 The following example has 240 9125 F2As in 10 frames with 8 HCA connections in 8 InfiniBand subnets You can calculate connections as shown in the following example Leaf number frame number Leaf connector number Server number in frame Server number Leaf connector number Frame number Frame number HCA number C 65 I
85. example which uses the IFS 4 nomenclature there are two instances of SM_0 on the same InfiniBand subnet There is one on Fabric M S 1 and another on Fabric M S 2 The original master is intended to be on Fabric M S 1 so it has the higher normal priority Fabric M S 1 SM_0_priority 1 Fabric M S 1 SM_0_elevated_ priority 2 Fabric M S 2 SM_0 priority 0 Fabric M S 2 SM_elevated priority 2 Current priority of SM_0 Current priority of SM_0 Event on Fabric M S 1 on Fabric M S 2 Current Master Startup 1 0 Fabric M S 1 SM_0 Fabric M S 1 fails 1 2 assumes Fabric M S 2 SM_0 elevated_priority High performance computing clusters using InfiniBand hardware 153 Current priority of SM_0 Current priority of SM_0 Event on Fabric M S 1 on Fabric M S 2 Current Master Fabric M S 1 recovers 1 2 Fabric M S 2 SM_0 Admin issues restore 1 0 Fabric M S 1 SM_0O priority command on Fabric M S 2 QLogic fast fabric toolset The Fast fabric toolset is a suite of management tools from QLogic The QLogic fast fabric toolset are used for managing and monitoring a cluster fabric Reference the Fast fabric toolset users guide for details on the commands to use For more information about using Fast Fabric tools see the QLogic Best Practices for Clusters Guide Fast Fabric commands and tools that can be used are in the following table Table 75 Preferred Fast Fabric tools and commands
86. expected on the xCAT MS the definition shown here is udp on port 514 The xCAT MS information must have been noted in step 3 The standard syslogd uses udp filter f_fabinfo facility local6 and level info notice alert warn err crit and not filter f_iptables destination fabinfo_xcat udp xCAT MS IP address port 514 log source src filter f_fabinfo destination fabinfo_xcat Note Restart the syslogd by using etc init d syslog restart c For a switch check that it is configured to log to the xCAT MS by using logSyslogConfig on the switch command line Check that the following information is correct If it is not update it using High performance computing clusters using InfiniBand hardware 229 logSyslogConfig h host p 514 f 22 m1 e The xCAT MS is the host IP address e The port is 514 or other than that you have chosen to use e The facility is local6 8 If the problem persists then try restarting the syslogd on the xCAT MS and also resetting the source s logging a b For AIX xCAT run refresh s syslogd Cc d Log on to the xCAT MS For Linux xCAT run etc init d syslog restart If the source is Subnet Manger running on a Fabric Management Server log on to the fabric management server and run etc init d syslog restart If the source is a switch reboot the switch by using the instructions in the Switch Users Guide using reboot on the switch CLI or Fast Fabric Users Gui
87. fabric problems Fabric problems can surface in several different ways While the Subnet Manager and switch logging are the main reporting mechanisms there are other methods for checking for problems To monitor and check for fabric problems complete the following steps 1 Inspect the xCAT MS var log xcat errors xcat MS hostname log for Subnet Manager and switch log entries 2 Run the Fast Fabric Health Check tool Retraining 9125 F2A links It has been determined that copper cables on 9125 F2A links must be retrained after any action that brings a link down Actions such as CEC power cycles cable reseats leaf reseats and others The odds of this being required have been decreased but not eliminated by the switch firmware allowing external port SERDES settings to be modified by the user This was introduced in switch firmware level 4 2 3 x x which introduced the capability to change the amplitude settings for switch ports This must have been done during installation of the switches see Installing and configuring vendor or IBM InfiniBand switches on page 137 How to retrain 9125 F2A links For retraining 9125 F2A links If you can run an application that stresses the fabric in between retraining sessions this would be best The following procedure is for retraining 9125 F2A links 1 Clear all errors by using either the following command or a script like the one in Error counter clearing script on page 276
88. following list indicates key parameters to be configured in Fast Fabric Toolset configuration files Switch addresses go into chassis files Fabric management server addresses go into host files The IBM system addresses do not go into host files Create groups of switches by creating a different chassis file for each group Some suggestions are 1 A group of all switches because they are all accessible on the service virtual local area network VLAN Groups that contain switches for each subnet A group that contains all switches with ESM if applicable A group that contains all switches running primary ESM if applicable om ee Groups for each subnet which contain the switches running ESM in the subnet if applicable include primaries and backups Create groups of Fabric Management Servers by creating a different host file for each group Some suggestions are 1 A group of all fabric management servers because they are all accessible on the service VLAN 2 A group of all primary fabric management servers 3 A group of all backup fabric management servers e Plan an interval at which to run Fast Fabric Toolset health checks Because health checks use fabric resources you cannot run them frequently enough to cause performance problems Use the recommendation given in the Fast Fabric Toolset Users Guide Generally you cannot run health checks more often than every 10 minutes For more information see Health
89. fon page 150 3 After fixing the problems run the Fast Fabric tool baseline health check one more time This can be used to help monitor fabric health and diagnose problems Use the sbin all_analysis b command 4 Clear all the switch logs to start with the clean logs However you want to make a copy of the logs before proceeding To copy the logs complete the following steps a Create a directory for storing the state at the end of installation by using the following command var opt iba analysis install_capture b If you have the etc sysconfig iba chassis file configured with all switch chassis listed issue the captureall C d command var opt iba analysis install_capture c If you have another file configured with all switch chassis listed captureall C F file with all switch chassis listed d var opt iba analysis install_capture d Run the cmdall C logClear 5 The InfiniBand network is now installed and available for operation This procedure ends here Verifying the InfiniBand network topology and operation ends here Note Beyond this point are procedures that are referenced by the preceding procedures Installing or replacing an InfiniBand GX host channel adapter This procedure guides you through the process for installing or replacing an InfiniBand GX host channel adapter HCA The process of installing or replacing an InfiniBand GX HCA consists of the following tasks e Physically installing or replacing t
90. for FM instance 1 lst Port gt lt PortGUID gt 0x0000000000000000 lt PortGUID gt lt local port to use for FM gt lt SubnetPrefix gt 0x fe80000000000015 lt SubnetPrefix gt lt should be unique gt lt Overrides of the Common Shared or Fm Shared parameters if desired gt lt lt LogFile gt var log fm3_log lt LogFile gt gt lt log for this instance gt lt Shared gt lt Instance Specific SM Subnet Manager attributes gt lt Sm gt lt Priority gt 0 lt Priority gt lt 0 to 15 higher wins gt lt ElevatedPriority gt 8 lt ElevatedPriority gt lt to 15 higher wins gt lt Sm gt 62 Power Systems High performance clustering lt Fm gt lt Config gt Plan for remote logging of Fabric Manager events e Plan to update etc syslog conf or the equivalent syslogd configuration file on your Fabric Management Server to point syslog entries to the Systems Management server This requires knowledge of the Systems Management Servers IP address It is best to limit these syslog entries to those that are created by the Subnet Manager However some syslogd applications generally do not permit finely tuned forwarding For the embedded Subnet Manager the forwarding of log entries is achieved through a command on the switch command line interface CLI or through the Chassis Viewer e You are required to set a Notice message threshold for each Subnet Manager instanc
91. further information see the IBM Clusters with the InfiniBand Switch web site referenced in General cluster information resources on page 3 b Use cluster management server scripts to configure the InfiniBand secondary adapter Note For AIX this can also be done manually using the operating system dependent instructions found an installation cub procedure for ADConly on pase 164 For Linu e lt the ollowing instructions For xCAT Copy configiba script 1 On the management server copy and modify the appropriate configiba script from opt xcat share xcat ib scripts to install postscript configiba e If only opt xcat share xcat ib scripts configiba exists in your installation copy that e If you have predominantly dual 2 port IBM GX HCAs and using all of the ports copy opt xcat share xcat ib scripts configiba 2 ports unless it does not exist in your installation e If you are configuring fewer than 8 HCA ports on your servers copy opt xcat share xcat ib scripts configiba 1 port unless it does not exist in your installation 2 Make the following updates to the copied configiba script e 1 Copy configiba from opt xcat share xcat ib to configiba e 2 Modify the nums variable to match the number of ports you have per server For 2 ports my nums 0 1 For 4 ports my nums 0 3 For 8 ports my nums 0 7 e 3 If necessary modify the netmask in the configiba script The default is 255 255 0 0 e 4 If n
92. gt lt Overall Instance Startup see fm0 for more info gt lt Name gt ibl lt Name gt lt also for logging with _sm _fe _pm _bm appended gt lt Hca gt 1 lt Hca gt lt local HCA to use for FM instance 1 1st HCA gt lt Port gt 2 lt Port gt lt local HCA port to use for FM instance l 1st Port gt lt PortGUID gt 0x0000000000000000 lt PortGUID gt lt local port to use for FM gt lt SubnetPrefix gt 0xfe80000000000043 lt SubnetPrefix gt lt should be unique gt lt Overrides of the Common Shared or Fm Shared parameters if desired gt lt lt LogFile gt var log fm1_log lt LogFile gt gt lt log for this instance gt lt Shared gt lt Instance Specific SM Subnet Manager attributes gt lt Sm gt lt Overrides of the Common Shared Common Sm or Fm Shared parameters gt lt Start gt 1 lt Start gt lt Lmc gt 2 lt Lmc gt High performance computing clusters using InfiniBand hardware 61 lt Priority gt 0 lt Priority gt lt 0 to 15 higher wins gt lt ElevatedPriority gt 8 lt ElevatedPriority gt lt to 15 higher wins gt lt Sm gt lt Fm gt Instance 2 of the FM When editing the configuration file it is recommended that you note the instance in a comment lt A single FM Instance subnet gt lt INSTANCE 2 gt lt Fm gt lt Shared gt lt Start gt 1 lt Start gt lt Overall Instance Startup see fmO fo
93. health check has not been run you must query the live fabric by using the following command iba_report o links grep A 1 Og GUID Example results 20g 0x00025500103a7202 1 SW IBM G2 Logical Switch 1 lt gt 0x00066a00d90003d3 3 SW SilverStorm 9024 DDR GUID 0x00066a00d90003d3 6 The physical switch port is in the last line of the results of the query Get the name and port for the switch The name must be given such that it indicates where the switch is physically lt gt switch GUID port SW switch name IBnodeDescription 7 Port 3 on switch SilverStorm 9024 DDR GUID 0x00066a00d90003d3 This switch has not been renamed and is using the default naming convention which includes the switch model and GUID Find the physical switch connection 8 Logon to the xCAT Management Server 9 Find the server and HCA port location Note If you have a map_of HCA GUIDs to server locations use that to find in which server the HCA is located and skip step 9a a Convert the logical switch GUID to Operating system format which drops the 0x and uses a dot or colon to delimit bytes e For AIX a dot delimits each byte 0x00025500103a7202 becomes 00 02 55 00 10 3a 72 02 e For Linux a colon delimits 2 bytes 0x00025500103a7202 becomes 0002 5500 103a 7202 b Drop the last 2 byte from the GUID 00 02 55 00 10 3a for AIX 0002 5500 103a 72 for Linux c Run the following command to find the server and adapter number for the HCA
94. ibX interfaces a Isdev grep InfiniBand awk print 1 egrep v ibal icm remove the ibX interfaces for i in Isdev grep Infiniband awk print 1 egrep v iba icm do rmdev is only used for recovery purposes and not during installation rmdev 1 i d done remove the iba s for I in Isdev egrep iba 0 9 awk print 1 gt do rmdev 1 i d done remove the icm rmdev 1 icm d map the ib interfaces to iba s and addresses ib iba0 ibl iba0 ib2 ibal ib3 ibal ib4 iba2 ib5 iba2 ib6 iba3 ib7 iba4 addresses are just examples ibOaddr 192 168 1 1 ibladdr 192 168 2 1 ib2addr 192 168 3 1 ib3addr 192 168 4 1 ib4addr 192 168 5 1 ib5addr 192 168 6 1 ib6addr 192 168 7 1 ib7addr 192 168 8 1 cfgmgr re create the icm mkdev c management s infiniband t icm re make the iba s this loop really just indicates to step through all of the iba s and indicate the appropriate ibXs for each There should be two ibX interfaces for each iba for i in a do eval iba i eval ib_addr i addr you must provide the ibX interface number ib0 7 and address for each ibX interface separately 236 Power Systems High performance clustering mkiba A iba i i a ib_addr p 1 P 1 S up m 255 255 255 0 done Re create the ibX interfaces properly This assumes that the default p_key Oxffff is being used for the subnet for i in Isdev grep In
95. iba_reports o none C F nodepat switch IB Node Description pattern 2 Run an application that stresses the network and wait 10 15 minutes and check errors by using either iba_report fabric_analysis all_analysis or a script like the one described in Healthcheck control script on page 277 3 Retrain any links that meet the retraining criteria in When to retrain 9125 F2A links on page 254 and are connected to 9125 F2A HCAs a If you have QLogic Fast Fabric code level before 4 3 you must reseat cables to cause link to retrain After reseating go to step 4 If you have QLogic Fabric code level of 4 3 or higher continue with this procedure b Record the switch nodeGUID and port which are the second and third fields in the error counter report and has a form like 0x00066a0007000de7 The following example is of an IBM HCA Logical Switch reporting symbol errors and the switch nodeGUID and port are underlined and in a bold font In this case the nodeGUID is 0x00066a0007000de7 and the port is 3 252 Power Systems High performance clustering 4 5 6 20g 2048 0x00025500106d1602 1 SW IBM G2 Logical Switch 1 SymbolErrorCounter 1092 Exceeds Threshold 6 lt gt 0x00066a0007000de7 3 SW SilverStorm 9080 c938f4q101 Leaf 3 Chip c Find the LID associated with this nodeGUID by substituting nodeGUID in the following iba_report command In this example the LID is 0x000c Also note the subnet in which it was
96. in Planning the fabric manager and fabric Viewer on page 56 lt Priority gt l lt Priority gt lt 0 to 15 higher wins gt lt ElevatedPriority gt 12 lt ElevatedPriority gt lt 0 to 15 higher wins gt Configure the common FE attributes The common FE attributes begin with lt Common Fe Fabric Executive attributes gt lt Bm gt Unless otherwise noted prevent the FE from running lt Start gt 0 lt Start gt lt default FE startup for all instances gt Configure the common PM attributes The common PM attributes begin with lt Common PM Performance Manager attributes gt lt Pm gt Unless otherwise noted prevent the PM from running lt Start gt 0 lt Start gt lt default PM startup for all instances gt Configure the common BM attributes lt Common BM Baseboard Manager attributes gt lt Bm gt Unless otherwise noted prevent the BM from running lt Start gt 0 lt Start gt lt default BM startup for all instances gt Update the individual instances of the FM By default there are four instances defined in the configuration file Be sure to examine the attributes for each FM instance The attributes for each instance of FM are bounded by the following lt A single FM Instance subnet gt lt Fm gt Attributes lt Fm gt Find the shared parameters beginning with lt Shared Instance config applies to all components SM PM B
97. in a server You can calculate connections as shown in the following example Leaf number Frame number Leaf connector number Server number in frame Server number Leaf connector number Frame number Leaf number HCA number C65 for switch 1 2 C66 for switch 3 4 HCA port T1 for switch 1 3 T3 for switch 2 4 Table 32 Example topology gt 120 9125 F2As in 10 frames with 4 HCA connections in 4 InfiniBand subnets Frame Server HCA Connector Switch Connector 1 1 1 C65 Tl 1 L1 C1 1 1 1 C65 T3 2 L1 C1 1 1 2 C66 T1 3 L1 C1 1 1 2 C66 T3 4 L1 C1 1 2 1 C65 T1 1 L1 C2 1 2 1 C65 T3 2 L1 C2 1 2 2 C66 Tl 3 L1 C2 1 2 2 C66 T3 4 L1 C2 Continue through to the last server in the frame 1 12 1 C65 T1 1 L1 C12 1 12 1 C65 T3 2 L1 C12 1 12 2 C66 Tl 3 L1 C12 1 12 2 C66 T3 4 L1 C12 2 1 1 C65 Tl il L2 C1 2 1 1 C65 T3 2 L2 C1 High performance computing clusters using InfiniBand hardware 39 Table 32 Example topology gt 120 9125 F2As in 10 frames with 4 HCA connections in 4 InfiniBand subnets continued Frame Server HCA Connector Switch Connector 2 1 2 C66 T1 3 L2 C1 2 1 2 C66 T3 4 L2 C1 2 2 1 C65 Tl 1 L2 C2 2 2 1 C65 T3 2 L2 C2 2 2 2 C66 T1 3 L2 C2 2 2 2 C66 T3 4 L2 C2 Continue throu
98. installation and configuration procedures e Connect and disconnect cables as described in the following procedures when installing moving or opening covers on this product or attached devices To Disconnect 1 Turn off everything unless instructed otherwise 2 Remove the power cords from the outlets 3 Remove the signal cables from the connectors 4 Remove all cables from the devices To Connect 1 Turn off everything unless instructed otherwise 2 Attach all cables to the devices 3 Attach the signal cables to the connectors 4 Attach the power cords to the outlets 5 Turn on the devices D005 DANGER x Power Systems High performance clustering Observe the following precautions when working on or around your IT rack system Heavy equipment personal injury or equipment damage might result if mishandled Always lower the leveling pads on the rack cabinet Always install stabilizer brackets on the rack cabinet To avoid hazardous conditions due to uneven mechanical loading always install the heaviest devices in the bottom of the rack cabinet Always install servers and optional devices starting from the bottom of the rack cabinet Rack mounted devices are not to be used as shelves or work spaces Do not place objects on top of rack mounted devices Each rack cabinet might have more than one power cord Be sure to disconnect all power cords in the rack cabinet when directed to disconnect p
99. is responsible for updating the Fabric Manager software on the switch or the fabric management server Fabric Manager server The customer is responsible for installing customizing and updating the fabric management server QLogic Fast Fabric Toolset and host The customer is responsible for installing customizing and updating the stack QLogic Fast Fabric Toolset and host stack on the fabric management server Order of installation Use this information to learn the tasks required to install a new cluster This information provides a high level outline of the general tasks required to install a new cluster If you understand the full installation flow of a new cluster you can identify the tasks that can be performed when you expand your InfiniBand cluster network Tasks such as adding InfiniBand hardware to an existing cluster adding host channel adapters HCAs to an existing InfiniBand network and adding a subnet to an existing network are described To complete a cluster installation all devices and units must be available before you begin installing the cluster The following are the fundamental tasks that are required for installing a cluster The site is set up with power cooling and floor space and floor load requirements The switches and processing units are installed and configured The management subsystem is installed and configured The units are cabled and connected to the service virtual local area network
100. isolation techniques must be used For more information see Diagnose a link problem based on error counters on page 264 Performance impact Because a link down is often associated with either a link that is taking many errors or one that has stopped communicating there would be a performance impact for any communication going over the link that went down Threshold minimum actionable 2 Threshold maximum in 24 hours 3 LinkErrorRecoveryCounter The link is taking many errors and has gone through a state to re train to attempt to establish better connectivity Except for the LinkDownedCounter this results in the other link error counters being reset This can also be caused by the re training sequence being initiated 266 Power Systems High performance clustering If it appears that the link is recovering on its own without outside influences typical link isolation techniques must be used For more information see Diagnose a link problem based on error counters fon page 264 Performance impact Because a link error recovery error is often associated with either a link that is taking many errors or one that has stopped communicating there would be a performance impact for any communication going over the link experiencing these errors Threshold minimum actionable 2 Threshold maximum in 24 hours 3 LocalLinkIntegrityErrors The link is experiencing excessive errors and is attempting link recovery You mig
101. line scripts in this document High performance computing clusters using InfiniBand hardware 107 d Assure that tcl and Expect are installed on the Fabric Management Server They should be at least at the following levels You can check using the rpm qa grep expect and rpm qa grep tcl commands e expect 5 43 0 16 2 e tcl 8 4 12 16 2 e For IFS 5 tcl devel 8 4 12 16 2 is also required e If this is the primary data collection point for fabric diagnosis ensure that this is noted One method would be to add this to the etc motd file 7 F6 M2 If you are using a host based Fabric Manager install it using the Fabric Manager Users Guide The following are key rpms to install a aiview_agent 4_3_2_1 1 x86_64 rpm 4_3_2_1 1 refers the level of the agent code x86_64 refers the platform b iview_fm 4_3_2_1 1 x86_64 rpm 4_3_2_1 1 refers the level of the fabric manager code x86_64 refers the platform Note Do not start the Fabric Managers until the switch fabric is installed and cabled completely Otherwise it might cause unnecessary log activity from the Fabric Manager which can cause confusion when trying to verify fabric operation c Run one of the following commands For IFS 5 etc init d qlogic_fm stop This ensures that the Subnet Manager is stopped until it is required Verify that the Subnet Manager is stopped by running the ps ef grep iview command Note Keep all license key documentation that comes with your QL
102. look at the var log messages file For switches log on to the switch and look at the log If necessary use the switch command line help or the switch Users Guide for how to do this 6 If the setup on the xCAT MS has proven to be good and the log entry is in the source log check to see that the source is set up for remote logging by logging on to the source and checking on of the following steps a For a fabric management server running syslog not syslog ng check etc syslog syslog conf for the following line If etc syslog conf does not exist go to step local6 put xCAT MS IPp address Note If you make a change you must restart the syslogd For a fabric management server running syslog ng check etc syslog ng syslog ng conf for the following lines Assure that the destination definition uses the same protocol and port as is expected on the xCAT MS the definition shown here is udp on port 514 The xCAT MS information must have been noted in step The standard syslogd uses udp Other syslogd s like syslog ng might use either tcp or udp filter f_fabinfo facility local6 and level info notice alert warn err crit and not filter f_iptables destination fabinfo_xcat udp xCAT MS IP address port 514 log source src filter f_fabinfo destination fabinfo_xcat Note If you make a change you must restart the syslogd For a switch check that it is configured to log to the xCAT MS by usin
103. manager The fabric manager is used to complete basic operations such as fabric discovery fabric configuration fabric monitoring fabric reconfiguration after failure and reporting problems The following table provides an overview of the fabric manager High performance computing clusters using InfiniBand hardware 17 Table 14 Fabric manager overview Fabric manager Details Description The fabric manager performs the following basic operations e Discovers fabric devices e Configures the fabric e Monitors the fabric e Reconfigures the fabric on failure e Reports problems The fabric manager has several management interfaces that are used to manage an InfiniBand network These interfaces include the baseboard manager performance manager Subnet Manager and fabric executive All but the fabric executives are described in the InfiniBand architecture The fabric executive is there to provide an interface between the Fabric Viewer and the other managers Each of these managers is required to fully manage a single subnet If you have a host based fabric manager there is up to 4 fabric managers on the Fabric Manager Server Configuration parameters for each of the managers for each instance of fabric manager must be considered There are many parameters but only a few typically varies from default A more detailed description of fabric management is available in the InfiniBand standard specification and vendor document
104. model High performance computing clusters using InfiniBand hardware 77 Table 42 Sample Cluster summary worksheet continued Cluster summary worksheet Number and models of fabric management servers Number of Service VLANs Service VLAN domains Service VLAN DHCP server locations Service VLAN InfiniBand switches static IP addresses not typical Service VLAN HMCs with static IP Service VLAN DHCP ranges Number of cluster VLANs Cluster VLAN security addressed yes no comments Cluster VLAN domains Cluster VLAN DHCP server locations Cluster VLAN InfiniBand switches static IP addresses Cluster VLAN HMCs with static IP Cluster VLAN DHCP ranges AIX NIM server information Linux distribution server information NTP server information Power requirements Maximum cooling required Number of cooling zones Maximum weight per area Minimum weight per area The following worksheet is an example of a completed cluster summary worksheet Table 43 Example Completed cluster summary worksheet Cluster summary worksheet Cluster name Example Application HPC or not HPC Number and types of servers 96 9125 F2A Number of servers and host channel adapters HCAs per server Each 9125 F2A has one HCA Note If there are servers with varying numbers of HCAs list the number of servers with each configu
105. numbers of servers and strict performance requirements use storage nodes to avoid contention for compute resource This setup is especially important for applications that can be easily affected by the degraded or variable performance of a single server in the cluster The use of IO router servers is not typical There have been examples of clusters where the compute servers were placed on an entirely different fabric from the storage servers In these cases dedicated IO router servers are used to move the data between the compute and storage fabrics For details on how these various server types might be used in fabric see Planning InfiniBand network cabling and configuration Planning InfiniBand network cabling and configuration Before you plan your InfiniBand network cabling review the hardware installation and cabling information for your vendor switch See the QLogic documentation referenced in Cluster information resources on page 2 There are several major points in planning network cabling See Topology planning e See Cable planning on page 48 See Planning QLogic or IBM Machine Type InfiniBand switch configuration on e See Planning an IBM GX HCA configuration on page 53 Topology planning This information provides topology planning details The following are important considerations for planning the topology of the fabric 30 Power Systems High performance clustering The types and n
106. of 3 Frame planning worksheet 3 of 3 Frame number or numbers 11 Frame machine type and model number 19 in Frame size 19 in 19 in or 24 in Number of slots 8 Slots Slots Device type server switch BPA Device name Indicate machine type and model number 1 2 System x 3650 egf11fm01 egf11fm02 3 5 HMCs egf11hmc01 egf11hmc03 6 xCAT MS egf11xcat01 Server planning worksheet You can use this worksheet as a template for multiple servers with similar configurations For such cases you can give the range of names of these servers and where they are located You can also use the configuration note to remind you of other specific characteristics of the server It is important to note the type of host channel adapters HCAs to be used High performance computing clusters using InfiniBand hardware 81 Table 48 Sample Server planning worksheet Server planning worksheet Names Types Frame or Frames slot or slot Number and type of HCAs Number of LPARs or LHCAs IP addressing for InfiniBand Partition with service authority IP addressing of service VLAN IP addressing of cluster VLAN LPAR IP addressing MPI addressing Configuration notes HCA information HCA Capability sharing HCA port Switch connection GID prefix LPAR LPAR or LHCA Operating system GUID index Shared HCA capabilit
107. on page 13 This information provides an overview of the servers consoles applications firmware and networks that comprise the management subsystem function POWER Hypervisor The POWER Hypervisor provides an abstraction layer between the hardware and firmware and the operating system instances POWER Hypervisor provides the following functions in POWER6 GX HCA implementations e UD low latency receive queues e Large page memory sizes e Shared receive queues SRQ e Support for more than 16 K Queue Pairs QP The exact number of QPs is driven by cluster size and available system memory POWER Hypervisor also contains the Subnet Management Agent SMA to communicate with the Subnet Manager and present the HCA as logical switches with a given number of ports attached to the physical ports and to logical HCAs LHCAs POWER Hypervisor also contains the Performance Management Agent PMA which is used to communicate with the performance manager that collects fabric statistics such as link statistics including errors and link usage statistics The QLogic Fast Fabric iba_report command uses performance manager protocol to collect error and performance counters If there are logical HCAs the performance manager packet first goes to the operating system driver The operating system replies to the requestor that it must redirect its request to the Hypervisor Because of this added traffic for redirection and the Logical HCA counters are
108. on page 68 and Installation responsibilities of units and devices on page 69 2 Ensure that you understand Planning installation flow on page 68 Understanding the merge points is crucial to the coordination of a successful installation 3 The detailed installation instructions follow the Order of installation on page 70 found in The major task numbers found in the order of installation are referenced in the detailed installation instructions The detailed instructions might contain several steps to perform a major task 96 Power Systems High performance clustering a b c d e f g h i Complete Verifying the installed InfiniBand network fabric in AIX on page 150 j Complete Fabric verification on page 150 4 If you are not performing a new instal to support an InfiniBand network see Complete Site setup for power cooling and floor on page 98 Complete Installing and configuring the management subsystem on page 98 Complete Installing and configuring the cluster server hardware on page 123 Complete Installing and configuring vendor or IBM InfiniBand switches on page 137 Complete Attaching cables to the InfiniBand network on page 143 IBM Service representative installation responsibilities IBM Service installation responsibilities include installing IBM Machine Types that are IBM installable versus those that are customer installable In a
109. one for each server Server name Server IP address on cluster virtual local area network VLAN Server model System x 3550 or 3650 Frame Number of PCI slots Number of HCAs Primary Backup NA HSM Primary data collection point Yes or No Local syslogd is syslog syslog ng or other xCAT server address for remote logging Using TCP or UDP for remote logging NTP server Subnet management planning Subnet Subnet Subnet Subnet 4 Subnet Subnet 6 Subnet 7 Subnet 8 1 2 3 5 HCA number HCA port GID prefix Broadcast MTU put rate in parentheses node_appearance 10 10 10 10 10 10 10 10 _msg_thresh Primary switch Priority Back up switch Priority 94 Power Systems High performance clustering Table 66 Fabric management server worksheet continued Fabric management server worksheet one for each server Backup switch Priority 10 10 10 10 10 10 10 10 Back up switch Priority Fast Fabric Toolset Planning Host based or embedded SM for FF_ALL_ANALYSIS List of switch chassis List of switches running embedded SM if applicable Subnet connectivity planning is in the previous Subnet Management planning worksheet Chassis list files Host list files Notes The following worksheet shows an example of a completed fab
110. page 186 describes how to address a link problem Restarting or repowering on scenarios on page 187 provides information about the impact of reboots and power on scenarios on the fabric o N A The importance of NTP on page 187 provides information about the importance of configuring NTP on the service and cluster virtual local area networks VLANs Types of events Problems with the cluster fabric can be categorized in numerous ways Fabric problems can be categorized as follows e Link problems that are reported by Subnet manager through Remote logging to the xCAT MS in tmp systemEvents file by the Subnet Manager Without remote logging you must interrogate the Subnet Manager log directly Ifa single link is failing this method isolates the problem to a switch port the other side host channel adapter HCA or another switch port and a cable If multiple links are failing a pattern might be discernible which directs you to a common field replaceable unit FRU such as an HCA a switch leaf board or a switch spine e Internal failure of a switch spine or leaf board manifests as either multiple link failures or loss of communication between the device and the management module Internal failures are reported through remote logging to the xCAT MS in tmp systemEvents Without remote logging you must interrogate the switch log e Redundant switch FRU failures are reported through the syslog and into the event
111. perform the following steps e makedns e service named restart Note Make sure the state of named is active For AIX Managed Nodes perform the following steps e makedns e stopsrc s named e startsrc s named Note Make sure the state of named is active Check if DNS for the IB network has been set up successfully The following commands would check ib0 and ib1 on c890f11ec01 For AIX 1srrc s named grep c890f11ec01 For Linux e nslookup c890f1lec01 ib0 e nslookup c890f1lec01 ibl High performance computing clusters using InfiniBand hardware 131 5 S7 Verify InfiniBand adapter configuration a If you are running a host based Subnet Manager to check multicast group creation on the Fabric Management Server run the following commands Remember that for some commands you must provide the HCA and port through which the Subnet Manager connects to the subnet For IFS 5 complete the following steps 1 Check for multicast membership At least one group should be returned per InfiniBand subnet iba_showmc egrep Fabric GID Fabric 1 1 Multicast Information GID Oxff12601bf ff f0000 0x0000000000000016 GID Oxff12401bf ff f0000 0x0000000000000016 Fabric 1 2 Multicast Information GID Oxff12601bf ff f0000 0x0000000000000016 GID Oxff12401bf ff f0000 0x0000000000000016 Fabric 2 1 Multicast Information GID Oxff12601bf ff f0000 0x0000000000000016 GID Oxff12401bf ff f0000 0x0000000000000016 Fabric 2 2 M
112. radio interference may occur in which case the user may be required to take corrective actions Japanese Electronics and Information Technology Industries Association JEITA Confirmed Harmonics Guideline products less than or equal to 20 A per phase mais AA Bo w h Japanese Electronics and Information Technology Industries Association JEITA Confirmed Harmonics Guideline with Modifications products greater than 20 A per phase ERRA A ED EA Electromagnetic Interference EMI Statement People s Republic of China E EA A RPh ESHA BFR eeSeRTRarxn EXHT oS RE RS SE FP IR THRRET TNE E Declaration This is a Class A product In a domestic environment this product may cause radio interference in which case the user may need to perform practical action 286 Power Systems High performance clustering Electromagnetic Interference EMI Statement Taiwan ERAS PRA AMA we A Fe AE BE PEAR T fie iS RAAF gt RS lL gt RAS PRR RRRA LW EHH R gt The following is a summary of the EMI Taiwan statement above Warning This is a Class A product In a domestic environment this product may cause radio interference in which case the user will be required to take adequate measures Ta SIBM E m iR a TU a VS Bd Fa OR BS a8 HS AR Zs E GEE APA Ea 7 ORE Ei O800 016 888 Electromagnetic Interference EMI Statement Korea 0 IIE SPRABCeS VIHASI At BONAR E ASAE 0l SS SSA HEH PALS KI
113. reduce the possibility of undetected data corruption or loss This risk however cannot be eliminated Users who experience unplanned outages system failures power fluctuations or outages or component failures must verify the accuracy of operations performed and data saved or transmitted by the system at or near the time of the outage or failure In addition users must establish procedures to ensure that there is independent data verification before relying on such data in sensitive or critical operations Users should periodically check the manufacturer s support websites for updated information and fixes applicable to the system and related software Trademarks IBM the IBM logo and ibm com are trademarks or registered trademarks of International Business Machines Corp registered in many jurisdictions worldwide Other product and service names might be trademarks of IBM or other companies A current list of IBM trademarks is available on the Web at Copyright and trademark information at www ibm com legal copytrade shtml Adobe the Adobe logo PostScript and the PostScript logo are either registered trademarks or trademarks of Adobe Systems Incorporated in the United States and or other countries INFINIBAND InfiniBand Trade Association and the INFINIBAND design marks are trademarks and or service marks of the INFINIBAND Trade Association Intel Intel logo Intel Inside Intel Inside logo Intel Centrino Intel Centrino logo Cel
114. regular basis to see if there are problems being reported An example of ANALYSISLOG entries are found after the script It is dependent on Configuration script on page 276 and Error counter clearing script on page 276 The error counter clearing script is especially important for the health check control scripts ability to calculate the time since the most recent clearing of error counters bin bash Name of script healthcheck Include the configuration script Assume that it is in the same directory as this script 0 config The base iba_mon conf file name IBAMON CONFIGFILES iba_mon conf Get current timestamp information in epoch and human readable time now date s timestamp date H 2M S m d y Get the timestamp of the last clear If there was not one done set it to zero prev cat CLEARFILE if prev then prev 0 fi Calculate the difference between now and the last clear diff now prev diffh diff 3600 diffr diff 3600 if diffr gt 1800 then diffh diffh 1 fi if diffh gt 24 then diffh 24 fi Se a ee ee E E E E ee If it s been less than 24 hours since the last clear simply read the error counters If it s been 24 or more hours since the last clear read and clear the error counters echo itt tt HH HH EH HH A A A E EA a a a a a AE gt gt SANALYSISLOG echo timestamp diffh hour
115. replacing faulty or damaged cables which are either non IBM part numbers or are attached to customer serviceable units Reference documentation for fabric verification procedures See the reference documentation for the Fabric verification procedures To perform fabric verification procedures obtain the following documentation 1 As applicable the Fabric verification application documentation and readme 2 Fast Fabric Toolset Users Guide 3 QLogic Troubleshooting Guide 4 QLogic Switch Users Guide Fabric verification tasks Use this procedure to learn how to verify the fabric operation To verify fabric operation complete the following steps 1 Install the Fabric verification application or the customer application that is the most communication intensive over the InfiniBand fabric Such an application might not be a very compute intensive 2 Set up the fabric verification application 3 Clear error counters in the fabric to have a clean reference point for subsequent health checks 150 Power Systems High performance clustering 4 Perform verification by completing the following steps a Run the fabric verification application b Look for events revealing fabric problems c Runa Health check 5 Repeat step 3 on page 150 and 4 until no problems are found in the fabric Fabric verification procedure Use this procedure for fabric verification To verify fabric operation complete the following steps 1 Install the fa
116. server in which the HCA is populated and exit this procedure If every link attached to the switch chassis has gone down or all of them have been reported disappearing and then appearing do the following dteps a Check to see if the switch chassis is powered off or was powered off at the time of the error If this is true the link error is not a serviceable event then end this procedure b If the switch chassis is not powered off nor was it powered off at the time of the error the problem is in the switch chassis Engage QLogic service and exit this procedure If more than two links attached to a switch chassis have gone down but not all of the links with cables have done down or been reported disappearing and then appearing the problem is in the switch chassis Engage QLogic service and exit this procedure Check the HMC for serviceable events against the HCA If the HCA was reported as part of a FRU list in a serviceable event This link error is not a serviceable event therefore no repair is required in this procedure If you replace the HCA or a switch component based on the serviceable event go to step 18 on page 213 in this procedure Otherwise exit this procedure Check the LEDs of the HCA and switch port comprising the link Use the IBM system Manual to determine if the HCA LED is in a valid state and use the QLogic switch Users Guide to determine if the switch port is in a valid state In each case the LED would be lit if
117. service VLAN e Plan and setup static addresses for HMCs and switches High performance computing clusters using InfiniBand hardware 71 e Plan and setup DHCP ranges for each service VLAN Important If these devices and associated services are not set up correctly before applying power to the base servers and devices you might not be able to correctly configure and control cluster devices Furthermore if this is done out of sequence the recovery procedures for doing this part of the cluster installation can be lengthy M3 Connect server hardware control points to the service VLAN as instructed by server installation documentation The location of the connection is dependent on the server model and might involve a connection to the bulk power controllers BPCs or be directly attached to the service processor Do not attach switches to the cluster VLAN at this time Also attach the management consoles to the service and cluster VLANs Note Switch IP addressing must be static Each switch comes up with the same default address therefore you must set the switch address before it is added to the service VLAN or bring the switches one at a time onto the service VLAN and assign a new IP address before bringing the next switch onto the service VLAN M4 Do the portion of final management console installation and configuration which involves assigning or acquiring servers to their managing HMCs and authenticating frames and servers through
118. short time later the file monaixsyslog_run local6 notice var log xcat syslog fabric notices is displayed in var opt xcat_err_mon file 10 Check the etc syslog conf configuration file to ensure that the appropriate entries were added by the monaixsyslog command Ensure that there is only one such entry in the configuration file local6 notice var log xcat syslog fabric notices Reconfiguring xCAT on the AIX operating system ends here Reconfiguring xCAT on the Linux operating system To reconfigure xCAT event management on the Linux operating system complete the following steps 1 Log on to the xCAT MS 2 Run the lscondresp command to determine which condition and responses you are using The typical condition name is either Local IBSwitchLog for a xCAT MS The typical response name is usually Log event anytime Email root anytimeor LogEventtoxCATDatabase might also be configured Finally the system administrator might have defined another response to be used specifically at this site 3 Stop the condition response by using the following command stopcondresp lt condition name gt lt response_name gt 4 Delete all the xCAT related entries from etc syslog conf file or the etc syslog ng sys1log ng conf file These conditions are defined in Set up remote logging on page 112 Typically the entries look like the following example However the monerrorlog parameter uses a different name from fabnotices_fifo parameter in the dest
119. stop b Set up the broadcast or multicast group MTU by using the smDefBcGroup Oxffff 5 command c Enable the broadcast or multicast group by using the smDefBcGroup enable command d Start the Subnet Manager by using the following command For IFS 5 etc init d qlogic_fm start 2 If your server is running the AIX operating system you must do the following to properly set up for 4K MTU To determine if you must be using 4K MTU see Planning maximum transfer unit MTU on page 51 and the QLogic and IBM switch MTU complete the following steps a Do not proceed to do a mkiba until you have properly set up your Subnet Managers for 4K MTU For host based Subnet Managers see Das embedded Subnet Managers see Installing and configuring vendor or IBM InfiniBand switches b If you had previously defined the HCA devices remove them using the following command for i in Isdev grep Infiniband awk print 1 do rmdev 1 i d done Note The preceding command removes all of the HCA devices To remove a specific device such as ib0 use the rmdev 1 ib0 d command where x the HCA device number Run the cfgmgr command Run the mkdev command for the icm Run the mkiba command for the devices 09 Q20 After the HCA device driver is installed and the mkiba command is done run the following commands to set the device MTU to 4K and turn enable super packets for i in Isdev grep Infiniband awk print
120. such a configuration be sure to contact IBM to discuss how best to achieve your requirements A good example of a configuration with IO routers servers is for a total system solution that has multiple compute and storage clusters to provide fully redundant clusters The storage clusters might be connected more directly together so that there is the ability to mirror the part or all of the data between the two This example uses 9125 F2As for the compute servers and 8203 E4As for the storage clusters and 9125 F2As for the IO routers High performance computing clusters using InfiniBand hardware 47 Cluster 1 Cluster 2 9125 F2A compute 9125 F2A compute 9125 F2A compute 9125 F2A compute Compute Switches Compute Switches 9125 F2A IO router 9125 F2A IO router 9125 F2A IO router 9125 F2A IO router Storage Switches Storage Switches 8203 E4A storage 8203 E4A 8203 E4A storage 8203 E4A storage storage ig Storage ig Storage P7ECZ502 00 Figure 8 Example configuration with IO router servers If you are using 12x HCAs for example in a 8203 E4A server you should review Planning 12x HCA feonnections on page 75 onnections on page 75 to understand the unique cabling and configuration requirements when using these adapters with the available 4x switches Also review
121. the Ethernet connectivity of the switches management servers and Ethernet devices in the cluster virtual local area network VLAN 1 On the fabric management server perform a pingall command to all of the switches using the instructions found in the Fast Fabric Toolset Users Guide Assuming you have set up the default chassis file to include all switches this would be the pingall C command 2 If available from a console connected to the cluster VLAN open a browser and use each switchs IP address as a URL to verify that the Chassis Viewer is operational on each switch The QLogic switch Users Guide contains information about the Chassis Viewer 3 If you have the QLogic Fabric Viewer installed start it and verify that all the switches are visible on all of the subnets The QLogic Fabric Manager and Fabric Viewer Users Guide contains information about the Fabric Viewer Verify that the switches are correctly cabled by running the baseline health check as documented in the Fast Fabric Toolset Users Guide These tools are run on the Fabric Management Server 1 Clear all the error counters using the cmdall C ismPortStats clear noprompt command Run the all_analysis b command 3 Go to the baseline directory as documented in the Fast Fabric Toolset Users Guide Check the fabric links files to ensure that everything is connected as it should be You need_a map to identify the location of IBM HCA GUIDs attached to switch ports
122. the GUID 00 02 55 00 10 3a for AIX 0002 5500 103a 72 for Linux c Run the following command to find the server and adapter number for the HCA e For AIX use the following information For xCAT dsh nodegroup with AIX nodes v ibstat p grep p 1st seven bytes of GUID grep iba Example results gt dsh v N AIXNodes ibstat p grep p 00 02 55 00 10 3a 72 grep iba c924flecl0 ppd pok ibm com IB PORT 1 INFORMATION iba0 c924flecl0 ppd pok ibm com IB PORT 2 INFORMATION iba0 d For Linux use the following information For xCAT dsh nodegroup with Linux nodes v ibv_devinfo grep B1 1st seven bytes of GUID grep ehca Example results gt dsh v N AIXNodes ibv_devinfo grep B1 0002 5500 103a 72 grep ehca hca_id ehcaQ e The server is in the first field and the adapter number is in the last field c924flec10 ppd pok ibm com and iba in AIX or ehca0 in Linux f To find the physical location of the logical switch port use the logical switch number and iba device found preceding with the Table 91 on page 207 Example results jba ehcaO and logical switch 1 map to C65 T1 Therefore c924flec10 C65 T1 is attached to port 3 of SilverStorm 9024 DDR GUID 0x00066a00d90003d3 204 Power Systems High performance clustering This procedure ends here Finding devices based on a known ib interface ibX ehcaX Use this procedure if the ib interface number is known and the physical HCA port and attached phy
123. threshold and if a pattern of errors is present To do this use the procedures inl inerpieane ceca 2 Determine if the link errors might merely be symptoms caused by a user action like a reboot or another component failing like a switch or a server Determine the physical location of both ends of the cable Isolate to the FRU Repair the FRU Verify that the link is fixed Verify that the configuration was not inadvertently changed If a switch component or HCA was replaced take a new health check baseline OMNAAR YW Exit the procedure Notes 1 This procedure might have you swap ports to which a cable end is connected Be sure that you do not swap ports with a link connected to a fabric management server This would jeopardize fabric performance and also capability to do some verification procedures 2 When the problem is fixed or cannot find a problem after doing anything to disturb the cable HCA or switch components associated with the link it is important to perform the Fast Fabric Health 210 Power Systems High performance clustering 1 10 11 12 13 14 Check prescribed in step 18 on page 213 to ensure that you have returned the cluster fabric to the intended configuration The only changes in configuration would be VPD information from replaced parts the switch as prescribed in If this is a switch to switch link use the troubleshooting guide from QLogic Engage QLogic service and exit
124. tmp IBSwitchLogSensorDef IBM Sensor command Note Local management scope is required or you would get an error indicating that the node xCAT MS is not in the NodeNameList 5 Run the following command opt xcat sbin rmcmon monaixsyslog f var log xcat syslog fabric notices p local6 notice High performance computing clusters using InfiniBand hardware 113 114 f 6 Wait approximately 2 minutes and check the etc syslog conf file The sensor might have placed the following line in the file The default cycle for the sensor is to check the files every 60 seconds The first time it runs it recognizes that it must set up the syslog conf file with the following entry local6 notice var log xcat syslog fabric notices rotate size 4m files 1 Set up the condition for the sensor and link a response to it Note The method documented here is for a xCAT MS that has not been defined as a managed node If the xCAT MS is defined as a managed node you do not set the scope of the condition to be local 1 2 3 Create a copy of the prepackaged condition AIXNodeSyslog and set the ManagementScope to local 1 for local using the following command mkcondition c IBSwitchLog m 1 Local IBSwitchLog Link a response using the startcondresp LocalIBSwitchLog Log event anytime command The above condition response link would direct log entries to tmp systemEvents on the management server If you have planned different or addition
125. to see if there might be an issue You can do this with Fast Fabric command iba_report o route D lt destination gt S lt source gt There are many ways to format the destination and route query Only a few examples are here The Fast Fabric Users Guide has more details For a particular HCA port to HCA port route query it is suggested that you use the NodeGUIDs iba_report o route D nodeguid lt destination NodeGUID gt S nodeguid lt source NodeGUID gt You can find the node GUIDs by using the procedure in General mapping of IBM HCA GUIDs to physical HCAs on page 197 Instead of doing as instructed and grepping for only the first 7 bytes of a node GUID consider recording all 8 bytes You can use iba_stat n for HCAs in AIX LPARs and ibv_devinfo v for HCAs in Linux LPARs If you have a particular LPAR for which you want to determine routes use a portGUID instead iba_report o route D portguid lt destination portGUID gt S nodeguid lt port NodeGUID gt You can find the portGUIDs by using the procedure in General mapping of IBM HCA GUIDs to physical HCAs on page 197 hysical HCAs on page 197 Use ibstat p for HCAs in AIX LPARs and ibv_devinfo v for HCAs in Linux LPARs If the preceding procedure for checking routes does not yield a solution go to Diagnosing performance problems on page 224 Diagnosing management subsystem problems These are procedures to debug management subsystem problems
126. to the system but are not available for use For xCAT xdsh nodegroup will all nodes v Isdev Cc adapter grep sn grep v Available Reboot LPARs linked to an HCA that is listed as not available When all HCAs are listed as available to the operating system continue with the procedure to verify HCA numbering and the netid for the LPAR Check HCA allocation across LPARs For HPC Cluster there can be only one active LPAR and the HCA can be Dedicated to it Assure that the fabric is balanced across the subnets The following command string gathers the GID prefixes for the ib interfaces These would be consistent across all LPARs For xCAT xdsh nodegroup with all nodes v netstat i grep ib link awk split 4 a for i 5 i lt 12 i printf a i printf n Verify that the tcp_sendspace and tcp_recvspace attributes are set properly Because superpackets must be on the expected attribute value results are tcp_sendspace 524288 and tcp_recvspace 524288 For xCAT xdsh nodegroup with all nodes v ibstat v grep tcp_send tcp_recv Verify that the IP MTU is configured properly All ibX interfaces must be defined with superpacket on which results in an IP MTU of 65532 The IP MTU is different from the InfiniBand fabric MTU For xCAT dsh nodegroup with all nodes v netstat i grep ib link awk print 1 2 grep v 65532 216 Power Systems High performance clustering 16 Verify that the ne
127. use step Bb grep A 1 gt switch GUID switch port var opt iba analysis baseline fabric links High performance computing clusters using InfiniBand hardware 203 b If the baseline health check has not been run you must query the live fabric by using the following command iba_report o links grep A 1 Og switch GUID switch port Example results gt grep A 1 gt Courier 0x00066a00d90003d3 11 var opt iba analysis basel ine fabric links 20g 0x00025500103a6602 1 SW IBM G2 Logical Switch 1 lt gt 0x00066a00d90003d3 11 SW SilverStorm 9024 DDR GUID 0x00066a00d90003d3 4 The logical switch is in the second to last line of the results of the query Get the name for the logical switch This tells you which logical switch attaches to the physical switch port lt gt logical switch GUID port SW logical switch name IBnodeDescription Example results Logical Switch 1 5 Logon to the xCAT Management Server 6 Find the server and HCA port location Note If you have a map_of HCA GUIDs to server locations use that to find in which server the HCA is located and skip step 6a a Convert the logical switch GUID to Operating system format which drops the 0x and uses a dot or colon to delimit bytes e For AIX a dot delimits each byte 0x00025500103a7202 becomes 00 02 55 00 10 3a 72 02 e For Linux a colon delimits 2 bytes 0x00025500103a7202 becomes 0002 5500 103a 7202 b Drop the last 2 byte from
128. using the following procedures e Recovering a single ibX interface in AIX e Recovering all of the ibX interfaces in an LPAR in the AIX on page 236 Before performing any of the preceding procedures check if you have GPFS Recovering a single ibX interface in AIX This procedure is used to recover a single ibX interface when using the AIX operating system To recover a single ibX interface run the ifconfig ib interface up command High performance computing clusters using InfiniBand hardware 235 If the ifconfig ib interface up command does not recover the ibX interface you must completely remove and rebuild the interface by using the following command rmdev 1 ibX chdev 1 ibX a superpacket on a state up a tcp_sendspace 524288 a tcp_recvspace 524288 a srq_size 16000 mkdev 1 ibX Recovering all of the ibX interfaces in an LPAR in the AIX If you must recover all of the ibX interfaces in a server it is probable that you must remove the interfaces and rebuild them Before using this procedure try to recover the ibX interface by using the procedure in Recovering al single ibX interface in AIX on page 235 The following commands can be run individually but the following example uses loops on the command line The procedure must be modified based on the number of ibX interfaces in the server The following procedure is an example for a server with eight ib interfaces get original set of
129. was no Linked Down error go to step e CEC power cycle e CEC checkstop e A cable being pulled or reseated e A switch being power cycled or rebooted e A leaf being reseated e An event in SFP that has the HCA in the FRU list e A power event that would have brought down the CEC e A power event in the switch 1 If the LinkDowned error is not explained by any outside events perform the procedures to isolate see Diagnose a link problem based on error counters on page 264 The other link integrity errors can be ignored 2 For ExcessiveBufferOverruns first check to see if the FM has had manual overrides leading to a configuration problem This can happen only by altering the MTU or VL buffering scheme on an active link Check that the configuration as follows Note For more details on ExcessiveBufferOverrun errors see ExcessiveBufferOverrunErrors on a Log on to the switch that has one of the ports on the link that is in error b Run ismChassisSetMtu use help chassisSetMtu to understand the output c Ensure that the values are as expected according to the plan 2K MTUCap 4 4K MTUCap 5 VL Buffering gt 1 1 VL 2 2 VLs 3 4 VLs If these are different from the expected values this can explain the buffer overrun An example of the output is L11P 1 MTUCap 5 4096 bytes VLCap 3 4 VLs lt Leaf 11 Port 11 4K MTU and 4 VLs S3BL19 MTUCap 5 4096 bytes VLCap 3 4 VLs lt Spine 3 chip B to Leaf 19 interface 25
130. were checked Total number of incorrect items Summary of how many items had particular issues An example of fabric links changes follows This demonstrates only links that were Unexpected This means that the link was not found in the previous baseline The issue Unexpected Link is listed after the link is presented Links Topology Verification Links Found with incorrect configuration Rate MTU NodeGUID Port Type Name 60g 4096 0x00025500105baa00 1 CA IBM G2 Logical HCA lt gt 0x00025500105baa02 2 SW IBM G2 Logical Switch 1 Unexpected Link 20g 4096 0x00025500105baa02 1 SW IBM G2 Logical Switch 1 lt gt 0x00066a0007000dbb 4 SW SilverStorm 9080 c938f4q101 Leaf 2 Chip A Unexpected Link 60g 4096 0x00025500106cd200 1 CA IBM G2 Logical HCA lt gt 0x00025500106cd202 2 SW IBM G2 Logical Switch 1 Unexpected Link 20g 4096 0x00025500106cd202 1 SW IBM G2 Logical Switch 1 lt gt 0x00066a0007000dbb 5 SW SilverStorm 9080 c938f4q101 Leaf 2 Chip A Unexpected Link 60g 4096 0x00025500107a7200 1 CA IBM G2 Logical HCA lt gt 0x00025500107a7202 2 SW IBM G2 Logical Switch 1 Unexpected Link 20g 4096 0x00025500107a7202 1 SW IBM G2 Logical Switch 1 lt gt 0x00066a0007000dbb 3 SW SilverStorm 9080 c938f4q101 Leaf 2 Chip A Unexpected Link High performance computing clusters using InfiniBand hardware 167 165 of 165 Fabric Links Checked Links Expected but Missing Duplicate in input or Incorrect 159 o
131. with the port connected to the port detecting the error and not the FRU connected with the port reporting the error For example if Switch 2 Leaf 3 Port 16 is detecting an error and it is attached to Switch 2 Spine 2 Port 19 the spine is the first to be replaced in the FRU list The leaf is the secondary FRU If a link with a cable the cable is generally the first suspect This procedure ends here Return to the procedure which referenced to this procedure Error counter details The following subsections addresses categorization of errors first and then the details of each particular error Common content for error details includes e A description of the error e Detail on how to diagnose the error and how it might relate to other errors e Performance impact e Threshold minimum actionable is the minimum number of occurrences of a particular type of error that must be seen over a given time period since the counters were last cleared This is used with the maximum in 24 hours to determine the threshold at a given time period e Threshold maximum in 24 hours is the maximum number of allowable occurrences of a particular type of error over a 24 hour time period Categorizing Error Counters This topic provides a table which categorizes error counters The following table categorizes error counters Table 100 Error Counter Categories Error Counter Category e Link Integrity
132. workload increases This probably indicates that the move from data transfer to idle sets up the conditions that cause the SymbolErrors Furthermore IBM GX HCA ports might be observed to take two SymbolErrors in a short time period It is not possible to read the errors at a rapid enough rate to distinguish when the SymbolErrors occur relative to each other However it is possible that these are occurring because of noise that affects two symbols being received contiguously This is why the minimum threshold is suggested to be 3 Knowing the relationship between SymbolErrors and PortRcvErrors it is tempting to subtract the number of PortRcvErrors from the number of SymbolErrors and use the difference to determine how many SymbolErrors occurred on idle However because there are other causes for PortRcvErrors this is not advisable In any case an increasing number of SymbolErrors during idle cycles will indicate an increased probability of SymbolErrors during future data cycles Therefore SymbolErrors can be used as a method to determine how immediate is to service the link The InfiniBand Trade Association spec allows 10 12 bit error rate However the QLogic and IBM component designs are such that the expected bit error is between 10 15 and 10 14 This translates into an error threshold of 10 errors over a 24 hour period Performance impact On a switch port or a non IBM GX HCA port it is difficult to assess whether SymbolErrors are affec
133. xCAT MS to ensure that there is connectivity across the service VLAN If the ping fails use standard techniques to debug Ethernet interface problems between the xCAT MS and the switches c Use the following commands on the Fabric Management Server to test logging from the switches to the xCAT MS e To see an ERROR in tmp systemEvents cmdall C logSyslogTest e e To see a NOTICE in tmp systemEvents cmdall C logSyslogTest n d Logon to the xCAT MS to see if the log made it through It might take a minute or two before the event management sensor senses the log entry in the xCAT MS var log xcat syslog fabric notices file e Check the tmp systemEvents file and verify that only an ERROR and a NOTICE entry are logged in it from each switch address If you have waited as much as 5 minutes and the Notice entry was not logged in the tmp systemEvents file then check the following items e Review the previous setup instructions to ensure that they were performed correctly paying close attention to the setup of the etc syslog conf file e Use the procedure in Problem with event manag Recall that you were using the logger command such that the Fabric Management Server would be the source of the log entry f Check the var log xcat syslog fabric info file and verify that the ERROR and NOTICE entry is in the file This applies only if you have chosen to set up the syslog fabric info file If one or both entries are missing then
134. you must exclude the onboard InfiniBand HCA that normally is defined as iba3 for AIX partitions and ehca3 for Linux partitions Without excluding the on board HCA if you have a second IBM GX HCA its devices would be iba2 and iba4 for AIX and ehca2 and ehca4 for Linux Use exclude_hw RIO to completely eliminate the onboard iba from the configuration If there is a special and IBM qualified reason to use it as iba4 use exclude_hw 10G b If you did not use the configCECs script for partitions on non supported server types define LPARs using the following procedures Otherwise go to step 2 During this procedure you must Configure the HCAs using the procedure found in Installing or replacing an InfiniBand GX host channel adapter on page 147 Ensure that you do the steps that configure the GUID index and capability for the HCA in the LPAR 1 For POWER6 IBM Resource Link for the IBM system on which the LPAR is running Note 9125 F2A servers with heavy I O planars would have an on board InfiniBand HCA defined as an extra InfiniBand device This is always iba3 for AIX partitions and ehca3 for Linux partitions Delete this from the configuration Without excluding the on board HCA if you have a second IBM GX HCA its devices would be iba2 and iba4 for AIX and ehca2 and ehca4 for Linux 2 For POWERS IBM systems Hardware Information Center Note When creating LPAR profiles be sure to configure the appropr
135. your rack cabinet for the weight of a loaded rack cabinet e Verify that all door openings are at least 760 x 230 mm 30 x 80 in Ensure that all devices shelves drawers doors and cables are secure e Ensure that the four leveling pads are raised to their highest position e Ensure that there is no stabilizer bracket installed on the rack cabinet during movement e Do not use a ramp inclined at more than 10 degrees e When the rack cabinet is in the new location complete the following steps Lower the four leveling pads Install stabilizer brackets on the rack cabinet If you removed any devices from the rack cabinet repopulate the rack cabinet from the lowest position to the highest position e If a long distance relocation is required restore the rack cabinet to the configuration of the rack cabinet as you received it Pack the rack cabinet in the original packaging material or equivalent Also lower the leveling pads to raise the casters off of the pallet and bolt the rack cabinet to the pallet R002 L001 L002 xii Power Systems High performance clustering L003 All lasers are certified in the U S to conform to the requirements of DHHS 21 CFR Subchapter J for class 1 laser products Outside the U S they are certified to be in compliance with IEC 60825 as a class 1 laser product Consult the label on each part for laser certification numbers and approval information CAUTION This product m
136. 00101a6100 F 0x0002550010194000 F 0x0002550010193e00 F 0x00066a00facade01 F c Verify HCA configuration in the partitions For AIX partitions 1 Verify that the device is set to superpackets on for i in Isdev grep Infiniband awk print 1 egrep v iba icm do echo i Isattr El i egrep super done Note To verify a single device like ib0 use 1sattr El ib 0 egrep mtu super 2 Now check the interfaces for the HCA devices ibx and ml0 using netstat in grep v link awk print 1 2 The results should look like the following where the MTU value is in the second column Name Mtu en2 1500 ib 65532 ibl 65532 ib2 65532 132 Power Systems High performance clustering ib3 65532 ib4 65532 ib5 65532 ib6 65532 ib7 65532 mlO 65532 100 16896 100 16896 Note If you have a problem where the MTU value is not 65532 you must follow the recover procedure in Recovering ibX interfaces on page 235 For Linux partitions 1 2 Verify that the IPoIB process starts Use 1smod Verify that etc sysconfig network ifcfg ib files are set up correctly The following is an example which first lists the ifcfg ib file for each interface and then example contents for ib0 DEVICE indicates the interface The key fields that change based on the server and interface are PADDR NETMASK and GATEWAY BOOTPROTO should be static and STARTMODE should be auto c957f8ec01 1s 1 etc sysconfig network ifc
137. 02901 0 0 BMRU ib3 4092 1028293 0 0 102910 0 0 BMRU lo 16436 0 513906 0 0 0 513906 0 0 LRU Use netstat rn to verify the routing table Example output root on c697f1sq01 etc init d gt netstat rn Kernel IP routing table Destination Gateway Genmask Flags MSS Window irtt Iface 9 114 28 64 0 0 0 0 255 255 255 192 U 00 0 ethd 10 0 4 0 0 0 0 0 255 255 255 0 U 00 0 ib3 10 0 1 0 0 0 0 0 255 255 255 0 U 00 0 ib0 High performance computing clusters using InfiniBand hardware 133 10 0 2 0 0 0 0 0 255 255 255 0 U 00 0 ibl 10 0 3 0 0 0 0 0 255 255 255 0 U 00 0 ib2 169 254 0 0 0 0 0 0 255 255 0 0 U 00 0 ethd 127 0 0 0 0 0 0 0 255 0 0 0 U 00 0 lo 0 0 0 0 9 114 28 126 0 0 0 0 UG 00 0 ethd 6 Once the servers are up and running and xCAT is installed and you can dsh xdsh to the servers and you have verified the adapter configuration map the HCAs This will help with future fault isolation For more details see Use the procedure found in General mapping of IBM HCA GUIDs to physical HCAs on page 197 a Logon to the xCAT MS b Create a location for storing the HCA maps such as home root HCAmaps Note If you do not have mixed AIX and Linux nodes instead of using the N parameter in the following commands use a and store all nodes in one file for example NodeHCAmap c For AIX nodes run the following command For xCAT xdsh noderange with all AIX nodes v ibstat n grep GUID gt home root HCAm
138. 1 11 5 1 C8 1 1 L5 C11 11 5 1 C8 2 4 L5 C11 11 6 1 C8 1 1 L6 C11 11 6 1 C8 2 4 L6 C11 11 7 1 C8 1 1 L7 C11 11 7 1 C8 2 4 L7 C11 11 8 1 C8 1 1 L8 C11 11 8 1 C8 2 4 L8 C11 Fabric management server 1 1 Port 1 1 L1 C12 Fabric management server 1 1 Port 2 2 L1 C12 Fabric management server 1 2 Port 1 3 L1 C12 Fabric management server 1 2 Port 2 4 L1 C12 Fabric management server 2 1 Port 1 5 L1 C12 Fabric management server 2 1 Port 2 6 L1 C12 Fabric management server 2 2 Port 1 7 L1 C12 Fabric management server 2 2 Port 2 8 L1 C12 Fabric management server 3 1 Port 1 1 L1 C12 Fabric management server 3 1 Port 2 2 L1 C12 Fabric management server 3 2 Port 1 3 L1 C12 Fabric management server 3 2 Port 2 4 L1 C12 Fabric management server 4 1 Port 1 5 L1 C12 Fabric management server 4 1 Port 2 6 L1 C12 Fabric management server 4 2 Port 1 7 L1 C12 Fabric management server 4 2 Port 2 8 L1 C12 1 Connector terminology gt LxCx Leaf Connector 46 Power Systems High performance clustering There are backup fabric management server in this example For maximum availability the backup is connected to a different leaf from the primary Configurations with IO router servers This information provides possible configurations using only 9125 F2A compute servers and 8203 E4A storage servers The following is a configuration that is not generally available Similar configurations have been implemented If you are considering
139. 1 indicates task label E1 from Figure 12 and the second is from in the Figure 12 and task label M1 in the Figure 11 on page 71 Figure 11 on page 71 Steps that have a shaded background are steps that are performed under Installing and configuring vendor or IBM InfiniBand switches on page 137 HMCs NIM and Linux distribution servers Start HMC installation per HMC documentation H3 Using xCAT or DHCP server Cable installation fu Physically locate Physically locate AIX Install and configure installation servers servers to cluster VLAN Gl Physically locate Physically locate Fabric MS xCAT MS Install Linux Perform base xCAT installation per xCAT documentation Attach to local network if desired Install and configure HCAs Install and configure InfiniServ and Fast A Fabric Toolset using QLogic documentation Disable DHCP m service on the HMCs and assign static IP addresses to them Physically locate El Ethernet network devices Continue HMC H5 installation per HMC documentation El Ethernet network fo Update HMC firmware and cluster VLAN Ethernet devices Mm1 M2 Install and configure devices for service Both VLANs Install and configure F host based Fabric Manager per QLogic documentation Cable xCAT MS to the service and Assign static IP cluster
140. 2 6 10 14 18 22 script name The following section provides information about how to set up a 24 hour monitoring cycle at 1 hour intervals 162 Power Systems High performance clustering The default port error counter thresholds are defined in the etc sysconfig iba iba_mon conf file which must be configured for each intervals threshold Then cronjobs must be set up that reference these configuration files 1 Save the original file cp p etc sysconfig iba iba_mon conf etc sysconfig iba iba_mon conf original Create a file for each time period throughout a 24 hour cycle This helps you to point to a specific threshold for that time period This helps to reduce false callouts of suspected faulty links Because you must reference these files with the all_analysis script name them based on the time period in which they would be used iba_mon conf time period Edit to update the error counter thresholds to the value in Table 77 on page 161 For example in the following you would see the default setting for the SymbolErrorCounter and the preferred setting for hour 12 in the file etc sysconfig iba iba_mon conf 12 Default SymbolErrorCounter Symbol ErrorCounter 100 Using Table 77 on page 161 in the following for hour 12 you would have a file named iba_mon conf 12 with the following symbol error threshold setting Recommended SymbolErrorCounter Symbol ErrorCounter 5 Set up cron jobs to run all_analysis with diffe
141. 3 205 207 207 207 208 209 210 213 lt 213 213 214 214 Contents Vv Checking InfiniBand configuration in AIX s so o 6 wos topos e Soom wos ooa eoa o 215 Checking system configuration in AIX 2 a a a a 217 Verifying the availability of processor resources 0 a a a ee ee ee ee 217 Verifying the availability of memory resources 2 1 we eee ee 217 Checking InfiniBand configuration in Linux 2 ee eee 218 Checking system configuration in Linux lt s lt s ee 220 Verifying the availability of processor resources 2 1 ee eee ee ee 220 Verifying the availability of memory resources 2 2 1 we ee ee ee ee 220 Checking multicast groups lt s c to s b ad moe a aodo do m b k acor m a e e 221 Diagnosing swapped HCA ports s p bok mo do t pos do doi bop s poo d poi a a 22l Diagnosing swapped switch ports ee ee E Boe oa poa a 2 ae e ok op d a 22 Diagnosing events reported by the operating system Ol kt Got me ar hs gt Boake Bat a Ate amp Ge 42223 Diagnosing performance problems 2 1 we ee 224 Diagnosing and recovering ping problems 2 1 1 a 225 Diagnosing application crashes Bt as Ay tae Ee a a eS GE aa ee eB ey Zo DG Diagnosing management subsystem problems 2k ss Sat See we see e A a e a G Problem with event management or remote syslogging ee e woe db ob ob Od oe amp 2 ow 4 5 226 Event not in xCAT MS tmp systemEvents hb amp
142. 4 274 275 276 276 2 7 279 279 283 Contents 284 285 285 288 vii viii Power Systems High performance clustering Safety notices Safety notices may be printed throughout this guide e DANGER notices call attention to a situation that is potentially lethal or extremely hazardous to people e CAUTION notices call attention to a situation that is potentially hazardous to people because of some existing condition e Attention notices call attention to the possibility of damage to a program device system or data World Trade safety information Several countries require the safety information contained in product publications to be presented in their national languages If this requirement applies to your country a safety information booklet is included in the publications package shipped with the product The booklet contains the safety information in your national language with references to the U S English source Before using a U S English publication to install operate or service this product you must first become familiar with the related safety information in the booklet You should also refer to the booklet any time you do not clearly understand any safety information in the U S English publications German safety information Das Produkt ist nicht fiir den Einsatz an Bildschirmarbeitsplatzen im Sinne 2 der Bildschirmarbeitsverordnung geeignet Laser safety information IBM s
143. 4 Scope Link GUID 02 5500 1024 d900 gt add the leading zeroes to get 0002 5500 1024 d900 Get the adapter device For AIX use the following information ibstat p grep p 1st seven bytes of GUID grep iba Example results gt ibstat p grep p 00 02 55 00 10 24 d9 grep iba IB PORT 1 INFORMATION iba IB PORT 2 INFORMATION ibaQ Device iba For Linux use the following information ibv_devinfo grep B1 1st seven bytes of GUID grep ehca Example results ibv_devinfo grep B1 02 5500 1024 d9 grep ehca hca_id ehcad Device ehca0 Find the logical switch associated with logical HCA for the interface High performance computing clusters using InfiniBand hardware 205 6 Log on to the fabric management server 7 Translate the operating system representation of the logical HCA GUID to the subnet manager representation of the GUID a For AIX reported GUIDs delete the dots 00 02 55 00 10 24 d9 00 becomes 000255001024d900 b For Linux reported GUIDs delete the colons 0002 5500 1024 d900 becomes 000255001024d900 8 Find the logical HCA GUID connection to the logical switch a If the baseline health check has been run use the following command If it has not been run use step grep A 1 Og GUID port var opt iba analysis basel ine fabric links b If the baseline health check has not been run you must query the live fabric by using the following command iba_report o links grep A 1 Og
144. 5 T4 10 01n10 C65 T4 10 02n10 C65 T4 11 f01n11 C65 T4 11 f02n11 C65 T4 12 f01n12 C65 T4 12 f02n12 C65 T4 Table 58 Example Planning worksheet for Director or core switch with more than 24 ports leaf configuration Leaf _7 Leaf _8 Ports Connection Ports Connection 1 07n01 C65 T4 1 08n01 C65 T4 2 07n02 C65 T4 2 08n02 C65 T4 3 07n03 C65 T4 3 08n03 C65 T4 4 07n04 C65 T4 4 08n04 C65 T4 88 Power Systems High performance clustering Table 58 Example Planning worksheet for Director or core switch with more than 24 ports leaf configuration continued Leaf _7 Leaf _8 _ 5 07n05 C65 T4 5 08n05 C65 T4 6 07n06 C65 T4 6 08n06 C65 T4 7 07n07 C65 T4 7 08n07 C65 T4 8 07n08 C65 T4 8 08n08 C65 T4 9 07n09 C65 T4 9 08n09 C65 T4 10 07n10 C65 T4 10 08n10 C65 T4 11 07n11 C65 T4 11 08n11 C65 T4 12 07n12 C65 T4 12 f08n12 C65 T4 xCAT planning worksheets Use the xCAT planning worksheet to plan for your xCAT management servers The xCAT worksheet is intended to highlight information that is important for management subsystem integration in high performance computing HPC clusters with an InfiniBand network It is not intended to replace planning instruction in the xCAT documentation If you have multiple xCAT Management Servers xCAT MS complete a worksheet for each server The Switch Remote Comman
