Home

Theory and User Manual BLADOPT

image

Contents

1. 4a fd a ned TE 3 C 2 User Manual BLADOPT Wind Turbine Model e 7 E eff o o mn lt lt e De o o 5 oo rotor plane rotor speed angle of attack local pitch angle section 2 inflow angle resultant inflow velocity wind velocity tangential induction factor axial induction factor lift coefficient normal force coefficient drag coefficient tangential force coefficient chord length Figure 1 Definition of parameters tan 9 l a l a V 1 a Q r l a el sin p cos In these equation ois the solidity ee with B the number of blades A is the local tip speed ratio d Y 6 Note that c and c are known from the specified lift and drag coefficients as function of a The Prandtl tip loss factor f is given by the next expression 2 ail f ir e TT A ka in which 8 e Wind Turbine Model User Manual BLADOPT With these equations it is possible to calculate the inflow angle pfrom which the local aerodynamic forces on the blade elements can be derived Summation of the aerodynamic forces over the blades yields the total blade loads i e the aerodynamic power Thereto the equations have been manipulated such that they become a function of the inflow angle The equations 1 and 4 give safa p The equations 2 and 4 give STEE 0 8 o c 1 a sin ei 9 cos 9 In the equations 8 and 9 A and o are known
2. User Manual BLADOPT Cost functions e 37 DEFINE DEF default values currency alfwsh Os E 00 Wind shear profile parameter ah Oz E 01 Tower head weight factor cdt 0 E 00 Tower drag coefficient fr Ok E 01 Ratio tower wall thickness to radius Tt 0 E 00 Thickness taper of the tower wall cylindrical i twr Er E 00 Tower diameter taper ratio conical twr ntur Number of wind turbine systems in the series nrotor Total number of blades from the series produc ii tion divided by the number of blades on the ro tor Ptrans E 06 Transformer nominal power kW can be for a whole group Ngen Total number of generators from the series pro i duction Ngear Total number of gear boxes from the series pro i duction Typgen gt StdSynch 2 gt StdAsynch i 3 gt DirectDrive Kenc Generator enclosure i 1 gt open i 2 gt enclosed Kbrake Type of brake ii 1 gt Full torque i 2 gt Parking tdisk E 03 Acceptable max brake disk temp deg C Kpiling E 01 Piling cost factor on foundation Good firm ground 1 0 no piling necessary Good sand 1 2 Sand clay 50 50 1 4 i Sand clay 50 50 1 4 Severe clay cond 2 0 nfound 0 E 00 Foundation design factor 0 lt nFound lt 1 0 Eps 0 E 01 Weight of reinforcement div by the concr
3. lbox logical wheter cross section is box or elliptical espar elasticity modules spar N m 2 smspar density of spar material smskin density of skin material mstrfa maximum allowable fatigue stress mstrex maximum allowabl xtreme stress mspar 1 m is the slope of the S N lin skin_t minimum skin thickness csoverca ratio between stiffnes chord aero chord REAL c_c_1 c_c_2 c_mass sfcntr so espar kg m 3 kg m 3 N m 2 N m 2 m smspar smskin mstrfa mstrex skin_t csoverca LOGICAL lbox COMMON blads c_c_1 c_c_2 c_mass sfcntr so espar skin_t smspar smskin mstrfa mstrex lbox csoverca 64 e Annex Cost Module Include Files User Manual BLADOPT INCLUDE bladprop i C C Design data of the blades of the optimum turbine C wx O nelmax resistance moment flatwise m 3 C wy 0 nelmax resistance moment edgewis m 3 C mass 0 nelmax mass of element kg C b i spar width breadth m C h i spar heigth m C skin i mass of skin at position i kg t i blade thickness m C bladmas total blade mass kg C fnr blad igenfrequency non rot rad s e fr blad igenfrequency rotating rad s C REAL wx O nelmax wy 0 nelmax mass 0 nelmax amp b 0 nelmax h 0 nelmax skin 0 nelmax t 0 nelmax REAL bladmas fnr fr COMMON bladprop bladmas fnr fr wx wy mass b h t skin User Manual BLADOPT INCLUDE constant i C C constants t
4. 6 m s en Vuit 20 m s gekozen De windklassen die uiteraard worden meegenomen zijn die klassen die tussen Vi en Na liggen Er wordt geen windklasse gedefinieerd voor Vin De kans van voorkomen van de windklasse direct boven Vin wordt bepaald uit de kans dat de 10 minuten gemiddelde wind ligt tussen V en 7 m s Er wordt tevens een windklasse met Vu gedefinieerd De kans van voorkomen Du van een windklasse kl wordt bepaald volgens de Rayleigh verdeling zie IEC 1400 1 My Mat Poi eas E an waarin Du de windklasse snelheid is van klasse kl Turbulentie doorsnijding In deze sectie worden vlagen gedefinieerd die niet het hele rotorvlak treffen Dit fenomeen wordt turbulentiedoorsnijding genoemd Deze plaatselijk in het rotorvlak optredende vlagen zijn klein qua amplitude en worden door de bladen gevoeld als een blad het rotorvlak doorloopt en hebben dus een frequentie van voorkomen die samenhangt met rotortoerental De turbulentie intensiteit wordt berekend met IEC 1400 1 tweede editie O V 1 2 1 10 75 0 16 22 U U waarin Ou standaard deviatie U windklasse snelheid Voor het berekenen van de vlaagamplitude ten gevolge van turbulentie doorsnijding dient de longitudinale lengte schaal XL HB3 te worden bepaald uit de ashoogte H Xu 82 3 H Een maat voor de verhouding tussen de energie in de nP mode en de OP mode wordt gegeven door HB3 On ic 0 35 7 4 XLu Ou n8 e204 n04 D met n nummer van de mode n
