Home

Advanced Application 19 - Structural Design Technology

image

Contents

1. l 0 24 051 0 71 2 05 2 5 1 932 MD NEN 0 2 0 25 e 1 5 22 m Figure 8 Input Data for the Cross Section 9 Checking on Mesh Size for Stiff Calc enables us to define a maximum size of mesh which is used to calculate the section properties K Consider Shear Deformation accounts for shear deformation Construction stage analysis for FSM using general functions ion Data PSC Viewer x DB User Value SRC Combined PSC Tapered Composite Section ID l ET PSC ICELL 2CELL E T Name Span Mesh Size for Stiff Cale m E REL a Joint On Off Outer ines AJ JI Odi poy 2 m Bol 15 m JO2 JI2 JR Hoe 1 3 m B01 1 5 m J03 dls HO2 1 0 m BOI 2 m Section Type HO2 2 m B02 1 5 m 1 Cell HO3 25 m B02 I m 2 Cell HO3 1 m BO3 225 m Inner H1 2d m Bl 22 m Shear Check ear Chec rae Hl2 26 m Bl 7 m Mower 21 m F Hl2 1 0 m Bl1 2 m arce HI2 2 m Bl2 1 22 m Pii H3 20 m B3 1 932 m Z3 m H3 L m BIB m Web Thick HI4 7 m BI3 2 m for Shear total Auto Hl4 1 m BM m tl m F HI4 2 m HI5 e5 ie m F d 13 m F Consider Shear Deformation for Torsion min m Z x Offset Center Top Change Offset Table Input Display Centroid Offset v CenterLoc o Centroid Center of Section Horizontal offset to Extreme Fiber j im le rn Show Calculation Results OK Cancel Apply Vertical offset to Extreme Fiber User
2. I 22 Distance m Close Figure 60 Tendon Time dependent Loss Graph o6 M Tendon Weight can be produced only in the PostCS stage Construction stage analysis for FSM using general functions Tendon type property and weightfor each group can be tabulated Results Result Tables Tendon Tendon Weight Postcs Y Tendon Ares Length Weight Length Weight Total Weight BT vam Num me m kN m kN kN EA L P APL AR ASL ASR amp 4L amp 4R B1L B1R B2L B2R BSL B3R B4L B4R C1L C1R fen CeR T c3R C4L C4R mj 1 00 1 00 1 00 1 00 1 00 1 00 1 00 1 00 1 00 1 00 1 00 1 00 1 00 1 00 1 00 1 00 1 00 1 00 1 00 1 00 1 00 1 00 1 00 1 00 gt U 24 00 0 001611 0 001611 0 001611 0 001611 0 001611 0 001611 0 001611 0 001611 0 001611 0 001611 0001611 0 007 811 0 001611 0 001611 0 001611 0 001611 0 001611 0001611 0 001611 0 001611 0 001611 0 001611 0 001611 0 001611 Figure 61 48 320355 48 320355 48 345153 48 345153 45 202 T 12 46 2027 FS 46 3253420 48 323420 45 341275 45 341275 45 381107 45 551107 49 312945 49 312943 49 339207 48 339207 32 159596 32 159596 3z 115615 3z 115515 3b 066759 36 066159 36 026606 36 026606 1033 032491 0 126479 0 126479 0 126479 0 126479 0 126479 0 126479 0 126479 0 126479 0 126479 0 126479 0 126479 0 126479 0 126479 0 1264
3. Begin 0 End 0 m Profile Reference Axis Straight Curve Element Y 0 0226456 74 967235 4 t t t t 0 10 z 20 40 x 0 0326456 a 4 96735 4 t t t t t t t t t 0 5 10 20 20 40 x xim vim 2m fix Ry dea Rz dea 1 0 0000 1 0000 0 00 0 00 2 20000 0 0000 1 2590 0 00 0 00 40000 0 0000 1 5352 T 0 00 0 00 6 0000 0 0000 1 7722 0 00 0 00 8 0000 0 0000 1 9613 T 0 00 0 00 10 0000 0 0000 2 1028 0 00 0 00 12 0000 0 0000 2 1970 T 0 00 0 00 14 0000 0 0000 2 2441 T 0 00 0 00 16 0000 0 0000 2 2500 0 00 0 00 10 18 0000 0 0000 2 2500 0 00 0 00 v Point of Sym First Last Make Symmetric Tendon elsl lelel l Profile Insertion Point End l End J of Elem 1 x Axis Direction e J J gt l of Elem 1 x Axis Rot Angle 1 3 deg Projection Offset y 2668 m z 0 m UK Cancel Apply Figure 25 Tendon Profile Input Dialog 20 ADVANCED APPLICATIONS 26 From the tendon profile drawings x z coordinates are obtained at every 2m The result TD Profile xls contains the values as if the tendons were placed in the centroidal 2 D plane each side We need to translate the layout using y Offset and rotate the layout using x Rotation to properly position them in the webs of the PSC section y 2 666m y 2 666m Z d OQ 11 31 6 11 31 Figure 26 3 Dimentional Tendon Profile
4. EITHER IE S13 S GI heres T BRESPAIA som sx EJ m5 s Tree Menu n x 5 Settlement Group Settlement Group E PP 5 O Group Name A2 Settlement Displacement 0 0 m Node List 67 68 d z a a E L O O i fl Ge Lo 1 Model View gt e do g X 4 I gt gt Task Pane U U Command Message Analysis Message 7 4 j For Help press F1 Frame 22 J 52 25 0 0 amp 51 25 0 0 iN lt ln l 4 gt non 2 4 2 Figure 41 Definition of Differential Settlement Groups 40 9 Since the magnitude of the settlements of all 4 groups is identical only a maximum of 3 combinations is used Construction stage analysis for FSM using general functions gt Conditions for Differential Settlement Loads Using the data for differential settlement groups the loading condition is defined Ma ximum Minimum numbers of differential settlement groups are specified Min 1 support and Max 3 supports are specified to investigate all the possible combinations of simultaneous settlements from which Min Max results are produced Load Settlement Etc eu Settlement Load Case Load Case Name SM l Select Settlement Group Settlement Group A1 P1 P2 A2 Selected Group Smin 1 Smax 3 9 Add 7 Mee pe ECCO a A M C View Structure Node Hement Properties Boundary c NUI T PSC Pushover E 5 EO Took Static Loads 3 Seismic 9 SettlementjEtc Tuy
5. Sig a Elom tosd Stage Stop Pert position amp N m kN mt km kN m km ka kN m cen Summati coe oaasi Wi Posi 2 21G6e 003 I 81411e 008 Q0000 000 10681e 003 Q0000 000 0 0000 000 44 Plot Disaram Group 2 Summeti C54 DZ tax 1 92 Pos 2 27S2e 005 4 0146 002 4 50558 0086 6 0000 000 18677 0053 OQ 0000 000 9 0000 000 ESI 3 Summeti C54 OnXiast dal Pos 1 2 3368e 005 1 8441e 001 86181e 006 0 0000e 000 2 0653e 003 Q 0000e 000 0 0000 000 si Load Cases Combinations 4 Summati CS4 O Xiast 4 Pos 1 2 4040e 003 3 3866e 002 1 2939 004 Q0000e 000 2 7428e 003 0 0000e 000 0 0000e 000 5 Pee arer p 5 Summati C54 OQXi s 45 Pos 2 9543e 005 5 010002 1 72838 004 Q0000w 000 3 0462e 005 00000 000 0 0000 000 E we CUM MeCN 6 Summeti C54 O02 es t del Pos 1 2 4336e 003 8 6241 e 002 21586e 004 0 0000e 000 32960e 003 Q0000e 000 0 0000e 000 Si Step Last Step 7 Summati CS4 O Xiast 47 Posi 2 3877e 003 1 1049e 003 25906e 004 0 0000e 000 34908e 003 0 0000e 000 0 0000e 000 at Summati C54 pias dol Pos 2 34060 003 71 21946 003 30 24e 004 Q0000e 000 3 95 00e 003 0 0000 000 0 0000 000 at Diagram Group 9 Summati CS4 O Xiast S Pos 1 2 3070e 003 1 1816e 003 34543e 004 0 0000e 000 34686e 003 0 0000e 000 0 0000e 000 4s 10 Summati CS4 DUZ test UY Pos 1 2 2612 005 7 34 Tow O02 355610 0 0 0000 000 31960 e 00
6. m d E User Offset Reference Display Offset Point OK Cancel Figure 9 Section Input Dialog Box S Cross sectional dimensions can be entered via a a eT table upon clicking Table Input for the PSC J03 J I section JI2 1 JI3 v Jl4 JI5 v ver erea nn AST This is faster than directly entering the data in the HO2 D 3000 BO1 1 0 5000 1 1 1 om eee aoe dialog box for a large amountof dimensional data HO2 2 0 0000 BO2 0 5000 HOS 2 5000 BO2 1 0 0000 2 HO3 1 0 0000 BO3 2 2500 The table is compatible with Excel Frequently ET erme rrr used cross sectional dimensions can be saved to TER QOO BEER copy amp paste later HI2 2 0 0000 BI2 1 2 2000 SEM Sma Er The table becomes compatible with Excel by Tr S e entering 0 for Check Off T and 1 for Check HI4 2 0 0000 HI5 D 2500 on Iv OK Cancel Figure 10 Table Input PSC ADVANCED APPLICATIONS 10 Shear Check Assign the locations for shear calculations on the PSC section Numerical data can be entered manually or if Auto is selected shear calculations take place at the top and bottom of the web s Stress PSC Shear Check Auto el m af Ze Lentraid ial m af Web Thick Web Thick for Shearttatal Auto t m t m use m G for Torsiantmin 3 m Ed The shear results are displayed in no 5 10 of the Beam for Shear total Enter the thicknesses to be used for shear calculations at the locations defined for Shear Check at
7. 1 160567 1 360567 0 414004 0 814004 0 1 014004 0 300000 0 700000 0 900000 0 360662 0 774176 0 1 000251 0 543321 0 997940 0 1 304082 0 850039 1 230678 1 361023 0 1 771236 1 250000 1 750000 1 750000 0 2 250000 38 1 750000 0 2 250000 39 2 024144 0 2 414040 40 2 271978 0 2 577365 R 4 gt Profile A m L Select destination and press ENTER or choose Paste y LEI Construction stage analysis for FSM using general functions The Name and the Assigned Elements for all Tendon Profiles are as follows Ex A1L gt X coordinate A B C Z coordinate 1 2 3 4 Y coordinate Left Right ZEIT I Hel e 72 B de Detal Tate S Miss Summary Tati T Group Activation of CS TE PF U P cement Catal Table A Load Summary Table P t Q Query 1 Ta S Qm ZL Baena rae g Deta Tale MessjLoad Table Group Acthatonof CS 1217221 ZEDICGEIEICIULEIEETJIE E A ALEL c e c oc e c c9 8 9 9 Command Message frt Herz 7 L U W lt ln el K ene 7 2 7 Figure 28 Result of Tendon Profile Input zi ADVANCED APPLICATIONS After defining all the Tendon Profiles assign the Load Groups PS1 3 and then apply prestress loads so that the defined Tendon Profiles can be applied to each construction stage Load Temp Prestress lt j Tendon Prestress Loads Load Case Name Prestress Load Group N
8. Bridge profile and general section This example has been simplified from an actual project for the purpose of illustrating construction stage analysis using FSM The bridge profile is defined as follows Structure type 3 continuous span PSC Box girder bridge F S M Spans L 40 0 45 0 40 0 125 0m Bridge width 8 5m Skew angle 90 1 2252 1 4 4 5 8 5 Figure 3 Cross Section Construction stage analysis for FSM using general functions Materials amp Strength gt Concrete 1 Specified Strength feu 45MPa 2 Modulus of Elasticity E 3 0124 x 10 MPa gt PS Steel Tendons 1 Yield Strength Spy 7 1580MPa 2 Tensile Strength fpu 1860MPa 3 NominalSectional Area A 100cm 4 Modulus of Elasticity E 1 95x10 MPa 5 Initial Prestressing Force fpj 9 9 Spy 1395MPa 6 Anchorage Slip As 6mm 7 Coefficientof Curvature Friction 1 lt 0 25 rad 8 Coefficientof Wobble Friction k 0 0066 m Loads gt Primary loads and special loads pertaining to the primary loads 1 Dead Loads A Reinforced Concrete 24 52kN m B AsphaltConcrete 22 56kN m C Barriers and safety fences D Prestress creep shrinkage 2 LiveLoads A Vehicle Loads Types HA and HB Loading 3 Differential settlements The worstcombination of each pier settlementof 10mm gt Secondary loads 1 Temperature A For total deformation 15 B T
9. Relative Absolute LL Q Q Unit kN m m The project will be saved by the auto save feature gt gt La LA Command Message Analysis Message K D Jode 1 U 0 0 0 D 0 0 kN iw m vl d b nonw H mr 2 Figure 32 Wind Loading Input l ADVANCED APPLICATIONS Temperature Specify the temperature loading acting on the entire structure The System Temperature function allows us to specify strain amp W gt 7 over the entire structure as temperature loads Load Temp Prestress Temperature Loads 4 System Temp a Redraw Load Case Name gt Temperature Load Group Name gt Default Temperature gt Final Temperature 15 Add 4 Load Case Name Temperature Load Group Name gt Default Temperature gt Final Temperature 15 amp dd J CUGCUTeras and Semas rr Ser nera ORTA REE Nore T IFSA 2 TMUBSIVIES TX er structure lodejEement Properties Bounda Andyss ResJIt P9 Pusnover Bog QUET GO D Hp r StaticLoads Seismic 7 Settlement Ete ke m 1c amp T System Temp E E 2 Prestress Beam Loads Temp Prestes Construction stage Load Tables E i G nate B R R nman Static Load Usngload Element Temp Beam Secti Tendon Tendon Tendon zm Moving Load Heat of Hydration Cases pais Temp G Temp Property Profile Prestress Etema Type Loadcase L4 ELI E e 2 E ELI OI SIS amp Sl ree Menu System Temperature ge fe OO Load Case Name