145. 6 Power Systems High performance clustering d If the configuration has been changed it must be changed back again by using the ismChassisSetMtu command e If there is no issue with the configuration then perform the procedures to isolate local link integrity errors Diagnose a link problem based on error counters on page 264 Otherwise go to step 3 If there are Symbol Errors reported by the HCA and if there are somewhere between 85 100 errors do the following steps Otherwise go to step 4 Note For more details on Symbol Errors see SymbolErrorCounter on page 269 a Determine if a user CEC or power event might have brought the link down see the rampie events b If there were outside events that caused the link down clear the error counters on the link see Clearing error counters on page 274 c If there were no outside events then monitor the link to see if the number of errors increases If the number of symbol errors does not increase in about two hours and there are no LinkErrorRecovery errors increasing during that time period clear the error counters on the link see Clearing error counters on page 274 The assumption is that there was an outside event that had not been properly determined in the previous steps Note It is possible to see the symbol error count decrease if there are LinkErrorRecovery errors because a link recovery sequence includes a clear of the symbol error counter
146. 64 rpm libmthca for Mellanox 32 bit libmthca e15 ppc rpm InfiniHost support libmthca static el5 ppc rpm 64 bit libmthca e15 ppc64 rpm libmthca static e15 ppc64 rpm libmlx4 for Mellanox 32 bit libm x4 e15 ppc rpm ConnectX support libm1x4 static el5 ppc rpm 64 bit libm x4 e15 ppc64 rpm libm1x4 static e15 ppc64 rpm General Notes RedHatEL5 3 only ships 32 bit libibverbs utils it used to ship ibv_ commands package in CDs DVD which depends on 32 bit IB libraries So it fails to be installed if only 64 bit 136 Power Systems High performance clustering libraries exist on the system For the user who needs both these IB commands and the 64 bit libraries install both 32 bit and 64 bit library packages 2 If the previous rpms have not been installed yet do so now Use instructions from the documentation provided with RedHat For other information see the IBM Clusters with the InfiniBand Switch web site referenced in Cluster information resources on page 2 Installing the operating system and configuring the cluster servers ends here Installing and configuring vendor or IBM InfiniBand switches Use this procedure if you are responsible for installing the vendor or IBM switches The InfiniBand switch installation and configuration encompasses major tasks W1 through W6 that are shown in Figure 11 on page 71 Note If possible do not begin this procedure before the management subsystem i
147. A links 2 254 Error counters Lone a e ee o Gee Ge eh ee a oe a Ge eS er aa a GO Interpreting error counters be amp ooh a eS Be me eke SOB ee amp Be ek oe te ue 22505 Interpreting link Integrity errors s s s k so ee 256 Interpreting remote errors eke a RR ek Ro ee ke oe EL Be ak Se Oe wk ee me 260 Example PortXmitDiscard analyses Mt oe wee we ee Ee ee ee a te Oe el vi Power Systems High performance clustering Example noe ais analyses Interpreting security errors Diagnose a link problem based on error counters Error counter details Categorizing Error Counters Link Integrity Errors LinkDownedCounter LinkErrorRecoveryCounter LocalLinkIntegrityErrors ExcessiveBufferOverrunErrors PortRcvErrors SymbolErrorCounter Remote Link Errors including congestion and link integrity PortRcvRemotePhysicalErrors Men PortXmitDiscards Security errors PortXmitConstraintErrors PortRcvConstraintErrors Other error counters VL15Dropped PortRevSwitchRelayErrors Clearing error counters Example health check scripts Configuration script Error counter clearing script Healthcheck control script Cron setup on the Fabric MS Improved healthcheck Notices Trademarks i Electronic emission notce Class A Notices Terms and conditions 262 264 264 265 265 266 266 266 267 267 268 269 271 271 271 273 273 273 273 273 27
148. AT MS Remote syslogging to an xCAT MS oF oN Remote logging to xCAT MS helps you monitor clusters by consolidating logs to a central location To set up syslogging to a xCAT management server complete the following steps 1 L1 M4 Set up remote logging and event management for the fabric on the xCAT MS There are two sets of instructions One is for xCAT running on the AIX operating system and the other is for xCAT running on the Linux operating system Even if you do not plan to use xCAT the remote syslog setup instructions would still be useful to consolidate Subnet Manager and switch logs into one place Notes a It is assumed that the fabric management server setup for remote syslogging has already been done b This procedure assumes that the xCAT MS is not defined as a managed node It is assumed that administrators who have set up the xCAT MS as a managed node are experienced and can modify this procedure to accommodate their configuration The key is to monitor the var log xcat syslog fabric notices file using a sensor and setting up a condition to monitor that sensor and direct the log entries to the tmp systemEvents file 112 Power Systems High performance clustering If the xCAT MS is running the AIX operating system go to Remote Syslogging and Event Management for xCAT on AIX After finishing the event management setup proceed to step If the xCAT MS is running the Linux operating system go to Remote Sysloggin
149. Any IBM Logical Switch 1 or IBM Logical Switch 2 System p POWER6 First generation IBM G1 Logical Switch 1 or IBM G1 Logical Switch 2 System p POWER6 Second generation IBM G2 Logical Switch 1 or IBM G2 Logical Switch 2 High performance computing clusters using InfiniBand hardware 9 Host channel adapter statistics counter The statistics counters in the IBM GX host channel adapters HCAs are only available with HCAs in System p POWER6 servers You can query the counters using Performance Manager functions with the Fabric Viewer and the fast fabric iba_report command For more information see Hints on using iba_report on page 180 While the HCA tracks most of the prescribed counters it does not have counters for transmit packets or receive packets Related reference Hints on using iba_report on page 180 The iba_report function helps you to monitor the cluster fabric resources Vendor and IBM switches In older Power clusters vendor switches might be used as the backbone of the communications fabric in an IBM HPC Cluster using InfiniBand technology These are all based on the 24 port Mellanox chip IBM has released a machine type and models based on the QLogic 9000 series All new clusters are sold with these switches QLogic switches supported by IBM IBM supports QLogic switches in high performance computing HPC clusters The following QLogic switch models are supported For more details on the model
150. Boe Planning worksheet for switches with more than 24 ports BG GG A od ek SOE oe tk 2 4 2 265 xCAT planning worksheets ok ee ugh ee es AN Ye SR eo cet cae DI QLogic fabric management worksheet os ete ee a Pte Be oe ee ee Installing a high performance computing HPC duces with an InfiniBand network Go omo oke e ae a IO IBM Service representative installation responsibilities 0 0 0a a a a ee a 7 Cluster expansion or partial installation 0 0 a a a a 7 Site setup for power cooling and floor Bo Be amp oe a le amp ae Soe SH mee ee 2 298 Installing and configuring the management subsystem be woe or ew ee 9 Installing and configuring the management subsystem for a d ster expansion or addition S te gee an OL Installing and configuring service VLAN devices 00a a a a ee ee ee ee 102 Installing the Hardware Management Console 1 ee ee ee ee ee 102 Installing the xCAT management server 2 1 ww ee ee ee ee ee ee 104 Installing operating system installation servers 2 2 ww ee ee ee ee ee eee 105 Installing the fabric management server 1 1 we ee eee eee 105 Set up remote logging ee te whe oh od de S em amp 2 aoe amp 8 4 4 4 4 212 Remote syslogging to an xCAT MS ee ee tae ce es ets a Se es ao a 2 Using syslog on RedHat Linux based xCAT MS Ye Ge E a ee Re ee a e a us ga a e 2 0 Set up remote command processing aoM g o dk Bog d p ao amp SF e a20 Setting up remote command proc
151. C o none F nodepat SilverStorm The previous query returns nothing but it clears all of the port statistics on all switch chassis whose IB NodeDescription begins with the default SilverStorm Cluster service Cluster service requires an understanding of how problems are reported who is responsible for addressing service issues and the procedures used to fix the problems Additional information about servicing your cluster environment can be found in the information resources on page 2 Cluster service overview Servicing the cluster includes understanding the following items Service responsibilities Fault reporting mechanisms Table of symptoms on page 187 has several tables of symptom organized by fault reporting mechanism Service procedures on page 191 has a lookup table of service procedures Service responsibilities Servicing the cluster requires the coordinated efforts of IBM service representatives customers and the switch vendor The responsibilities for servicing cluster are dependent upon the parts being serviced The following information shows the general responsibilities for servicing the cluster e IBM service representatives are responsible for servicing IBM parts that are not customer replaceable units CRUs e The customer is responsible for servicing IBM CRUs e The customer or the vendor is responsible for servicing vendor switches and cables unless otherwise
152. CAT related entries from the etc syslog file These entries are defined in Set up remote logging on page 112 The commented entry might not exist all local6 notice and above priorities go to the following file local6 notice var log xcat syslog fabric notices 5 Restart syslogd by using the etc init d syslog restart command 6 Set up the IBSwitchLogSensor again by completing the following steps a Copy the old sensor into a new definition file by using the Isrsrc i s Name IBSwitchLogSensor IBM Sensor gt tmp IBSwitchLogSensor command Edit the tmp IBSwitchLogSensorDef file Change the command to opt xcat sbin rmcmon monaixsyslog p local6 notice f var log xcat syslog fabric notices d After creating and editing the tmp AIXSyslogSensorDef file remove the sensor by using the command rmsensor IBSwitchLogSensor Note If the sensor did not exist you can still continue to the next step e Create the sensor and keep the management scope set to local using the following command CT_MANAGEMENT_SCOPE 0 mkrsrc f tmp IBSwitchLogSensorDef IBM Sensor Note Local management scope is required or you would get an error indicating that the node xCAT MS is not in the NodeNameList file 7 Delete everything in the error monitoring directory by using the var opt xcat_aix_syslog command 8 Restart condition response association by using the startcondresp lt condition name gt lt response name gt command 9 A
153. Cluster Ready Hardware Server CRHS Note The double arrow between M4 and S3 indicates that these two tasks cannot be completed independently As the server installation portion of the flow is completed then the management console configuration can be completed Setup remote logging and remote command execution and verify these operations When M4 is complete the bulk power assemblies BPAs and cluster service processors must be at power standby state To be at the power standby state the power cables for each server must be connected to the appropriate power source Prerequisites for M4 are M3 S2 and W3 co requisite for M4 is S3 The following server installation and configuration operations S2 through S7 can be performed sequentially once step M3 has been performed M3 This is in the Management Subsystem Installation flow but the tasks are associated with the servers Attach the cluster server service processors and BPAs to the service VLAN This must be done before connecting power to the servers and after the management consoles are configured so that the cluster servers can be discovered correctly 2 To bring the cluster servers to the power standby state connect the servers in the cluster to their appropriate power sources Prerequisites for S2 are M3 and S1 S3 Verify the discovery of the cluster servers by the management consoles S4 Update the system firmware S5 Verify the system operation Use the
154. D GUID for the HCA to a physical HCA To do this you must understand the way GUIDs are formatted in the Operating System and by vendor logs While they all indicate 8 bytes of GUID they have different formats as illustrated in the following table Table 89 GUID Formats Format Example Where used dotted 00 02 55 00 00 0f 13 00 AIX hex string 0x00066A0007000BBE QLogic logs 2 byte colon delimited 0002 5500 000f 3500 Linux If you must isolate both sides of link using a known device from a log or health check result use one of the following procedures Table 90 Isolating link ports based on known information Known Information Procedure Logical Switch is known Finding devices based on a known logical switch on page 199 Finding devices based on a known logical HCA on Logical HCA is known Finding devices based on a known physical switch port on page 203 Finding devices based on a known ib interface ibX ehcaX on page 205 General mapping from HCA GUIDs to physical HCAs General mapping of IBM HCA GUIDs to physical Physical switch port is known ibX interface is known General mapping of IBM HCA GUIDs to physical HCAs To map IBM HCA GUIDs to physical HCAs you must first understand the GUID assignments based on the design of the IBM GX GX HCA For information about the structure of an IBM HCA see IBM GX or GX host channel ada
155. Ds to all CAs Lmc can be 0 7 gt lt l xk kx kkxk xkkkkkkx TB Multicast x k kk k kkkkkkkkkkkkkkkkk gt lt Multicast gt lt l kkkkk k kkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkk gt lt Pre Created Multicast Groups gt lt MulticastGroup gt lt Create gt 1 lt Create gt lt MTU gt 4096 lt MTU gt lt Rate gt 20g lt Rate gt lt lt SL gt 0 lt SL gt gt lt QKey gt 0x0 lt QKey gt lt FlowLabel gt 0x0 lt F1lowLabel gt lt TClass gt 0x0 lt TClass gt lt MulticastGroup gt lt Multicast gt lt l kkkkKRKKKEKEHKA Fabric SWORD kkkkkkkkkkkkkkkkkkkkkkkk gt lt MaxAttempts gt 8 lt MaxAttempts gt lt l KKKKKKKKKRKKKEKK SM Logging Debug kkkkkkkkkkkkkkkkkkkkkkkkkkkk gt lt NodeAppearanceMsgThreshold gt 10 lt NodeAppearanceMsgThreshol d gt lt l KKKKKKAKKKKEKKKK Miscellaneous KXKKKKKKKKKKKKKKKKEKKEKEKKKER gt lt Overrides of the Common Shared parameters if desired gt lt Priority gt 1l lt Priority gt lt 0 to 15 higher wins gt lt ElevatedPriority gt 12 lt ElevatedPriority gt lt 0 to 15 higher wins gt lt Sm gt lt Common FE Fabric Executive attributes gt lt Fe gt lt Start gt 0 lt Start gt lt default FE startup for all instances gt 60 Power Systems High performance clustering lt Fe gt lt Common PM Performance Manager attributes gt lt Pm gt lt Sta
156. Healthcheck control script on page 277 If any one of the following retraining criteria is met retrain the link according to the procedure in How to retrain 9125 F2A links on page 252 Note This is assuming that you have checked within 10 15 minutes of up time Longer up time must follow criteria in parentheses e More than 3 HCA SymbolErr gt 10 day e More than 2 SW SymbolErr gt 10 day e More than 1 PortRcev w o PortRcvPhysicalRemoteErrors gt 10 day e Any LinkErrRecov gt 2 day e Any LinkDown gt 2 day Make sure that the link does not have 88 99 SymbolErrs reported by the HCA If it does it might not have been cleared gt 2 day e Any LocalLinkIntegrityErrors gt 2 day e Do not retrain because of PortkcvRemotePhysicalErrors PortXmitDiscards ConstraintErrors Error counters This section provides information about the port error counters that are tracked at the switch and HCA ports Error counters overview Error counters include understanding the following items e Interpreting error counters on page 255 254 Power Systems High performance clustering e Diagnose a link problem based on error counters on page 264 e Error counter details on page 265 e Clearing error counters on page 274 Interpreting error counters If the only problems that exist in a fabric involve the occasionally faulty link which results in excessive SymbolErrors or PortRcvErrors interpreting erro
157. High performance clustering Pe 0 gt O a lt L N LI REFERENCE 86 Al 93FF 03 ESCALA Power 7 High performance clustering The ESCALA Power7 publications concern the following models Bull Escala E5 700 Power 750 8233 E8B Bull Escala M6 700 Power 770 9117 MMB Bull Escala M6 705 Power 770 9117 MMC Bull Escala M7 700 Power 780 9179 MHB Bull Escala M7 705 Power 780 9179 MHC Bull Escala E1 700 Power 710 8231 E2B Bull Escala E1 705 Power 710 8231 E1C Bull Escala E2 700 E2 700T Power 720 8202 E4B Bull Escala E2 705 E2 705T Power 720 8202 E4C Bull Escala E3 700 Power 730 8231 E2B Bull Escala E3 705 Power 730 8231 E2C Bull Escala E4 700 E4 700T Power 740 8205 E6B Bull Escala E4 705 Power 740 8205 E6C References to Power 755 8236 E8C models are irrelevant Hardware October 2011 BULL CEDOC 357 AVENUE PATTON B P 20845 49008 ANGERS CEDEX 01 FRANCE REFERENCE 86 Al 93FF 03 The following copyright notice protects this book under Copyright laws which prohibit such actions as but not limited to copying distributing modifying and making derivative works Copyright Bull SAS 2011 Printed in France Suggestions and criticisms concerning the form content and presentation of this book are invited A form is provided at the end of this book for this purpose To order additional copies of this book or other Bull Techn
158. ID for the HCA interface and the switch link to which the ibX or ehcaX device is connected by using Finding devices based on a known ib interface ibX ehcaX on page 205 For the switch link be sure to record the switch IBNodeDescription leaf and port number To determine if the problem is with a link that is local to the server you must map the interface or HCA reported by the operating system to a switch link and look for problems with that link as they are reported in var log messages on the fabric management server or by error counter queries iba_report or all_analysis or fabric_analysis Perform the following procedure 1 Look for link errors reported by health checking as reported in var opt iba analysis latest fabric errors or var opt iba analysis timestamp High performance computing clusters using InfiniBand hardware 223 where timestamp is a timestamp after the timestamp for the operating system event and for an errors found associated with the switch link recorded previously run the procedure MET Look for link errors reported by the fabric manager in var 1og messages by searching on the HCA nodeGUID and the associated switch port information as recorded previously You might also look on the xCAT MS in tmp systemEvents if remote event logging has been configured for this cluster If a are found use the procedure found in Interpreting switch vendor log formats on page 207 a Search for t
159. L12 C2 2 12 1 C65 T3 3 L12 C2 2 12 1 C65 T4 4 L12 C2 2 12 2 C66 T1 5 L12 C2 2 12 2 C66 T2 6 L12 C2 2 12 2 C66 T3 7 L12 C2 2 12 2 C66 T4 8 L12 C2 Continue through to the last frame 10 1 1 C65 T1 1 L1 C10 10 1 1 C65 T2 2 L1 C10 10 1 1 C65 T3 3 L1 C10 10 1 1 C65 T4 4 L1 C10 10 1 2 C66 T1 5 L1 C10 10 1 2 C66 T2 6 L1 C10 10 1 2 C66 T3 7 L1 C10 10 1 2 C66 T4 8 L1 C10 10 2 1 C65 T1 1 L2 C10 10 2 1 C65 T2 2 L2 C10 10 2 1 C65 T3 3 L2 C10 10 2 1 C65 T4 4 L2 C10 10 2 2 C66 T1 5 L2 C10 10 2 2 C66 T2 6 L2 C10 10 2 2 C66 T3 7 L2 C10 10 2 2 C66 T4 8 L2 C10 Continue through to the last server in the frame 10 12 1 C65 Tl 1 L10 C10 10 12 1 C65 T2 2 L10 C10 10 12 1 C65 13 3 L10 C10 10 12 1 C65 T4 4 L10 C10 10 12 2 C66 Tl 5 L10 C10 High performance computing clusters using InfiniBand hardware 45 Table 34 Example topology gt 140 9125 F2As in 10 frames with 8 HCA connections in 8 InfiniBand subnets continued Frame Server HCA Connector Switch Connector 10 12 2 C66 T2 6 L10 C10 10 12 2 C66 T3 7 L10 C10 10 12 2 C66 T4 8 L10 C10 Frame of 8203 E4A servers 11 1 1 C8 1 1 L1 C11 11 1 1 C8 2 4 L1 C11 11 2 1 C8 1 1 L2 C11 11 2 1 C8 2 4 L2 C11 11 3 1 C8 1 1 L3 C11 11 3 1 C8 2 4 L3 C11 11 4 1 C8 1 1 L4 C11 11 4 1 C8 2 4 L4 C1
160. L20 C12 20 12 2 C66 T2 6 L20 C12 20 12 2 C66 T3 7 L20 C12 20 12 2 C66 T4 8 L20 C12 Fabric management server 1 1 Port 1 1 L21 C1 Fabric management server 1 1 Port 2 2 L21 Cl Fabric management server 1 2 Port 1 3 L21 C1 Fabric management server 1 2 Port 2 4 L21 C1 Fabric management server 2 1 Port 1 5 L21 C1 Fabric management server 2 1 Port 2 6 L21 C1 Fabric management server 2 2 Port 1 7 L21 C1 Fabric management server 2 2 Port 2 8 L21 C1 Fabric management server 3 1 Port 1 1 L22 C1 Fabric management server 3 1 Port 2 2 L22 C1 Fabric management server 3 2 Port 1 3 L22 C1 Fabric management server 3 2 Port 2 4 L22 C1 Fabric management server 4 1 Port 1 5 L22 C1 Fabric management server 4 1 Port 2 6 L22 C1 Fabric management server 4 2 Port 1 7 L22 C1 Fabric management server 4 2 Port 2 8 L22 C1 Connector terminology gt LxCx Leaf Connector There are backup fabric management server in this example For maximum availability the backup is connected to a different leaf from the primary The following is an example of a cluster with 120 9125 F2As in 10 frames with 8 HCA connections each but with only 4 InfiniBand subnets It uses 7874 240 switches where the first HCA in a server is connected to leafs in the lower hemisphere And the second HCA in a server is connected to leafs in the upper hemisphere Some leafs are left unpopulated You can calculate connections as shown in the following example Leaf number fram
161. LinkErrorRecoveryCounter Link Integrity LocalLinkIntegrityErrors Link Integrity ExcessiveBufferOverrunErrors Link Integrity SymbolErrorCounter Link Integrity PortRevErrors Link Integrity PortRcvRemotePhysicalErrors Remote Link Integrity High performance computing clusters using InfiniBand hardware 265 Table 100 Error Counter Categories continued Error Counter Category PortXmitDiscards Congestion or Remote Link Integrity PortXmitConstraintErrors Security PortRevConstraintErrors Security VL15Dropped SMA Congestion PortRcvSwitchRelayErrors Routing Link Integrity Errors These are errors that are localized to a particular link If they are not caused by some user action or outside event influencing the status of the link these are generally indicative of a problem on the link LinkDownedCounter The link is not able to maintain connectivity This ca be a catastrophic link failure or it can be because of some outside user action or event Examples of events that take down links are e CEC power cycle e CEC checkstop e A cable being pulled or reseated e A switch being power cycled or rebooted e A leaf being reseated e An event in SFP that has the HCA in the FRU list e A power event that would have brought down the CEC e A power event in the switch e A port on the link is disabled If the link seems to be going down on its own without outside influences listed the preceding list typical link
162. Linux tail the file that Event Management is monitoring on the xCAT MS and look for the log entry This is var log xcat syslog fabric notices If it is not in there go to Event not in e 228 If this is xCAT on Linux go to the next Note The tail yields only results if there was nothing in the tmp systemEvents file and the syslog daemon had tried to write to var log xcat syslog fabric notices 6 Check the event management sensor condition response setup See the xCAT documentation for InfiniBand support and the man pages for details The following table reminds you which sensors conditions and responses apply to various xCAT configurations High performance computing clusters using InfiniBand hardware 227 xCAT Config Sensor Condition Response xCAT on AIX and IBSwitchLogSensor LocalIBSwitchLog Log event anytime xCAT MS is not a managed node Email root anytime optional LogEventToxCAT Database optional xCAT on AIX and IBSwitchLogSensor LocalIBSwitchLog Log event anytime xCAT MS is a managed node Email root anytime optional LogEventToxCATDatabase optional xCAT on Linux and IBSwitchLogSensor LocalIBSwitchLog Log event anytime xCAT MS is not a managed node Email root anytime optional LogEventToxCAT Database optional xCAT on Linux and IBSwitchLogSensor LocalIBSwitchLog Log event anytime xCAT MS is a managed node Email root anytime optional LogEventToxCAT Database optional
163. M GX or GX host channel adapter on page 7 Note This procedure has some steps that are specific to operating system type AIX or Linux This must do with querying the HCA device from the operating system For AIX the adapter is called ibaX where X is a number 0 through 3 For Linux the adapter is call ehcaX where X is a number 0 through 3 For example a log entry like the following example is reported with the Logical switch port being reported Here the Logical switch information is underlined and in bold Note the Node type in italics to the InfiniBand fabric the HCA logical switch is displayed as a switch Apr 15 09 25 23 c924hsm ppd pok ibm com local6 notice c924hsm iview_sm 26012 c924 hsm MSG NOTICE SM c924hsm port 1 COND 4 Disappearance from fabric NODE IBM G2 Logical Switch 1 port 0 0x00025500103a7202 DETAIL Node type switch The following procedure would find the physical switch connection and node and HCA port and location The preceding log would be used as an example and example results from any queries would also be provided 1 Get the Logical Switch GUID and note which logical switch it is in the HCA gt GUID 0x00025500103a7202 logical switch number 1 2 Log on to the fabric management server 3 Find the Logical Switch GUID This query returns the logical switch side of a link as the first port of the link and the physical switch port as the second port in the link a If the baseline health c
164. M and FE gt lt Shared gt 1 If none of the components of this instance is be started set the Start parameter to 0 By default there are four instances defined in the configuration file If you require fewer than four instances of the FM then be sure to turn off the extraneous instances The common Start attributes for each FM component set previously would apply to all instances unless you turn off a instance of FM lt Start gt 0 lt Start gt High performance computing clusters using InfiniBand hardware 109 10 11 12 13 110 2 Configure the name for the FM instance You might use this name for referencing the instance The FM also uses this name when creating log entries for this instance The following example uses ib0 lt Name gt ib0 lt Name gt lt also for logging with sm _fe _pm _bm appended gt 3 Configure the HCA in the fabric management server to be used to reach the subnet that is managed by this instance of FM The following example uses HCA 1 lt Hca gt 1 lt Hca gt lt local HCA to use for FM instance 1 1st HCA gt 4 Configure the port on the above HCA in the fabric management server to be used to reach the subnet that is managed by this instance of FM The following example uses Port 1 lt Port gt 1 lt Port gt lt local HCA port to use for FM instance 1 1st Port gt 5 Configure the subnet or GID prefix that corresponds to the subnet that is managed by thi
165. MS is using syslog ng the following lines must be in etc syslog ng syslog ng conf filter f_fabinfo facility local6 and level notice alert warn err crit and not filter f_iptables destination fabnotices fifo pipe var log xcat syslog fabric notices group root perm 0644 log source src filter f_fabnotices destination fabnotices fifo 0 0 port 514 0 0 port 514 Note If the Fabric Management Server is using onlyudp as the transfer protocol for log entries then the tcp line is not needed Step Indicates how to check this In either case make note of the protocols and ports and IP addresses in these lines Using 0 0 0 0 would accept logs from any address If you wanted more security have a line for each switch and fabric 230 Power Systems High performance clustering management server from which you want to receive logs If you have a specific address named ensure that the source of the log has an entry with its address Switches use udp Fabric management servers are configurable for tcp or udp 4 If the entries are not there complete the following steps a b Edit the etc syslog conf or syslog ng conf file and add it to end of the file Restart the syslogd For AIX hosts run refresh s syslogd For Linux hosts run etc init d syslog restart 5 Look at the log on the device that is logging the problem and make sure that it is there a b For the fabric management server
166. Management Console HMC in the cluster and you are not using xCAT in your cluster go to step e If you are using xCAT go to step 5 on page 125 If you have a single HMC and you are not using xCAT complete the following steps a 1 Position the servers in frames or racks and install the HCAs do not connect or apply power to the servers at this time Note Do not proceed in the server installation instructions WCII or Information Center past the point where you physically install the hardware Follow the installation procedures for servers found in the following resources e Worldwide Customized Installation Instructions WCIIs for each server model that is installed by IBM service representatives e For all other server models customer procedures for initial server setup are available in For POWER6 IBM System Information Center for the IBM system being installed 124 Power Systems High performance clustering For POWERS IBM System Information Center nformation Center gt Initial server setup Procedures for installing the GX InfiniBand host channel adapters are also available in the IBM systems Hardware Information Center click IBM systems Hardware Information Center gt Installing hardware b Verify that the HMC is configured and operational c After the Ethernet service virtual local area network VLAN and management consoles have been installed and configured they are ready to discover and connect to
167. Planning and Installation Guide x x Software GPFS Administration and Programming x x Reference GPFS Problem Determination Guide x GPFS Data Management API Guide x Tivoli Workload Scheduler LoadLeveler x x Installation Guide Tivoli Workload Scheduler LoadLeveler Using and x administering Tivoli Workload Scheduler LoadLeveler Diagnosis x X and Messages Guide Parallel Environment Installation x x Parallel Environment Messages x x Parallel Environment Operation and Use x Volumes 1 and 2 Parallel Environment MPI Programming Guide x Parallel Environment MPI Subroutine Reference x The IBM HPC Clusters Software Information can be found at the IBM Cluster Information Center Fabric communications This information provides a description of fabric communications using several figures illustrating the overall data flow and software layers in an IBM System p High Performance Computing HPC cluster with an InfiniBand fabric Review the following types of material to understand the InfiniBand fabrics For more specific documentation references see Cluster information resources on page 2 The following items are the main components in the fabric data flow Table 6 Main components in fabric data flow Component Reference IBM Host Channel Adapters HCAs IBM GX or GX host channel adapter on page 7 Vendor Switches Vendor and IBM switches on page 1 Cables Cables on page 1
168. Planning aids Use this information to identify tasks that might be part of planning your cluster hardware Consider the following tasks when planning for your cluster hardware e Determine a convention for frame numbering and slot numbering where slots are the location of cages as you go from the bottom of the frame to the top If you have empty space in a frame reserve a number for that space e Determine a convention for switch and system unit naming that includes physical location including their frame numbers and slot numbers e Prepare labels for frames to indicate frame numbers e Prepare cable labels for each end of the cables Indicate the ports to which each end of the cable connects e Document where switches and servers are located and which Hardware Management Console HMC manages them e Print out a floor plan and keep it with the HMCs Planning Aids ends here Planning checklist The planning checklist helps you track your progress through the planning process Table 41 Planning checklist Target Completed Step date date Start planning checklist Gather documentation and review planning information for individual units and applications High performance computing clusters using InfiniBand hardware 75 Table 41 Planning checklist continued Step Ensure that you have planned for e Servers e I O devices InfiniBand network devices e Frames or racks for servers I O de
169. Priority Fast Fabric Toolset Planning Host based or embedded SM Host based for FF_ALL_ANALYSIS List of switch chassis ___10 1 1 16 10 1 1 17 10 1 1 18 10 1 1 19 List of switches running embedded SM if applicable Not applicable Subnet connectivity planning is in the Subnet Management Planning worksheet Chassis list files AllSwitches list all switches Host list files AIIFM list all Fabric MS Notes Installing a high performance computing HPC cluster with an InfiniBand network Learn how to physically install your Management Subsystems and InfiniBand hardware and software including the required steps for the hardware and software installation Do not proceed unless you have read Cluster planning on page 26 or your role in the installation has been planned by someone who has read that information Before beginning any installation procedure for the most current release information see the Cluster information resources on page 2 This information does not cover installation of I O devices other than those in the InfiniBand network All I O devices that are not InfiniBand devices are considered part of the server installation procedure The general installation process consists of the following steps 1 Separate the installation tasks based on the generalized tasks and the people responsible for them as outlined in Installation responsibilities by organization
170. S Installing or replacing an InfiniBand GX host channel adapter 2 2 ww ew ee ee TAZ Deferring replacement of a failing host channel adapter 2 2 2 2 ww ee ee eee 149 Verifying the installed InfiniBand network fabric in AIX a 2 2 2 1 we ee ee ee ee 150 iv Power Systems High performance clustering Fabric verification Fabric verification responsibilities Reference documentation for fabric verification procedures y Fabric verification tasks Fabric verification procedure Runtime errors Cluster Fabric Management Cluster fabric management flow Cluster Fabric Management components and dete use xCAT Systems Management QLogic subnet manager QLogic fast fabric toolset QLogic performance manager Managing the fabric management server Cluster fabric management tasks Monitoring the fabric for problems Monitoring fabric logs from the xCAT Cluster Management server Health checking Setting up periodic fabric health checking Output files for health check Interpreting health check changes files Interpreting health check diff files Querying status Remotely accessing QLogic management tools and commands fom xCAT MS Remotely accessing the Fabric Management Server from xCAT MS Remotely accessing QLogic switches from the xCAT MS Updating code oog Updating Fabric Manager code Updating switch chassis code Finding and interpreting configuration changes Hints on using iba_report Cluster servi
171. SAA ASE AS Oz BUC Germany Compliance Statement Deutschsprachiger EU Hinweis Hinweis fiir Ger te der Klasse A EU Richtlinie zur Elektromagnetischen Vertr glichkeit Dieses Produkt entspricht den Schutzanforderungen der EU Richtlinie 2004 108 EG zur Angleichung der Rechtsvorschriften ber die elektromagnetische Vertr glichkeit in den EU Mitgliedsstaaten und h lt die Grenzwerte der EN 55022 Klasse A ein Um dieses sicherzustellen sind die Ger te wie in den Handbtichern beschrieben zu installieren und zu betreiben Des Weiteren diirfen auch nur von der IBM empfohlene Kabel angeschlossen werden IBM bernimmt keine Verantwortung f r die Einhaltung der Schutzanforderungen wenn das Produkt ohne Zustimmung von IBM ver ndert bzw wenn Erweiterungskomponenten von Fremdherstellern ohne Empfehlung von IBM gesteckt eingebaut werden Notices 287 EN 55022 Klasse A Ger te m ssen mit folgendem Warnhinweis versehen werden Warnung Dieses ist eine Einrichtung der Klasse A Diese Einrichtung kann im Wohnbereich Funk St rungen verursachen in diesem Fall kann vom Betreiber verlangt werden angemessene Mafsnahmen zu ergreifen und daf r aufzukommen Deutschland Einhaltung des Gesetzes ber die elektromagnetische Vertr glichkeit von Ger ten Dieses Produkt entspricht dem Gesetz ber die elektromagnetische Vertr glichkeit von Ger ten EMVG Dies ist die Umsetzung der EU Richtlinie 2004 108 EG in der Bundesrepublik Deutschland Z
172. See a e fabric device on cave 97 for instructions on how to do this mapping 5 If anything is not connected correctly fix it and rerun the baseline check verify the clusters InfiniBand fabric operation complete the following steps Verify that the HCAs are available to the operating system in each logical partition For logical partitions running the AIX operating system check the HCA status by running the Isdev C grep ib command An example of good results for verifying a GX HCA is iba0 Available InfiniBand host channel adapter To verify that there are no problems with the fabric complete the following steps entries For details on If a problem is 1 Inspect the management server log for Subnet Manager and switch log how to read the log see Interpreting switch vendor log formats on page 207 encountered see Cluster service on page 183 Health checking on page 157 2 Run the Fast Fabric Health Check using instructions found in If a problem is encountered see Cluster service on page 183 At this time you should run a fabric verification application to send data on the fabric For the procedure to run a fabric verification application see Fabric verification on page 150 This includes steps for checking for faults Power Systems High performance clustering d After running the fabric verification tool perform the checks recommended in Fabric verification
173. Suite Software Release Notes Rev A e Also before upgrading to a new level always review the release notes provided with the code e Before upgrading to a new level be sure to save the following file to ensure that if configuration data is lost for any reason you have a backup and in case you find it necessary to downgrade the firmware level etc sysconfig iba iba_mon conf etc sysconfig fastfabric conf etc sysconfig iview fm config for IFS 4 etc sysconfig qlogic_fm xml for IFS 5 and beyond etc sysconfig iba_stat conf etc sysconfig iba ports etc sysconfig iba chassis etc sysconfig iba hosts var opt iba analysis basel ine etc syslog ng syslog ng conf syslog config file etc apparmor d sbin syslog ng Apparmor configuration Also save off the crontab configuration usr bin crontab 1 file e The order of fabric manager server code update must be as follows Save configuration files If necessary update the fabric management server operating system level Untar the IFS tarball tar zxvf QLogicIB IFS 4 3 x x x tgz example Read the Release Notes for any knyesown problems and new feature descriptions Move into the QLogicIB IFS 4 3 x x x directory and run INSTALL Select Option 1 to Install Uninstall Software Note The installation wrapper would uninstall the appropriate software as necessary Note The installation script automatically verifies the checksum that is shipped with th
174. System i and System p Site Preparation and Physical x IBM systems Planning Guides POWER systems Site and Hardware Planning Guide x 9125 F2A Installation Guide for MachineType and Model x Servicing the IBM system p MachineType and x 8204 E8A Model d y p vp 8203 E4A PCI Adapter Placement x x 9119 FHA Worldwide Customized Installation Instructions x WCII IBM service representative installation 9117 MMA instructions for IBM machines and features http w3 rchland ibm com projects WCII 8236 E8C High performance computing clusters using InfiniBand hardware 3 Table 3 Cluster hardware information resources continued Component Document Plan Install Manage and service Logical partitioning Logical Partitioning Guide for all systems Install Instructions for IBM LPAR on System i and x System P BladeCenter JS22 Planning Installation and Service Guide x x and JS23 IBM GX HCA Custom Installation Instructions one for each x x Custom Installation HCA feature http w3 rchland ibm com projects WCII BladeCenter JS22 and Users guide for 1350 x x JS23 HCA Pass through module 1350 documentation x x Fabric management IBM System x 3550 and 3650 documentation server Management node HCA vendor documentation x x HCA QLogic switches Switch model Users Guide x x Switch model Quick Setup Guide x x Switch Model Quick Setup Guide x QLogic InfiniBand Cluster Pl
175. Systems High performance clustering Management subsystem overview The management subsystem in the System p HPC Cluster solution using an InfiniBand fabric loosely integrates the typical IBM System p HPC cluster components with the QLogic components The management subsystem can be viewed from several perspectives including e Host views e Networks e Functional components e Users and interfaces The following figure illustrates the functions of the management or service subsystem IB network QLogic switch Chassis viewer RS 232 Service qo notebook Service provider Fabric management server Fabric manager Cluster VLAN NTP servers Fast fabric tools x Fabric viewer Service network Private System administrator desktop IBM Call Home Call Home is for IBM systems only and does not include switches or System administrator IBM service the Subnet Manager representative ARECZ505 02 Figure 6 Management subsystem High performance computing clusters using InfiniBand hardware 15 The preceding figure illustrates the use of a host based Subnet Manager HSM rather than an embedded Subnet Manager ESM running on a switch This use of HSM is because of the limited compute resources on switches for ESM use If you are using an ESM then the Fabric Managers runs on switches The servers are monitored and serviced in the same fashion
176. These concentrate on IBM vendor management subsystem integration issues Individual units and applications have their own troubleshooting guides Problem with event management or remote syslogging Use this procedure to help you determine where to look when expected events are not appearing in logs For details on the flow of logs seeo e For xCAT Vendor log flow to xCAT event management on page 23 Note The term source is used in this section to generically see where the log entry must have been originally logged This would typically either be a fabric management server for host based Subnet Manager logs or a switch for switch chassis logs or embedded Subnet Manager logs If you have a problem with event management or remote syslogging picking up Subnet Manager or switch events use this procedure Start with the following table of symptoms Symptom Procedure xCAT users 226 Power Systems High performance clustering Symptom Procedure Event is not in the tmp systemEvents on the xCAT MS Event not in xCAT MS tmp systemEvents Event not in xCAT MS var log xcat syslog fabric notices on page 228 Event is not in var log xcat syslog fabric info on the Event not in xCAT MS xCAT MS var log xcat syslog fabric info on page 230 Event is not in the log on the fabric management server Event not in log on fabric management server on page 231 Event is not in the log on the sw
177. Users_Guide_Rev_C pdf QLogic Open Fabrics QLogic OFED Users Guide x x x Enterprise Distribution OFED filedownloads qlogi Stack 68069 QLogic_OFED _Users_Guide_Rev_C pdf Hardware Installation and Operations Guide for the HMC x x ec C o Guide for the HMC and Managed x ystems xCAT http xcat sourceforge net go to the x x x Documentation link For InfiniBand support in xCAT see x x x xCAT2IBsupport pdf at https xcat svn sourceforge net svnroot xcat xcat core trunk xCAT client share doc xCAT2IBsupport pdf IBM Power Systems documentation is available in the IBM Power Systems Hardware Information Center The QLogic documentation is initially available from QLogic support Check the IBM Clusters with the InfiniBand Switch website for any updates to availability on a QLogic website Cluster software and firmware information resources The following table lists cluster software and firmware information resources Table 5 Cluster software and firmware information resources Component Document Plan Install Manage and service AIX Information Center x x x AIX Linux Obtain information from your Linux distribution x x x source High performance computing clusters using InfiniBand hardware 5 Table 5 Cluster software and firmware information resources continued Component Document Plan Install Manage and service IBM HPC Clusters GPES Concepts
178. VLANs address for service Ethernet network Start DHCP on xCAT MS Service VLAN Cable HMCs to the service Ethernet f network Ma Cable switches to the cluster VLAN Performe Cluster VLAN cluster VLAN F8 Cable Fabric MS to the cluster VLAN Fabric MS configuration and verification F9 d elsewhere HMCs UMA oSinstallservers MEA xCAT MS M1 M3 Fabric MS UMA d From Fabric M S to xCAT From xCAT to Fabric M S Server installation and configuration with From switches to xCAT From xCAT to switches management consoles From HMC to xCAT Setup device groups Set up remote logging Set up remote command processing All tasks that point to this symbol must be comple Figure 12 Management subsystem installation tasks 100 Power Systems High performance clustering ted before proceeding ARECZ510 3 Installing and configuring the management subsystem for a cluster expansion or addition The tasks for expanding an existing cluster are different from the tasks for a new installation This information is used when you want to expand an existing cluster If you are adding or expanding InfiniBand network capabilities to an existing cluster then you might approach the management subsystem installation and configuration differently than with a new cluster installation The flow
179. a Ensure that the thresholds on other errors are not masking the root cause Masking can occur if the thresholds for any of the link integrity errors are larger than the total number of PortRcvRemotePhysicalErrors being seen b If the thresholds were too large rerun the error gathering and point to an iba_mon conf file with smaller thresholds If the problem persists and there are no other errors being reported continue with step c c If the thresholds are displayed small enough reduce them all to 1 and gather errors for the subnet and forward them to support along with the reasoning behind your conclusion that you have found a faulty chip Then call your next level of support 4 If there is no pattern that leads to either a common link problem or a common chip it is possible that there is an HCA with a bad CRC generator that fails under specific conditions For an example see Such a failure is a difficult problem to isolate because the problem is not detected at the source nor along the way It reveals only itself at the destinations with no typical way to trace the problem back to the source In such a situation contact your next level of support They would either require low level logs tracing or queries that are not normally available in the field or experiments must be done with changing combinations of nodes to isolate a common source in all failing cases 260 Power Systems High performance clustering Example PortXmitDisca
180. a center floor CM2 M2 Perform the procedures in the xCAT Installation documentation When performing those procedures you must ensure that you complete the following steps If you are using a separate DHCP server for the service VLAN also perform the following steps for it and for the xCAT MS Do not perform the steps configuring DHCP on the xCAT MS a Install the xCAT MS system hardware b Update the operating system on the xCAT MS c Install the xCAT code on the xCAT MS d As appropriate enable the xCAT MS as the DHCP server for the service VLAN and the cluster VLAN If you are using a separate DHCP server perform this step on that server instead of the xCAT MS e Define the subnet ranges for the service and cluster VLANs If you are using a separate DHCP server perform this step on that server instead of the xCAT MS f Configure the DHCP ranges for the servers and bulk power controllers BPCs If you are using a separate DHCP server perform this step on that server instead of the xCAT MS g Add the planned static IP addresses for the HMCs to the Cluster Ready Hardware Server CRHS peer domain Do not proceed until the service and cluster VLANs Ethernet devices have been installed and configured as described in Installing and configuring service VLAN devices on page 102 CM3 M3 Cable the xCAT MS to the service and cluster VLANs If you are using a separate DHCP server cable it to the appropriate VLANs al
181. a from all of the fabric management servers because you are concerned with only the subnets managed by a particular fabric management server or the syslog from a particular fabric management server In this case you can use the h list of fabric management servers parameter instead of the f parameter to direct the capture to just that particular fabric management server If you also want data from a particular switch you can use C H list of switches Using C without the H collects data from all switches listed in the etc sysconfig iba chassis file e If you do not require information from all of the fabric management servers various hosts files must have been configured which can help you target subsets of fabric management servers These files are typically named etc sysconfig iba host e By default the results would go into uploads directory which is below the current working directory For a remote execution this would be the root directory for the user which is most often root This can be something like uploads or home root uploads it depends on the user setup on the fabric management server This directory will be references as lt captureall_dir gt You can also include a file name and path to store the output file e For more information about captureall see Fast Fabric Toolset documentation 4 If you have not used captureall with the C parameter get data from the switches by using captureall F lt chassis fi
182. able Not applicable egf08n12sq01 QLogic and IBM switch planning worksheets Use the appropriate QLogic switch planning worksheet for each type of switch When documenting connections to switch ports you can indicate both a shorthand for your own use and the IBM host channel adapter HCA physical locations For example if you are connecting port 1 of a 24 port switch to port 1 of the only HCAs in an IBM Power 575 that you are going to name fln1 you might want to use the shorthand f1n1 HCA1 Port1 to indicate this connection High performance computing clusters using InfiniBand hardware 83 It might also be useful to note the IBM location code for this HCA port You can get the location code information specific to each server in the server documentation during the planning process Or you can work with the IBM service representative at the time of the installation to make the correct notation of the IBM location code Generally the only piece of information not available during the planning phase is the server serial number which is used as part of the location code Host channel adapters generally have the location code U server feature code 001 server serial number Px Cy Tz where Px represents the planar into which the HCA is plugged and Cy represents the planar connector into which the HCA is plugged and Tz represents the HCA port into which the cable is plugged Planning worksheet for 24 port switches Use this worksh
183. acity used in each logical partition Do the following from the HMC that manages the server in which the HCA is installed a Obtain the list of logical partition profiles that use the HCA If there is no list proceed to the next step High performance computing clusters using InfiniBand hardware 147 b Obtain or record the GUID index and capability settings in the logical partition profiles that use the HCA by using the following steps 1 Go to the Systems Management window 2 Select the Servers partition 3 Select the server in which the HCA is installed 4 Select the partition to be configured 5 Expand each logical partition that uses the HCA If you do not know that which logical partition uses the HCA you must expand the following for each logical partition profile and record which ones use the HCA and the GUID index and capability settings a Select each partition profile that uses the HCA b From the menu click Selected gt Properties c In the Properties dialog click the HCA tab d Using its physical location find the HCA of interest e Record the GUID index and capability settings 3 Install or replace the adapter in the system unit For instructions on installing an InfiniBand GX HCA in your system unit see the RIO HSL or InfiniBand adapter information in the IBM Power Systems Hardware Information Center Note When an HCA is added to a logical partition the HCA becomes a required resource for the logi
184. ackup Subnet Managers locations Primary Fabric MS as fabric diagnosis collector xCAT server addresses for remote logging NTP server Notes The following worksheet shows an example of a completed General QLogic Fabric Management worksheet Table 64 Example Completed General QLogic Fabric Management worksheet General QLogic Fabric Management worksheet 92 Power Systems High performance clustering Table 64 Example Completed General QLogic Fabric Management worksheet continued Host based or embedded SM Host based LMC __2___ 2 is preferred MTU Chassis 4096 Broadcast __4096___ MTU rate for broadcast 4096 Fabric management server names and addresses on cluster VLAN egf11fm01 egf11fm02 Embedded Subnet Manager Switches Not applicable Primary Subnet Managers location ___subnet1 amp 3 egf11fm01 subnet2 amp 4 egf11fm02 Backup Subnet Managers locations ___subnet1 amp 3 egf11fm02 subnet2 amp 4 egf11fm01 Primary Fabric MS as fabric diagnosis collector egf11fm01 xCAT server addresses for remote logging 10 1 1 1 NTP server 10 1 1 1 Notes The following worksheet is for planning an embedded Subnet Manager Most HPC cluster installations use host based Subnet Managers Table 65 Embedded Subnet Manager worksheet Tivoli Event Services Manager or HSM to Embedded Subnet Manager worksheet be used License obtained
185. af and others until you reach the final server in the frame node 12 which attaches to port 12 of the leaf As a topology grows in size this can become valuable for speed and accuracy of cabling during installation and for later interpretation of link errors For example if you know that each leaf maps to a frame of servers and each port on the leaf maps to a given server within a frame you can quickly determine that a problem associated with port 3 on leaf 5 is on the link connected to server 3 in frame 5 e If you have more than 12 9125 F2A servers in a frame consider a different method of mapping server connections to leafs For example you might want to group the corresponding HCA port connections for each frame onto the same leaf instead of mapping all of the connections for subnet from a frame onto a single leaf For example the first HCA ports in the first nodes in all of the frames would connect to leaf 1 e If you have a mixture of frames with more than 12 9125 F2A servers in a frame and frames with 12 9125 F2A servers consider first connecting the frames with 12 servers to the lower numbered leaf modules and then connecting the remaining frames with more than 12 9125 F2A servers to higher High performance computing clusters using InfiniBand hardware 31 numbered leaf modules Finally if there are frames with fewer than 12 nodes try to connect them such that the servers in the same frame are all connected to the same leaf e If
186. after 24 hours You either have to separate the clear from the full read and do it last or first read the single link errors based on the list of existing single link clear files In any case if the 24 hour point has been reached when you get to the end of script you will clear out the single link error files This example script will read the full errors first then the single link errors and finishes with the full clear if required This is done so that it may also ignore any single link clear files for links that are already reported in the full error counter query SH k e e SESS SR e e SHE OSE SRR SR SHEE For brevity full pathnames to files and utilities are not used It is assumed that you know those paths and will program them as required keeping in mind that healthcheck will be run by cron and full pathnames are most likely a requirement HEALTHY 1 Assume that everything will be okay As in 8 3 Healthcheck control script calculate the number of hours since the last full clear of error counters using the last clear file and store in diffh If gt 24 hours set diffh 24 Set the iba_mon file to iba_mon conf diffh store in IBAMON Write info to the analysis log file regarding current timestamp time since last clear and chosen iba_mon conf file Run sbin all_analysis s c IBAMON Redirect STDOUT and STDERR to the analysis log file Determine if there were any fabric errors reported by check
187. age the fourth subnet All components under a particular fabric manager instance are referenced using the same instance For example fabric manager instance 0 would have SM_0 PM_0O BM_O and FE_0 For each Fabric Management Server plan which HCA and HCA port on each would connect which subnet You need this to point each fabric management instance to the correct HCA and HCA port so that it manages the correct subnet This is specified individually for each component However it can be the same for each component in each instance of fabric manager Otherwise you would have the SM component of the fabric manager 0 manage one subnet and the PM component of the fabric manager 0 managing another subnet This would make it confusing to try to understand how things are set up Typically instance 0 manages the first subnet which typically is on the first port of the first 58 Power Systems High performance clustering HCA And instance 1 manages the second subnet which typically is on the second port of the first HCA Instance 2 manages the third subnet which typically is on the first port of the second HCA and instance 3 manages the fourth subnet which typically is on the second port of the second HCA e Plan for a backup Fabric Manager for each subnet e Plan for the maximum transfer unit MTU by using the rules found in Planning maximum transfer unit MTU on page 51 This MTU is for the subnet manager only e In order to account f
188. aintain cross sectional bandwidth performance you want a spine port for each cable port So a single spine can support up to 48 ports The standard sizes are 48 96 144 and 288 port switches and the switches require 1 2 3 and 6 spines A leaf board has a single switch chip A standard spine has 12 4x cable connectors The number of required leafs is calculated by dividing the number of cables by 12 After using 12 switch chip ports for cable connections there are 12 left over for connecting to spine chips With one spine there are two switch chips yielding 48 ports on the spines With 12 ports per leaf that means a spine can support four leafs You can see that this works out to requiring 1 2 a spine switch chip per leaf Table 94 Counting Switch Chips in a Fabric Number ports Number leafs Number spines Switch chips 48 4 1 4 1 2 1 6 96 8 2 8 1 2 2 10 144 12 3 12 1 2 3 18 288 24 6 24 1 2 6 36 Counting logical switches Use this information to count the number of logical switches on your fabric The number of logical switches is equal to the number of IBM GX or GX host channel adapter HCA ports The logical switch is the virtualization device on the GX or GX HCA For more information see IBM GX or GX host channel adapter on page 7 Counting host channel adapters Use this information to count the number of host channel adapters HCAs on the fabric The number
189. al fabric through a Pass through module e Blade based topologies would typically have two subnets This topology provides the best possible availability given the limitation of 2 HCA connections per blade e If storage nodes are to be used then the compute servers must connect to all of the same InfiniBand subnets and IP subnets to which the storage servers connect so that they might participate in the GPFS subsystem For storage servers consider the following points e The total bandwidth required for each server e If 8203 E4As or 8204 E8As or 8236 E8C are to be used for storage servers they only have 2 HCA connections so the design for communication between the storage servers and compute servers must take this into account It is typically to choose two subnets that would be used for storage traffic e If 8203 E4As or 8204 E8As or 8236 E8C are used as storage servers they are not to be used as compute servers too because the IBM MPI is not supported on them e If possible distribute the storage servers across as many leafs as possible to minimize traffic congestion at a few leafs For login servers consider the following points In order to participate in the GPFS subsystem the number of InfiniBand and IP subnets to which the login servers are connected must be the same number to which storage servers If no storage servers are implemented then this statement applies to compute servers For example e If 8203 E4As or 8204 E8A
190. al responses in the previous command you might substitute them for Log event anytime Run the command once for each response that is to be linked to LocalIBSwitchLog Note e The tmp systemEvents file is not created until the first event comes through e Substitute Email root anytime for Log event anytime to send mail to root when a log occurs If you use this plan to disable it when booting large portions of the cluster Otherwise many logs would be mailed e Substitute LogEventToxCATDatabase for Log event anytime to record logs in the xCAT Database e Be careful of responses intended to display entries on the console or email root Unless you temporarily disable them before rebooting servers these results in many events being broadcast to the console or emailed to root when servers are rebooted If you want to create any other response scripts use a similar format for the startcondresp command after creating the appropriate response script Refer the xCAT Reference Guide and RSCT Reference Guide on how to do this Note If there are problems with the event management from this point forward and you must remake the IBSwitchLogSensor you must follow the procedure in Reconfiguring xCAT event management on page 232 g Proceed to step 2 on page 117 Remote Syslogging and Event Management for xCAT on Linux You point the syslogd to a FIFO for serviceable events and a file for informational events The syslog file is va
191. ance between compute nodes might be degraded because they are bound by the 2 K MTU Note For IFS 5 record 2048 for 2 K MTU and record 4096 for 4 K MTU For the rates in IFS 5 record 20 g for 20 GB and record 10 g for 10 GB The configuration settings for fabric managers can be recorded in the QLogic fabric management worksheets on page 92 The configuration settings for switches can be recorded in the QLogic and IBM switch planning worksheets on page 83 Planning MTU ends here Planning for global identifier prefixes This information describes why and how to plan for fabric global identifier GID prefixes in an IBM System p high performance computing HPC cluster Each subnet in the InfiniBand network must be assigned a GID prefix which is used to identify the subnet for addressing purposes The GID prefix is an arbitrary assignment with a format of XXXX XXEXX XX XX XX XX for example FE 80 00 00 00 00 00 01 The default GID prefix is FE 80 00 00 00 00 00 00 The GID prefix is set by the Subnet Manager Therefore each instance of the Subnet Manager must be configured with the appropriate GID prefix On any given subnet all instances of the Subnet Manager master and backups must be configured with the same GID prefix 52 Power Systems High performance clustering Typically all but the lowest order byte of the GID prefix is kept constant and the lowest byte is the number for the subnet The numbering s
192. and directories in lt captureDir_onxCAT gt This procedure ends here If you want to collect Subnet Manager and switch chassis data and do this on the fabric management server you can issue the captureall commands directly on that server 1 2 Log on to the fabric management server Get data from fabric management servers captureall f lt hosts file with fabric management servers gt Note The captureall can generate many megabytes of data from fabric management servers If you do not require data from all of the fabric management servers because you are concerned with only the subnets managed by a particular fabric management server or the syslog from a particular fabric management server you can use the h list of fabric management servers parameter instead of the f parameter to direct the capture to just that particular fabric management server If you also want data from a particular switch you can use C H list of switches Using C without the H collects data from all switches listed in the etc sysconfig iba chassis file e Various hosts files must have been configured which can help you target subsets of fabric management servers These files are typically named etc sysconfig iba host e By default the results goes into uploads directory which is below the current working directory For a remote execution this must be the root directory for the user which is most often root This can be something like uploads
193. anned where to put devices in your cluster 8 After you understand the basic concepts for planning the cluster review the high level installation flow information in Planning installation flow on page 68 There are hints about planning the installation and also guidelines to help you to coordinate between you and the IBM Service Representative responsibilities and vendor responsibilities 9 Consider special circumstances such as whether you are configuring a cluster for high performance computing HPC message passing interface MPI applications For more information see Planning for an HPC MPI configuration on page 74 High performance computing clusters using InfiniBand hardware 27 10 For some more hints and tips on installation planning see Planning aids on page 75 If you have completed all the previous steps you can plan in more detail by using the planning worksheets provided in Planning worksheets on page 76 When you are ready to install the components with which you plan to build your cluster review information in readme files and online information related to the software and firmware This information ensures that you have the latest information and the latest supported levels of firmware If this is the first time you have read the planning overview and you understand the overall intent of the planning tasks go back to the beginning and start accessing the links and cross references to
194. anning Guide x QLogic 9000 CLI Reference Guide x x IBM Power Systems documentation is available in the IBM Power Systems Hardware Information Any exceptions to the location of information resources for cluster hardware as stated above have been noted in the table Any future changes to the location of information that occur before a new release of this document will be noted in the IBM clusters with the InfiniBand switch website Note QLogic uses Silverstorm in their product documentation Cluster management software information resources The following table lists cluster management software information resources Table 4 Cluster management software resources Component Document Plan Install Manage and service QLogic Subnet Fabric Manager and Fabric Viewer Users Guide x x x Manager http filedownloads qlogic com files ms 72922 QLogic_FM_FV_UG_Rev_A pdf QLogic Fast Fabric Fast Fabric Toolset Users Guide x x x Toolset http filedownloads qlogic com files ms 70168 User 27s_Guide_FF_v4_3 Rev_B pdf 4 Power Systems High performance clustering Table 4 Cluster management software resources continued Component Document Plan Install Manage and service QLogic InfiniServ InfiniServ Fabric Access Software Users Guide x x x Stack http filedownloads qlogic com files driver 68069 QLogic_OFED _
195. any cabling restrictions in IBM Clusters with the InfiniBand Switch website referenced in Cluster information resources on page 2 Cable planning While planning your cabling keep in mind the IBM server and frame physical characteristics that affect the planning of cable length In particular e Consider the server height and placement in the frame to plan for cable routing within the frame This affects the distance of the HCA connectors from the top of the raised floor e Consider routing to the cable entrance of a frame e Consider cable routing within a frame especially with respect to bend radius and cable management e Consider floor depth e Remember to plan for connections from the Fabric Management Servers see Planning for fabric management server on page 64 48 Power Systems High performance clustering Record the cable connection information planned here in the worksheets on page 83 for switch port connections and in a for HCA port connections Server planning worksheet on page 81 Planning InfiniBand network cabling and configuration ends here Planning QLogic or IBM Machine Type InfiniBand switch configuration You can plan for QLogic or IBM Machine Type InfiniBand switch configurations by using QLogic planning resources including general planning guides and planning guides specific to the model being installed Unless otherwise noted this document uses the term QLogic switches intercha
196. aps AIXNodeHCAmap d For Linux nodes run the following command For xCAT xdsh noderange with all Linux nodes v ibv_devinfo v grep node guid gt home root HCAmaps LinuxNodeHCAmap This procedure ends here Installation sub procedure for AIX only Use this procedure when installing the AIX operating system and when directed from another procedure Return to the previous procedure at the end of this sub procedure Ts and the Managers see Managers see The subnet managers must be running before you start to configure the interfaces in the partitions If the commands start failing and an Isdev grep ib command reveals that devices are Stopped it is likely that the subnet managers are not running Run the mkdev command for the icm For example mkdev c management s infiniband t icm Run the mkiba command for the devices For example mkiba a ip address i ib A iba p 1 P 1 S up m 255 255 255 0 After the HCA device driver is installed and mkiba is done run the following to set the device MTU to 4 K and enable super packets for i in Isdev grep Infiniband awk print 1 egrep v ibalicm do chdev 1 i a superpacket on a tcp_recvspace 524288 a tcp_sendspace 524288 a srq_size 16000 a state up done Note The previous example modifies all of the host channel adapter HCA devices in the logical partition To modify a specific device such as ib0 use the command chdev 1 ib a s
197. ardware events To control the server hardware Host HMC 18 Power Systems High performance clustering Table 15 HMC overview continued HMC Details How to access Use the HMC console located near the system There is generally a single keyboard and monitor with a console switch to access multiple HMCs in a rack if there is a need for multiple HMCs You can also access the HMC through a supported web browser on a remote server that can connect to the HMC Switch chassis viewer The switch chassis viewer is a tool that is used to configure a switch and query the state of the switch The following table provides an overview of the switch chassis viewer Table 16 Switch chassis viewer overview Switch chassis viewer Details Description The switch chassis viewer is a tool for configuring a switch and a tool for querying its state It is also used to access the embedded fabric manager Since it can only work with one switch at a time it does not scale well Documentation Switch Users Guide When to use After the configuration setup has been performed the user will probably only use the chassis viewer as part of diagnostic test This diagnostic test is used after the Fabric Viewer or Fast Fabric tools have been employed and isolated a problem to a chassis Host Switch chassis How to access The Chassis Viewer is accessible through any browser on a se
198. as done in either the AIX operating system or the Linux operating system For more information see Planning to run remote commands with QLogic from the management server on page 67 If you do not require a xCAT Management Server you might need a server to act as a Network Installation Manager NIM server for diagnostics This is the case for servers that do not have removable media CD or DVD such as a 575 9118 575 If you have servers with no removable media that are running Linux logical partitions you might require a server to act as a distribution server If you require both an AIX NIM server and a Linux distribution server and you choose the same server for both a reboot is required to change between the services If the AIX NIM server is used only for eServer diagnostics this might be acceptable in your environment However you must understand that this may prolong a service call if use of the AIX NIM service is required For example the server that might normally act as a Linux distribution server could have a second boot image to server as the AIX NIM server If AIX NIM services are required for System p diagnostics during a service call the Linux distribution server must be rebooted to the AIX NIM image before diagnostics can be performed The configuration settings planned here can be recorded in the xCAT planning worksheets on page 89 Planning xCAT as your Systems Management application ends here Planning for QL
199. aseline generated by all_analysis or chassis_analysis var opt iba analysis baseline a new health check run must indicate that the MTU or VL buffer settings have changed The results of are as expected according to the plan 2K MTUCap 4 4K MTUCap 5 VL Buffering gt 1 1 VL 2 2 VLs 3 4 VLs If these are different from the expected values this would explain the buffer overrun An example of a output is High performance computing clusters using InfiniBand hardware 267 L11P01 MTUCap 5 4096 bytes VLCap 3 4 VLs lt Leaf 11 Port 11 4K MTU and 4 VLs S3BL19 MTUCap 5 4096 bytes VLCap 3 4 VLs lt Spine 3 chip B to Leaf 19 interface The default for VlCap is 3 The default for MTUCap is 4 However typically clusters with all DDR HCAs are configured with an MTUCap of 5 In the absence of any changes to the SM config or use of stand alone tools to change VLs typical link isolation techniques must be used For more information see Diagnose a link problem based on error counters on page 264 Performance impact Because ExcessiveBufferOverrunErrors indicate problems lead to dropped packets there would be a performance impact for any communication going over the link experiencing these errors Threshold minimum actionable 2 Threshold maximum in 24 hours 3 PortRcvErrors PortRcvErrors are incremented differently in the IBM GX HCA from how they are incremented in other HCA or the switch While the architecture def
200. assis can be caused by swapping HCA ports on an HCA or between ports in the same IBM server Any more sophisticated swapping would likely be up for debate with respect to if it is a switch port swap or an HCA port swap or just a complete reconfiguration You must reference the Fast Fabric Toolset Users Guide for details on health check 1 Run all_analysis 2 Go to var opt iba analysis latest default output directory structure 222 Power Systems High performance clustering 3 Look for fabric X Y links diff or fabric X Y links changes where X is the HCA and Y is the HCA port on the fabric management server that is attached to the subnet This helps you map directly to the subnet with the potential issue 4 If there is no fabric X Y links diff or fabric X Y links changesfile there is no port swap Exit this procedure 5 If there is a fabric X Y links diff or fabric X Y links changes there may be a port swap Continue to the next step 6 Use the procedure in Interpreting health check chan e 167 If there is no changes file and there is a diff file use the procedure i procedures in the Fast Fabric Toolset Users Guide to interpret the diff file 7 If you intended to swap ports do the following steps Otherwise go to the next step a You must take another baseline so that future health checks will not fail Use the procedure in Re establishing Health Check baseline on page 244 b Inspect the cable labels If nec
201. at the recovery procedures g Check the etc syslog ng syslog ng conf file to ensure that the sensor set it up correctly The following lines might be at the end of the file Note Because it is a generic xCAT command being used for InfiniBand monerrorlog uses a different name from fabnotices_fifo in the destination and log entries It is a pseudo random name that looks like fifonfJGQsBw filter f_fabnotices facility local6 and level notice alert warn err crit and not filter f_iptables destination fabnotices file var log messages group root perm 0644 log source src filter f_fabnotices destination fabnotices file optionally set up handling of INFO entries filter f_fabinfo facility local6 and level notice alert warn err crit and not filter f_iptables destination fabinfo_file var log xcat syslog fabric info group root perm 0644 log source src filter f_fabinfo destination fabinfo file Set up the condition for the previous sensor and link a response to it The method depends on whether the xCAT MS is defined as a managed node Note The method documented here is for a xCAT MS that has not been defined as a managed node If the xCAT MS is defined as a managed node you did not set the scope of the condition to be local 1 Make a copy of the pre packaged condition AnyNodeAnyLoggedError and set the ManagementScope to local 1 for local mkcondition c IBSwitchLog m 1 Loca
202. ate download sites and instructions Do not proceed until the following requirements have been met a The xCAT MS is set up as a DHCP server as described in Installing the x CAT management server or you have only a single HMC that remains as a DHCP server b The Ethernet devices for the service VLAN are installed_and configured as described in and configuring service VLAN devices on c If the xCAT MS is not the DHCP server for the service VLAN then you must wait for the DHCP server to be installed and configured and cabled to the service VLAN H7 M3 Cable the HMCs to the service VLAN This completes the procedure Installing the xCAT management server The Cluster management server installation is performed by the customer Before proceeding obtain the xCAT Planning and Installation information and the server installation guide for the xCAT MS machine type and model The following procedure is for installing the xCAT MS in the high performance computing HPC cluster Refer the xCAT planning worksheets on page 89 which have been completed during the planning phase for the cluster 1 CM1 M1 Perform the physical installation of the xCAT MS on the data center floor If you are using a separate dynamic host configuration protocol DHCP server for the service or cluster virtual local area network VLAN that is being installed as part of this installation activity also physically place it on the dat
203. ate using remote errors procedures Defer maintenance Wait for maintenance window Isolate and repair Figure 16 Reference for Link Integrity Error Diagnosis High performance computing clusters using InfiniBand hardware Clear errors P7ECZ503 0 259 Interpreting remote errors Both PortXmitDiscards and PortRcvRemotePhysicalErrors are considered to be Remote Errors in that they most often indicate a problem elsewhere in the fabric If PortXmitDiscards a problem elsewhere is preventing the progress of a packet to such a degree that its lifetime in the fabric exceeds the timeout values of a packet in a chip or in the fabric The PortRcvRemotePhysicalErrors occur when a port before the final destination in the path detects an error and marks the packet bad If the head of the packet is found bad the chip can drop it as the remainder of the packet comes through When a packet is strewn between multiple chips in the fabric and the error is found on one of the chips that contains the rear of the packet it cannot drop the packet or else a false error would be generated downstream Therefore it can mark only it bad as it passes it on so that as downstream ports receive the packet It is known to be bad for a reason not associated with the link that is local to the current port detecting the problem Although they are generally a simple indication of some remote link with link integrity problems If this is not the ca