5. Feather i G UMNUNUE Figure 13 the power control window radiobuttons Stall Variable speed These toggle buttons indicate whether the turbine is a constant speed stall controlled wind turbine or a variable speed pitch controlled wind turbine radiobuttons Stall Feather These toggle buttons indicate the power control for a variable speed wind turbine above V patea 1 e pitching to stall or pitching to feather 46 e User Interface User Manual BLADOPT Text boxes Rotor speed For a stall controlled constant speed wind turbine the rotor speed in rotations per minute Allowable values 1 lt rpm lt 100 Tip speed ratio Tip speed ratio A is the ratio between the speed of the tip of the rotor blade in the rotation plain and the wind speed For optimum energy yield this ratio is kept constant below rated power for a variable speed wind turbine Allowable values 1 lt Max rotor speed Due to alleviation of the axial force on the tower head it is possible to reduce the maximum rotor speed TPM pax already below Va Another usage or application of this control can be to minimise the cost of the pitch control system due to the fact that the maximum pitch speed needed can be reduced Allowable values 1 lt rpmmax Constant loss Loss in the drive train Cross the part which is not depending on the power transmitted given as a per centage of the rated power Allowable values
6. 0 lt Cioss Vioss lt 100 Variable loss Loss in the drive train Voss the part which is depending on the power transmitted given as a percentage of the rated power Allowable values 0 lt Vloss Cioss lt 100 Rated power The maximum power Pata the components of the wind turbine are designed for Allowable values 0 lt Patea Minimum start torque An optional constraint Torquesan for the optimisation process the start torque at Viu in Allowable values O lt Torqu estar Treg Time constants indicating the speed of the pitch controller in seconds see section Load Model This pa rameter is used to determine whether the pitch control unit is fast enough to alleviate the load due to gusts tab Wind The wind tab see Figure 14 contains the wind related design parameters User Manual BLADOPT User Interface e 47 BLADOPT lt New file gt ES File Options Help General Blade Power Wind Cost Economy Optimization Energy yield Weibull distribution gt _ gt Fatigue loading Weibull distribution type Shape 2 Weibull parameters 2 Average 7 BER Average P Roughness 0 05 length C IEC Wind Class K Turbulence Class E Continue Figure 14 the wind control window radiobuttons Weibull parameters IEC Wind Class These toggle buttons indicate whether the wind speed distribution for the load spectrum calculations should be based on an IEC wind cl
7. 1 2 3 4 D rotordiameter D 2 R R rotorstraal 0 O een maat voor de verhouding tussen de energie in de nP mode en de energie in de OP mode De amplitude van de turbulentie doorsnijding voor een windklasse met windklasse snelheid U wordt uiteindelijk berekend met HB3 User Manual BLADOPT Load model in Dutch 15 Aas 215 LE Ou Het aantal malen voorkomen per uur nnp van een mode n volgt uit n Q 3600 27 Nnp waarin Q rotortoerental in rad s Voor het aantal malen van voorkomen per levensduur n geldt Nyj Don 8760 Py tj waarin t de levensduur van de turbine is Bij de bepaling van de amplitude van de turbulentie doorsnijding van een bepaalde mode wordt de hogere mode erbij geteld Dus A apt Aart Asa Asp Aart A opt Ann Than Aus CA ip Arp Aan A3p Aap De amplituden A A am en A opt worden gebruikt bij de belastingsberekening en worden berekend voor elke windklasse Bij de A 1 4 moet nog een deterministische term de verticale windschering bijgeteld worden Verticale windschering De vlaagamplitude ten gevolge van verticale windschering wordt bepaald met behulp van een formule welke een mix is tussen de IEC norm en het Handboek Ag 2 H oli U 2 met a 0 2 z H 3 82 R z2 H 3 8 2 R De amplitude van de 1P windfluctuaties wordt daarmee Aus Ag Ac Alp Waarin een correctieterm A 0 3 In z z is toegevoegd voor z gt 25 m De aldus berekende 1P am
8. 1 of The data control see Figure 12 enables you to step through all blade specifications idd 4 1 of 3 gt gt i Figure 12 With the most left button one jumps to the first blade specification and with the most right button to the last The inner button enables a single step back or forward button Specify When clicking this button a window appears which lets you modify the coefficients for the selected inter polation type Linear only other interpolation type are not implemented button Browse After clicking this button a standard file selection window appears which enables you to search for and select a profile file User Manual BLADOPT User Interface e 45 button Delete Deletes the current blade specification unless the pointer is in the profile box which enables the deleting of the profile information button Add Adds a new radial position for the blade specification tab Power In this tab see Figure 13 it is possible to modify power related design parameters BLADOPT lt New file gt EZ File Options Help General Blade Power wind Cost Economy Optimization Cc Stall Drive train losses Z of rated power Z of rated power Rotor speed 25 rpm Constant loss Variable loss DR be te Variable speed Other Tip speed ratio H Rated power Gen kw fs a a jo Minimum start Nm Max rotor speed 40 rpm torque Power control T sec reg Stall