10. fh Cable Stayed Bridge E Mss pd Z Gige Model B 6 uneg Bre al Cange a Check ganent Local Ads Tee Weed usan Gop Check Structure SG1 Node 61to64 amp Element 1t020 QH 23R SG2 Node 65to66 amp Element 21t039 gg I Node 67to68 amp Element 40to52 L O O A J 1299 RS Tree Menu ERE Command Message Arava Meee Ta Hone W lt ln wld r e Z Figure 16 Structure Group Assignment Construction stage analysis for FSM using general functions Boundary Conditions Input Rigid Links Considering the centroid of the cross section of the PSC Box rigid links are connected to the supports E Iso View Boundary M Elastic Link Boundary Group BG Link Type Rigid Type 2Nodes 1 61 1 62 18 63 18 64 J Boundary Group BG2 2Nodes 37 65 37 66 Boundary Group gt BG3 2Nodes 53 67 53 68 Turn on the node number if necessary when picking up nodes JJ fe f Pp e buses m MS Moa E The auna Yt V fioi gt Ucet PP Tie vertici w Lr n A cx wow S PreWous V Cascade Select Acties GEG rtia Window Wedow Tie anat Deian 3 G0 t2 32 43 1C F3 aA A A ee Section Offset p Rigid Link T Figure 17 Rigid Links 17 ADVANCED APPLICATIONS 18 Supports Input Considering the construction stages the supports are defined as below Top View Redraw Boundary amp Define Support
11. 230 7242 46 TMV U 2 XMV min 14 MVU X 14 Momenty 0 48 0 00 270 23 4115 7850 23 He AM Vmin Y 15 MY U X I5 Momenty 1 26 0 01 753 13 39 12 8300 70 16 Mv U X 16 Moment y 059 0 01 1028 96 300 48 11064 62 OK Cancel 17 MVU 17 Moment y 058 0 03 1805 69 148 43 14005 03 18 Mv U X i 18 Moment y 1 01 0 03 1063 61 508 56 11707 35 19 Mv U X 18 Moment y 1 81 0 02 916 48 247 77 39753 36 20 MY U TL 1LZ0 Moment y 099 0 03 452 66 392 62 8371663 21 MV U 23 Moment y 041 0 02 334 20 168 74 7541 56 22 MV U X 22 Moment y 0 15 0 03 208 67 an 7024 62 23MvUY I 23 Momenty 0 04 0 03 208 12 1 80 6504 59 24 MVU I 24 Momenty 0 00 0 01 103 23 0 60 6103 68 25 MvUY ISS Momenty 0 00 0 01 103 21 057 5820 90 26 MvuU Y ilas xa a M Aas a 27 MV U Y 27 28MvuY I 28 IS T h T 29 Mv U eal ONCUENnt member Ores sOMVUX i 30 31 MY U L Rl Momentv O15 0 03 z10 57 237 6549 31 Figure 62 Moving Load Results 0 00 0 00 0 00 0 01 0 01 0 01 0 01 0 01 0 01 0 02 0 02 0 02 0 19 49 37 2 43 Construction stage analysis for FSM using general functions Checking Stresses due to Combined Loads Create load combinations Results 5 Combinations PostCS Name Temperature Type Envelop LoadCase gt Temperature ST Factor 1 0 LoadCase gt Temperature ST Factor 1 0 Name Top Bot Temp Diff Type Envelop LoadCase Top Bot Temp Diff ST Factor 1 0 LoadCase gt Top Bot Temp
12. 4 2500 1 2194 1 7806 6 2087 0 0000 0 0099 SJ 6 2587 15 9796 7 9556 29 8080 4 2500 4 2500 1 2199 1 7801 6 2087 0 0000 0 0105 f or all the st ages in 81 6 2587 15 9796 7 9556 29 8080 4 2500 4 2500 1 2199 1 7801 6 2087 0 0000 0 0105 6 J 6 2587 15 9796 7 9585 29 8070 4 2500 4 2500 1 2201 1 7799 6 2087 0 0000 0 0107 Sas 71 6 2587 15 9796 7 9585 29 8070 4 2500 4 2500 1 2201 1 7799 5 2087 0 0000 0 0107 a d d ition to thos e fo r 7 J 6 2587 15 9796 7 9585 29 8070 4 2500 4 2500 1 2201 1 7799 6 2087 0 0000 0 0107 81 6 2587 15 9796 7 9585 29 8070 4 2500 4 2500 1 2201 1 7789 6 2087 0 0000 0 0107 the final stag e 8 J 6 2587 15 9796 7 9585 29 8070 4 2500 4 2500 1 2201 1 7799 6 2087 0 0000 0 0107 91 6 2587 15 8796 7 9585 29 8070 4 2500 4 2500 1 2201 1 7799 6 2087 0 0000 0 0107 gly 5 2587 15 9796 7 9584 29 8070 4 2500 4 2500 1 2201 1 7799 6 2087 0 0000 0 0107 10 6 2587 15 9796 7 9584 29 8070 4 2500 4 2500 1 2201 1 7799 5 2087 0 0000 0 0107 104 6 2587 15 9796 7 9587 29 8069 4 2500 4 2500 1 2201 1 7799 6 2087 0 0000 0 0107 1111 6 2587 15 9796 1 8587 29 8069 4 2500 4 2500 1 2201 1 7799 6 2087 0 0000 0 0107 WJ 6 2587 15 9796 1 9488 29 8102 4 2500 4 2500 1 2195 1 7805 6 2087 0 0000 0 0101 121 6 2587 15 9796 7 9488 29 8102 4 2500 4 2500 1 2195 1 7805 6 2087 0 0000 0 0101 12 6 2587 15 9796 7 9225 29 8203 4 2500 4 2500 1 2177 1 7823 6 2087 0 0000 0 0083 191 6 2587 15 9796 7 9225 29 8203 4 2500 4 2500 12177 1 7823 6 2087 0 0000 0 0083 18J 6 2587 15 9796 7 8804
13. Diff ST Factor 1 0 Name ULS 1 Type gt Add LoadCase Summation CS Factor 1 15 LoadCase gt ErectionLoad CS Factor 1 2 LoadCase SM SM Factor 1 2 LoadCase MVU1 Factor 1 0 Name SLS2 Type gt Add LoadCase gt Summation CS Factor 1 0 LoadCase gt ErectionLoad CS Factor 1 0 LoadCase gt Wind ST Factor 1 0 LoadCase gt SM SM Factor 1 0 LoadCase gt MVS23 Factor 1 0 Name SLS3 Type gt Add LoadCase gt Summation CS Factor 1 0 LoadCase ErectionLoad CS Factor 1 0 LoadCase gt Temperature CB Factor 1 0 LoadCase gt Top Bot Temp Diff CB Factor 0 8 LoadCase SM SM Factor 1 0 LoadCase MV S23 MV Factor 1 0 Copy Import Auto Generation Spread Sheet Form Copy rto Steel Design File Name C WD uments and SettingsWuserWHHer 19 Browse Make Load Combination Sheet Close Figure 63 Creating Load Combinations 59 ADVANCED APPLICATIONS 60 pe Menu x Check stress results due to load combinations Results Stresses i Beam Stresses PSC Load Cases Combinations CBall SLS 3 Section Position Position 1 Components gt Sig xx Summation Type of Display Contour on Legend on Mode Shapes 7 amp infi Lines Infi Surfaces 7 Z Mowing Tracer Beam Bement 7 Loca Direction gt Reduction Moment fs T H Results 7 amp T H Graph Text 7 TZ Stresses ZN Diagam HY Results 7 2S cable Contral 7 Ik Camber Reaction 7 EE Tendon Loss
14. Display MV U 1 MV min Axial Shear Shear z Torsion Moment Moment z ann Bes rene kN kN n kN kN m EN kN m C 8 MV UTC IJ 0 16 0 08 2152 40 2442 67 0 00 7 49 I E 2 MV U 1 IS 047 0 09 1950 83 2311 11 603 54 1 55 3 MV U 1 IG 0 15 0 09 1756 05 2200 67 1207 08 1 33 Cmm 11 748777 G ar SS a amy uU A 0 13 0 09 1567 91 2104 52 1810 61 1 20 n Temperature ST Pan 2 4 5 MV U 1 1 5 0 11 0 09 1386 10 2015 92 2414 15 1 18 Select Type i dd Lu 6 MvU Ig 0 05 0 09 1211 83 1934 47 3017 69 1 28 Element Type e w MNU ia 7T MV U Y V7 0 00 0 09 1044 29 1856 44 3621 23 1 37 TUS a MVU KMV man BMY U 1 8 0 00 0 09 885 66 1782 33 4224 77 1 60 PEAME STRES IU gmMvu1 I 9 0 00 0 09 736 14 1711 74 4828 30 1 82 PLATE mun tise VW U 2 XMV ma 1OMY U I 10 0 01 0 09 597 48 1648 06 5431 84 2 05 Ellas am MVU2 MV TiMvu I 0 09 0 09 468 90 1588 41 6035 38 2 52 Se 1S MV U I 12 0 18 0 09 351 24 1680 35 6638 92 3 66 19 MV U I 13 0 19 0 09 245 05 1783 88 7242 46 4 85 m Care 14 MVUY I 14 0 15 0 09 150 98 1895 26 7850 23 6 14 15 MV UK I 15 0 11 0 09 81 48 2014 69 8900 70 6 10 18 MV U 1 I 16 0 03 0 09 65 25 2145 80 11084 62 4 20 17 MYU I 17 0 75 0 09 60 23 2292 01 14005 03 3 55 18 Mv U I 18 0 26 0 19 2267 31 2477 43 11707 35 8 40 19 MV U m9 0 54 0 19 2149 72 2355 54 97
15. FILM Edge FZ PSM Bris w RC Slab Bridge mus PR Structure gt Ceck Duclicate Elements d de 388 ze Vw i Sumpension Bridge T FCM Bridge EF Trarcworse Moda M RC Frsrme Box ili on dat gt E tena peg EctgajFace Tee A Chie Sted Badge EMSS Bridge Z iis Mods PO 6 ued nre wrge i Check Element Local Ads Figure 15 Group Generation 15 ADVANCED APPLICATIONS 16 Structure Group Assignment Assign the elements which will be activated at each stage to SG1 3 respectively Assign the elements to Structure Group by using Drag amp Drop or by right clicking and selecting Assign M Elements Numbers Gj Front View Group Tab in the Tree Menu Type the numbers ofnodes and elements as below x Bito amp 4 K ito2 7 Select Nodes 61to64 amp Elements 1to20 Structure Group gt SG1 Drag amp Drop or Context Menu Assign Select Nodes 65to66 amp Elements 211029 Structure Group gt SG2 Drag amp Drop or Context Menu Assign Select Nodes 67to68 amp Elements 40to52 Structure Group gt SG2 Drag amp Drop or Context Menu Assign v TTET s udcin m Tf Te eres EWI C Structure t t E And eat P T lE EP BP Ah tf Gace Structues K ILM Bridge PR FSM hidga RC Slab Bridge f Structure gt Check Duplicate Elements um wt VU bef Superson Edge P POM ridge Z Transverse Model RC Frame Box tre Gre d BUT D ra Free Edge Face Struch PS um Type
16. Graph G Bridge Grder Diagrem Text Output BER TER e RI K Nie EIS dD S E x 23 z Load Cases Combinafions CBall SLS 3 Siep X lt Max Min Diagram Section Position Position R Hz Position 2 Position 3 c Position 4 E p Position 5 4 Position 6 Position 7 Position 8 Position 9 Position 10 Max Max Min Components Sig xC Aerial Moment y Moment z Bar Summation 5 In P BII SNR HIHIH Iii CS wi Min Abs Max shear z torsion xzibar Sigs shear Sig ls shear orsion Sig Ps1 Sig Ps2 Display Options Scale Factor Fill Type No Line 1 000000 Solid Type of Display F Contour Values dnimata Deform F Legend lndednrmod Node 1 U 0 0 0 Figure 64 f TRANS AU d Text HIDAS Civil POST PROCESSOR Rx STRESS PSC SIG xx Sum 6 36254e 003 5 143542 003 3 92453e 003 2 70553e 003 1 43652e 003 0 00000000 9 51493e 002 2 17050e 003 3 38951e4003 4 60851e 003 5 82752e 003 FoQeggeeo0s CBall SES 3 MAX 17 NIN 45 FILE 14 UNIT kH n DATE 07 24 2012 VIEU DIRECTION 2 l lt b v W eim RAE t mns 7 2 Ep 51D LLR w 4 129 ED E 9 9 101 aA C 0 Ju J eO 0 Stress Results due to Serviceability Limit State Combination 3
17. Input Copy and paste the values of x y and z from the Excel file as below and position the tendons in the webs by y Offset and x Rotation depending on the left or right tendon idio c QWg TD profile xls Compatibility Mode Microsoft Excel pl incus Home me Insert Page Layout Formulas Data Review View Add Ins Community Clips Acrobat ox es j10 A A S lt S EB General E dh p aeinser a g As s Kx mimo 3 Eb L w F d STI Ss PW Paste lt Pm E 2n EM a E IOI AI Condonar Format Cet l aran 9 gt pota Find fa Font fa Alignment fa Number Ta Styles Cells Editing C13 vO fe Al 1 A B amp RH J K L M N o E R 1 2 3 000000 4 0500000 5 1 000000 6 1 500000 7 2000000 8 2500000 9 3000000 10 11 12 1 000000 2 000000 0 2 500000 1 258975 f 2 130529 0 2 568000 1 535230 2 271427 0 2 541513 1 772186 2 396674 0 2 710311 1 961274 2 496802 0 2 765505 2 102814 2 571856 0 2 806893 2 197042 2 621873 0 2 834482 2 244117 2 646875 0 2 848276 2 250000 2 650000 0 2 850000 2 250000 2 650000 0 2 850000 2 250000 2 650000 0 2 850000 2 250000 2 650000 0 2 850000 2 250000 2 650000 0 2 850000 2 237823 2 650000 0 2 837823 2 140277 2 540277 0 2 740277 1 944484 2 344484 0 2 544484 1 649018 2 049018 0 2 249018 1 251675 1 651675 0 1 851675 0 760567
18. Num kN me kN m leta lies kN m Immediate Loss The Loss of tendon group A1 at the stage of CS1 B3 CS Apply 11 1161959 6511 13576 4332 7789 5949 0 9818 2 0000 14 11896352538 3157131 150033760 7975 1345 0 9809 2 0000 2 1189535 2538 315 7089 TUUD 15003 0450 7975 1345 0 9810 2 0000 9 Selecta SI 1219836 6206 396 7800 1 0003 15589 9327 8177 5930 0 9808 2 0000 E 1219836 6208 396 720 1 0003 15589 4958 8177 5930 0 9808 2 0000 construction stage 3 J 1251591 3959 479 3410 1 0004 15641 3615 8390 4721 0 9812 2 0000 an d C i ck A 4 1251591 3959 479 3338 1 0004 15640 9962 68390 4721 0 9812 2 0000 4J 1274265 1849 544 6933 1 0004 15361 3604 8542 4T36 0 9817 2 0000 BI 1274265 1849 544 6872 1 0004 15361 0936 80542 4736 0 9817 2 0000 to produce the 5 J 1244113 8475 552 5986 1 0004 14165 0963 8340 3438 0 9824 2 0000 resu t S B 1244113 8475 552 5943 1 0004 14164 9259 8340 3438 0 9824 2 0000 EGN 12150691930 521 4844 1 0004 12818 7387 68145 6330 0 9832 2 0000 corresponding to 7g 1215069 1930 521 4831 1 0004 12818 6900 8145 6330 0 9832 2 0000 Tid 1194131 8609 488 5435 1 0004 11901 7021 8005 2724 0 9837 2 0000 the stage 8l 1194131 8609 488 5435 1 0000 11901 7022 8005 2724 0 9837 2 0000 BJ 1174479 8756 473 5575 1 0004 11515 2447 7873 5285 0 9839 2 0000 9 1174479 8756 473 5575 1 0004 11515 2451 7873 5265 0 9839 2 0000 3 J 1155066 6314 415574
19. Temperature mi Load Group Name Default mi e 2A n Temperature Initial 0 ame Final Temperature 15 C LosdCase Temperature LoadG Tempera 15 Tempera 15 lt Operation Add Mody Cy 9 9 9 iyi 4 129 e ED 9 9 1 1 3 Task Pane K Command Message L Analysis Message 7 le H For Heb press F1 Frame 33 U 85 0 0 amp 85 0 0 W n els E o m x Figure 33 Temperature Loading Input 32 Construction stage analysis for FSM using general functions Specify the differential temperature between the top and bottom chords The Beam Section Temperature function generates a temperature differential between top and bottom chords on a part of a rectangle Since PSC sections are not rectangular sections they need to be converted into equivalent rectangular sections to be able to specify temperature differential loads Where temperature differentials exist as shown below the parts experiencing the temperature differentials are converted into a rectangle defined by dotted lines having the same area and centroid Result List Section test Base Material 16 593738 0 000000 0 142504 4 250000 4 250000 0 187023 0 312977 List Order Creation war Figure 34 Section Properties calculated by SPC mum sero Beam Section Temperature can be defined as either General Type or PSC Type General Type assumes the section as a