204. ategy Then you can follow the links that direct you through the different procedures to gain an in depth understanding of the cluster planning process In the Cluster planning overview the planning procedures are arranged in a sequential order for a new cluster installation If you are not installing a new cluster you must choose which procedures to use However you would still perform them in the order they appear in the Cluster planning overview If you are using the links in note when a planning procedure ends so that you know when to return to the Cluster planning overview The end of each major planning procedure is indicated by planning procedure name ends here Cluster planning overview Use this information as a road map to through the cluster planning procedures To plan your cluster complete the following tasks 1 Gather_and review the planning and installation information for the components in the cluster Seq Cluster information resources on page 2 as a starting point for where to obtain the information This information provides supplemental documentation with respect to clustered computing with an InfiniBand network You must understand all of the planning information for the individual components before continuing with this planning overview 2 Review the Planning checklist on page 75 which can help you track the planning steps that you have completed 3 Review the Required level of s
205. ation Documentation e QLogic Fabric Manager Users Guide e InfiniBand standard specification When to use Fabric management cab be used to manage the network and pass data You use the Chassis Viewer CLI or Fabric Viewer to interact with the fabric manager Host e Host based fabric manager is on the fabric management server e Embedded fabric manager is on the switch How to access You might access the Fabric Manager functions from xCAT by remote commands through dsh to the Fabric Management Server or switch on which the embedded fabric manager is running You can access many instances using xdsh For host based fabric managers log on to the Fabric Management Server For embedded fabric managers use the Chassis Viewer switch CLI Fast Fabric Toolset or Fabric Viewer to interact with the fabric manager Hardware Management Console You can use the Hardware Management Console HMC to manage a group of servers The following table provides an overview of the HMC Table 15 HMC overview HMC Details Description Each HMC is assigned to the management of a group of servers If there is more than one HMC in a cluster then it is accomplished by using the Cluster Ready Hardware Server on the cluster management server Documentation HMC Users Guide When to use To set up and manage LPARs including HCA virtualization To access Service Focal Point for HCA and server reported h
206. ations of excessive logging if you leave Subnet Managers running while shutting down devices on the fabric 3 Press the 480 V ac external power wall EPO switch 4 When the situation is resolved restore wall power and restart the servers 5 After the servers are operational check the LEDs for indications of problems on the servers and switches and switch ports High performance computing clusters using InfiniBand hardware 251 6 Start the Subnet Managers If you had powered off the fabric management server running Subnet Managers and the Subnet Managers were configured to auto start all you must do is start the fabric management server after you start the other servers If the switches have embedded Subnet Managers configured for auto start then the Subnet Managers restarts when the switches come back online N Run health check against the baseline to see if anything is missing or otherwise changed Reset link error counters All of this EPO activity can cause link error counters to advance because the EPO is occurring at any time even during applications passing data on the fabric a On the fabric management server running the Fast Fabric Toolset run the iba_report C o none command If you have more subnets than it can be managed from one Fabric Management Server you must run the command from all of the master Fabric Management Servers 9 Are there other resets that you can do for recovery Monitoring and checking for
207. ave been swapped see High performance computing clusters using InfiniBand hardware 213 3 If you see configuration changes do one of the following steps To determine the nature of the change see Health checking on page 157 a Look for a health check output file with the extension of changes or diff on the fabric management server in one of the following directories var opt iba analysis latest or var opt analysis recent timestamp b Execute all_analysis or a script that calls it and look for a health check output file with the extension of changes or diff on the fabric management server in one var opt iba analysis latest This procedure ends here Checking for hardware problems affecting the fabric Use this information to find out how to check for hardware problems that might affect the fabric To check for hardware problems that might affect the fabric perform the following steps 1 Open Service Focal point on all HMCs and perform prescribed service any open serviceable events If you have redundant HMCs configured you need open Service Focal Point only on one HMC in each set of redundant HMCs 2 Check for switch or Subnet Manager errors on the Cluster Management Server For xCAT check the xCAT MS in tmp systemEvents for any serviceable events that might not have been addressed yet Use the procedures in Table of symptoms on page 187 to diagnose problems reported in this log Look especial
208. b Stop the Subnet Manager by using the following command For IFS 5 etc init d qlogic_fm stop c Verify that the Subnet Manager is stopped by running the ps ef grep iview command d If you are using IFS 5 edit the fabric manager configuration file etc sysconfig qlogic_fm xml and as needed update the lines defining lt MTU gt to 4096 Update all Subnet Manager instances which must be configured for 4K MTU This might be done in the common SM definition section under lt MulticastGroup gt The following example of a single Subnet Manager instance in the configuration file Do the same for the rate and ensure that it matches what was planned in Planning maximum transfer unit MTU on page 51 where 10g SDR and 20g DDR lt Common SM Subnet Manager attributes gt lt Sm gt lt Multicast gt lt MulticastGroup gt lt MTU gt 4096 lt MTU gt lt Rate gt 20g lt Rate gt lt or 10g lt MulticastGroup gt lt Multicast gt lt Sm gt e Start the Subnet Manager For IFS 5 etc init d qlogic_fm start If you are running an embedded Subnet Manager complete the following steps Note Instructions are written for recovering a single subnet at a time High performance computing clusters using InfiniBand hardware 241 Log on to the switch CLI or issue these commands from the Fabric Management Server by using cmdall or from the xCAT MS by using xdsh If you use xdsh use the parameters 1 admin dev
209. bership At least one group must be returned per InfiniBand subnet iba_showmc egrep Fabric GID Fabric 1 1 Multicast Information GID Oxff12601bf ff f0000 0x0000000000000016 GID Oxff12401bf ff f0000 0x0000000000000016 Fabric 1 2 Multicast Information GID Oxff12601bf ff f0000 0x0000000000000016 GID Oxff12401bf ff f0000 0x0000000000000016 Fabric 2 1 Multicast Information GID Oxff12601bf ff f0000 0x0000000000000016 GID Oxff12401bf ff f0000 0x0000000000000016 Fabric 2 2 Multicast Information GID Oxff12601bf ff f0000 0x0000000000000016 GID Oxff12401bf ff f0000 0x0000000000000016 2 Check for MTU and link rate Typically you use the MTU and rate that are considered to be in error because that must return fewer things Generally these returns only the fabric management server HCA links The following example shows checking for 2K MTU and SDR speeds iba_reports o links F mtu 2048 To check for MTU of 2048 iba_reports o links F rate 10g To check for SDR speeds d d If you are running an embedded Subnet Manager to check multicast group creation run the following command on each switch with a master Subnet Manager If you have set it up you might use dsh from the xdsh from the xCAT MS to the switches see Set up remote command processing on page 120 If you use xdsh use the parameters 1 admin devicetype IBSwitch Qlogic as outlined in Remotely accessing QLogic switches from the xCAT MS
210. bling procedure Use this procedure to cable your InfiniBand network It is possible to perform some of the tasks in this procedure using a method other than that which is described If you have other methods for cabling the InfiniBand network you must still review a few key points in the installation process about order and coordination of tasks and configuration settings that are required in a cluster environment Note IBM is responsible for faulty or damaged IBM part number cable replacement To cable your switch network complete the following steps 1 Obtain and review a copy of the cable plan for the InfiniBand network 2 Label the cable ends before routing the cable 3 Power on the switches before attaching cables to them 4 C1 Route the InfiniBand cables according to the cable plan and attach them to only the switch ports Refer the switch vendor documentation for more information about how to plug cables 5 C4 Connect the InfiniBand cables to the host channel adapter HCA ports according to the planning documentation 6 If both servers and switches have power applied as you complete cable connections you should check the port LEDs as you plug in the cables Refer the switch vendor Switch Users Guide to understand the correct LED states Fabric Management can now be started Note Depending on assigned installation responsibilities it is possible that someone else might perform these actions Coordinate this with the a
211. bric management applications on e Planning for fabric management server on page 64 Planning your Systems Management application You must choose either xCAT as your Systems Management application If you are installing servers with Red Hat partitions then you must use xCAT as your Systems Management application Planning xCAT as your Systems Management application For general xCAT planning information see xCAT documentation referenced in Table 4 of Cluster information resources on page 2 This section concerns itself more with how xCAT fits into a cluster with InfiniBand High performance computing clusters using InfiniBand hardware 55 If you have along multiple HMCs and are using xCAT the x CAT Management Server xCAT MS is typically the DHCP server for the service VLAN If the cluster VLAN is public or local site network then it is possible that another server might be set up as the DHCP server It is preferred that the xCAT Management Server to be a stand alone server If you use one of the compute storage or IO router servers in the cluster for xCAT the xCAT operation might degrade performance for user applications and it would complicate the installation process with respect to server setup and discovery on the service VLAN You can also set up xCAT event management to be used in a cluster To set up xCAT event management you must plan for the following items e The type of syslogd that you are going to us
212. bric verification application by using any instructions that come with it 2 Clear the error counters in the fabric by using the sbin iba_report C o none script 3 Run the fabric verification application by using any instructions that come with it If there are multiple passes then you can return to step 2 for each pass 4 Check for problems by using the following steps a Check serviceable events on all Hardware Management Consoles HMC If there is a serviceable event reported contact IBM Service If you set up Service Focal Point monitoring as in Set up remote logging on page 112 you can check for events on the Management Server first by using the procedures for monitoring in the Administration Guide b Check the switch and Subnet Manager logs 1 On the xCAT MS check the var log xcat errorlog xCAT MS hostname log 2 If any messages are found diagnose them using Table of symptoms on page 187 and the QLogic troubleshooting guide c Run Fast Fabric Toolset health check 1 On the fabric management server run the sbin all_analysis command 2 Check results in var opt iba analysis latest log To interpret results use Health checking and the Fast Fabric Toolset Users Guide 5 If a problem was found return to step This procedure ends here Fabric verification ends here Runtime errors Use this information to gain a high level overview of runtime errors In an IBM System p high performanc
213. broadcast MTU with default pkey smDefBcGroup OxFFFF 5 lt rate gt rate 3 SDR 6 DDR rate For 2K broadcast MTU with default pkey smDefBcGroup OxFFFF 4 lt rate gt rate 3 SDR 6 DDR rate For GID prefix smGidPrefix lt GID prefix value gt For node appearance or disappearance threshold 10 smAppearanceMsgThresh 10 a If this switch has an embedded Subnet Manager complete the following steps 1 Enable the Subnet Manager for operation using the license key Do not start the embedded Subnet Manager yet That is done during the procedure Attaching cables to the InfiniBand fretwork on page 143 etwork on page 143 Use the addKey key command 140 Power Systems High performance clustering b Set the broadcast MTU value according to the installation plan See the switch planning worksheet or Planning maximum transfer unit MTU on page 51 If you have or would be connecting cables to 9125 F2A servers configure the amplitude and pre emphasis settings as indicated in the Planning QLogic or IBM Machine Type InfiniBand switch configuration on page 49 and the switch planning worksheet perform one of the following sets of steps If you must change the switch port amplitude settings and there are more ports that require a change from the default settings than those that should remain at the default settings perform the following steps 1 Log on to the fabric management server
214. c management tools and commands from xCAT MS Remote execution of QLogic management tools from xCAT can be an important addition to the management infrastructure It effectively integrates the QLogic management environment with the IBM management environment By using remote command execution you can do manual queries from the xCAT MS console without logging in the fabric management server It also helps for writing management and monitoring scripts that run from the xCAT MS which can improve productivity for administration of the cluster fabric You can write scripts to act on nodes based on fabric activity or act on the fabric based on node activity For information about how to remotely access the fabric management server from xCAT see Remotely accessing the Fabric Management Server from xCAT MS on page 175 For information about how to remotely access QLogic switches from xCAT see QLogic switches from the xCAT MS on page 175 174 Power Systems High performance clustering Remotely accessing the Fabric Management Server from xCAT MS To access any command that does not require user interaction by issuing the following dsh from the xCAT MS When you have set up remote command execution from the xCAT MS to fabric management server as described a a a rong 7 can access any command that does not require user interaction by issuing the following dsh from the xCAT MS xdsh fabric management server IP group name command list
215. cal partition If the HCA ever fails in such a way that the systems GARD function prevents it from being used the logical partition cannot be reactivated If this occurs a message is displayed on the controlling HMC that indicates that you must unassign the HCA from the logical partition to continue activation The GARD function is started for serious adapter or bus failures that can impair system operation such as ECC errors or state machine errors InfiniBand link errors should not start the GARD function 4 Update the logical partition profiles for all logical partitions that uses the new GX HCA with the new GUID for the new InfiniBand GX HCA Each InfiniBand GX HCA has a GUID that is assigned by the manufacturer If any of these adapters are replaced or moved the logical partition profiles for all logical partitions that use the new GX HCA must be updated with the new GUID The customer can do this from the HMC that is used to manage the server in which the HCA is installed To update the logical partition profiles complete the following steps a Go to the Server and Partition window Select the Server Management partition Expand the server in which the HCA is populated Expand the Partitions under the server oap Expand each partition that uses the HCA and perform the following steps for each partition profile that uses the HCA 1 Select each partition profile that uses the HCA From the menu click Selected gt Properties
216. ce Service responsibilities Fault reporting mechanisms Fault diagnosis approach Types of events Isolating link problems Restarting or repowering on scenarios The importance of NTP Table of symptoms Service procedures Capturing data for fabric diagnosis Using script command to capture switch CLI output Capture data for Fabric Manager and Fast Fabric problems Mapping fabric devices General mapping of IBM HCA GUIDs to physical HCAs Finding devices based on a known logical switch Finding devices based on a known logical HCA Finding devices based on a known physical switch port Finding devices based on a known ib interface ibX ehcaX IBM GX HCA Physical port mapping based on device number Interpreting switch vendor log formats soe ooo f Log severities Switch chassis management log format Subnet Manager log format Diagnosing link errors Diagnosing and repairing switch component problems Diagnosing and repairing IBM system problems Diagnosing configuration changes Checking for hardware problems affecting the fabrie Checking for fabric configuration and functional problems 150 150 150 150 151 151 152 152 152 152 153 154 155 155 155 156 156 157 158 164 167 172 174 174 179 s 175 176 176 179 180 180 183 183 183 185 185 186 187 187 187 191 193 196 196 197 197 199 201 20
217. ce there are two possibilities If you find that the HCA is not managed by the HMC it has failed in such a way that it would be GARDed off during the next IPL Therefore consider that until maintenance is performed any of the logical partitions using the failed HCA might not properly activate until the HCA is unassigned This affects future IPLs that the customer wants to perform during the deferred maintenance period Also any other failure that requires a reboot also results in the partition not activating properly To unassign an HCA see Recovering from an HCA preventing gi iti lictivating on page 235 If you unassign the adapter while the logical partition is active the HCA is unassigned at the next reboot If you find that the HCA is managed by the HMC the HCA failure would not result in the GARDing of the HCA And deferred maintenance would not risk the prevention of logical partition activation because of a GARDed HCA Installing or replacing an InfiniBand GX host channel adapter ends here High performance computing clusters using InfiniBand hardware 149 Verifying the installed InfiniBand network fabric in AIX Verifying the installed InfiniBand network fabric in AIX after the InfiniBand network is installed The GX adapters and the network fabric must be verified through the operating system Use this procedure to check the status of a GX host channel adapter HCA by using the AIX operating system To verify the
218. ce processor Table 21 Flexible Service processor overview Service processor Details Description Cluster management server and the managing HMC must be able to communicate with the FSP over the service VLAN For system type 9125 servers connectivity is facilitated through an internal hardware virtual local area network VLAN within the frame which connects to the service VLAN Documentation IBM System Users Guide When to use The FSP is in the background most of the time and the HMC and management server provide the information It is sometimes accessed under direction from engineering Host IBM system How to access Is primarily used by service personnel Direct access is rarely required and is done under direction from engineering using the ASMI screens Otherwise management server and the HMC are used to communicate with the FSP Fabric viewer The fabric viewer is an interface that is used to access the Fabric Management tools The following table provides an overview of the fabric viewer Table 22 Fabric viewer overview Fabric viewer Details Description The fabric viewer is a user interface that is used to access the Fabric Management tools on the various subnets It is a Linux or Microsoft Windows application The fabric viewer must be able to connect to the cluster virtual local area network VLAN to connect to the switches The fabric viewer must also connect t
219. ch command profile For more details a remote command processing rl page 120 The following items highlight the important aspects in this setup e The command definition file var opt xCAT IBSwitch QLogic config must be created with the following attributes ssh key exchange command for CLI ssh setup command sshKey add So that the xdsh does not try to set environment pre command NULL Last command for the return code post command showLastRetcode brief e The switches can be set up as devices with the following commands nodetype switch e Define at least one device group for all switches by using hwdefgrp command with the following attributes Example Group name BSwitches e Make sure that keys are exchanged by using updatehwdev command After you have setup remote command execution from the xCAT MS to switches as described in Set up remote command processing on page 120 you can access any command to the switch that does not require user interaction by issuing the following dsh command from the xCAT MS xdsh switch IP addresses group name 1 admin devicetype devicetype IBSwitch Qlogic switch command High performance computing clusters using InfiniBand hardware 175 If you want to access switch commands that require user responses the standard technique is to write an Expect script to interface with the switch Command Line Interface CLI Either xdsh on the xCAT MS or cmdall on the fabric management se
220. ch port that is unique to a particular switch run the above ismPortSetDdrPreemphasis command as above but either log on to the switch or add the H switch chassis ip address parameter to the cmdall command so that it directs the command to the correct switch 7 Go to step d below If you need to change the switch port pre emphasis settings and there are fewer ports that require a change from the default settings than those that should remain at the default settings perform the following 1 Log on to the fabric management server 2 Read the default amplitude setting from the switches cmdal1 C ismChassisSetDdrPreemphasis which returns the settings for all ports You should note that the settings are different from the desired switch port amplitude settings If this not the case then you may stop this procedure and go to step d below 3 For each port that is common among all switch execute cmdall C ismPortSetDdrPreemphasis port 0x00000000 e For the 9024 switch IBM 7874 024 the format for the port is Cable x where x is the port number mow e For switches with leafs the format for the port is LxPy where x is the leaf number and p is the port number e You might want to use a for loop on the fabric management server command line to step through all of the ports Example for port in L12P11 L12P12 do ismPortSetDdrAmplitude port 0x01010101 done 142 Power Systems High performance clustering 4 Fo
221. cheme typically begins with 0 or 1 The configuration settings for fabric managers can be recorded in the QLogic fabric management worksheets on page 92 Planning GID Prefixes ends here Planning an IBM GX HCA configuration An IBM GX host channel adapter HCA must have certain configuration settings to work in an IBM POWER InfiniBand cluster The following configuration settings are required to work with an IBM POWER InfiniBand cluster e Globally unique identifier GUID index e Capability e Global identifier GID prefix for each port of an HCA InfiniBand subnet IP addressing is based on subnet restrictions For more information see IP subnet laddressing restriction with T Each physical InfiniBand HCA contains a set of 16 GUIDs that can be assigned to logical partition profiles These GUIDs are used to address logical HCA LHCA resources on an HCA You can assign multiple GUIDs to each profile but you can assign only one GUID from each HCA to each partition profile Each GUID can be used by only one logical partition at a time You can create multiple logical partition profiles with the same GUID but only one of those logical partition profiles can be activated at a time The GUID index is used to choose one of the 16 GUIDs available for an HCA It can be any number from 1 through 16 Often you can assign a GUID index based on which logical partition LPAR and profile you are configuring For example on each server you mig
222. complete the following tasks Ensure that the embedded Subnet Manager is disabled Disable the performance manager Disable the default broadcast group If the switch is running an embedded Subnet Manager complete the following tasks Use the license key to enable embedded Subnet Manager to be run on the switch Set up the priority based on the fabric management worksheet Set the global identifier GID prefix value according to the installation plan See the switch planning worksheet or Planning for global identifier prefixes on page 52 If this is a high performance computing HPC environment set the LID Mask Control LMC value to 2 Set the broadcast MTU value according to the installation plan See the switch planning worksheet or Planning maximum transfer unit MTU on page 51 Point to network time protocol NTP server Instruct the customer to verify that the switch is detected by the management server using the verify detection step in the following procedure If you are expanding an existing cluster also consider the following items 138 Power Systems High performance clustering e For QLogic switch command help on the command line interface CLI use the help lt command name gt command Otherwise the Users Guides provides information about the commands and identifies the appropriate command in its procedural documentation e For new InfiniBand switches perform all the step
223. condary adapter HCA a Create a install postscript host sh script to copy the etc hosts and other important files out to the nodes during installation This is important for configuring the InfiniBand interfaces bin sh Log what is being done to the syslog logger t xcat copy the etc hosts from mgt server cd tmp MASTER is a standard environment variable used in the install process wget l inf N r waitretry 10 random wait retry connrefused t 0 T 60 ftp MASTER postscripts hosts logger t xcat mv tmp MASTER postscripts hosts etc hosts rm fr tmp MASTER b Update the postscripts table to include the hosts sh script by using one of the two commands chdef t node o lt node gt p postscripts host sh or chdef t group o lpar p postscripts host sh where Ipar is a node group consisting of all servers partitions To check the postscripts table run tabdump postscripts The results should be like the following especially the entry with hosts sh This example output assumes that o lt node gt was used for chdef node postscripts comments disable xcatdefaults syslog aixremoteshell setupntp configrmcnode service Servicenode lt node gt hosts sh c Put appropriate InfiniBand drivers libraries rpms listed into the install post otherpkgs lt os gt lt arch gt directory where lt os gt and lt arch gt can be found in the nodetype table For installations using RedHat se
224. connections Therefore the topology for the example would either use 8 96 port switches or 4 144 port switches While it is desirable to have balanced fabrics where each subnet has the same number of HCA connections and are connected in a similar manner to each server This type of connection is not always possible For example the 9125 F2A has up to 8 HCA connections and the 8203 E4A only has two HCA connections If the required topology has eight subnets at most only two of the subnets would have HCA connections from any given 8203 E4A While it is possible that with multiple 8203 E4A servers one can construct a topology which evenly distributes them among InfiniBand subnets one must also consider how IP subnetting factors into such a topology choice Most configurations are first concerned with the choice of compute servers and then the storage servers are chosen to support the compute servers Finally a group of servers are chosen to be login servers If the main compute server model is a 9125 F2A consider the following points e While the maximum number of 9125 F2A servers that can be populated in a frame is 14 it is preferred to consider the fact that there are 12 ports on a leaf and therefore if you populate up to 12 servers in a frame you can easily connect a frame of servers to a switch leaf In this case the servers in frame one would connect such that the server lowest in the frame node 1 attaches to the first port of a le
225. correctly increments PortXmitDiscards I PortXmitConstraintErrors 1 PortRcvConstraintErrors 1 LocalLinkIntegrityErrors 1 ExcessiveBufferOverrunErrors 1 VL15Dropped 1 b Create a directory to store the output files You can use var opt iba analysis hourly or any other directory that works best for the site c Create a cron entry like the following example The cron entry runs on the quarter hour to avoid conflict with the all_analysis cronjobs The switch node pattern used in the following example is the default that begins with SilverStorm If you have changed the IBNodeDescription for the switches you must change the F parameter In the following example iba_reports is used which is the plural of iba_report High performance computing clusters using InfiniBand hardware 163 15 x sbin iba_reports o errors F nodepat SilverStorm c etc sysconfig iba iba_mon conf low gt output directory errors bin date Y m d_ H M Note A more sophisticated method is to call a script that calculates the amount of time that has passed Since the most recent error counter clears and calls that script without the requirement to reference specific instances of iba_mon conf For an example script see Example health check scripts on page 275 The cron entry would look like 0 2 6 10 14 18 22 script name If you want to use different query intervals be sure to create thresholds files based on Table 77 on page Then
226. counter Also always round up to the next highest integer Always set the threshold for PortRcvErrors equal to or less than PortRcvPhysicalRemoteErrors because PortRcvErrors is incremented for PortRcvPhysicalRemoteErrors too If the PortRcvErrors threshold is greater than PortRcvPhysicalRemoteErrors you might see only the PortRcvErrors and make the incorrect conclusion that there is an issue with the local link instead of with a remote link Based on the previously mentioned rules the error counter thresholds over a 24 hour period are given in the following table In order to conserve space hours are grouped in ranges that have the same set of thresholds When creating individual iba_mon conf files to be called it might prove easier to create identical files with different extensions for each hour For example iba_mon conf 1 and iba_mon conf 9 would have the same contents However it would be easier to determine programmatically which one to use at a given point in time Table 77 Error Counter Thresholds over 24 hours Counter Hours since last error counter clear 1 9 10 11 12 14 15 16 17 19 20 21 22 23 24 SymbolErrorCounter 3 4 5 6 7 8 9 10 LinkErrorRecoveryCounter 1 1 1 1 2 2 2 3 LinkDownedCounter 1 1 1 1 2 2 2 3 PortRevErrors 3 4 5 6 7 8 9 10 PortRcvRemotePhysicalErrors 3 4 5 6 7 8 9 10 PortRcvSwitchRelayErrors 0 0 0 0 0 0 0 0 PortXmitDiscards 3 4 5 6 7 8 9 10 PortXmitConstraintErrors 3 4 5 6
227. counters on the fabric ports before doing a health check on the current state Otherwise there would be errors caused by the restart 3 If possible wait approximately 10 minutes before you can run health check to look for errors and compare against the baseline configuration The wait period is to allow for error accumulation Otherwise run the health check now to check for configuration changes which includes any nodes that have fallen off the switch a Run the all_analysis command For more information see Health checking on page 157 and the Fast Fabric Toolset Users Guide b Look for configuration changes and fix any that you find For more information see Finding and i ing g ges on page 180 You might see new part numbers serial numbers and GUIDs for repaired devices Fan trays do not have electronic VPD and thus would not indicate these types of changes in configuration c Look for errors and fix any that you find For more information see the Table of symptoms on page 187 4 If you did not wait 10 minutes before running the health check rerun it after about 10 minutes to check for errors a Run the all_analysis command or the all_analysis e command For more information see checking on page 157 and the Fast Fabric Toolset Users Guide b Look for errors and fix any that you find For more information see the Table of symptoms on page 187 187 c If you did not use the e parameter lo
228. ct the problem before proceeding further After being corrected rerun the health checks to look for further errors latest esm smShowSMParms changes diff This file indicates that the SM configuration has changed Review the file and as necessary compare the latest esm smShowSMParms file with baseline esm smShowSMParms As necessary correct the SM configuration After being corrected rerun the health checks to look for further errors If the change was expected and permanent rerun a baseline when all other health check errors have been corrected latest esm smShowDefBcGroup changes diff This file indicates that the SM broadcast group for IPoIB configuration has changed Review the file and as necessary compare the latest esm smShowDefBcGroup file with baseline esm smShowDefBcGroup As necessary correct the SM configuration After being corrected rerun the health checks to look for further errors If the change was expected and permanent rerun a baseline when all other health check errors have been corrected High performance computing clusters using InfiniBand hardware 165 latest esm diff If the FF_ESM_CMDS file has been modified review the changes in results for those additional commands As necessary correct the SM After being corrected rerun the health checks to look for further errors If the change was expected and permanent rerun a baseline when all other health check errors have been corrected Next review the r
229. ctly to the service processors and bulk power controllers BPCs be sure to use the systemid command on the xCAT MS This manages passwords b Disable the DHCP server on the HMC and assign the HMC a static IP address so that there is only one DHCP server on the Ethernet service VLAN and so that device discovery occurs from the xCAT Note If the HMC is currently managing devices disabling DHCP on the HMC temporarily disconnects the HMC from its managed devices If the current cluster already has xCAT or does not require an additional HMC go to step c Change existing HMCs from DHCP server to static IP address so that the address is within the cluster Ethernet service VLAN subnet provided by the customer but outside of the DHCP address range d Restart the HMC High performance computing clusters using InfiniBand hardware 103 10 H5 M2 Return to the HMC installation documentation and finish the installation and configuration procedures However do not attach the HMC cables to the service VLAN until instructed to do so in step 9 of this procedure After finishing those procedures continue with step H6 M2 Ensure that your HMCs are at the correct software and firmware levels See the IBM Clusters with the InfiniBand Switch website referenced irj Cluster information resources on page 2 website for information regarding the most current released level of the HMC Follow the links in the readme file to the appropri
230. d e Ensure that the performance manager is not running by using smPmBmStart disable command 6 W3 Attach the switch to the cluster VLAN Note If the switch has multiple Ethernet connections they must all attach to the same Ethernet subnet 7 W4 For QLogic switches if the Fast Fabric Toolset is installed on the fabric management server verify that the Fast Fabric tools can access the switch Refer the Fast Fabric Toolset Users Guide use a High performance computing clusters using InfiniBand hardware 139 simple query command or ping test to the switch For example the pingall command can be used as long as you point to the switch chassis and not the servers or nodes 8 W5 Verify that the switch code matches the latest supported level indicated in IBM Clusters with the InfiniBand Switch website referenced in Cluster information resources on page 2 web site Check the switch software level using a method described in the vendor switch Users Guides These guides also describe how to update the switch software which is available on the vendor web site For QLogic switches one of the following guides and methods are suggested e You can check each switch individually using a command on its CLI This command can be found in the switch model users guide e If the Fast Fabric Toolset is installed on the Fabric Management Server you can check the code levels of multiple switch simultaneously using techniques found in the Fast Fabric T
231. d Setup and the fabric management server Remote Command Setup allow for multiple devices to be defined The Event Monitoring worksheet allows for multiple Sensor and Response mechanisms to be documented Table 59 xCAT planning worksheet xCAT Planning Worksheet xCAT MS name xCAT MS operating system NTP Server xCAT MS IP addresses Service VLAN Cluster VLAN Server model Frame syslog or syslog ng or other syslogd Switch Remote Command Setup Node names addresses of switches nodetype IBSwitch QLogic for QLogic Switches Node groups for switches Fabric management server Remote Command Setup High performance computing clusters using InfiniBand hardware 89 Table 59 xCAT planning worksheet continued nodetype FabricMS Node names or addresses of Fabric MS Node groups for Fabric MS Primary Fabric MS for data collection The following worksheet is an example of a completed xCAT planning worksheet Table 60 Example Completed xCAT planning worksheet xCAT Planning Worksheet xCAT MS Name egxCAT01 xCAT MS IP addresses service VLAN ___10 0 1 1 10 0 2 1 Cluster VLAN __10 1 1 1___ xCAT MS Operating System AIX 5 3 NTP Server xCAT MS Server Model _System p_520_ Frame 11__ syslog or syslog ng or other syslogd syslog Switch Remote Command Setup nodetype IBSwitch QLo
232. d line help 2 If you are expecting Subnet Manager log entries in the log and they are not there then start the Subnet Manager The instructions are provided in the vendors Switch Users Guide or found in the command line help 3 If there is still a problem with logging on a switch call your next level of support Reconfiguring xCAT event management This procedure is used to reconfigure a xCAT event management environment that has lost its original configuration When a xCAT event management environment loses its configuration it might be necessary to unconfigure it and reconfigure it The procedure to use depends on whether the xCAT is running on the AIX operating system or the Linux operating system Reconfiguring xCAT on the AIX operating system To reconfigure xCAT event management on the AIX operating system complete the following steps 1 Log on to xCAT MS 2 Run the Iscondresp command to determine which condition and responses you are using The typical condition name is either Local IBSwitchLog for a xCAT MS The typical response name is usually Log event anytime Email root anytimeor LogEventtoxCATDatabase might also be configured Finally the system administrator might have defined another response to be used specifically at this site 3 Stop the condition response by using the following command 232 Power Systems High performance clustering stopcondresp lt condition name gt lt response_name gt Delete all the x
233. ddition to normal repair responsibilities during installation it must be noted that IBM service is responsible for repairing the InfiniBand cables and host channel adapters HCAs IBM Service representatives are responsible for performing the following installation instructions 1 For IBM installable Hardware Management Console HMC use Installing the Hardware Management Console on page 102 2 For IBM installable servers use Installing and confi Cluster expansion or partial installation If you are performing an expansion or partial installation you must perform a subset of the steps required for a full installation Use the following table to determine which major steps must be performed for a cluster expansion or partial installation Table 68 Cluster expansion or partial installation determination lation but are expanding an existing cluster or adding function Cluster expansion or partial installation Management Adding Adding new Adding HCAs to Adding a subnet Adding servers InfiniBand servers to an an existing to an existing and a subnet to hardware to an ___ existing InfiniBand InfiniBand an existing existing cluster InfiniBand network network InfiniBand switches and network network host channel adapters HCAs Yes Yes Floor tile cut outs Yes Yes for cables Yes Yes for No Yes Yes o g installation images High performance com
234. de using ibtest on the fabric management server 9 If the problem has not been fixed call your next level of support Event not in xCAT MS var log xcat syslog fabric info Use this procedure if an expected event is not in the xCAT MS error log If and expected event is not in the remote syslog file var log xcat syslog fabric info perform the following steps Note This assumes that you are using syslogd for syslogging If you are using another syslog application like syslog ng then you must alter this procedure to account for that However the underlying technique for debug remains the same 1 Log on to the xCAT MS 2 Verify that you can ping the source which must be either the fabric management server or the switch cluster VLAN IP address a If you cannot ping the source device then use standard network debug techniques to isolate the problem on the service VLAN Consider the xCAT MS connection the fabric management server connection the switch connection and any Ethernet devices on the network Also ensure that the addressing has been set up properly 3 Check the syslog configuration file and verify that the following entry is in there a If the xCAT MS is using syslog not syslog ng the following line must be in etc syslog conf If etc syslog conf does not exist go to step all local6 info and above priorities go to the following file local6 info var log xcat syslog fabric info If the xCAT
235. ds are used to query for port and node GUIDs from an AIX LPAR e ibstat n returns overall node information ibstat n grep GUID returns the base GUID for the HCA You can use this to map the other GUID information because the last byte is the one that varies based on ports and logical HCAs The first 7 bytes are common across ports and logical HCAs e ibstat p gt returns port information ibstat p egrep GUID PORT returns just the port number and the GUIDs associated with that port Note It can take up to a minute for the previously mentioned commands to return In order to use xCAT to get all HCA GUIDs in AIX LPARs use the following command string which assumes that all of your servers are running AIX Instead of a use N AIXNodes to access just AIX logical partitions in a mixed environment For xCAT gt xdsh nodegroup with all servers v ibstat n l grep GUID nodel Globally Unique ID GUID 00 02 55 00 00 0f 13 00 node2 Globally Unique ID GUID 00 02 55 00 00 0b 8 00 The information mentioned in the previous paragraph would be good enough to map any HCA GUID to a node or system For example the logical switch port 1 of an HCA might have a final byte of 01 So the node1 port 1 GUID would be 00 02 55 00 00 0f 13 01 If you do not have a stored map of the HCA GUIDs but you have a GUID for which you want to search use the following command for AIX LPARs Using the first 7 bytes of the
236. dy However there is a specific order for how they are cabled powered on and recognized on the service subsystem e The types of units and contractual agreements affect the composition of the installation team The team can be composed of customer IBM or vendor personnel For more guidance on installation responsibilities see Installation responsibilities of units and devices on e If you have 12x host channel adapters HCAs and 4x switches the switches must be powered on and configured with the correct 12x groupings before servers are powered on The order of port configuration on 4x switches that are configured with groups of three ports acting as a 12x link is important Therefore specific steps must be followed to ensure that the 12x HCA is connected as a 12x link and not a 4x link e All switches must be connected to the same service virtual local area network VLAN If there are redundant connections available on a switch they must also be connected to the same service VLAN This connection is required because of the IP addressing methods used in the switches Installation responsibilities by organization Use this information to find who is responsible for aspects of installation Within a cluster that has an InfiniBand network different organizations are responsible for installation activities The following table lists information about responsibilities for a typical installation However it is possible for the specific res
237. e e You can attach a laptop to the serial port of the switch or you can attach each switch individually to the cluster VLAN and address it with the default address to get into the CLI and customize its static IP address e As indicated in Planning QLogic or IBM Machine Type InfiniBand switch configuration on pag 49 QLogic switches with managed spine modules have multiple addresses There is an address for each managed spine and an overall chassis address used by whichever spine is master at any given time e If you are customizing the IP address of the switch by accessing the CLI through the serial port on the switch you might want to leave the CLI open to perform the rest of the customization This is not necessary if the Fast Fabric Toolset has been installed and can access the switches because Fast Fabric tools allow you to update multiple switches simultaneously e For QLogic switches the key commands are setChassisIpAddr and setDefaultRoute e Use an appropriate subnet mask when setting up the IP addresses 4 Set the switch name For QLogic switches use the setIBNodeDesc command 5 Disable subnet manager and performance manager functions If embedded subnet management is used this is reversed after the network cabling is done e Ensure that the embedded Subnet Manager is not running by using the smControl stop command e Ensure that the embedded Subnet Manager does not start at boot using smConfig startAtBoot no comman
238. e RedHat rpms required for InfiniBand on page 135 The following os types are recognized by xCAT However the System P clusters using InfiniBand hardware support only rh centos fedora rh windows The arch should be ppc64 or ppc32 However you require both 32 and 64 bit libraries to be placed in the directory Before proceeding ensure that the Subnet Manager has been started and that it is configured with the ppropriate MTU as planned using Planning maximum transfer unit MTU on page 51 and the gic and IBM switch worksheets on page 83 For host based Subnet Managers see High performance computing clusters using InfiniBand hardware 129 The subnet managers must be running before you start to configure the interfaces in the partitions If the commands start failing and Isdev grep ib reveals that devices are Stopped it is likely that the subnet managers are not running 4 S7 M2 Configure the InfiniBand secondary adapter as described in the following section Choose the procedure based on using xCAT Use the planned IP addresses for the Infiniband interfaces a If you have installed Linux on the servers confirm that all of the required rpm for InfiniBand_are om the servers For anetalleticna using Redilat see Redi iat spins required for InfiniBand on pacel 135 If these rpms are not installed on the servers yet install them now Use the documentation provided with the operating system For
239. e on page 18 You can use the Hardware Management Console HMC to manage a group of servers Restarting or repowering on scenarios Restarting or repowering scenarios pose a potential problem in masking a real failure If you restart many servers they would probably ignore all link errors around the time of the restart Any unassociated link failures must occur again before the problem is recognized To avoid this problem use The importance of NTP Fabric diagnosis is dependent on network time protocol NTP service for all devices in the cluster The NTP provides correct correlation of events based on time Without NTP timestamps can vary significantly and cause difficulty in associating events Table of symptoms Use the symptom tables to diagnose problems reported against the fabric The following tables of symptoms are used to diagnose problems reported against the fabric There is a separate table for each reporting mechanism in which the symptom is cross referenced to an isolation procedure The following first table is a list of the various tables of symptoms which are organized by where the problem is being reported Before each following table there is a brief description of the table Table 82 Descriptions of Tables of Symptoms Table Description Table 83 on page 188 Problems being reported through remotely logged switch and fabric manager logs Table 84 on page 189 Problems indicated by switch hardware
240. e At the least you must understand the default syslogd that comes with the operating system on which xCAT would run The two main varieties are syslog and syslog ng In general syslog is used in AIX and RedHat If you prefer syslog ng which has more configuration capabilities than syslog you might also obtain and install syslog ng on AIX and RedHat e Whether you want to use tcp or udp as the protocol for transferring syslog entries from the fabric management server to the xCAT MS You must use udp if the xCAT MS is using syslog If the xCAT MS has syslog ng installed you can use tcp for better reliability The switches only use udp e If syslog ng is used on the xCAT MS there is a sre line that controls the IP addresses and ports over which syslog ng accepts logs The default setup is address 0 0 0 0 which means all addresses For added security you might want to plan to have a src definition for each switch IP address and each fabric management server IP address rather than_opening all IP addresses on the service VLAN For information about the format of the src line see remote logging Running the remote command from the xCAT MS to the Fabric Management Servers is advantageous when you have more than one Fabric Management Server in a cluster To start the remote command to the Fabric Management Servers you must research how to exchange ssh keys between the fabric management server and the xCAT MS This is standard open SSH protocol setup_
241. e HMC or operating system installation servers to work with servers It is included to help understand final configuration of the Management Subsystem The task references in this procedure are all from Figure 11 on page 71 Do not start this procedure until all of the following tasks have been completed 1 The HMCs have been installed and cabled to the service virtual local area network VLAN H6 2 The xCAT MS has been installed and cabled to the service and cluster VLANs CM4 3 The service and cluster VLANs Ethernet devices have been installed and cabled E2 122 Power Systems High performance clustering To install and configure server with management consoles complete the following steps M4 Final configuration of management consoles This procedure is performed in Installing and a he Gee ener hada curing the steps associated with S3 and M4 The following procedure is intended to provide an overview of what is done in that procedure If you add servers and host channel adapters HCAs you must perform these tasks Notes 1 The bulk power controllers BPCs and servers must be at power Standby before proceeding See the Server hardware installation and configuration procedure on page 124 procedure up to and including major task 2 2 Dynamic host configuration protocol DHCP on the service VLAN must be operational The following tasks are performed when you do the Server Installation and Configuration proced
242. e This message is used to limit the number of Notice or higher messages logged by the Subnet Manager on sweeps of the network The suggested limit is 10 Generally if the number of Notice messages is greater than 10 then the user is probably rebooting nodes or powering on switches again and causing links to go down See the IBM Clusters with the InfiniBand Switch website referenced in Cluster information for any updates to this suggestion The configuration setting planned here can be recorded in QLogic fabric management worksheets on Planning for Fabric Management and Fabric Viewer ends here Planning Fast Fabric Toolset The Fast Fabric Toolset provides reporting and health check tools that are important for managing and monitoring the fabric In depth information about the Fast Fabric Toolset can be found in the Fast Fabric Toolset Users Guide available from QLogic The following information provides details about the Fast Fabric Toolset from a cluster perspective The following items are the key things to remember when setting up the Fast Fabric Toolset in an IBM System p or IBM Power Systems HPC cluster e The Fast Fabric Toolset requires you to install the QLogic InfiniServ host stack which is part of the Fast Fabric Toolset bundle e The Fast Fabric Toolset must be installed on each Fabric Management Server including backups See Planning for fabric management server on page 64 e The Fast Fabric tools that rel
243. e file1 being the baseline file and the second file file2 being the latest file The default diff format that is used is with the context of one line before and after the altered data This is the same as a diff C 1 This can be changed by entering your preferred diff command and options by using the variable FF_DIFF_CMD in the fastfabric conf file For more details see the Fast Fabric Toolset Users Guide The information that follows assumes that the default context is being used Entries similar to the following example are repeated throughout the diff file These lines indicate how the baseline file1 differs from the latest file2 health check 172 Power Systems High performance clustering xxx line 1 line 2 lines from the baseline file line 1 line 2 lines from the latest file The first set of lines enclosed in asterisks indicates which line numbers contain the lines from the baseline file that have been altered The associated line numbers and data from the latest file follow Use the man diff command to get more details on diff file Several example scenarios follow An example of what might be seen when swapping two ports on the same host channel adapter HCA kkkxkkkkkkkkkkkk xxx 25 29 10g 0x00025500000da080 1 SW IBM logical switch 1 lt gt 0x00066a0007000ced 8 SW SilverStorm 9120 GUID 0x00066a00020001d9 Leaf 1 Chip A 10g 0x00025500000da081 1 SW IBM logical switch 2
244. e Customized Installation Instructions for each server model For customer installable units setup information is available in e For POWER6 IBM System Information Center for the IBM system being installed High performance computing clusters using InfiniBand hardware 125 e For POWERS IBM System Information Center nformation Center gt Initial server setup Procedures for installing the GX InfiniBand host channel adapters are also available in the IBM systems Hardware Information Center click IBM systems Hardware Information Center gt Installing hardware c S2 Apply power to the system racks or frames through the unit emergency power off UEPO switch Allow the servers to reach the power standby state Power Off For servers in frames or racks without bulk power assemblies BPAs the server starts to the power standby state after connecting the power cable Note Do not press the power button on the control panels or apply power to the servers so that they boot to the logical partition standby state d S3 Use the following procedure to verify that the servers are now visible on the DHCP server 1 Check the DHCP server to verify that each server and bulk power controller BPC have been given an IP address For a frame with a BPC you would see an IP address assigned for each BPC and service processor connection For a frame or rack with no BPC you would see IP addresses assigned for each service processor connection 2 Reco
245. e Fabric MS To reset counters on individual ports you must use a focus F with the nodeguid and port of the switch port on the link iba_report o none C a h hca p port F nodeguid switch chip GUID port switch chip port hca the HCA on the FM Server that is connected to the subnet port the port on the HCA on the FM Server that is connected to the subnet Note The a might not be necessary for all levels of GFW code However it is safer to stay in the habit of using it For an error counter clearing script that tracks when the most recent error counter clear was done see Error counter clearing script on page 276 Example health check scripts This section provides example health check scripts Because of the requirement to call all_analysis or iba_report with a configuration file containing the correct error counter thresholds based on the last time error counters were cleared setting up cron can be rather complex and involve multiple entries However by creating a few simple scripts and by using them for health checks error counter reading and error clearing you can simplify cron and get more accurate error counter monitoring The list of important scripts is e A script to clear all error counters and record when those errors were last cleared e A script to call all_analysis or fabric_analysis with appropriate parameters based on how long since the last error clear And keep a log file to
246. e For AIX use the following information For xCAT dsh nodegroup with AIX nodes v ibstat p grep p 1st seven bytes of GUID grep iba Example results 202 Power Systems High performance clustering gt dsh v N AIXNodes ibstat p grep p 00 02 55 00 10 3a 72 grep iba c924flec10 ppd pok ibm com IB PORT 1 INFORMATION iba0 c924flec10 ppd pok ibm com IB PORT 2 INFORMATION iba e For Linux use the following information For xCAT xdsh nodegroup with Linux nodes v ibv_devinfo grep B1 1st seven bytes of GUID grep ehca Example results gt dsh v N AIXNodes ibv_devinfo grep B1 0002 5500 103a 72 grep ehca hca_id ehcad d The server is in the first field and the adapter number is in the last field c924flecl0 ppd pok ibm com and iba0 in AIX or ehca0 in Linux e To find the physical location of the logical switch port use the logical switch number and iba device found preceding with the Table 91 on page 207 Example Results jba ehcaO and logical switch 1 map to C65 T1 Therefore c924flecl10 C65 T1 is attached to port 3 of SilverStorm 9024 DDR GUID 0x00066a00d90003d3 This procedure ends here Finding devices based on a known physical switch port Use this procedure if the physical switch port is known and the attached physical HCA port must be determined This applies to IBM GX HCAs For more information about the architecture of IBM GX HCAs and logical switches within them see
247. e a la norme NMB 003 du Canada European Community Compliance Statement This product is in conformity with the protection requirements of EU Council Directive 2004 108 EC on the approximation of the laws of the Member States relating to electromagnetic compatibility IBM cannot accept responsibility for any failure to satisfy the protection requirements resulting from a non recommended modification of the product including the fitting of non IBM option cards This product has been tested and found to comply with the limits for Class A Information Technology Equipment according to European Standard EN 55022 The limits for Class A equipment were derived for commercial and industrial environments to provide reasonable protection against interference with licensed communication equipment European Community contact IBM Deutschland GmbH Notices 285 Technical Regulations Department M456 IBM Allee 1 71139 Ehningen Germany Tele 49 7032 15 2937 email tjahn de ibm com Warning This is a Class A product In a domestic environment this product may cause radio interference in which case the user may be required to take adequate measures VCCI Statement Japan UUamiald OS AA SETS OO ee CA oc aS SSSR OT CMS OS EAS eee LIRR aCe o VCCI A The following is a summary of the VCCI Japanese statement in the box above This is a Class A product based on the standard of the VCCI Council If this equipment is used in a domestic environment
248. e attaching them to the cluster virtual local area network VLAN Alternatively you must add each switch to the cluster VLAN individually and change the default IP address before adding another switch Note The switch vendor documentation refers the Ethernet connection for switch management as the service VLAN Switches are set with static IP addresses on the cluster VLAN Ifa switch has multiple managed spines or management modules each one requires its own IP address in addition to an overall chassis IP address You also must set up the default gateway If an InfiniBand switch has multiple Ethernet connections for the cluster VLAN and the cluster has multiple cluster VLANs for redundancy the switch Ethernet ports must connect to the same cluster VLAN Update the switch firmware code as required See the IBM Clusters with the InfiniBand Switch website referenced in Cluster information resources on page 2 for information regarding switch code levels Set the switch name Temporarily stop the embedded Subnet Manager and performance manager from running Depending on configuration this might be a permanent state Setup logging Enable full logging Enable full logging format Set the chassis maximum transfer unit MTU value according to the installation plan See the switch planning worksheet or Planning maximum transfer unit MTU on page 51 If the switch is not running an embedded Subnet Manager
249. e computing HPC cluster there are several methods for reporting runtime errors For more details see Cluster fabric management flow on page 152 and The following items are some of the key runtime issues e IBM system runtime errors are reported to Service Focal Point with the appropriate FRU lists e Vendor switch runtime errors are first reported to the Subnet Manager and switch logs e If Fast Fabric health check is used the output of the health check can also be used to report problems The user must either launch the health check manually or script its launch through a service like cron High performance computing clusters using InfiniBand hardware 151 Cluster Fabric Management Use this information to learn about the activities applications and tasks required for cluster fabric management This would be a lot more along the lines of theory and best practice than detailed procedures Documents referenced in this section can be found in Cluster information resources on page 2 This chapter is broken into the following sections A brief description of how to use each section is included e Cluster fabric management flow illustrates an approximate flow for typical management activities in a cluster e Cluster Fabric Management components and their use describes the various applications used for cluster fabric management and how they can be typically used e Cluster fabric management tasks o
250. e equal to or greater than the number of PortRcvErrors It is possible that the number of PortRcvErrors is greater than the number of SymbolErrors The size of the difference can indicate different root causes This assumes that the PortRcvErrors are not being incremented because of PortRcvRemotePhysicalErrors or ExcessiveBufferOverrunErrors If the number of PortRcvErrors is slightly higher than the number of SymbolErrors this can be explained by some double bit errors that SymbolError checkers would not detect However it is unlikely that this would happen often It is more likely that SymbolErrors would be detected at nearly the same rate as PortRevErrors If the number of PortRcvErrors is much higher than the number of SymbolErrors and there are not enough corresponding PortRcvRemotePhysicalErrors or ExcessiveBufferOverrunErrors to explain the difference it is possible that there is some remote source HCA adapter that is corrupting a CRC that is 268 Power Systems High performance clustering only checked at the destination HCA This is a difficult situation to isolate to root cause The technique is to do methodical point to point communication and note which combination of HCAs causes the errors Also for every PortRcvRemotePhysical reported by an IBM Galaxy HCA a PortRcvError would be reported Also for every ExcessiveBufferOverrunError reported by an IBM Galaxy HCA a PortRcvError would be reported Symbol Err CRE En
251. e files High performance computing clusters using InfiniBand hardware 177 Choose only the following options to install or upgrade OFED IB stack QLogic IB tools QLogic Fast Fabric Qlogic FM Note All of the above plus others are set to install by default Clear all other selections on this screen AND on the next screen before selecting P to install the options The following screen is an example when updating from IFS 4 2 x to 4 3 x Nothing on screen 2 must be selected Please Select Install Action screen 1 of 2 0 OFED IB Stack Install Available 1 3 1 0 4 1 QLogic IB Tools Upgrade Available 4 3 2 0 1 2 OFED IB Development Don t Install Available 1 3 1 0 4 3 QLogic Fast Fabric Upgrade J Available 4 3 2 0 1 4 QLogic SRP Don t Instal1 Available 1 3 1 0 3 5 QLogic Virtual NIC Don t Install Available 1 3 1 0 3 6 OFED IP over IB Don t Install Available 1 3 1 0 4 7 OFED SDP Don t Install Available 1 3 1 0 4 8 OFED uDAPL Don t Install Available 1 3 1 0 4 9 MVAPICH for gcc Don t Install Available 1 3 1 0 4 a MVAPICH2 for gcc Don t Install Available 1 3 1 0 4 b OpenMPI for gcc Don t Install Available 1 3 1 0 4 c MPI Source Don t Install Available 1 3 1 0 4 d QLogic FM Upgrade Available 4 3 2 0 4 When updating from IFS 4 2 x to 4 3 x in order to get the new versions of the updated configuration files answer n no to the following questions d
252. e number Leaf connector number Server number in frame add 12 if HCA is C66 Server number Leaf connector number subtract 12 if leaf gt 12 Frame number Frame number HCA number C65 for switch 1 2 C66 for switch 3 4 HCA port Remainder of switch 1 4 1 Table 31 Example topology gt 120 9125 F2As in 10 frames with 8 HCA connections in 4 InfiniBand subnets Frame Server HCA Connector Switch Connector 1 1 1 C65 T1 i L1 C1 36 Power Systems High performance clustering Table 31 Example topology gt 120 9125 F2As in 10 frames with 8 HCA connections in 4 InfiniBand subnets continued Frame Server HCA Connector Switch Connector 1 1 1 C65 T2 2 L1 C1 1 1 1 C65 T3 3 L1 C1 1 1 1 C65 T4 4 L1 C1 1 1 2 C66 Tl 1 L13 C1 1 1 2 C66 T2 2 L13 C1 1 1 2 C66 T3 3 L13 C1 1 1 2 C66 T4 4 L13 C1 1 2 1 C65 T1 1 L1 C2 1 2 1 C65 T2 2 L1 C2 1 2 1 C65 T3 3 L1 C2 1 2 1 C65 T4 4 L1 C2 1 2 2 C66 T1 1 L13 C2 1 2 2 C66 T2 2 L13 C2 1 2 2 C66 T3 3 L13 C2 1 2 2 C66 T4 4 L13 C2 Continue through to the last server in the frame 1 12 1 C65 T1 1 L1 C12 1 12 1 C65 T2 2 L1 C12 1 12 1 C65 T3 3 L1 C12 1 12 1 C65 T4 4 L1 C12 1 12 2 C66 T1 1 L13 C12 1 12 2 C66 T2 2 L13 C12 1 12 2 C66 T3 3 L13 C12 1 12 2 C66 T4 4 L13 C12 2 1 1 C65 T1 1 L2 C1
253. e or higher INFO messages are not bound by this format and are for engineering use lt prefix gt MSG lt msgType gt SM lt sm_node_desc gt port lt sm_port_number gt COND lt condition gt NODE lt node_desc gt port lt port_number gt lt node_guid gt LINKEDTO lt linked_desc gt port lt linked_port gt lt linked_guid gt DETAIL lt details gt lt prefix gt timestamp and card slot number OR hostname and IP address of the unit reporting the msg lt msgType gt is one of the following values Error Warning Notice INFORMATION lt sm_node_desc gt and lt sm_port_number gt indicate the node name and port number of the SM that is reporting the message For ESM port number 0 lt condition gt is one of the conditions from the event SM Reporting Table text includes a unique ID lt node_desc gt lt port_number gt and lt node_guid gt are the InfiniBand Node Description Port Number and Node GUID of the port and node that are primarily responsible for the event lt linked_desc gt lt linked_port gt lt linked_guid gt are optional fields describing the other end of the link described by the lt node_desc gt lt port_number gt and lt node_guid gt fields These fields and the LINKEDTO keyword will only appear in applicable messages lt details gt is an optional free form field with additional information for diagnosing the cause Example Subnet Manager log entry High performance computing clusters us
254. e periodic clear described in the following is run This can mask some links that are running slightly above threshold until the next day This is because the error thresholds that will be used will be slightly higher because they are based on clearing the errors at a time before the manual clear This would most likely not be of consequence to the performance of the cluster If the link is taking enough errors to affect performance then the higher thresholds being used would be exceeded and the error would be surfaced For example if you manually clear the errors 12 hours after the periodic clear then when the health check is run one hour later the symbol error threshold that the health check will choose will be 5 instead of 3 This problem of out of sync thresholds can be avoided if you use a health check wrapper script and error l wrapper script as described in Healthcheck control script on page 277 EE You must also clear error counters before you read them the first time after installation 274 Power Systems High performance clustering It is further suggested that you clear all error counters every 24 hours at a regular interval There are several ways to accomplish clear all error counters e The simplest method is to run a cronjob by using the iba_report in the following to reset errors on the entire fabric As noted in the following section you would want to use o errors so that you do not lose any errors that occur betwe
255. e running a host based Subnet Manager to check multicast group creation on the Fabric Management Server run the following commands Remember that for some commands you must provide the HCA and port through which the Subnet Manager connects to the subnet For IFS 5 use the following steps a Check for multicast membership At least one group must be returned per InfiniBand subnet iba_showmc egrep Fabric GID Fabric 1 1 Multicast Information GID Oxff12601bf ff f0000 0x0000000000000016 GID Oxff12401bf ff f0000 0x0000000000000016 Fabric 1 2 Multicast Information GID Oxff12601bf ff f0000 0x0000000000000016 GID Oxff12401bf ff f0000 0x0000000000000016 Fabric 2 1 Multicast Information GID Oxff12601bf ff f0000 0x0000000000000016 GID Oxff12401bf ff f0000 0x0000000000000016 Fabric 2 2 Multicast Information GID Oxff12601bf ff f0000 0x0000000000000016 GID Oxff12401bf ff f0000 0x0000000000000016 b Check for MTU and link rate Typically you use the MTU and rate that are considered to be in error because that must return fewer things Generally these would return only the fabric management server HCA links The following example shows checking for 2 K MTU and SDR speeds iba_reports o links F mtu 2048 To check for MTU of 2048 iba_reports o links F rate 10g To check for SDR speeds 2 If you are running an embedded Subnet Manager to check multicast group creation run the following command on each switch wi
256. e servers to LPAR standby and verify the system viability by waiting several minutes and checking Service Focal Point If you cannot bring a server to LPAR Standby or there is a serviceable event reported in Service Focal Point perform the prescribed service procedure as found in 1 For POWER 6 IBM System Information Center for the IBM system being installed 2 For POWERS IBM System Information Center b To verify each server use the following procedure to run the eServer diagnostics 1 Depending on the server and who is doing the installation you might want to run these diagnostics from the CD ROM AIX NIM SPoT or concurrently from an installed AIX operating system The LPAR must be configured and activated before you might run eServer diagnostics 2 ii To resolve any problem with a server check the diagnostic results and Service Focal Point and follow the maintenance procedures 126 Power Systems High performance clustering Note Typically the IBM service representatives responsibility ends here for IBM service installed frames and servers From this point forward after the IBM service representative leaves the site if any problem is found in a server or with an InfiniBand link a service call must be placed The IBM service representative would recognize that the HCA link interface and InfiniBand cables have not been verified and is not verified until the end of the procedure for InfiniBand network verification which mi
257. e spine slot Default gateway GID prefix LMC 0 default 2 if used in HPC cluster NTP Server Switch MTMS Fill out during installation New admin password Fill out during installation Remote logging host The following worksheet can be used to plan for each leaf High performance computing clusters using InfiniBand hardware 85 Table 52 Sample Planning worksheet for Director or core switch with more than 24 ports leaf configuration Leaf ___ Leaf Ports Connection Ports Connection 1 1 2 2 3 3 4 4 5 5 6 6 7 T 8 8 9 9 10 10 11 11 12 12 The following worksheets are examples of the switch planning worksheets Table 53 Example Planning worksheet for Director or core switch with more than 24 ports Director or Core Switch greater than 24 ports 1 of 4 Switch Model 9140 Switch name egsw01 set by using setIBNodeDesc xCAT Device Node name xCAT 123 Frame and slot f10s01 Chassis IP addresses 10 1 1 10 9240 has 2 hemispheres Spine IP addresses slot1 10 1 1 16 slot2 10 1 1 20 indicate spine slot Default gateway GID prefix _fe 80 00 00 00 00 00 00 LMC 2 0 default 2 if used in HPC cluster NTP Server sx CAT MS Switch MTMS Fill out during installation New admin password Fill out during installation Remote logging host ___ x CAT MS
258. e table for which libraries apply for Galaxy1 Galaxy2 HCAs versus Mellanox based HCAs see libehca libmthca and libm1x4 Table 72 RHELS5 3 InfiniBand related drivers and libraries Driver Library Corresponding rpm in RedHatEL5 3 openib openib el5 noarch rpm libib 32 bit libibcm e15 ppc rpm libibcm devel e15 ppc rpm libibem static e 15 ppc rpm 1ibibcommon e15 ppc rpm 1ibibcommon devel e15 ppc rpm libibcommon static e 15 ppc rpm libibmad e15 ppc rpm libibmad devel e15 ppc rpm libibmad static el5 ppc rpm libibumad e15 ppc rpm 1ibibumad devel e15 ppc rpm libibumad static e l5 ppc rpm libibverbs e15 ppc rpm libibverbs devel e 15 ppc rpm libibverbs static el5 ppc rpm libibverbs utils el5 ppc rpm 64 bit libibcm e15 ppc64 rpm libibcm devel e15 ppc64 rpm libibem static e15 ppc64 rpm 1ibibcommon e15 ppc64 rpm 1ibibcommon devel e15 ppc64 rpm 1ibibcommon static e15 ppc64 rpm libibmad e15 ppc64 rpm 1ibibmad devel e15 ppc64 rpm libibmad static el5 ppc64 rpm 1ibibumad e15 ppc64 rpm ibibumad devel e15 ppc64 rpm libibumad static e 15 ppc64 rpm libibverbs e15 ppc64 rpm libibverbs devel e15 ppc64 rpm libibverbs static e15 ppc64 rpm libibverbs utils 64bit rpm is not available in RedHatEL5 3 libehca for 32 bit libehca e15 ppc rpm Galaxy1 Galaxy2 libehca static e 15 ppc rpm support 64 bit libehca e15 ppc64 rpm libehca static e 15 ppc
259. e the C parameter is used you must use the F nodepat switch name pattern parameter to avoid querying non existent counters in the Logical HCAs 0 links F mtu 2048 Use the F to focus on links that are running at a particular MTU value The example to the left shows a 2K MTU Note The iba_report is run on a subnet basis If you want to gather data from all subnets attached to a fabric management server a typical technique is to use nested for loops to address the subnets through the appropriate HCAs and ports to reach all subnets For example for h in 1 2 do for p in 1 2 do iba_report o errors F nodepat SilverStorm done done Examples All of the following examples query over the first port of the first HCA in the fabric management server You must use p and h to direct the commands over a particular HCA port to reach the correct subnet iba_report o comps d 10 i 10 F portguid 0x0002550070011a00 The previous command gets the comps report 10 seconds after clearing the counters for the portguid 0x002550070011a00 The d parameter set to 10 gives enough detail to include the port traffic counter statistics You might use this to watch the traffic out of a particular HCA In this case the portguid is an IBM GX HCA See General mapping of IBM HCA GUIDs to physical HCAs on page 197 for commands that can help you determine HCA GUIDs In this case the GUID of concern is associated
260. e the HCAs ani nosy channel adapters MCAS e Configure HCAs for switch partitioning Adding new servers to an existing InfiniBand network Perform this procedure as if it were a new cluster installation Adding HCAs to an existing InfiniBand network Perform this procedure as if it were a new cluster installation Adding a subnet to an existing InfiniBand network Configure the logical partitions to use the new HCA ports Configure the newly cabled HCA ports for switch partitioning Adding servers and a subnet to an existing InfiniBand e Perform this procedure as if it were a new cluster network installation Installing the operating system and configuring the cluster servers Use this procedure to install your operating system and to configure the cluster servers Note Installing and configuring the operating system and configuring the cluster server encompasses major tasks that are illustrated in the Figure 11 on page 71 1 S6 M2 Customize LPARs and HCA configuration For more information about HCA configuration Planning an IBM GX HCA configuration on page 53 a If you are using 9125 F2A servers with only one logical partition per server use the configCECs script on the xCAT management server 1 When using xCAT opt xcat share xcat ib scripts configCECs Note The script must be modified to work with model 520 550 servers Note If you have 9125 F2A servers with heavy I O planars
261. e to implement a Full bandwidth topology by using the vendor recommendations found in the vendors Switch Users Guide and Planning and Installation Guide This task ends here Checking InfiniBand configuration in AIX This procedure checks for HCA availability and configuration in AIX Perform the following operations from the xCAT MS Verify HCAs are visible to LPARs 1 Get the number of HCAs For xCAT xdsh nodegroup with all nodes v Isdev Cc adapter grep iba we 1 2 If the number returned by the system e Matches the number of ibas in the cluster continue with the procedure to verify that all HCAs are available to the LPARs e Does not match the number of HCAs continue with this procedure 3 To store the list of HCAs run the following command For xCAT xdsh nodegroup with all nodes v Isdev Cc adapter grep iba gt iba_list 4 Open the generated file iba_list and look at the number of HCAs that are visible to the system HCAs that are visible to the system are listed as Defined or Available For each LPAR having HCAs that are not visible check to see if the HCA was assigned to that LPAR Using the HMC GUI on the HMC controlling each server a Verify that the HCA has been assigned to the LPAR If this is not the case see b After you assign the HCA to the correct LPAR run the TA command High performance computing clusters using InfiniBand hardware 215 5 10 11 12 13 14
262. e xCAT MS you must have completed the installation To check the fabric logs on the xCAT MS go to the tmp systemEvents file This file contains log entries from switches and Subnet Managers that might point to serviceable events in the fabric If there are entries in this log see the Table of symptoms on page 187 156 Power Systems High performance clustering If the Email root anytime response is enabled then the fabric logs go to the root account These might also be interpreted by using the Table of symptoms on page 187 If the LogEventToxCAT Database response is enabled then references to the fabric logs would be in the xCAT database These references point to files where the log entries are located These might also be interpreted by using the Table of symptoms on page 187 Other fabric logs for engineering use might be stored in var log xcat syslog fabric info file This is done if you set up the switches and fabric management servers to send INFO and above messages to the xCAT MS while performing the procedure in Set up remote logging on page 112 Health checking Health checking provides methods to check for errors and the overall health of the fabric Before setting up health checking obtain the Fast Fabric Toolset Users Guide for reference Using the help parameter on any of the referenced tools can prove helpful in understanding the available parameters QLogic provides health check tools as par