9. rodynamische routine zelf een pitchhoek moeten zoeken De belastingswisseling wordt bepaald zoals aangegeven in figuur 2 De wisseling wordt bepaald door de belastingen voor V mini U A m s en V maxi U A m s te bepalen Eventueel minima en maxima tussen V mini en V maxi Worden verwerkt De range is dan AM equi i My max equi i 7 My min equi i factor My ave equi i My max equi i M min equi i factor 2 Eventueel kan een belastingsfactor worden toegevoegd User Manual BLADOPT Load model in Dutch 19 Trage pitch regeling Bij een trage pitch regeling geldt niet meer de stationaire curve waarbij de pitch hoek en het toerental verandert met de variatie van de wind tijdens een vlaag Pitchhoek en toerental zijn niet in evenwicht met de windsnelheid non equilibrium De belastingscurve die dan geldt is er een waarbij de pitchhoek en het toerental constant blijft Die pitchhoek en toerental worden gekozen die passen bij de 10 minuten gemiddelde windsnelheid U van de betreffende windklasse Daartoe moet aan de a rodynamische routine de windklasse snelheid met het bijbehorende rotor toerental worden aangeboden De routine zal dan een pitchhoek dienen te vinden om indien nodig het vermogen te beperken op Pratea Met de gevonden pitch hoek en het rotortoerental dient een belastingscurve te worden berekend waarbij de pitchhoek en het rotortoerental constant worden gehouden In figuur 3 is de belastingscurve van een trage regeli
10. E mflap k i array with flap moment for wind speed interval C i at element boundary k C mlead k i array with lead moment for wind speed interval C i at element boundary k E nvwmax maximum number of windspeed intervals wpow i aerodynamic power at wind speed i C REAL axialf 0 nelmax nvwmax leadf 0 nelmax nvwmax amp mflap 0 nelmax nvwmax mlead 0 nelmax nvwmax pitset COMMON forces axialf leadf mflap mlead pitset C CM wvwind i wind speed i CM pitcon i pitch angle at windspeed i CM rotspe i rotor speed at windspeed i E CM nvwind number of wind speed intervals CM deltav wind speed increment in calculations REAL wvwind 0 nvwmax pitcon nvwmax rotspe nvwmax amp wpow nvwmax deltav INTEGER nvwind COMMON pvcurv wvwind pitcon rotspe wpow nvwind deltav E CM cp aerodynamic power coefficient La CM cq torque coefficient CM cdax axial force coefficient CM lamda tipspeed ratio CM wpow electrical power E REAL cp nvwmax cq nvwmax cdax nvwmax Lamda nvwmax COMMON coef cp cq cdax lamda 76 e Annex Cost Module Include Files User Manual BLADOPT INCLUDE genrator i C CM CM CM CM CM Generator data for the wind turbine control prated rated electrical power closs constant loss of energy ratio of prated vloss variable loss of energy ratio of aerodynamic power lrated logical true when rated power is REAL prated closs vloss L
11. L Wieringa J Rijkoort P J Tande O J Et al Design Optimisation for wind turbines Optimisation algorithms a state of the art study ECN C 96 030 PV Opt theory and test cases ECN C 96057 OptiHat Algorithms Stork Product Engineering KO SPE RP 001 A simple parametric cost estimate method for horizontal axis wind turbines ECN C 96 031 Least Square fitting using orthogonal multinomials ACM transactions on Mathematical Software Vol 11 No 3 Sept 1985 An efficient method of finding the minimum of a function of several vari ables without calculating derivatives The computer Journal 1968 Direct search algorithms for optimisation calculations Acta Numerica Vol 7 1998 An SQP algorithm for finely discretized continuous minimax problems and other minimax problems with many objective functions SIAM Journal on Optimisation 1996 Windklimaat van Nederland IEA Recommended Practices for Wind Turbine Testing and Evaluation 2 Estimation of cost of energy from wind energy conversion systems User Manual BLADOPT 59 60 e References User Manual BLADOPT Annex File formats Profile files The file s containing the profile characteristic should be conform the following format The file can have any name however the extension should be prf The file contains upto 128 lines with 4 items per line On each line the following parameters should be given a cl cd cm In which ot is the inflow angle Cl is the 2
12. arte 17 Resultaat sets benden e a 18 Beperkte Set vago scudo letales bote sabia tii 18 Belastingsspecte um sis cid ia e a 19 ege EE 19 REI eeesctagslandeuerecsedenststens EES ES 19 Realistische pitch regeling ennen ennen neons ai 20 IERI EE PREF deget toen Dollar celia cadennes EEE EENE 20 Vermoeling equivalente belasting i 22 E D EE 22 SCHAd AN VE UA Led idad tee eat 22 Equivalente belasting arterie diante 23 User Manual BLADOPT Contents iii Toeepassing in BLADOP Tios EEN ee ses 23 Method of Fatigue Equivalent Loads EL 23 Cost functions 25 inte Ter e EE 25 Engineering Cost FUnctions ie 25 Wand farm erste ee lO ale Sini 26 EE REENEN EE EEN EE 26 Safety and Control p rallo une 26 HUD EE 26 TEO 27 Electrical ystem cintia 27 W ME 27 Naw Ee WEE RE 28 dk VEER 28 EENEG 29 Parametric Cost Functions nennen nennen ennen nennen nennen 32 e te e 32 Gear e ER 33 STA Me EE 33 Direct Drive Generator sister nedre EEE REEE aE 33 Power EES 33 Ke Lei e 33 Nacelle B dplate orc an EE SE 33 Hydrauliesn antennen e EE eee es eee ds 33 Controls ystems gedeit eer ENEE 33 Ventilation national 33 Primary shaft Marlia Ada 34 Bearings for the Primary haft 34 YAW Be EE 34 MS A ebe ee dE dE 34 Parking Brier vertederen tarde res ienke denten 34 Ms AAA AT TIEN 34 DO dte atd i 34 Miscellaneous an navertellen ein kan venten dE 36 Foundation en Se EE le Er 3