20. a new file B New Project and save as W Save FSM mcb Select KN and m for the unit system The unitsystem can be conveniently changed at any time later depending on your preferred types of inputdata LI New Project Save FSM Tools Unit System Length m Force gt kN 9 The unit system can be changed by Unit System clicking Unit Selection 7 Dh Length Force Mass Heat the Status Bar at Si Mo ikg cal the bottom of the cm 9 kN ton e kcal screen ue kgf kg tonf iton ft b db in kips kipsg Btu Temperature Celsius Fahrenheit Note Selected units are displayed in relevant dialog boxes Values are NOT changed with units oet Lhange Default Unit System OK Apply Cancel Figure 6 Unit System Setting Construction stage analysis for FSM using general functions Definition of Properties Definition of Materials Define the material of the PSC box by selecting one from the built in database material for tendons can be defined using the User Defined function Properties Material Properties Click _ Add Type gt Concrete Standard gt BS RC DB gt C45 4 Apply Name Tendon Type gt User Defined Modulus of Elasticity 1 95e8 Weight Density 78 5 9 J K The tendon weight is Material Section Thickness General Material ID 2 Name Tendon au to matically ID Name Type Standard DB F 1 C45 Concrete BS RC C45 Elasticity Data wee
21. accounted for after 2 Tendon User Def Modify aeaa User Defined ser Define x Delete Standard None X grouting p be Copy L er Concrete Import Defined Standard v Renumber Type of Material Code 9 Isotropic Orthotropic DB X User Defined Modulus of Elasticity 1 95e 8 kN m Poisson s Ratio 0 Thermal Coefficient 0 0000e 000 1 C 2 Weight Density 78 5 kN m Use Mass Density kN ms g Close Concrete Modulus of Elasticity kN m Poisson s Ratio Thermal Coefficient 1 C Weight Density kNm kN ms g Plasticity Data Plastic Material Name NONE Y Thermal Transfer Specific Heat 0 kcal kN C Heat Conduction 0 kcal m hr C Damping Ratio 0 OK Cancel Apply Figure 7 Material Data Input Dialog Box ADVANCED APPLICATIONS Definition of Section Refer to the cross section dimensions in Figure 8 to define the section of the PSC box Properties E Section Properties Click Add J PSC tab Section ID 1 Name Span PSC 1CELL 2CELL Joint On Off gt JO1 on JH on JIS on JI5 on Web Thick for Shear t1 on t2 on t3 on for Torsion min on Offset Center Top Outer HO1 0 2 HO2 0 3 HO2 1 0 HOS 2 5 BO1 1 5 BO1 1 0 5 BO2 0 5 BOS 2 25 Inner HI1 0 24 Hl2 0 26 HlI2 1 0 HI3 2 05 HI3 1 0 71 Hl4 0 2 Hl4 1 0 HI5 0 25 Bli 2 2 BlH 1 0 7 Bl2 1 2 2 BI8 1 932 B1l3 1 0 7 Or click Table Input to enter the inputdata in a table 2 2 r
22. convenience The third figure depicts how Diaphram is applied to the elements Beam Load Default Distributed Forces Default Non Struct Distributed Forces efault Non Struct Distributed Forces Default Non Struct Distributed Forces efault Non Struct Non Struct 1 Diaphragm1 16 Diaphragm 17 Diaphragm 19 Diaphragm1 20 Diaphragm1 21 Diaphragm2 35 Diaphragm2 36 Diaphragm2 38 Diaphragm2 39 Diaphragm2 Figure 23 Changing Load Group using Table Beam Load Beam Load Beam Load Beam Load Beam Load Beam Load Beam Load Beam Load Bearn Load Beam Load Distributed Forces Distnbuted Forces Non Struct Non Struct Non Struct Non Struct Non Struct Non Struct Non Struct Non Struct Non Struct Non Struct No No Local y No Local y Distributed Forces Distributed Forces Distributed Forces Distributed Forces Distributed Forces Distributed Forces Distributed Forces Distributed Forces Distributed Forces Distributed Forces Distributed Forces Distributed Forces Local y Local y Local y Local y Local y Local y Local y Local y Local y Local y Local y In the second figure 0 00 Global Z 0 00 Global Z 0 00 Global Z 0 00 Global Z 0 00 Global Z 0 00 Global Z 0 00 Global Z 0 00 Global Z 0 00 Global Z 0 00 Global Z 0 00 Global Z 0 00 Global Z gt a ADVANCED APPLICATIONS Tendon Prestress Load Define the properties ofthe Tendon relate
23. datei ud Laeti Lud aed 19 SCI VIG eieaa Ua aM CDM DM E Cops we pmi cabo ruso M Eae RUN 20 pead LO AG vacent titeroiedi dudo uel dca AAE sii iavavel dia anbda OOED 21 TendondPrestress OAC xiii od idet atus e db e Det la i ld teet o Pob E odes ea o 24 oupermiposed Dead Loads rere tti pt Eas Ei Guetta b eni ne a ura u UM uedepe avs 29 Loading Input on the Completed Sucre sss sees eee eee 30 LAW Tate M Bere Ko als roc P 30 bZ T CV RTT 32 Wi Sn ys 6 Pareto eee ene eon E E eee ee eee ee ee ee 35 Differential Seleme dae deed tie ate a a ti eL Rd via 40 Definition of Construction Stages E eesess eene nean aa drOnc 42 Performing Structural Analysis sss sese eee eee 43 CG AECKING Analysis RESU TTT 45 Element Properties amp Section Properties for each Construction Stage 45 Checking Construction Stage Member Forces amp Stresses ssesss 47 Checking Results using Graphis vasteasteviestte or a eaeque esp Dues feuis 50 Checking Results using lables 2r nitore antic dona aH tru a ca E 51 TOS LOS S EOS SOS tue ated ie datus eod AA T AE us ancien a e 53 Checking Tendon Information ccccccececceceeeeeeceeeeeeeeeceeececeeeeseeeeseeeteseeaeees 54 Checking Moving Load Analysis Results sse e eee 58 Checking Stresses due to Combined Loads e 59 Outline Construction stage analysis for FSM using general functions FSM Full Staging construction Method is a very basic method in c
24. inn o Hi ia Temp Prestress 7 Construction Stage Load Tables M 2 ttt bid lt Settlement Settlement Concurrent Pre composte Load Sequence D Moving Load I Heat of Hydration Group Load Cases Reaction Group Section for Noriinear Load Type Settlement Anatyss Data Etc P E gt BEL ERE GI res Menu ax Settlement Analysis Data Settlement Load Cases Y Setilement Load Case Load Case Name SM Select Sefsement Group Settlement Selected Group Group Al PI P2 A2 Smin Sma 3 Scale Factor 1 Description Load Case Group List SM ALPLP2 A2 lt gt Operations Add Modfy Delete 1 Model View dose Tree Menu ee Command Message L Anayss Message 7 lL or Help press F1 Node 61 U 0 15 3 G 0 1 5 3 kN lt ln M LD nor H a 2 Figure 42 Definition of Loading Conditions for Differential Settlements E fo f9 5 IO BAK 9999 dal 4 129 8e E9 9 9 1 3 3 4 M ADVANCED APPLICATIONS Definition of Construction Stages Concrete maturity age of 5 days is activated 42 We refer to the composition of construction stages outlined earlier to define the stages Load Construction Stage l Define C S Add J Name CS1 Duration 30 Element tab Group List SG1 Boundary tab Group List BG1 Activation Spring Support Position Deformed on Load tab Group List Dead PS1 Diaphragm Activation gt Active Day gt First Add J Activation gt A
25. nodes to which boundary conditions will be assigned Node Element Create Nodes Start Node Number Node Numbering Option User Defined Number Newly Created Number 61 o Ju Coordinates x y z 0 1 5 3 Y Copy NumberofTimes 1 Distances dx dy dz 0 3 0 Apply J Node Element i Translate Node Z Select Recent Entities Mode Copy Translation Unequal Distance Axis gt X Distance 40 45 40 py 1 1 D L commans Message Ansysiz Message 7 Figure 14 Generation of Support Nodes 9 Tendon Group is notused for composing the construction stages butis defined to check the results for each group kg Refer to the name assignment of the Tendon Profile to see the items of the Tendon Group Construction stage analysis for FSM using general functions Group Definition Refer to Construction Stage Configuration on Figure 4 for the list of the groups to be defined Structure Group Structure Name SG Suffix 1to3 Add J Structure Group B L T Define Boundary Group Name BG Suffix 1to3 Add Structure Group B L T Define Load Group Name Dead Add Ju Name Superimposed Dead Add 4 Name PS Suffix 1to3 Add a Name Diaphragm Suffix 1t03 Add J Structure Group B L T Define Tendon Group w Name A Suffix 1to4 Add J Name B Suffix 1to4 Add J Name C Suffix 1to4 Add J Ah Ef Bee Structures
26. 000 1 0406 0 0000 1 0000 1155564 6599 1861 8458 2 0 0000 1 0406 0 0001 1 0000 1155564 6595 1861 8458 2 0 0000 1 0404 0 0001 1 0000 1136158 1002 1830 5779 Figure 57 The effective stresses amp forces immediate and long term losses of the tendon Tendon Arrangement Table in the table above are the results reflecting both If the effective prestress forces for the immediate losses friction anchorage slip amp elastic shortening other than the long term losses are of interest right click on the table and check the forces from Tendon Immediate Loss Graph Tendon Group Al 2250 2150 2050 1950 1650 1750 1650 1550 Tendon Force KN 1450 1350 illa n mp any GT T4 3T x3 Tendon Group A1 Tendon Profile ATL ha Tendon Profile A1L a TSL T 1 1t 1 1 1t T 1 1 4 1 1 1 Y 1 4 4 4 14 24 26 32 36 40 44 46 2 56 60 Distance m Close Figure 58 Tendon Force due to Immediate Loss OO ADVANCED APPLICATIONS For each tendon group losses to due friction anchorage slip elastic shortening creep shrinkage relaxation etc are separatelyclassified in a table Results Tab Result Tables Tendon Loss Stress Elastic Deform Stress Elasti Creep Shrinkage Stress After All Loss tem Part le Immediate I LRR togen Reaton Loss EES Elective
27. 2 1 0004 11640 7201 7743 3852 0 9836 2 0000 10 1 1155056 6314 475 5740 1 0004 11640 7152 77453 3852 0 9836 2 0000 10 J 1134147 6817 494 6497 1 0004 12265 3886 7603 1479 0 9829 2 0000 11 EN 1134147 5817 494 6557 1 0004 12265 6237 7603 1479 0 9829 2 0000 1 J 1099333 9226 465 1451 1 0004 12557 5779 7369 7619 0 9823 2 0000 12 1099333 9226 465 1616 1 0004 12558 2697 T368 7619 0 9823 2 0000 124 1064511 0072 567 9269 1 0003 12444 9432 7136 3145 _ 0 9820 2 0000 131 1064511 0072 367 9462 1 00080 124459457 7136 3145 0 9820 2 0000 13 J 1031565 98112 262 1179 1 0003 12472 6840 6915 4558 0 9815 2 0000 14 1031565 9112 262 1380 1 0003 12474 1168 5815 4558 0 9815 2 0000 14 J 396879 1124 22055014 1 0002 13507 8380 6682 9209 0 9800 2 0000 151 396879 1124 220 5053 1 0002 13508 0415 66682 9209 0 9800 2 0000 Tendon Loss Stress Tendon Loss Force E L Figure 59 Tendon Tension Loss Table Right click on the table and select Tendon Time dependent Loss Graph to check the effective prestress forces after accounting for tension losses gt Tendon Time dependent Loss Graph Tendon B3L vj v Step Last Step w Animate Stage CS2 Tendon B3L Stage CS2 Step Last Step u o H o E G o T G a E
28. 29 8376 4 2500 4 2500 1 2146 1 7854 6 2087 0 0000 0 0052 141 6 2587 15 9796 7 8904 29 8376 4 2500 4 2500 1 2146 1 7854 6 2087 0 0000 0 0052 144 6 2587 15 9796 1 8698 29 8638 4 2500 4 2500 1 2102 1 7898 6 2087 0 0000 0 0008 151 6 2587 15 9796 7 8698 29 8638 4 2500 4 2500 1 2102 1 7898 6 2087 0 0000 0 0008 15 J 6 2587 15 9796 1 8785 29 8896 4 2500 4 2500 1 2050 1 7940 6 2087 0 0000 0 0034 18 6 2587 15 9796 7 8785 29 8896 4 2500 4 2500 1 2060 1 7940 6 2087 0 0000 0 0034 16 1 R PSAT 15 979R zi 4 25N 12045 17955 5 2087 n annn n nnag v S Section Properties at Last Stage lt gt L Result Beam Section Properties at Last Stage b Figure 47 Section Property Data at the Last Stage 46 Construction stage analysis for FSM using general functions Checking Construction Stage Member Forces amp Stresses Member forces can be checked in a diagram using the Beam Diagram function lfa beam element is selected after invoking Quick View member forces at any particular pointon the selected elementcan be checked in detail Results Forces Beam Diagrams CS4 Load Cases Combinations CS Summation Step gt Last Step Components My Display Options Solid Fill Type of Display Contour on Legend on e J Type of Display Quick View m Reactions TH Stresses Z BeamjElement Mode Shapes A infu Lnes FZ T H Rests 7 OE Cable Control 7 a H Deformations Diagam Local Drectic loda Dam