263. ecessary modify the gateway in the configiba script The default is X X 255 254 e 5 If the InfiniBand interface name is not a simple combination of a short host name and ibX or the netmask and gateway does not meet the user requirements then modify the sample configiba script like in the following example my hostname ENV NODE nic or my fullname echo ENV NODE cut c 1 11 chomp ful Iname my hostname fullname nic 3 Add the configiba script to the xCAT postscripts table The PostScript otherpkgs is used to install InfiniBand libraries drivers and configiba is used to configure the HCAs chtab node Ipar postscripts postscripts hosts sh otherpkgs configiba 4 On each partition perform the following steps e echo options ib_ehca nr_ports 1 gt gt etc modprobe conf e etc init d openibd restart 130 Power Systems High performance clustering 5 e Verify that the following is set to 1 cat sys module ib_ehca parameters nr_ports On the management server run updatenode for each partition updatenode lpar otherpkgs configiba Set up DNS If the xCAT management server provids DNS service the following procedure can be used 1 The IP address entries for IB interfaces in etc hosts on xCAT managed nodes should have the node short host name and the unique IB interface name in them The format should be lt ip_address for_this_ib_interface node_short_hostname ib_interfacename gt For exa
264. ed e Server installation guide for the operating system installation server AIX NIM or Linux distribution server e For the NIM server obtain installation information from AIX documentation e For the Linux server obtain Linux distribution documentation Depending on where you install the operating system install services for servers this might be coupled with Installing the xCAT management server on page 104 1 I1 M1 Physically place the AIX NIM and Linux distribution servers on the data center floor 2 Do not proceed until you have started the dynamic host configuration protocol DHCP server on the xCAT MS as described in Installing the xCAT management server on page 104 3 I2 M2 If you plan to have servers with no removable media CD or DVD build an AIX NIM SPoT on your chosen server to enable eServer diagnostics Refer the NIM information in AIX documentation Note Since the eServer diagnostics are available only in the AIX operating system you need an AIX SPoT even if you are running another operating system in your partitions If you are running AIX in your partitions you require an AIX NIM SPoT for servers with no removable media 4 I2 M2 If you have servers with no removable media CD or DVD and you are going to use Linux in your partitions install a distribution server 5 I3 M4 Cable the operating system installation servers to the cluster virtual local area network VLAN not t
265. een assigned to the LPAR If this is not the case see Installing or replacing an InfiniBand GX host channel adapter on page 147 The device was not assigned to the LPAR see Installing the operating system and configuring the cluster servers on page 128 After you assign the HCA to the LPAR return to this location b After you assign the HCA to the correct LPAR run the following command For xCAT xdsh nodegroup with all nodes that had an issue with the lhca v find sys bus ibmebus devices name lhca print c If the HCA e Is still not visible to the system continue with the step e Is visible to the system continue with step 6 on page 219 to verify that all HCAs are available to the LPARs 5 If you have an HCA that was assigned to an LPAR but the HCA is not visible to the system a Go to SFP on the HMC controlling each server and review the error logs b Fix any events that are reported against each server or HCAs in that server Perform the following recovery procedure c If all of the interfaces in an LPAR are not configured use the procedure in Recovering all of the ibX interfaces in an LPAR in the Linux on page 238 d If only a single interface in an LPAR is not configured use the procedure in Recovering a single ibX interface in Linux on page 237 218 Power Systems High performance clustering 10 11 12 13 14 15 16 IZ 18 19 Verify all HCAs are available t
266. eet to plan for a 24 port QLogic switch Table 50 Sample QLogic 24 port switch planning worksheet 24 port switch worksheet Switch model Switch name xCAT Device Node name set by using setIBNodeDesc Frame and slot Cluster virtual VLAN IP address GID prefix Default gateway LMC NTP Server Switch MTMS 0 default 2 if used in HPC cluster Fill out during installation New admin password Fill out during installation Remote logging host Ports Connection or Amplitude or Pre emphasis 84 Power Systems High performance clustering Table 50 Sample QLogic 24 port switch planning worksheet continued 24 port switch worksheet 15 16 17 18 19 20 21 22 23 24 Planning worksheet for switches with more than 24 ports Use these worksheets for planning switches with more than 24 ports ones with leafs and spines The first worksheet is for the overall switch chassis planning The second worksheet is planning for each leaf Table 51 Planning worksheet for Director or core switch with more than 24 ports Director or Core Switch greater than 24 ports Switch model Switch name set by using setIBNodeDesc xCAT Device Node name Frame and slot Chassis IP addresses 9240 has 2 hemispheres Spine IP addresses indicat
267. ement Console HMC installation instructions Do not use these instructions until you are directed to do so within this procedure During the HMC installation for HMC information refer the Cluster summary worksheet on page 77 which have been filled out during the planning phase for the cluster Notes If there are multiple HMCs on the service VLAN do not set up the HMC as a dynamic host configuration protocol DHCP server as instructed This would result in multiple DHCP servers on the service VLAN xCAT can be used as the Systems Management application It is required to be installed with Cluster Ready Hardware Server CRHS under the following conditions 102 Power Systems High performance clustering You have more than one HMC You have opted to install xCAT and CRHS in anticipation of future expansion To install the HMC complete the following steps Note Tasks have two reference labels to help cross reference them between figures and procedures The first is from Figure 12 on page 100 and the second is from Figure 11 on page 71 For example E1 M1 indicates task label E1 in the 1 and task label M1 in the H1 M1 Perform the physical installation of the HMC hardware on the data center floor HMCs might have a maximum distance restriction from the devices that they manage Generally you want to minimize the distance from the HMCs to their managed servers so that IBM service representatives can
268. emote logging to xCAT MS helps you monitor clusters by consolidating logs to a central location This procedure involves setting up remote logging from the following locations to the xCAT MS e To set up remote logging for a fabric management server continue with step 2 in For xCAT MS e To set up remote logging for InfiniBand switches continue with step 3 in For xCAT MS e To set up remote logging on the Hardware Management Console HMC continue with step 4 in For xCAT MS Remote syslogging to an xCAT MS Note Step 5 step 6 in the following topics involve verifying the remote logging setup For xCAT MS Remote syslogging to an xCAT MS shows tasks L1 through L6 for setting up remote logging It also shows how the remote logging setup tasks relate to the key tasks illustrated in Figure 12 on page 100 Figure 13 Set up remote logging Do not start this procedure until all the following tasks have been completed 1 The HMCs have been installed and cabled to the service virtual local area network VLAN H6 in Figure 12 on page 100 The xCAT MS has been installed and cabled to the service and cluster VLANs CM4 The fabric management server has been installed and cabled to the cluster VLAN F8 The switches have been installed and cabled to the cluster VLAN W3 The service and cluster VLANs Ethernet devices have been installed and cabled E2 If you are using xCAT use the procedure in Remote syslogging to an xC
269. ems High performance clustering HPC applications results in four 4 LIDs for each port The IBM MPI performance gain is realized particular in the FIFO mode Consult performance papers and IBM for information about the impact of LMC is equal to 2 on RDMA The default is to not use the LMC is equal to 2 and use only the first of the 4 available LIDs This reduces startup time and overhead for managing Queue Pairs QPs which are used in establishing protocol level communication between InfiniBand interfaces For each LID used another OP must be created to communicate with another InfiniBand interface on the InfiniBand subnet See Planning maximum transfer unit MTU on page 51 for planning the maximum transfer unit MTU for communication protocols The LMC and MIU settings planned here can be recorded in QLogic and IBM switch planning worksheets on page 83 which is meant to record switch and Subnet Manager configuration information Important information for planning an HPC MPI configuration ends here Planning 12x HCA connections Use this information for a brief description of host channel adapter HCA requirements Host channel adapters with 12x capabilities have a 12x connector Supported switch models have only 4x connectors You can use a width exchanger cable to connect a 12x width HCA connector to a single 4x width switch port The exchanger cable has a 12x connector on one end and a 4x connector on the other end
270. en the previous read and the clear And you would probably also want to point to the iba_mon conf 24 file as it would generally be 24 hours since the previous clear of the error counters The iba_mon conf 24 file is explained in Setting up periodic fabric health checking on page 158 e Alternatively in the cronjob you might call all_analysis with a preceding setting of the FF_FABRIC HEALTH environment variable to cause the clear and the use of the iba_mon conf 24 file e You might create a couple of scripts to track the clearing of errors and determine which iba_mon conf file to use and call them in a cronjob Error counters for an entire subnet must be cleared with the following command iba_report o none C a h hca p port F nodepat switch IBNodeDescription pattern hca the HCA on the FM Server that is connected to the subnet port the port on the HCA on the FM Server that is connected to the subnet Note e If you are using iba_report in a cronjob to reset errors it is a good idea to use o errors instead of o none This is because it allows you another opportunity to read error counters DO NOT include the asterisk as part of the command e Beginning with Fast Fabric 4 3 you can use iba_reports plural of iba_report to affect all subnets attached to a Fabric Management Server MS Previously it was common practice to build nested loops to loop through each hca and port on th
271. er SM To revert to the original master and recover the original master SM To revert to the original master after a backup has taken over and assumed its elevated priority as its current priority log on to the current master Fabric Management Server and use the following command usr local iview util sm_diag i instance of SM smRestorePriority The instance of SM is a number from 0 to 3 This must be the instance of the SM on the Fabric Management Server which is now acting as master but is normally the backup In many cases you must restore the priority of multiple SMs on the same Fabric Management Server In such cases you must run the command for each separate instance High performance computing clusters using InfiniBand hardware 243 In many cases it is acceptable to loop through all instances of the subnet manager on all fabric management servers to ensure that they are running under the original priority Assuming you have four subnet managers running on a fabric management server you would use the following command line loop for i in 0 1 2 3 do usr local iview util sm_diag i i smRestorePriority done Re establishing Health Check baseline After changing the fabric configuration in any way use this procedure to reestablish a health check baseline The following activities are examples of ways in which the fabric configuration might be changed e Repairing a faulty leaf board which leads to a new serial number for tha
272. eral cluster information resources The following table lists general cluster information resources Table 2 General cluster resources Component Document Plan Install Manage and service IBM Cluster This document x x x Information IBM Clusters with IBM Clusters with the InfiniBand Switch readme file the InfiniBand Switch website http www 14 software ibm com webapp set2 sas f networkmanager home html Note This site lists exceptions that differ from the IBM and vendor documentation i QLogic InfiniBand Switches and Management x x x QLogic Software for IBM System p Clusters web site http driverdownloads glogic com OLogicDriverDownloads_UI Product_detail aspx 0emid 389 ee InfiniBand architecture documents and standard InfiniBand specifications are available from the InfiniBand Architecture Trade Association http www infinibandta org n The HPC Central wiki enables collaboration x x x HPC Central wiki between customers and IBM teams This wiki and HPC Central includes questions and comments forum ttp www ibm com developerworks wikis display hpccentral HPC Central Note QLogic uses Silverstorm in their product documentation Cluster hardware information resources The following table lists cluster hardware resources Table 3 Cluster hardware information resources Component Document Plan Install Manage and service Site planning for all
273. ere are several methods available to help you interpret switch logs from vendor companies Log severities Use this information to find log severity levels used by QLogic switches and Subnet Managers These severities are standard syslog priority levels Priority is the term that is used to refer the severity in a syslog entry Table 92 QLogic log severities Severity Significance Example Error lt Actionable events The paid level is outside t t e Need immediate action ACCE pia nE perang TANGE e Have severity level above Temperature rose above the critical Information Notice and Warning threshold e Logged to xCAT event management Warning Actionable events The field replaceable unit FRU state e Action can be deferred e Have severity level above Information Notice and below Error e Logged to xCAT event management changed from online to offline Power Supply N 1 redundancy not available High performance computing clusters using InfiniBand hardware 207 Table 92 QLogic log severities continued Severity Significance Example Notice Actionable events Switch chassis management software f rebooted e Can be a result of user action or actual failure FRU state changed from not present e Have severity level above to present Information and below Warning and Error e Logged to xCAT event management Information Events which do not require any I2C system passes POST action
274. ernet subnet 4 If you are using xCAT and multiple HMC the DHCP server is preferred to be on the xCAT management server and all HMCs must have their DHCP server capability disabled Otherwise you are in a single HMC environment where the HMC is the DHCP server for the service VLAN If there are servers in the cluster without removable media CD or DVD you would require an AIX NIM server for System p server diagnostics If you are using AIX in your partitions this provides NIM service for the partition The NIM server would be on the cluster VLAN If there are servers running the Linux operating system on your logical partitions that do not have removable media CD or DVD a distribution server is required The Cluster summary worksheet on page 77 can be used to record the information for your management subsystem planning Frames or racks must be planned for the management servers You can consolidate the management servers into the same rack whenever possible The following management servers can be considered e HMC e xCAT management server e Fabric management server e AIX NIM and Linux distribution servers e Network time protocol NTP server Further management subsystem considerations are e Review Installing and configuring the management subsystem on page 98 for the management subsystem installation tasks The information helps you to assign tasks in the Installation coordination Planning for QLogic fa
275. eron Intel Xeon Intel SpeedStep Itanium and Pentium are trademarks or registered trademarks of Intel Corporation or its subsidiaries in the United States and other countries Linux is a registered trademark of Linus Torvalds in the United States other countries or both Microsoft Windows Windows NT and the Windows logo are trademarks of Microsoft Corporation in the United States other countries or both Red Hat the Red Hat Shadow Man logo and all Red Hat based trademarks and logos are trademarks or registered trademarks of Red Hat Inc in the United States and other countries UNIX is a registered trademark of The Open Group in the United States and other countries 284 Power Systems High performance clustering Java and all Java based trademarks and logos are trademarks or registered trademarks of Oracle and or its affiliates Other product and service names might be trademarks of IBM or other companies Electronic emission notices When attaching a monitor to the equipment you must use the designated monitor cable and any interference suppression devices supplied with the monitor Class A Notices The following Class A statements apply to the IBM servers that contain the POWER7 processor and its features unless designated as electromagnetic compatibility EMC Class B in the feature information Federal Communications Commission FCC statement Note This equipment has been tested and found to comply with the lim
276. erver 66 Planning to run remote commands with QLogic from the management server 67 Planning to run remote commands with QLogic from xCAT MS 2 1 we ee 67 Frame planning bth alt ee tee a fin ace Sn ee Sc Ge ao se a ak ee eee a a ee Oo Planning installation ilow oS oe pua a oe a SS te es e ee oe a a Se e a a 68 Key installation points Dim wy ee ew e So wet oe ee a ae a a OO Installation responsibilities by organization bo bsg et Gob e 8 2 oo BOA we oe BA Se ae 6368 Installation responsibilities of units and devices ww we ee a Order of installation eo Sty ee ee a Ok ee ee Oe ee a Installation coordination worksheet Soe me Re p ow E ao aa Ae 4 amp 2 ew g we we oo o 2B Planning for an HPC MPI configuration 2 2 6 ww ee ee 4 Planning 12x HCA connections o ee ee ee ee ee ZB Planning aidss s s s 2 amp 6 bo a a da eo dw Dee mw ae ee 2 BO Sw ZB Planning checklist oc sot c e bop bog 4 B wk Gy ao bee ek ee Ra De ae 478 Planning worksheets Oo Sp oH ee tee te ee OD Om a a eR Oe Oe VE Cluster summary worksheet Be ON i ee ee eK ee me ee ee ee Frame and rack planning worksheet e s o e s c o soco coso roo oso so TY Server planning worksheet SO k ee Oe ee ee a le a ee Ol QLogic and IBM switch planning worksheets ok g wy a Go a me ES Soe oa Pe e e g 2283 Planning worksheet for 24 port switches e amp amp ob tee ee Me ee eS
277. erver in the frame 10 12 1 C65 Tl 1 L10 C12 10 12 1 C65 T2 2 L10 C12 10 12 1 C65 T3 3 L10 C12 10 12 1 C65 T4 4 L10 C12 10 12 2 C66 Tl 1 L22 C12 10 12 2 C66 T2 2 L22 C12 10 12 2 C66 T3 3 L22 C12 10 12 2 C66 T4 4 L22 C12 Fabric management server 1 1 Port 1 1 L11 Cl 38 Power Systems High performance clustering Table 31 Example topology gt 120 9125 F2As in 10 frames with 8 HCA connections in 4 InfiniBand subnets continued Frame Server HCA Connector Switch Connector Fabric management server 1 1 Port 2 2 L11 Cl Fabric management server 1 2 Port 1 3 L11 Cl Fabric management server 1 2 Port 2 4 L11 Cl Fabric management server 2 1 Port 1 1 L21 C1 Fabric management server 2 1 Port 2 2 L21 C1 Fabric management server 2 2 Port 1 3 L21 C1 Fabric management server 2 2 Port 2 4 L21 C1 Connector terminology gt LxCx Leaf Connector There are backup fabric management server in this example For maximum availability the backup is connected to a different leaf from the primary The following is an example of a cluster with 120 9125 F2As in 10 frames with 4 HCA connections each but with only 4 InfiniBand subnets It uses 7874 120 switches There are two HCA cards in each server Only every other HCA connector is used This setup provides maximum availability in that it permits for a single HCA card to fail completely and have another working HCA card
278. ervers can use I O cards or features that are fiber optic based and that utilize lasers or LEDs Laser compliance IBM servers may be installed inside or outside of an IT equipment rack Copyright IBM Corp 2011 ix DANGER When working on or around the system observe the following precautions Electrical voltage and current from power telephone and communication cables are hazardous To avoid a shock hazard e Connect power to this unit only with the IBM provided power cord Do not use the IBM provided power cord for any other product e Do not open or service any power supply assembly e Do not connect or disconnect any cables or perform installation maintenance or reconfiguration of this product during an electrical storm e The product might be equipped with multiple power cords To remove all hazardous voltages disconnect all power cords e Connect all power cords to a properly wired and grounded electrical outlet Ensure that the outlet supplies proper voltage and phase rotation according to the system rating plate e Connect any equipment that will be attached to this product to properly wired outlets e When possible use one hand only to connect or disconnect signal cables e Never turn on any equipment when there is evidence of fire water or structural damage e Disconnect the attached power cords telecommunications systems networks and modems before you open the device covers unless instructed otherwise in the
279. es of INFO or higher Notice Warning Error for example are directed to a log file for debug purposes The disadvantage of this is that var must be monitored more closely so that it does not fill up If you cannot maintain the var log you can leave out this line optional local6 info and above priorities in another file local6 info var log xcat syslog fabric info Note You can use different file names but you must record them and update the rest of the procedure steps with the new names c Runa touch command on the output files because syslog does not create them on its own i Run the touch var log xcat syslog fabric notices command ii Run the touch var log xcat syslog fabric info command d Refresh the syslog daemon using the refresh s syslogd command e Set up a sensor for syslog fabric notices file by copying the default and changing the default priority filter and monitored file 1 Isrsrc i s Name AIXSyslogSensor IBM Sensor gt tmp AIXSyslogSensorDef 2 Modify the tmp IBSwitchLogSensorDef file by updating the Command attribute to opt xcat sbin rmcmon monaixsyslog p local6 notice f var log xcat syslog fabric notices Note The default p parameter is local6 info This creates unnecessary entries in the event management subsystem 3 Remove the old sensor using the rmsensor IBSwitchLogSensor command 4 Create the sensor and keep its scope local using the CT MANAGEMENT_SCOPE 0 mkrsrc f
280. es as shown in the following example opt xcat sbin rmcmon monerrorlog f var log xcat syslog fabric notices p local6 notice 2 Wait approximately 2 minutes after running the monerrorlog command The following line should be found in etc syslog conf file local6 notice var log xcat syslog fabric notices rotate 4m files 1 3 Return to the procedure that referenced this procedure and go to the step referenced by that procedure Set up remote command processing Use this procedure to set up remote command processing from xCAT to the switches and Fabric Management Server Remote command processing to the fabric management server setup is a standard Linux node setup except that the fabric management server is treated as a device Remote command processing to the switches is standard hardware device setup Figure 14Jillustrate tasks R1 R2 and R3 for setting up remote command processing It also illustrates how the remote command processing setup tasks relate to key tasks illustrated in Figure 12 on page 100 Figure 14 Remote command processing setup Do not proceed with this procedure until all of the following tasks have been completed 1 The xCAT MS has been installed and cabled to the service and cluster virtual local area networks VLANs CM4 2 The fabric management server has been installed and cabled to the cluster VLAN F8 3 The switches have been installed and cabled to the cluster VLAN W3 4 The service and cl
281. es in each rack of servers to the Ethernet service VLAN and verify that addresses have been correctly served for each frame or rack of servers perform the following procedure By doing this one frame or rack at a time you can verify that addresses have been served correctly which is critical for cluster operation a M3 Connect the frame or server to the Ethernet service VLAN Use the documentation provided for the installation of these units IBM Service personnel can access the Worldwide Customized Installation Instructions for each server model that is not a customer setup model Customer server setup information is available e For POWER6 IBM System Information Center for the IBM system being installed e For POWERS IBM System Information Center nformation Center gt Initial server setup Procedures for installing the GX InfiniBand host channel adapters are also available in the IBM systems Hardware Information Center click IBM systems Hardware Information Center gt Installing hardware Note Do not proceed in the server installation instructions Worldwide Customized Installation Instructions or Information Center past the point where you attach the Ethernet cables from the frames and servers to the Ethernet service VLAN Attach power cables to the frames and servers Use the documentation provided for the installation of these units For units that are installed by IBM Service the service representative has access to Worldwid
282. es the actual generation and type of HCAs being used in the cluster Switch and Subnet Manager SM settings indicate the settings for the switch chassis and Subnet Manager The chassis MTU is used by the switch chassis and applies to the entire chassis and can be set the same for all chassis in the cluster Furthermore chassis MTU affects the MPI The broadcast MTU is set by the Subnet Manager and affects IP It is part of the broadcast group settings It can be the same for all broadcast groups The MPI MTU indicates the setting that the MPI requires for the configuration The IP MTU indicates the setting that the IP requires The MPI MTU and IP MTU are included to help understand the settings indicated in the Switch and SM Settings column The BC rate is the broadcast MTU rate setting which can either be 10 GB 3 or 20 GB 6 The SDR switches run at 10 GB and DDR switches run at 20 GB The number in parentheses in the following table indicates the parameter setting in the firmware and SM which represents that setting Table 36 MTU settings MPI Cluster type Cluster composition by HCA Switch and SM settings MTU IP MTU Homogeneous System p5 GX SDR HCA only Chassis MTU 2 K 4 2K 2K HCAs Broadcast MTU 2 K 5 BC rate 10 GB 3 Homogeneous System p POWER6 GX DDR Chassis MTU 4 K 5 4K 4K HCAs HCA 9125 F2A 8204 E8A or 8203 E4A Broadcast MTU 4 K 5 BC rate 10 GB 3 for SDR switches or 20 GB 6
283. essary change them to reflect the latest configuration c Then exit this procedure 8 If you did not intend to swap ports swap them back and go back to the beginning of this procedure This is to verify that you have been successful in swapping the ports back to their original configuration This procedure ends here Diagnosing events reported by the operating system This section provides information about how to determine if fabric errors have caused errors to be reported in the server operating system When an InfiniBand interface problem is reported either the interface identifier or an identifier for the HCA e ibX identifies an interface in AIX or Linux where X is 0 through 7 e ibaX identifies an HCA in AIX where X is 0 through 3 e ehcaX identifies an HCA in Linux where X is 0 through 3 If operating system event does not reference an interface or HCA then perform the following procedures for each InfiniBand interface in the server The first thing to do is to determine the switch link associated with the operating system event 1 If the operating system event references an HCA you must run the next step for both interfaces associated with that HCA Typically the following maps the HCAs to interfaces iba0 ehca0 ib0 and ib1 ibal ehcal ib2 and ib3 iba2 ehca2 ib4 and ib5 iba3 ehca3 ib6 and ib7 If you do not know if the typical mapping was done use ifconfig to determine the actual mapping 2 Find the nodeGU
284. essing from the xCAT MS fod a OR A OR a ee 20 Installing and configuring servers with management consoles 1 ee ee eee 122 Installing and configuring the cluster server hardware me wo bo we te a Bw a amp a de a 4128 Server installation and configuration information for expansion bob fop hop d Aw Boe e a 123 Server hardware installation and configuration procedure a a a a a 124 Installing the operating system and configuring the cluster servers S Ta a e ee a oe Installing the operating system and configuring the cluster servers information fi expansion b a amp a oe L27 Installing the operating system and configuring the cluster servers ww ws 128 Installation sub procedure for AIX only 2 2 6 1 1 ee 184 RedHat rpms required for InfiniBand Boas ew oe e 8 Sh OR amp e ae tie a G5 Installing and configuring vendor or IBM InfiniBand switches popo oeo gog amp 137 Installing and configuring InfiniBand switches when adding or expanding an existing duster ete ow 2 a 137 Installing and configuring the InfiniBand switch 2 2 2 2 ee ee ee eee ee 138 Attaching cables to the InfiniBand network a 2 we ee ee 148 Cabling the InfiniBand network information for expansion 1 6 ee ee ee ee 144 InfiniBand network cabling procedure Bole Me om ene A ak Ee Be Ges ae es Verifying the InfiniBand network topology and operation Ko ok eS ee Se we Ee me hk ke Ue 2
285. esults of the fabric analysis for each configured fabric If nodes or links are missing the fabric analysis detects them Missing links or nodes can cause other health checks to fail If such failures are expected for example a node or switch is offline further review of result files can be performed However the user must be aware that the loss of the node or link can cause other analysis to also fail The following information presents the analysis order for fabric 0 0 if other or additional fabrics are configured for analysis review the files in the order shown in the following section for each fabric There is no specific order for which fabric to review first latest fabric 0 0 errors stderr If this file is not empty it can indicate problems with iba_report such as the inability to access an SM Which can result in unexpected problems or inaccuracies in the related errors file If possible first correct the problems reported in this file After being corrected rerun the health checks to look for further errors latest fabric 0 0 errors If any links with excessive error rates or incorrect link speeds are reported then correct them If there are links with errors be aware that the same links might also be detected in other reports such as the links and comps files as given in following section latest fabric 0 0 snapshot stderr If this file is not empty it can indicate problems with iba_report such as inability to access an SM Wh
286. f 159 Input Links Checked Total of 6 Incorrect Links found 0 Missing 6 Unexpected 0 Misconnected 0 Duplicate 0 Different The following table summarizes possible issues found in changes files Table 78 Possible issues found in health check changes files Issue Description and possible actions Different This indicates that an item still exists in the current health check but it is different from the baseline configuration If the configuration has changed purposely since the most recent baseline and this difference is reflected here save the original baseline and rerun the baseline as instructed in Re establishing Health Check baseline on If this difference was not intended you must rectify the difference to prevent future health checks from reporting the same difference from the baseline Look for any Missing or Unexpected items that might correspond to this item This would be in cases where the configuration of an item has changed in a way that makes it difficult to determine precisely how it has changed Individual items which are Different would be reported as mismatched or Inconsistent and are added into the Different summary count See X mismatch expected found or Node Attributes Inconsistent or Port Attributes Inconsistent or SM Attributes Inconsistent Duplicate This indicates that an item has a duplicate in the fabric This s
287. f f0000 0x0000000000000016 GID Oxff12401bf ff f0000 0x0000000000000016 Fabric 2 2 Multicast Information GID Oxff12601bf ff f0000 0x0000000000000016 GID Oxff12401bf ff f0000 0x0000000000000016 2 Check for MTU and link rate Typically you use the MTU and rate that are considered to be in error because that must return fewer things Generally these would return only the fabric management server HCA links The following example shows checking for 2K MTU and SDR speeds iba_reports o links F mtu 2048 To check for MTU of 2048 iba_reports o links F rate 10g To check for SDR speeds d If you are running an embedded Subnet Manager to check multicast group creation run the following command on each switch with_a master Subnet Manager If you have set it up use xdsh from the xCAT MS to the switches see Set up remote command processing on page 120 for i in list of SM instances typically 0 1 2 3 do usr local util sm_query i i smShowGroups done There must be just one group with all the HCA devices on the subnet being part of the group mtu 5 indicates 4K mtu 4 indicates 2K Oxff12401bffff0000 00000000ffffffff c000 qKey 0x00000000 pKey OxFFFF mtu 5 rate 3 life 19 sl 0 0x00025500101a3300 F 0x00025500101a3100 F 0x00025500101a8300 F 0x00025500101a8100 F 0x00025500101a6300 F 0x00025500101a6100 F 0x0002550010194000 F 0x0002550010193e00 F 0x00066a00facade01 F Recovering the original mast
288. f low In the following example VL15Dropped and PortRcvSwitchRelayErrors are commented out Error Counters Symbol ErrorCounter 1 LinkErrorRecoveryCounter 1 LinkDownedCounter 1 PortRcvErrors 1 PortRcvRemotePhysicalErrors 1 PortRcvSwitchRelayErrors 100 known Anafa2 issue incorrectly increments PortXmitDiscards 1 PortXmitConstraintErrors 1 PortRcvConstraintErrors 1 LocalLinkIntegrityErrors 1 ExcessiveBufferOverrunErrors 1 VL15Dropped 1 b Create a directory to store the output files You can use var opt iba analysis hourly or any other directory that works best for the site c Create a cron entry like the following example It runs on the quarter hour to avoid conflict with the all_analysis cronjobs The switch node pattern used in the following example is the default that begins with SilverStorm If you have changed the IBNodeDescription for the switches you must change the F parameter iba_reports is used which is the plural of iba_report 15 x x sbin iba_reports o errors F nodepat SilverStorm c etc sysconfig iba iba_mon conf low gt output directory errors bin date Y m d_ H M Note A more sophisticated method is to call a script that calculates the amount of time that has passed Since the most recent error counter clears and calls that script without the reference specific instances of iba_mon conf For an example script see Example health check scripts on The cron entry would look like 0
289. f the clear It must then run a targeted report on each link separately It is possible that the same link would be called out more than once High performance computing clusters using InfiniBand hardware 279 Finally in order to ensure that data is lost between calls of all_analysis there must be a sleep between each call The sleep must be at least one second to ensure that error results are written to a separate directory The following section illustrates the logic described in the preceding paragraph Clearerrors Store epoch time in lastclear file date s Run iba_report o errors C on all subnets connected to Fabric MS Clearlinkerrors The link clear filename is constructed using all of the significant information required Take switch node GUID nodeguid and port nodeport and Fabric MS HCA hca and port hcaport as input parameters Store epoch time in lastclear nodeguid nodeport hca hcaport file date s On all subnets run iba_report o errors C h hca p hcaport F nodepat swpat use iba_reports for FF 4 3 and later Healthcheck Review the simpler healthcheck provided in 8 3 Healthcheck control script Similar techniques are used here and anything for logging and running full error counter queries and clears can be the same There are multiple ways to achieve an equivalent result The main decision point is how to handle the single link clear files relative to the full clear
290. fg ib rw r r 1 root root 104 Jun 25 14 42 etc sysconfig network ifcfg ib0 rw r r 1 root root 104 Jun 25 14 42 etc sysconfig network ifcfg ibl rw r r 1 root root 104 Jun 25 14 42 etc sysconfig network ifcfg ib2 rw r r 1 root root 104 Jun 25 14 43 etc sysconfig network ifcfg ib3 c957f8ec01 cat etc sysconfig network ifcfg ibd DEVICE ib0 BOOTPROTO static IPADDR 10 0 1 101 NETMASK 255 255 255 0 GATEWAY 10 0 255 254 STARTMODE auto Use ifconfig ibX to verify interface operation Example output Note the correctconfiguration based on the etc sysconfig ifcfg ib0 file and that the broadcast is running root on c697f1sq01 etc sysconfig network gt ifconfig ib ib0 Link encap UNSPEC HWaddr 80 00 08 24 FE 80 00 00 00 00 00 00 00 00 00 00 inet addr 10 0 1 1 Bcast 10 0 1 255 Mask 255 255 255 0 inet6 addr fe80 202 5500 1001 2900 64 Scope Link UP BROADCAST RUNNING MULTICAST MTU 2044 Metric 1 RX packets 895100 errors 0 dropped 0 overruns 0 frame 0 TX packets 89686 errors 0 dropped 0 overruns 0 carrier 0 collisions txqueuelen 512 RX bytes 50136680 47 8 Mb TX bytes 5393192 5 1 Mb Use netstat i to verify the interface table Example output with 4 K MTU configuration Iface MTU Met RX OK RX ERR RX DRP RX OVR TX OK TX ERR TX DRP TX OVR Flg ethO 1500 1141647 0 0 122790 0 0 BMRU ib 4092 0 1028150 0 0 102996 0 0 BMRU jbl 4092 0 1028260 0 0 102937 0 0 BMRU ib2 4092 0 1028494 0 0 1
291. ficient rack space for the fabric management server If space is available the fabric management server can be placed in the same rack with other management consoles such as the Hardware Management Console HMC xCAT MS and others One QLogic host channel adapter HCA for every two subnets to be managed by the server to a maximum of four subnets QLogic Fast Fabric Toolset bundle which includes the QLogic host stack For more information see Planning Fast Fabric Toolset on page 63 The QLogic host based Fabric Manager For more information see Planning the fabric manager and fabric Viewer on page 56 The number of fabric management servers is determined by the following parameters Up to four subnets can be managed from each Fabric Management Server One backup fabric management server must be available for each primary fabric management server For up to four subnets a total of two fabric management servers must be available one primary and one backup For up to eight subnets a total of four fabric management servers must be available two primaries and two backups A backup fabric management server that has a symmetrical configuration to that of the primary fabric management server for any given group of subnets This means that an HCA device number and port on the backup must be attached to the same subnet as it is to the corresponding HCA device number and port on the primary Designate a sing
292. finiband awk print 1 egrep v ibalicm do chdev 1 i a superpacket on a tcp_recvspace 524288 a tcp_sendspace 524288 a srq_size 16000 a state up done Recovering an ibX interface tcp_sendspace and tcp_recvspace Perform the following to recover the tcp_sendspace and tcp_recvspace attributes for an ibX interface Setting the ibX interface to superpacket on accomplishes this as well Setting the interface to superpacket on would not work if the interface had previously been set to superpacket on and the tcp_sendpace or tcp_recvspace attribute values have been changed Use the following command to set the tcp_sendpace or tcp_recvspace attribute values ibX ibO ibl ib2 ib3 ib4 ib5 ib6 or ib7 chdev 1 ibX a tcp_sendspace 524288 a tcp_recvspace 524288 Recovering mlO in AIX This procedure provides the commands required to recover mI0 when using the AIX operating system To recover the ml0 interface in AIX remove and rebuild it using the following command rmdev 1 mlO d cfgmgr mlQip the ip address of mlQ in this LPAR chdev 1 mlO a netaddr ml0ip a netmask 255 255 255 0 a state up Recovering icm in AIX This information provides direction to recover icm when using the AIX operating system Recovering the icm in the AIX operating system involves removing all InfiniBand interfaces and then rebuilding them along with the icm This procedure is shown in Recovering all of the ibX interfaces in an
293. following documents are referenced by this procedure e For IBM units IBM host channel adapter HCA worldwide Customized Installation Instructions Server service information e For QLogic units Fast Fabric Toolset Users Guide Switch Users Guide Fabric Manager and Fabric Viewer Users Guide Note It is possible to perform some of the tasks in this procedure by following a method other than which is described If you have other methods for verifying the operation of the InfiniBand network you still must review a few key points in this installation process regarding order and coordination of tasks and configuration settings that are required in a cluster environment e This procedure cannot be performed until all other procedures in the cluster installation have been completed These include the following procedures Management subsystem installation and configuration including Fabric Manager Fast Fabric Toolset Server installation and configuration InfiniBand switch installation and configuration Cabling the InfiniBand network e The exceptions to what must be installed before performing this verification procedure include installation of the IBM high performance computing HPC software stack and other customer specific software above the driver level e IBM service is responsible for replacing faulty or damaged IBM cable part numbers e Vendor service or the customer is responsible for replacing faulty
294. for DDR switches Homogeneous POWER6 GX SDR HCA Chassis MTU 2 K 4 2K 2K HCAs 8204 E8A or 8203 E4A Broadcast MTU 2 K 4 BC rate 10 GB 3 for SDR switches or 20 GB 6 for DDR switches High performance computing clusters using InfiniBand hardware 51 Table 36 MTU settings continued MPI Cluster type Cluster composition by HCA Switch and SM settings MTU IP MTU Homogeneous ConnectX HCA only System p Chassis MTU 2 K 4 2K 2K HCAs blades Broadcast MTU 2 K 4 BC rate 10 GB 3 for SDR switches or 20 GB 6 for DDR switches Heterogeneous GX DDR HCA in 9125 F2A Chassis MTU 4 K 5 Between 2 K HCAs compute servers and GX SDR compute HCA in 8204 E8A or 8203 E4A Broadcast MTU 2 K 4 only storage servers 4 KB BC rate 10 GB 3 Heterogeneous POWER6 GX DDR HCA Chassis MTU 4 K 5 Between 2 K HCAs compute and p5 SDR HCA POWER6 storage servers Broadcast MTU 2 K 4 only 4 KB BC rate 10 GB 3 Heterogeneous ConnectX HCA compute and p5 Chassis MTU 2 K 4 2K 2K HCAs HCA storage servers Broadcast MTU 2 K 4 BC rate 10 GB 3 1 IPoIB performance between compute nodes might be degraded because they are bound by the 2 KB MTU 1 While Connect X HCAs are used in the Fabric management servers they are not part of the IPoIB configuration nor the MPI configuration Therefore their potential MTU is not relevant 13 IPoIB perform
295. for all of the switches on a subnet example ibOSW e You can exchange ssh keys between the xCAT MS and the switches and fabric management server e For more secure installations you might plan to disable telnet on the switches and the fabric management server High performance computing clusters using InfiniBand hardware 67 The configuration settings planned here can be recorded in the xCAT planning worksheets on page 89 Planning Remote Command Execution with QLogic from the xCAT MS ends here Frame planning After reviewing the server fabric device and the management subsystem information you can review the frames in which to place all the devices Fill out the Frame and rack planning worksheet on page 79 Planning installation flow This information provides a description of the key installation points organizations responsible for installation installation responsibilities for units and devices and order that components are installed Installation coordination worksheets are also provided in this information Key installation points When you are coordinating the installation of the many systems networks and devices in a cluster there are several factors that drive a successful installation The following are key factors for a successful installation e The order of the installation of physical units is important The units might be placed physically on the data center floor in any order after the site is rea
296. for fabric configuration and functional problems by using the procedure in Checking for fabric configuration and functional problems on page 214 Check multicast group membership at the subnet managers by using the procedure in multicast groups on page 221 If there is a problem re create the problem interfaces as described in one of the following procedures e For AIX and ibX interfaces Recovering ibX interfaces on page 235 e For Linux and ehcaX interfaces Recovering ehcaX interfaces in Linux on page 237 Reboot LPARs If this resolves the problem call your next level of support Recycle the subnet managers If this resolves the problem call your next level of support a Bring down the fabric managers on all Fabric Management Servers For IFS 5 etc init d qlogic_fm stop Verify that the Subnet Manager is stopped by running ps ef grep iview b Restart the fabric managers on all fabric management servers For IFS 5 etc init d qlogic_fm start High performance computing clusters using InfiniBand hardware 225 This procedure ends here Diagnosing application crashes Use this procedure to diagnose application crashes Diagnosing application crashes with respect to the cluster fabric is similar to diagnosing performance problems as in Diagnosing performance problems on page 224 However if you know the endpoints involved in the application crash you can check the state of the routes between the two points
297. for symptoms found in Service Focal Point 190 Power Systems High performance clustering Table 86 SFP table of symptoms Symptom Procedure Reference Any eventID or reference code Use the IBM system service information Then use Diagnosing and repairing IBM system problems on page 213 The following table is used for any symptoms reported outside of the previously mentioned reporting mechanisms Table 87 Other symptoms Symptom Procedure or Reference Diagnosing events reported by the operating system Performance problem reported Diagnosing performance problems on page 224 Application crashes relative to the fabric Fabric event reported by the operating system Management Subsystem problems including unreported errors HCA preventing a logical partition from activating Ping problems Not running at the required 4K maximum transfer unit Recovering to 4K maximum transfer units in the AIX MTU Bad return codes or software failure indicators for Fabric Check the link to the switch Manager or Fast Fabric Software Use Capture data for Fabric Manager and Fast Fabric problems on page 196 Contact your next level of support for QLogic software problems Service procedures Service tasks can be completed by using the procedures referenced in this information The following table lists the common service pr
298. for the management subsystem installation and configuration task is based on a new cluster installation However it indicates where there are variances for expansion scenarios The following table outlines how the new cluster installation is affected or altered by expansion scenarios Table 69 Impact of cluster expansions Scenario Effects Adding InfiniBand hardware to an existing cluster switches and host channel adapters HCAs Cable to InfiniBand switch service subsystem Ethernet ports Might require additional service subsystem Ethernet switches or routers to accommodate new InfiniBand switches Install a fabric management server Add remote syslog capability from Fabric Management Server and switches to xCAT Add remote execution capability from xCAT to Fabric Management Server and switches Adding new servers to an existing InfiniBand network Cable to servers service subsystem Ethernet ports Build operating system update mechanisms for new servers without removable media Might require additional HMCs to accommodate the new servers If you are using Cluster Ready Hardware server or xCAT server you must unconfigure the current DHCP services on the existing HMC and reconfigure using the DHCP on the xCAT MS or other DHCP server Might require additional service subsystem Ethernet switches or routers to accommodate new servers Adding HCAs to an existing InfiniBand network This should not affect the mana
299. found In this case it is 1 1 or HCA 1 gt cnm02 for h in 1 2 do for p in 1 2 do echo h p jba_report h h p p o comps 2 gt amp 1 egrep NodeGUID Type SW LID Linear grep A 1 nodeGUD grep LID done done l l LID 0x000c LinearFDBCap 49152 LinearFDBTop 467 MCFDBCap 1024 1 2 2 1 2 2 d Disable the switch port by using the switch LID switch port and the fabric manager HCA and port mentioned in the preceding section found sbin iba_portdisable 1 lid m switch_port h h p p e Re enable the switch port by using the switch LID switch port and the fabric manager HCA and port mentioned in the preceding section found sbin iba_portenable 1 lid m switch_port h h p p Clear all errors by using either the following command or a script like the one in Error counter clearing script on page 276 iba_reports o none C F nodepat switch IB Node Description pattern Run an application that stresses the network and wait 10 15 minutes and check errors by using either iba_report fabric_analysis all_analysis or a script like the one described in Healthcheck control script on page 277 Retrain any links that meet the retraining criteria in When to retrain 9125 F2A links on page 254 and are connected to 9125 F2A HCAs a If you have QLogic Fast Fabric code level before 4 3 you must reseat cables to cause link to retrain After reseating go to step 4 If you have QLogic
300. frames and servers on the Ethernet service VLAN Proceed to step 5 If you are using xCAT in your cluster complete the following steps a S1 Position servers in frames or racks and install the HCAs do not connect or apply power to the servers at this time Note Do not proceed in the server installation instructions Worldwide Customized Installation Instructions or Information Center past the point where you physically install the hardware Follow the installation procedures for servers found in e Worldwide Customized Installation Instructions WCII for each server model that is installed by IBM service representatives e For all other server models customer procedures for initial server setup are available in For POWER6 IBM System Information Center for the IBM system being installed For POWERS IBM System Information Center nformation Center gt Initial server setup Procedures for installing the GX InfiniBand host channel adapters are also available in the IBM systems Hardware Information Center click IBM systems Hardware Information Center gt Installing hardware S2 Verify that the dynamic host configuration protocol DHCP server is running on the xCAT management server After the Ethernet service VLAN and management consoles have been initially installed and configured they are ready to discover and connect to frames and servers on the Ethernet service VLAN Proceed to step 6 To connect the resourc
301. from vendor xCAT server address or addresses for remote logging Subnet 1 Subnet 2 Subnet Subnet 4 Subnet 5 Subnet 6 Subnet 7 Subnet 8 3 Primary switch priority Back up switch priority Back up switch priority Back up switch priority Broadcast MTU put rate in parentheses LMC GID prefix smAppearanceMsgThresh 10 10 10 10 10 10 10 10 High performance computing clusters using InfiniBand hardware 93 Table 65 Embedded Subnet Manager worksheet continued Tivoli Event Services Manager or HSM to Embedded Subnet Manager worksheet be used Notes The following worksheet is used to plan fabric management servers A separate worksheet can be filled out for each server It is intended to highlight information that is important for management subsystem integration in HPC clusters with an InfiniBand network It is not intended to replace planning instructions found in the QLogic Installation and Planning Guides Note On any given subnet or group of subnets the backup fabric management server must have a symmetrical configuration to that of the primary fabric management server This means that a host channel adapter HCA device number and port on the backup must be attached to the same subnet as it is to the corresponding HCA device number and port on the primary Table 66 Fabric management server worksheet Fabric management server worksheet
302. g on page 120 Updating switch chassis code This information provides guidance for updating switch chassis code The switch chassis management code is embedded firmware that runs in the switch chassis The fabric manager code updates are documented in the Fabric Manager Users Guide but the following items must be considered e For the switch chassis management code the Fast Fabric Toolset can update the code across all switches simultaneously by using the iba_chassis_admin command or the Fast Fabric TUI iba_config For more information see the Fast Fabric Toolset Users Guide sbin iba_chassis_admin F etc sysconfig iba chassis P your directory where firmware pkg is a run upgrade High performance computing clusters using InfiniBand hardware 179 e If you must update only the code on one switch you can do this using the Chassis Viewer see the Switch Users Manual You must FTP the package to the server on which you are opening the browser to connect to the Chassis Viewer The Chassis Viewer would then allow you to move the file from the server to the switch and enable its use e You must place the switch chassis management code on the Fabric Management Server e If you have multiple primary Fabric Management Servers that have different switches listed in their etc sysconfig iba chassis files you can issue the iba_chassis_admin command from xCAT MS by using xdsh to all of the primary Fabric Management Servers simultaneo
303. g and Event Management for xCAT on Linux After finishing the event management setup proceed to step Remote Syslogging and Event Management for xCAT on AIX You point the syslogd to one or two files into which to place the remote syslogs The file is syslog fabric notices which contains log entries that are of a severity of NOTICE or higher and are from switches and FM servers These entries might indicate a problem with the fabric as such this would be the source of xCAT monitoring for fabric events The other file is syslog fabric info which contains log entries that are of a severity of INFO or higher This provides a consolidated log that is not normally monitored but can be important for in depth diagnosis Note It is assumed that you are using syslogd on the xCAT MS If you are using another syslog application like syslog ng you must set up things differently but these instructions can be useful in understanding how to set up the syslog configuration a Log on to the xCAT MS running the AIX operating system as the root user b Edit the etc syslog conf file to direct the syslogs to a file to be monitored by xCAT event management The basic format of the line is facility min priority destination If you are using syslog ng you must adjust the format to accomplish the same type of function Add the following lines so that local6 facilities used by Subnet Manager and the switch with log entry priorities severiti
304. g logSyslogConfig on the switch command line Check that the following information is correct e xCAT MS is the host IP address e The port is 514 or other than you have chosen to use e The facility is 22 e The mode is 1 7 If the problem persists then try restarting the syslogd on the xCAT MS and also resetting the source s logging a oap Log on to the xCAT MS For AIX hosts run refresh s syslogd For Linux hosts run etc init d syslog restart If the source is the Fabric Management Server use etc init d syslog restart If the source is a switch reboot the switch by using the instructions in the Switch Users Guide 8 If the problem has not been fixed call your next level of support Event not in log on fabric management server Use this procedure if an expected log entry is not in the log on the fabric management server If the expected log entry is not in the log for the fabric management server var log messages perform the following steps High performance computing clusters using InfiniBand hardware 231 Note This procedure assumes that you are using syslogd for syslogging If you are using another syslog application like syslog ng then you must alter this procedure for that to account However the underlying technique for debugging remains the same 1 Log on to the fabric management server 2 Open the var log messages file and look for the expected log entry 3 If the log entry is in the var
305. g your InfiniBand network capabilities to an existing cluster then you might approach cabling the InfiniBand differently than with a new cluster flow The flow for cabling the InfiniBand network is based on a new cluster installation but it indicates where there are variances for expansion scenarios If it is a new installation skip this section The following table outlines how the new cluster installation is affected or altered by expansion scenarios Table 74 Effects of expanding an existing cluster Scenario Effects Adding InfiniBand hardware to an existing cluster Perform this task as if it were a new cluster installation switches and host channel adapters HCAs All InfiniBand hardware is new to the cluster Adding new servers to an existing InfiniBand network Perform this task as if it were a new cluster installation for all new servers and HCAs added to the existing cluster Adding HCAs to an existing InfiniBand network Perform this task as if it were a new cluster installation for all new HCAs added to the existing cluster Adding a subnet to an existing InfiniBand network Perform this task as if it were a new cluster installation for all new switches added to the existing cluster Adding servers and a subnet to an existing InfiniBand Perform this task as if it were a new cluster installation network for all new servers and HCAs and switches added to the existing cluster InfiniBand network ca
306. gement or service subsystem Adding a subnet to an existing InfiniBand network Cable to InfiniBand switch service subsystem Ethernet ports Might require additional service subsystem Ethernet switches or routers to accommodate new InfiniBand switches Might require additional Fabric Management Servers which would affect xCAT event monitoring and remote command access of the additional Fabric Management Servers Add remote syslog capability from new Fabric Management Server and switches to xCAT Add remote execution capability from xCAT to new Fabric Management Server and switches High performance computing clusters using InfiniBand hardware 101 Table 69 Impact of cluster expansions continued Scenario Effects Adding servers and a subnet to an existing InfiniBand Cable to InfiniBand switches service subsystem network Ethernet ports e Cable to servers service subsystem Ethernet ports e Build operating system update mechanisms for new servers without removable media e Might require additional HMCs to accommodate the new servers If you are using Cluster Ready Hardware server or xCAT MS you must unconfigure the current DHCP services on the existing HMC and reconfigure using DHCP on the xCAT MS or other DHCP server e Might require additional service subsystem Ethernet switches or routers to accommodate new InfiniBand switches and servers e Might require additional Fabric Management Se
307. get a quick history of health checks and their success e A set of iba_mon conf files which include one file for every hour since the last clear was done up to 24 hours High performance computing clusters using InfiniBand hardware 275 e A configuration script that is called by the other scripts to set up common variables One key thing to remember is that these sets of scripts also must be run from cron Therefore full path information is important This set of scripts does not address how to deal with more accurate error counter thresholds for individual links that have had their error counters cleared at a different time from the other links This might happen after power cycling a CEC or reseating a cable because of a service action To account for such situations more guidance is given in Improved healthcheck on page 279 Configuration script This configuration script makes it easier to set up common variables for any special scripts that are written for health checks This script is included in the other scripts bin bash Name of script config fill in a full path to a file that clearerrors uses to track when errors have been cleared This will also be used by the healthcheck script CLEARFILE full path to a file Fill in the pattern that matches all of the switches IB Node Descriptions also known as switch names swpat matching pattern for switch IB node description CONFIGFILES is
308. get further details The Planning Overview ends here Required level of support firmware and devices Use this information to find the minimum requirements necessary to support InfiniBand network clustering The following tables list the minimum requirements necessary to support InfiniBand network clustering Note For the most recent updates to this information see the Facts and features report website http www ibm com servers eserver clusters hardware factsfeatures html Table 26 lists the model or feature that must support the given device Table 26 Verified and approved hardware associated with a POWER6 processor based IBM System p or IBM Power Systems server cluster with an InfiniBand network Device Model or feature Servers POWER6 e IBM Power 520 Express 8203 E4A 4U rack mounted server e IBM Power 550 Express 8204 E8A 4U rack mounted server e IBM Power 575 9125 F2A e IBM 8236 System p 755 4U rack mount servers 8236 E4A Switches IBM models QLogic models e QLogic 9024CU Managed 24 port DDR InfiniBand Switch e QLogic 9040 48 port DDR InfiniBand Switch e QLogic 9120 144 port DDR InfiniBand Switch e QLogic 9240 288 port DDR InfiniBand Switch e There is no IBM equivalent to the QLogic 9080 Host channel adapters The feature code is dependent on the server you have Order one or more InfiniBand GX HCAs dual port HCA for each server that requires connectivity to InfiniBand network
309. gging operation using step L4 MA Set up Service Focal Point monitoring on the xCAT MS and the HMCs See the xCAT documentation for instructions on Service Focal Point Monitoring 1 2 3 4 5 Warning Enabled 6 7 8 9 Note Service Focal Point Monitoring is useful when there is more than one HMC in a cluster L5 M4 Verify the remote syslogging and event management path from the fabric management server through to the xCAT MS tmp systemEvents file a Do not proceed with this step until you have setup the xCAT MS for remote logging and event management in step 1 on page 112 and you have set up the fabric management server to remotely log to the xCAT MS in step 2 on page 117 Logon to the fabric management server c Create a Notice level log and an INFO level log Replace XXX with your initials logger p local6 notice XXX This is a NOTICE test from the Fabric Management Server logger p local6 info XXX This is an INFO test from the Fabric Management Server d Logon to the xCAT MS to see if the log made it through It might take a minute or two before the event management sensor senses the log entry file var log xcat syslog fabric notices on the xCAT MS e Check the tmp systemEvents file and verify that only the Notice entry was logged in it The INFO entry might not have made it into the syslog fabric notices file and therefore might not have been picked up by the sensor If you have waited as much a
310. gh to the last server in the frame 2 12 1 C65 T1 1 L2 C12 2 12 1 C65 T3 2 L2 C12 2 12 2 C66 T1 3 L2 C12 2 12 2 C66 T3 4 L2 C12 Continue through to the last frame 10 1 1 C65 Tl 1 L10 C1 10 1 1 C65 T3 2 L10 C1 10 1 2 C66 T1 3 L10 C1 10 1 2 C66 T3 4 L10 C1 10 2 1 C65 T1 1 L10 C2 10 2 1 C65 T3 2 L10 C2 10 2 2 C66 Tl 3 L10 C2 10 2 2 C66 T3 4 L10 C2 Continue through to the last server in the frame 10 12 1 C65 Tl 1 L10 C12 10 12 1 C65 T3 2 L10 C12 10 12 2 C66 T1 3 L10 C12 10 12 2 C66 T3 4 L10 C12 Fabric management server 1 1 Port 1 1 L11 Cl Fabric management server 1 1 Port 2 2 L11 Cl Fabric management server 1 2 Port 1 3 L11 C1 Fabric management server 1 2 Port 2 4 L11 C1 Fabric management server 2 1 Port 1 1 L12 C1 Fabric management server 2 1 Port 2 2 L12 C1 Fabric management server 2 2 Port 1 3 L12 C1 Fabric management server 2 2 Port 2 4 L12 C1 Connector terminology gt LxCx Leaf Connector 7 There are backup fabric management server in this example For maximum availability the backup is connected to a different leaf from the primary 40 Power Systems High performance clustering The following is an example of 140 9125 F2As in 10 frames connected to eight subnets This requires 14 servers in a frame and therefore a slightly different mapping of leaf to server is used instead of frame to leaf as in the previous examples You can calculate connections as shown in the following exa
311. ght be performed by either the customer or a non IBM vendor When the IBM service representative leaves the site it is possible that the procedure for InfiniBand network verification might identify a faulty link In this case the IBM service representative might receive a service call to isolate and repair a faulty HCA or cable Installing and configuring the cluster server hardware ends here Installing the operating system and configuring the cluster servers This procedure is for the customer installing the operating system and configuring the cluster servers Operating system installation and configuring the cluster servers encompasses major tasks S6 and S7 and the server part of M4 which are illustrated in Figure 11 on page 71 You would be installing operating systems and configuring the cluster servers Note If possible do not begin this procedure until Eben on page Ol completed This helps avoid the situation where installation personnel might be waiting on site for key parts of this procedure to be completed Depending on the arrival of units on site this is not awar paica Review Order of inatallation on page 70 and Figure Ian page 7ilts identify the merge points where a step in a major task or procedure that is being performed by one person is dependent of the completion of steps in another major task or procedure that is being performed by another person Also if possible do not begin this procedure until Install
312. gic for QLogic Switches IBSwitch QLogic Node names addresses of switches egfllsw01 egf11sw02 egf11sw03 egf11sw04 Node groups for switches AllIBSwitches Fabric management server Remote Command Setup nodetype FabricMS Node names or addresses of Fabric MS egf11fm01 egf11fm02 Node groups for Fabric MS AIIFMS MasterFMS BackupFMS Primary Fabric MS for data collection egf11fm01 The following xCAT Event Monitoring worksheet is used to document multiple Sensor and Response mechanisms 90 Power Systems High performance clustering Table 61 xCAT event monitoring worksheet xCAT Event Monitoring worksheet syslog or syslog ng or other Accept logs from IP address 0 0 0 0 yes default Fabric management server logging TCP or UDP port 514 default Fabric management server IP addresses Switch logging is UDP protocol port 514 default Switch chassis IP address Notice Info Sensor Condition Response File or named pipe File or named pipe Notes The following worksheet shows an example of a completed xCAT event monitoring worksheet Table 62 Example Completed xCAT event monitoring worksheet xCAT Event Monitoring worksheet syslog or syslog ng or other syslog Accept logs from IP address 0 0 0 0 Yes yes default Fabric management server logging TCP or UDP _ UDP port _514__ 514 default
313. gical HCA Use this procedure if the logical HCA in an HCA is known and the attached switch and physical HCA port must be determined This applies to IBM GX HCAs For more information about the architecture of IBM GX HCAs and logical switches within them see IBM GX or GX host channel adapter on page 7 Note This procedure has some steps that are specific to operating system type AIX or Linux This must do with querying the HCA device from the operating system For AIX the adapter is called ibaX where X is a number 0 through 3 For Linux the adapter is call ehcaX where X is a number 0 through 3 A log entry like the following example is reported with the Logical HCA being reported Here the Logical HCA information is underlined and in bold Note the Node type in italics it is an HCA Apr 15 09 25 23 c924hsm ppd pok ibm com local6 notice c924hsm iview_sm 26012 c924 hsm MSG NOTICE SM c924hsm port 1 COND 4 Disappearance from fabric NODE IBM G2 Log ical HCA port T 0x00025500103a7200 DETAIL Node type hca The following procedure would find the physical switch connection and node and HCA port and location The preceding log would be used as an example and example results from any queries would also be provided 1 Get the Logical HCA GUID and note which logical HCA it is in the HCA also note the port gt GUID 0x00025500103a7200 port 1 2 Log on to the fabric management server 3 Find the Logical HCAGUID and p
314. gths Vendor To connect between PTM and switch Inter switch 4x DDR copper CX4 CX4 Multiple lengths Vendor For use between switches Inter switch 4x DDR optical CX4 CX4 Multiple lengths Vendor For use between switches Feature codes are for the IBM system type 7874 switch 7874 IBM Feature Codes 3301 3302 3300 Fabric 4x DDR copper CX4 CX4 Multiple lengths Vendor For connecting the management 4x DDR optical CX4 CX4 Multiple lengths Vendor fabric management server server to subnet to support host based Subnet Manager and Fast Fabric Toolset Subnet Manager The Subnet Manager is defined by the InfiniBand standard specification It is used to configure and manage the communication fabric so that it can pass data It does in band management over the same links as the data The Subnet Manager is defined by the standard specification Management functions are performed inband over the same links as the data Use a host based Subnet Manager HSM which runs a Fabric Management Server The host based Subnet Manager scales better than the embedded Subnet Manager ESM and IBM has verified and approved the HSM for use in High Performance Computing HPC clusters For more information about Subnet Managers see the InfiniBand standard specification or vendor documentation High performance computing clusters using InfiniBand hardware 11 Related concepts Management subsystem function overview
315. gured before starting to cable the service VLAN This allows dynamic host configuration protocol DHCP management of the IP addressing on the service VLAN Otherwise the addressing might be compromised This is not as critical for the fabric management server However the fabric management server must be operational before the switches are started on the network 2 You must power on the InfiniBand switches and configure their IP addresses before connecting them to the service VLAN If this is not done then you must power them on individually and change their addresses by logging into each of them by using their default address 3 If you have 12x host channel adapters HCAs connected to 4x switches you must power on switches and cable them to their ports And configure the 12x groupings before attaching cables to HCAs in servers that have been powered on to Standby mode or beyond This allows auto negotiation to 12x by the HMCs to occur smoothly When powering on the switches it is not guaranteed that the ports become operational in an order that makes the link appear as 12x to the HCA Therefore you must be sure that the switch is properly cabled configured and ready to negotiate to 12x before starting the adapters 4 To fully verify the InfiniBand network the servers must be fully installed in order to send data and run tools required to verify the network The servers must be powered on to Standby mode for topology verification a With
316. h We Ge OR A OR ae we OO Recovering to 4K maximum transfer units in the AIX 2 6 ww ee 238 Recovering to 4K maximum transfer units in the Linux 1 ww ee eee ee ee DAT Recovering the original master SM ww we ee 248 Re establishing Health Check baseline 2 2 1 ew ee 244 Verifying link FRU replacements ee Oe ee Be a te ee ee a aA Verifying repairs and configuration changes og 8 ee 9 OB ee Soe eee SO ee AS Restarting the cluster RU 2 ake Bek te oe a OR eR Oe ce ae 246 Restarting or powering off an IBM system poa Sb 8 Be SB Ok 4 Boe Se ee ee www 5 2AZ Counting devices s s sos oe a RR ER RRR we ee ee ee ee a e 248 Counting switches o lt e o 2 co s oa kom omoi Re a oa o bo s Roa s k s oe 248 Counting logical switches lt s 1 6 a e e ros d e eoe a ee a y o 249 Counting host channel adapters 0a a a a DAD Counting end ports s s s s s s sos d p i a o o Bdk orog S a odos E a ai p249 Counting ports a apod a hs a ee BA ae ee a a et ee ee ee Counting Subnet Managers Soe ow ee 6 Pe amp 2a amp bo 4 2 aw we oo ee e a Soa a a 250 Counting devices example eR ep es LO eee oe oe me oe ae we ae 2 250 Handling emergency power off situati ns Bee ee A Ok em oa Boo Se a ee a w 3 25h Monitoring and checking for fabric problems 2 2 2 2 we ee ee 252 Retraining 9125 F2A Tinks y ak Yt a ee ee ea we OP BD How to retrain 9125 F2A links 2 ke 252 When to retrain 9125 F2
317. hange to high medium or low allocation to it You can never allocate more than 100 of the HCA across all active logical partitions For example four active logical partitions can be set to medium and two active logical partitions can be set to High 4x1 8 2x1 4 1 If the requested resource allocation for an LPAR exceeds the available resource for an HCA the LPAR fails to activate So in the preceding example with six active LPARs if one more LPAR tried to activate and use the HCA the LPAR would fail to activate because the HCA is already 100 allocated Table 7 Allocation of HCA resources to a logical partition Value Resulting resource allocation or adapter Dedicated All of the adapter resources are dedicated to the LPAR This value is the default for single LPARs which is the supported HPC Cluster configuration If you have multiple active LPARs you cannot simultaneously dedicate the HCA to more than one active LPAR High One quarter of the maximum adapter resources Medium One eighth of the maximum adapter resources Low One sixteenth of maximum adapter resources Logical switch naming convention The IBM GX host channel adapters HCAs have a logical switch naming convention based on the server type and the HCA type The following table shows the logical switch naming convention Table 8 Logical switch naming convention Server HCA chip base Logical switch name POWERS
318. hat you have up to date information and the latest support levels Planning checklist ends here Planning worksheets Planning worksheets can be used to plan your cluster environment Tip Keep the planning worksheets in a location that is accessible to the system administrators and service representatives for the installation and for future reference during maintenance upgrade or repair actions All the worksheets and checklists are available in the respective topics 76 Power Systems High performance clustering Using the planning worksheets The planning worksheets do not cover every situation you might encounter especially the number of instances of slots in a frame servers in a frame or I O slots in a server However they can provide enough information upon which you can build a custom worksheet for your application In some cases you might find it useful to create the worksheets in a spreadsheet application so that you can fill out repetitive information Otherwise you can devise a method to indicate repetitive information in a formula on printed worksheets So that you do not have to complete large numbers of worksheets for a large cluster that is likely to have a definite pattern in frame server and switch configuration The planning worksheets can be completed in the following order You must refer some of the worksheets as you generate the new information Cluster summary worksheet 2 Fra
319. hat arise are caused by the cable movement and not by a training issue See Clearing error counters on page 274 c Go to step 4 If you cannot swap the cable you cannot truly isolate to the failing FRU so you must replace FRUs according to order of probability of failure balanced with ease of replacement a Replace the cable b Clear errors and retrain if necessary If the problem persists continue to the next step 264 Power Systems High performance clustering c For links to HCAs replace the HCA impacts fewer CECs For spine to leaf links it is easier to replace the spine first This affects performance on all nodes but replacing a leaf might stop communication altogether on nodes connected to that leaf Clear errors and retrain if necessary If the problem persists continue to the next step Replace the switch leaf If the problem is on a switch to switch link replace the leaf opposite to the side that is reporting the problem This is because it is more likely for transmitters to fail than receivers f Clear errors and retrain if necessary If the problem persists continue to the next step 5 Reset the counters on the link For more information see Clearing error counters on page 274 6 Watch for problems and retrain as necessary Note Typically in the absence of any other indicator and an inability to do cable or part swapping and reseating is not acceptable You must replace the FRU associated
320. he var opt iba analysis baseline directory on the fabric management server Otherwise changes in configuration cannot be sensed If there is no baseline health check for comparison you must perform the same type of configuration checks that were done during installation see Installing 138 For the host based Subnet Managers also use 214 Power Systems High performance clustering You must check that the following configuration parameters match the installation plan A reference or setting for IBM System p and IBM Power Systems HPC Clusters is provided for each parameter that you can check Table 93 Health check parameters Parameter Reference GID prefix The GID prefix must be different for each subnet For details see Planning for global identifier prefixes on LMC Must be 2 for IBM system p HPC Clusters MTU Planning maximum transfer unit MTU on page 51 This is the fabric MTU and not the MTU in the stack which can be a much greater number Cabling plan Vendor s Switch Users Guide and Planning and Installation Guide Balanced Topology It is best to ensure that you have distributed the HCA ports from the servers in a consistent manner across subnets For example all corresponding ports on HCAs within servers would connect to the same subnet like all HCA 1 port 1 s should connect to subnet 1 and all HCA 1 port 2 s should connect to port 2 Full bandwidth topology Did you choos
321. he adapter hardware into your system unit e Configuring the logical partition LPAR profiles with a new globally unique identifier GUID for the new adapter in your switch environment e Verifying that the HCA is recognized by the operating system Notes 1 If you are considering deferred maintenance of a GX HCA review Deferring replacement of a failing host channel adapter on page 149 2 If you replace an HCA it is possible that the new HCA can be defective in a way that prevents the logical partition from activating In this case a notification is displayed on the controlling Hardware Management Console HMC If this occurs decide if you want to replace the new defective HCA immediately or if you want to defer maintenance and continue activating the logical partition To defer maintenance and continue activating the logical partition you must unassign the HCA in all the logical partition profiles that contain the HCA following the procedure found in fkecovering Hemanl To install or replace an InfiniBand GX HCA complete the following steps 1 Obtain the installation instructions from the Worldwide Customized Installation Instructions website and use those with these instructions 2 If you are performing an adapter replacement first record information about the adapter being replaced Important information includes the logical partitions in which it is used the GUID index used in each logical partition and the cap