13. geregelde turbine te berekenen Table 7 Vlaaggegevens van beperkte set mode stall pitch aantal wisselingen U A D vi OP 18 0 9 Noe 0 U E 0 85 U t 18760 3600 2 t_d 0 04 0 20 0 65U 0 67 Vina 0P 100 0 9 Non 0 65U t_j 8760 3600 2 t_d 1 00 0 80 IP 0 9 Vira 0 33U 0 67 Vries 0 33U t j 8760 3600 Q 2 7 4P 0 9 Vries 0 03U 0 67 Vea 0 03U t j 8760 3600 2 2 18 e Load model in Dutch User Manual BLADOPT Belastingsspectrum Introductie Voor de bepaling van de kosten van de turbine zijn onder andere vermoeiingsbelastingen op enkele componenten nodig Deze moeten worden aangeleverd als equivalente belastingen welke worden verkregen uit de vermoeiingsspectra van de axiaalkracht op het blad op r 0 m Fx r 0 en de klapmomenten My op de bladsneden De spectra worden berekend met behulp van een of twee belastingcurve s Een belasting curve is de relatie van de belasting als functie van de windsnelheid Om de berekening van equivalente belastingen te illustreren wordt uitgegaan van een turbine met variabel toeren en pitch regeling versus een constant toeren overtrek regeling Voor het gemak wordt als belasting het klapmoment op r 0 beschouwd Voor de overige doorsneden kunnen de krachten en momenten op een zelfde werkwijze worden verkregen Belastingscurve Bij de berekening van de belasting t g v een windvlaag worden per windvlaag een of twee b
14. in an axial and tangential induction factor which can be used to determine e the inflow angle and e the effective tip speed ratio for the element Then the effective inflow angle amp and the effective wind speed can be determined Together with the profile coefficients cl and cd the load on the blade element can be deduced according to the following equations a p 0 This o leads to a cj and cain the profile coefficient database The effective wind speed for the element is Va Vina Ay tral cos p The dynamic pressure is then equal to lv Fn Sa This results in the following blade element forces df c cos g c sin Pin Chord d c SiN P c4 COS P P Chord dn F tn Y Eventually integrating over the rotor blade span the element loads will result to the blade root and rotor centre loads and rotor performance User Manual BLADOPT Wind Turbine Model e 11 Energy Yield Model The energy yield is determined using the calculated power curve and the user defined Weibull distribu tion The probability of occurrence of a certain wind speed interval identified by Viow and Vnigh is V ky V ky P EXP pn EXP4 ay ay The user defined Weibull distribution is given a reference height of 10 m by the average wind speed U 10 and the shape factor ko These two parameters are extrapolated to the hub height according to the follow ing equations copied and derived from data in 9 The wind shear
15. iteration chord distribution graph Twist radius Twist distributions graph the 0 previous and last iteration chord distribution graph User Manual BLADOPT User Interface e 57 kWh year iteration The energy yield versus iteration number graph kWh iteration The COE versus iteration graph the actual objective of the program dBA iteration The aerodynamic noise versus iteration graph Axial Force iteration The fatigue equivalent axial tower force versus iteration graph Diameter iteration The rotor diameter versus iteration graph Only useful when the rotor diameter is optimised Rotorspeed iteration The fatigue equivalent axial tower force versus iteration graph Only useful when the rotor speed is opti mised Print selecting the Print item enables you to print the active selected graph Menu Window This menu has a number of items to re arrange the graphs Cascade The open graphs will be overlapping each other but their titles are visible Only the top most graph is visible Tile Horizontal The open graphs are placed under each other Tile Vertical The open graphs are placed next to each other Arrange Icons The iconified graphs are arranged along the lower portion of the Graph window 58 e User Interface User Manual BLADOPT References 10 Bulder B H Schepers J G Callanan M Montgomery Jenssen B O G Bartels R H Powell M J D Powell M J D Zhou J L Tits A
16. optimised a maximum value has to be entered If no maximum can be given enter a large number e g 100 m However it is always faster and safer to enter a realistic value Rated power Value This box indicates the actual value of the rated power Before the optimisation is started it shows the en tered value in the tab Power and during the optimisation it shows the value determined by the optimisation procedure Rated power Minimum When the rated power is to be optimised a minimum value has to be entered If no minimum can be given enter a small number e g 10 kW However it is always faster and safer to enter a realistic value Rated power Maximum When the rated power is to be optimised a maximum value has to be entered If no maximum can be given enter a large number e g 10 E 03 kW However it is always faster and safer to enter a realistic value rated Rotor speed Value This box indicates the actual value of the rated rotor speed before the optimisation is started it shows the entered value in the tab Power and during the optimisation it shows the value determined by the opti misation procedure rated Rotorspeed Minimum When the rated rotor speed is to be optimised a minimum value has to be entered If no minimum can be given enter a small number e g 1 RPM However it is always faster and safer to enter a realistic value rated Rotorspeed Maximum When the rated rotor speed is to be optimised a maximum value has to be ent