29. 33 Pos 1 1 9158e 003 21124e 002 1 6892e 004 0 0000e 000 1 7085e4003 0 0000e s 3 Apply T Beam Stress PSC C Princioal Suess A Normal Stress lt Pane Report Tate Result Beam Stress PSC Tree Manu 18 agp Command Message Arumbrns Message 7 ls o press F1 kN l sled gt none mE eile 2 i Figure 52 Checking Top Chord Stresses using Table ol ADVANCED APPLICATIONS OZ In Construction Stage Analysis Control dialog box if Save Output of Current Stage Beam Truss v Save Output of Current Stage Beam Truss option has been checked on we can generate the member forces resulting only from the corresponding construction stage not the member forces accumulated up to that stage So in order to produce results for the un accumulated effects of one given construction stage check Current Step Result for all the stages Results Result Tables Beam 2 Force Records Activation Dialog Node or Element Loadcase Combination Stage Step Part Number All Mone Inverse Prev Dead Load CS MICS 1 002 last wiPart i JErection Load CS wj CS2 002 last Part 1 4 Element lag 20 Tendon Primary CS VICS3 002 last Part 2 4 SEA PRE Tendon Secondary CS MICS4 002 last Part 3 4 Creep Primary CS MMin Max max Element Type ES Add Creep Secondary CS a Min Max min TAUSS d Shrinkage Primary CS BEAM Delete Shrinkage Secon
30. 33e4002 Sig xx Axial 3 93 Sig xx Moment 315 5 K To p B ot ch 0 rd S H 3 O S g x Bar stresses for each Sig ae Summation m Sig zz s construction stag e 2 drar D Sig xz torsion af can be also abre BL Sig is shear a Sig Is shearstorsion 3 NE checked in Bridge SgPst 0 Sig Ps 8 Girder Diagram In Display Options a Scale Factor 1 000000 A case of a PSC Fill Type No Line Solid LS secti on 5 Beam Type of Display F F Contour Deform Stresses PSC can Vaues F Legend VIEW DIRECTION o Animate Undeformed 0 000 o be used to check imu e Contour in the Value Output Location e Model View state S Apply hse Message Window a x TOTAL SOLUTION TIME 696 67 SEC GSGLOXCGXECBG T Tree Menu BEES b Command Message Analysis Message IE gt or Help press F1 Nod 1 U 0 0 0 G 0 0 0 W in i E t nms 7 2 Z Figure 49 Bottom Chord Stresses at the Last Stage 48 9 Combined results Can be produced onlyin the same construction stage 9 Output option can be selected in Modify Display Option Construction stage analysis for FSM using general functions Using User Defined Diagram different results displacements member forces stresses for differentelements groups can be produced We will generate results for displacements in the left span bending moments in the middle span and stresses in the right span in a single diagram simultaneously Let us check di
31. 5 OQ 0000 000 9 0000 000 af t Disp M Summati C54 O0Xiss ltt Poel 2 2073e 005 5 3735e 002 431739e 004 Q 0000e 000 Z 144Te 003 0 0000e 000 0 0000 000 44 wiForce 12 Summati CS4 O Xiast 12 Pos i 2 1208e 003 1 6781 e 002 47484e 004 O0000e 000 22882e 003 Q0000e 000 0 0000e 000 ai 15 Summati C54 O0Xi z tS Pos 2 0542e 005 9 43600 001 5 179 6 004 00000 000 1 238800 OQ 0000 000 0 0000 000 za oq 14 Summati C54 OQMiast ital Pos 1 1 9480e 003 2864204002 55985004 0 0000e 000 1 6605e 003 0 0000e 000 0 0000e 000 EX 15 Summati CS4 Oas 15 Pos 1 1 8554e 003 4 031 e 002 amp 0185e 004 0 0000e 000 14517e 003 Q0000e 000 0 0000e 000 i 16 Summati C54 O0Xiss iiel Pos 1 01789e 005 411920002 4257e 004 0 0000 000 1 0060e 003 Q 0000e 000 0 0000 000 X 17 Summati C54 pias i17 Posci 1 7555e 003 2 0622e 003 64550 004 0 0000e 000 30671e 002 0 0000e 000 0 0000e 000 at 18 Summati CS4 Oiss 118 Pos 1 1 8711e 005 9 2023 002 118454 004 Q0000w O00 1502 02 O0000 000 0 00008 000 i 19 Summati C54 Comtiest ts Pos 1 2 65390 003 9 01 Meroe 665010004 0 0000e 000 166260003 0 0000e 000 0 0000e 000 M 20 Summati C54 O iast Z0 Pos i 2 6169e 003 7 4296e 002 81895e 004 0 0000e 000 1 8733e 003 0 0000e 000 0 0000e 000 3 21 Summati C54 DZS 78513 at Pos 1 2 1525e 005 2 0651 002 75 57056004 0 0000w 000 19461e 005 Q0000w C qp a a
32. 53 36 10 03 20 MV U1 I 20 0 61 018 2029 18 2242 36 83165 63 10 07 2M U I 21 0 36 0 19 1906 15 2137 61 7541 56 7 79 22M U 1 1122 0 25 0 19 1781 76 2043 50 7024 62 5 43 23 MV UTC I 23 0 07 0 19 1624 04 1933 28 6504 59 4 87 24 MV UI I 24 0 00 0 19 1464 94 1832 42 6103 68 4 24 25 Mv UTC I 25 0 00 0 19 1305 78 1738 87 5830 90 3 98 26 Mv U1 26 0 00 0 ST NMV UK 127 0 00 0 mwux ii 20 0 Many member force 29 Mv U X 29 0 00 0 30 MY U 1 1 30 0 11 0 13 20u 23 1003 10 0134 12 Zu eab view tems OOOO component x8 Es Load Cases to Displav Items to Display I3 Momenty 0 00 2Mv U LZ Momenty 0 00 230 603 54 Axia Wind ST 3M YUX I3 Momenty 013 0 00 241 42 230 1207 08 Shear y Temperature S T 4Mv U V4 Moment y 0 09 0 00 241 42 230 1810 51 Shear 2 Temperature ST SMVU Ig Momenty 0 05 0 00 241 42 230 2414 15 Torsi Tap Bot T DAST 6 myu l6 Momenty 0 02 0 00 241 42 230 3017 69 aaan Up no Temp Aol 7MYU 7 Momenty 0 00 0 00 241 42 230 3621 23 Top Bot Temp Ditf XS T 8MvUt Mel Momenty 0 00 0 00 241 42 230 4224 77 Moment z MV U KM Vall 9Mvu its Momenty 0 00 0 00 241 42 2 30 4828 30 MV U I MVimax 19 MY U X 10 Momenty 0 00 0 00 241 42 230 5431 34 FMY U TMVimin 11 MY U 3 Im Momenty 0 05 0 00 241 42 230 6035 38 MV U 2 XMVall T Mvu X I2 Moment y 018 0 00 241 42 2 30 65658 92 MV U 2 XMVimax 133 MY U X DS Moment y 0 30 0 00 241 42
33. 79 0 126479 0 126479 0 126479 0 126479 0 126479 0 126479 0 126479 0 126479 0 126479 0 126479 0 126479 Tendon Weight Table 6 111520 6 111520 6 114660 6 114660 B 106767 6 106767 5 111308 6 111908 5 34728 5 fod 120 3 Po 755 5 33755 5 237052 5 237052 5 240383 5 240383 4 06 7520 4 06 7520 4 061957 4 061957 4 561572 4 561072 4 556617 4 556617 6 111520 6 111520 6 114660 6 114660 B 106767 6 106767 5 111308 6 111905 a 34728 5 fod 120 3 Poo 755 5 129 TED 6 23 7062 6 23 7062 5 240383 5 240383 4 06 7520 4 06 7520 4 061857 4 061957 4 561072 4 55182 4 55661 7 4 55661 7 131 283513 sf ADVANCED APPLICATIONS Checking Moving Load Analysis Results The member forces produced in moving load analysis are the results of maximum values for each component in the corresponding element As such the locations of the loads causing each maximum force componentmaybe different In order to obtain the concurrent member forces right click on the table and use the View by Max Value Item function We can then check the corresponding force components associated with one maximum force component Results Result Tables Beam 97 Force el Loadcase Combinations MV U1 MV min PartNumber gt Partl Context Menu View by Max Value Item Items to Display Moment y Y K When Moment y is maximum other force components occurring at the same time are produced 08 Load Cases to
34. Advanced lication 19 Construction Stage Analysis for FSM Full Staging Method using general functions G Em Contents 15 p MP E ER 1 Bridge profile and general section sees 2 Materials amp Oren gl sodass issuutui ute bl vetat obniiaa REC cadet cUd A Rodin M ER RM en ORE RUMQUE 3 Ree acide IM M LR MM EIL MEI CIIM CN IAE 3 Composition of the Construction Stages ee ee ee e nennen 4 Work EnvironmieLbit eli S simt caesar nian tate eer codec teas ee omo eae und 6 Brani we idee nc o TS 7 DS TIAITIOM OFM ALCH ANS cti tion aa Neca a o Coetus V ad moe M eiu os Oa ainda 7 DE IMI ON ee eT 8 Definition of Time dependent Material Properties ccccececeeeeeeeeeeeeeeeeeeeees 11 Definition of Time dependent Material Properties cccccececeeeeeeeeseeeeeeeeeeees 11 SIUC TUFAl VIO SUING TT 13 Klemen GSTS TAO I EL TER 13 SUDPOM Generation rasse quad dheananoner Maud punc Rratq pet qe poesie oup tot aue SES 14 Group D eril lori ssec ot oett dedo tul tlt a ete set atus ataca ded use ec een iius 15 Structure Group ASSIONMENT 4 scia taxa aa sut oat uique tiae eta Uca reb aea 16 Boutidary Gornaditons lnpUbsss sido atea det vates tiua s o tee dei bu uode pedes tend es dodo eoe 17 Sele No 4E PUE TEES 17 SUPP ON S INU oat eect iedulahtsant int eat bs iin eaten eal oo adu AR 18 Construction Stage Loads Input e 19 De tine Load GOorndilloris ore cake trae utu xen Lal ex de Lue debut
35. Cases which combines the effects of HAand HB vehicle Load case name MV U 1 MV U23 MV S 1 and MV S 23 are created as below Type of Design Combination Factor Ultimate Limit State Y erviceability Limit State Load Case Name Combination Combination 1 MV U 1 MV S 1 ofLoads Combination 2 amp 3 MV U23 MV S 23 Table 1 Definition of Load Case Name Load Moving Load Analysis Data 25 Moving Load Cases Click Add Load Case Name MV U 1 Check on Auto Live Load Combination Type of Design Combination Factor gt Ultimate Limit State Combination of_oads gt Combination 1 Add J Load Case Data Scale Factor field 1 Vehicle HA amp HB Auto Number of Loaded Lanes 2 Assignment Lanes Listof Lanes Lane 1 left Lane 2 right E Selected Lanes OK Apply al Load Case Name MV U 2 3 Type of Design Combination Factor Ultimate Limit State Combination of Loads Combination 2 or 3 Apply Construction stage analysis for FSM using general functions Moving Load Cases Load Case MY U1 Description Add Load Case Name MVS23 Description Modify A uto Live Load Combination Delete Type of Design Combination Factor Ultimate Limit State Serviceability Limit State Combination of Loads Combination 1 Combination 2 or 3 Sub Load Cases Loading Effect e Combined Independent Veh
36. Construction stage analysis for FSM using general functions The effective stresses and effective prestressing force in the tendons can be checked by group and construction stage Vertical and horizontal force components of the tendons can be readily obtained from the distance from the centroid of the section to the tendon group and the orientation ofthe tendon direction cosine Results Result Tables Tendon Arrangement Tendon Average Sin 6 Average Cos 8 Average Stress Average Force Number deg deg kN m The arrangement data for tendon group A1 at the stage of CS1 A1 CS1 Apply 2 0 0000 0 2094 0 1301 0 9915 1140860 7379 1838 1548 2 0 0000 0 1187 0 1301 0 9915 1166973 4564 1880 2276 2 0 0000 0 1187 p 0 9913 1166973 7832 1880 2282 2 0 0000 0 4507 70 1317 0 9913 1196465 8749 1927 7458 2 0 0000 0 4507 0 1028 0 9947 1196455 3047 1927 7465 2 0 0000 0 7090 0 1028 0 9947 1228038 9033 1978 6163 2 0 0000 0 7090 0 0736 0 9973 1228039 2614 1978 6169 2 0 0000 0 8934 0 0736 0 9973 1250906 0441 2015 4598 2 0 0000 0 8934 0 0442 0 9990 1250906 3049 2015 4602 2 0 0000 1 0039 0 0442 0 9990 1222161 0060 1969 1458 2 0 0000 1 0039 0 0147 0 9999 1222161 1722 1969 1461 2 0 0000 1 0406 0 0147 0 9999 1194626 535057 1924 7818 A 0 0000 1 0406 0 0000 1 0000 1194626 3532 1924 7820 2 0 0000 1 0405 0 0000 1 0000 1174713 4298 1892 6983 2 0 0000 1 0405 0 0000 1 0000 1174713 4298 1892 6983 2 0 0
37. Load Analysis Control Data Influence Generation Method Number Line Element Z Distance between Points Analysis Results Plate Center Frame Normal amp Normal Concurrent Force Combined Stress a Center Nodal Stress Calculation Calculation Calculation Filters Reactions amp All Group x Displacements amp All Group Forces Moments amp All Group OK Cancel Figure 45 Moving Load Analysis Control Dialog Execution of Structural Analysis We have completed the process of structural modeling and defining the analysis options so analysis can begin now Analysis Perform Analysis Construction stage analysis for FSM using general functions Checking Analysis Results Construction stage analysis results will be reviewed via the versatile functionality of midas Civil Element Properties amp Section Properties for each Construction Stage The properties of each element used during the construction stages are produced in a table Select a stage to see the corresponding data initial Start age final End age initial Start modulus of elasticity final End modulus of elasticity shrinkage accumulated up to the end of the corresponding stage and creep coefficient When a construction stage is selected only the results pertaining to the corresponding stage are produced The Post CS construction stage is selected followed by pressing the Apply button to change the resu