322. he diff output between the latest and baseline configuration to see if a port swap has occurred High performance computing clusters using InfiniBand hardware 221 In general when HCA ports are swapped they are swapped on the same HCA or perhaps on HCAs within the same IBM server Any more sophisticated swapping would likely be up for debate with respect to if it is a switch port swap or an HCA port swap or just a complete reconfiguration You must reference the Fast Fabric Toolset Users Guide for details on health checking Note This assumes that a baseline health check has been taken previously see Health checking on page 157 1 Run all_analysis 2 Go to var opt iba analysis latest default output directory structure 3 Look for fabric X Y links diff or fabric X Y links changes where X is the HCA and Y is the HCA port on the fabric management server that is attached to the subnet This helps you map directly to the subnet with the potential issue Presumably this is not the same HCA which you are trying to diagnose 4 If there is no fabric X Y links diff or fabric X Y links changes file there is no port swap Exit this procedure 5 If there is a fabric X Y links diff or fabric X Y links changes there might be a port swap Continue to the next step 6 Use the procedure in Interpreting health check chang age 167 If there i is no changes file and there is a diff file use the procedure i i procedures in the
323. he first 7 bytes of the HCA nodeGUID grep 7 bytes of nodeGUID var log messages b Search for the switch link grep switch IB Node Description var log messages egrep pP ort portnumber egrep Ll eaf leafnumber Cc Look for current errors by using sbin all_analysis or if created for the local site a health check control script like the one found in Example Health Check Scripts 372 After running the command look for var opt iba analysis latest fabric errors and for any errors found associated with the switch link recorded previously run the procedure in Interpreting error counters on page 255 4 Look for a problem with the switch chassis reported around the time of the operating system event a Log on to the xCAT MS b Look for a switch chassis remote event log entry by using the switch IBNodeDescription recorded previously If a log entry is found around the time of the operating system event use the procedure found in Interpreting switch vendor log formats on page 207 For xCAT grep switch IBNodeDescription tmp systemEvents If the problem is remote from the server it is much more difficult to link to the interface or HCA reported by the operating system Perform the following procedure i Look for any fabric error counters that exceed threshold in var opt iba analysis latest fabric errors or var opt iba analysis timestamp where timestamp is a timestamp after the timestamp for the
324. he service VLAN Installing the fabric management server Use this procedure to install the fabric management server The installation of the fabric management server is performed by the customer High performance computing clusters using InfiniBand hardware 105 The fabric management server provides the following two functions that are installed and configured in this procedure e Host based Fabric Manager function e Fast Fabric Toolset Note This procedure is written from the perspective of installing a single fabric management server Using the instructions in the Fast Fabric Toolset Users Guide you can use the ftpall command to copy common configuration files from the first Fabric Management Server to other fabric management servers Care should be taken with the Subnet Manager configuration files since there are certain parameters like the global identifier GID prefix that are not common between all fabric management servers Before proceeding with this procedure obtain the following documentation e IBM System x 3550 or 3650 Installation Guide e Linux distribution documentation e Fabric Manager Users Guide e QLogic InfiniServ host stack documentation e Fast Fabric Toolset Users Guide There is a point in this procedure that cannot be passed until the QLogic switches are installed powered on and configured and the cluster virtual local area network VLAN Ethernet devices are configured and powered on You must coordinate w
325. he xCAT MS is running AIX it is using syslog not syslog ng and the following line must be in etc syslog conf Otherwise after finishing this step go to step all local6 notice and above priorities go to the following file local6 notice var log xcat syslog fabric notices 5 If the entries are not there perform the procedure in Reconfiguring xCAT event management on If this fixes the problem end this procedure If the entries are there go to the next step Look at the log on the device that is logging the problem and make sure that it is there a For the fabric management server look at the var log messages file b For switches log on to the switch and look at the log If necessary use the switch command line help or the switch Users Guide for how to do this If the setup on the xCAT MS has proven to be good and the log entry is in the source log check to see that the source is set up for remote logging a For a fabric management server running syslog not pide check etc syslog syslog conf for the following line If etc syslog conf does not exist go to step 7b Otherwise after you finish this step go to step 8 on page 230 local6 put xCAT MS IPp address Note Restart the syslogd by using etc init d syslog restart b For a fabric management server running syslog ng check etc syslog ng syslog ng conf for the following lines Assure that the destination definition uses the same protocol and port as is
326. heck has been run use the following command If it has not been run use step grep A 1 Og GUID var opt iba analysis baseline fabric links b If the baseline health check has not been run you must query the live fabric by using the following command iba_report o links grep A 1 Og GUID Example results gt grep A 1 Og 0x00025500103a7202 var opt iba analysis baseline fabric links 20g 0x00025500103a7202 1 SW IBM G2 Logical Switch 1 lt gt 0x00066a00d90003d3 3 SW SilverStorm 9024 DDR GUID 0x00066a00d90003d3 4 The physical switch port is in the last line of the results of the query Get the name and port for the switch The name must be given such that it indicates where the switch is physically lt gt switch GUID port SW switch name IBnodeDescription Example results Port 3 on switch SilverStorm 9024 DDR GUID 0x00066a00d90003d3 This switch has not been renamed and is using the default naming convention which includes the switch model and GUID 5 Log on to the xCAT Management Server 6 Find the server and HCA port location Note If you have a map_of HCA GUIDs to server locations use that to find in which server the HCA is located and skip step 6a a Convert the logical switch GUID to Operating system format which drops the Ox and uses a dot or colon to delimit bytes e For AIX a dot delimits each byte 0x00025500103a7202 becomes 00 02 55 00 10 3a 72 02 e For Linux a colon delimits 2
327. his integration to work you must set up remote logging and xCAT event management with the Fabric Management Server and the switches as described in The figure indicates where remote logging and xCAT Sensor Condition Response must be enabled for the flow to work There are three standard response outputs shipped with xCAT Refer the xCAT Monitoring How to documentation for more details on event management For this flow xCAT uses the IBSwitchLogSensor and the Local IBSwitchLog condition and one or more of the following responses Email root anytime Log event anytime and LogEventToxCATDatabase High performance computing clusters using InfiniBand hardware 23 Switch X Subnet Manager p Switch log Chassis Manager Remote Logging Enabled Fabric Management Server Subnet Manager Syslog var log messages xCAT Management Server W_R _ ig tmp systemEvents p var log xcat syslog fabric info INFO or higher syslogd NOTICE or higher p var log xcat syslog fabric notices Sensor Condition Response enabled xCAT Event Management 4 mail root p xCAT eventlog table Figure 7 Vendor log flow to xCAT event management Supported components in an HPC cluster High performance computing HPC clusters are implemented using components that are approved and supported by IBM For details see Cluster information resources
328. hours PortRcvSwitchRelayErrors 100 known Anafa2 issue incorrectly increments PortXmitDiscards 10 10 per day in diffh hours PortXmitConstraintErrors 1 10 per day in diffh hours PortRcvConstraintErrors 1 10 per day in diffh hours LocalLinkIntegrityErrors 3 3 per day in diffh hours ExcessiveBufferOverrunErrors 3 3 per day in diffh hours VL15Dropped 0 Note Errors that are based on individual symbol or packet errors have thresholds based on a bit error rate between 10 and 10 Other errors that are counted because a link is considered to be noisy have a threshold of 3 in a 24 hour period Errors that must not occur at all and must be reported immediately have a threshold set to 1 Errors that must not be reported are either commented out or have a threshold set to 0 which turns of reporting of those errors Typically the threshold that you would choose for a particular error counter at a given time would be calculated as follows Where the preferred threshold for 24 hours and the preferred minimum threshold for any given error counter is documented in Error counter details on page 265 And in the values preferred for an iba_mon conf 24 file which would be used for 24 hours after the last error counter clear 160 Power Systems High performance clustering Threshold Threshold for 24 hours Number hours since last clear 24 However the threshold used must never be lower than the minimum threshold for the error
329. ht become unstable if you pull out more than one drawer at a time For fixed drawers This drawer is a fixed drawer and must not be moved for servicing unless specified by the manufacturer Attempting to move the drawer partially or completely out of the rack might cause the rack to become unstable or cause the drawer to fall out of the rack R001 Safety notices xi CAUTION Removing components from the upper positions in the rack cabinet improves rack stability during relocation Follow these general guidelines whenever you relocate a populated rack cabinet within a room or building e Reduce the weight of the rack cabinet by removing equipment starting at the top of the rack cabinet When possible restore the rack cabinet to the configuration of the rack cabinet as you received it If this configuration is not known you must observe the following precautions Remove all devices in the 32U position and above Ensure that the heaviest devices are installed in the bottom of the rack cabinet Ensure that there are no empty U levels between devices installed in the rack cabinet below the 32U level e If the rack cabinet you are relocating is part of a suite of rack cabinets detach the rack cabinet from the suite e Inspect the route that you plan to take to eliminate potential hazards e Verify that the route that you choose can support the weight of the loaded rack cabinet Refer to the documentation that comes with
330. ht have four logical partitions The first logical partition on each server might use a GUID index of 1 The second would use a GUID index of 2 The third would use a GUID index of 3 and the fourth using a GUID index of 4 The Capability setting is used to indicate the level of sharing that can be done The levels of sharing are as follows 1 Low 2 Medium 3 High 4 Dedicated While the GID prefix for a port is not something that you explicitly set it is important to understand the subnet to which a port attaches This GID prefix is determined by the switch to which the HCA port is connected The GID prefix is configured for the switch For more information see Planning for global identifier prefixes on page 52 For more information about partition profiles see Partition profile The planned configuration settings can be recorded in a Server planning worksheet on page 81 which is used to record HCA configuration information Note The 9125 F2A servers with heavy I O system boards might have an extra InfiniBand device defined The defined device is always iba3 Delete iba3 from the configuration Planning an IBM GX HCA configuration ends here IP subnet addressing restriction with RSCT High performance computing clusters using InfiniBand hardware 53 When using RSCT there are restrictions to how you can configure Internet Protocol IP subnet addressing in a server attached to an InfiniBand network Note
331. ht see occasionally during link training after one of the following actions or events e CEC power cycle e CEC checkstop e A cable being pulled or reseated e A switch being power cycled or rebooted e A leaf being reseated e An event in SFP that has the HCA in the FRU list e A power event that could have brought down the CEC e A power event in the switch e A port on the link is disabled If it appears that the link did not experience one of the outside influences listed the preceding list typical link isolation techniques must be used For more information see Diagnose a link problem based on error counters on page 264 Performance impact Because a link integrity error is associated a link that is taking many errors there would be a performance impact for any communication going over the link experiencing these errors Threshold minimum actionable 2 Threshold maximum in 24 hours 3 ExcessiveBufferOverrunErrors Typically ExcessiveBufferOverrunErrors indicate a manual override of the SM config or poor link quality resulting in mismatched credit counts between transmitter and receiver Configuration changes affecting the buffers are MTU changes or VL buffer changes For switches use ismChassisSetMtu to query that the MTU and VL buffers are set to the appropriate values Because this command is chassis wide it is likely that such a change would be noticed chassis wide Alternatively if you have a good health check b
332. iate LPARs to ensure that at any given time at least one active LPAR has the service authority policy enabled 128 Power Systems High performance clustering 2 S7 After the servers are connected to the cluster VLAN install and update the operating systems If servers do not have removable media you must use an AIX network installation management NIM server or Linux distribution server to load and update the operating systems Note In order to use ml0 with AIX 5 3 you must install the devices common IBM sni ml file set To verify the existence of the file set use 1s pp h devices common 1BM sni ml If you are installing Linux on your servers ensure that the appropriate rpms are ready to be installed ER qpms required for lulinianil oh pagel 165 For xC AT cee inevollowine information Quite often the xCAT management server is used as an AIX NIM server or Linux distribution server If so be sure to refer the documentation for xCAT and the procedure in Installing operating system installation servers on page 105 When using xCAT In addition to consulting xCAT documentation see references in Cluster software and firmware information resources on page 5 including the xCAT InfiniBand setup documentation xCAT2IBsupport pdf perform the following procedure Note This step is meant to prepare the operating system and the appropriate rpms for InfiniBand Step 4 completes the operating system installation of the InfiniBand se
333. ical Publications you are invited to use the Ordering Form also provided at the end of this book Trademarks and Acknowledgements We acknowledge the right of proprietors of trademarks mentioned in this book The information in this document is subject to change without notice Bull will not be liable for errors contained herein or for incidental or consequential damages in connection with the use of this material Contents Safety notices High performance computing clusters using InfiniBand hardware Clustering systems by using InfiniBand hardware Cluster information resources Fabric communications IBM GX or GX host hannel adapter Logical switch naming convention Host channel adapter statistics counter Vendor and IBM switches QLogic switches oes byt IBM Cables Subnet Manager POWER Hypervisor Device drivers IBM host stack ae Management subsystem Function overview Management subsystem integration tecominendanons Management subsystem high level functions Management subsystem overview xCAT Fabric manager Hardware Management Console Switch chassis viewer Switch command line interface Server Operating system Network Time Protocol Fast Fabric Toolset Flexible Service processor Fabric viewer Email notifications 2 Management subsystem networks Vendor log flow to xCAT event management Supported components in an HPC cluster Cluster planning Cluster planning over
334. iceable events from all of the Fabric Manager and switch logs in the cluster c Look for an internal error on an HCA in SFP This might bring a link down d Look for a server checkstop SFP This might bring a link down e Map all internal errors to associated links by completing the following steps 186 Power Systems High performance clustering 1 If there is a switch internal error determine the association based on whether the error is isolated to a particular port leaf board or the spine 2 If there is an adapter error or server checkstop determine the switch links to which they are associated f If there are no HCA or server events reported in SFP and you know that there was nothing restarted that would have caused the event and the link errors span more than one HCA then the problem is likely to be in the switch g If neighboring links on the same HCA are failing it can be the HCA that is faulty Links on IBM HCAs are in pairs If the HCA card has four links then T1 and T2 are a pair and T3 and T4 are a pair 3 If there are link problems isolation must be done by using cable swapping techniques to see how errors follow cables This might affect another link that is good If you swap cables you can see errors reported against the links on which you are operating 4 After making repairs complete the procedure in Verifying link FRU replacements on page 244 Related concepts Hardware Management Consol
335. icetype IBSwitch Qlogic as outlined in Remotely accessing QLogic switches from the xCAT MS on page 175 1 Stop the Subnet Manager by using the smControl stop command 2 Set up the broadcast or multicast group MTU by using the smDefBcGroup Oxffff 5 command 3 Enable the broadcast or multicast group by using the smDefBcGroup enable command 4 Start the Subnet Manager by using the smControl start 2 If your server is running the Linux operating system you must do the following to properly set up for 4K MTU To determine if you must use 4K MTU see Planning maximum transfer unit MTU For host based Subnet Managers see Installing the fabric management server on page 105 For embedded Subnet Managers see Installing and configuring vendor or IBM InfiniBand switches on page 137 b Set up the etc sysconfig network ifcfg ibX configuration files for each ib interface such that the MTU 4096 A server with two ib interfaces ib0 and ib1 can have files similar to the following example root on c697f1sq01 etc sysconfig network gt cat ifcfg ib0 BOOTPROTO static BROADCAST 10 0 1 255 IPADDR 10 0 1 1 MTU 4096 NETMASK 255 255 255 0 NETWORK 10 0 1 0 REMOTE_IPADDR STARTMODE onboot root on c697f1sq01 etc sysconfig network gt cat ifcfg ibl BOOTPROTO static BROADCAST 10 0 2 255 IPADDR 10 0 2 1 MTU 4096 NETMASK 255 255 255 0 NETWORK 10 0 2 0
336. ich can result in unexpected problems or inaccuracies in the related links and comps files If possible first correct the problems reported in this file After being corrected rerun the health checks to look for further errors latest fabric 0 0 links stderr If this file is not empty it can indicate problems with iba_report which can result in unexpected problems or inaccuracies in the related links file If possible first correct the problems reported in this file After being corrected rerun the health checks to look for further errors latest fabric 0 0 links changes diff This file indicates that the links between components in the fabric have changed have been removed or added or that components in the fabric have disappeared Review the file and as necessary compare the latest fabric 0 0 links file with baseline fabric 0 0 1inks If components have disappeared review of the latest fabric 0 0 links changes diff file might be easier for such components As necessary correct missing nodes and links After being corrected rerun the health checks to look for further errors If the change was expected and is permanent rerun a baseline when all other health check errors have been corrected latest fabric 0 0 comps stderr If this file is not empty it can indicate problems with iba_report which can result in unexpected problems or inaccuracies in the related comps file If possible first correct the problems reported in this file
337. ied the frames in which you plan to place your servers record the information in the Frame and rack planning worksheet on page 79 Server types This information uses the term server type to describe the main function that a server is intended to accomplish High performance computing clusters using InfiniBand hardware 29 Server planning relative to the fabric requires decisions on the following items Table 28 Server Types in an HPC cluster Type Description Typical models Compute Compute servers primarily perform 9125 F2A 8236 E8C computation and the main work of applications Storage Storage servers provide connectivity 8203 E4A 8204 E8A 9125 F2A between the InfiniBand fabric and the 8236 E8C storage devices This connectivity is a key part of the GPFS subsystem in the cluster IO Router IO Router servers provide a bridge 9125 F2A 8236 E8C for moving data between separate networks of servers Login Login servers are used to Any model authenticate users into the cluster In order for Login servers to be part of the GPFS subsystem they must have the same number of connections to the InfiniBand subnets and IP subnets that are used by the GPFS subsystem The typical cluster would have compute servers and login nodes The need for storage servers varies depending on the application the wanted performance and the total size of the cluster Generally HPC clusters with large
338. ies It is suggested that you note the customer name or contracted vendor when planning these activities so that you can better coordinate all the activities of the installers In some cases IBM might be contracted for one or more of these activities e Install switches without an IBM machine type and model e Set up the service VLAN IP and attach switches to the service VLAN e Cable the InfiniBand network when there are not switches with an IBM machine type and model e Verify switch operation through status and LED queries when there are not switches with an IBM machine type and model Installation responsibilities of units and devices Use this information to determine who is responsible for the installation of units and devices Note It is possible that a contracted agreement might alter the basic installation responsibilities for particular devices Table 38 Hardware to install and who is responsible for the installation Hardware to install Who is responsible for the installation Servers Unless otherwise contracted the use of a server in a cluster with an InfiniBand network does not change the normal installation and service responsibilities for it There are some servers that are installed by IBM and others that are installed by the customer See the specific server literature to determine who is responsible for the installation Hardware Management Console The type of servers attached to the HMCs dictate who instal
339. ify the fix by using the procedure in Verifying link FRU replacements on page 244 If the problem is fixed go to step 18 on page 213 3 If the problem is still not fixed call your next level of support If any repairs are made under direction from support go to step 18 on page 213 when they have been made 16 If there are open ports or known good ports on the HCA do the following steps Otherwise go to the next step a Move the cable connector from the failing HCA port to the open or known good HCA port In order to see if the problem has been resolved or it has moved to the new HCA port use the procedure in Verifying link FRU replacements on page 244 If the problem is fixed go to step 18 on page 213 c If the problem was fixed then the failing FRU is the HCA replace the HCA by using the Repair and Verify procedures for the server and HCA After the HCA has been replaced go to step 18 on page 213 d If the problem was not fixed then the failing FRU is the cable or the switch Engage QLogic for repair When the problem is fixed go to step 18 on page 213 17 There are no open or available ports in the fabric or the problem has not been isolated yet Do the following steps a Engage QLogic to replace the cable and verify the fix by using the procedure in Verifying link FRU replacements on page 244 If the problem is fixed go to step 18 on page 213 212 Power Systems High pe
340. ight contain one or more of the following devices CD ROM drive DVD ROM drive DVD RAM drive or laser module which are Class 1 laser products Note the following information e Do not remove the covers Removing the covers of the laser product could result in exposure to hazardous laser radiation There are no serviceable parts inside the device e Use of the controls or adjustments or performance of procedures other than those specified herein might result in hazardous radiation exposure C026 Safety notices Xiii CAUTION Data processing environments can contain equipment transmitting on system links with laser modules that operate at greater than Class 1 power levels For this reason never look into the end of an optical fiber cable or open receptacle C027 CAUTION This product contains a Class 1M laser Do not view directly with optical instruments C028 CAUTION Some laser products contain an embedded Class 3A or Class 3B laser diode Note the following information laser radiation when open Do not stare into the beam do not view directly with optical instruments and avoid direct exposure to the beam C030 CAUTION The battery contains lithium To avoid possible explosion do not burn or charge the battery Do Not e ___ Throw or immerse into water e ___ Heat to more than 100 C 212 F e ___ Repair or disassemble Exchange only with the IBM approved part Recycle or discard the battery as instructed by local
341. ight find these comments to be helpful in understanding the attributes and the file format in more detail but they would make this example difficult to read Finally in order to conserve space most of the attributes that typically remain at default are not included lt xml version 1 0 encoding utf 8 gt lt Config gt lt Common FM configuration applies to all FM instances subnets gt lt Common gt THE APPLICATIONS CONTROLS ARE NOT USED lt Various sets of Applications which may be used in Virtual Fabrics gt lt Applications defined here are available for use in all FM instances gt lt All Applications can be used when per Application VFs not needed gt lt Shared Common config applies to all components SM PM BM and FE gt lt The parameters below can also be set per component if needed gt lt Shared gt Priorities are typically set within the FM instances farther below lt Priority gt 0 lt Priority gt lt 0 to 15 higher wins gt lt ElevatedPriority gt 0 lt ElevatedPriority gt lt 0 to 15 higher wins gt lt Shared gt lt Common SM Subnet Manager attributes gt High performance computing clusters using InfiniBand hardware 59 lt Sm gt lt Start gt 1 lt Start gt lt default SM startup for all instances gt lt l kkKKKKKKKRKKKKEKK Fabric Routing kkkkkkkkkkkkkkkkkkkkkkkkkkkk gt lt Lmc gt 2 lt Lmc gt lt assign 2 lmc LI
342. iguration file etc sysconfig qlogic_fm xml and as needed update the lines defining lt MTU gt to 4096 Update all Subnet Manager instances which must be configured for 4K MTU This might be done in the common SM definition section under lt MulticastGroup gt The following example of a single Subnet Manager instance in the configuration file Do the same for the rate and ensure that it matches what was planned in Planning maximum transfer unit MTU on page 51 where 10g SDR and 20g DDR lt Common SM Subnet Manager attributes gt lt Sm gt lt Multicast gt lt MulticastGroup gt lt MTU gt 4096 lt MTU gt lt Rate gt 20g lt Rate gt lt or 10g lt MulticastGroup gt 238 Power Systems High performance clustering lt Multicast gt lt Sm gt e Start the Subnet Manager by using the following command For IFS 5 etc init d qlogic_fm start If you are running an embedded Subnet Manager complete the following steps Note These instructions are written for recovering a single subnet at a time Log on to the switch command line interface CLI or issue these commands from the fabric management server by using cmdal1 or from the xCAT MS by using_xdsh If you use xdsh use the parameter l admin devicetype IBSwitch Qlogic as outlined in Remotely accessing QLogic switches from the xCAT MS on page 175 a Stop the Subnet Manager by using the following command For IFS 5 etc init d qlogic_fm
343. ination and log entries It uses a pseudo random name that looks similar to fifonfJGQsBw High performance computing clusters using InfiniBand hardware 233 11 12 13 destination fabnotices_fifo pipe var log xcat syslog fabric notices group root perm 0644 log source src filter f_fabnotices destination fabnotices_fifo Ensure that the f_fabnotices filter remains in the etc syslog ng syslog ng conf file by using the following command filter f_fabnotices facility local6 and level notice alert warn err crit and not filter f_iptables Restart syslogd by using the etc init d syslog restart command Set up the ErrorLogSensor again by using the following steps a Copy the old sensor into a new definition file by using the Isrsrc i s Name IBSwitchLogSensor IBM Sensor gt tmp IBSwitchLogSensorDef command Edit the tmp IBSwitchLogSensorDef file c Change the command to opt xcat sbin rmcmon monerrorlog p f_fabnotices f var log xcat syslog fabric notices d After creating and editing the tmp ErrorLogSensorDef file you can remove the sensor by using the following command rmsensor IBSwitchLogSensor Note If the sensor did not exist you can still continue to the next step e Create the ErrorLogSensor and keep the management scope local using the following command CT_MANAGEMENT_SCOPE 0 mkrsrc f tmp IBSwitchLogSensorDef IBM Sensor Note Local management scope
344. indow Click the Server Management partition Expand the server in which the HCA is installed Expand the partitions under the server g ewm Complete the following steps for each partition profile that uses the HCA If you do not know that which partitions use the HCA you must perform the following steps for each partition profile a Select each partition profile that uses the HCA From the menu click Selected gt Properties In the Properties dialog click the HCA tab Using its physical location find the HCA of interest Highlight the HCA of interest and then click the Clear The HCA GUID Index GUID and Capability fields change to Unassigned Then click OK paos Note A failing HCA can be unassigned from the logical partition profile while the logical partition is active hung or inactive If the logical partition is currently active the logical partition must be shut down and then activated for this update to take effect If you are deferring maintenance on an HCA do not reactivate the logical partition By changing the defective HCA to Unassigned in the partition profile you ensure that the next activation is not prevented by a failing HCA This procedure ends here Recovering ibX interfaces There are several levels at which you can recover ibX interfaces ibX are the interfaces to the host channel adapter HCA by using the AIX operating system You can recover a single ibX interface or all of the ibX interfaces by
345. ines PortRcvErrors as covering the following conditions the non IBM GX HCA components in the fabric only increment PortRcvErrors when another error counter does not cover the condition The IBM GX HCA will increment both the PortRcvError and the other counter e Local physical errors ICRC VCRC FCCRC and all physical errors that cause entry into the BAD PACKET or BAD PACKET which include SymbolErrors however the CRC errors are not necessarily covered by SymbolErrors e DISCARD states of the packet receiver state machine which include PortRcvRemotePhysicalErrors e Malformed data packet errors LVer length VL e Malformed link packet errors operand length VL e Packets discarded due to buffer overrun ExcessiveBufferOverrunErrors For IBM GX HCAs the combined reporting of PortRcvErrors and SymbolErrors is important to understand If a SymbolError occurs on a data cycle as opposed to an idle cycle a PortRcvError would also be recorded Knowledge of this behavior can be useful in determining the urgency of isolation and repair For example if you are seeing only SymbolErrors on an IBM GX HCA port it is likely that no data transfers are being affected Therefore if the number of SymbolErrors is fairly low maintenance can be deferred to a more convenient time As the number of SymbolErrors increases this must be reassessed because the probability of impacting data transfers increases Typically the number of SymbolErrors would b
346. ing InfiniBand hardware 209 Oct 10 13 14 37 slot 101 172 21 1 9 MSG ERROR SM SilverStorm 9040 GUID 0x00066a00db000007 Spine 101 Chip A port O COND 99999 Link Integrity Error NODE SilverStorm 9040 GUID 0x00066a00db000007 Spine 101 Chip A port 10 0x00066a00db000007 LINKEDTO 9024 DDR GUID 0x00066a00d90001db port 15 0x00066a00d90001db DETAIL Excessive Buffer Overrun threshold trap received Diagnosing link errors This procedure is used to isolate link errors to a field replacement unit FRU Symptoms that lead to this procedure include Symptom Reporting mechanism Port Error counters Fast Fabric health check results on fabric management server var opt iba analysis dir fabric errors Output from iba_report o errors Link down message HCA resource logical switch xCAT MS log containing QLogic logs logical HCA end node disappearance reported tmp systemEvents HCA resource logical switch logical HCA node FastFabric health checking with diff file disappearance reported LED on switch or HCA showing link down LEDs Chassis Viewer Fabric Viewer Use the following procedure to isolate a link error to a FRU Be sure to record which steps you have taken in case you must contact your next level of support or in case QLogic must be contacted The basic flow of the procedure is 1 If the problem was reported because of error counters being non zero determine if they are above
347. ing operating system installation servers on is completed Before proceeding obtain the following documentation e Operating system installation guides e Host channel adapter HCA installation topics from the IBM systems Hardware Resource and Information Centers If this installation is for a cluster expansion or addition of hardware to a cluster before proceeding review Installing the operating system and configuring the cluster servers information for expansion Installing the operating system and configuring the cluster servers information for expansion View information for server installation and configuration expansion If it is a new installation skip this section If you are adding or expanding InfiniBand network capabilities to an existing cluster by adding servers to the cluster then you must approach the server installation and configuration differently than with a new cluster flow The flow for server installation and configuration is based on a new cluster installation but it indicates where there are variances for expansion scenarios The following table outlines how the new cluster installation is affected or altered by expansion scenarios High performance computing clusters using InfiniBand hardware 127 Table 71 Effects on cluster installation when expanding existing clusters Scenario Effects Adding InfiniBand hardware to an existing cluster switches Configure the logical partitions to us
348. ing the analysis log file If the result is all_analysis All OK set ERRORS NONE If the analysis log file has a fabric errors file listed get the directory into which it is stored and keep that directory name in ERRORS Use the directory with the 280 Power Systems High performance clustering timestamp in the name not the one with latest in the name Also if the result does not have all_analysis All OK set HEALTHY 0 Run Is lastclear to get the list of link clear files Loop through the list of link clear files Get the nodeguid nodeguid the node port nodeport the Fabric MS HCA hca and HCA port hcaport from the link clear filename needs the space before nodeport Determine if the link already has an error reported by the full error counter query Use grep nodeguid nodeport SW ERRORS fabric It will be report if link not already reported in full error report else skip it Sleep just to differentiate the timestamps for error output directories sleep 1 Get current time in epoch and timestamp epoch date s timestamp date Y m d H M S Calculate the time difference between now and the time the link was cleared Store result in diffh Set the iba_mon file to iba_mon conf diffh store in IBAMON Write info to the analysis log file regarding current nodeguid nodeport hca hcaport timestamp time since last clear and chosen iba_mon conf file
349. ing the var opt xcat IBSwitch Qlogic command 3 Edit the var opt xcat IBSwitch Qlogic config file 4 Add the following lines to the file QLogic switch device configuration Please follow the section format to add entry value pair like below main SSH key add command on device must be upper case K ssh setup command sshKey add xdsh Special command before remote command e g export environment variable pre command NULL Command used to show the return code of last command executed High performance computing clusters using InfiniBand hardware 121 Note the command output must be a numeric value in the last line e g hello world 0 post command showLastRetcode brief 5 b Add each switch to etc hosts IP address hostname c Ensure that you are using ssh for xdsh and that you have run the command chtab key useSSHonAIX site value yes d For each switch define the switch as a device for xCAT using the following command This example uses a loop to define all switches Fr sw in cat lt file containing chassis IP hostname gt do mkdef t node o sw groups all IBSwitches nodetype switch done e Exchange ssh keys with IBSwitches group using the following command xdsh IBSwitches K 1 admin devicetype IBSwitch Qlogic Enter the password for the userid on the node where the ssh keys will be updated usr bin ssh setup is complete return code 0 f Verify remote access to the sw
350. intErrors Security VL15Dropped SMA Congestion PortRcvSwitchRelayErrors Routing 2 Check syslogs check errpt and check SFP for any CEC HCA or power events that might cause the link to go down 3 Regardless of any other errors on the link report any Security errors PortXmitConstraintErrors PortRcvConstraintErrors immediately as a bug with the IB fabric These must not occur until after the 4 4 release of the HSM 4 Address Link Integrity errors LinkDowned LinkErrorRecovery SymbolErrors PortRcvErrors LocalLinkIntegrityErrors and ExcessiveBufferOverruns a The order of severity of the link integrity errors from most severe to least severe is LinkDowned ExcessiveBufferOverruns LinkErrorRecovery LocalLinkIntegrityErrors PortRcvErrors SymbolErrs b Use the isolation procedure in Interpreting link Integrity errors on page 256 5 When the link integrity errors have been addressed address Congestion PortXmitDiscards and Remote Link Integrity PortRcvRemotePhysical errors can be grouped into a category of Remote Errors High performance computing clusters using InfiniBand hardware 255 a Determine if pattern of errors leads you through the fabric to a common point exhibiting link integrity problems b If there are no link integrity problems see if there is a pattern to the errors that has a common leaf or spine or if there is some configuration problem that is causing the error c Use the isolation proced
351. ips per 9120 2 chips 3 spines per 9120 2 logical switch per HCAs 3 GX HCAs 1 12 6 6 25 HCAs 5 2 PCI HCAs 3 IBM GX HCAs End ports 10 5 HCAs 2 Ports 353 See the following example ports for calculation Subnet Managers 4 1 Master 3 Standbys The following table illustrates how the number of ports were calculated 250 Power Systems High performance clustering Table 98 Number of ports calculation Device Ports Calculation 9024 10 3 connections to GX HCAs 2 connections to PCI HCAs 4 switch to switch connections 1 management port 9120 spines 150 25 ports 3 spines 2 switch chips per spine 9120 leafs 165 13 ports 12 leaf chips 3 connections to GX HCAs 2 connections to PCI HCAs 4 switch to switch connections Logical switches 18 3 ports 6 logical switches Logical HCAs 6 2 ports 3 logical HCAs PCI HCAs 4 2 ports 2 HCAs Total Port Count 10 150 165 18 6 4 353 Handling emergency power off situations This information provides guidelines for setting up a procedure to handle power off situations Emergency Power off EPO situations are typically rare events However some sites do experience more power issues than others for various reasons including power grid considerations It is good practice for each site to develop an EPO procedure This is a sample procedure that can be used with QLogic switches
352. is or frame ground xiv Power Systems High performance clustering High performance computing clusters using InfiniBand hardware You can use this information to guide you through the process of planning installing managing and servicing high performance computing HPC clusters that use InfiniBand hardware This information serves as a navigation aid through the publications required to install the hardware units firmware operating system software or applications publications produced by IBM or other vendors This information provides configuration settings and an order of installation and acts as a launch point for typical service and management procedures In some cases this information provides detailed procedures instead of referencing procedures that are so generic that their use within the context of a cluster is not readily apparent This information is not intended to replace the existing or vendor supplied publications for the various hardware units firmware operating systems software or applications produced by IBM or other vendors These publications are referenced throughout this information The following table provides a high level view of the cluster implementation process This information is required to effectively plan install manage and service your HPC clusters that use InfiniBand hardware Table 1 High level view of the cluster implementation process and associated information Content Description
353. is required or you would get an error indicating that the node xCAT MS is not in the NodeNameList file f Run the following command opt xcat sbin rmcmon monerrorlog f var log xcat syslog fabric notices p f_fabnotices Note Notice that the p parameter points to the f_fabnotices entry that was defined in etc syslog ng syslog ng conf g If you get an error back from monerrorlog indicating a problem with syslog then a typing error is probably in the etc syslog ng syslog ng conf file The message would have a form similar to the one shown in the following example The key is that syslog is in the error message screen The is a wildcard monerrorlog syslog 1 Look for the mistake in the etc syslog ng syslog ng conf file by reviewing the previous steps that you have taken to edit the syslog ng conf file 2 Remove the destination and log lines from the end of syslog ng conf entry 3 Rerun the opt xcat sbin rmcmon monerrorlog f var log xcat syslog fabric notices p f_fabnotices command 4 If you get another error examine the file again and repeat the recovery procedures Delete everything in the error monitoring directory var opt xcat_err_mon Edit the AppArmor setup file for syslog ng by using the etc apparmor d sbin syslog ng command Ensure that var log xcat syslog fabric notices wr is in the file before the You must remember the comma at the end of the line If you changed sbin sysl
354. is shipped with Fast Fabric to iba_mon conf original And then copy and modify it to these counter values Error Counters Symbol ErrorCounter 1 LinkErrorRecoveryCounter 1 LinkDownedCounter 1 PortRcvErrors 1 PortRcvRemotePhysicalErrors 1 PortRcvSwitchRelayErrors 100 known Anafa2 issue incorrectly increments PortXmitDiscards 1 PortXmitConstraintErrors 1 PortRcvConstraintErrors 1 LocalLinkIntegrityErrors 1 ExcessiveBufferOverrunErrors I VL15Dropped 1 Note All error counter thresholds for errors of interest are set to 1 The VL15Dropped errors are commented out and thus are not reported see VL15Dropped on page 273 The PortRcvSwitchRelayErrors remains commented out because there is a bug in the switch chip that compromises the integrity of that counter The following list is preferred to use for thresholds 24 hours after the last time the errors were cleared This is used as the basis to calculate other time periods For more details on thresholds for individual errors see them in their respective sub sections under Error counter details on page 265 You would create an iba_mon conf 24 file by modifying the iba_mon conf file to these values Error Counters SymbolErrorCounter 10 10 per day in diffh hours LinkErrorRecoveryCounter 3 3 per day in diffh hours LinkDownedCounter 3 3 per day in diffh hours PortRcvErrors 10 10 per day in diffh hours PortRcvRemotePhysicalErrors 10 10 per day in diffh
355. itch Event not in switch log on page 232 Event is not in var log xcat syslog fabric notices on the xCAT MS Event not in xCAT MS tmp systemEvents Use this procedure if an expected event is not in the xCAT MS log file If an expected event is not in the var log xcat errorlog xCAT MS hostname file complete the following steps 1 Log on to the xCAT MS 2 Start by looking at the log on the device that is logging the problem and make sure that it is there a For the fabric management server look at the var log messages file b For switches log on to the switch and look at the log If necessary use the switch command line help or the switch Users Guide for how to do this 3 Verify that you can ping the source which must be either the fabric management server or the switch service VLAN IP address a If you cannot ping the source device then use standard network debug techniques to isolate the problem on the service VLAN Consider the xCAT MS connection the fabric management server connection the switch connection and any Ethernet devices on the network Also ensure that the addressing has been set up properly 4 If this is xCAT on AIX open the file that Event Management is monitoring on the xCAT MS and look for the log entry This is var log xcat syslog fabric notices If it is not in there go to e 228 If this is xCAT on Linux go to the next 5 If this is xCAT on
356. itches using the following command Do not enter a password and each switch should reply with its firmware level opt xcat bin xdsh IBSwitches 1 admin devicetype IBSwitch Qlogic fwVersion more g If you have defined multiple groups for the switches assign those by using the following command for each group chdef t node noderange groups groupname Where noderange is a comma delimited list of fabric management servers See man noderange h You may now use xdsh to remotely access the switches from the xCAT MS Do not forget to use the options devicetype and l admin so that xdsh uses the appropriate command sequence to the switches 3 R3 MA It is good practice to create device groups to allow you to direct commands to groups of switches and Fabric Management Servers In the steps above you set up a group for all fabric management servers and a group for all switches See the xCAT documentation for more details on setting up device groups Some possible groupings are shown below a All the fabric management servers AllFabricMS b All primary fabric management servers c All of the switches IBSwitches d A separate subnet group for all of the switches on a subnet This procedure ends here Set up remote command processing ends here Installing and configuring servers with management consoles This procedure outlines the considerations for final configuration of management consoles Hardware Management Consol
357. ith the teams performing those installation activities Use the following procedure for installing the fabric management server It references QLogic documentation for detailed installation instructions See the QLogic fabric management worksheets on page 92 which is completed during the planning phase for the cluster 1 F1 M1 Physically place the Fabric Management Server the data center floor 2 F2 M2 Install and configure the operating system on the fabric management server Note e Disable the firewall when installing the operating system on the fabric management server Keep all the license key documentation that comes with the operating system used for the Fabric Management Server and for the QLogic InfiniBand Fabric Suite This is for obtaining updates to software 3 F3 M2 If you are connecting the Fabric Management Servers to a public Ethernet network not the service nor the cluster VLAN do so at this time 4 F4 M2 Install and cable the host channel adapters HCAs in the fabric management servers The HCAs must be installed before proceeding to the next step Cabling of the HCAs to the fabric can wait but do not start the fabric manager software until the fabric management server HCAs have been cabled to the fabric 5 F5 M2 To install the QLogic InfiniBand Fabric Suite which includes the Fabric Manager Fast Fabric toolset and QLogic OFED stack use the InfiniServ Fabric Access Software Users
358. its for a Class A digital device pursuant to Part 15 of the FCC Rules These limits are designed to provide reasonable protection against harmful interference when the equipment is operated in a commercial environment This equipment generates uses and can radiate radio frequency energy and if not installed and used in accordance with the instruction manual may cause harmful interference to radio communications Operation of this equipment in a residential area is likely to cause harmful interference in which case the user will be required to correct the interference at his own expense Properly shielded and grounded cables and connectors must be used in order to meet FCC emission limits IBM is not responsible for any radio or television interference caused by using other than recommended cables and connectors or by unauthorized changes or modifications to this equipment Unauthorized changes or modifications could void the user s authority to operate the equipment This device complies with Part 15 of the FCC rules Operation is subject to the following two conditions 1 this device may not cause harmful interference and 2 this device must accept any interference received including interference that may cause undesired operation Industry Canada Compliance Statement This Class A digital apparatus complies with Canadian ICES 003 Avis de conformit a la r glementation d Industrie Canada Cet appareil num rique de la classe A est conform
359. ituation must be resolved such that there is only one instance of any particular item being discovered in the fabric Duplicates might be indicated if there are changes in the fabric such as addition of parallel links It can also be reported when there enough changes to the fabric that it is difficult to properly resolve and report all the changes It can also occur when iba_report is run with manually generated topology input files which might have duplicate items or incomplete specifications 168 Power Systems High performance clustering Table 78 Possible issues found in health check changes files continued Issue Description and possible actions Incorrect Link This applies only to links and indicates that a link is not connected properly This must be fixed It is possible to find miswires by examining all of the Misconnected links in the fabric However you must look at all of the fabric links changes files to find miswires between subnets Look for any Missing or Different items that might correspond to this item This would be in cases where the configuration of an item has changed in a way that makes it difficult to determine precisely how it has changed If the configuration has changed purposely since the most recent baseline and this difference is reflected here save the original baseline and rerun the baseline as instructed in Re establishing Health Check baseline on Thi
360. k integrity errors on a link without SymbolErrors this is not typical Often if zero SymbolErrors are found but there are LinkDowns or LinkErrorRecoveries another read of the SymbolError counter will reveal that you just happened to read it after it had been reset on a link recovery action Because of the training methods implemented on an IBM GX HCA port SymbolErrors are detected as part of the normal training Furthermore the implementation does not clear the errors after the final training sequence Therefore there are somewhere between 88 102 SymbolErrors left in the counter after every training sequence with the typical counts being in the 90s This will occur after every CEC power cycle cable reseat switch power cycle or leaf reseat Therefore error counters must be cleared after any one of these actions On an IBM GX HCA port a SymbolError during a data transfer cycle would also result in a PortRcvError This is not the case on a switch port or a non IBM GX HCA port More information about interpreting SymbolErrors in combination with PortRcvErrors is available in PortRevErrors on page 268 While SymbolErrors are indicative of a noisy link you can use the knowledge of the relationship between SymbolErrors and PortRcvErrors reported by an IBM GX HCA port This is to interpret if data is being corrupted or if the problem is only on idle cycles It has been observed that sometimes SymbolErrors on idle increases when application
361. l IBSwitchLog 2 To the condition link a response which can log entries using the startcondresp LocallBSwitchLog Log event anytime command The previous condition response link logs node error log entries to the tmp systemEvents file on the xCAT management server If you have planned different or additional responses in the above command you might substitute them for Log event anytime Run the command once for each response that is to be linked to LocalIBSwitchLog Note e tmp systemEvents would not be created until the first event comes through e Substitute Email root anytime for Log event anytime to send mail to root when a log occurs If you use this plan to disable it when booting large portions of the cluster Otherwise many logs would be mailed e Substitute LogEventToxCATDatabase for Log event anytime to record logs in the xCAT Database e Be careful of responses intended to display entries on the console or email root Unless you temporarily disable them before rebooting servers these results in many events being broadcast to the console or emailed to root when servers are rebooted Power Systems High performance clustering 2 3 3 If you want to create any other response scripts you use a similar format for the startcondresp command after creating the appropriate response script For details refer the xCAT Reference Guide and RSCT Reference Guide i Proceed to step 2 L2 M4 Point to the xCAT
362. latest fabric 2 2 errors fabric_analysis Failure information saved to var opt iba analysis 2009 03 06 21 00 01 fabric_analysis Possible fabric errors or changes found chassis_analysis Chassis OK all_analysis Possible errors or changes found The following example illustrates reading error counters 24 hours since the last error counter clear which triggers healthcheck to call all_analysis to also clear the errors after reading them HE EE EE AE EEA EE AE EE EE EE EE EE 14 00 01 04 13 09 24 hours since last recorded counter clear CLEARING COUNTERS on the run EE AE AE AE EE A EE AE EE EE EE EE EE EE EE EE fabric_analysis Fabric s OK chassis_analysis Chassis OK all_analysis All OK Cron setup on the Fabric MS This information provides up details on the cron set on the Fabric MS The following entry in cron on the Fabric MS would run the healthcheck script every hour on the hour O x x root fmtools health healthcheck The healthcheck script must be run at least once per day If you are running the healthcheck only a few times a day it is preferred that you also run an error counter collection every hour and store the results for future reference during more advanced debugging The following entry in cron uses iba_reports to accomplish this This would work only for FastFabric 4 3 and later For older versions of FastFabric a script must be written to loop through all of the 30 sbin iba_reports o errors F
363. le 18 Operating system overview Operating system details More information Description The operating system is the interface for the device drivers Documentation Operating system users guide When to use To query the state of the host channel adapters HCAs and the availability of the HCAs to applications Host IBM system How to access xdsh from xCAT or telnet ssh into the LPAR Network Time Protocol The Network Time Protocol NTP synchronizes the clocks in the management servers and switches The following table provides an overview of the NTP Table 19 Network Time Protocol overview Network Time Protocol Details Description The NTP is used to keep the switches and management servers time of day clocks synchronized It is important to ensure the correlation of events in time Documentation NTP Users Guide When to use The NTP is set up during installation Host The NTP Server How to access The administrator accesses the NTP by logging on to the system on which the NTP server is running The NTP is accessed for configuration and maintenance and usually is a background application Fast Fabric Toolset The QLogic Fast Fabric Toolset is a set of scripts that are used to manage switches and to obtain information about the switch status The following table provides an overview of the Fast Fabric Toolset Table 20 Fast Fabric Toolset ove
364. le fabric management server to be the primary data collection point for fabric diagnosis data xCAT event management must be used in a cluster To use xCAT event management plan for the following requirements The type of syslogd that you would use At a minimum you must understand the default syslogd that comes with the operating system on which xCAT is run Whether you want to use TCP or udp as the protocol for transferring syslog entries from the fabric management server to the xCAT MS Use TCP for better reliability For starting remote command to the fabric management server you must know how to exchange SSH keys between the fabric management server and the xCAT MS This is standard openSSH protocol setup as done in either the AIX or Linux operating system High performance computing clusters using InfiniBand hardware 65 e If you are updating from IFS 4 to IFS 5 then you can review the QLogic Fabric Management Users Guide to learn about the new etc sysconfig qlogic_fm xml in IFS 5 which replaces the etc sysconfig iview_fm config file There are some attribute name changes including the change from a flat text file to an XML format The mapping from the old to new names is included in an appendix for the QLogic Fabric Management Users Guide For each setting that is non default in IFS 4 record the mapping of the old to the new attribute name Note This is covered in more detail in the Installation section for the Fabric Ma
365. le with switches listed gt dsh d lt Primary fabric management server gt captureall f lt chassis file with switches gt e If you do not require information from all of the switches various chassis files must have been configured which can help you target subsets of switches In order to direct data capture from particular switches by using command line parameters instead of a chassis file you can use C H list of switches e By default the results would be copied to the uploads directory which is below the current working directory For a remote command this would be the root directory for the user which is most often root This can be something like uploads or home root uploads it depends on the user setup on the fabric management server This directory would be referenced as lt captureall_dir gt 5 Copy data from the primary data collection Fabric Management Server to the xCAT MS a Make a directory on the xCAT MS to store the data This would be used for IBM systems data For the remainder of this procedure the directory would be referenced as lt captureDir_onxCAT gt b Run the following command For xCAT xdcp fabric management server lt captureall_dir gt lt captureDir_onCAT gt 6 Copy health check results from the Primary Fabric Management Server to the xCAT MS Copy over the baseline health check and the latest It is also advisable to copy over any recent health check results that contain failures a Make a ba
366. lems Use this procedure if you must diagnose and repair switch component problems Switch internal problems can surface in the xCAT MS tmp systemEvents file or in Fast Fabric tools reports or health checks If a switch component problem is being reported do the following procedure 1 Contact QLogic with the log or report information Or use the repair and troubleshooting procedures in the Switch Users Guide or the QLogic Troubleshooting Guide 2 If any repair_is made or if anything is done to change the hardware or software configuration for the fabric use Re establishing Health Check baseline on page 244 This procedure ends here Diagnosing and repairing IBM system problems System problems are most often reported on the Hardware Management Console HMC through serviceable events If an IBM system problem is reported the repair action might affect the fabric Use the procedure found in Restarting or powering off an IBM system on page 247 Diagnosing configuration changes Use the fast fabric health check to determine configuration changes in the fabric Configuration changes in the fabric can be determined by using Fast Fabric Health Check For details see Health checking on page 157 1 If you were directed here because you noted that HCA ports might have been swapped see Diagnosing swapped HCA ports on page 221 2 If you have been directed here because you noted that switch ports might h
367. les that can be used depending on the last time error counters were cleared in the fabric Typically name the iba_mon conf files with an extension indicating the time since the last clear Because of the nature of the design the minimum time frame used for thresholds is one hour This is true even if the polling frequency of error counters is less than one hour For IBM System p clusters it is preferred that the default etc sysconfig iba iba_mon conf file is renamed to iba_mon conf original and that a new one with thresholds set to 1 or ignore is used instead The default and preferred settings are listed in the following section The error counter thresholds in the default iba_mon conf are Error Counters SymbolErrorCounter 100 LinkErrorRecoveryCounter 3 LinkDownedCounter 3 PortRcvErrors 100 PortRcvRemotePhysicalErrors 100 PortRcvSwitchRelayErrors 100 known Anafa2 issue incorrectly increments High performance computing clusters using InfiniBand hardware 159 PortXmitDiscards 100 PortXmitConstraintErrors 10 PortRcvConstraintErrors 10 LocalLinkIntegrityErrors 3 ExcessiveBufferOverrunErrors 3 VL15Dropped 100 Note The PortRcvSwitchRelayErrors are commented out such that they are never reported This is because of a known problem in the switch chip that causes this error counter to incorrectly increment The preferred substitute for iba_mon conf follows You can create this by first renaming the default iba_mon conf that
368. linked to an HCA that is listed as not available When all HCAs are listed as available to the operating system continue with the procedure to verify HCA numbering and the netid for LPAR Check HCA allocation across LPARs For HPC Cluster there must be only one active LPAR and the HCA must be Dedicated to it Ensure that the fabric is balanced across the subnets The following command string gathers the GID prefixes for the ib interfaces These must be consistent across all LPARs For xCAT xdsh nodegroup with all nodes v netstat i grep ib link awk split 4 a 3 for i 5 i lt 12 i printf aLi printf n Verify that the IP MTU is configured properly Run the following command to list the MTUs For xCAT xdsh nodegroup with all nodes v find sys class net name ib xargs I dn cat dn mtu If the MTU returned e Matches the expected MTU value continue with step 19 e Does not match the expected MTU value continue with step For each HCA ibX having the wrong MTU run the command on the respective LPAR echo lt right value gt gt sys class net ibX mtu Verify that the network interfaces are recognized as up and available The following command string must return no interfaces If an interface is marked down it returns the LPAR and ibX interface For xCAT xdsh nodegroup with all nodes v usr bin lsrsrc IBM NetworkInterface Name OpState grep p resource v OpState 1 grep ib
369. ll processors are available continue with the procedure to verify memory If processor deconfiguration persists call your next level of hardware support Verify that processors are running at expected frequencies by using the following command For xCAT xdsh nodegroup with all nodes v egrep processor clock proc cpuinfo Verify processors ends here Verifying the availability of memory resources To verify the availability of memory resources perform the following steps 1 4 Run the following command For xCAT xdsh nodegroup with all nodes v grep MemTotal proc meminfo If e The operating system has access to all memory resources the system returns you to a command prompt without returning data You might exit now e Memory requires configuration check SFP on the HMC controlling the server logical partition and service as instructed Note Before you perform a memory service action make certain that the memory was not unconfigured for a specific reason If no problems are found in SFP perform any System Service Guide instructions for diagnosing unconfigured memory If the memory deconfiguration persists call your next level of support Verify Memory ends here 220 Power Systems High performance clustering Checking multicast groups Use this procedure to check multicast groups for correct membership To check multicast groups for correct membership perform the following procedure 1 If you ar
370. ll to All or All to one e The output port in inactive state In other words the link went down e The packet length exceeded neighbor MTU This would be caused by a configuration problem e A packet timeout was changed in the SM configuration file to a value that is too low for the size of the fabric that has been installed Typically the default values are used The most common reasons for a PortXmitDiscard are congestion or a local or remote link going down or a link in the path to destination that is taking many errors and causing congestion The simplest thing to check is for link integrity errors downstream from the port reporting the PortXmitDiscards For more information see Example PortXmitDiscard analyses on page 261 Congestion is much more difficult to diagnose Start by reading the fabric data and packet counters by using a command like iba_report o comps d 5 s F nodepat switch IBNodeDescription pattern You can then look for hotspots where much more data might be flowing Without knowing the route being taken you can look only for high level patterns that might point to downstream congestion Another technique for diagnosing congestion is to decrease the timeouts and see how the pattern of PortXmitDiscards changes within the fabric However for each iteration of the experiment this requires a restart of the SM In addition the granularity of timeout changes is by powers of 2 Therefore often by the time yo
371. log messages file the problem is not with the log on the fabric management server 4 If the log entry is not in the source syslog then the problem is with the logging subsystem a If you are testing a log entry by using the logger command or some similar command check your syntax and try the command again if it was incorrect b If the source is the fabric management server check to make sure that the syslogd is running by using ps 1 If syslogd is not running start it using etc init d syslog start c If you are missing Subnet Manager logs then verify that the fabric manager is running and start it if it is not Use the vendors Fabric Manager Users Guide d If syslogd is running and the Subnet Manager is running and you did not have a problem with syntax for the logger command then try restarting syslogd by using etc init d syslog restart e Verify that there is an entry in syslog conf or syslog ng conf that directs logs to var log messages f If the fabric management server is still not logging properly call your next level of support or try troubleshooting techniques documented for syslogd in the operating system documentation Event not in switch log Use this procedure if an expected event is not in the switch log If the expected log entry is not in the switch log complete the following steps 1 Log on to the switch and look at the log by using the command in the vendors Switch Users Guide or found in the comman
372. ls them See the HMC HMC documentation to determine who is responsible for the installation This is typically the customer or IBM service xCAT xCAT are the preferred Systems Management tools They can also be used as a centralized source for device discovery in the cluster The customer is responsible for xCAT installation and customization High performance computing clusters using InfiniBand hardware 69 Table 38 Hardware to install and who is responsible for the installation continued Hardware to install Who is responsible for the installation InfiniBand switches The switch manufacturer or its designee IBM Business Partner or another contracted organization is responsible for installing the switches If the switches have an IBM machine type and model IBM is responsible for them Switch network cabling The customer must work with the switch manufacturer or its designee or another contracted organization to determine who is responsible for installing the switch network cabling However if a cable with an IBM part number fails IBM service is responsible for servicing the cable Service VLAN Ethernet devices Ethernet switches or routers required for the service virtual local area network VLAN are the responsibility of the customer VLAN cabling The organization responsible for the installation of a device is responsible for connecting it to the service VLAN Fabric Manager software The customer
373. luster with an InfiniBand network ends here Server planning This information provides server planning requirements that are relative to the fabric Server planning relative to the fabric requires decisions on the following items e The number of each type of server you require e The type of operating systems running on each server e The number and type of host channel adapters HCAs that are required in each server e Which types of HCAs are required in each server e The IP addresses that are needed for the InfiniBand network For details see IP subnet addressing restriction with RSCT on page 53 The IP addresses that are needed for the service virtual local area network VLAN for service processor access from the xCAT and the Hardware Management Console HMC e The IP addresses for the cluster VLAN to permit operating system access from xCAT e Which partition assumes service authority At least one active partition per server must have the service authority policy enabled If multiple active partitions are configured with service authority enabled the first one up assumes the authority Note Logical partitioning is not done in high performance computing HPC clusters Along with server planning documentation you can use the Server planning worksheet on page 81 as a planning aid You can also review server installation documentation to help plan for the installation When you have identif
374. ly e The ability to consolidate logs and events from many sources in a cluster by using event management The IBM System p HPC clusters are migrating from CSM to xCAT With respect to solutions using InfiniBand the following table translates key terms utilities and file paths from CSM to xCAT Table 11 CSM to xCAT translations CSM xCAT dsh xdsh var opt csm IBSwitches Qlogic config var opt xcat IBSwitch Qlogic config var log csm errorlog tmp systemEvents opt csm samples ib opt xcat share xcat ib scripts IBconfigAdapter script configiba The term node device High performance computing clusters using InfiniBand hardware 13 QLogic provides the following switch and fabric management tools e Fabric Manager From level 4 3 onward is part of the QLogic InfiniBand Fabric Suite IFS Previously it was in its own package e Fast Fabric Toolset From level 4 3 onward is part of QLogic IFS Previously it was in its own package e Chassis Viewer e Switch command line interface e Fabric Viewer Management subsystem high level functions Several high level functions address management subsystem integrations To address the management subsystem integration functions for management are divided into the following topics 1 Monitor the state and health of the fabric 2 Maintain 3 Diagnose 4 Connectivity Monitor You can use the following functions to monitor the state and heal
375. ly at Table 83 on page 188 Note If xCAT Event Management is not setup you can still use the preceding table of symptoms However you must go directly to the switch and Subnet Manager logs as they are documented in the vendors Switch Users Guide and Fabric Manager Users Guide 3 Inspect the LEDs for the devices on the network and perform prescribed service procedures see Table 84 on page 189 4 Look for driver errors that do not correspond to any hardware errors reported in SFP or the switch and subnet management logs Perform appropriate service actions for the discovered error codes or call your next level of support For AIX use errpt a on the LPARs that are exhibiting a performance problem For Linux look at var log messages on the logical partitions that are exhibiting a performance problem This procedure ends here Checking for fabric configuration and functional problems Use this information to learn how to check for fabric configuration and functional problems To check for fabric configuration and functional problems perform the following procedure On the fabric management server run the all_analysis fast fabric health check command For details see Health checking on page 157 To diagnose symptoms reported by health check see Table 85 on page 189 Note The health check would be most effective for checking for configuration problems if a baseline health check has been taken and is stored in t
376. management subsystem The syslog indicates the failing FRU For switches this includes power supplies fans and management modules Redundant switch FRU failures are reported through remote logging to the xCAT MS in tmp systemEvents Without remote logging you must interrogate the switch log e User induced link failure events are caused by a person pulling a cable for a repair or powering off a switch or server or restarting a server Any link event must first be correlated to any user actions that might be the root cause The user induced event might not be reported anywhere If a cable is pulled it is not reported If a server is restarted or powered off the server logs would record this event The link failure caused by the user is reported through remote logging to the xCAT MS in tmp systemEvents Without remote logging you must interrogate the Subnet Manager log log e HCA hardware failures would be reported to SFP on the managing HMC and forwarded to xCAT SFP Monitoring Any link event must first be correlated to any existing HCA failures that might be the root High performance computing clusters using InfiniBand hardware 185 cause The link event caused by the user is reported through remote logging to the xCAT MS in tmp systemEvents Without remote logging you must have interrogated the Subnet Manager log e Server hardware failures would be reported to SFP on the managing HMC and forwarded to xCAT SFP Monitoring Any link event mu
377. manager use the instructions for updating the code found in the Fabric Manager Users Guide and QLogic OFED Users Guide Save the iview_fm config file to a safe location so that if something goes wrong during the installation process you can recover this key file Use remote command execution from xCAT Ms as in the following example where cl17lopsm3 is the fabric management server address The cd that precedes the installation command is required so that the command is run from its path The actual path depends on the code level xCAT MS root infiniserv_software InfiniServMgmt 4 1 1 0 15 INSTALL The following information is about clusters that use only the embedded subnet managers This is not a qualified solution for IBM System p HPC Clusters e For embedded Subnet Managers the Fast Fabric Toolset can update code across all switches simultaneously by using the sbin iba_chassis_admin command For more information see the Fast Fabric Toolset Users Guide If you must update only the code on one switch you can do this using the Chassis Viewer For more information see the Switch Users Manual You must place the new embedded Subnet Manager code on the fabric management server If you have multiple primary fabric management servers you can issue the iba_chassis_admin command from using xdsh to all_of the primary fabric management servers simultaneously This capability must be set up using Set up remote command processin
378. manager and xCAT event monitoring the switches xCAT MS and fabric management server running the host based Fabric Manager must all be on the same virtual local area network VLAN The cluster VLAN can be used To plan for event monitoring complete the following items e Review the xCAT Monitoring How To guide and the RSCT administration guide for more information about the event monitoring infrastructure e Plan for the xCAT MS IP address so that you can point the switches and Fabric Manager to log there remotely e Plan for the xCAT MS operating system so that you know which syslog sensor and condition to use One of the following sensors and conditions can be used The xCAT sensor to be used is IBSwitchLogSensor This sensor must be updated from the default so that it looks only for NOTICE and above log entries Because the preferred file FIFO to monitor is var log xcat syslog fabric notices the sensor also must be updated to point to that file While it is possible to point to the default syslog file or some other file the procedures in this document assume that var log xcat syslog fabric notices is used The condition to be used is LocalIBSwitchLog which is based on IBSwitchLog e To determine which response scripts to use evaluate the following options Use Log event anytime to log the entries to tmp systemEvents Use Email root anytime to send mail to root when a log occurs If you use this option you have to
379. mand or the all_analysis e command For more information see checking on page 157 and the Fast Fabric Toolset Users Guide b Look for errors and fix any that you find For more information see the Table of symptoms on page 187 c If you did not use the e parameter look for configuration changes and fix any that you find For more information see Finding and interpreting configuration changes on page 180 6 If you repaired an HCA the latest health check identifies that you have a new GUID in the fabric You must perform the procedure in Re establishing Health Check baseline on page 244 However do only that after you have run a health check against the old baseline to ensure that the repair action resulted in no inadvertent configuration changes such as a swapping of cables This procedure ends here Counting devices When faults or user actions cause devices appear and disappear from the fabric you can use this information to count the devices that you expect to be part of your fabric Subnet Managers in the industry tend to report resources at a low level The virtualization capabilities of the IBM GX host channel adapters HCAs complicate the counting of devices because of how logical devices are interpreted by the Subnet Manager The following resources are generally reported by the Subnet Manager when they appear or disappear Even if the exact resource is not always given there is a count given
380. me Server HCA Connector Switch Connector 2 1 2 C66 T4 8 L2 C1 2 2 1 C65 T1 1 L2 C2 2 2 1 C65 T2 2 L2 C2 2 2 1 C65 T3 3 L2 C2 2 2 1 C65 T4 4 L2 C2 2 2 2 C66 T1 5 L2 C2 2 2 2 C66 T2 6 L2 C2 2 2 2 C66 T3 7 L2 C2 2 2 2 C66 T4 8 L2 C2 Continue through to the last server in the frame 2 12 1 C65 T1 1 L2 C12 2 12 1 C65 T2 2 L2 C12 2 12 1 C65 TS 3 L2 C12 2 12 1 C65 T4 4 L2 C12 2 12 2 C66 Tl 5 L2 C12 2 12 2 C66 T2 6 L2 C12 2 12 2 C66 T3 7 L2 C12 2 12 2 C66 T4 8 L2 C12 Continue through to the last frame 20 1 1 C65 T1 1 L20 C1 20 1 1 C65 T2 2 L20 C1 20 1 1 C65 T3 3 L20 C1 20 1 1 C65 T4 4 L20 C1 20 1 2 C66 T1 5 L20 C1 20 1 2 C66 T2 6 L20 C1 20 1 2 C66 T3 7 L20 C1 20 1 2 C66 T4 8 L20 C1 20 2 1 C65 Tl 1 L20 C2 20 2 1 C65 T2 2 L20 C2 20 2 1 C65 T3 3 L20 C2 20 2 1 C65 T4 4 L20 C2 20 2 2 C66 Tl 5 L20 C2 20 2 2 C66 T2 6 L20 C2 20 2 2 C66 T3 7 L20 C2 20 2 2 C66 T4 8 L20 C2 Continue through to the last server in the frame 20 12 1 C65 Tl 1 L20 C12 20 12 1 C65 T2 2 L20 C12 20 12 1 C65 TS 3 L20 C12 High performance computing clusters using InfiniBand hardware 35 Table 30 Example topology gt 240 9125 F2As in 20 frames with 8 HCA connections in 8 InfiniBand subnets continued Frame Server HCA Connector Switch Connector 20 12 1 C65 T4 4 L20 C12 20 12 2 C66 T1 5