17. rotor diameter is to be optimised the rotor diameter and rated power should not be optimised together Rated power Fixed This button indicates whether the rated power is to be optimised the rotor diameter and rated power should not be optimised together rated Rotor speed Fixed This button indicates whether the rotor speed is to be optimised For constant speed wind turbines the con stant speed rpm is optimised for variable speed wind turbines the maximum rotor speed will be opti mised although the maximum rotor speed will not be increased above rotor speed which yields rated power textboxes Chord Value This box indicates the actual value of the chord at a certain span wise position before the optimisation is started it shows the entered value in the tab Blade and during the optimisation it shows the value deter mined by the optimisation procedure Chord Minimum For each span wise position where the chord is to be optimised a minimum value has to be entered By default it is put at 0 m Chord Maximum For each span wise position where the chord is to be optimised a maximum value has to be entered No default values are available If no maximum can be given enter a large number e g 25 m However it is always faster and safer to enter a realistic value Chord Start step size The step size to be entered here is used in the optimisation procedure to indicate the length of the varia tions for each optimisation parameter B
18. rpmmax rpmmin rpms tau pitnor pitsto amp freq_t LOGICAL Ilvarsp lpitch 1lstall lequil lteet ltip COMMON amp amp contrl lvarsp lpitch tau lambda lstall commax rpmmin rpms freq_t lequil pitnor pitsto lteet 1tip User Manual BLADOPT 67 INCLUDE dritra i C CM C CM CM G cost price data of the drive train for sel cost price coef sf service factor of REAL GL COMMON dritrn c_c_1 Engcost 1 kNm 68 e Annex Cost Module Include Files User Manual BLADOPT INCLUDE elemen i C CM blade element data for aero model and Engcost Kk AAA AAA AAA AAA AA AAA AAA AAA AAA AAA AA A A A A A A A A A A A AA AA AAA AAA AAA AAA AAA AAA AA A s 0 nelmax values of s along span at sections s 0 0 chord o nelmax values of chord at sections s i not de fined at s 0 twist 0 nelmax values of twistangle at sections s i interpolated from tetapi from geodat thckns 0 nelmax values of profile thickness at section s i interpolated from tetapi from geodat blroot s Value at which aerodynamic blade root is defined not necessarily co incident with a s i value rootch value of chord at s blroot rootpi value of twist at s blroot nelem number of equidistant elements in which blade will be divided max nelmax dels length of s interval rtot number of elem iaero integer giving index of first ele
19. updated The cost coef ficients are in two ASCII files called defins def for the engineering cost functions and define def for the parametric cost functions Secondly the source code can be changed and recompiled and linked into the model dll The second method can only be done when a Fortran compiler is available and only when the proposed changes do not affect the rest of the program In the annexes all the relevant include files are listed with the content of the COMMON blocks and a very short description of the variables Engineering Cost Functions There are cost functions for all major components and systems cost items like assembly and wind farm infrastructure cost The major components are Safety and control Hub Drive train Electrical system Nacelle Yaw mechanism Tower e Blades In the following for each cost item the model is described The nomenclature used in the cost functions is Prated Rated Power k W Dia Rotor diameter m price Cost of component currency depends on the values of constants c_c_i Price coefficient User Manual BLADOPT Cost functions e 25 H Tower height m sf _1 Service factor _blades Number of blades lvarsp Logical 0 1 indicating TRUE when variable speed power train _gen number of generators a b c cost coefficients In the formulas some parameters are design parameters some are default input parameters a