38. T r 7 View Structure NodejElement Properties Boundar Dc Anass Rests PSC Pushover Design Query Tools Hb X Static Loads S Seismic a Settlement Etc ke lic rc rc amp System Temp B x 7 7 7 Prestress Beam Loads Temp Prestress Construction Stage 5 Load Tables id c c T Moda Temp E E23 FA Pretension Loads 2 Static Li Using Load Element Temp Beam Section Tendon Tendon Tendon mg M 5 Moving Load Heat of Hydration Cases Combinations Temp Gradient Tero Property Profle Prestress Extemal Type Loadcase Create Load Cases Temperature Loads Prestress Loads Q Section Type Oy General PSC Composite a A Direction E Local y X 17 Local z Ref Position e Centroid End Top p End Bot Section Temperatures E Isal D Cy 9 Material Element nput B Elast km R Therm VICI S B 4525 m zu rs H 071 im H2 B 1 335 m TiS i gt ji d e D L Qo Message Window AX LC Apply Gose E zii Tree Menu ESSET C U U T Command Message Analysis Message 7 N gt j For Heb press F1 Node 62 U 0 15 3 G 0 15 3 W lt ln ix gt nans S25 Figure 35 Input for Temperature Differential between Top amp Bottom Chords 34 9 Since this example bridgeis straight and symmetrical only the wind loading in the Y direction has been applied For the worst condition only the eccentric live load in the Y direction is entered Co
39. Table Elongation of tendons is produced Timing of tensioning each tendon elongation of tendons and elements at the start and end points of the tendons and their sum are produced Results Result Tables Tendon Tendon Elongations Tendan Elongation Element Elongation Summation Summation Tendon Name stage step Begin End Begin End Begin End im im im im im im AIL CSI O01 first 0 2 766 0 0000 0 0005 o 0000 n zr nano L ATR TE O01 first 0 2766 0 0000 0 0005 0 0000 n 2770 0 0000 AL CST O01 first 0 2755 0 0000 n anas o 0000 D Z 199 0 gooi AzA TE O01 first 0 2755 o 0000 0 0005 pagana nza83 nano ASL CST ogli first 0 2799 0 0000 0 0005 pagana D 2o03 pagan ASR C1 O01 first 0 2738 0 0000 0 0005 0 0000 0 2603 0 0000 A4L CST DUTILTIrsT 0 2625 0 000a 0 0005 pagana O 2629 0 anon AR CST O01 first 0 2025 0 0000 0 000S pagan n 28238 n anon BIL CS O01 first 0 2569 0 000a 0 anna pagana n 2573 o 0000 BIR TSE O01 first 0 2568 0 0000 0 0004 0 0000 0 2573 0 0000 BzL CS O01 first 0 2509 0 000a 0 0004 o 0000 n 2513 nano BZ CS O01 first 0 2509 0 000a 0 0004 o 0000 n 2513 nano BSL CS O01 first 0 2618 0 0000 0 0005 o 0000 O 2822 0 anon B3H CSZ O01 first 2818 0 0000 0 0005 0 0000 0 2822 0 0000 BAL CS O01 first D 2848 noon 0 0005 panno n 2853 nano Figure 56 Tendon Elongation Table o4 kg Selecta construction stage and click to produce the results corresponding to the stage
40. Z1 through Z3 Enter the sum of web thicknesses at a given location Check on Auto for automatic calculations for Torsion min Enter a minimum thickness for torsion calculation Construction stage analysis for FSM using general functions Definition of Time dependent Material Properties Define the time dependent properties of the concrete creep coefficients shrinkage and strength Properties Time Dependent Material Creep Shrinkage Click Add Name gt C45 Code gt CEB MP 1990 Compressive strength of concrete atthe age of 28 days 45000 Relative Humidityof ambientenvironment 40 99 70 Notational size of member 0 364 Type of cement gt Normalor rapid hardening cement N R Age of concrete at the beginning of shrinkage 3 Properties Time Dependent Material Comp Strength Click Add Name gt C45 Code gt CEB AP Concrete Compressive Strength at 28 Days 45000 Type of cement gt N R 0 25 J Name Sz Code CEB FIP 1990 Y CEB FIP CIS80 Characteristic compressive strength of concrete 45000 at the age of 28 days fck kN m Relative Humidity of ambient environment 40 99 70 Notational size of member 0 364 m h 2 4c u Ac Section rea u Perimeter in contact with atmosphere Type of cement Rapid hardening high strength cement RS Normal or rapid hardening cement N A Slowly hardening cement SL Age of concrete at the beginning of shrinkage 3 day Name Scale Factor Graph O
41. a girder using the Extrude function Node Element Create Nodes Coordinates x y z 0 0 0 Apply J Node Element t Extrude o Select All Extrude Tyoe gt Node gt Line Element Element Attribute Element Type Beam Material gt 1 C45 Section gt 1 Span Translation gt Unequal Distance Axis gt X Distances 16 2 5 5 2 14 2 5 5 2 12 2 5 Apply a Zoom Fit C 1 t J NodefGement MESE v H x p dda Y X Delete d Wwe E e T ar N ul X pete sto mesh ap s 5 WV ar note Bs Y O rua S aa UEM IZ Boah M s Create Trandate Diide Merge protect ge Nodes Create i Trandate Extrude De4de Merge Iversect I Me p Change Elements Nodes L kc Table Elements E i Parameters Table Nodes Bements 2 e RIT NE 1n 31 Gy GO vw E EPELERA Mee ox Extrude Elements B Start Number Node Number E Element Number 53 D d d i x d pa m B a 1 lc E Gererafon Typ Translate lotate Project Transiaton Equal Distar Unequal Dist ex y tary L 295 Sim Example 145 3950 Tree Mem Per i Command Message Ansiysis Message 7 lla J ess F Frame 45 313 75 0 G 123 75 Figure 13 Girder Generation 13 ADVANCED APPLICATIONS kg Since the depth of the girder is 3m and the distance between the bearings is 3m with the working point being Center Top the supports are created at Z 3m amp Y 1 5m 14 Support Generation Considering the spans 40 45 40 create
42. aes E Mody Dipley Option 22 Summati C58 OOXtest il22 Pos 2 2258e 003 1 251Se 002 5 3628e 004 0 0000e 000 2 10084 003 Q0000e COPY S 23 Summati CS4 O Xiast 23 Pos 1 2 3440e 003 3 1838e 001 47234e 004 Q0000e 000 23059e 008 Q000De fnd rip Scale Factor 24 Summati C54 OQXiest Zal Pos 2 4000e 005 74 AP OD 400137004 Q0000 000 2 0430e 003 Q 0000e C e Aib i 25 Summati CS4 O iast i125 Pos 1 2 3942e 003 8 85 amp 2e002 34385e 004 0 0000e 000 3 26994003 0 00006 Sorting Dilog E 6 Summati CS4 O Xiast 1128 Pos 1 2 3506e 003 1 1 751 003 2 9594 004 0 0000e 000 35236e 003 Q0000e R Rel Value ZT Summati C54 pias 27 Pos 2 3136e 005 71 2037e 003 23532e 004 0 0000e 000 36092e 00 Q000e Style Dialog 28 Summati CS4 Oas ijze Pos 1 2 2727e 003 1 2353e 003 15105e 004 00000e 000 35060e 008 Q0000e chow Graph Scale Factor 29 Summati CS4 pias 11291 Pos 1 2 2273 005 71 0155 003 06705 005 Q0000 000 32406e 00 OQ 0000w 0 30 Summati CS4 Coxiest ol Pos 2 1727e 003 6 2493e 002 22521e 006 0 0000e 000 Z T877e 003 Q000De Q activate Records SEE AES 31 Summati CS4 Ooxiest 31 Pos 1 2 0914e 003 2 4 Xe 002 41674e 006 0 0000e 000 23385e 003 0 0000e m in 3 Suman C54 pias del Pos 1 2 0042 005 1 605856 001 10563 0904 00000 000 1 95710003000000 Export to Exce 33 Summati CS4 002i i
43. ame PS1 Select Tendon for Loading Tendon gt A1L A4R gt Stress Value Begin 1395000 End 0 Q Prestress Is Grouting after 1 Stage Y Add applied one stage after the stage at Load Group Name gt PS2 which the load is Select Tendon for Loading entered Selected ATL A4R Tendon B1L B4R gt d a Load Group Name PS3 Select Tendon for Loading Selected BIL B4R Tendon gt C1L C4R gt Add i IC oo Structure 0 1 10 4 Propertis Boundary Load Anak Result PSC Pushover c Quar T Hu ETT EP I 2 r3 isi q Dynamic e View Point H TR t p UCS GCS T IES FR dose Tie Horizontally G OIX K Uzm A Named view L 4 k f K s3 Grids Aiert P Tle Vertically Redraw Initial Previous om den an Acbve inactive Al Inverse oon Display New PE View sais ZR pan amp n lt Atre B San aid Window Z Previous cascade Dynamic View Render View Select Activities Gids Snap Display Window Window Tie Sense 3 i THK 5 I o ZI N a m ree Menu 5B Node Element B Tendon Prestress Loads Bd epo Load Case Name Prestress Load Group Name PS2 Select Tendon tor Loading q Q Tendon Selected Name Nee T AIL CIL Pa AIR CIR 1223222557 8 9 101112131415 J6 178 92021 20 23 24 25 26 21 28 29 20 31 22 33 24 35 AA gt AL POE aaa zs deed aded P PLP 0 RLURUBR EUR RUM Am lt CR
44. cles Standard Name BD 37 01 Standard Load Vehicular Load Name gt HA amp HB Auto Vehicular Load Type HA amp HB Auto OK u Vehicle Name Tvpe Add Standard H amp HB Auto Standard Add User Defined Modify Delete Close Figure 38 Definition of Vehicle Loads Standard Name BD37 01 Standard Load M Vehicular Load Properties H amp HB Auto HA amp HBCAuto lv Q i Vehicular Load Name Vehicular Load Type HA Loading HB Loading HA Lane Factor e BD 37 01 User defined L w 336 1 L 8 kW m L lt 50 m w 36 a D UT m 50 eL e 1800 m Wz 1 2 kN m 1600 kL m Pa 120 kN Pb 110 kN Di 1 8 jm No of Units 30 D2 b m d 5 m D3 D2 d 11 m D5 D2 3d 2 m D4 D2 2d 16 m D6 D2 4d 26 m OK Cancel Apply Figure 39 Definition of BD37 01 Standard Vehicular Load of ADVANCED APPLICATIONS kg Load factors for HA loading for ULS SLS Combination 1 and Combinations 2 amp 3 are taken from Section 6 2 7 of BD 37 01 Load factors for HB loading for ULS SLS Combination 1 and Combinations 2 amp 3 are taken from Section 6 3 4 of BD 37 01 These load factors are automatically incorporated into moving load analysis results Therefore to avoid duplication the user should not apply the load factors for moving loads while generating the Load Combinations 38 gt Conditions for applying live loads To consider Load
45. d Type Bonded type in Tendon Property is selected Bonded the Tendon will be reflected in the section C Unbonded property calculations Otherwise in case of Unbonded the Tendon is excluded and the net section is used in the calculations The section properties at the last stage are used for calculating stresses due to additional loads applied at the completed stage such as moving load temperature load wind load etc Results Result Table Construction Stage Beam Section Properties at Last Stage Translational Distance A Area Ixx Izz C cym Cz Cam WArea Elem giae me m m m m m m m me Local y Local z m Lm l 6 2587 15 9796 1 8969 29 8433 4 2500 4 2500 1 2137 1 7863 6 2087 0 0000 0 0043 14 6 2587 15 9796 7 8055 29 8336 4 2500 4 2500 1 2154 1 7846 6 2087 0 0000 0 0060 2 6 2587 15 9796 7 8055 29 8336 4 2500 4 2500 1 2154 1 7846 6 2087 0 0000 0 0060 G In the out fil e HB 6 2587 15 9796 7 8195 29 8239 4 2500 4 2500 12171 1 7829 6 2087 0 0000 0 0077 EI 6 2587 15 9796 7 8195 29 8239 4 2500 4 2500 1217 1 7829 6 2087 0 0000 0 0077 Bu 6 2587 15 9796 7 9345 29 8164 4 2500 4 2500 1 2184 1 7816 6 2087 0 0000 0 0090 we can see the 41 6 2587 15 9796 7 9345 29 8164 4 2500 4 2500 1 2184 1 7818 6 2087 0 0000 0 0090 c 44 6 2587 15 9796 7 9472 29 8111 4 2500 4 2500 1 2194 1 7806 5 2087 0 0000 0 0099 section properties 5 6 2587 15 9796 7 9472 29 8111 4 2500
46. d to the material strength losses etc Load Temp Prestress Tendon Property Click Add a Tendon Name Tendon Tendon Type gt Internal Post Tension Material gt 2 Tendon Total Tendon Area gt 0 0016112 or Strand Diameter 12 9mm 1x3 NumberofStrands 19 Duct Diameter 0 1 Relaxation Coefficient CEB FIP 2 599 Ultimate Strength 1860000 Yield Strength 1580000 Curvature Friction Factor gt 0 25 Wobble Friction Factor 0 0066 Anchorage Slip Draw in Begin 0 006 End 0 006 Bond Type Bonded kd Relaxation Coefficient can be defined by selecting Magura equation JTGO4 or CEB FIP Code 24 e i on Pr ERG T Tendon Type Strand Diameter 12 9mm 1x3 Tendon Name Tendon Number of Strands 19 Tendon Type Internal Post Tension UK Cancel K If Unbonded Material 2 2 Tendon Y ERIS is selected the Total Tendon Area 0016112 m section stiffness is Duct Diameter d m calculated on the Relaxation Coefficient CEB FIP wii25 basis of the net Ultimate Strength 1860000 kN m cross section Yield Strength 1580000 kN m Bonded reflects Curvature Friction Factor 25 the composite Wobble Friction Factor 0 0066 1 m stiffness reflecting External Cable Moment Magnifier kN m ne tendons Anchorage Slip Draw in Bond Type Begin 0 006 rn Bonded End 0 006 m Unbonded OK Cancel Apply Figure 24 Tendon Property Dialog 9 Copy amp Paste the values from the Excel