381. me and rack planning worksheet on page 79 3 Server planning worksheet on page 81 4 Applicable vendor software firmware planning worksheets e QLogic and IBM switch planning worksheets on page 83 e QLogic fabric management worksheets on page 92 For examples of completed planning worksheets see the examples that follow each blank worksheet Planning worksheets ends here Cluster summary worksheet Use the cluster summary worksheet to record information for your cluster planning Record your cluster planning information in the following worksheet Table 42 Sample Cluster summary worksheet Cluster summary worksheet Cluster name Application High performance cluster HPC or not Number and types of servers Number of servers and host channel adapters HCAs for each server Note If there are servers with varying numbers of HCAs list the number of servers with each configuration For example 12 servers with one 2 port HCA 4 servers with two 2 port HCAs Number and types of switches include model numbers Number of subnets List of global identifier GID prefixes and subnet masters assign a number to a subnet for easy reference Switch partitions Number and types of frames include systems switches management servers NIM server or distribution server Number of Hardware Management Consoles HMCs xCAT to be used If Yes gt server
382. ment or in Cluster service on page 183 Table 76 Cluster fabric management tasks Task Reference Minimize IBM Systems Management effect on fabric Reboot the entire cluster Restarting the cluster on page 246 Reboot one or a few servers Monitoring High performance computing clusters using InfiniBand hardware 155 Table 76 Cluster fabric management tasks continued Task Reference Monitor for general problems Monitoring the fabric for problems Monitor for fabric specific problems Monitoring fabric logs from the xCAT Cluster Management server Manually querying status of the fabric Querying status on page 174 Scripting to QLogic management tools and switches Remotely accessing QLogic management tools and commands from xCAT MS on page 174 Run or update the baseline health check Health checking on page 15 Diagnosing symptoms found during monitoring Table of symptoms on page 187 Map IBM host channel adapter HCA device locations General mapping of IBM HCA GUIDs to physical HCAs on page 197 Maintenance and Changes Code maintenance Updating code on page 176 Finding and interpreting configuration changes Verifying that new configuration changes were done successfully Run or update baseline health check Health checking on page 157 To se
383. ment subsystem is a collection of servers consoles applications firmware and networks that work together to provide the following functions e Installing and managing the firmware on hardware devices e Configuring the devices and the fabric e Monitoring for events in the cluster e Monitoring status of the devices in the cluster e Recovering and routing around failure scenarios in the fabric e Diagnosing the problems in the cluster IBM and vendor system and fabric management products and utilities can be configured to work together to manage the fabric Review the following information to better understand InfiniBand fabrics e The InfiniBand standard specification from the InfiniBand Trade Association Read the information about managers e Documentation from the switch vendor Read the Fabric Manager and Fast Fabric Toolset documentation Related concepts Cluster information resources on page 2 The following tables indicate important documentation for the cluster where to get it and when to use it relative to Planning Installation and Management and Service phases of a clusters life Management subsystem integration recommendations Extreme Cloud Administration Toolkit xCAT is the IBM Systems Management tool that provides the integration function for InfiniBand fabric management The major advantages of xCAT in a cluster are as follows e The ability to issue remote commands to many nodes and devices simultaneous
384. mple Leaf number server number in frame Leaf connector number frame number Server number Frame number Leaf number Leaf connector number HCA number C65 for switch 1 4 C66 for switch 5 8 HCA port Remainder of switch 1 4 1 Table 33 Example topology gt 140 9125 F2As in 10 frames with 8 HCA connections in 8 InfiniBand subnets Frame Server HCA Connector Switch Connector 1 1 1 C65 T1 1 L1 C1 1 1 1 C65 T2 2 L1 C1 1 1 1 C65 T3 3 L1 C1 1 1 1 C65 T4 4 L1 C1 1 1 2 C66 T1 5 L1 C1 1 1 2 C66 T2 6 L1 C1 1 1 2 C66 T3 7 L1 C1 1 1 2 C66 T4 8 L1 C1 1 2 1 C65 Tl 1 L2 C1 1 2 1 C65 T2 2 L2 C1 1 2 1 C65 T3 3 L2 C1 1 2 1 C65 T4 4 L2 C1 1 2 2 C66 T1 5 L2 C1 1 2 2 C66 T2 6 L2 C1 1 2 2 C66 T3 7 L2 C1 1 2 2 C66 T4 8 L2 C1 Continue through to the last server in the frame 1 12 1 C65 T1 1 L12 C1 1 12 1 C65 T2 2 L12 C1 1 12 1 C65 T3 3 L12 C1 1 12 1 C65 T4 4 L12 C1 1 12 2 C66 Tl 5 L12 C1 1 12 2 C66 T2 6 L12 C1 1 12 2 C66 TS 7 L12 C1 1 12 2 C66 T4 8 L12 C1 2 1 1 C65 Tl 1 L1 C2 2 1 1 C65 T2 2 L1 C2 2 1 1 C65 T3 3 L1 C2 2 1 1 C65 T4 4 L1 C2 2 1 2 C66 T1 5 L1 C2 2 1 2 C66 T2 6 L1 C2 High performance computing clusters using InfiniBand hardware 41 Table 33 Example topology gt 140 9125 F2As in 10 frames with 8 HCA
385. mple if c890f1lec01 is the node short host name c890f11ec01 ib0 c890f11ec01 ib1 c890f11lec01 ib2 etc are the IP names for the IB interfaces on c890f11lec01 Update networks table with IB sub network using tabedit networks For example chtab net 172 16 0 0 networks netname ib0 networks mask 255 255 0 0 networks mgtifname ib Note The attributes gateway dhcpserver tftpserver and nameservers in the networks table are not required to be assigned since the xCAT management function is running over ethernet On AIX change the default connection between management nodes and managed nodes from ssh to rsh chtab key useSSHonAIX site key no If the managed nodes have already been installed make sure etc resolv conf is available on the managed nodes before running updatenode since configiba connects to the same server to resolve IP address for the IB interfaces If etc resolv conf is not available on the managed nodes define it or use rcp to copy it from the management node to the managed nodes An example resolv conf file is domain ppd pok ibm com search ppd pok ibm com nameserver 172 16 0 1 Note In this example 172 16 0 1 is the name server address for the name server that provides the IP addresses for IB interfaces on managed nodes Add the entries in the etc hosts into DNS and restart the DNS The following is an example of etc hosts 192 168 0 10 c890f1lec01 ibO 192 168 0 11 c890f1lecO1 ibl For Linux Managed Nodes
386. ms are e Bad return codes e Commands that do not get run hang e Other return data that does not e stderr output file from health check Note Always be sure to check the switch link between the Fabric Management Server and the subnet before concluding that you have a software problem Not all commands check that the interface is available 196 Power Systems High performance clustering Mapping fabric devices Describes how to map from a description or device name or other logical naming convention to a physical location of an HCA or a switch Mapping of switch devices is largely done by how they are named at install configuration time The switch chassis parameter for this is the InfiniBand Device name A good practice is to create names that are relative to the frame and cage in which it is populated so that it is easy to cross reference Globally Unique IDs GUIDs to physical locations If this is not done correctly it can be difficult to isolate root causes when there are associated events being reported at the same time For more information see e 49 and Installing and Note If it is possible to name a non IBM GX GX HCA by using the IBNodeDescriptor it is advisable to do so in a manner that helps you to easily determine the server and slot in which the HCA is populated Naming of IBM GX GX HCA devices by using the IBNodeDescriptor is not possible Therefore the user must manually map the Globally Unique I
387. n has changed purposely since the most recent baseline and this difference is reflected here save the original baseline and rerun the baseline as instructed in Re establishing Health Check baseline on If the HCA in the fabric management server was replaced this would be a reason to re establish the baseline If this difference was not intended you must rectify the difference to prevent future health checks from reporting the same difference from the baseline This is a specific case of Different See the Different issue High performance computing clusters using InfiniBand hardware 171 Table 78 Possible issues found in health check changes files continued Issue Description and possible actions X mismatch expected found This indicates an aspect of an item has changed as compared to the baseline configuration The aspect which changed and the expected and found values would be shown This typically indicates configuration differences such as MTU Speed or Node description It can also indicate that GUIDs have changed such as when replacing a faulty device If the configuration has changed purposely since the most recent baseline and this difference is reflected here save the original baseline and rerun the baseline as instructed in Re establishing Health Check baseline on page 244 If a faulty device was replaced this would be a reason to re establish the baseline If this
388. n page 155 describes how to perform various management tasks or where to find out how to perform those tasks It would be referenced by the other Cluster Fabric Management sections Cluster fabric management flow Use this information to gain an understanding of the tasks involved in the cluster fabric management flow The following figure shows a typical flow of cluster fabric management activities from the point of a successful installation onward As you work through the Cluster fabric management tasks on page 155 you can refer this figure Figure 15 Cluster Fabric Management Flow Cluster Fabric Management components and their use This information describes how to use the main cluster management subsystem components To understand how the components for cluster fabric management work together see Management subsystem function overview on page 13 This information describes how to use the main cluster management subsystem components The information is focused on the tools that can help you manage the cluster in a scalable manner The Chassis Viewer and switch command line are not described They are used mainly to manage and work with one switch at a time The QLogic documentation can help you understand their use For more information see the Switch Users Guide and the Best Practices for Clusters Guide xCAT Systems Management xCAT Systems Management application is used for the cluster Cluster Administrati
389. n the logSyslogConfig h xcat_ip_address f 22 p 514 m 1 command 2 From Chassis Viewer on the Syslog Host tab use the IP address of the xCAT MS and point to Port 514 You must do this for each switch individually High performance computing clusters using InfiniBand hardware 117 4 118 3 In either case ensure that all Priority logging levels with a severity above INFO are set to log using the logShowConfig command on the switch command line or using the Chassis Viewer to look at the log configuration If you must turn on INFO entries use the following methods e On the switch command line use the logConfigure command and follow the instructions on screen e In Chassis Viewer use the log configuration window Note The switch command line and Chassis Viewer do not necessarily list the log priorities with respect to severity Ensure that a logShowConfig command results in a result like the following example where Dump Fatal Error Alarm Warning Partial Config Periodic and Notice are enabled The following example has Info enabled as well but that is optional Configurable presets index name state Partial Enabled Config Enabled Info Enabled Periodic Enabled 15 Notice Enabled 10 Debugl Disabled 11 Debug Disabled 12 Debug3 Disabled 13 Debug4 Disabled 14 Debug5 Disabled c You have now setup the switches to remotely log to the xCAT MS You can verify the switch remote lo
390. n which the HCA is populated is used to configure the virtualization capabilities of the HCA For systems that are not managed by an HMC configuration and virtualization are done using the Integrated Virtualization Manager IVM Each logical partition is only aware of its assigned LHCA For each logical partition profile a GUID is selected with an LHCA The GUID is programmed in the adapter and cannot be changed 8 Power Systems High performance clustering Since each GUID must be different in a network the IBM HCA gets a subsequent GUID assigned by the firmware You can choose the offset that is used for the LHCA This information is also stored in the logical partition profile on the HMC Therefore when an HCA is replaced each logical partition profile must be manually updated with the new HCA GUID information If this step is not performed the HCA is not available to the operating system The following table describes how the HCA resources are allocated to a logical partition This ability to allocate HCA resources permits multiple logical partitions to share a single HCA The degree of sharing is driven by your application requirements The Dedicated value is only used when you have a single active logical partition that must use all the available HCA resources You can configure multiple logical partitions to be dedicated but only one can be active at a time When you have more than one logical partition sharing an HCA you can c
391. nagement Server In addition to planning for requirements see Planning Fast Fabric Toolset on page 63 for information about creating hosts groups for fabric management servers These Planning Fast Fabric Toolsets are used to set up configuration files for hosts for Fast Fabric tools The configuration settings planned here can be recorded in the QLogic fabric management worksheets ion pase 22 page 92 Planning for fabric management server ends here Planning event monitoring with QLogic and management server Event monitoring for fabrics by using QLogic switches can be done with a combination of remote syslogging and event management on the Clusters Management Server Use this information to plan event monitoring of fabrics by using QLogic switches Planning event monitoring with xCAT on the cluster management server The result of event management is the ability to forward switch and fabric management logs in a single log file on the xCAT MS in the typical event management log directory var log xcat errorlog with messages in the auditlog You can also use the included response script to wall log entries to the xCAT MS console Finally you can use the RSCT event sensor and condition response infrastructure to write your own response scripts to react to fabric log entries in the form that you want For example you can email the log entries to an account For event monitoring to work between the QLogic switches and fabric
392. nce manager PM baseboard manager BM and fabric executive FE Plan a global identifier GID prefix for each subnet Each subnet requires a different GID prefix which is set by the Subnet Manager The default is 0xfe80000000000000 This GID prefix is for the subnet manager only LMC 2 to permit for 4 LIDs This is important for IBM MPI performance This is for the subnet manager only It is important to note that the IBM MPI performance gain is realized in the FIFO mode Consult performance papers and IBM for information about the impact of LMC 2 on RDMA The default is to not use the LMC 2 and use only the first of the 4 available LIDs This reduces startup time and processor usage for managing Queue Pairs QPs which are used in establishing protocol level communication between InfiniBand interfaces For each LID used another QP must be created to communicate with another InfiniBand interface on the InfiniBand subnet For more information and an example failover and recovery scenario see QLogic subnet manager on page 153 For each Fabric Management Server plan which instance of the fabric manager can be used to manage each subnet Instances are numbered from 0 to 3 on a single Fabric Management Server For example if a single Fabric Management server is managing four subnets you would typically have instance 0 manage the first subnet Instance 1 manage the second subnet instance 2 manage the third subnet and instance 3 man
393. ng on page 112 e Set up remote command processing on page 120 Installing and configuring vendor or IBM InfiniBand switches ends here Attaching cables to the InfiniBand network Use this procedure if you are responsible for installing the cables on the InfiniBand network Cabling the InfiniBand network encompasses major tasks C1 through C4 which are shown in lon page 71 Note Do not start this procedure until InfiniBand switches have been physically installed Wait until the servers have been configured This avoids the situation where installation personnel are waiting on site for key parts of this procedure to be completed Depending on the arrival of units on site this is not always practical Therefore it is important to review tief Orda of installation on page 70 and to identify the merge points where a step in a major task or procedure being performed by one person is dependent on the completion of steps in another major task or procedure being performed by another person Before attaching the cables to the InfiniBand network obtain the following documentation e QLogic Switch Users Guide and Quick Setup Guide e QLogic Best Practices Guide for a Cluster From your installation planner obtain the following information e Cable planning information High performance computing clusters using InfiniBand hardware 143 Cabling the InfiniBand network information for expansion If you are adding or expandin
394. ng Fast Fabric configuration files These files list the switch and Fabric Manager servers that make up the fabric This function has the ability to report and run commands across the fabric concurrently e The etc sysconfig iba chassis file must have the list of all the switch chassis in the fabric Each chassis is listed on a separate line of the file You can use either the IP address or the resolvable host name for the chassis address e If you planned for groups of switches create a file for each group e The etc sysconfig iba hosts file must have a list of all of the fabric management servers e If you planned for groups of fabric management servers create a file for each group e Set up the etc sysconfig fastfabric conf file with the appropriate FF_ALL_ANALYSIS and FF_FABRIC HEALTH environmental variable values This must include the fabric chassis and Subnet Manager SM analysis The SM analysis depends on the type of SM you are using Note there is a commented entry for FF_ALL_ANALYSIS that includes all possible analysis tools You must require a hostsm or esm embedded SM entry You must also ensure that Fast Fabric is set up with the appropriate authentication method for accessing the chassis Also change the config file to save any uploaded data collection to a particular directory If you have a host based SM edit the entry to look like the following example export FF_ALL_ANALYSIS FF_ALL_ANALYSIS fabric chassis hostsm
395. ng InfiniBand hardware 273 Threshold minimum actionable IGNORE except under debug Threshold maximum in 24 hours IGNORE except under debug PortRcvSwitchRelayErrors PortRcvSwitchRelayErrors indicate the number of discarded packets Note There is a known bug in the Anafa2 switch chip that incorrectly increments for this counter for multicast traffic for example IPoIB Therefore it must be ignored The counter is supposed to indicate the number of discarded packets because of e A problem with DLID mapping e Virtual Lane mapping e The packet looping between the input port and the output port Performance impact In the switch chips the counter is incorrectly incremented Therefore you cannot make any conclusions based on it being incremented Threshold minimum actionable IGNORE Threshold maximum in 24 hours IGNORE Clearing error counters After the following actions events on links with an IBM GX HCA port error counters must be cleared These are all actions or events that cause a link to go down and come back up again e CEC power cycle e CEC checkstop e A cable being pulled or reseated e A switch being power cycled or rebooted e A leaf being reseated e An event in SFP that has the HCA in the FRU list e A power event that would have brought down the CEC e A power event in the switch If you manually clear the error counters the choice of thresholds for the periodic health checks can be out of sync until th
396. ng has changed in the fabric that might affect performance The following information is based on setting up health checking that is performed no less than once each day and no more frequently than once every 10 minutes Create a cron job to run all_analysis or a script that calls all_analysis The frequency depends on how pro active the site must be for fixing fabric problems Daily checks are preferred for all sites with the highest frequency being once every 10 minutes In addition to running all_analysis periodically it is preferred to run an iba_report every hour to collect errors if they be required for debug Do the hourly gathering of errors with a thresholds configuration file described in the following section that has thresholds turned off such that all errors are collected Be careful to ensure that you do not run two instances of all_analysis fabric_analysis or iba_report simultaneously this includes running iba_report and all_analysis simultaneously Because the fabric management server is a dedicated server you do not require close management of the file system space even with frequent health checks occurring However it is preferred to periodically check the amount of space left on the root file system The most important aspect in determining whether a count in an error counter indicates a problem is the error threshold count The default counts are found in etc sysconfig iba iba_mon conf They are raw counts and a
397. ng the fabric management server Other than updating code and the operating system on the fabric management server the only routine maintenance item is to check the space left on the root filesystem For example c938f4nm02 df Filesystem 1K blocks Used Available Use Mounted on dev sda2 153930080 23644848 130285232 16 udev 2019300 160 2019140 1 dev It is suggested to do this daily by using a cronjob and that a warning to be set at 90 Use This can take quite some time to occur because of the amount of disk space on this dedicated server If you have reached the 90 level it is preferred that you begin to archive the following types of files and keep at least the previous two months worth of data readily accessible for debug purposes e Syslog files var log messages timestamp bz2 e Health check files var opt iba analysis timestamp e Any other files that you generate periodically especially the files associated with hourly error reports preferred in up periodic fabric health checking For information about updating code and the operating system on the fabric management server see Updating Fabric Manager code on page 176 Cluster fabric management tasks Cluster fabric management tasks include how to monitor critical cluster fabric components and how to maintain them These tasks do not cover how to service or repair faults or errors but they reference appropriate procedures in either another docu
398. ngeably with IBM 7874 switches Unless otherwise noted they are functionally equivalent Most InfiniBand switch planning would be done using QLogic planning resources including general planning guides and planning guides specific to the model being installed See the reference material in Cluster information resources on page 2 Switches require some custom configuration to work well in an IBM System p high performance computing HPC cluster You must plan for the following configuration settings e IP addressing on the cluster virtual local area network VLAN can be configured static The address can be planned and recorded e Chassis maximum transfer units MTU value e Switch name e 12x cabling considerations e Disable telnet in favor of ssh access to the switches e Remote logging destination xCAT MS is preferred e New chassis passwords As part of the consideration in designing the VLAN on which the switches management ports are populated you can consider making that a private VLAN or one that is protected While the switch chassis provides password and ssh protection the Chassis Viewer does not use an SSL protocol Therefore you can consider how this fits with the site security policies The IP addressing that a QLogic switch has on the management Ethernet network is configured for static addressing These addresses are associated with the switch management function The following are important QLogic management func
399. niBand network fabric in AIX on page 150 You have finished installing and configuring the adapter If you were directed here from another procedure return to that procedure This procedure ends here Deferring replacement of a failing host channel adapter If you plan to defer maintenance of a failing host channel adapter HCA there is a risk of the HCA failing in such a way that it can prevent future logical partition reactivation To assess the risk determine if there is a possibility of the HCA preventing the reactivation of the logical partition If this is possible you must consider the probability of a reboot while maintenance is deferred To determine the risk complete the following steps on the Hardware Management Console HMC 1 a o Go to the Server and Partition window Click the Server Management partition Expand the server in which the HCA is installed Expand the partitions under the server Expand each partition that uses the HCA If you do not know that which logical partition uses the HCA you must expand the following for each logical partition profile and record which logical partitions use the HCA Dagpo Select each logical partition profile that uses the HCA From the menu click Selected gt Properties In the Properties dialog click the HCA tab Using its physical location locate the HCA of interest Verify that the HCA is managed by the HMC To determine whether to defer maintenan
400. nitoring the fabric Monitoring fabric logs from the xCAT Cluster Management server on page 156 General monitoring for problems Monitoring the fabric for problems on page 156 Diagnosis procedures How faults are reported Diagnosing symptoms Capturing data for fabric diagnosis Capturing data for Fabric Manager or Fast Fabric Capture data for Fabric Manager and Fast Fabric software problem problems on page 196 Mapping devices from reports to physical devices g fabric devices on Interpreting the switch vendor log formats Interpreting switch vendor log formats on page 207 Diagnosing link errors Diagnosing link errors on page 210 Diagnosing switch internal problems Diagnosing IBM system problems Diagnosing configuration changes from health check Diagnosing fabric events reported by the operating system Diagnosing performance problems Diagnosis application crashes Look for swapped host channel adapter HCA ports Diagnosing swapped HCA ports on page 221 Look for swapped ports on switches Diagnosing management subsystem problems Ping problems Recovering from an HCA preventing a logical partition from activating Recovering from activating on page 235 192 Power Systems High performance clustering Table 88 Service Procedures continued Task Procedure Repairing IBM
401. nkDown counter provides an accurate count of the number of LinkDowns for the link e To check link error counters without comparing against baseline for configuration changes sbin all_analysis e e During debug to query the fabric This can be helpful for performance problem debug To save history during debug sbin all_analysis s e During repair verification to identify errors or inadvertent changes by comparing the latest health check results to the baseline health check results To save history during queries sbin all_analysis s If the configuration is changed this includes part serial numbers a new baseline is required sbin all_analyis b The following are important setup files for Fast Fabric Health Check Details on how to set them up are found in the Fast Fabric Toolset Users Guide These are also referenced in Installing the fabric management server on page 105 Note These must be modified on each fabric management server e etc sysconfig fastfabric conf basic setup file e etc sysconfig iba chassis list of switch chassis e etc sysconfig iba esm_chassis list of switch chassis running embedded SM e etc sysconfig iba ports list of ports on Fabric MS format hca port and space delimited e etc syconfig iba iba_mon conf reporting thresholds for error counters This must be modified Setting up periodic fabric health checking Set up Periodic fabric health checking to ensure that nothi
402. nodepat switch name pattern gt output directory Improved healthcheck For even more accurate error monitoring you can also track the clearing of specific error counters And target those links that must have lower error counter thresholds based on their last error counter clears and run targeted error queries against them Example scripts for this would not be provided but some ideas on algorithms would be presented It is assumed that you are already familiar with the methods and scripts presented in Example health check To clear errors on a specific link instead of issuing iba_report C with the usual F nodepat swpat parameter you can use the nodeguid and port of a switch port on the link for the Focus For example the following command can be used to reset port 3 associated with node GUID 0x00066a0007000de7 iba_report o errors C F nodeguid 0x00066a0007000de7 port 3 The script that clears a link error counters must write the timestamp to a file that includes the node GUID and port in its name so that a health check script can refer to it This file would be called a link clear file When the script that clears all error counters runs it must delete link clear files for the individual links that were cleared in the time between the last all error counter clear and the current one When the health check script runs it must look for any link clear files and extract the node GUID and port and the timestamp o
403. nstallation and configuration procedure is completed This avoids the situation where various installation personnel are waiting on site for key parts of this procedure to be completed Depending on the arrival of units on site this is not always practical Therefore it is important to review thel Order of installation on page 70 and thelFigure 11 on page 71 This is to identify the merge points where a step in a major task or procedure being performed by one person is dependent on the completion of steps in another major task or procedure being performed by another person Before installing and configuring vendor or IBM InfiniBand switches obtain the following documentation e QLogic Switch Users Guide and Quick Setup Guide e QLogic Best Practices Guide for a Cluster From your installation planner obtain the QLogic and IBM switch planning worksheets on page 83 Installing and configuring InfiniBand switches when adding or expanding an existing cluster If you are adding or expanding InfiniBand network capabilities to an existing cluster then you might approach the InfiniBand switch installation and configuration differently than with a new cluster flow If it is a new installation skip this section The flow for InfiniBand switch installation and configuration is based on a new cluster installation but it indicates where there are variances for expansion scenarios The following table outlines how the new cluster installa
404. nteger switch 1 4 HCA port Remainder of switch 1 4 1 Table 30 Example topology gt 240 9125 F2As in 20 frames with 8 HCA connections in 8 InfiniBand subnets Frame Server HCA Connector Switch Connector 1 1 1 C65 Tl 1 L1 C1 1 1 1 C65 T2 2 L1 C1 1 1 1 C65 T3 3 L1 C1 1 1 1 C65 T4 4 L1 C1 1 1 2 C66 Tl 5 L1 C1 1 1 2 C66 T2 6 L1 C1 1 1 2 C66 T3 7 L1 C1 1 1 2 C66 T4 8 L1 C1 1 2 1 C65 T1 1 L1 C2 1 2 1 C65 T2 2 L1 C2 1 2 1 C65 T3 3 L1 C2 1 2 1 C65 T4 4 L1 C2 1 2 2 C66 Tl 5 L1 C2 1 2 2 C66 T2 6 L1 C2 1 2 2 C66 T3 7 L1 C2 1 2 2 C66 T4 8 L1 C2 Continue through to the last server in the frame 1 12 1 C65 T1 1 L1 C12 1 12 1 C65 T2 2 L1 C12 1 12 1 C65 T3 3 L1 C12 1 12 1 C65 T4 4 L1 C12 1 12 2 C66 T1 5 L1 C12 1 12 2 C66 T2 6 L1 C12 1 12 2 C66 T3 7 L1 C12 1 12 2 C66 T4 8 L1 C12 2 1 1 C65 T1 1 L2 C1 2 1 1 C65 T2 2 L2 C1 2 1 1 C65 T3 3 L2 C1 2 1 1 C65 T4 4 L2 C1 2 1 2 C66 Tl 5 L2 C1 2 1 2 C66 T2 6 L2 C1 2 1 2 C66 T3 7 L2 C1 34 Power Systems High performance clustering Table 30 Example topology gt 240 9125 F2As in 20 frames with 8 HCA connections in 8 InfiniBand subnets continued Fra
405. o the LPARs Run the following command to count the number of active HCA ports For xCAT xdsh nodegroup with all nodes v ibv_devinfo grep PORT_ACTIVE wc 1 Note An HCA has two ports If the number returned by the system divided by two e Matches the number of HCAs in the cluster continue with the procedure Verify all HCAs are available to the LPARs e Does not match the number of HCAs determine the inactive ports and check their cabling state by following step 8 e Does not match the number of HCAs and the ports are properly connected continue with step Verify that all ports are active by running the command For xCAT xdsh nodegroup with all nodes v ibv_devinfo egrep hca_id node_guid port PORT_DOWN For each port listed by the system ensure that the respective cable is connected firmly to the adapter and with the switch e If there are ports unused by purpose you might want to consider enabling the auto port detection feature of eHCA especially In order to enable that feature add the following line to the file etc modprobe conf local options ib_ehca nr_ports 1 e In order to get a full list of supported options run the command modinfo ib_ehca Verify that all servers are powered on Run the following command to return the list of HCAs that are visible to the system but not available For xCAT xdsh nodegroup with all nodes v Isdev Cc adapter grep ib grep v Available Restart any LPAR
406. o the Subnet Manager hosts through the same cluster VLAN Documentation QLogic Fabric Viewer Users Guide When to use After you have setup the switch for communication to the Fabric Viewer this can be used as the main point for queries and interaction with the switches You will also use this to update the switch code simultaneously to multiple switches in the cluster You will also use this during install time to set up Email notification for link status changes and SM and EM communication status changes High performance computing clusters using InfiniBand hardware 21 Table 22 Fabric viewer overview continued Fabric viewer Details Host Any Linux or Microsoft Windows host Typically these hosts would be one of the following items e Fabric management server e System administrator or operator workstation How to access Start the graphical user interface GUI from the server on which you install the fabric viewer or use a remote window access to start it VNC is an example of a remote window access application Email notifications The email notifications function can be enabled to trigger emails from the fabric viewer The following table provides an overview of email notifications Table 23 Email notifications overview Email notifications Details Description A subset of events can be enabled to trigger an email from the Fabric Viewer These are link up and down
407. o the analysis directory var opt iba analysis latest and look for files ending in changes Using the Fast Fabric Toolset Users Guide you can determine what information is contained within each file This helps_you to determine what has changed A high level explanation of the changes file format is found in Interpreting health check changes files on page 167 heck changes files on page 167 If you are experienced in interpreting the output of the diff command ou might prefer to interpret changes as they are found in files with a diff extension see health check diff files on page 172 If nothing is changed then you must change back to the original configuration If the configuration changes that were found are legitimate then take a new baseline by using the procedure in Re establishing Health Check baseline on page 244 Hints on using iba_report The iba_report function helps you to monitor the cluster fabric resources While under most monitoring circumstances you can rely on health checks as described in Health checking on page 157 you might want to do some advanced monitoring by using the iba_report function on the fabric management server Some suggested parameters are in the following table You can use these parameters of iba_report to get detailed information Some examples of a uses of iba_report follow the table This information is not meant to provide exhaustive coverage of iba_report
408. ocedures Use this table if you have a particular type of service task in mind These service procedures reference service procedures and information in other documents however if there are any considerations that are unique to clusters they are highlighted in these procedures The table is broken into several sections e Special procedures e Monitoring procedures e Diagnosis procedures e Repair procedures e Verify procedures If you are trying to diagnose a symptom begin with the Table of symptoms on page 187 before proceeding with this table High performance computing clusters using InfiniBand hardware 191 Table 88 Service Procedures Task Procedure Special procedures Restarting the cluster Restarting the cluster on page 246 Restarting or powering off an IBM system Restarting or powering off an IBM system on page 247 Getting debug data from switches and Subnet Managers Using the script command while collecting switch information Mapping fabric devices to physical locations ing fabric devices on Counting the number of fabric devices Counting devices on page 248 Preparing for smoother handling of emergency power off Handling emergency power off situations on page 251 EPO situations Setting up Cluster xCAT Event Management for the iguring xCAT event management on fabric again Monitoring procedures Best practice for mo
409. ocedures for unconfigured processors that are found in the System Service Guide e When all processors are available continue with the procedure to verify memory 3 If processor deconfiguration persists call your next level of hardware support 4 Verify that processors are running at expected frequencies For xCAT xdsh nodegroup with all nodes v usr pmapi tools pmcycles M Verify processors ends here Verifying the availability of memory resources To verify the availability of memory resources perform the following steps 1 Run the following command to see the differences between physical memory size and available memory size For xCAT xdsh nodegroup with all nodes v Isattr E 1 mem awk if 1 goodsize g 2 else p 2 END d p g print d grep v 0 Note The result of the awk parameter is the difference between physical memory and available memory Unless there is unconfigured memory if you remove the grep v 0 portion of the command every logical partition must return 0 zero 2 If the operating system has access to all memory resources you would be returned to a command prompt without data You can exit the diagnostic tests Memory requires configuration check SFP on the HMC controlling the server LPAR and service as instructed High performance computing clusters using InfiniBand hardware 217 4 Note Before you perform a memory service action ensure that the memory was no
410. of HCAs depends on the type of HCAs used There is one HCA per physical PCI HCA card Do not forget the HCAs used in the InfiniBand Management nodes The number of HCAs per IBM GX or GX HCA depends on the number of logical partitions defined There is a logical HCA per each logical partition defined to use the HCA For more information see GX or GX host channel adapter on page 7 Counting end ports Use this information to count the number of end ports on the fabric The end ports depend on the type of host channel adapters HCAs used and the number of cables that are connected The number of end ports for PCI HCAs is equal to the number of connected cable connectors on the PCI HCAs The IBM GX or GX HCA has two ports connected to logical HCAs Counting ports Use this information to count the number of ports on the fabric The total number of ports is composed of all the ports from all of the devices in the fabric In addition there is a port used for management of the device This is not to be confused with a switch management port that connects to a cluster virtual local area network VLAN Instead each switch chip and HCA device has a management port associated with it too High performance computing clusters using InfiniBand hardware 249 Table 95 Counting Fabric Ports Device Number of ports Spine switch chip 25 24 for fabric 1 for management Leaf switch chip 13 number of connected
411. of little practical use it is advised that the Logical HCA counters are normally not collected For more information about SMA and PMA function see the InfiniBand architecture documentation Related concepts IBM GX or GX host channel adapter on page 7 The IBM GX or GX host channel adapter HCA provides server connectivity to InfiniBand fabrics Device drivers IBM provides device drivers for the AIX operating system Device drivers for the Linux operating system are provided by the distributors The vendor provides the device driver that is used on Fabric Management Servers Related concepts Management subsystem function overview on page 13 This information provides an overview of the servers consoles applications firmware and networks that comprise the management subsystem function IBM host stack The high performance computing HPC software stack is supported for IBMSystem p HPC Clusters The vendor host stack is used on Fabric Management Servers 12 Power Systems High performance clustering Related concepts Management subsystem function overview This information provides an overview of the servers consoles applications firmware and networks that comprise the management subsystem function Management subsystem function overview This information provides an overview of the servers consoles applications firmware and networks that comprise the management subsystem function The manage
412. og ng restart apparmor by using the etc init d boot apparmor restart command Restart condition response association by using the startcondresp lt condition name gt lt response name gt command A short time later the following file is displayed in the var opt xcat_err_mon file monerrorlog_run f_fabnotices var log xcat syslog fabric notices 234 Power Systems High performance clustering 14 Check the etc syslog ng syslog ng conf configuration file to ensure that the appropriate entries were added by monerrorlog Typically the entries look similar to the following example However monerrorlog uses a different name from fabnotices_fifo in the destination and log entries It uses a pseudo random name that looks similar to fifonfJGQsBw destination fabnotices fifo pipe var log xcat syslog fabric notices group root perm 0644 log source src filter f_fabnotices destination fabnotices fifo Reconfiguring xCAT on the Linux operating system ends here Recovering from an HCA preventing a logical partition from activating Use this procedure to recover a logical partition when a failed host channel adapter HCA is preventing the partition from activating During initial program load IPL a logical partition can be prevented from activating because an HCA has failed To unassign HCAs from partition profiles complete the following steps on the Hardware Management Console HMC 1 Go to the Server and Partition w
413. ogic fabric management applications Use this information to plan for the QLogic Fabric Management applications Planning the fabric manager and fabric Viewer This information is used to plan for the Fabric Manager and the Fabric Viewer 56 Power Systems High performance clustering Most details are available in the Fabric Manager and Fabric Viewer Users Guide from QLogic This information highlights information from a cluster perspective The Fabric Viewer is intended to be used as documented by QLogic However it is not scalable and thus would be only used in small clusters when necessary The Fabric Manager has a few key parameters that can be set up in a specific manner for IBM System p HPC clusters The following items are the key planning points to for your Fabric Manager in an IBM System p HPC cluster Note See Figure 9 on page 58 and Figure 10 on page 58 for illustrations of typical fabric management configurations e For HPC clusters IBM has only qualified use of a host based Fabric Manager HFM The HFM is typically referred as host based Subnet Manager HSM because the Subnet Manager is considered the most important component of the Fabric Manager e The host for HSM is the fabric management server For more information see Planning for fabric management server on page 64 The host requires one host channel adapter HCA port per subnet to be managed by the Subnet Manager If you have more than four subne
414. ogic software This comes with the CD This is important for obtaining software updates and service 8 F6 M2 Configure the host based Fabric Manager by updating the configuration file using the Fabric Manager Users Guide For IFS 5 the configuration file is etc sysconfig qlogic_fm config Note For more information about Fabric Management configuration see the Fabric manager on page 17 and Planning the fabric manager and fabric Viewer on page 56 For IFS 5 The configuration file for IFS 5 etc sysconfig qlogic_fm xml allows for declaring common attribute values for any component in the FM or common attribute values across different instances of an FM component SM PM BM or FE or you can define a specific attribute value for a given instance This allows you to change fewer lines in the configuration file It is preferred that you review the QLogic Fabric Manager Users Guide s section on Fabric Manager Configuration There is a separate instance of the various fabric management components running to manage each subnet In the etc sysconfig view_fm config file you must configure each instance of each component a Configure the common SM attributes by going the section that begins with the comment lt Common SM Subnet Manager attributes gt and update the following lines 1 To start all instances of the SM lt Start gt 1 lt Start gt lt default SM startup for all instances gt 2 To set
415. ok for configuration changes and fix any unexpected ones that you find For more information see Finding and interpreting configuration chang 180 Expected configuration changes are those that relate to repaired devices or intended configuration changes High performance computing clusters using InfiniBand hardware 245 5 If any problems were found fix them and restart this procedure Continue to fix them and restart this procedure until you are satisfied that a repair is successful Or continue to fix them and restart this procedure till a configuration change has been successful and that neither has resulted in unexpected configuration changes 6 If there were expected configuration changes perform the procedure in Re establishing Health Check baseline on page 244 This procedure ends here Restarting the cluster Use this procedure if you have performed maintenance that requires a restart of the entire cluster If you are performing maintenance that requires you to restart an entire cluster the following items must be considered Note When all analysis is referenced if you have created a script to run all_analysis substitute that in the procedure For an example of such a script see Healthcheck control script on page 277 When you are asked to clear errors you might want to use a script like that described in 1 Ensure that you have a baseline health check that can be used to check against when the clu
416. om the baseline to the latest health check run See While the following information is intended to be comprehensive in describing how to interpret the health check results for the latest information about health check see the Fast Fabric Users Guide When any of the health check tools are run the overall success or failure is indicated in the output of the tool and its exit status The tool indicates which areas had problems and which files must be reviewed The results from the latest run can be found in FF_ANALYSIS_DIR latest Many files can be found in this directory which indicate both the latest configuration of the fabric and errors or differences found during the health check Should the health check fail the following paragraphs decide an order for reviewing these files If the s option save history was used when running the health check a directory would be crated with the date and time of the failing run as the name The directory would be created under FF_ANALYSIS_DIR in which case that directory can be consulted instead of the latest directory shown in the following examples First review the results for any esm if using embedded subnet managers or hostsm if using host based subnet managers health check failures If the SM is misconfigured or not running it can cause other health checks to fail In which case the SM problems must be corrected first then the health check must be rerun and other problems must then be revie
417. omponents that are part of a cluster Servers e I O devices InfiniBand network devices e Frames racks e Service virtual local area network VLAN that includes the following items Hardware Management Console HMC Ethernet devices xCAT Management Server e Management Network that includes the following items xCAT Management Server Servers to provide operating system access from the CAT InfiniBand switches Fabric management server AIX Network Installation Management NIM server for servers with no removable media Linux distribution server for servers with no removable media e System management applications that include the following items HMC xCAT Fabric Manager Other QLogic management tools such as Fast Fabric Toolset Fabric Viewer and Chassis Viewer e Physical characteristics such as weight and dimensions e Electrical characteristics e Cooling characteristics The Cluster information resources on page 2 provide the required documents and other Internet resources that help you plan your cluster It is not an exhaustive list of the documents that you need but it would provide a good launch point for gathering required information 26 Power Systems High performance clustering The can be used as a road map through the planning process If you read through the Cluster planning overview without following the links you gain an understanding of the overall cluster planning str
418. on for i in list of SM instances typically 0 1 2 3 do usr local iview util sm_query i i smShowGroups done There must be just one group with all the HCA devices on the subnet being part of the group mtu 5 indicates 4K mtu 4 indicates 2K 240 Power Systems High performance clustering Oxf f12401bf ff f0000 00000000FfFFFFFFF c000 qKey 0x0Q0000000 pKey OxFFFF mtu 5 rate 3 life 19 sl 0 0x00025500101a3300 F 0x00025500101a3100 F 0x00025500101a8300 F 0x00025500101a8100 F 0x00025500101a6300 F 0x00025500101a6100 F 0x0002550010194000 F 0x0002550010193e00 F 0x00066a00facade01 F Recovering to 4K maximum transfer units in the Linux Use this procedure if your cluster must be running with 4K maximum transfer units MTUs but it has already been installed and is not currently running at 4K MTU This is only valid for clusters by using the Linux operating system To complete the recovery to 4K MTU the following overall tasks must be completed 1 Configure the Subnet Manager to 4K MTU 2 Set the host channel adapter HCAs to 4K MTU 3 Verify that the subnet is set up properly The detailed procedures for these tasks are provided in the following section 1 Configure the Subnet Manager for 4K MTU If you are running a host based Subnet Manager complete the following steps Note These instructions are written for recovering a single fabric management server subnet at a time a Log on to the fabric management server
419. on tool xCAT is used to loosely integrate the QLogic management subsystem with the IBM management subsystem It provides two major functions that can be used to manage the fabric 1 Remote logging and event management 2 Remote command execution 152 Power Systems High performance clustering Remote logging and event management is used to consolidate logs and serviceable events from the many components in a cluster in one location the xCAT Management Server xCAT M5 To set this up see see the logs flow ng ib the ri Togs rom the management applications to xCAT see management on page 23 Remote command execution xdsh gives you the capability to issue commands to the switches and the fabric management server which runs the host based subnet manager and Fast Fabric Toolset This helps you to issue commands to these entities from the xCAT MS just as you can do to the nodes in the cluster You can do this interactively or you can use the capability by writing scripts that xdsh to access the switches and Fast Fabric Toolset Using this you to run monitoring or management scripts omy the tt location of the xCAT MS To set up this capability see For more information about how to use remote command execution see Remotel and QLogic subnet manager The QLogic subnet manager configures and maintains the fabric ait log flow to xCAT event There might be multiple instances of the SM running on a pa
420. oolset Users Guide e The fwVersion command can be used If issued using Fast Fabric tools the cmdall command can be used to issue this command to all switches simultaneously e For updating multiple switches simultaneously the Fast Fabric Toolset should be used 9 W6 Finalize the configuration for each InfiniBand switch You are setting up the final switch and Subnet Manager configuration These values should have been planned in the planning phase see lon page 30 and the worksheets on page 83 e Subnet Manager priority e MTU e LMC e GID prefix e Node appearance disappearance log threshold For QLogic switches the pertinent commands and User Manuals and methods to be used by this procedure follow e You can work with each switch individually using a command on its CLI e If the Fast Fabric Toolset is installed on the Fabric Management Server at this point you can check the code levels of multiple switch simultaneously using techniques found in the Fast Fabric Toolset Users Guide Set the chassis MTU value according to the installation plan See the switch planning worksheet or Planning maximum transfer unit MTU on page 51 e For setting chassis MTU use the ismChassisSetMtu lt value gt command on each switch 4 2K 5 4K e For each embedded Subnet Manager use the following commands for final configuration Set the priority smPriority lt priority gt For LMC 2 smMasterLMC 2 For 4K
421. operating system event and for any errors found associated with the switch link recorded previously run the procedure in Interpreting error counters on page 255 Look for a pattern of errors that can be traced back to the switch link associated with the operating system event Use the technique found in Interpreting remote errors on page 260 If no pattern of errors is discernible and there are no local switch link errors that can isolate to a root cause for the operating system event call your next level of service Diagnosing events reported by the operating system ends here Diagnosing performance problems This is a generic procedure for isolating performance problems Performance degradation can result from several different problems including e a hardware failure e Installation problems e Configuration issues Before calling your next level of service do the following to isolate a performance problem The detailed procedure follows 1 Look for hardware problems by using the procedure in Checking for hardware problems affecting the fabric on page 214 224 Power Systems High performance clustering 2 3 4 Look for fabric configuration problems by using the procedure in Checking for fabric configuration and functional problems on page 214 Look for configuration problems in the IBM systems Check for HCA availability processor availability and memory availability a For AIX LPAR
422. or 1 1 1 C65 T1 1 L1 C1 1 1 1 C65 T2 2 L1 C1 1 1 1 C65 T3 3 L1 C1 1 1 1 C65 T4 4 L1 C1 1 1 2 C66 T1 5 L1 C1 1 1 2 C66 T2 6 L1 C1 1 1 2 C66 T3 7 L1 C1 1 1 2 C66 T4 8 L1 C1 1 2 1 C65 T1 1 L2 C1 1 2 1 C65 T2 2 L2 C1 1 2 1 C65 T3 3 L2 C1 1 2 1 C65 T4 4 L2 C1 1 2 2 C66 T1 5 L2 C1 1 2 2 C66 T2 6 L2 C1 1 2 2 C66 T3 7 L2 C1 1 2 2 C66 T4 8 L2 C1 Continue through to the last server in the frame 1 12 1 C65 T1 1 L12 C1 1 12 1 C65 T2 2 L12 C1 1 12 1 C65 T3 3 L12 C1 1 12 1 C65 T4 4 L12 C1 1 12 2 C66 T1 5 L12 C1 1 12 2 C66 T2 6 L12 C1 1 12 2 C66 T3 7 L12 C1 1 12 2 C66 T4 8 L12 C1 2 1 1 C65 T1 1 L1 C2 2 i 1 C65 T2 2 L1 C2 2 1 1 C65 T3 3 L1 C2 2 1 1 C65 T4 4 L1 C2 2 1 2 C66 T1 5 L1 C2 2 1 2 C66 T2 6 L1 C2 2 1 2 C66 T3 7 L1 C2 2 1 2 C66 T4 8 L1 C2 2 2 1 C65 T1 1 L2 C2 44 Power Systems High performance clustering Table 34 Example topology gt 140 9125 F2As in 10 frames with 8 HCA connections in 8 InfiniBand subnets continued Frame Server HCA Connector Switch Connector 2 2 1 C65 T2 2 L2 C2 2 2 1 C65 T3 3 L2 C2 2 2 1 C65 T4 4 L2 C2 2 2 2 C66 T1 5 L2 C2 2 2 2 C66 T2 6 L2 C2 2 2 2 C66 T3 7 L2 C2 2 2 2 C66 T4 8 L2 C2 Continue through to the last server in the frame 2 12 1 C65 T1 1 L12 C2 2 12 1 C65 T2 2
423. or changes in the product s and or the program s described in this publication at any time without notice Any references in this information to Websites not owned by the manufacturer are provided for convenience only and do not in any manner serve as an endorsement of those Websites The materials at those Websites are not part of the materials for this product and use of those Websites is at your own risk The manufacturer may use or distribute any of the information you supply in any way it believes appropriate without incurring any obligation to you Any performance data contained herein was determined in a controlled environment Therefore the results obtained in other operating environments may vary significantly Some measurements may have been made on development level systems and there is no guarantee that these measurements will be the same on generally available systems Furthermore some measurements may have been estimated through extrapolation Actual results may vary Users of this document should verify the applicable data for their specific environment Information concerning products not produced by this manufacturer was obtained from the suppliers of those products their published announcements or other publicly available sources This manufacturer has not tested those products and cannot confirm the accuracy of performance compatibility or any other claims related to products not produced by this manufacturer Questions on the
424. or damaged non IBM cable part numbers e Check the availability of HCAs to the operating system before any application is run to verify network operation High performance computing clusters using InfiniBand hardware 145 e If you find a problem with a link that might be caused by a faulty HCA or cable contact your service representative for repair e This is the final procedure in installing an IBM System p cluster with an InfiniBand network The following procedure provides additional details that can help you perform the verification of your network 1 To a 146 verify the network topology complete the following steps Check all power LEDs on all of the switches and servers to ensure that they are on See the vendor switch Users Guide and worldwide Customized Installation Instructions or IBM systems service documentation for information about proper LED states Check all LEDs for the switch ports to verify that they are properly lit See the vendor switch Users Guide and the IBM HCA worldwide Customized Installation Instructions or IBM systems service documentation for information about proper LED states Check the Service Focal Point on the Hardware Management Console HMC for server and HCA problems Perform service before proceeding If necessary contact IBM Service to perform service Verify that switches have proper connectivity and setup on the management subsystem If you find any problems you must check
425. or maximum pHyp response times change the default MaxAttempts value from 3 to 8 This controls the number of times that the SM attempts before deciding that it cannot reach a device e Do not start the Baseboard Manager BM Performance Manager PM or Fabric Executive FE unless you require the Fabric Viewer Which would not be necessary if you are running the Host based fabric manager and FastFabric Toolset e There are other parameters that can be configured for the Subnet Manager However the defaults are typically chosen for Subnet Manager Further details can be found in the QLogic Fabric Manager Users Guide Examples of configuration files for IFS 5 Example setup of host based fabric manager for IFS 5 The following is a set of example entries from an qlogic_fm xml file on a fabric management server which manages two subnets where the fabric manager is the primary one as indicated by a priority 1 These entries are found throughout the file in the startup section and each of the manager sections in each of the instance sections In this case instance 0 manages subnet 1 and instance 1 manages subnet 2 and instance 2 manages subnet 3 and instance 3 manages subnet 4 Note Comments made in boxes in this example are not found in the example file They are here to help clarify where in the file you would find these entries or give more information Also the example file has many more comments that are not given in this example You m
426. ort This query returns the logical HCA side of a link as the first port of the link and the logical switch port as the second port in the link High performance computing clusters using InfiniBand hardware 201 a If the baseline health check has been run use the following command If it has not been run use step 3b grep A 1 Og GUID port var opt iba analysis basel ine fabric links b If the baseline health check has not been run you must query the live fabric by using the following command iba_report o links grep A 1 Og GUID port Example results gt grep A 1 Og 0x00025500103a7200 1 var opt iba analysis basel ine fabric l ink 60g 0x00025500103a7200 1 CA IBM G2 Logical HCA lt gt 0x00025500103a7202 2 SW IBM G2 Logical Switch 1 4 The logical switch port is in the last line of the results of the query Get the name for the logical switch This tells you which logical switch attaches to the physical switch port lt gt logical switch GUID port SW logical switch name IBnodeDescription Example results Logical Switch 1 5 Find the Logical Switch GUID This query returns the logical switch side of a link as the first port of the link and the physical switch port as the second port in the link a If the baseline health check has been run use the following command If it has not been run use step 5b grep A 1 Og GUID var opt iba analysis baseline fabric links b If the baseline
427. ower during servicing Connect all devices installed in a rack cabinet to power devices installed in the same rack cabinet Do not plug a power cord from a device installed in one rack cabinet into a power device installed in a different rack cabinet An electrical outlet that is not correctly wired could place hazardous voltage on the metal parts of the system or the devices that attach to the system It is the responsibility of the customer to ensure that the outlet is correctly wired and grounded to prevent an electrical shock CAUTION Do not install a unit in a rack where the internal rack ambient temperatures will exceed the manufacturer s recommended ambient temperature for all your rack mounted devices Do not install a unit in a rack where the air flow is compromised Ensure that air flow is not blocked or reduced on any side front or back of a unit used for air flow through the unit Consideration should be given to the connection of the equipment to the supply circuit so that overloading of the circuits does not compromise the supply wiring or overcurrent protection To provide the correct power connection to a rack refer to the rating labels located on the equipment in the rack to determine the total power requirement of the supply circuit For sliding drawers Do not pull out or install any drawer or feature if the rack stabilizer brackets are not attached to the rack Do not pull out more than one drawer at a time The rack mig
428. own and errors to be logged IBM power firmware System Service information Concurrent updates have no impact e Non concurrent updates might cause links to go down and errors to be logged Fabric Manager including SM Fabric Manager Users Guide Subnet recovery capabilities are lost during the update If a hardware error occurs at this time See Updating Fabric Manager code application performance might Fast Fabric Toolset Users Guide suffer Switch Chassis Management Switch Users Guide No impact to the fabric Fast Fabric Toolset Users Guide Ifa hardware error occurs during this time it is not reported unless See Updating switch chassis code the error still exists when the new code comes up Updating Fabric Manager code This information provides guidance for updating Fabric Manager code 176 Power Systems High performance clustering The fabric manager code updates are documented in the Fabric Manager Users Guide but the following items must be considered The following information is about the fabric management server which includes the host based fabric manager and Fast Fabric Toolset e The main document for fabric management server code updates is QLogic OFED Users Guide e To determine the software package level on the fabric management server use iba_config The software level is displayed at the top of the first screen e For the host based Subnet Managers and
429. p guide you through the process of installing a cluster fabric that incorporates InfiniBand switches IBM server hardware supports clustering through InfiniBand host channel adapters HCAs and switches Information about how to manage and service a cluster by using InfiniBand hardware is included in this information The following figure shows servers that are connected in a cluster configuration with InfiniBand switch networks fabric The servers are connected to this network by using IBM GX HCAs In System p Blade servers the HCAs are based on PCI Express PCle Notes 1 Switch refers to the InfiniBand technology switch unless otherwise noted 2 Not all configurations support the following network configuration See the IBM sales information for supported configurations Figure 1 InfiniBand network with four switches and four servers connected Cluster information resources The following tables indicate important documentation for the cluster where to get it and when to use it relative to Planning Installation and Management and Service phases of a clusters life The tables are arranged into categories of components e General cluster information resources on page 3 e Cluster hardware information resources on page 3 e Cluster management software information resources on page 4 2 Power Systems High performance clustering e Cluster software and firmware information resources on page 5 Gen
430. packets would get through between the source destination pair associated with the affected packet Threshold minimum actionable 1 Threshold maximum in 24 hours 1 Other error counters These error counters are of lesser importance VL15Dropped VL15Dropped errors indicate packets have been dropped on Virtual Lane 15 which is reserved for SM traffic This is not unusual especially when the SM is issuing multiple concurrent SMA packets during discovery and fabric sweeps Therefore the counter is normally ignored except when debugging problems that might be related to dropping SM packets such as the SM marking available HCA ports as having disappeared Therefore the need for debug is driven off seeing truly available fabric resources disappearing in the SM logs If you must debug VL15Dropped errors one technique is to create an iba_mon conf file that sets the VL15Dropped counter threshold to a non zero value and run iba_report o errors in a cronjob to track the VL15Dropped errors However be sure to use the F parameter on iba_report and pick a time for the cronjob that would not conflict with other cronjobs running iba_report all_analysis or fabric_analysis Performance impact Because SMA packets are small the retransmits that occur when there are VL15Drops rarely hass no impact to application performance unless the SM is incorrectly noting the disappearance of fabric resources High performance computing clusters usi
431. pat sbin all_analysis s c IBAMON 24 gt gt ANALYSISLOG 2 gt amp 1 fi Keeping in mind that the healthcheck script calls all_analysis if there are no errors reported The following example is what would be seen in ANALYSISLOG It starts out with the comment about when the script was run and how many hours since the last error counter clear along with which threshold file it is going to pass to all_analysis Note that all_analysis has returned All OK HEE AE A EE A A EEE EE EE EEA EE EE EE EE EE 19 00 01 03 06 09 1 hours since last recorded counter clear using root fmtools health Configfiles iba_mon conf 1 for thresholds EE EE EE A EEE AE AE EE EE EE EE EE EE EE fabric_analysis Fabric s OK chassis_analysis Chassis OK all_analysis All OK The following example illustrates errors being found several hours after the last error counter clear In this case the subnet connected to the Fabric MS HCA 2 port 2 has errors that are recorded in var opt iba analysis 2009 03 06 18 00 01 fabric 2 2 errors Heda tt td at oe Ee Ee aH ea a ee Ee ad Be Bd a aa Ee a a a a a Ba Be aE 21 00 01 03 06 09 3 hours since last recorded counter clear using root fmtools health Configfiles iba_mon conf 3 for thresholds Fede td td bd oe be ae ae aa a a a Ee a Ee Ee bed aa aa a a a a a a a a a RE fabric_analysis Port 2 2 Fabric possible errors found 278 Power Systems High performance clustering See var opt iba analysis
432. perform tasks efficiently Also if you are adding new servers into an existing cluster you might install one or more new HMCs to manage the new servers If this is not a new cluster installation you must not add more HMCs to the cluster H2 M2 Before proceeding ensure that the server frames and systems are not powered on and are not attached to the service VLAN H2 M2 Perform the initial installation and configuration of the HMCs using the HMC documentation for more information see Managing the Hardware Management Console Note HMC and IBM managed server installation documentation directs the installer to enable DHCP on the HMC At that point in the HMC and managed server installation documentation stop the HMC installation procedure and go to step 4 You will be instructed to return to the HMC documentation after the appropriate steps have been taken in this procedure H3 M2 If you are installing a cluster with a single HMC and you are not enabling a CRHS go to step 6 on page 104 H4 M2 To perform installation of a DHCP server that is not an HMC use the following procedure Notes Perform this procedure if you are e Installing a new cluster with xCAT e Adding an HMC to a cluster that already has xCAT e Adding an HMC to a cluster with only a single HMC e Adding an InfiniBand network to an existing cluster with multiple HMCs that is not currently using xCAT a To enable the CRHS with xCAT to connect corre
433. ping ports proceed to the next step d If the problem was not fixed by swapping ports then the failing FRU is either the cable or the HCA Return the switch port end of the cable to the original switch port e If there is a known good HCA port available for use swap between the failing HCA port cable end to the known good HCA port Then do the following steps Otherwise proceed to the next step 1 Use the procedure in Verifying link FRU replacements on page 244 2 If the problem was fixed replace the HCA by using the Repair and Verify procedures for the server and HCA When the HCA is replaced go to step 18 on page 213 3 If the problem was not fixed the problem is the cable Engage QLogic for repair When the repair has been made go to step 18 on page 213 f If there is not a known good HCA port available for use and the problem has been determined to be the HCA or the cable replace the FRUs is the following order 1 Engage QLogic to replace the cable and verify the fix by using the procedure in link FRU replacements on page 244 If the problem is fixed go to step 18 on page 213 Note Before replacing the cable check the manufacturer and part number to ensure that it is an approved cable Approved cables are available in the IBM Clusters with the InfiniBand Switch web site referenced in Cluster information resources on page 2 2 If the cable does not fix the problem replace the HCA and ver
434. places it into a file Note Some terminal emulation utilities would allow you to capture the terminal session into a log file This might be an acceptable alternative to using the script command To do this perform the following steps 1 On the host from which you will log in to the switch run script lt dir gt lt switchname gt capture lt timestamp gt e Choose a directory into which to store the data e It is good practice to have the switches name in the output file name e It is good practice to put a timestamp into the output file name to differentiate it from other data collected from the same switch If you use the following format you would be able to sort the files easily lt 4 digit year gt lt 2 digit month gt lt 2 digit day gt _ lt 2 digit hour gt lt 2 digit minute gt telnet or ssh into the switches CLI by using the methods described in the Switch Users Guide Run the command to get the data that is being requested Exit from the switch Issue CTRL D to stop the script command from collecting more data oar op You can now forward the output file to the appropriate support team This procedure ends here Capture data for Fabric Manager and Fast Fabric problems If there is a suspected problem with the Fabric Manager or Fast Fabric software you can use iba_capture to capture data for debugging purposes The iba_capture is documented in the Fast Fabric Users Guide Indications of possible software proble
435. plan to disable it when booting large portions of the cluster Otherwise many logs are mailed Consult the xCAT monitoring How to to get the latest information about available response scripts 66 Power Systems High performance clustering Consider creating response scripts that are specialized to your environment For example you might want to email an account other than root with log entries See RSCT and xCAT documentation for how to create such scripts and where to find the response scripts associated with Log event anytime Email root anytime and LogEventToxCATDatabase which can be used as examples e Plan regular monitoring of the file system containing var on the xCAT MS to ensure that it does not get overrun The configuration settings planned here can be recorded in the xCAT planning worksheets on page 89 Planning Event Monitoring with xCAT on the Cluster Management Server ends here Planning to run remote commands with QLogic from the management server Remote commands can be started from the management server which makes it simpler to perform commands against multiple switches or fabric management servers simultaneously and remotely It also has the ability to create scripts that run on the Cluster Management Server and can be triggered based on events on servers that can be monitored only from the Cluster Management Server Planning to run remote commands with QLogic from xCAT MS Remote commands can be started
436. ple configurations using only 9125 F2A fervers on page 33 ervers on page 33 and this example is that there are more InfiniBand subnets than an 8203 E4A can support In this case the 8203 E4As connect only to two of the InfiniBand subnets The following is an example of 140 9125 F2A compute servers in 10 frames connected to eight subnets along with 8 8203 E4A storage servers This setup requires 14 9125 F2A servers in a frame The advantage to this topology over one with 12 9125 F2A servers in a frame is that there is still an easily understood mapping of connections Moreover you can distribute the 8203 E4A storage servers over multiple leafs to minimize the probability of congestion for traffic to from the storage servers Frame 11 contains the 8203 E4A servers High performance computing clusters using InfiniBand hardware 43 You can calculate connections as shown in the following example Leaf number server number in frame Leaf connector number frame number Server number Frame number Leaf number Leaf connector number HCA number For 9125 F2A gt C65 for switch 1 4 C66 for switch 5 8 HCA port Remainder of switch 1 4 1 Table 34 Example topology gt 140 9125 F2As in 10 frames with 8 HCA connections in 8 InfiniBand subnets Frame Server HCA Connector Switch Connect
437. pleted date S1 Place model servers on floor 4 20 2010 M3 Cable the model servers and BPAs to 4 20 2010 service VLAN S2 Start the model servers 4 20 2010 S3 Verify discovery of the system 4 20 2010 S5 Verify system operation 4 20 2010 Planning Installation Flow ends here Planning for an HPC MPI configuration Use this information to plan an IBM high performance computing HPC message passing interface MPI configuration The following assumptions apply to HPC MPI configurations e Proven configurations for an HPC MPI configuration are limited to Eight subnets for each cluster Up to eight links out of a server e Servers are shipped preinstalled in frames e Servers are shipped with a minimum level of firmware to enable the system to perform an initial program load IPL to POWER Hypervisor standby Because HPC applications are designed for performance it is important to configure the InfiniBand network components with performance as a key element The main consideration is that the LID Mask Control LMC field in the switches must be set to provide more local identifiers LIDs per port than the default of one This provides more addressability and better opportunity for using available bandwidth in the network The HPC software provided by IBM works best with an LMC value of 2 The number of LIDs is equal to 2 where x is the LMC value Therefore the LMC value of 2 that is required for IBM 74 Power Syst
438. ponds to the appropriate number of devices that you have in the IBM systems that have been restarted For more information see Counting devices on page 248 Keep in mind that the devices might come up over several scans of the fabric by the Subnet Managers so add up the appearance counts over several log entries However the following health check takes care of checking for any missing devices 3 Run the sbin iba_report C o none command to clear error counters on the fabric ports before doing a health check on the current state Otherwise the reboot might have errors 4 If possible wait about 10 minutes before you can run health check to look for errors and compare against the baseline configuration The wait period is to allow for error accumulation Otherwise run the health check now to check for configuration changes which include any nodes that have fallen off the switch a Run the all_analysis command For more information see Health checking on page 157 and the Fast Fabric Toolset Users Guide b Look for configuration changes and fix any that you find For more information see c Look for errors and fix any that you find For more information see the Table of symptoms on page 187 5 If you did not wait 10 minutes before running the health check rerun it after approximately 10 minutes to check for errors High performance computing clusters using InfiniBand hardware 247 a Run the all_analysis com
439. ponsibilities to change because of agreements between the customer and the supporting hardware teams Note Given the complexity of typical cluster installations trained and authorized installers must be used 68 Power Systems High performance clustering Table 37 Installation responsibilities Installation responsibilities Customer responsibilities e Install customer setup units according to server model e Update system firmware e Update InfiniBand switch software including Fabric Management software e If applicable install and customize the fabric management server including The connection to the service virtual local area network VLAN Required vendor host stack If applicable the QLogic Fast Fabric Toolset e Customize InfiniBand network configuration e Customize host channel adapter HCA partitioning and configuration e Verify the InfiniBand network topology and operation IBM responsibilities e Install and service IBM installable units servers and adapters and HCAs and switches with an IBM machine type and model e Cable the InfiniBand network if it contains IBM cable part numbers and switches with an IBM machine type and model e Verify server operation for IBM installable servers Third party vendor responsibilities Note This information does not detail the contractual possibilities for third party responsibilities By contract the customer might be responsible for some of these activit