20. values for c c 1 48 E 03 cc2 65 and a 0 25 b 25 c 50 and ngen 1 which can be changed in the file defines def Nacelle The nacelle consists of the bedplate and housing The main design driver is the rotor diameter Therfore the bulk effect for larger dimensions will also be used so the cost will be proportional to the diameter to the power 2 7 The nacelle mass is needed to determine the tower eigen frequency The mass will be de termined using a mass coefficient The price is determined using a cost coefficient of the nacelle Mass m_c_l Dia 25 price c_c_1 Massop User Manual BLADOPT Cost functions e 27 The values for m c 1 6 E 03 and cc 1 1 375 that can be changed in the file defines def Yaw Mechanism The yaw mechanism includes the yaw bearing yaw drive and yaw controller The dimensions are as sumed to be proportional to the rotor dimensions The cost is assumed to be proportional with the rotor diameter to the power 2 7 Price c_c_1 Dia 25 In which the values for c_c_1 6 5E 03 that can be changed in the file defines def Tower The tower cost is determined on the basis of the tower mass in a simple manner Price c_c_1 MasSiower A The tower weight is determined with a tower design model which WER ie 5 e p is based on a relative simple engineering model This means that the tower dimensions tower radius and wall thickness distribution is determined in such a way th
21. which is like the approximation above but with the reciprocal 1 x This is a commonly used method for structural programs where truss and plane stress elements are in volved Global Approximations The use of local approximations will soon need too many function evaluations Global approximations which are valid for the whole design space or large areas of it have at least the advantage that all function evaluations performed on a specific design will always be used to make an approximate model Thus the approximate model can continuously become better although not necessarily so The approximation model is usually made by polynomial curve or surface fitting based on the least square method Another advantage of this method is that it is possible to increase the weight of a specific or a large num ber of function evaluations This could be applied e g on the last 1 Naes objective function evalua tions However one has to be careful applying the weighting especially when only a few function evalua tions have been performed The approximation model chosen is an orthogonal polynomial of the form shown below for dimension 3 and order 3 EOC 2 2 2 3 Cy Cy XH C3X2 C4X3 HCX FC X X C7X X3 CgX3 C9X2 3 Fatz C X 2 2 2 2 3 2 2 3 Cy Xp X2 Ciz Xi X3 FC AK Ci5XX3 3 Cig X1X3 C17X2 ACygXyX3 C19X2X3 Cant Y 09 43 The increase in the minimum number of function evaluations for a higher order approximati
22. 6 Transportation A dlnrs tekenden 37 ER TE EES 37 Electrical Gonnect ns echte dech Des a Eed Ee 37 Remote Omer rien See NEE 37 General Site EE 37 d Ke EE 37 Installation 39 System demands tollera EE 39 Procedures segl Ennen tie EENS SE 39 Rit ere Mile E 39 Removal sila ERNE 39 User Interface 41 Activatine BLADOP Ticas Aaa e 41 Mat Win AAA NT ANT 41 Men Fl A ee EEN 42 iv e Contents User Manual BLADOPT Menu Options siii tl 42 Men ET EE ege 42 Button CET 42 Button Start ite titel aceasta es A aed at aes 42 Button Continue EN LEA resides vaders eed 43 EISE EE 43 tab Blade a ti ee ara 44 tAb POWEL sur ord vedanta aken a EE dee 46 tab Wanderers A van eeens dane een 47 tab A tee NN 49 tabs ECONOMY ec dE whit ets hed A eee na 52 tab Oplimis EE 53 Optimisation order WINdOW iii 56 buttons seren A do nen eenander heden leben el 56 E EE 57 Graph Window siasi iaa Le Luni iii EE 57 Menage ap ie Lia nile ian 57 Menu WandOW ai NE EE a RI An 58 References 59 Annex File formats 61 Proble EEN 61 Default cost AAA A a IA 61 Annex Cost Module Include Files 63 kel cee Feat Fei Feat Fei kel Feat Fei co Fei Fei Feat Fei kel Fei kel Feat Fei Fei Fei Fei Feat Fei kel Fei Fei NCLUDE assermbls 1 srt aon pisces sce vas eege Ee Jed Weve Eeer 63 NCEUDE blades WE 64 NCLUDE bladpropa aiser ais ete ale 65 NCLUDE c nstaM EE 66 NELUDE Control T ernennen i ieee added E E i 67 NCEUDE ie EE 68 NEG
23. A A uivalent 39 een M x Arquivatend 8 40 34 e Cost functions User Manual BLADOPT y CDoo S 41 x 0 5 1 42 y2 Si 42 _y lw a 2 43 Cr ary 1 a yo 44 E T ae CV 45 In case of a cylindrical tower use TR 1 0 in the following expression Ah 0 04D an estimate of the distance from the tower top to the main shaft 1 1 TR 2 a 1 2a 3 T Cp PV Teo A ran 50 slightly modified Mo h Ah Tr Tr 52 modified operating conditions Extreme wind conditions 1 2 2 ae Tk 5 OK CDu S Vi 45 modified If the machine has pitch mechanism and or is free to yaw Tr can probably be ignored or use 10 of it 1 1 TR T Cp PV Yoo A 2Ah 50 T DI PV froot es a 50 Mg h Ah Tr Tp 52 modified extreme conditions M Troot 0 3 54 modified K O Des OperatingCond Use a design stress number between 14 E6 and 20 E6 for operation M E PRoot E 3 54 y r O Des ExtremeCond Use a design stress number of 400 E6 for the extreme wind case TRoot mMax TR001 0 7R00t E Pre 7800 kg m 57 Depending on choice of tower select from Constant radius tower User Manual BLADOPT Cost functions e 35 Wy P re pe fh 1 TT constant radius tower 56 Conical tower WT rra f h 1 TR TR conical 60 The cost finally Crower 5Wr 61 afore modified Miscellaneous Cr