47. dary CS Summation CS PLANE STRAIN mi AXISYMMETRIC SOLID Iw Intersect Current Step Result OK Cancel Axial Shear y Shear z Torsion Moment y Moment z Elem Load Stage Step Part kN kN kN kN m kN m kN m Summati CS1 QO0xlast I 20 10296 16 D 00 1802 73 0 00 1447 41 0 00 20 SummatiCS2 O0Xlast 20 17587 18 0 00 253 98 000 0185090 0 00 20 Summati CS3 UO0zlast I 20 717507 52 0 00 319 25 0 00 1514 36 0 01 20 Summati CS4 oox last I 20 16096 67 0 00 465 96 0 00 4833 07 0 00 20 Summati Min Max max M20 10236 16 0 00 1948 57 0 00 1083 72 0 00 20 Summati Min Max min 20 17785 08 0 01 Accumulated member forces at each construction stage Torsion Moment y kN m Summati CS1 00X last 94 00 21 12 0 00 10 11 0 00 20 Summati CS2 O0Zlast 20 68 81 0 00 1528 0 00 104 60 0 00 20 Summati CS3 O0Zlast I 20 41 75 0 00 4 99 0 00 9217 0 00 20 Summati CS4 O0Zlast I 20 12597 0 00 21 98 0 00 43 41 0 00 20 Summati Min Max max 20 0 00 0 00 0 00 0 00 0 00 0 00 20 SummatiMin Max min I 20 0 00 E DK mz TEC 0 00 Member forces solely due to the corresponding stage Figure 53 Member Forces due to the sole effect of Current Stage below Construction stage analysis for FSM using general functions Prestress Losses We can check the change in tendon tension at each construction stage due to p
48. e s AL 2 CL tay AR Can lt gt lt gt 3j Stress Value Stress Force A ist Jacking Begin 3 ra Begin 13900 Mms a End 0 kN m x ut Grouting after 9 2 Stage v A Tendon Type Load Cast c BaL Stre Prestr e B3R Stre Prestr Bi Stress Prestr S B2R Stres Prestr lt gt J Message Windov Add Modify Delete Close Tree Menu BREL Command Message Analysis Message IK Figure 29 Loading Tendon Prestress 20 Construction stage analysis for FSM using general functions Superimposed Dead Loads Superimposed Dead Loads are applied as Beam Load onto the superstructure Barriers 0 3075m 0 4975m x 24 52kN m 19 74kN m Safety Fences ILN m Asphaltconcrete pavement 7 5mx8cmx22 56kN m 13 5 X n Noise barriers 1 52kN m Total 35 796kN m Load Static Loads Beam Loads Hi Element o SelectAll Load Case Name gt Superimposed Load Group Name Superimposed dead Load Type Uniform Loads Value Relative x1 0 x2 1 w 35 796 Apply J lere urds Ana Rest PSC Pushoves Desigr Uet To Static Loads Seismic Settlement Etc c MR W Self Weight Z Nodal Body Force M Bement f Pressure Loads 17 lritial Forces 7 LE Temp Prestress Construction Stage Load Tables Z t Heda Loads M Nodal Masses m une 2 Hydrostatic Pressure C Assign oor Loads Static Load Using Los x 5 Moving Load Heat of Hydration Continatione Speci
49. emperature differential between top amp bottom chords 5 2 Wind ADVANCED APPLICATIONS Composition of the Construction Stages This figure below represents the entire construction stage process Construction stages are generated excluding the erection of the shoring and temporary bents themselves which have no effect on the structure Install temporary shoring RP1 RP2 amp P2 on temporary mass concrete foundation Install formwork Stage 1 Fabricate reinforcement install sheath ducts amp cast concrete Stage 1 iii Tension tendons Stage 1 Install formwork Stage 2 Fabricate reinforcement install sheath ducts amp cast EE SMW WE concrete Stage 2 LENKA Fab POD LI DE TUI E E LI E il Snn Z ES iii Tension tendons Stage 2 oa Remove temporary shoring RP2 to P2 Install temporary shoring RP1 to A1 Install formwork Stage 3 Fabricate reinforcement install sheath ducts amp cast concrete Stage 3 iii Tension tendons Stage 3 Figure 4 Construction Stage Chart The following construction stages are reflected in the analysis CS1 30 days CS2 30 days C S3 30 days C S4 10 000 days Construction stage analysis for FSM using general functions 4 gt O gt o C O O Z p 4 Un 2 O gt 4 bs O Q Figure 5 Tendon Placement Layout ADVANCED APPLICATIONS Work Environment Settings For FSM construction stage analysis open
50. fied Dipl i Loads to Masses Al Typical Z Assign Plane Loads Load Type Create Load Cases Structure Loads Masses Beam Load Pressure Load Initial Forces Etc Element Beam Loads Load Case Name 3 f 9 G Superimposed Load Group Name Superimposed Dead lt Optlons Add Replace Delete G 4 4 6 HEHE H HHH Q GOGO GG G G GG GGG GGG HEH GOGO GGG HOHE HE HEHEHE P L er dy Co er Co e7 C2 e7 fo e7 To CS fo Co e7 By dB bly Bs By C2 By By By By e7 C2 e7 By e Load Type Uniform Loads j LLL TUD THT 9991 95 9 30 90 90 90 91 92 92 94 97 Poep 1030 9M 3 9f SERE d a L 3 w TN K 3 9 x re x A Ha 1959 0 0 9 F0 1 1 30 622 Eccentricity Direction Global Z e Lc Projection Ves 9 No Value Relative Absolute x1 0 w 35 796 2 x4 1 amp Model View t Uni kN m Message Wind di q L Command Message Ares Message T 8 Figure 30 Loading Superimposed dead Loads 29 ADVANCED APPLICATIONS Loading Input on the Completed Structure Wind Loading wind loading of 3 kN m LB Figure 31 Wind Load Distribution Total Height Section Depth Barriers Noise barriers 23 1 2 5 6 5m Wind Pressure 3kN m Wind Load 6 5mx3kN m 19 5kN m Horizontal Load 19 5kN mx 1 46m 28 47kN m m Eccentricity Moment 30 9 Loading pertaining to the Load Groups which are not activated dur
51. file to enter the Profile We may also copy the Profile after creating an MCT file 9 Transfer Length may be specified to consider the unstressed length of the anchorage 9 Checking on Typical Tendon and entering the number of tendons can be used to represent a number of tendons of the same profile This is also handy when preliminary analysis is Construction stage analysis for FSM using general functions The Tendon Profile can be defined in many ways such as defining the inflection points but this example uses a common approach often used in practice using the Tendon ordinates from drawings Referring to the values in the attached Excel file TD profile xls prepared on the basis of the tendon drawings the ordinates of the tendon at every 2m are pasted into the software Load Temp Prestress 7 Tendon Profile Tendon Name A1L Group A1 Tendon Property Tendon Assigned Elements 1t020 Input Type 3 D Curve Type Spline Profile 1 x 0 y 0 z 1 9 2 x 2 y 0 z 1 2590 25 gt x 48 y 0 z 1 25 Profile Inserton Point End of Elem 1 x Axis Direction gt I gt J of Elem 1 xAxis Rot Angle 11 3 Offset y 2 666 Tendon Name JAIL Group Al xil las Tendon Property Tendon vi Assigned Elements Ito20 Input Type Straight Length of Tendon 2 D e 3 D ae Begin 0 m Curve Type 6 Spline Round End 0 m Typical Tendon S Transfer Length User defined Length
52. ge 5 Add Add Stage days Bement Boundary md Dead PST Diaphragm 19000 Superimposed dead AA aa Compose Construction Stage x Stage Additional Steps Stage Additonal Steps St cs vi lev 0 add D Add Name csi Example 3 7 14 Modify je Stage Z SEMI Add eks e L i m Day 0 Duration 30 Step D Name CSI Examale 1 14 Modi Cex Sen z ult Dudin 3 Z days Xem Der E p Numb i Auto Generation v Stage Additional Steps rer s Save Result Save Fes e E Step Number 0 ent Stage Informer 7 Stage Addfinnal Steps R acenduy S S E Group List Activation Deactivation Current Stage Informa Bi s yp BG U e De Hement Bordaz Load p List E Aptuaton P Group List duen mes Compos SG Element Force ES 563 Ld T rer i Age a Redistribation 10 Stece r m S Name TETE M Group List Group List E mp d Duration ep D Nane Age hane Pedist Generation 861 5 Save Result Step Number Additi p serer ste Step age Infor Ele Boundary Load Acti D osed Dead A Firs 1 d Adi Vo Delet Add Modfy belts r g 7 S me D D ad SI apgragm x Cancel took 44 df y 44 diy Delete Construction stage analysis for FSM using general functions Performing Structural Analysis Select the analysis options for construction stage analysis and moving load analysis and perform analysis Construction Stage Analysis All the dead loads applied during the construction stages are included in CS Dead Load lf re
53. ges Constant Change with Tendon Load Type for C S Erection Load Dead Load of Wearing Surface w Frame Output Calculate Concurrent Forces of Frame i X Lalculate Uutput of Cac art of Composite section Checking on Calculate Output of Each Part of C ite Secti Change with Save Output of Current Stage Beam Truss Tendon in Beam Remove Construction Stage Analysis Control Data OK Cancel Section Property Change will reflect the effect of Figure 44 Construction Stage Analysis Control Data tendons for calculating section properties by construction stages 43 ADVANCED APPLICATIONS 9 Specify the number of points per beam element on which influence lineis calculated A number between 1 to 10 can be specified Concurrent Force will generate member forces which take place simultaneously under the same loading 9 Check on Combined Stress to generate combined stress results 9 A substantial amount of results are generated from moving load analysis Onlythe desired parts should be selected in groups for output generation 44 Moving Load Live Load Analysis Select the method of influence line calculation and the options for generation of analysis results Analysis Moving Load Analysis Control Influence Generating Method gt Number Line Element 2 Y Analysis Results Frame gt Normal Concurrent Force Combined Stress Calculation off 4 it Moving
54. icle Scale Lane Lane2 HA amp H 1 Lane Lane ES Tm 3 Add Modify Delete OK Cancel Apply Load Case Data scale Factor Number af Loaded Lanes Vehicle HA amp HBC amp uto w Assign Lanes HB Straddling List af Lanes Selected Lanes Ten lanes Lane lett Lane 2 right OK Cancel Apply Figure 40 Definition of Live Load 39 ADVANCED APPLICATIONS Differential Settlement gt Definition of Differential Settlement Groups Select the nodes which can settle simultaneously representing the abutments and piers to individuallydefine them as a Settlement Group Load Settlement Etc Settlement Group Group Name gt A1 Settlement Displacement 0 01 4 Select By Window 61 62 Add Group Name P1 Settlement Displacement 0 01 4 Select By Window 63 64 amp dd Group Name P2 SettlementDisplacement 0 01 4 Select By Window 65 66 Add J Group Name A2 Settlement Displacement 0 01 4 Select By Window 67 68 X 4d J 7 ew Structure Node Hement Properties Bounda Lo Anais Resuits PSC Pu hower Design Query Took Hb xX 5 Static Loads 3 Seismic SettementiEt Ga fa v Ha m 7 Temp Prestess Construction Stage Load Tables z E LLC 111 vv a ettiement Settlement Concurrent re composite Load Sequence I Movng Load Heat cf Hydration Goup Load Cases Reaction Group Section for Nonlinear Load Type Settlement Analysis Data Etc BEAT EH
55. ing the construction stages are loaded in PostCS Construction stage analysis for FSM using general functions Enter the windloads Load Static Loads Beam Loads 9 SelectAll Iso View Load Case Name gt Wind Load Group Name gt Default v Load Type gt Uniform Loads Direction gt Global Y Value Relative x1 0 x2 1 w 19 5 SelectAll Element Apply J Load Type gt Uniform Moments Torsion Direction gt Global X Value Relative x1 0 x2 1 w 28 47 poly J TAA T OOLUITETIS dd Sealidstruse ror vc STT p 7 View Structure Node Eement Properties Bounds Lona S be Tools LEES EF eem D lc LS Seif weight Z Nodal Body Force ZH Element f3 Pressure Loads Initial Forces 7 7 Temp Prestress 7 Construction Stage Load Tables LU Nodd Loads M NodaMases Mune P Hychostatic Pressure E Assign Foor Loads Moving Load Heat of Hydration gacio Pasar Laa 1 Specified Dipl LY Loads to Mases M Typicd 4 Assign Plane Loads Load Type Create Load Cases Structure Loads f Masses Beam Load Pressure Load Inia Forces Etc l BEATER EErEE BES DMA DIGES h S E me Element Beam Loads Load Case Name Wind E39 Poo Load Group Name Default M 3 R Opsons Add Replace Delete Load Type Uniform Moments Torsions w E 9 a a a n gt Direction t Global X w C Projection Yes lt No Value