440. ppropriate people For QLogic embedded Subnet Managers use the smControl start command the smPmBmStart enable command and the smConfig startAtBoot yes command This command can be issued at the switch command line or using Fast Fabric s cmdall command For QLogic host based FabricManagers under 144 Power Systems High performance clustering IFS 5 use the qlogic_fm start command as directed in Installing the fabric management server on Contact the person installing the Fabric Management Server and indicate that the Fabric Manager might not be started on the Fabric Management Server 7 This procedure ends here If you are responsible for verifying the InfiniBand network topology and operation you can proceed to that procedure Attaching cables to the InfiniBand network ends here Verifying the InfiniBand network topology and operation Use this procedure to verify the network topology and operation of your InfiniBand network This procedure is performed by the customer Verifying the InfiniBand network topology and operation encompasses major tasks V1 through V3 which are shown in the Figure 11 on page 71 Note This procedure cannot be performed until all other procedures in cluster installation have been completed These include the management subsystem installation and configuration server installation and configuration InfiniBand switch installation and configuration and attaching cables to the InfiniBand network The
441. procedure as if it was a new cluster installation Adding HCAs to an existing InfiniBand network Perform this procedure as if it was a new cluster installation Adding a subnet to an existing InfiniBand network Configure the LPARs to use the new HCA ports e Configure the newly cabled HCA ports for switch partitioning Adding servers and a subnet to an existing InfiniBand Perform this procedure as if it were a new cluster network installation Server hardware installation and configuration procedure Use this procedure to install and configure server hardware for use with your cluster 1 Before you start your server hardware installation and configuration select one of the following options e If it is a new installation go to step e If you are adding servers to an existing cluster go to step p e If you are adding cables to existing host channel adapters HCAs proceed to step 12 on page 126 e If you are adding host channel adapters HCAs to existing servers go to Installing or replacing an InfiniBand GX host channel adapter on page 147 and follow the installation instructions for the HCAs Worldwide Custom Installation Instructions_or IBM Power Systems Hardware Information Center instructions then proceed to step 12 on page 126 S3 Position the frames or racks according to the data center floor plan Choose from the following items then go to the appropriate step for your cluster e If you have a single Hardware
442. proceeding further After being corrected rerun the health checks to look for further errors If the change was expected and permanent rerun a baseline when all other health check errors have been corrected latest chassis diff These files reflect other changes to chassis configuration based on checks selected through the FF_CHASSIS_CMDS command Review the changes in results for these remaining commands As necessary correct the chassis After being corrected rerun the health checks to look for further errors If the change was expected and permanent rerun a baseline when all other health check errors have been corrected If any health checks fail after correcting the related issues run another health check to verify that the issues were all corrected If the failures are due to expected and permanent changes when all other errors have been corrected rerun a baseline al _analysis b Interpreting health check changes files Files with the extension changes summarize what has changed in a configuration based on the queries done by the health check If you are experienced in interpreting the output of the diff command you might prefer to interpret changes as they are found in files with a diff extension For more information see Interpreting The format of changes is like What is being verified Indication that something in not correct Items that are not correct and what is incorrect about them How many items
443. pter on High performance computing clusters using InfiniBand hardware 197 With the HCA structure in mind note that IBM HCA Node GUIDs are relative to the entire HCA These Node GUIDs always end in 00 For example 00 02 55 00 00 0f 13 00 The final 00 would change for each port on the HCA Note If at all possible during installation it is advisable to issue a query to all servers to gather the HCA GUIDs ahead of time If this has been done you might then query a file for the required HCA GUID A method to do this is documented in Installing the fabric management server on page 105 There is an HCA port for each physical port which maps to one of the logical switch ports There is also an HCA port for each logical HCA assigned to an LPAR Thus IBM HCA Port GUIDs are broken down as 7 bytes of node GUID 1 byte port id Examples of Port GUIDs are e 00 02 55 00 00 0f 13 01 e 00 02 55 00 00 0f 13 81 Because there are so many HCAs in a cluster it is best to try and get a map of the HCA GUIDs to the physical HCAs and store it in a file or print it out If you do not store it look it up each time by using the following method The best way to map the HCA GUIDs to the physical HCAs is using operating system commands to gather HCA information You can do this using dsh to all servers simultaneously The commands used depend on the operating system in the LPAR Do the following steps for AIX LPARs In AIX the following comman
444. puting clusters using InfiniBand hardware 97 Table 68 Cluster expansion or partial installation determination continued Adding Adding new Adding HCAs to Adding a subnet Adding servers InfiniBand servers to an an existing to an existing and a subnet to hardware to an __ existing InfiniBand InfiniBand an existing existing cluster InfiniBand network network InfiniBand switches and network network host channel adapters HCAs Installing and Yes Yes Yes No Yes Yes If Management No Yes Yes server and Cluster Ready Hardware Server CRHS would be used Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes 1 This occurs when A single Hardware Management Console HMC is in an existing cluster and at least one more HMC is to be added to the cluster e Servers are being added to an existing cluster e Servers that were added require you to add one or more new HMCs e You must use management sever and CRHS and configure the switches with static IP addressing on the cluster network unless you are using xCAT Site setup for power cooling and floor The site setup for power cooling and the floor encompasses several major tasks that are part of the installation flow the site setup for power cooling and the floor encompasses major task U1 as shown in the Figure 11 on 1 The setup for the power cooling and floor construction must be complete before installing the a This would meet all doc
445. r HCA and port mentioned in the preceding section found sbin iba_portenable 1 lid m switch_port h h p p 7 Clear all errors by using either the following command or a script like the one in Error counter clearing script on page 276 iba_reports o none C F nodepat switch IB Node Description pattern 8 Run an application that stresses the network and wait 10 15 minutes and check errors by using either iba_report fabric_analysis all_analysis or a script like the one described in Healthcheck control script on page 277 9 If errors persist on the same link there is a problem with the link that retraining cannot solve Return to the procedure that led you to this procedure When to retrain 9125 F2A links This information provides details on when to retrain 9125 F2A links Check port error counters to determine if retraining is necessary Check after any one of the following events that cause a link to go down and come back up again e Cluster power cycling e CEC cycling or rebooting not including partition rebooting e Switch rebooting power cycling e Replacing Reseating Moving switch cables e Replacing reseating a leaf e Other service actions that might have caused a cable to have been reseated e Any other action that would cause a link to go down and come back up again Port error counters can be checked by using iba_report all_analysis fabric_analysis or a script like the one described in
446. r counters can be routine Difficulties arise when a link gets so bad that there are downstream or upstream effects that impact packets that are strewn throughout the fabric Or if a chip fails in a manner that is only detectable through by interpreting a combination of events whose pattern reveal a root cause Furthermore it is important to keep in mind that there are multiple locations for failures to be reported syslogs errpt and SFP and that those would be checked as part of diagnosing the most complex problems The following high level procedure must be used to help categorize errors and recognize patterns Note It is important for error counters to be reset or cleared_on a regular basis so that you might understand the rate of error Thresholding relies on this See Setting up periodic fabric health checking on page 158 Also see Clearing error counters on page 274 1 Categorize errors according to the Category column in the following table Table 99 Error Counter Categories Error Counter Category LinkDownedCounter Link Integrity LinkErrorRecoveryCounter Link Integrity LocalLinkIntegrityErrors Link Integrity ExcessiveBufferOverrunErrors Link Integrity SymbolErrorCounter Link Integrity PortRevErrors Link Integrity PortRcvRemotePhysicalErrors Remote Link Integrity PortXmitDiscards Congestion or Remote Link Integrity PortXmitConstraintErrors Security PortRcvConstra
447. r each port that is unique to a particular switch run the above ismPortSetDdrPreemphasis command as above but either log on to the switch or add the H switch chassis ip address parameter to the cmdall command so that it directs the command to the correct switch 5 Go to step d below d If applicable point to the NTP server For QLogic switches this is done using the time command Details are in the Switch Users Guide Typical commands are from the Fast Fabric Management Server are as follows If remote command execution is set up on the xCAT MS you can use dsh xdsh instead of cmdall For xCAT remember to use devicetype IBSwitch Qlogic to access the switches 1 If applicable set time using Network Time Protocol NTP server cmdall C time S NTP server IP address 2 If no NTP server is present set local time using cmdall C time T hhmmss mmddyyyy 3 Set time zone where X is the offset of the timezone from GMT cmdall C timeZoneConf X 4 Set daylight saving time where X is the offset of the timezone from GMT cmdall C timeDSTTimeout X 10 This procedure ends here If you are also responsible for cabling the InfiniBand network proceed to Attaching cables to the InfiniBand network Otherwise you can return to the overview of the installation section to find your next set of installation tasks Other installation tasks involving final configuration of switches are e Set up remote loggi
448. r log messages which is configured to contain log entries that are of a severity of NOTICE or higher and are from switches and FM servers These entries might indicate a problem with the fabric as such this would be the source of xCAT monitoring for fabric events The informational file is syslog fabric info which contains log entries that are of a severity of INFO or higher This provides a consolidated log that is not normally monitored but can be important for in depth diagnosis a Log on to the xCAT MS running the Linux operating system as root user b Edit the configuration file for the syslogd so that it directs entries coming from the fabric management server and the switches to an appropriate file Notes 1 If the level of the Linux operating system on the xCAT MS is using syslog instead of syslog ng use in return from that procedure return to step g Power Systems High performance clustering 2 Log entries with a priority severity of INFO or lower are logged to the default location of var log messages i Edit the etc syslog ng syslog ng conf file ii Add the following lines to the end of the file Fabric Notices from local6 into a FIFO named pipe filter f_fabnotices facility local6 and level notice alert warn err crit and not filter f_iptables Note The sensor that is created adds the lines to the etc syslog ng syslog ng conf file that is required to direct the entries to a particular log file
449. r more info gt lt Name gt ib2 lt Name gt lt also for logging with _sm _fe _pm _bm appended gt lt Hca gt 2 lt Hca gt lt local HCA to use for FM instance l 1st HCA gt lt Port gt 1 lt Port gt lt local HCA port to use for FM instance 1 lst Port gt lt PortGUID gt 0x0000000000000000 lt PortGUID gt lt local port to use for FM gt lt SubnetPrefix gt 0x fe80000000000031 lt SubnetPrefix gt lt should be unique gt lt Overrides of the Common Shared or Fm Shared parameters if desired gt lt lt LogFile gt var log fm2_log lt LogFile gt gt lt log for this instance gt lt Shared gt lt Instance Specific SM Subnet Manager attributes gt lt Sm gt lt Priority gt 1l lt Priority gt lt 0 to 15 higher wins gt lt ElevatedPriority gt 8 lt ElevatedPriority gt lt to 15 higher wins gt lt Sm gt lt Fm gt Instance 3 of the FM When editing the configuration file it is recommended that you note the instance in a comment lt A single FM Instance subnet gt lt INSTANCE 3 gt lt Fm gt lt Shared gt lt Start gt 1 lt Start gt lt Overall Instance Startup see fm for more info gt lt Name gt ib3 lt Name gt lt also for logging with sm _fe _pm _bm appended gt lt Hca gt 2 lt Hca gt lt local HCA to use for FM instance 1l 1st HCA gt lt Port gt 2 lt Port gt lt local HCA port to use
450. r to a PCI bus Because of server form factors including GX or GX bus design each server that supports an IBM GX or GX HCA has its own HCA feature The GX or GX HCA can be shared between logical partitions so each physical port can be used by each logical partition The adapter is logically structured as one logical switch connected to each physical port by using a logical host channel adapter LHCA for each logical partition The following figure shows a single physical two port HCA This configuration has a single chip that can support two ports High performance computing clusters using InfiniBand hardware 7 2 port IBM GX GX Logical HCA Port 1 Logical HCA Logical HCA Port 2 Logical HCA 8 Ww lt Figure 5 Two port GX or GX host channel adapter A four port HCA has two chips with a total of four logical switches that has two logical switches in each of the two chips The logical structure affects how the HCA is represented to the Subnet Manager Each logical switch and LHCA represent a separate InfiniBand node to the Subnet Manager on each port Each LHCA connects to all logical switches in the HCA Each logical switch has a port globally unique identifier GUID for the physical port and a port GUID for each LHCA Each LHCA has two port GUIDs one for each logical switch The number of nodes that can be presented to the Subnet Manager is a function of the maximum number of LHCAs that are as
451. ration For example 12 servers with one 2 port HCA 4 servers with two 2 port HCAs Number and types of switches include model numbers 4 9140 require connections for fabric management servers and for 9125 F2A servers Number of subnets 4 List of GID prefixes and subnet masters assign a number to a subnet for easy reference 78 Power Systems High performance clustering Table 43 Example Completed cluster summary worksheet continued Cluster summary worksheet Switch partitions subnet 1 FE 80 00 00 00 00 00 00 egf11 m01 subnet 2 FE 80 00 00 00 00 00 01 egf11 m02 subnet 3 FE 80 00 00 00 00 00 00 egf11 m01 subnet 4 FE 80 00 00 00 00 00 01 egf11 m02 Number and types of frames include systems switches management servers Network Installation Management NIM servers AIX and distribution servers Linux 8 for 9125 F2A 1 for switches and fabric management servers Number of Hardware Management Consoles HMCs 3 xCAT to be used If Yes gt server model Yes Number and models of fabric management servers 1 System x 3650 Number of Service virtual local area networks VLANs 2 Service VLAN domains 10 0 1 x 10 0 2 x Service VLAN DHCP server locations egxcatsv01 10 0 1 1 xCAT MS Service VLAN InfiniBand switches static IP addresses not typical Not Applicable see Cluster VLAN Service VLAN HMCs with static IP 10 0 1 2 10 0 1 4 Ser
452. rd analyses Several figures would be presented with descriptions preceding them The following figure is an example of an HCA detecting problem with a link and the pattern of PortXmitDiscards leading to the conclusion that the link errors are the root cause of the PortXmitDiscards The first key clue is a PortXmitDiscard on the leaf port connected to the HCA detecting link errors Then the spines connected to that leaf are reporting PortXmitDiscards This is enough to indicate the root cause is Link1 The other PortXmitDiscards leading from another HCA and through another leaf are further evidence but not required to make the conclusion XD PortXmitDiscard Spine Leaf i PortRevErrs XD The errors are listed next to the port on HCA which they were detected Link 1 Note the directionality of the arrows which indicates the direction of data flow HCA AD P7ECZ511 1 Figure 17 Leaf HCA link causing PortXmitDiscards The following figure shows a spine to leaf link with errors that is causing PortXmitDiscards The first indication of this is the PortXmitDiscards being reported by leaf ports connected to the same spine The PortXmistDiscard reported by the HCA in the figure is not necessary in finding root cause However you can see how you can lead back from the spine to the leaf and then to the HCA Link errors Leci Spine XD PortXmitDiscard The errors are listed next to the port on which they were detected Note the directionalit
453. rd the association between each server and its assigned IP address 7 M4 If you are not using CRHS skip to step 8 Otherwise after each server and BPC is visible on the DHCP server using instructions for CRHS in the installation documentation you must connect the frames and servers by assigning them to their respective managing HMC Go to step 8 If you are not using Cluster Ready Hardware Server in the Server and Frame Management windows verify that each HMC has visibility to the appropriate servers and frames that it controls 9 M4 Authenticate the frames and servers 10 S3 In the server and frame management windows on each HMC verify that you can see all the servers and frames to be managed by the HMC 11 S4 Ensure that the servers and power subsystems applies to IBM systems with 24 inch racks in your cluster are all at the correct firmware levels See the IBM Clusters with the InfiniBand Switch web site referenced in Cluster information resources on page 2 for information regarding the most current release levels of e system firmware e power subsystem firmware applies to IBM systems with 24 inch racks Follow the links in the IBM Clusters with the InfiniBand Switch web site referenced in Cluster information resources on page 2 to the appropriate download sites and instructions 12 S5 Verify system operation from the HMCs by performing the following procedure at each HMC for the cluster a a Bring th
454. re INFO or higher severity log entries from switches and Subnet Managers are received through syslogd on the xCAT MS This is located on the xCAT MS in the file var log xcat syslog fabric info Switch log 184 Power Systems High performance clustering This includes any errors reported by the chassis manager internal switch chassis issues such as power and cooling or logic errors for example This is accessed through the switch command line interface CLI or Fast Fabric tools Table 81 Fault reporting mechanisms continued Reporting Mechanism Description var log messages on fabric management server This is the syslog on the fabric management server where host based Subnet Manager logs are located This is the log for the entire fabric management server therefore there might be entries in it from components other than Subnet Manager Fault diagnosis approach Diagnosing problems can be accomplished in multiple ways There are several methods that can be used for fault diagnosis on your cluster environment The following fault diagnosis methods are intended to supplement the information in the Table of symptoms on page 187 To understand the approaches for fault diagnosis read the following information in the order indicated 1 illustrates the most common events that affect the fabric and how these events might be reported and interpreted Tsolating link problems on
455. re not time based In order to simplify the interpretation of the error counts different 158 Power Systems High performance clustering threshold files must be generated based on the amount of time since the most recent clearing of link errors Therefore it is also important to create a cronjob or some other method to periodically clear port error counters such that you can determine which threshold file to use at any given time all_analysis fabric_analysis or iba_report o errors is run The remainder of this section addresses setting up threshold files and cronjobs Thresholds The default thresholds shipped with iba_report and Fast Fabric are set up assuming that there is no regular clearing of error counters and that error counters might not be read on a regular basis Therefore the threshold counts tend to be fairly high to avoid false error reporting This document concerns itself with a more regimented approach to error counter monitoring Which includes regular clearing of error counters and by using different sets of thresholds based on the time since the last clear of the error counters Therefore a methodology and set of thresholds have been developed with certain assumptions in mind 1 While the InfiniBand architecture specifies a bit error rate of 1043 the components used in an IBM System p cluster were designed to achieve a bit error rate between 10 and 10 Error monitoring is done at least once per day Error counter
456. rent threshold files For example if you start the 24 hour interval at 6AM the crontab can look like the following example Which assumes that the switch names begin with SilverStorm and that at 6AM the C is used to reset the counters 6 FF_FABRIC_HEALTH s C o errors o slowlinks F nodepat SilverStorm sbin all_analysis c etc syconfig iba_mon conf 0 7 11 sbin all_analysis c etc syconfig iba_mon conf 1 4 12 15 sbin all_analysis c etc syconfig iba_mon conf 8 11 18 sbin all_analysis c etc syconfig iba_mon conf 8 11 19 20 sbin all_analysis c etc syconfig iba_mon conf 13 14 21 22 sbin all_analysis c etc syconfig iba_mon conf 15 16 23 x sbin all_analysis c etc syconfig iba_mon conf 17 19 0 1 sbin all_analysis c etc syconfig iba_mon conf 20 21 2 3 sbin all_analysis c etc syconfig iba_mon conf 20 21 4 5 x sbin all_analysis c etc syconfig iba_mon conf 22 23 ooooocoo0oo0oo 5 Configure a cron job to run iba_report o errors to gather all non zero error counters once per hour a Configure a threshold file with thresholds set to 1 Name it etc sysconfig iba iba_mon conf low In the following example VL15Dropped and PortRcvSwitchRelayErrors are commented out Error Counters Symbol ErrorCounter 1 LinkErrorRecoveryCounter 1 LinkDownedCounter 1 PortRcvErrors 1 PortRcvRemotePhysical Errors 1 PortRcvSwitchRelayErrors 100 known Anafa2 issue in
457. reported in the baseline directory must be fixed first and then a new baseline must be taken as instructed in Re establishing Health Check baseline on page 244 The full results of the health check including the most recent configuration files are found in the latest directory The lt savedate gt directories are only generated when an error is found during a health check other than a baseline health check Only the files that indicate problems are saved in this directory All other files can be assumed to match the corresponding files in the baseline directory Table 85 Fast Fabric Tools symptoms Symptom Procedure or Reference Health check file fabric link errors Record the location of the errors and see Diagnosing link errors on page 210 High performance computing clusters using InfiniBand hardware 189 Table 85 Fast Fabric Tools symptoms continued Symptom Procedure or Reference Health check file fabric comps errors 1 Record the location of the errors 2 See the Fast Fabric Toolset Users Guide for details If this refers to a port see Diagnosing link errors on page 210 otherwise see Diagnosing and repairing switch component problems on page 213 Health check file chassis errors Health check file fabric links diff Speed or width change indicated 1 Record the location of the errors 2 See the Fast Fabric Toolset Users Guide for details
458. rformance clustering b If the cable does not fix the problem replace the HCA and verify the fix by using the procedure in Verifying link FRU replacements on page 244 If the problem is fixed go to step c If the HCA does not fix the problem engage QLogic to work on the switch When the problem is fixed go to step 18 18 If the problem has been fixed run Fast Fabric Health check and check for diff files Be especially aware of any inadvertent swapping of cables For instructions on interpreting health check results see Health checking on page 157 a If the only difference between the latest cluster configuration and the baseline configuration is new part numbers or serial numbers related to the repair action run a new Health Check baseline to account for the changes b If there are other differences between the latest cluster configuration and baseline configuration perform the procedure in Re establishing Health Check baseline on page 244 This will pick up the new baseline so that future health checks will not show configuration changes c If there were link errors reported in the health check you must go back to step 1 on page 211 of this procedure and isolate the problem This procedure ends here Related concepts Hardware Management Console on page 18 You can use the Hardware Management Console HMC to manage a group of servers Diagnosing and repairing switch component prob
459. ric management server worksheet Table 67 Example Completed fabric management server worksheet Fabric management server worksheet one for each server Server name egf11fm01 Server IP address on cluster virtual local area network VLAN ___10 1 1 14 Server model System x 3550 or 3650 __3650_ Frame 11 Number of PCI slots 2 Number of HCAs 2 Primary Backup NA HSM Primary subnet 1 and 3 backup subnet 2 and 4 Primary data collection point __Yes Yes or No Local syslogd is syslog syslog ng or other __syslog ng xCAT server address for remote logging 10 1 1 1 Using TCP or UDP for remote logging UDP NTP server 10 1 1 1 Subnet management planning Subnet Subnet Subnet Subnet 4 Subnet 5 Subnet 6 Subnet 7 Subnet 8 1 2 3 HCA number 1 1 2 2 HCA port 1 2 1 2 GID prefix 00 01 02 03 all start w fe 80 00 00 00 00 00 High performance computing clusters using InfiniBand hardware 95 Table 67 Example Completed fabric management server worksheet continued Fabric management server worksheet one for each server Broadcast MTU put rate in 5 4096 5 4096 5 4096 5 4096 parentheses node_appearance 10 10 10 10 10 10 10 10 _msg_thresh Primary switch Priority 2 1 2 1 Back up switch Priority Backup switch Priority 10 10 10 10 10 10 10 10 Back up switch
460. rly in the installation process For Fast Fabric Toolset functionality all the switch chassis passwords can be the same You can also consolidate switch chassis logs and embedded Subnet Manager logs on to a central location Because XCAT is also preferred as the Systems Management application the xCAT MS is preferred to be 50 Power Systems High performance clustering the recipient of the remote logs from the switch You can only direct logs from a switch to a single remote host xCAT MS Set up remote logging on page 112 provides the procedure that is used for setting up remote logging in the cluster The information planned here can be recorded in a QLogic and IBM switch planning worksheets on page 83 83 Planning QLogic InfiniBand switch configuration ends here Planning maximum transfer unit MTU Use this information to plan for maximum transfer units MTU Based on your configuration there are different maximum transfer units MTUs that can be used Table 36 list the MTU values that message passing interface MPI and Internet Protocol IP require for maximum performance The cluster type indicates the type of cluster based on the generation and type of host channel adapters HCAs that are used You either have a homogeneous cluster based on all the HCAs being of the same generation and type or a heterogeneous cluster based on the HCAs being a mix of generations and types Cluster composition by HCA indicat
461. rnet network public or private which gives xCAT access to the operating systems It is also used for access to InfiniBand switches and fabric management servers Note The switch vendor documentation references to the Cluster VLAN as the service VLAN or possibly the management network 22 Power Systems High performance clustering Table 24 Management subsystem networks overview continued Type of network Details Public network A local site Ethernet network Typically this network is attached to the xCAT MS and Fabric Management Server Some sites might choose to put the cluster VLAN on the public network See the xCAT installation and planning documentation to consider the implications of combining these networks Internal hardware VLAN Is a virtual local area network VLAN within a frame of 9125 servers It concentrates all server FSP connections and the BPH connections onto an internal ethernet hub which provides a single connection to the service VLAN which is external to the frame Vendor log flow to xCAT event management The integration of vendor and IBM log flows is a critical factor in event management One of the important points of integration for vendor and IBM management subsystems is log flow from vendor management applications to xCAT event management This integration provides a consolidated logging point in the cluster The flow of log information is shown in the following figure For t
462. rocedure Note This assumes that you are using syslogd for syslogging If you are using another syslog application like syslog ng then you must alter this procedure to account for that However the underlying technique for debug remains the same 1 2 Log on to the xCAT MS Verify that you can ping the source which must be either the fabric management server or the switch cluster VLAN IP address a If you cannot ping the source device then use standard network debug techniques to isolate the problem on the cluster VLAN Consider the xCAT MS connection the fabric management server connection the switch connection and any Ethernet devices on the network Also ensure that the addressing has been set up properly If you are using xCAT on Linux check the Apparmor configuration with syslog ng to ensure that varllog xcat syslog fabric notices wr is in the etc apparmor d sbin syslog ng file If it is continue to the next step If it is not perform the following procedure a Add the line var log xcat syslog fabric notices wr to the etc apparmor d sbin syslog ng file before the You must remember the comma at the end of the line b Restart AppArmor by using etc init d boot apparmor restart c Restart syslog ng by using etc init d syslog restart d If this fixes the problem end this procedure Otherwise go to the next step Check the syslog configuration file and verify that the following entry is in there If t
463. rs xdsh ALLFabricMS K Enter the password for the userid on the node where the ssh keys will be updated usr bin ssh setup is complete return code 0 or xdsh ALLFabricMS K 1 root devicetype FabricMS Enter the password for the userid on the node where the ssh keys will be updated usr bin ssh setup is complete return code 0 e If you have defined multiple groups for the fabric management servers assign those by using the following command for each group chdef t node noderange groups groupname Where noderange is a comma delimited list of fabric management servers See man noderange f You might now use xdsh to remotely access the Fabric Management Server from the xCATMS R2 M4 Set up remote command processing with the switches Note The following is method just one of several methods by which you can set up remote command processing to a QLogic switch You can use any method that meets your requirements The QLogic switch does not use a standard shell for its command line interface CLI Thus it should be set up as a device and not a node For dsh and updatehwdev to work you need the command definition file a Create a device type command definition file for the switch device This is important for dsh and updatehwdev to work with the switch proprietary command line 1 If the var opt xcat IBSwitch Qlogic config file exists you can skip the creation of this file and go to step 2b 2 Create the path us
464. rt gt 0 lt Start gt lt default PM startup for all instances gt lt Pm gt lt Common BM Baseboard Manager attributes gt lt Bm gt lt Start gt 0 lt Start gt lt default BM startup for all instances gt lt Bm gt lt Common gt Instance 0 of the FM When editing the configuration file it is recommended that you note the instance in a comment lt A single FM Instance subnet gt lt INSTANCE 0 gt lt Fm gt lt Shared gt lt Name gt ib0 lt Name gt lt also for logging with _sm _fe _pm _bm appended gt lt Hca gt 1 lt Hca gt lt local HCA to use for FM instance 1 1st HCA gt lt Port gt 1 lt Port gt lt local HCA port to use for FM instance l 1st Port gt lt PortGUID gt 0x0000000000000000 lt PortGUID gt lt local port to use for FM gt lt SubnetPrefix gt 0xfe80000000000042 lt SubnetPrefix gt lt should be unique gt lt Shared gt lt Instance Specific SM Subnet Manager attributes gt lt Sm gt lt Overrides of the Common Shared Common Sm or Fm Shared parameters gt lt Priority gt 1 lt Priority gt lt ElevatedPriority gt 8 lt ElevatedPriority gt lt Sm gt lt Fm gt Instance 1 of the FM When editing the configuration file it is recommended that you note the instance in a comment lt A single FM Instance subnet gt lt INSTANCE 1 gt lt Fm gt lt Shared gt lt Start gt 1 lt Start
465. rtRcvRemotePhysicalErrors have performance impacts because they indicate packets that would be dropped For relatively low numbers of PortRcvRemotePhysicalErrors it is possible that there would be no observable impact to performance Threshold minimum actionable 4 2 Threshold maximum in 24 hours 100 10 The suggested thresholds were set with the intention of revealing problems that are not related to downstream link integrity issues Therefore they might mask some of the more subtle problems If this is unacceptable then you might use the thresholds in parentheses However this results in the requirement to interpret more events and possibly needless complexity in interpreting error counters Upper level protocols might indicate that there are packet losses and there a no PortXmitDiscards or PortRcvRemotePhysicalErrors being reported In this case you must temporarily reduce the thresholds to see them PortXmitDiscards PortXmitDiscards indicate that a packet cannot progress beyond this output port and it must therefore be discarded to make way for other packets that might be able to progress High performance computing clusters using InfiniBand hardware 271 There are several reasons for such XmitDiscards e The packet switch lifetime limit has been exceeded This is the most common issue and is caused by congestion or a downstream link that went down It can be common for certain applications with communication patterns like A
466. rtant information to remember about Fast Fabric Toolset follows e Do not use Fast Fabric tools to manage the IBM servers and IBM host channel adapters HCAs e It runs on the fabric management server e It can query only host based Subnet Managers that are on the same fabric management server 154 Power Systems High performance clustering e It can query only subnets to which the fabric management server on which it is running is connected If you have more than four subnets you must work with at least two different Fabric Management Servers to get to all subnets e You must update the chassis configuration file with the list of switch chassis in the cluster See Installing the fabric management server on page 105 e You must update the ports configuration file with the list of HCA ports on the fabric management server See Installing the fabric management server on page 105 e Fast Fabric tools use the Performance Manager and other performance manager agents to collect link statistics for health checks and iba_report results for fabric error checking Therefore performance manager must be enabled for such checks to be successful QLogic performance manager The performance manager is accessed indirectly The Fabric viewer is one tool to access the performance manager Fast Fabrics iba_report does not access the performance manager to get link statistics Start the performance manager with the fabric manager Managi
467. rticular InfiniBand subnet Only one instance can be the master at any given time Any other instances are backups There are two parameters that control which one is the master at a given time The first is just the priority When the fabric is started the instance of the SM that has the highest numbered priority from 0 to 15 is the master For IFS 5 this is controlled by the lt Priority gt statement in etc sysconfig qlogic_fm config For IFS 5 the elevated priority statement is lt ElevatedPriority gt To prevent this an elevated priority scheme was implemented whereby the FM uses the elevated priority when it takes over from another FM This elevated priority should be higher than that of the normal priority of the original master so that when the original master comes back online its priority is lower than that of the current master Therefore the current master which was the backup remains the master until the user issues a command to cause the current master to use its original priority which would then put it ata lower priorit than the original master For details on how to issue this command see The following example describes how SM_x_priority and SM_x_elevated_priority are used It also introduces a term called current priority This is the actual priority being used by the SM at a given time For IFS 5 the priority and elevated_priority attributes are lt Priority gt and lt ElevatedPriority gt In this
468. rver connected to the Ethernet network to which the switch is attached The IP address of the switch is the URL that opens the chassis viewer Switch command line interface Use the switch command line interface CLI for configuring switches and querying the state of a switch The following table provides an overview of the switch chassis viewer Table 17 Switch CLI overview Switch command line interface Details Description The Switch Command Line Interface is a non GUI method for configuring switches and querying state It is also used to access the embedded Subnet Manager Documentation Switch Users Guide When to use After the configuration setup has been performed the user will probably only use the CLI chassis viewer as part of diagnostic test This diagnostic test is used after the Fabric Viewer or Fast Fabric tools have been employed However using xCAT xdsh or Expect remote scripts can access the CLI for creating customized monitoring and management scripts Host Switch Chassis How to access e Telnet or ssh to the switch using its IP address on the cluster VLAN e Fast Fabric Toolset e xdsh from the xCAT MS e System connected to the RS 232 port High performance computing clusters using InfiniBand hardware 19 Server Operating system The operating system is the interface with the device drivers The following table provides an overview of the operating system Tab
469. rver support interactive switch CLI access You might want to remotely access switches to gather data or issue commands You cannot work with interactive commands through remote command execution You might choose to use some of the Fast Fabric Toolset command scripts that perform operations that otherwise require user interaction on the switch CLI In that case you can still do remote command execution from xCAT however you must issue the command to the Fast Fabric Toolset on the fabric management server For more information see Remotely accessing QLogic management tools and commands from xCAT MS on page 174 Updating code Updating code mainly references component documentation describing code updates for key code that affects the fabric The following table provides references and describes impacts for key code updates In some cases errors might be logged because links come down as a result of a unit being rebooted or powered on again Table 79 Updating Code References and Impacts Code Reference Impact xCAT xCAT documentation xCAT event management is interrupted e Reboot interrupts remote logging IBM GX GX host channel adapter Code Release notes and operating e Fabric is affected HCA device driver system manuals Rebuoi eais inis oen and errors to be logged IBM system firmware System Service information Concurrent updates have no impact e Non concurrent updates cause links to go d
470. rvers which would affect xCAT event monitoring and remote command access of the additional Fabric Management Servers e Add remote syslog capability from new Fabric Management Server and switches to xCAT e Add remote execution capability from xCAT to new Fabric Management Server and switches Installing and configuring service VLAN devices This procedure is for the person responsible for installing and configuring the service virtual local area network VLAN devices It indicates the correct times to cable units to the service VLAN i 2 E1 M1 Physically locate the service and cluster VLAN Ethernet devices on the data center floor E2 M2 Install and configure the service and cluster VLAN Ethernet devices using the documentation for the Ethernet devices and any configuration details provided by the Hardware Management Console HMC installation information M3 Do not cable management consoles servers or switch units to the VLANSs until you are instructed to do so within the installation procedure for each management console Note Correct ordering of management console installation steps and cabling to the VLANs is important for a successful installation Failing to follow the installation order can result in long recovery procedures Installing the Hardware Management Console This installation procedure is for an IBM service representative Before starting this installation procedure obtain the Hardware Manag
471. rvers are running Linux Instead of a use N LinuxNodes to access just Linux LPARs in a mixed environment For xCAT gt xdsh nodegroup with all servers v usr bin ibv_devinfo n grep node _guid nodel node_guid 0002 5500 1002 5800 node2 node_guid 0002 5500 100b F800 If you do not have a stored map of the HCA GUIDs but you have a GUID for which you want to search use the following command for Linux LPARs Using the first 7 bytes of the GUID would allow for a match to be made when you do not have the port GUID information available from the ibv_devinfo v command For xCAT gt xdsh nodegroup with all servers v usr bin ibv_devinfo n grep node_guid grep 1st seven bytes of GUID You would have enough information to identify the physical HCA and port with which you are working Once you know the server in which the HCA is populated you can issue an ibv_devinfo i port number to the server and get the information about exactly which HCA matches exactly the GUID that you have in hand End of Linux LPAR section Finding devices based on a known logical switch Use this procedure if the logical switch in an HCA is known and the attached switch and physical HCA port must be determined High performance computing clusters using InfiniBand hardware 199 This procedure applies to IBM GX HCAs For more information about the architecture of IBM GX HCAs and logical switches within them see IB
472. rview Fast Fabric Toolset Details Description Fast Fabric tools are a set of scripts that provide access to switches and the various managers to connect with many switches And the managers simultaneously obtain useful status or information Additionally health checking tools help you to identify fabric error states and also unforeseen changes from baseline configuration Health checking tools are run from a central server called the fabric management server These tools can also help manage nodes running the QLogic host stack The set of functions that manages nodes are not used with an IBM System p or IBM Power Systems high performance computing HPC cluster 20 Power Systems High performance clustering Table 20 Fast Fabric Toolset overview continued Fast Fabric Toolset Details Documentation Fast Fabric Toolset Users Guide When to use These tools can be used during installation to search for problems These tools can also be used for health checking when you have degraded performance Host Fabric management server How to access e Telnet or ssh to the Fabric Management Server e If you set up the server that is running the Fast Fabric tools as a managed device you can use xdsh command for xCAT Flexible Service processor The Flexible service processor is used to facilitate connectivity The following table provides an overview of the flexible servi
473. s 1 Run the Isrsrc i s Name IBSwitchLogSensor IBM Sensor gt tmp IBSwitchLogSensorDef command Note The default p parameter is local6 info This creates many unnecessary entries in the event management subsystem 2 Remove the old sensor using the rmsensor ErrorLogSensor command 3 Create the sensor and keep its scope local using the CT MANAGEMENT_SCOPE 0 mkrsrc f tmp IBSwitchLogSensorDef IBM Sensor command Note Local management scope is required or you would get an error indicating that the node xCAT MS is not in the NodeNameList 4 Run the opt xcat sbin rmcmon monerrorlog p f_fabnotices f var log xcat syslog fabric notices command High performance computing clusters using InfiniBand hardware 115 116 f If you get an error back from monerrorlog indicating a problem with syslog there is probably a typographical error in the etc syslog ng syslog ng conf file The message includes syslog in the error message similar to monerrorlog syslog Note The is a wildcard 1 Look for the typographical error in the etc syslog ng syslog ng conf file by reviewing the previous steps that you have taken to edit the syslog ng conf file 2 Remove the destination and log lines from the end of syslog ng conf file 3 Rerun the opt xcat xCATbin monerrorlog f var log xcat syslog fabric notices p f fabnotices command 4 If you get another error examine the file again and repe
474. s However this results in the required to interpret more events and possibly needless complexity in interpreting error counters If the upper level protocols are indicating that there are packet losses and there a no PortXmitDiscards or PortRcvRemotePhysicalErrors being reported you must temporarily reduce the thresholds to see them 272 Power Systems High performance clustering Security errors Security errors PortXmitConstraintErrors and PortRcvConstraintErrors do not apply until the QLogic code level reaches 4 4 PortXmitConstraintErrors Indicates Partition Key violations not expected with 4 3 and earlier SM For QLogic 4 4 and later SM can indicate incorrect Virtual Fabrics Config or Application Config inconsistent with SM config Performance impact PortXmitConstraintErrors can result in performance problems because they result in dropped packets In fact the implication is that no packets would get through between the source destination pair associated with the affected packet Threshold minimum actionable 1 Threshold maximum in 24 hours 1 PortRcvConstraintErrors Indicates Partition Key violations not expected with 4 3 and earlier SM For QLogic 4 4 and later SM can indicate incorrect Virtual Fabrics Config or Application Config inconsistent with SM config Performance impact PortRcvConstraintErrors can result in performance problems because they result in dropped packets In fact the implication is that no
475. s The maximum number of HCAs permitted depends on the server model Fabric management IBM System x 3550 or 3650 server QLogic HCAs Note e High performance computing HPC proven and validated to work in an IBM HPC cluster e For approved IBM System p POWER6 and IBM eServer p5InfiniBand configurations see website http www ibm com servers eserver clusters hardware factsfeatures html 28 Power Systems High performance clustering Table 27 lists the minimum levels of software and firmware that are associated with an InfiniBand cluster Table 27 Minimum levels of software and firmware associated with an InfiniBand cluster Software Minimum level AIX AIX 5L TM AIX 5L Version 5 3 with the 5300 12 Technology Level with Service Pack 1 AIX 6L TM AIX 6L Version 6 1 with the 6100 03 Technology Level with Service Pack 1 Red Hat 5 3 Red Hat 5 3 ppc kernel 2 6 18 128 1 6 el5 ppc64 Hardware Management Console POWER6 V7R3 5 0M0 HMC with fixes MH01194 MH01197 MH01204 and V7R3 5 0M1 HMC with MH01212 HMC build level 20100301 1 POWER7 V7R7 1 1 HMC with Fix pack AL710_03 QLogic switch firmware QLogic 4 2 5 0 1 QLogic InfiniBand Fabric Suite including QLogic 5 1 0 0 49 the HSM Fast Fabric Toolset and QLogic OFED stack For the most recent support information see the IBM Clusters with the InfiniBand Switch website Required Level of support firmware and devices that must support HPC c
476. s instance of FM The following example uses Oxfe80000000000042 lt SubnetPrefix gt 0x fe80000000000042 lt SubnetPrefix gt lt should be unique gt j Update the individual instances of the SM If any of the individual instances of SM deviate from the common attributes for the SM as defined previously or for the FM attributes as defined previously go to the specific SM instance that is defined within the corresponding FM instance and add the appropriate parameters The most likely reason to do this is to update an individual SM instance priority or elevated priority The SM instance attributes is added to the following section within the FM instance This example includes an example of adding the priority and elevated priority that deviate from the common attributes set previously lt Instance Specific SM Subnet Manager attributes gt lt Sm gt lt Overrides of the Common Shared Common Sm or Fm Shared parameters gt lt Priority gt 2 lt Priority gt lt 0 to 15 higher wins gt lt ElevatedPriority gt 10 lt ElevatedPriority gt lt 0 to 15 higher wins gt lt Sm gt Cable the fabric management server to the InfiniBand fabric Note The switches must have been installed as in Installing and configuring vendor or IBM InfiniBand switches on page 137 F7 M2 Use a static IP address for the cluster VLAN for the fabric management servers Assign and configure this address F8 M3
477. s see i 2 b For Linux LPARs see l 2 If performance problems persist call your next level of support This procedure ends here Diagnosing and recovering ping problems If there is a problem pinging between IP Network Interfaces ibX it is necessary to check the fabric configuration parameters and HCA configuration This test is to ensure that the problem is not caused by faulty configuration Check the IBM Clusters with the InfiniBand Switch web site referenced in Cluster information resources on page 2 for any known issues or problems that would affect the IP Network Interfaces To recover from the problem complete the following steps 1 Ensure that the device drivers for the HCAs are at the latest level This is especially important for an fixes that would affect IP Check IBM Clusters with the InfiniBand Switch web site referenced in Cluster Check IBM Clusters with the InfiniBand Switch web site referenced in Cluster information resources on page 2 for any known issues or problems that would affect the IP Network Interfaces Make any required changes Look for hardware problems by using the procedure in Checking for hardware problems affecting the fabric on page 214 Check the HCA configuration for the interfaces that cannot ping e For AIX use Checking InfiniBand configuration in AIX on e For Linux use Checking InfiniBand configuration in Linux on page 218 Check
478. s see the QLogic documentation and the Users guide for the switch model which are available at http www qlogic com Pages default aspx or contact QLogic support Note QLogic uses SilverStorm in their product names Table 9 InfiniBand switch models Number of ports IBM Switch Machine Type Model QLogic Switch Model 24 7874 024 9024 24 port 48 7874 040 9040 48 port 96 N A 9080 96 port 144 7874 120 9120 144 port 288 7872 240 9240 288 port IBM does not implement a 96 port 7874 switch Cables IBM supports specific cables for high performance computing HPC cluster configurations The following table describes the cables that are supported for IBM HPC configurations 10 Power Systems High performance clustering Table 10 Cables for high performance computing configurations Comments feature codes listed in order System or use Cable type Connector type Length m ft Source respective to length POWER6 4x DDR copper QSFP CX4 6 m passive 26 QLogic 9125 F2A awg 10 m active 26 awg 14 m active 30 awg 4x DDR optical QSFP CX4 10 m 20 m 40m IBM IBM feature codes 3291 3292 3294 POWER6 12x 4x DDR CX4 CX4 3m IBM Link operates at 4x 8204 E8A width exchanger speed 8203 E4A copper 10 m 9119 FHA IBM feature codes 9117 MMA 1841 1842 POWER7 8236 E8C JS22 4x DDR copper CX4 CX4 Multiple len
479. s 5 minutes and the Notice entry was not logged in the tmp systemEvents file then check the following items e Review the previous setup instructions to ensure that they were performed correctly paying close attention to the setup of the etc syslog conf file or syslog ng conf file Power Systems High performance clustering e Use the procedure in Problem with event manag Recall that you were using the logger command such that the Fabric Management Server would be the source of the log entry f Check the var log xcat syslog fabric info file and verify that both the Notice entry and the INFO entry are in the file This applies only if you have chosen to set up the syslog fabric info file If one or both of the entries are missed then check the following items e Review the previous setup instructions to ensure that they were performed correctly paying close attention to the setup of the etc syslog conf or syslog ng conf file e Use the procedure in Problem with event management or remote syslogging Recall that you were using the logger command such that the Fabric Management Server would be the source of the log entry 6 L6 M4 Verify remote syslogging from the switches to the xCAT MS a Do not proceed with this step until you have setup the xCAT MS for remote logging and event management in step 1 on page 112 and you have set up the switches to remotely log to the xCAT MS in step g b Ping the switches from the
480. s are cleared once per day and at a regular time The time since the last clear of error counters is deterministic oa epr If a particular links error counters are cleared at a different time than other links it is possible to miss a link that is performing slightly out of specification until after the daily error clears are done This is because the rest of the links require a higher threshold They require higher threshold because their error counters were cleared before the individual links counters were cleared and thus have had more time to accumulate errors While this is a limitation of the iba_report use of the threshold configuration file a link that is performing that close to the margin must not have much impact on performance The reason a links error counters might be reset while the other links error counters would be when a CEC was power cycled or a cable reseated for service 6 The IBM GX LHCAs have no link error counters and are not monitored 7 The Fast Fabric tools iba_report all_analysis or fabric_analysis are used to monitor error counters The all_analysis tool actually uses fabric_analysis which in turn uses iba_report to collect error counter data The default threshold file used by iba_report is etc sysconfig iba iba_mon conf You can point to a different threshold file with the c threshold config file option The best way to use the threshold checking in iba_report is to have various iba_mon conf fi
481. s in the following procedure on the new InfiniBand switches Complete the following procedure to install and configure your InfiniBand switches 1 Review this procedure and determine if the Fabric Management Server has the Fast Fabric Toolset installed and be on the cluster VLAN before you finish this procedure If Fast Fabric tools are available you can customize the multiple switches simultaneously once you have them configured with unique IP addresses and they are attached to the cluster VLAN If you do not have Fast Fabric tools ready you must customize each switch individually In that case you might want to do the customization step right after the the switch management IP address is set up and give it a name 2 W1 Physically place frames and switches on the data center floor a Review the vendor documentation for each switch model that you are installing b Physically install the InfiniBand switches into 19 inch frames or racks and attach power cables to the switches according to the instructions for the InfiniBand switch model This power on the switches automatically There is no power switch for the switches Note Do not connect the Ethernet connections for the cluster VLAN at this time 3 W2 Set up the Ethernet interface for the cluster VLAN by setting the switch to a fixed IP address provided by the customer See the switch planning worksheet Use the procedure in vendor documentation for setting switch addresses Not
482. s is a specific case of Misconnected See the Misconnected issue Misconnected This applies only to links and indicates that a link is not connected properly This must be fixed Individual Links which are Misconnected are reported as Incorrect Link and are tabulated into the Misconnected summary count It is possible to find miswires by examining all of the Misconnected links in the fabric However you must look at all of the fabric links changes files to find miswires between subnets Look for any Missing or Different items that might correspond to this item This would be in cases where the configuration of an item has changed in a way that makes it difficult to determine precisely how it has changed Individual links which are Misconnected are reported as Incorrect Link see Incorrect Link and are added into the Misconnected summary count High performance computing clusters using InfiniBand hardware 169 Table 78 Possible issues found in health check changes files continued Issue Description and possible actions Missing This indicates an item that is in the baseline is not in this instance of health check output This might indicate a broken item or a configuration change that has removed the item from the configuration If you have deleted this item to the configuration save the original baseline and rerun the baseline as instructed the HCA
483. s or 8236 E8C or System p blades are used for storage servers and there are two InfiniBand interfaces connected to two InfiniBand subnets comprising two IP subnets to be used for the GPFS subsystem then the login servers must connect to both InfiniBand subnets and IP subnets e If 9125 F2As are to be used for storage servers and there are 8 InfiniBand interfaces connected to 8 InfiniBand subnets comprising 8 IP subnets to be used for the GPFS subsystem then the login servers must be 9125 F2A servers and they must connect to all 8 InfiniBand and IP subnets For IO router servers consider the following points 32 Power Systems High performance clustering IO servers require enough fabric connectivity to ensure enough bandwidth between fabrics Previous implementations using IO servers have used the 9125 F2A to permit for up to four connections to one fabric and four connections to another Example configurations using only 9125 F2A servers This information provides possible configurations using only 9125 F2A servers details The following tables are provided to illustrate possible configurations using only 9125 F2A servers Not every connection is illustrated but there are enough to understand the pattern The following tables illustrate the connections from HCAs to switches in a configuration with only 9125 F2A servers that have eight HCA connections going to eight InfiniBand subnets Whether the servers are used for compute or storage
484. s since last recorded counter clear gt gt ANALYSISLOG echo using IBAMON diffh for thresholds gt gt ANALYSISLOG echo A A A H H A A EH H E E E EA E a AE gt gt SANALYSISLOG High performance computing clusters using InfiniBand hardware 277 Run all_analysis with the appropriate iba_mon file based on the number of hours since the last clear diffh This relies on the default set up for FF_FABRIC_HEALTH in the etc sysconfig fastfabric conf file Log the STDOUT and STDERR of all_analysis Else it s been more than 24 hours since the last clear Read and clear the error counters echo now gt CLEARFILE echo AA A A A HEHEHE HHH HHH HH AE A HE EE EE EE EAE gt gt SANALYSISLOG echo timestamp 24 hours since last recorded counter clear gt gt ANALYSISLOG echo CLEARING COUNTERS on the run gt gt ANALYSISLOG echo didi data a a A A EE EE EE EEE EEE EE a HE gt gt SANALYSISLOG Run all_analysis with the appropriate iba_mon file based on the number of hours since the last clear 24 Clear the error counters after that Feed all_analysis the appropriate FF_FABRIC_HEALTH settings This is pretty close to what should be the default in the etc sysconfig fastfabric conf file The only difference is the use of the C parameter to clear the errors Log the STDOUT and STDERR of all_analysis SH OSH OSE OSES e e SFE SESE SE FF_FABRIC_HEALTH s C a o errors o slowlinks F nodepat sw
485. s the tool to do the query on a specific subnet connected to the indicated hca and the port on the fabric management server The default is the first port on the first host channel adapter HCA 0 slowlinks Look for links that are slower than expected 0 errors Looks for links exceeding the allowed error threshold See the Fast Fabric Users Guide for details on error thresholds Note The LinkDown counter in the IBM GX GX HCAs would be reset as soon as the link goes down This is part of the recovery procedure While this is not optimal the connected switch ports LinkDown counter provides an accurate count of the number of LinkDowns for the link In order to ensure good performance of iba_report anytime the o errors parameter is used you must use the F nodepat switch name pattern parameter to avoid querying non existent counters in the Logical HCAs o misconnlinks Summary of links connected with mismatched speed o links Summary of links including to what they are connected High performance computing clusters using InfiniBand hardware 181 Table 80 Suggested iba_report parameters continued Parameter Description ae Clears error and statistics counters You might use it with o none so that no counters are returned Or you might use 0 errors to get error counters before clearing them which is the preferred method In order to ensure good performance of iba_report anytim
486. same service VLAN it is possible to collect all the pertinent data from a single fabric management server Which can be designated while planning the fabric management servers see Planning for fabric management server on page 64 and QLogic fabric management worksheets on page 92 The previously mentioned references would explain and record the configuration files required to access the Fabric Management Servers and switches that have the required data In particular you must understand the role of hosts and chassis files that list various groupings of fabric management servers and switches If you are performing data collection while logged on to the management server perform the following procedure High performance computing clusters using InfiniBand hardware 193 1 You must first have passwordless ssh set up between the fabric management server and all of the other fabric management servers and also between the fabric management server and the switches Otherwise a password prompt would appear and xdsh would not work 2 Log on to the xCAT MS 3 Get data from the fabric management servers by using captureall f lt hosts file with fabric management servers gt From xCAT MS xdsh d lt Primary fabric management server gt captureall f lt hosts file with fabric management servers gt Note The captureall can generate many megabytes of data from fabric management servers Sometimes you do not require dat
487. se You may reproduce distribute and display these publications solely within your enterprise provided that all proprietary notices are preserved You may not make derivative works of these publications or reproduce distribute or display these publications or any portion thereof outside your enterprise without the express consent of the manufacturer 288 Power Systems High performance clustering Except as expressly granted in this permission no other permissions licenses or rights are granted either express or implied to the publications or any information data software or other intellectual property contained therein The manufacturer reserves the right to withdraw the permissions granted herein whenever in its discretion the use of the publications is detrimental to its interest or as determined by the manufacturer the above instructions are not being properly followed You may not download export or re export this information except in full compliance with all applicable laws and regulations including all United States export laws and regulations THE MANUFACTURER MAKES NO GUARANTEE ABOUT THE CONTENT OF THESE PUBLICATIONS THESE PUBLICATIONS ARE PROVIDED AS IS AND WITHOUT WARRANTY OF ANY KIND EITHER EXPRESSED OR IMPLIED INCLUDING BUT NOT LIMITED TO IMPLIED WARRANTIES OF MERCHANTABILITY NON INFRINGEMENT AND FITNESS FOR A PARTICULAR PURPOSE Notices 289 290 Power Systems High performance clustering
488. se remote errors can be complex to analyze to root cause It is an acceptable practice to first isolate and repair all link integrity problems before looking into rarer instances of failed components causing what appear to be remote errors If there are PortXmitDiscards perform the following steps Note For more details on PortXmitDiscards see PortXmitDiscards on page 271 1 For HCAs reporting PortRcvRemotePhysicalErrors there must be a corresponding PortRcvError for every PortRcvRemotePhysicalError There might be more PortRcvErrors that are unrelated to the PortRcvRemotePhysicalErrors This is not the case with the switch ports The switch ports count only a PortRcvRemotePhysicalError and they will not increment the PortRcvError counter 2 Determine if there is a pattern of errors emanating from a single link in the subnet that has link integrity errors or a link that is attached to an HCA that has experienced an event that would bring down the interface for example CEC recycle or checskstop and thus cause a packet to timeout before it reaches its destination For examples on typical patterns see Example PortXmitDiscard 3 If there is no pattern that leads to a link with errors or a link that went down but the pattern leads to a particular chip then it might be that the chip is the root cause For an example see Figure 19 onl Before proceeding to replace the FRU with the suspected failing chip perform the following steps
489. seline directory on the xCAT MS mkdir lt captureDir_onxCAT gt basel ine b Copy the baseline directory For xCAT xdcp fabric management server var opt iba analysis baseline lt captureDir_onCAT gt baseline c Make a latest directory on the xCAT MS mkdir lt captureDir_onxCAT gt latest 194 Power Systems High performance clustering 7 8 d d Copy the latest directory from the fabric management server to the xCAT MS For xCAT xdcp fabric management server var opt iba analysis latest lt captureDir_onCAT gt latest e e On the xCAT MS make a directory for the failed health check runs mkdir lt captureDir_onxCAT gt hc_fails f To get all failed directories use xdcp for xCAT command If you want to be more targeted copy over the directories that have the required failure data The would pick up the directories with timestamp for names If you have a date in mind you can use something like 2010 03 19 for March 19 2010 For xCAT xdcp fabric management server var opt iba analysis lt captureDir_onCAT gt hc_fails Get HCA information from the IBM systems a For AIX run the following commands from the xCAT MS by using xdsh 1 Isdev grep ib 2 Iscfg grep ib 3 netstat i egrep ib ml0 4 ifconfig a 5 ibstat v b b For Linux run the following commands from the xCAT MS by using xdsh 1 Ispci grep ib 2 netstat i egrep ib ml0 3 ibv_devinfo v tar up all of the files
490. server installation manual to verify that the system is operational S6 Customize logical partition and HCA configurations S7 Load and update the operating system Complete the following switch installation and configuration tasks W2 through W6 W2 Power on and configure IP address of the switch Ethernet connections This must be done before attaching it to the service VLAN 72 Power Systems High performance clustering W3 Connect switches to the cluster VLAN If there is more than one VLAN all switches must be attached to a single cluster VLAN and all redundant switch Ethernet connections must be attached to the same network Prerequisites for W3 are M3 and W2 W4 Verify discovery of the switches W5 Update the switch software W6 Customize InfiniBand network configuration Complete C1 through C4 for cabling the InfiniBand network Notes 1 Itis possible to cable and start networks other than the InfiniBand networks before cabling and starting the InfiniBand network 2 When plugging InfiniBand cables between switches and HCAs connect the cable to the switch end first Connecting the cable to the switch end first is important in this phase of the installation C1 Route cables and attach cables ends to the switch ports Apply labels at this time C2 c3 If 12x HCAs are connecting to 4x switches and the links are being configured to run at 12x instead of 4x the
491. sh communication between the Fabric Management Server and the switches and other fabric management servers If this is not wanted you must set up password information for the Fast Fabric Toolset in which case skip to step a Generate the key on the fabric management server Depending on local security requirements you would typically do this for the root on the fabric management server Fabric MS Typically you would use the usr bin ssh keygen t rsa command b Set up secure fabric management server to switch communication using the following instructions i Exchange the key using the cmdall C sshKey add Fabric MS key command where Fabric MS key is the key Note The key is in the ssh id_rsa pub file Use the entire contents of the file as the Fabric MS key Remember to put double quotation marks around the key and single quotes around the entire sshKey add command ii ensure that the following is in etc fastfabric conf file export FF_LOGIN METHOD FF_LOGIN METHOD ssh c Set up secure communication between Fabric Management Servers using one of the following methods e Use the setup_ssh command in the Fast Fabric Toolset e Use the Fast Fabric Toolset iba_config menu Choose the options Fast Fabric gt Host setup gt Setup Password less ssh scp e Use typical key exchange methods between Linux servers If you chose not to set up passwordless ssh from the fabric management server to switches
492. sical switch port must be determined This applies to IBM GX HCAs For more information about the architecture of IBM GX HCAs and logical switches within them see IBM GX or GX host channel adapter on page 7 Note This procedure has some steps that are specific to operating system type AIX or Linux This must do with querying the HCA device from the operating system For AIX the adapter is called ibaX where X is a number 0 through 3 For Linux the adapter is call ehcaX where X is a number 0 through 3 For example if there is a problem with ib0 use the following procedure to determine the physical HCA port and physical switch port associated with the problem 1 2 3 Record the ib interface number and server For example ib1 on c924flec09 Log on to the server with the ib interface of interest From netstat get the Logical HCA GUID associated with the ib interface For AIX use netstat I ib interface you must add leading zeros to bytes that are returned with single digits You need the last 8 bytes of the Address Example results gt netstat I ibl Name Mtu Network Address Ipkts Ierrs Opkts Oerrs Coll ibl 65532 link 3 0 0 0 b fe 80 0 0 0 0 0 1 0 2 55 0 10 24 d9 1 65 0 7 0 0 ibl 65532 192 168 9 192 168 9 65 65 0 7 0 0 GUID 0 2 55 0 10 24 d9 1 00 02 55 00 10 24 d9 01 For Linux use ifconfig ib interface Example results gt ifconfig ibO grep inet6 inet6 addr fe80 202 5500 1024 d900 6
493. sical switch port is in the last line of the results of the query Get the name and port for the switch The name must be given such that it indicates where the switch is physically lt gt switch GUID port SW switch name IBnodeDescription Example results Port 3 on switch SilverStorm 9024 DDR GUID 0x00066a00d90003d3 This switch has not been renamed and is using the default naming convention which includes the switch model and GUID 12 Therefore for ib0 in the server the C65 T1 HCA port is attached to port 3 of SilverStorm 9024 DDR GUID 0x00066a00d90003d3 This procedure ends here 206 Power Systems High performance clustering IBM GX HCA Physical port mapping based on device number Use this information to find the IBM GX HCA physical port based on the iba device and logical switch number Use the following table is to find IBM GX HCA physical port based on iba device and logical switch IBM GX or GX host number For more information about the structure of the IBM GX HCA see channel adapter on page 7 Table 91 IBM GX HCA physical port mapping from iba device and logical switch Device iba Logical Switch 9125 F2A 8203 E4A 8204 EA8 iba0 ehca0 1 C65 T1 Cx T1 Cx T1 iba0 ehca0 2 C65 T2 Cx T2 Cx T2 ibal ehcal 1 C65 T3 ibal ehcal 2 C65 T4 iba2 ehca2 1 C66 T1 iba2 ehca2 2 C66 T2 iba3 ehca3 1 C66 T3 iba3 ehca3 2 C66 T4 Interpreting switch vendor log formats Th
494. signed This is a configurable number for POWER6 GX HCAs and it is a fixed number for System p POWER5 GX HCAs The Power hypervisor PHyp communicates with the Subnet Manager using the Subnet Management Agent SMA function in phyp The POWER6 GX HCA supports a single LHCA by default In this case the GX HCA presents each physical port to the Subnet Manager as a two port logical switch One port is connected to the LHCA and the second port is connected to the physical port The POWER6 GX HCA can also be configured to support up to 16 LHCAs In this case the HCA presents each physical port to the Subnet Manager as a 17 port logical switch with up to 16 LHCAs Ultimately the number of ports for a logical switch is dependent on the number of logical partitions concurrently using the GX HCA The POWERS GX HCA supports up to 64 LHCAs In this case the GX HCA presents each physical port to the Subnet Manager as a 65 port logical switch One port connects to the physical port and 64 ports connect to LHCAs As compared to how it works on POWER6 processor based systems for System p POWERS processor based systems it does not matter how many LHCAs are defined and used by logical partitions The number of nodes presented includes all potential LHCAs for the configuration Therefore each physical port on a GX HCA in a POWERS processor based system presents itself as a 65 port logical switch The Hardware Management Console HMC that manages the server i
495. so 104 Power Systems High performance clustering 5 CM4 M4 Start the DHCP server on the xCAT MS or if applicable on a separate DHCP server This step blocks other installation tasks for servers and management consoles that require DHCP service from xCAT MS 6 It is a good practice to enter the configuration information for the server in its etc motd Use the information from the xCAT planning worksheets on page 89 Other procedures involving the xCAT MS are part of L1 L3 and R1 R2 which are all part of major task M4 Set up remote logging on page 112 e Set up remote command processing on page 120 Installing operating system installation servers Use this procedure to install operating system installation servers that assists with diagnostics This procedure is performed by the customer While there is reference to installing operating system installation servers this procedure concentrates on the need for diagnostics service using an operating system installation server In particular eServer diagnostics for System p servers are available only in the AIX operating system You need an AIX Shared Product Object Tree SPoT even if you are running another operating system in your partitions on servers with no removable media CD or DVD Before proceeding obtain documentation on the server AIX network installation management NIM server and Linux distribution server The following documents must be us
496. st first be correlated to any existing server failures that might be the root cause e Operating system error events would be reported through errpt in AIX and var log messages in Linux Problems with the fabric would reference either an HCA device iba0 through iba3 or a fabric interface in AIX ib0 through ib7 in Linux ehca0 through ehca7 When isolating these issues to root cause start by looking for link problems or fabric device problems reported as any one of the previously mentioned events e Performance issues are typically reported by users Unless one of the previously mentioned failure scenarios is identified as the root cause a method for checking the health of the fabric is required to either identify an unreported problem or to positively verify that the fabric is in good health Although performance problems can be complex and require remote support some initial diagnosis e Application crashes are typically reported by users There are many causes for application crashes that are outside the scope of this information However some initial diagnosis can be performed by using e Configuration changes are typically reported by Fast Fabric Health Check Configuration changes can be caused by many things some are benign and some indicate a real problem For more details see yn Inadvertently moving a cable or swapping components around Replacing a part with one that has a different serial number Leaving
497. ster is operational again 2 Consider disabling the Subnet Managers before proceeding with the restarts This prevents new log entries caused by the restart process While it also suppresses real problems those would be uncovered in the subsequent health check in step 3 Restart the cluster but make sure the LPARs stop at LPAR standby mode 4 When the IBM systems are at LPAR standby mode restart the Subnet Managers a As devices come back online there would be appearance Notices from the Subnet Managers You can count the number of devices and make sure that the count corresponds to the appropriate number of devices that you have in the IBM systems that has been restarted For more information see Counting devices on page 248 Keep in mind that the devices might come up over several scans of the fabric by the Subnet Managers so add up the appearance counts over several log entries However the following health check takes care of checking for any missing devices 5 Run the sbin iba_report C o none command to clear error counters on the fabric ports before doing a health check on the current state Otherwise the restart would cause errors 6 Continue to restart the IBM systems through the operating system load 7 If possible wait approximately 10 minutes before you can run health check to look for errors and compare against the baseline configuration The wait period allows for error accumulation Otherwise r
498. switches Only the worksheet for the fourth switch is shown Table 56 Example Planning worksheet for Director or core switch with more than 24 ports Director or Core Switch greater than 24 ports 4 of 4 High performance computing clusters using InfiniBand hardware 87 Table 56 Example Planning worksheet for Director or core switch with more than 24 ports continued Switch Model 9140 Switch name egsw04 set by using setIBNodeDesc xCAT Device Node name xCAT 123 Frame and slot f10s04 Chassis IP addresses 10 1 1 13 9240 has 2 hemispheres Spine IP addresses slot1 10 1 1 19 slot2 10 1 1 23 indicate spine slot Default gateway GID prefix _fe 80 00 00 00 00 00 03 LMC 2 0 default 2 if used in HPC cluster NTP Server xCAT MS Switch MTMS Fill out during installation New admin password Fill out during installation Remote logging host ____ xCAT MS Table 57 Example Planning worksheet for Director or core switch with more than 24 ports leaf configuration Leaf_1 Leaf _2 Ports Connection Ports Connection 1 f01n01 C65 T4 1 02n01 C65 T4 2 f01n02 C65 T4 2 02n02 C65 T4 3 01n03 C65 T4 3 02n03 C65 T4 4 f01n04 C65 T4 4 02n04 C65 T4 5 01n05 C65 T4 5 02n05 C65 T4 6 01n06 C65 T4 6 02n06 C65 T4 7 f01n07 C65 T4 7 02n07 C65 T4 8 01n08 C65 T4 8 02n08 C65 T4 9 01n09 C65 T4 9 02n09 C6