24. August 2001 ECN C 01 011 Theory and User Manual BLADOPT Energy Research Centre of the Netherlands ECN by B H Bulder S A M Barhorst J G Schepers F Hagg Stork Product Engineering This manual was produced using Doc To Help by WexTech Systems Inc WEXTECH WexTech Systems Inc 310 Madison Avenue Suite 905 New York NY 10017 1 212 949 9595 Fax 1 212 949 4007 Contents Introduction 1 Wind Turbine Optimisation 3 Intro du CON A a ERA 3 Optimisation Strate EE 3 Approximation Models ia sure ian ea dee EECH 4 Finding the minimum of the approximation model 6 ODJECUVE TUNCTION in a ina 6 Wind Turbine Model 7 General deSCrIption na EENS SEENEN pet tad 7 Theory aerodynamic load model 7 Common situation oz 281 neer ennn neer ennneerenonverr ennn 7 Turbulent wake situation a gt 0 38 i 9 Solution procedure norin hun n luana fellini 10 Common situation oz 281 nnensnne ne enenneneensnnevenn 10 Turbulent wake situation a gt 0 38 ennen esserne 10 Rotor blade model rens nave e SE EE e ER gedoe sate 10 Loading oni the rotor blade sendere ere SSES 11 Energy Yield Model 12 Load model in Dutch 13 Inleiding E 13 Turbine repele ee SE 13 AA SENER ne nde ee 13 Mermogensregeling cuello loli iii 13 MINASPECUHU a ia EE 14 ALMERA a ae ate ents 14 Turbulentie doorsnijding i 15 Verticale windschering i 16 Coherente Vlad EM cistitis
25. EET 14 4 Racius 15 gt gt i General Rotor diameter m IV Bo E Rated power KW mv Pen of rated Rotorspeed rpm ka Fixed Value Minimum Maximum iL lil Optimization order Optimization type C Fsqp Approximate Minimum order Maximum order mms i Interupt Figure 17 the optimisation control window buttons Optimisation order After pressing this button a new window Optimisation order appears User Manual BLADOPT User Interface e 53 radiobuttons Fsqp Approximate Toggle to choose between two different optimisation algorithms The fsqp method is a zero order method the approximate stands for an optimisation scheme based on a Feasible Sequential Quadratic Program ming algorithm which searches for a minimum in an approximate model checkboxes Chord Fixed This button indicates whether the chord entered by the user in the tab Blade at a certain span wise posi tion is free for optimisation If the chord is allowed to be optimised it is necessary to enter the side con straints the minimum and maximum values Twist Fixed This button indicates whether the twist entered by the user in the tab Blade at a certain span wise posi tion is free for optimisation If the twist is allowed to be optimised it is necessary to enter the side con straints the minimum and maximum values Rotor diameter Fixed This button indicates whether the
26. LUDE elemenii Aertsen aia 69 NECLEUDEBlESyS Ieren teert cai ice eile anced a 70 NELUDE EDICOSU 1 se ten tirare berede laa ian satana ba stadi S E ta cite 71 NEBUDE enspii tirare tile 72 NCLUDE Xt A N E RTN 73 NCLUDE fatisue lcs tate e al ac 74 NCLUDE fatmati rata Eulalia alii 75 NELUDE e E 76 la WEE ico 77 NCLUDE geometria cae alee ene See ie leanne 78 NCLUDE Hub EE 79 NCLEUDE nacelle diosas Eed Age 80 NELUDE parametit sirena dara ai 81 NELUDE parcosti unire at 82 NCLUDE Parpr DE 83 NELUDE S alcoi in tn Seth et deen hai 84 NCEUDE spectit citi iii ii 85 NELEUDE Storm Ts rela lea 86 NELEUDE tower Ls sspadilani A leet tata inte 87 NEEUDE towprop tunti eterni iene riale baita aliene iaia ciano 88 NEEUDE MEET ei dee 89 User Manual BLADOPT Contents e v INCLUDE wintat t ices een ince aide igi tee eee 90 INCEUDEJaWwIMEC brinca 91 vi e Contents User Manual BLADOPT Introduction This document serves as the theory and user s manual of the computer program BLADOPT 1 0 The computer program BLADOPT is the successor of the PVOPT 1 program The BLADOPT program is a numerical optimisation computer program to design rotor blades for Horizontal Axis Wind Turbines The program is able to vary the rotor design parameters like the chord and twist distributions in such a way that the cost of energy is minimised Other parameters that can also be optimised are rotor diameter rotor speed and the rated power although not
27. Module Include Files User Manual BLADOPT
28. OGICAL lrated COMMON generator prated closs vloss lrated User Manual BLADOPT 77 INCLUDE geomet i C CM geometric wind turbine data for rotor blades and profile data C KAA AAA AAA AAA AHA AAA AA AAA AA AAA A AA AA A AAA A AAA A A AAA AA AA A A AAA A AAA AA AAA AAA AH E C nprmax maximum number of aerofoils C nrmax maximum number of chord twist changes in input C rchord i r values at which chordlength is defined C in input file geodat chordi i chordlength at rchord in geodat C rtetap i r values at which twistangle tetati is C defined in input file geodat E tetapi i values of twistangle teta pitch at C rtetap defined in geodat this is E the pitch angle for pitset pitch setting C equal to zero C c sldty solidity of the rotor alfa i j angle of attack array for aerodynamic coefficients E for profj clin i j cl value at alfacl i defined in geodat profj C cdin i j cd value at alfacd E cmin i j cm value at alfacm C dia rotor diameter nob rotor number of blades C nchdat number of chord data pairs in C input file lt 20 ntedat number of teta data pairs in E input file lt 20 C nthdat number of thickness data pairs in E input file lt 20 C nclcd iprof number of cl data pairs in input file lt mxaedt for profile iprof E nuprof number of different profiles max 15 C rp iprof rad