56. l l Mode shape Moving Load Time History Endge Text Tables Cases can be aS hEen checked mo ENE Summation Stage Step Graph Define Function Beam Force Stress Add New Function 9 Stage Step Time day Moda Multi Func Multi LCase Step Opson Al Steps Last Step sere X Axis Check Functions To Plot v 35 ax v 35 bL v 35 b y v 35 b 2 VESTES Mod y Delete Load Cases Combinations Summation Graph Tite Summation A Graph Close Stage History Graph p ax Tree Menu METERS Command Message Analysis Message 7 4 gt or Helo press F1 None U 13 75 0 0 G 13 75 0 0 W e m L 1 Rz E none 18 S T Z Figure 51 Change in Stresses with Construction Stages o0 Construction stage analysis for FSM using general functions Checking Results using Tables Tables are also useful in checking construction stage analysis results Tables can be manipulated in various ways by right clicking on the tables From Records Activation Dialog tables can be generated by selecting elements to be checked for stresses load cases construction stages steps elements on which points of stress output are required load cases construction stages steps stress output locations on elements stress outputlocations on a section etc The Sorting Dialog allows us to sort arrange the data based on the sorting criteria The Stye Dialog allows us to change the data type and produce result
57. lt values as below Results Result Table Construction Stage Element Properties at Each Stage PostCS Post construction stage iri Steses Z Beam Bement i Mode Shapes A W unes EZ TH Rests 1 Cable Control Em n f Diagram A Innu Surfaces e TH Gaph Text gt H Camber Reaction Load e S M l d a z Ka y ext s Combination V Forces HY Results Seduction Moment B Moving Tracer I Tendon Loss Graph Output Tables I 9 Time Dependent MateriaiCas 5 Time Dependent Material Comp th Time Dependent Material Link Section Tree Menu MEL I L Command Message Analysis Message h Hane 0 15 3 G 0 1 5 3 KN zle i RE gt none SIBI 2 2 Figure 46 Element Properties at each Construction Stage 45 ADVANCED APPLICATIONS Transformed section properties used in the last stage of the construction stage analysis are produced in atable The properties may change with change in modulus of elasticity if a time dependent material is used And if tendons are included in sections the tendon properties and the timing of grouting will affect the section properties In order to reflect the Beam Section Property Changes Tendon in section C Constant Change with Tendon property calculations Change with Tendon needs to be selected in Construction Stage Analysis Control If Change with Tendon is selected and Bon
58. mand Message KAmlsisMessage Ft z pr Help press F1 None U 85 1 5 3 G 85 15 3 KN im RE t o SN x Figure 48 Checking Member Forces at CS4 4T ADVANCED APPLICATIONS Using the Beam Stresses PSC function the stresses in a PSC section can be checked in a diagram A total of 10 locations Top Bot vetices 1 to 4 Center 7 amp 8 and shear checking points 5 6 9 amp 10 defined at the time of defining the PSC section can be checked Let us check the bottom chord stress for CS Summation atthe lastconstruction stage Results Stresses Beam Stresses PSC cs4 9 Load Cases Combinations CS Summation Step gt Last Step Section Position Position 3 Components gt Sig xx Summation Type of Display Contour on Legend on T Reactions TH Stresses Z Beam Eement 7 Mode Shapes influ Liness s T H Resuts 7 H Cable Contr 7 A G El VU AA Deformations t Dagan Loc esto Infa Surfaces gt E T H GraphyText JK CanberjReactin US SN H Forces 7 g HY Reze 4 t 3 Mowing Tracer Stage Step Graph 2 Tendon Loss Graph d Mut pa Combnaton Resuits Detal Mode shape Mowing Load Time Hstory Bridge Text Table l BEATER rx BRIK NIR IIS HIA N X di BES DAA DIQDA N E mji ree Meny HIDAS Civil Reactions Deformat Forces ERES pe i MOT PRAES q Posmons PosmonS BEAR SIRESS PSC ES Position 10 SIG xx Sua 4 Max Min a 9m enano BED Max Min Abs Max d Components 7 652
59. nstruction stage analysis for FSM using general functions Live Load The sequence ofdefining the live load is as follows Select a Code defining live load Define Moving Load Code Define lanes Traffic Line Lanes Define vehicles Vehicles Define live load cases Moving Load Cases gt Select a Code which specifies live load The input process and the parameters are tailored to the selected Code Load Moving Load Load Type amp Moving Load Code Moving Load Code BS K Define traffic lanes Eccentric and symmetrical loading can be considered for the transverse position of traffic lanes In this tutorial we specify only a symmetrical loading case as described below The eccentricity is positive if the traffic lane center is on the right side of the elements in the direction of traffic and vice versa Lane1 1 75m Lane2 1 75m Symmetrical Loading Lane1 2m Lane 1 75m eccentric loading Figure 36 Traffic Lanes amp Eccentricities DU ADVANCED APPLICATIONS 9 When a traffic lane is curved or when the lane data entry with 2 Points becomes awkward due to discontinuity select Number and directly type in the element numbers In this case even if you select Number and input 1 to 53 the same traffic lanes are selected 36 7 Temp Prestress Construction Stage Load Tables Top View Load Moving Load Traffic Line Lanes Click Add Lane Name Lane 1 left T
60. onstructing post tensioned concrete bridges Dead weight of concrete formwork and falsework are fully shored over the full spans of a bridge until the concrete gains a certain level of strength FSM can be economical if the horizontal alignment of a bridge is curved or the width of the bridge deck widens provided that the heightof the piers are not too high In the case of a bridge with long spans the use of continuous tendons can be limited thereby requiring construction joints Each segment may be constructed sequentially span by span Structural analysis is carried out on the basis of construction stages defined by the construction joints Although a bridge is supported by shoring FSM is generally analyzed with the assumption that effect of support is negated by the effect of prestressing When FSM is applied to a bridge with continuous spans the first stage is a simple span and it becomes continuous with the progress of the construction stages In comparison with an analysis that does not consider construction stages the construction stage analysis results in lower negative support moments higher positive span moments As such a bridge constructed by FSM needs to be analyzed with construction stages reflecting both the change in structure element load and boundary conditions as well as time dependent material properties including creep shrinkage and modulus of elasticity Figure 1 Bridge to be analyzed ADVANCED APPLICATIONS
61. p gt gt Min amp Max Abs Max Tree Menu eames Command Message Analysts Message 7 Max Min lla a For Help press F1 Node 1 Hs lt l ela gt one EH o a os Limit Seale Note that the three plots above have different scale factors to properly display in this figure In order to check the results you may enlarge the figure and compare the values Figure 50 User Defined Diagram Output Display 49 ADVANCED APPLICATIONS Checking Results using Graphs The change in stresses with the progress of construction stages in the support element No 36 will be checked in a Graph Results Stage Step History Graph CS4 Define Function Beam Force Stress Add Mew Function a Name 36_ax ElementNo 36 Stress Point gt l Node Components gt Axial Name 36_b y Components gt Bend y Name 36_b y Components gt Bend y Name 36_b z Components gt Bend z Name 36_b z Components gt Bend z m Mode gt Multi Func Y is selected the Step Option All Steps results history of Load Cases Combinations Summation the component of the corresponding element for a Tei TI Stresses Z Beam Ekment Mode Shapes amp iniu Lines b T H Results H Cable Control G f Diagran 7 4 iniu Surfaces amp T HGraph Text gt L Camber Resction ba nu mber of Lo ad nM i Forces Y Results Z Moving Tracer BE Tendon Loss Graph Aun prre Combination Results Deta
62. ping Ratio a rA Surfaces E T H GaphjText Jk Camber Reaction 7 a NS v Bc w c a T zs Bridge Gr Text lea lz Combination P Forces HY Results 7 Re d Re Mi Moving Tracer 7 E stage Step Graph S Tendonlos Gaph reris Output Tables Combination Results Detal Mode shape Moving Load Time History Bridge Text Tables EATER BE THK OI SIS RS SI B Ex BIDAS Civil eactons Deformat Cre Stresses n cE C R BEAM DIAGRAM SA Load Cases Combinations LU z CS Summation aul NHONEET y E Step Last Step 9 56149e 003 E 6 50932e 003 3 457142 003 a Components Beam Force Detail Diagr 0 00000e 000 S i me t 2 64722e 003 Fx Mx 5 69939e 003 Fy Fz Fyz Select Load Step Comp E Case CS 8 75157e 003 E My Mz Myz Load Case CS Summation WS Step Last Step 1 18038e 004 E 1 48559e 004 Lomponent My Display Options 1 79081e 004 a U L 2 09603e 004 a RE No Fill fata 004 d NN 9 Line Fill CS Sumxation Bl Scale 1 TTT Solid Fill Lest Step A MAX 46 xu Type of Display Result Value MIN 17 3 F Contour Deform LEnd 1 589e008 Unit FILE 14 Values A Legend J End 1 102e 002 mma shania DATE 07 24 2002 at Animate Undeforned Max 158543 gl VIEW DIRECTIOK irrores Quick View r ia Mirrored m Min 1 1022 002 Curent Step Force 0 00 Output Sectio Hrs e Total Length 25 7 EL s 8 E elal E Ires Menu Pena 4l 4l TD Com
63. pplied Load Self Weight Load Case Name gt Self Weight Load Group Name Dead Self Weight Factor gt Z 1 600 a ar E Ti Horeontally MT Tie Vertically 12 KA L Dead Sell Weight Factor easgellsu 22 9951 A G fa p 4 Model View gt ox FTP Command Message L Ansiysis Mezza 7 Figure 20 Self Weight Input 20 Construction stage analysis for FSM using general functions Dead Load Enter diaphragms and construction joint blocks as loads as they have not been reflected in the model Front View Load E Element Beam Loads as Select Elements by Identifying 1 52 I Load Case Name Non Structure Dead Direction Global Z Relative x1 0 x2 1 w 220 34 Apply J S men39 2 Select Elements by Identifying 19t021 38t040 1 Relative x1 0 x2 1 w 63 0 Apply J aes Select Elements by Identifying 16 35 J Absolute x1 1 5 x2 2 5 w 220 34 Apply J SA IEEE Select Elements by Identifying 17 36 1 Absolute x1 0 x2 1 w 220 34 Apply J Tree Menu Hi Command Message Anetyss Meseege ls j Figure 21 Miscellaneous Dead Loads 21 ADVANCED APPLICATIONS Construction Joint Block L Diaphragm lil Ul Figure 22 Dead Load Layout The diaphragms at the supports and the construction joint blocks have not been considered as structural elements in this longitudinal analysis and are thus t
64. ptions ur X axis log scale Y axis log scale Code User 0000 4 45000 4 Development of Strenath 40000 Code CEB FIP x KH ala 20000 Mean compressive strength of concrete at the age of 28 days fck delta f 25990 45000 kN m 20000 15000 Cement Type s 10000 4 N R 0 25 v 5000 0 4 0 2 4 6 6 12 16 20 24 28 Time day Redraw Graph FI OK Cancel Figure 11 Time Dependent Material Data LI ADVANCED APPLICATIONS Link the time dependent matenal properties to the material properties The creep coefficients shrinkage and concrete strength curves defined earlier need to be linked to the corresponding material property in order to carry out construction stage analysis reflecting their effects Properties Time Dependent Material Link Time Dependent Material Type Creep Shrinkage gt C45 Comp Strength gt C45 Select Material for Assign gt Materials gt 1 C45 gt Selected Materials Add Modify Time Dependent Material Link los Time Dependent Material Type Creep Shrinkage C45 E Comp Strength C45 E Select Material to Assign Selected Materials Materials 1 C45 e Tendon Operation Add Modify Delete Mo Mat Creep Shr Comp Str 1 C45 C45 C45 Figure 12 Linking Time Dependent Material Property to the Material Property T2 Construction stage analysis for FSM using general functions Structural Modeling Element Generation Generate