499. system HCAs have rejoined the fabric Note When all analysis is referenced if you have created a script to run all_analysis substitute that in the procedure For an example of such a script see Healthcheck control script on page 277 When you are asked to clear errors you might want to use a script like that described in Error counter clearing script on page 276 1 Restart the IBM system a Errors are logged for the HCA links going down and for the logical switches and logical HCAs disappearing b You can ensure that the number of devices disappearing corresponds to the appropriate number relative to the number of HCAs that you have in your IBM systems that have been restarted For more information see In this way ensure that nothing disappeared from the fabric that was not in the restarted IBM system or connected to the IBM system If you do not check this at this time the health check completed later in this procedure will check for any missing devices but detection of the problem will be delayed until after the IBM system has restarted c If devices disappear that are not in the IBM systems or are not connected to the IBM systems see the Table of symptoms on page 187 2 Wait for the IBM system to restart through the operating system load a As devices come back online there would be appearance Notices from the Subnet Managers You can count the number of devices and make sure that the count corres
500. systems Ping problems Recovering ibX interfaces Recovering ibX interfaces on page 235 Not running at the required 4KB MTU Recovering to 4K maximum transfer units in the AIX Reestablishing a health check baseline Re establishing Health Check baseline on page 244 Verify Procedures Verifying link field replaceable unit FRU replacements Verifying link FRU replacements on page 244 Verifying other repairs Verifying configuration changes Capturing data for fabric diagnosis Use this procedure to collect data that the support team might require to diagnose fabric problems The information that you collect can result in a large amount of data If you want to collect a more targeted set of data see the various unit and application users guides and service guides for information about how to do that This procedure captures data from 1 Vendor fabric management applications and vendor switches 2 IBM systems information to reflect the state of the HCAs A key application for capturing data for most fabric diagnosis activities is the Fast Fabric Toolset see the Fast Fabric Toolset Users Guide The Fast Fabric captureall would be used to gather 1 Subnet Manager data 2 Switch chassis data Pay close attention to how the command line parameters change from which devices data is collected Because all of the Fabric Management Servers and switches are connected to the
501. t some users find it useful to include the ibX interface in the switch name For example if company XYZ has eight subnets each with a single connection from each server the switches might be named XYZ ib0 through XYZ ib7 or perhaps XYZ switch 1 through XYZ switch 8 If you have a 4x switch connecting to 12x host channel adapter HCA a 12x to 4x width exchanger cable is required For more details see Planning 12x HCA connections on page 75 If you are connecting to 9125 F2A servers you must alter the switch port configuration to accommodate the signal characteristics of a copper or optical cable combined with the GX HCA in a 9125 F2A server e Copper cables connected to a 9125 F2A require an amplitude setting of 0x01010101 and pre emphasis value of 0x01010101 e Optical cables connected to a 9125 F2A require a pre emphasis setting of 0x0000000 The amplitude setting is not important e The following table shows the default values by switch model Use this table to determine if the default values for amplitude and pre emphasis are sufficient Table 35 Switch Default Amplitude and Pre emphasis Settings Switch Default Amplitude Default Pre empahsis QLogic 9024 or IBM 7874 024 0x01010101 0x01010101 All other switch models 0x06060606 0x01010101 While passwordless ssh is preferred from xCAT MS and the fabric management server to the switch chassis you can also change the switch chassis default password ea
502. t Fabric Toolset Users Guide for more details Verifying link FRU replacements This procedure is used to verify link field replaceable unit FRU replacements This procedure relies on you having recorded the light emitting diode LED states before the fix Note Proceed only if you have replaced a link FRU 1 Check the LEDs at each end of the cable 2 If the LEDs are not lit the problem is not fixed Return to the fault isolation procedure that sent you here Otherwise proceed to the next step 3 If the LEDs are not lit before replacing the cable and they are now lit the problem is fixed Return to the fault isolation procedure that sent you here Otherwise proceed to the next step 4 Log on to the fabric management server or have the customer log on and perform the remaining steps 5 Run the sbin iba_report o errors C command to check and clear the error counters 6 Wait several minutes to allow new errors to accumulate 244 Power Systems High performance clustering 7 Run the sbin iba_report o errors command again 8 If the link reports errors the problem is not fixed Otherwise the problem is fixed This procedure ends here Return to the fault isolation procedure that sent you here Verifying repairs and configuration changes Use this procedure to verify repairs and configurations changes that have taken place with your cluster After a repair or configuration change has been made it is good practice
503. t apply to clusters running SubnetManager code at the 4 3 x level or previous levels Call your next level of support upon seeing PortXmitConstraintErrors or PortRevConstraintErrors Diagnose a link problem based on error counters You would have been directed here from another procedure To diagnose a link problem perform the following steps Note Whenever you are instructed to retrain a link see Retraining 9125 F2A links on page 252 1 If it is connected to an IBM GX HCA in a 9125 F2A and the link has not been retrained since the last power cycle or maintenance action retrain it Otherwise go to step a Ifthe switch firmware is at the 4 2 1 1 1 level you must reseat the cable or use a special script b If the switch firmware is at the 4 3 level or greater retrain the link by using iba_port_disable and iba_port_enable by targeting the leaf port of the link 2 If the problem continues reseat the cable at both ends If this resolves the problem go to step 3 If the problem continues and you can swap the cable between HCAs and switch ports do the following a Swap the cable around between ports until you can isolate if it is the cable leaf or HCA You are looking for whether the problems moves with the cable the leaf port or HCA port This indicates the failing FRU b After each movement of the cable you must reset the counters on the link You might also retrain the link to ensure yourself that any errors t
504. t component e Updating switch firmware or the Subnet Manager e Changing time zones in a switch e Adding or deleting a new device or link to a fabric e A link fails and its devices are removed from the Subnet Manager database To reestablish the health check baseline complete the following steps 1 Ensure that you have fixed all problems with the fabric including inadvertent configuration changes before proceeding 2 Verify that the fabric configured is as expected The simplest way to do this is to run fabric_info This returns information for each subnet to which the fabric management server is connected The following example is an output for a single subnet The comments are not part of the output They are only included to help understand the output better SM c999f4nm02 HCA 2 Guid 0x0008f104039908e5 State Master Number of CAs 53 one for each HCA port including the Fabric MS Number of CA Ports 53 same as number of CAs Number of Switch Chips 76 one per IBM GX HCA port one per switch leaf two per switch spine Number of Links 249 one per HCA port 12 per leaf Number of 1x Ports 0 3 Save the old baseline This might be required for future debugging The old baseline is a group of files in the var opt iba analysis basel ine file 4 Run the all_analysis b command 5 Check the new output files in the var opt iba analysis baseline file to verify that the configuration is as you expect it See the Fas
505. t detecting PortRcvErrs This is enough to indicate the root cause is Link1 The other PortRvcRemotePhysicalErrors leading back through to another HCA and a leaf are further evidence but not necessary to leading to this root cause However it is important to note that if the other Leaf and HCA was not leading back through one of the spines RPE PortRcvRemotePhysicalError Spine PortRevE The errors are listed next to the port on HCA ortRevErrs which they were detected Link 1 Note the directionality of the arrows Spine which indicates the direction of data flow RPE P7ECZ506 0 Figure 20 Leaf HCA link causing PortRcvRemotePhysicalErrors The following figure shows a spine to leaf link with errors that is causing PortRcvRemotePhysicalErrors The first indication of this is the PortRcvRemotePhysicalErrors being reported by leaf ports connected to the same spine The PortRcvRemotePhysicalErrors reported by the HCA in the figure is not necessary in finding root cause However you can see how you can lead back from the spine to the leaf and then to the HCA and it is possible that the only set of PortkcvRemotePhysicalErrors seen lead you from the spine to one leaf and then one HCA 262 Power Systems High performance clustering Leaf Link errors Spine RPE PortRvcRemotePhysicalError RPE The errors are listed next to the port on RPE which they were detected RPE Note the directionality of the arrows RPE Leaf which indicates the direc
506. t of their Fast Fabric Toolset The most generic health check available is all_analysis which is referred often in this section Generally this health check is run to gather all manner of health check information from the entire fabric However you can also target specific devices and ports with these commands This includes configuration information which has to remain constant under normal circumstances The health check tools with a short description of each are listed in the following section e fabric_analysis queries port counters and link connectivity e chassis_analysis checks the health and configuration of the switch chassis e hostsm_analysis or esm_analysis checks the configuration of the subnet manager e all_analysis runs all of the above analysis tools e fabric_info provides a quick list of devices and links in the fabric There are several times that health checks are done The method for interpreting results varies depending on what you are trying to accomplish These times are listed in the following section Note These commands must be run on each fabric management server that has a master subnet manager running on it So the health check also checks the master subnet managers configuration The health checks that commands should be run at various times as described in the following points e During installation or reconfiguration to verify that there are no errors in the fabric and that the configuration is as expected Repea
507. t these steps until the configuration looks good Run fabric_info command to determine if the correct number of devices appears on the fabric The following output is an example for a single subnet The comments are not part of the output They are only included to help understand the output better SM c999f4nm02 HCA 2 Guid 0x0008f104039908e5 State Master Number of CAs 53 one for each HCA port including the Fabric MS Number of CA Ports 53 same as number of CAs Number of Switch Chips 76 one per IBM GX HCA port one per switch leaf two per switch spine Number of Links 249 one per HCA port 12 per leaf Number of 1x Ports 0 should always be zero Run the following command repeatedly until configuration looks good sbin all_analysis b e Once everything is verified after an installation or repair a baseline health check is saved for future comparisons Repairs that lead to serial number changes on FRUs or movement of cables or switch firmware and software updates constitute configuration changes sbin all_analysis b High performance computing clusters using InfiniBand hardware 157 e Periodically to monitor the fabric For more information see Setting up periodic fabric health checking sbin all_analysis Note The LinkDown counter in the IBM GX GX HCAs would be reset as soon as the link goes down This is part of the recovery procedure While this is not optimal the connected switch ports Li
508. t unconfigured for a specific reason If the network still has performance problems call your next level of support If no problems are found in SFP perform any System Service Guide instructions for diagnosing unconfigured memory If the memory deconfiguration persists call your next level of support Verify Memory ends here Checking InfiniBand configuration in Linux This procedure checks for HCA availability and configuration in Linux Verify HCAs This verifies that HCAs are available and configured properly Perform the following operations from the xCAT MS Verify HCAs are visible to LPARs 1 Run the following command to count the number of HCA devices For xCAT xdsh nodegroup with all nodes v ibv_devices grep ehca wc If the number returned by the system e Matches the number of HCAs in the cluster continue with the procedure to Verify all HCAs are available to the LPARs e Does not match the number of HCAs continue with this procedure Run the following command to generate a list of HCAs visible to the LPARs including the HCA GUID For xCAT xdsh nodegroup with all nodes v ibv_devices grep ehca gt hca_list Open the generated file hca_list and compare with the list of all expected HCAs by their GUID For each LPAR having HCAs that are not visible check to see if the HCA was assigned to that LPAR Using the HMC GUI on the HMC controlling each server a Verify that the HCA has b
509. t up xCAT Event Management for the fabric again Reconfiguring xCAT event management on page 232 Monitoring the fabric for problems Use this procedure to learn several ways to monitor for problems in the fabric The primary method is to query logs on the xCAT MS and use health checks on the fabric management server Both of which might be accomplished on the xCAT MS by using the following procedures Health checking on page 157 1 2 3 Querying status on page 174 Monitoring fabric logs from the xCAT Cluster Management server However there are also other error indicators that are used less frequently and as b suggested methods shown here These are described mechanisms on page 183 ackups to the in service procedures found in Fault reporting This information addresses where to look for problems that can affect the fabric Monitoring fabric logs from the xCAT Cluster Management server You can set up the xCAT MS to automatically monitor for problems You can use the xCAT and RSCT infrastructure to automate the monitoring of problems However this requires user setup to customize to the users environment To accomplish this setup see xCAT How to guides and RSCT guides One possible method is to use the response script Email root anytime linked to the LocallBSwitchLog condition To set up the monitoring of fabric log procedure in Set up remote logging on page 112 s from th
510. tc init d syslog restart Also check crontab to make sure that it matches the original If not load the backup file by using usr bin crontab file You must exchange ssh keys again with the switches and xCAT because of updates to the operating system Therefore test out remote command capability from xCAT use xdsh fmserver IP address date When updating from IFS 4 to IFS 5 convert the configuration file from 178 Power Systems High performance clustering etc sysconfig iview_fm config to etc sysconfig qlogic_fm xml fms gt opt iba fm_tools config_convert etc sysconfig iview_fm config usr local iview etc qlogic_fm_src xml gt my_fm_config xml fms gt cp qlogic_fm xml qlogic_fm xml save fms gt cp my_fm_config xml qlogic_fm xml Restart the Fabric Manager Server Check the status of the FM fms gt etc init d qlogic_fm status Checking QLogic Fabric Manager Checking SM 0 fmO_sm Running Checking PM 0 fmQ_pm Running Checking BM 0 fmO_bm Running Checking FE 0 fm0_fe Running Checking SM 1 fml_sm Running Checking PM 1 fml_pm Running Checking BM 1 fml_bm Running Checking FE 1 fml_fe Running Checking SM 2 fm2_sm Disabled Checking PM 2 fm2_pm Disabled Checking BM 2 fm2_bm Disabled Checking FE 2 fm2_fe Disabled Checking SM 3 fm3_sm Disabled Checking PM 3 fm3_pm Disabled Checking BM 3 fm3_bm Disabled Checking FE 3 fm3_fe Disabled e For the host based fabric
511. telnetd connection requested by e Have severity level below Notice lt ip_address gt Warning and Error Provide advanced level of engineering debug information useful for postmortem analysis Switch chassis management log format The switch chassis management code logs problems with the switch chassis for things like power and cooling and logic issues or other hardware failures not covered by the Subnet Manager The log format for switch chassis management logs is as follows The key to recognizing a switch chassis log is that it contains the string CHASSIS after the MSG lt msgType gt string Note This format is for entries with a severity of Notice or higher INFO messages are not bound by this format and are for engineering use lt prefix gt MSG lt msgType gt CHASSIS lt location gt COND lt condition gt FRU lt fru gt PN lt part number gt DETAIL lt details gt lt prefix gt timestamp and card slot number and IP address of the unit reporting the error lt msgType gt is one of the following values Error Warning Notice INFORMATION lt location gt is the value from the user settable field called InfiniBand Node Description on the System tab of the GUI or via the CLI command setIBNodeDesc Up to 64 characters Defaults to GUID lt condition gt is one of the conditions from the CHASSIS Reporting Table Text includes a unique ID number lt fru gt associated wi
512. tem Also you must plan for the frames that house the management consoles Customer supplied Ethernet service and cluster VLANs are required to support the InfiniBand cluster computing environment The number of Ethernet connections depends on the number of servers bulk power controllers BPCs in 24 inch frames InfiniBand switches and HMCs in the cluster The Systems Management application and server which might include Cluster Ready Hardware Server CRHS software would also require a connection to the service VLAN Note While you can have two service VLANs on different subnets to support redundancy in IBM servers BPCs and HMCs the InfiniBand switches support only a single service VLAN Even though some InfiniBand switch models have multiple Ethernet connections these connections connect to different management processors and therefore can connect to the same Ethernet network An HMC might be required to manage the LPARs and to configure the GX bus host channel adapters HCAs in the servers The maximum number of servers that can be managed by an HMC is 32 When there are more than 32 servers additional HMCs are required For details see Solutions with the Hardware Management Console in the IBM systems Hardware Information Center It is under the Planning gt Solutions gt Planning for consoles interfaces and terminals path If you have a single HMC in the cluster it is normally configured to be the required dynamic host configura
513. th a master Subnet Manager If you have set it up you might use dsh from the xCAT MS to the switches For details see Set up remote command processing on page 120 For xCAT remember to use admin devicetype IBSwitch Qlogic when pointing to the switches for i in list of SM instances typically 0 1 2 3 do usr local util sm_query i i smShowGroups done There must be just one group with all the HCA devices on the subnet being part of the group mtu 5 indicates 4 K mtu 4 indicates 2 K The following example shows 4 K MTU Oxff12401bffff0000 00000000ffffffff c000 qKey 0x00000000 pKey OxFFFF mtu 5 rate 3 life 19 sl 0 0x00025500101a3300 F 0x00025500101a3100 F 0x00025500101a8300 F 0x00025500101a8100 F 0x00025500101a6300 F 0x00025500101a6100 F 0x0002550010194000 F 0x0002550010193e00 F 0x00066a00facade01 F This procedure ends here Diagnosing swapped HCA ports Use this procedure to diagnose swapped HCA ports If you swap ports it might be inconsequential or it might cause performance problems depending on which ports were swapped An in depth analysis of whether a swap can cause performance problems is outside of the scope of this document However a rule of thumb applied here is that swapping ports between subnets is not desirable If HCA ports have been swapped this would be uncovered by the Fast Fabric Health Check when it compares the latest configuration with the baseline configuration You must interpret t
514. th of the fabric 1 Syslog entries status and configuration changes can be forwarded from the Subnet Managers to the xCAT Management Server MS Set up different files to separate priority and severity 2 The IBSwitchLogSensor within xCAT can be configured 3 The QLogic Fast Fabric Toolset health checking tools can be used for regularly monitoring the fabric for errors and configuration changes that might lead to performance problems Maintain The xdsh command in xCAT permits you to use the following vendor command line tools remotely 1 Switch chassis command line interface CLI on a managed switch 2 Subnet Manager running in a switch chassis or on a host 3 Fast Fabric tools running on a fabric management server or host This host is an IBM System x server that is running on the Linux operating system and the host stack from the vendor Diagnosing Vendor tools diagnose the health of the fabric The QLogic Fast Fabric Toolset running on the Fabric Management Server or Host provides the main diagnostic capability It is important when there are no obvious errors but there is an observed degradation in performance This degradation might be a result of errors previously undetected or configuration changes including missing resources Connecting For connectivity the xCAT MS must be on the same cluster VLAN as the switches and the fabric management servers that is running the Subnet Managers and Fast Fabric tools 14 Power
515. th the condition lt part number gt is an ASCII text field which identifies the QLogic part number for the associated FRU lt details gt is optional information that is relevant to the particular event Example switch chassis management log entry 208 Power Systems High performance clustering Oct 9 18 54 37 slotl01 172 21 1 29 MSG NOTICE CHASSIS SilverStorm 9024 GUID 0x00066a00d8000161 COND 9999 This is a notice event test FRU Power Supply 1 PN 200667 000 DETAIL This is an additional information about the event Subnet Manager log format The Subnet Manager logs information about the fabric This includes events like link problems devices status from the fabric and information regarding when it is sweeping the network The Subnet Manager log can be either on a switch in the same log as the Switch Chassis Management Log for embedded Subnet Managers or in the syslog var log messages of the fabric management server for Host based Subnet Managers When remote logging and xCAT event management is set up as in remote logging g the Subnet Manager logs are also available on the xCAT MS For more information see to xCAT event management on page 23 The format of the Subnet Manager log is as follows The key to recognizing a Subnet Manager log entry is the string ISM following the string MSG lt msgType gt Vendor log flow Note This format is for entries with a severity of Notic
516. the LMC for all instances of the SM to be 2 If you have chosen the default of 0 then do not change the line If you have chosen LMC 1 then substitute 1 for the value of 2 below If you have a different LMC for each instance of SM you must update each instance of SM as described in step f lt Lmc gt 2 lt Lmc gt lt assign 2 lmc LIDs to all CAs Lmc can be 0 7 gt b Configure the Multicast parameters in the first lt MulticastGroup gt section using the planning information 108 Power Systems High performance clustering 1 For MTU use the value planned in Planning maximum transfer unit MTU on page 51 lt MTU gt 4096 lt MTU gt 2 For MTU rate use the value planned in Planning maximum transfer unit MTU on page The following example is for MTU rate of 20 g lt Rate gt 20g lt Rate gt Configure the Fabric Sweep parameters Increase the number of maximum attempts for SM requests to 8 lt MaxAttempts gt 8 lt MaxAttempts gt Configure the SM logging attributes Set the maximum number of Node Appearances and Disappearances to minimize log entries during reboot recycle actions lt NodeAppearanceMsgThreshol d gt 10 lt NodeAppearanceMsgThreshol d gt If all of the SM priorities and elevated priorities on this fabric management server are the same update them near the end of the lt Sm gt section The following example priority is 1 and the example elevated priority is 12 Use the values planned
517. the host based Fabric Manager which would also run on the Fabric Management Server The total package of Fabric Manager and Fast Fabric Toolset is known as the InfiniBand Fabric Suite IFS The fabric management server has the following requirements e IBM System x 3550 or 3650 64 Power Systems High performance clustering The 3550 is 1U high and supports two PCI Express PCIe slots It can support a total of four subnets Memory requirements In the following bullets a node is either a GX HCA port with a single logical partition or a PCI based HCA port If you have implemented more than one active logical partition in a server count each additional logical partition as an additional node This also assumes a typical fat tree topology with either a single switch chassis per plane or a combination of edge switches and core switches Management of other topologies might consume more memory For fewer than 500 nodes you require 500 MB for each instance of fabric manager running on a fabric management server For example with four subnets being managed by a server you would require 2 GB of memory For 500 to 1500 nodes you require 1 GB for each instance of fabric manager running on a fabric management server For example with four subnets being managed by a server you would require 4 GB of memory Swap space must follow Linux guidelines This requires at least twice as much swap space as physical memory Plan suf
518. the link is up and unlit if the link is down Check the seating of the cable on the HCA and the switch port If it appears unseated reseat the cable and do the following steps Otherwise go to the next step a Check the LEDs b If the LEDs light the problem is resolved Go to step 18 on page 213 c If the LEDs do not light go to the next step Check the cable for damage If the cable is damaged perform the following procedure Otherwise proceed to the next step High performance computing clusters using InfiniBand hardware 211 a Replace the cable Before replacing the cable check the manufacturer and part number to ensure that it is an approved cable Approved cables are available in the IBM Clusters with the InfiniBand Switch web site referenced incl er efecto a aa b Perform the procedure in Verifying Tink FRU replacements on page 243 c If the problem is fixed go to step If not go to the next step 15 If there are open ports on the switch do the following steps Otherwise go to step 16 a Move the cable connector from the failing switch port to the open switch port b In order to see if the problem has been resolved or it has moved to the new switch port use the procedure inf Verifying ink FRU replacements on page 244 c If the problem was fixed then the failing FRU is on the switch Engage QLogic for repair When the repair has been made go to step 18 on page 213 If the problem was not fixed by swap
519. the procedures can be performed simultaneously pay close attention to where they converge and where one task might be a prerequisite for another task as indicated by the inverted triangle symbol The following steps are the major tasks for installation 1 Physically place units on the data center floor 2 Install and configure service and cluster VLAN devices following the procedure in Installing and configuring service VLAN devices on page 102 3 Install HMCs following the procedure in Installing the Hardware Management Console on page 102 4 Install the xCAT Management Server following the procedure in Installing the xCAT management 5 Install the operating system installation servers following the procedure in Installing operating system installation servers on page 105 6 Install the fabric management server following the procedure Installing the fabric management 8 Configure remote logging from switches and fabric management servers to the xCAT MS following the procedure in Set up remote logging on page 112 9 Configure remote command execution capability from the xCAT MS to the switches and fabric management servers following the procedure in Set up remote command processing on page 120 High performance computing clusters using InfiniBand hardware 99 Tasks have two reference labels to help cross reference them between figures and procedures The first is For example E1 M
520. this procedure If this is a switch to switch link and the switches are an IBM machine type and model And if the problem was reported because of error counters exceeding threshold as reported by health checks or iba_report use the procedures in Interpreting error counters on page 255 If this is an IBM HCA to switch link continue to the next step If the problem was reported because of error counters exceeding threshold as reported by health checks or iba_report use the procedures in Interpreting error counters on page 255 Map the IBM HCA GUID and port information to a physical location and determine the switch physical location by using the procedure in Mapping fabric devices on page 197 Before proceeding check for other link problems in the xCAT Event Management Log If there is an appearance notification after a disappearance notification for the link it is possible that the HCA link bounced or the node has rebooted If every link attached to a server is reported as down or all of them have been reported disappearing and then appearing do the following steps a Check to see if the server is powered off or had been rebooted If this is true the link error is not a serviceable event then end this procedure b The server is not powered off nor had it been rebooted The problem is with the HCA Replace the HCA by using the Repair and Verify procedures on the Hardware Management Console HMC which manages the
521. ting performance Because they can be logged during idle cycles and data transfer cycles and you cannot differentiate between the two A more reliable clue is if you can trace Remote Link Errors PortRcvRemotePhysicalErrors or PortXmitDiscards back to a link that has S mbolErrors More information about Remote Link Errors is available in Remote Link Errors On an IBM GX HCA port it is easier to assess the impact of SymbolErrors If a SymbolError occurs on a data packet the PortRcvError counter would be incremented too If a SymbolError occurs on an idle cycle only the SymbolError would be incremented Therefore with respect to past performance impact the PortRcvError counter must be considered instead of the SymbolError counter The SymbolError counter can be used as an indicator of the health of the link and as the number of SymbolErrors increase the odds of impacting performance increase Threshold minimum actionable 32 270 Power Systems High performance clustering Threshold maximum in 24 hours 10 Remote Link Errors including congestion and link integrity The errors PortRcvRemotePhysicalErrors and PortXmitDiscards are typically indicative of an error on a remote link that is affecting a local link PortRcvRemotePhysicalErrors PortRcvRemotePhysicalErrors indicate that a received packet was marked bad Depending on where the head of the packet is within the fabric and relative to this port because of cut through ro
522. tion concepts e The 7874 024 QLogic 9024 switches have a single address associated with its management Ethernet connection e All other switches have one or more managed spine cards per chassis If you want backup capability for the management subsystem you must have more than one managed spine in a chassis This is not possible for the7874 040 QLogic9040 e Each managed spine gets its own address so that it can be addressed directly e Each switch chassis also gets a management Ethernet address that is assumed by the master management spine This permits you to use a single address to query the chassis regardless of which spine is the master spine To set up management parameters like which spine is master each managed spine must have a separate address e The 7874 240 QLogic 9240 switch chassis is divided into two managed hemispheres Therefore a master and backup managed spine within each hemisphere is required creating a total of four managed spines Each managed spine gets its own management Ethernet address The chassis has two management Ethernet addresses One for each hemisphere High performance computing clusters using InfiniBand hardware 49 Review the 9240 Users Guide to ensure that you understand which spine slots are used for managed spines Slots 1 2 5 and 6 are used for managed spines The numbering of spine 1 through 3 is from bottom to top The numbering of spine 4 through 6 is from top to bottom e
523. tion is affected by expansion scenarios Table 73 Effects of expansion scenarios on cluster installation Scenario Effects Adding InfiniBand hardware to an existing cluster Perform this task as if it were a new cluster installation switches and host channel adapters HCAs Adding new servers to an existing InfiniBand network Do not perform anything outlined in this major task Adding HCAs to an existing InfiniBand network Do not perform anything outlined in this major task Adding a subnet to an existing InfiniBand network Perform this task on new switches as if it were a new cluster installation Adding servers and a subnet to an existing InfiniBand Perform this task on new switches as if it were a new network cluster installation High performance computing clusters using InfiniBand hardware 137 Installing and configuring the InfiniBand switch Use this procedure to install and configure InfiniBand switches It is possible to perform some of the tasks in this procedure in a method other than which is described If you have other methods for configuring switches you must review a few key points in the installation process that are related to the order and coordination of tasks and configuration settings that are required in a cluster environment Review the following list of key points before beginning the switch installation process Power on the InfiniBand switches and configure their IP addresses befor
524. tion of data flow HCA f _ Leaf Leaf Figure 21 Leaf Spine link causing PortRcvRemotePhysicalErrors P7ECZ507 0 The following figure is an example of all PortRcvRemotePhysicalErrors being associated with a single leaf and there are no link errors to which to attribute them You can see the transmit discards dead ending at the leaf chip It is important to first ensure yourself that all of the other errors in the network have a low enough threshold to be seen Otherwise the thresholds being used might be masking the root cause RPE HCA RPE RPE PortRcvRemotePhysicalError HCA Leaf The errors are listed next to the port on which they were detected Note the directionality of the arrows which indicates the direction of data flow No other errors in the fabric Carefully check thresholds on the other errors P7ECZ508 0 Figure 22 Failing leaf chip causing PortRcvRemotePhysicalErrors High performance computing clusters using InfiniBand hardware 263 Leaf RPE RPE PortRcvRemotePhysicalError The errors are listed next to the port on which they were detected RPE Note the directionality of the HCA Leaf arrows which indicates the direction of data flow RPE HCA No other errors in the fabric Carefully check thresholds on the other errors P7ECZ509 0 Figure 23 Failing HCA CRC generator causing PortRevRemotePhysicalErrors Interpreting security errors Security errors do no
525. tion protocol DHCP server for the service VLAN And the xCAT MS is the DHCP server for the cluster VLAN If multiple HMCs are used then typically the xCAT M S would be the DHCP server for both the cluster and service VLANs The servers have connections to the service and cluster VLANs See xCAT documentation for more information about the cluster VLAN See the server documentation for more information about connecting to the service VLAN In particular consider the following items e The number of service processor connections from the server to the service VLAN 54 Power Systems High performance clustering e If there is a BPC for the power distribution as in a 24 inch frame it might provide a hub for the processors in the frame permitting for a single connection per frame to the service VLAN After you know the number of devices and cabling of your service and cluster VLANs you must consider the device IP addressing The following items are the key considerations for IP addressing 1 Determine the domain addressing and netmasks for the Ethernet networks that you implement 2 Assign static IP addresses a Assign a static IP address for HMCs when you are using xCAT This static IP address is mandatory when you have multiple HMCs in the cluster b Assign a static IP address for switches when you are using xCAT This static IP address is mandatory when you have multiple HMCs in the cluster 3 Determine the DHCP range for each Eth
526. to verify that 1 A repair has fixed the problem and that no other faults have been introduced as a result of the repair 2 A configuration change has not resulted in any faults or inadvertent configuration changes It is important to understand that configuration changes include any change that results in different connectivity fabric management code levels part numbers serial numbers and any other such changes See the Fast Fabric Toolset Users Guide for the types of configuration information that is checked during health checking To verify repairs and configuration changes complete the following procedure Note As devices come online there would be appearance Notices from the Subnet Manager or Managers You can count the number of devices and ensure that the count corresponds to the appropriate number of devices that you have in the IBM systems that has been restarted For more information see CEER devices might come up over several scans of the fabric by the Subnet Managers so you must add up the appearance counts over several log entries However the following health checking procedure checks for any missing devices 1 Check light emitting diodes LEDs on the device ports and any port connected to the device See the System Users Guide and the Switch Users Guide for information about LED states If a problem is found see the Table of symptoms on page 187 2 Run the sbin iba_report C o none command to clear error
527. ts in your cluster you must have two hosts actively servicing your fabrics To permit for backups up to four hosts to be fabric management servers are required That is two hosts as primaries and two hosts as backups Consolidating switch chassis and Subnet Manager logs on to a central location is preferred Since xCAT can be used as the Systems Management application the xCAT MS can be the recipient of the remote logs from the switch You can direct logs from a fabric management server to multiple remote hosts See Set up remote logging on page 112 for the procedure that is used to set up remote logging in the cluster IBM has qualified the System x 3550 or 3650 for use as a Fabric Management Server IBM has qualified the QLogic HCAs for use in the Fabric Management Server e Backup fabric management servers are preferred to maintain availability of the critical HSM function e At least one unique instance of Fabric Manager to manage each subnet is required A host based Fabric Manager instance is associated with a specific HCA and port over which it communicates with the subnet that it manages For example if you have four subnets and one fabric management server it has four instances of Subnet Manager running on it one for each subnet Also the server must be attached to all four subnets The Fabric Manager consists of four processes the subnet manager SM the performance manager PM baseboard manager BM and fabric executive
528. twork interfaces are recognized as being up and available The following command string must return no interfaces If an interface is marked down it returns the LPAR and ibX interface For xCAT xdsh nodegroup with all nodes v usr bin Isrsrc IBM NetworkInterface Name OpState grep p resource v OpState 1 grep ib Verify HCAs ends here Checking system configuration in AIX You can use the AIX operating system to check system configuration Related concepts Hardware Management Console on page 18 You can use the Hardware Management Console HMC to manage a group of servers Verifying the availability of processor resources To check system configuration in AIX perform the following procedures on the xCAT MS 1 Run the command to get a count of processors in the cluster For xCAT xdsh nodegroup with all nodes v Isdev C grep proc grep AVAILABLE wc 1 2 This command must return the total number of processors available in the cluster if it does not a Verify that all servers are powered on b Fix any problems with dsh not being able to reach all LPARs c Determine which processors are having problems by running the command For xCAT xdsh nodegroup with all nodes v Isdev C grep proc grep v AVAILABLE d After you have identified the problem processors check SFP on the HMC controlling the server and complete the required service actions If no serviceable events are found try any isolation pr
529. u have decreased the timeouts to a point where more than the original set of ports with PortXmitDiscards is being recorded almost every port starts reporting PortXmitDiscards which is not useful Because of the complexity this must be done under development direction Although it is a low probability it is possible that a failing chip might cause the PortXmitDiscards to be detected by neighboring ports In such cases all of the PortXmitDiscards are being reported by ports connected to a particular leaf or spine and there are no link integrity errors being reported anywhere in the fabric It has not been seen before but if an HCA port is reporting the PortXmitDiscards and there are no other issues in the fabric it is possible that the HCA is faulty For more information see Example PortXmitDiscard analyses on page 261 Performance impact Because PortXmitDiscards indicate dropped packets they can be indicators of performance problems or the potential for performance problems For relatively low numbers of PortXmitDiscards it is possible that there would be no observable impact to performance Threshold minimum actionable 4 2 Threshold maximum in 24 hours 100 10 The suggested thresholds were set with the intention of revealing problems that are not related to downstream link integrity issues Therefore they may mask some of the more subtle problems If this is unacceptable then you might use the thresholds in paranthese
530. ubnet Manager queries about fabric status chassis switch chassis firmware queries hostsm queries about Subnet Manager configuration esm queries about embedded Subnet Manager configuration e The fast fabric commands used by health check are detailed in the Fast Fabric Toolset Users Guide e The suffixes for the output files are shown in the following examples errors errors exist in fabric Note Link down errors are only reported by the switch side of an IBM GX HCA to switch link changes change from baseline diff change from baseline see Interpreting health check diff files on page 172 stderr error in operation of health check call your next level of support e Query all the output files before taking a new baseline health check to ensure that the saved configuration information is correct e The all_analysis utility is a wrapper for fabric_analysis chassis_analysis hostsm_analysis and esm_analysis e Configure hostsm_analysis or esm_analysis to run e The analysis routines use iba_report to gather information e Key output files to check for problems fabric links 164 Power Systems High performance clustering fabric errors Record the location of the problem and see Diagnosing link errors on page 210 chassis errors Record the location of the problem and see Table of symptoms on page 187 diff indicates that there is a difference fr
531. ulassungsbescheinigung laut dem Deutschen Gesetz ber die elektromagnetische Vertr glichkeit von Ger ten EMVG bzw der EMC EG Richtlinie 2004 108 EG fiir Ger te der Klasse A Dieses Ger t ist berechtigt in bereinstimmung mit dem Deutschen EMVG das EG Konformitatszeichen CE zu f hren Verantwortlich fiir die Einhaltung der EMV Vorschriften ist der Hersteller International Business Machines Corp New Orchard Road Armonk New York 10504 Tel 914 499 1900 Der verantwortliche Ansprechpartner des Herstellers in der EU ist IBM Deutschland GmbH Technical Regulations Abteilung M456 IBM Allee 1 71139 Ehningen Germany Tel 49 7032 15 2937 email tjahn de ibm com Generelle Informationen Das Ger t erf llt die Schutzanforderungen nach EN 55024 und EN 55022 Klasse A Electromagnetic Interference EMI Statement Russia BHUMAHUME HacToa ee nsgenne otHocutca K Knaccy A B gt KUNbIX NOMELUEHUNAX OHO MOXKET CO3LaBaTb paguonomexu DNA CHNXKEHNA KOTOPbIX HEOOXOAMMbI AONONHUTeNnbHble Mepbi Terms and conditions Permissions for the use of these publications is granted subject to the following terms and conditions Personal Use You may reproduce these publications for your personal noncommercial use provided that all proprietary notices are preserved You may not distribute display or make derivative works of these publications or any portion thereof without the express consent of the manufacturer Commercial U
532. ulticast Information GID Oxff12601bf ff f0000 0x0000000000000016 GID Oxff12401bf ff f0000 0x0000000000000016 2 Check for MTU and link rate Typically you use the MTU and rate that are considered to be in error because that should return fewer things Generally these would return only the fabric management server HCA links The following example shows checking for 2 K MTU and SDR speeds iba_reports o links F mtu 2048 To check for MTU of 2048 iba_reports o links F rate 10g To check for SDR speeds b If you are running an embedded Subnet Manager to check multicast group creation run the following on each switch with a master Subnet Manager If you have set it up you might use xdsh from the xCAT MS to the switches see Peeiap remote a cioweane on mace OO For dsh remember to use devicetype IBSwitch Qlogic when pointing to the switches For xdsh remember to use admin devicetype IBSwitch Qlogicfor i in list of SM instances typically 0 1 2 3 do usr local util sm_query i i smShowGroups done There should be just one group with all the HCA devices on the subnet being part of the group Note that mtu 5 indicates 4 K mtu 4 indicates 2 K The following example shows 4 K MTU ico Oxff12401bffff0000 00000000F FFFFFFF c000 qKey 0xQ0000000 pKey OxFFFF mtu 5 rate 3 life 19 sl 0 0x00025500101a3300 F 0 x00025500101a3100 F 0x00025500101a8300 F 0x00025500101a8100 F 0x00025500101a6300 F 0x000255
533. umbers of servers See Server planning on page 29 and Server types on page 29 The number of HCA connections in the servers The number of InfiniBand subnets Eppa The size and number of switches in each InfiniBand subnet Do not confuse InfiniBand subnets with IP subnets In the context of this topology planning section unless otherwise noted the term subnet refers to an InfiniBand subnet 5 Planning of the topology with a consistent cabling pattern helps you to determine which server HCA ports are connected to which switch ports by knowing one side or the other If you are planning for a topology that exceeds the generally available topology of 64 servers with up to eight subnets contact IBM to help with planning the cluster The rest of this sub section contains information that ID helpful in that planning but it is not intended to cover all possibilities The required performance drives the types and models of servers and number of HCA connections per server The size and number of switches in each subnet is driven by the total number of HCA connections required availability and cost considerations For example if there are 64 9125 F2A each with 8 HCA connections it is possible to connect them together with 8 96 port switches or 4 144 port switches or 2 288 port switches The typical recommendation is to choose have either a separate subnet for each 9125 F2A HCA connection or a subnet for every two 9125 F2A HCA
534. umented requirements for the individual units frames systems and adapters in the cluster These tasks are performed by the customer an IBM Installation planning representative or a contractor All applicable IBM and vendor documentation can be consulted Note If installing host channel adapters HCAs into existing servers you must only perform operations involving cable routing and floor tile cut outs Installing and configuring the management subsystem This information is used to learn the requirements for installing and configuring the management subsystem 98 Power Systems High performance clustering The Management subsystem installation and configuration encompass major tasks M1 through M4 as shown in Figure 11 on page 71 This is the most complex area of a high performance computing HPC cluster installation It is affected by and affects other areas such as server installation and switch installation Many tasks can be performed simultaneously while others must be done in a particular order You install and configure Hardware Management Console HMC a service virtual local area network VLAN a cluster VLAN a Fabric Management Server a x CAT Management Server and building an AIX network installation management NIM Shared Product Object Tree SPoT to run diagnostics for servers without removable media CD and DVD drives The diagnostics are only available with the AIX operating system and require an AIX NIM SPoT e
535. un the health check now to check for configuration changes which includes any nodes that have fallen off of the switch a Run the all_analysis command For more information see Health checking on page 157 and the Fast Fabric Toolset Users Guide b Look for configuration changes and fix any that you find For more information see Finding and interpreting configuration changes on page 180 c Look for errors and fix any that you find For more information see the Table of symptoms on page 187 8 If you did not wait 10 minutes before running the health check rerun it after about 10 minutes to check for errors a Run the all_analysis command or the all_analysis e command For more information see checking on page 157 and the Fast Fabric Toolset Users Guide b Look for errors and fix any that you find For more information see the Table of symptoms on page 187 187 246 Power Systems High performance clustering c If you did not use the more information see This procedure ends here Restarting or powering off an IBM system If you are restarting or powering off an IBM system for maintenance or repair use this procedure to minimize impacts on the fabric and to verify that the system host channel adapters HCAs have rejoined the fabric To restart or power off an IBM system for maintenance or repair complete the following procedure to minimize impacts on the fabric and to verify that the
536. uperpacket on a tcp_recvspace 524288 a tcp_sendspace 524288 a srq_size 16000 a state up Verify the configuration a To verify that the device is set with super packets on use the following command 134 Power Systems High performance clustering for i in Isdev grep Infiniband awk print 1 egrep v ibalicm do echo i Isattr El i egrep super done Note To verify a single device such as ib0 run the command Isattr El ib egrep mtu super b Check the interfaces for the HCA devices ibx and ml0 using the following command netstat in grep v link awk print 1 2 The results should look similar to the following example where the MTU value is in the second column Name Mtu en2 1500 ib 65532 ibl 65532 ib2 65532 ib3 65532 ib4 65532 ib5 65532 ib6 65532 ib7 65532 mlQ 65532 100 16896 100 16896 Note If you have a problem where the MTU value is not 65532 you must follow the recover procedure in Recovering ibX interfaces on page 235 c If you are running a host based Subnet Manager to check multicast group creation on the Fabric Management Server run the following commands Remember that for some commands you must provide the HCA and port through which the Subnet Manager connects to the subnet For IFS 5 complete the following steps 1 Check for multicast membership At least one group should be returned per InfiniBand subnet iba_showmc egrep Fabric GID Fabric
537. upport firmware and devices on page 28 to understand the minimal level of software and firmware required to support clustering with an InfiniBand network 4 Review the planning resources for the individual servers that you want to use in your cluster See Server planning on page 29 5 Review Planning InfiniBand network cabling and configuration on page 30 to understand the network devices and configuration The planning information addresses the following items ing InfiniBand network cabling and configuration on e Planning an IBM GX HCA configuration on page 53 For vendor host channel adapter HCA planning use the vendor documentation 6 Review the Management subsystem planning on page 54 The management subsystem planning addresses the following items e Learning how the Hardware Management Console works in a cluster e Learning about Network Installation Management NIM servers AIX and distribution servers Linux e i our Systems Management application on page 55 e Planning for QLogic fabric management applications on page 56 e Planning for fabric management server on page 64 ing event monitoring with QLogic and management server on e Planning to run remote commands with QLogic from the management server on page 67 7 When you understand the devices in your cluster review Frame planning on page 68 to ensure that you have properly pl
538. ure 1 Verify that the BPCs and service processors are acquired by the DHCP server on the service VLAN 2 If using Cluster Ready Hardware Server CRHS set up the peer domains and HMC links in CRHS on the management server as instructed in the Administration Guide 3 If using CRHS perform server and frame authentication with CRHS on the management server as instructed in the Administration Guide This procedure ends here Management subsystem installation and configuration ends here Installing and configuring the cluster server hardware This procedure is intended to be completed by an IBM service representative or the customer responsible for installing cluster server hardware Installing and configuring the cluster server hardware encompasses major tasks S3 through S5 and the server part of M3 and M4 which are illustrated in the Figure 11 on page 71 Install and configure the servers for your cluster Note If possible do not begin this procedure until the Installing operating system installation servers lon page 105 n page 105 is completed This helps avoid the situation where installation personnel are waiting on site for key parts of this procedure to be completed Depending on the arrival of units on site this is not always practical Review Onder of installation on page 70land the figure 11 on page 7ilto identify the merge points where a step in a major task or procedure that is being performed by one person is
539. ure in Interpreting remote errors on page 260 6 For VL15 Drops SM congestion gt Normally these can be ignored and the threshold must be set to 0 or commented out However under engineering direction you might be watching these errors to isolate problems with the SM that appear to be caused by congestion 7 Ignore any PortRcvSwitchRelayErrors The HCAs do not record them and the switch chips have a bug that increments them incorrectly The threshold for these errors must be 0 or commented out Note For individual details on the various error counters see Error counter details on page 265 Interpreting link Integrity errors This information provides details on inspecting link integrity errors When inspecting link integrity errors perform do the following procedure This procedure is illustrated in Figure 16 on page 259 which can be used as a reference for the experienced user and helps a new user to understand the procedure If there is a LinkDowned error determine the reason for the error Otherwise go to step 2 Note For more details on LinkDowned errors see LinkDownedCounter on page 266 Determine if the link might have gone down because of one of the following user CEC or power events If any of these have been taken since the last inspection of the error counters you must reset the error counters for that link or if local policy dictates for all links and take no action for the error If there
540. uring the upgrade or install Select the defaults for all other questions If updating from one 4 3 x level to another select the defaults for all questions Do you want to keep etc iview_fm config gt n Do you want to keep etc sysconfig iba iba_mon conf gt n Do you want to keep etc sysconfig fastfabric conf gt n Do you want to keep etc sysconfig iba ports gt n Do you want to keep etc sysconfig iba iba_stat conf gt n Compare the saved files with the new files for changes the diff command is the standard method to compare files If no updates are present in the QLogic files copy the saved file back to the original filename Otherwise make the updates from the old copies to the new files etc sysconfig qlogic_fm xml for IFS 5 and beyond etc sysconfig iba iba_mon conf etc sysconfig fastfabric conf etc sysconfig iba ports etc sysconfig iba iba_stat conf etc sysconfig iba chasis etc sysconfig iba hosts var opt iba analysis baseline etc syslog ng syslog ng conf syslog config etc apparmor d sbin syslog ng must have var log xcat syslog fabric notices wr If etc apparmor d sbin syslog ng does not match you must restart AppArmor or reboot the FM server after reinstating the original AppArmor must be restarted before syslog ng etc init d boot apparmor restart If syslog ng conf does not match the original you must restart syslog ng or reboot the FM server after reinstating the original e
541. usly This capability must be set up by using Set up remote command processing on page 120 e The installation tool in Fast Fabric automatically verifies the checksum that is shipped with the firmware file Finding and interpreting configuration changes This information can be used to find and interpret configuration changes by using the Fast Fabric Health Check tool Configuration changes are best found by using the Fast Fabric Health Check tool For more information see Health checking on page 157 Note If you have multiple primary fabric management servers you must run the health check on each primary server because Fast Fabric can access only subnets to which its server is attached You might consider to use the xCAT MS to remotely run this function to all primary Fabric Management Servers For more information see Remotely accessing QLogic management tools and commands from xCAT MS on page 174 At the end of the installation process a baseline health check must have been taken to allow a comparison of the current configuration with a known good configuration Comparison results would reveal the configuration changes One key task before establishing a baseline is to ensure that it is representative of the cluster This is best done by using the fabric_info command For more information see Re establishing Health Check baseline on page 244 After performing a current health check all_analysis you will go t
542. uster Management server on page 156 e Perform a Fast Fabric Toolset Health Check as described in Health checking on page 157 e Use the Fast Fabric Toolset iba_report command See the Fast Fabric Toolset Users Guide for details on iba_report command Many of the typical checks that you would do with iba_report command are done in the Health Check However you can do many more targeted queries by using the iba_report command For more information see Hints on using iba_report on page 180 In IFS level 4 3 and above iba_reports is available it issues iba_report on all fabric links on the fabric management server e Use the Fast Fabric Toolset iba_saquery command to complement the iba_report command For more information about the saquery command see the Fast Fabric Toolset Users Guide e Use the Chassis Viewer to query one switch at a time For more information see the Switch Users Guide e Use Fabric Viewer to obtain a graphical user interface GUI representation of the fabric For more information see the Fabric Viewer Users Guide e Fast Fabric Toolset fabric_info outputs a summary of the number of components in each subnet to which a fabric management server is attached These methods do not exhaust the possible methods for querying status Further information is available in the Switch Users Guide the Fabric Manager and Fabric Viewer Users Guide and the Fast Fabric Toolset Users Guide Remotely accessing QLogi
543. uster VLANs Ethernet devices have been installed and cabled E2 Setting up remote command processing from the xCAT MS Use this procedure to set up remote command processing from xCAT MS To set up remote command processing complete the following steps Refer the fabric management worksheet based on the template in xCAT planning worksheets on page s9 and QLogic fabric management worksheets on page 92 1 R1 M4 Set up remote command processing with the fabric management server 120 Power Systems High performance clustering Note The following method is just one of several methods by which you can set up remote command processing to a fabric management server You can use any method that meets your requirements For example you can set up the Fabric Management Server as a node By setting it up as a device rather than a node you might find it easier to group it differently from the IBM servers a Add the fabric management servers to etc hosts IP address hostname b Ensure that you are using ssh for xdsh and that you have run the command chtab key useSSHonAIX site value yes c Use the following loop to define all fabric management servers to xCAT for fm in cat lt file containingFabric MS IP hostname gt do mkdef t node o fm groups all AllFabricMS nodetype FabricMS done d Exchange ssh keys with the fabric management servers This assumes that the password is the same for all fabric management serve
544. uting the packet might have been forwarded on toward the destination In this case the packet cannot be discarded It must be marked bad so that the destination knows that it has been corrupted elsewhere in the fabric Typically this indicates that some remote port has taken a link integrity error and flagged the packet as being bad In such cases you must be able to trace the PortRcvRemotePhysicalErrors in the fabric back to a particular port that has taken link integrity errors For more information see Example PortRcvRemotePhysicalErrors analyses on page 262 If there are no link integrity errors that appear to have caused the PortRcvRemotePhysicalErrors first check the thresholds being used by iba_report to ensure that the link integrity errors are not being masked because their thresholds are too high Although it is a relatively low probability it is possible that a failing chip might cause the PortRcvRemotePhysicalErrors to be detected by neighboring ports Typically in such cases all of the PortRcvRemotePhysicalErrors are being reported by ports connected to a particular leaf or spine and there are no link integrity errors being reported anywhere in the fabric It has not been seen before but if a leaf port connected to an HCA is reporting the PortRcvRemotePhysicalErrors it is possible that the HCA is faulty For more information see Example PortRcvRemotePhysicalErrors analyses on page 262 Performance impact Po
545. ven if partitions are running the Linux operating system If your partitions are running the Linux operating system you also need a Linux distribution server for updating the operating system to be used on the partitions in servers without removable media While it is typical to use the xCAT MS as the dynamic host configuration protocol DHCP server for the service VLAN if a separate DHCP server is installed you can follow the DHCP installation tasks as described in the installation procedure for xCAT This procedure is not a detailed description of how to install the management subsystem components because such procedures are described in detail in documentation for the individual devices and applications This procedure documents the order of installation and key points that you must consider in installing and configuring the management consoles The management consoles that are to be installed are the HMC the xCAT MS and the fabric management server The management consoles are key to successfully installing and configuring the cluster because they are the heart of the management subsystem Before you do any start up and configuration these devices must be installed and configured so that they are ready to discover and manage the rest of the devices in the cluster During management subsystem installation and configuration you can perform the following tasks which are illustrated in Figure 12 on page 100 While many of the tasks within
546. vers AIX distribution servers Linux and I O devices Table 44 Sample Frame and rack planning worksheet Frame planning worksheet Frame number or numbers Frame MTM or feature or type Frame size 19 in or 24 in Number of slots Slots Device type server switch BPA Indicate machine type and model number Device name The following worksheets are an example of a completed frame planning worksheets Table 45 Example Completed frame and rack planning worksheet 1 of 3 Frame planning worksheet 1 of 3 Frame number or numbers 1 8 Frame MTM or feature or type for 9125 F2A Frame size 24 19 in or 24 in Number of slots 12 Slots Slots Device type server switch BPA Device name Indicate machine type and model number 1 12 Server 9125 F2A egf frame n node egf01n01 egf08n12 80 Power Systems High performance clustering Table 46 Example Completed frame and rack planning worksheet 2 of 3 Frame planning worksheet 2 of 3 Frame number or numbers 10 Frame machine type and model number Frame size 19 19 in or 24 in Number of slots 4 Slots Slots Device type server switch BPA Device name Indicate machine type and model number 1 4 Switch 9140 egf10sw1 4 5 Power unit Not applicable Table 47 Example Completed frame and rack planning worksheet 3
547. vice VLAN DHCP ranges 10 0 1 32 10 0 1 128 Number of cluster VLANs 1 Cluster VLAN security addressed yes no comments yes Cluster VLAN domains 10 1 1 x Cluster VLAN DHCP server locations egxcatsv01 10 0 1 1 xCAT MS Cluster VLAN InfiniBand switches static IP addresses 10 1 1 10 10 1 1 13 Cluster VLAN HMCs with static IP Not Applicable Cluster VLAN DHCP ranges 10 1 1 32 10 1 1 128 AIX NIM server information xCAT MS Linux distribution server information Not applicable NTP server information xCAT MS Power requirements See site planning Maximum cooling required See site planning Number of cooling zones See site planning Maximum weight per area Minimum weight per area See site planning Frame and rack planning worksheet The frame and rack planning worksheet is used for planning how to populate your frames or racks High performance computing clusters using InfiniBand hardware 79 You must know the quantity of each device type including server switch and bulk power assembly BPA For the slots you can indicate the range of slots or drawers that the device populates A standard method for naming slots can either be found in the documentation for the frames or servers or you can choose to use EIA heights 1 75 in as a standard You can include frames for systems switches management servers Network Installation Management NIM ser
548. vices and switches and management servers e Service virtual local area network VLAN including Hardware Management Console HMC Ethernet devices xCAT Management Server for multiple HMC environments Network Installation Management NIM server for AIX servers that do not have removable media Distribution server for Linux servers that do not have removable media Fabric management server e System management applications HMC and xCAT e Where Fabric Manager runs host based HSM or embedded Tivoli Event Services Manager e Fabric management server for HSM and Fast Fabric toolset e Physical dimension and weight characteristics e Electrical characteristics e Cooling characteristics Target date Completed date Ensure that you have the required levels of supported firmware software and hardware for your cluster See Required level of support firmware and devices on Review the cabling and topology documentation for InfiniBand networks provided by the switch vendor Review Planning installation flow on page 68 Review Planning for an HPC MPI configuration on page 74 Review Planning 12x HCA connections on page 75 if you are using 12x host channel adapters Review Planning aids on page 75 Complete planning worksheets Complete planning process Review readme files and online information related to software and firmware to ensure t
549. view Required level of support firmware and devices Server planning Server types Planning InfiniBand ietwoik cabling aad configuration Topology planning Example configurations using only 9125 A servers Example configurations 9125 F2A compute servers and 8203 FAAstorage servers Configurations with IO router servers Cable planning g Planning QLogic or IBM Machine Type InfiniBand switch configuration Planning maximum transfer unit MTU E G cg uk ae SS Planning for global identifier prefixes Planning an IBM GX HCA configuration IP subnet addressing restriction with RSCT Management subsystem planning i Planning your Systems Management application Planning xCAT as your Systems Management application Planning for QLogic fabric management applications Planning the fabric manager and fabric Viewer Copyright IBM Corp 2011 mes SCONANN 10 10 10 11 x 12 12 12 13 13 14 15 17 AZ 18 Pe s19 20 20 20 21 21 22 wi de 23 24 26 2 27 28 2d s29 30 30 lt 39 43 47 48 49 51 Oe 53 53 54 D0 st00 56 56 iii Planning Fast Fabric Toolset s G a s som oso oe a oe 63 Planning for fabric management server Soo amp 2 a a a Hele es ue a BOE Planning event monitoring with QLogic and management server 2 ae A eR Rw aoa ee ee 2 166 Planning event monitoring with xCAT on the cluster management s
550. wed and corrected as needed For a hostsm analysis the files must be reviewed in the following order latest hostsm smstatus ensure that this file indicates the SM is running If no SMs are running on the fabric that problem must be corrected before proceeding further After being corrected the health checks must be rerun to look for further errors latest hostsm smver changes diff This file indicates the SM version has changed If this was not an expected change the SM must be corrected before proceeding further After being corrected rerun the health checks to look for further errors If the change was expected and permanent rerun a baseline when all other health check errors have been corrected latest hostsm smconfig diff This file indicates that the SM configuration has changed Review the file and as necessary compare thelatest hostsm smconfig file with baseline hostsm smconfig As necessary correct the SM configuration After being corrected rerun the health checks to look for further errors If the change was expected and permanent a rerun a baseline when all other health check errors have been corrected For an esm analysis the FF_ESM_CMDS configuration setting selects which ESM commands are used for the analysis When using the default setting for this parameter the review the files in the following order latest esm smstatus ensure that this file indicates the SM is running If no SMs are running on the fabric corre
551. where you store the iba_mon conf files CONFIGFILES where you store the iba_mon conf files A log file for the healthcheck script ANALYSISLOG var opt iba analysis all_analysis log This is the default list of Fabric MS ports Alter if necessary PORTSF etc sysconfig iba ports Error counter clearing script A key aspect of this script is to store the timestamp when the counters were cleared This is dependent on Configuration script bin bash Name of script clearerrors Include the configuration script Assume that it is in the same directory as this script 0 config Store the epoch for the date This will be used for the echo date s gt CLEARFILE Loop through the ports in the ports file If you have Fast Fabric 4 3 or later you can use iba_reports instead instead of a loop gt remove the for the done and the set of h and p for ps in cat PORTSF grep v do h ps 0 1 p ps 2 1 iba_report C a o errors h h p p F nodepat swpat e 276 Power Systems High performance clustering Healthcheck control script This script not only chooses the appropriate iba_mon conf file and calls all_analysis but it also adds entries to a log file SANALYSISLOG which is set up in the configuration file It is assumed that the user has set up etc sysconfig fastfabric conf appropriately for his configuration The user would check the ANALYSISLOG file on a
552. with a specific port of the HCA While the HCA tracks most of the prescribed counters it does not have counters for Transmit Packets or Receive Packets iba_report o route D nodeguid lt destination NodeGUID gt S nodeguid lt source NodeGUID gt The previous command queries the state of the routes from node on the fabric to another node is used in the sense of a node on the fabrc not in the sense of a logical partition or a server You can find the node GUIDs by using the procedure in 197 Instead of doing as instructed and grepping for only the first 7 bytes of a node GUID consider recording all 8 bytes You can use the iba_stat n command for HCAs in AIX logical partitions and the ibv_devinfo v for HCAs in Linux logical partitions If you have a particular logical partition for which you want to determine routes you can use a portGUID instead iba_report o route D portguid lt destination portGUID gt S nodeguid lt port NodeGUID gt iba_report d 5 s o nodes F nodepat IBM Switchs The previous query gets node information with enough details to also get the port counters The focus is on any IBM logical switch which is the basis for the IBM GX HCAs This matchs any generation of IBM GX HCA that happens to be in the cluster Note While the HCA tracks most of the prescribed counters it does not have counters for Transmit Packets or Receive Packets 182 Power Systems High performance clustering iba_report
553. wn See Diagnosing link errors on page 210 Link Integrity or Symbol errors on host channel adapter See Diagnosing link errors on page 210 HCA or switch ports Switch disappears See the Switch Users Guide and contact switch service provider Switch port disappears See Diagnosing link errors on page 210 Logical switch disappears See Diagnosing link errors on page 210 Logical HCA disappears See Diagnosing link errors on page 210 Fabric Initialization errors on a HCA or switch port See Diagnosing link errors on page 210 Fabric Initialization errors on a switch See Switch Users Manual and contact switch service provider switch component Security errors on switch or HCA ports Contact your next level of support If anything is done to change the hardware or software configuration for the fabric use Re establishing Health Check baseline on page 244 Events where the Subnet Manager SM is the node First check for problems on the switch or the server on responsible for the problem which the Subnet Manager is running If there are no problems there contact QLogic If anything is done to change the hardware or software configuration for the fabric use Re establishing Health Check baseline on page 244 188 Power Systems High performance clustering Table 83 xCAT MS Fabric Event Management log symptoms continued Symptom Procedure or Reference
554. y Switch partition give name type The following worksheet shows an example of a completed server planning worksheet 82 Power Systems High performance clustering Table 49 Example Completed server planning worksheet Server planning worksheet egf01n01 egf08n12 Names Types 9125 F2A Frame or frames slot or slots 1 8 1 12 Number and type of HCAs___ 1 IBM GX per 9125 F2A Number of LPARs or LHCAs 1 4 IP addressing for InfiniBand 10 1 2 32 10 1 2 128 10 1 3 32 10 1 3 128 10 1 4 x 10 1 5 x___ Partition with service authority Yes IP addressing of service VLAN _10 0 1 32 10 1 1 128 10 0 2 32 10 0 2 128__ IP addressing of cluster VLAN 10 1 1 32 10 1 1 128 10 1 5 32 10 1 5 128 LPAR IP addressing MPI addressing Configuration notes HCA information HCA Capability sharing HCA port Switch connection GID prefix C65 Not applicable C65 T1 Switch1 Frame1 Leaf1 FE 80 00 00 00 00 00 00 Frame8 Leaf8 C65 Not applicable C65 T2 Switch2 Frame1 Leaf1 FE 80 00 00 00 00 00 01 Frame8 Leaf8 C65 Not applicable C65 T3 Switch3 Frame1 Leaf1 FE 80 00 00 00 00 00 02 Frame8 Leaf8 C65 Not applicable C65 T4 Switch4 Frame1 Leaf1 FE 80 00 00 00 00 00 03 Frame8 Leaf8 LPAR LPAR or LHCA Operating system GUID index Shared HCA capability Switch partition give name type egf01n01sq01 AIX 0 Not applic
555. y of the Leaf arrows which indicates the Heca P xD direction of data flow XD Leaf 4 XD 2 Leaf Lu N Figure 18 Leaf Spine link causing PortXmitDiscards The following figure is an example of all PortXmitDiscards being associated with a single leaf and there are no link errors to which to attribute them You can see the transmit discards dead ending at the leaf chip It is important to first ensure yourself that all of the other errors in the network have a low enough threshold to be seen Otherwise the thresholds being used might be masking the root cause High performance computing clusters using InfiniBand hardware 261 port on which they were detected Note the directionality of the arrows which indicates the direction of data flow XD HCA XD XD PortXmitDiscard HCA Leaf The errors are listed next to the Hca XP XD No other errors in the fabric Carefully check thresholds on the other errors P7ECZ505 0 Figure 19 Failing leaf chip causing PortXmitDiscards Example PortRcvRemotePhysicalErrors analyses Several figures would be presented with descriptions preceding them The following figure is an example of an HCA detecting problem with a link and the pattern of PortRvcRemotePhysicalErrors leading to the conclusion that the link errors are the root cause of the PortRvcRemotePhysicalErrors The first key clue is a PortRvcRemotePhysicalErrors on the spine ports connected to the leaf that has a por
556. y on the InfiniBand interfaces to collect report data can work only with subnets to which their server is attached Therefore if you require more than one primary Fabric Management Server because you have more than four subnets Then you must run two different instances of the Fast Fabric Toolset on two different servers to query the state of all subnets e The Fast Fabric Toolset is used to interface with the following hardware Switches Fabric management server hosts Not IBM systems Vendor systems e To use xCAT for remote command access to the Fast Fabric Toolset you must set up the host running Fast Fabric as a device managed by xCAT You can exchange ssh keys with it for passwordless access e The master node referred in the Fast Fabric Toolset Users Guide is considered to be the host running the Fast Fabric Toolset In IBM System p or IBM Power Systems HPC clusters this is not a compute or I O node but is generally the Fabric Management Server High performance computing clusters using InfiniBand hardware 63 e You cannot use the message passing interface MPI performance tests because they are not compiled for the IBM System p or IBM Power Systems HPC clusters host stack e High Performance Linpack HPL in the Fast Fabric Toolset is not applicable to IBM clusters e The Fast Fabric Toolset configuration must be set up in its configuration files The default configuration files are documented in the Fast Fabric Toolset The
557. you only require 4 HCA connections from the servers for increased availability you might want to distribute them across two HCA cards and use only every other port on each card This protects from card failure and from chip failure where each HCA card s four ports are implemented using two chips each with two ports e If the number of InfiniBand subnets equals the number of HCA connections available in a 9125 then a regular pattern of mapping from an instance of an HCA connector to a particular switch connector should be maintained and the corresponding HCA connections between servers must always attach to the same InfiniBand subnet e If multiple HCA connections from a 9125 F2A connects to multiple ports in the same switch chassis if possible be sure that they connect to different leafs It is preferred that you divide the switch chassis in half or into quadrants and define particular sets of leafs to connect to particular HCA connections in a frame such that there is a consistency across the entire fabric and cluster The corresponding HCA connections between servers must always attach to the same InfiniBand subnet e When planning your connections keep a consistent pattern of server in frame and HCA connection in frame to InfiniBand subnet and switch connector If the main compute server model is a System p blade consider the following points e The maximum number of HCA connections per blade is 2 e Blade expansion HCAs connect to the physic

Download Pdf Manuals

image

Related Search

Related Contents

1/10 HOJA DE DATOS DE SEGURIDAD Según Reglamento (CE )nº  User Manual - Energy Conscious    User`s Guide  Toshiba Satellite C850-B734  Output Relay Electrical Function Module    LM10H LM13H LM16H  Horno electrico  estética y durabilidad Molduras de fachada y soluciones técnicas  

Copyright © All rights reserved.
Failed to retrieve file