65. r application of the load factors as per the design standard Redraw Load lc Static Load Cases Name Self Weight Name Non Structure Dead Name Prestress Name Superimposed Name Wind Name Temperature Name Temperature Name Top Bot Temp Diff Name Top Bot Temp Diff Static Load Cases Name Top Bot Temp Diff Type gt Construction Stage Load CS Type Construction Stage Load CS Type Construction Stage Load CS J Type Construction Stage Load CS J Type gt Wind Load on Structure W J Type Temperature T Type Temperature T lt 1 Type Temperature Gradient TPG Type Temperature Gradient TPG Add Case MI Load Case Y Modify Type Temperature Gradient TPG TG Y Delete Description No Name Type Description set Weight Construction Stage Load Non Structu Construction Stage Load 3 Prestress Construction Stage Load 4 Superimpos Construction Stage Load Wind Wind Load on Structure 6 Temperatur Temperature T TU 7 Temperatur Temperature T TU 8 Top Bot Te Temperature Gradient TP b QRT STB Temperature Gradient TP EJE Close Figure 19 Load Cases Definition ADVANCED APPLICATIONS Self Weight Enter the self weight Define the structure s self weight and activate it at the first construction stage Then the self weights of the elements activated in the subsequent construction stages will automaticallybe a
66. raffic Lane Properties Eccentricity 1 75 WheelSpacing 1 Lane Width 3 5 Vehicular Load Distribution gt Lane Element Selection by gt 2 Points 0 0 0 125 0 0 Click OK Click Add A Lane Name Lane 2 right Traffic Lane Properties Eccentricity 1 75 Wheel Spacing 1 Lane Width 3 5 Vehicular Load Distribution gt Lane Element Selection by gt 2 Points 0 0 0 125 0 0 Click OK Seismic Settlament Etc g Moving Load Code m pem 5 Traffic Tra Line Lanes Surface Lanes Lane Name Lane 2 right Trafic Lane Properties BeESAPSKIA Xp WI x 18 a Eccentricity Eccenticm 4 Wheel Spacing 1 Lane Width 15 Vehicular Load Distribution Lane Element C Cross Beam Group PESTE ee TASTA NT 1 Selection by 2 Points Picking Number 000 000 prin lela lode le deleleleleletelenisiivinieieleteleleleceleleieieleie srisivvietecelsieleieeleeienes 1 Model View Figure 37 Traffic Lane Input Dialog amp Input Result Refer to the Figure 36 for the traffic lanes and eccentricities to define 2 traffic lanes amp ue p BIB 2A O Q O O Q L S ba 9 MIDAS Civil contains the standard vehicle loads such as BS 5400 BS BD 37 01 AASHTO Standard AASHTO LRFD Caltrans etc Construction stage analysis for FSM using general functions K Definition of Vehicle Loads Define the vehicles for live loads Load Moving Load Analysis Data amp Vehi
67. reated as loads Their cross sectional areas are calculated and converted into Beam Load over the corresponding lengths Other additional dead loads may exist but are ignored in this Tutorial Diaphragm End 2m Intermediate Support 2 5m Area 9 941m 0 955m 8 986m P 8 986m 2 x 24 52kN m 220 34kN T m Construction Joint Block Area 1 288m x 2EA 2 576m P 2 576m2 x 24 59kN m 68kN m We need to assign the loads to Load Groups and activate the Load Groups in the corresponding construction stages Because the magnitudes of the Beam Loads are the same setting the Load Group to 22 Default is convenient for input the Table Tab Construction stage analysis for FSM using general functions We will now see how to modify the Load Group using By selecting the desired columns we can adjust the locations in Beam Load Table The row column containing the Group information is located at the end of the Table For convenience we will select the entire column and move it next to the Element numbers Assign Load Group Diaphragm 1 to 3 to the loads in order to activate them in Stages 1 through 3 Load Load Tables Static Load amp Beam Loads Element 1 20 Diaphragm 1 Element21 39 Diaphragm2 Element40 52 Diaphragm3 Note that the Group column is found at the last column in the table as shown in the first figure of the three figures below the Group column was relocated to the front for
68. rectangle When PSC Type is specified the sections defined as PSC Type in defining Section Data are automatically converted into rectangles and loaded on the parts experiencing temperature differentials Although the Beam Section is defined as PSC Type in this example which results in a simple input process for loading for a temperature differential between the top and bottom chords input is carried out as General Type after converting into a rectangle Figure 34 shows the calculations for cross sectional area and centroid of the top part of the PSC Box section using SPC Section Property Calculator The instruction for using SPC is separatelydocumented in user s manual 33 ADVANCED APPLICATIONS Using the above calculation results in conversion into an equivalent rectangle which will be loaded as follows Area 2 896m H 2x0 312977m 0 625954m p Area _ 2 896 96H H 0 625954 Load Temp Prestress Temperature Loads 4 Beam Section Temp Load Case Name Top Bot Temp Diff Load Group Name gt Default Direction gt Local z Ref Position gt Centroid B 4 626 H1 0 71 H2 1 336 T1 5 T2 5 Add al SelectAll Apaly J Delete the defined Section Temperatures select and delete Load Case Name Top Bot Temp Diff B 4 626 H1 0 71 H2 1 336 T1 5 T2 5 600 4A SelectAll Apply a TH ANZ De rUGCUMEernS and SENGEN USS rors Ste TOH YYOTKET ld SIT TS O
69. restress losses In the Tendon Time Dependent Loss Graph dialog box only the tendons included in the stage selected in the Stage selection window can be checked A Graph is generated for selected tendons selected Stage and selected Step Click Animate to check the results in an animation Results Tendon Time dependentLoss Graph Tendon gt A1L Animate Tendon Time dependent Loss Graph Tendon AIL D Stage CS1 v Step LastStep w Animate Tendon A1L Stage CS1 Step Last Step wu o H o I G S T G a E Distance m al Close Figure 54 Graph showing Loss of Prestress Forces SV ADVANCED APPLICATIONS Checking Tendon Information The tendon information used in construction stage analysis can be produced in a table The coordinates ofthe tendons placed in elements are produced Results Result Tables Tendon Tendon Coordinates X y Z Tendon Name Ma in Em Gas k D 0 0 0000 0 0000 0 0000 AIL 1 0 0000 2 4660 1 0000 AIL 2 oO 6250 24502 1 0790 AIL 3 1 2500 24341 1 1593 AIL 4 18750 24176 1 2420 AIL 5 25000 24004 1 5281 AIL 6 31250 23829 1 4157 AIL 7 amp 7500 23656 1 5018 AIL 8 49750 23483 1 5837 AIL g 50000 23340 1 6602 AIL 10 5 6250 23197 1 7316 AIL 11 6 2500 23063 1 7984 AIL 12 68750 22959 1 8607 e s Figure 55 Tendon Coordinates
70. s Let us check top vertex stresses for CS Summation atthe lastconstruction stage Results Result Tables Beam Vz Stresses PSC Element Loadcase Combination Stage Step Part Number Section Position All None Inverse Prey Dead Load CS CS1 002tlast MPart i mPos 1 i T Erection Load CS CS2 002 last Part 1 4 Pos 2 3 im Ite Tendon Primary CS CS3 002 last Part 2 4 Pos 3 Tendon Secondary CS VICS4 002 last Part 3 4 Pos 4 Creep Primary CS Min Max max lm Part j Pos 5 xj Add Creep Secondary CS Min Max min Pos 6 Shrinkage Primary CS Pos Delete Shrinkage Secondary CS Pos 8 Ir summation CS Pos 9 Replace Pos 10 Max Intersect Min ES aN wa OK Cancel C4 k pe 3 Resuits o gt x MZ iSuesses Z Beam Bement Mode Shapes finu nes TH Rests UF Cable Control l T gd Z T Dagan ife Infiu Surfaces IE T H Graph Text P Carmber Resiction KA E E o 9 Forces lt d HY Rests lt 4 ZR Moving Tracer IE Tendon Loss Graph o ex Tablos Combination Results Detal Mode shape Mowing Load Time Hetory l Bridge ITE Taes LT 2 Z ZR me ET OLAS DI X si TE TE A era ox e c m N e e e e Section Sig x Axial Sig xx Moment y Sig xx Moment 2 ig xx Bar Sigd Summason Sig 22 Sig sz shear
71. s Boundary Group BG EJ Select Single Node 61 Support Tyoe gt Dy on Dz on Select Single Node 62 Support Tyoe gt Dz on J Select Single Node 63 Support Tyoe gt Dx on Dy on Dz on Select Single Node 64 Support Type Dx on Dz on 4 Boundary Group BG2 A Select Single Node 65 Support Type gt Dy on Dz on J E Select Single Node 66 Support Type Dz on Boundary Group BG3 KI Select Single Node 67 Support Tyoe gt Dy on Dz on J Select Single Node 68 Support Type Dz on buctue Node Element Propert Bounday EX ts p Pu L amp Pores w efe YET bd L fete e CY TE IU integra Bridge al v r J em Surface Este Bd General BeamEnd Pran Erd Date End L kerre Offsets Rebre PH Unax Constraints 77 Effective Width y 3 Panel Zone Effects Define Label Or c k Bourn Pont e i Boundary Supports Sng Spring uk Lk rk Node Local Axis Tables lt LT O E P G amp 20 amp IU B 42 9 fal Gl 2 Figure 18 Boundary Condition Input Construction Stage Loads Input Define Load Conditions Define load cases for analysis Construction stage analysis for FSM using general functions We take the time to define the load Type then we can take advantage of the ability to automatically generate load combinations using the Auto Generate function Using these Types of load case we may generate the load combinations afte
72. splacements member forces stresses for CS Summation at the last construction stage Results Diagram Define Diagram cs4 Y Element gt 1to16 Type of Result Displacement Component gt DZ GroupName Disp Add al Element gt 17to35 Type of Result gt Beam Force Moments Component My GroupName gt Force _ d u Element gt 36to52 Type of Result Beam Stresses PSC Section Position gt Abs Max Components gt Sig xx Summation Group Name gt PSCStress Add al Results Diagram Plot Diagram Load Cases Combination gt CS Summation Diagram Group gt Disp on Force on PSC Stress on J L Results Pushover 0 Quer O H T gt Rextor TI Stresas Z Beam Element L Mode Shapes amp infu Lines F TH Results WP Cable Control li ES Cas ry Hi Deformators fy Daren 4 influ Surfaces E TH Graph Text f Camber Reaction d 2 2 idge Girde Text Results natn YI Forces HY Rexits Z Mowng Tracer E Stage Step Graph B Tendon Loss Graph 5 eg Dulce Tables Combination Results Detal Mode shape Mowing Load Time History Bridge Text Tales BERS PSIA HSOWE sS ml als KTR T E TET TIR x ei al a mus E D 11 CLE S E Moment Stress gt ASSAN m m A Diagram Option Color E e No Line Scale 2 Solid 92 7 Display Values Decimal Points 3 Exp Set Orientation Y Output Section Location Abs Max w Min Max All T 7 MinMax Only in Grou
73. sults for other Load Cases need to be separated from CS Dead Load such Load Cases need to be selected in Load Cases to be Distinguished from Dead Load for C S Output Separate results are then produced in CS Erection Load Analysis Construction Stage Analysis Control Load Cases to be Distinguished from Dead Load for C S Output LoadCase Superimposed dd 9 Check on Save Save Output of Current Stage Beam Truss on i Output of Current Stage Beam lIruss to produce Lonstruction stage Analysis Control Data x member forces Final Stage Cable Pretension Force Control generated only from 9 Last Stage Other Stage Y Internal Force External Force each current stage That is not Initial Force Control Restart Construction Stage Analysis Select Stages for Restart Convert Final Stage Member Forces to Initial Forces for Post C S the member forces TIC Analysis Option accumulated up to Include Nonlinear Analysis Nonlinear Analysis Control Change Cable Element to Equivalent Truss Element for PostCS that current stage pply Initial Member Force to C S Initial Tangent Displacement for Erected Structures Include P Delta Effect Only P Delta Analysis Control k Include Time Dependent Effect Time Dependent Effect Control Y Load Cased to Load Case Superimposed m toed case Consider Stress Decrease at Lead Length Zone by Post tension Superimposed Delete Beam Section Property Chan

Download Pdf Manuals

image

Related Search

Related Contents

Service Manual 10 litre Pressure Tank  LG Electronics E442B Refrigerator User Manual  船舶事故等調査報告書  LG G Pad 10.1 V700 16GB Red  Guía del usuario  S40-70FT - Hyster Company  Harbor Freight Tools 3733 User's Manual  NEC RDF225WG User's Manual  Pelco C2944M-F User's Manual  Ice-O-Matic ICEU220**2 User's Manual  

Copyright © All rights reserved.
Failed to retrieve file