29. TER edwkin 1001 User Manual BLADOPT 81 INCLUDE parcost i parrot pargea parsyg parasy parddg parpel partra parnac parhyd parcos parprs parbps paryab parfsb parpab parass parwif partow ET GY OVO OVO E EE CH CH EL EE OO EH E RENT EL FECI FI O zero Include file for parametric cost functions contains integer parameters which can have the value or 1 one to indicate wheter the cost of the concerned component should be included in the total cost rotor cost gearbox cost synchronos generator cost asynchronos generator cost direct drive generator cost power electronics cost transformer cost nacelle and bedplate cost hydraul control lics cost system cost primary shaft cost bearing of primary shaft cost yaw bearing cost full size brake cost parking brake cost assembly cost wind farm cost tower cost INTEGER parrot pargea parsyg parasy parddg parpel partra INTEGER parnac parhyd parcos parprs parbps paryab INTEGER parfsb parpab parass partow parwif COMMON Q parcost parrot pargea parsyg parasy parddg parpel partra parnac parhyd parcos parprs parbps paryab parfsb parpab partow parass parwif 82 Annex Cost Module Include Files User Manual BLADOPT INCLUDE parpr C CM Include fil C CM Costs output v E EAL crotor EAL cgear EAL cstdge EAL cdirdr LI e for parametric
30. act in the BLADOPT code the wind turbine consists of a rotor with a stiff blade on a stiff tower The rotor is modelled as a single rotor blade at hub height so wind shear or tower effect is not present The power control of the rotor can be e constant speed passive stall e variable speed active stall e variable speed pitch to vane Variable speed control is constant A control up to rated power or up to a certain maximum rotor speed supplied by the user Variable speed control also influences the cost algorithm of the tower and vice versa The tower cost algorithm determines the cheapest tower which can have an eigenfrequency that is avoided by the control algorithm This control is implemented through a second minimisation process with the following objective function F V ower COS t V owe control Theory aerodynamic load model The aerodynamic model is based on the standard blade element momentum theory for axial induction factors lt 0 38 or a turbulent wake expression for axial induction factors gt 0 38 The calculations are per formed for stationary and axis symmetric flow conditions no turbulence no wind shear no yaw mis alignment no tower influence no tilt angle and no cone angle Figure 1 defines some of the parameters that are used in the aerodynamic model Common situation a lt 0 38 The basic equations of the blade element momentum theory are 4a fl a f 2 1 a a C e D Lg Via
31. allowable constants for tower eigenfrequencies blade 25 0 fl kg 5 0 c_c_2 cost of tip fl kg 0 0 c_mass sfentr TRUE lbox true for box type construction else elliptical 3 E 10 Espar Pa 1900 rho spar kg m 3 1600 rho skin kg m 3 300 E 06 max allowable fatigue stress Pa 10 m in S N curve 120 E 06 max allowable max stress Pa 0 002 minimum skin thickness m 0355 Chord for strength over chord for aerodynamic prop User Manual BLADOPT Cost functions 31 Parametric Cost Functions The parametric cost functions described in 4 are component cost estimate functions based on the fol lowing general equation ComponentCost a SizeQuantity rr which was initially derived from statistics of many components For each component it is important to determine the relevant size quantity which can be e g the tower height or rotor diameter The cost are divided in e Factory costs e Extra Factory costs The Factory costs are component cost and assembly cost Cost function for the following components are developed e Rotor e Primary shaft e Gearbox e Bearings for the primary shaft e Generator e Yaw bearing e Power electronics e Full size brake e Transformer e Parking brake e Nacelle bedplate e Tower Head e Hydraulics e Tower e Control System e Miscellaneous e Ventilation Extra Factory costs are cost made between the point where the wind turbine leaves the wind turbine manufacturer and the point where the turb
32. ase Print Print the results of the last function evaluation to a printer or to a file Exit Close the currently open database and exit the program Menu Options Graphics After clicking the menu item Graphics a new window appears see Figure 19 In this window the val ues calculated by the BLADOPT model can be viewed as graphs See also Graph window See also Menu File Menu Help Contents Selecting this window presents the on line user manual About After selecting this item a window with information about the program appears Button Interrupt With this button it is possible to interrupt the calculations of the model This button can only be pressed when the model is active After pressing this button the model will finish the calculations for the current iteration and then halt the calculations At that moment the Interrupt button will be disabled grayed At this moment the Continue button will be enabled and you can modify the design parameters you like Some design parameters however if changed force the model to restart the calculations If you change such a parameter the Continue button will be disabled Button Start After pressing this button the model starts its calculations By pressing the Interrupt button the calcula tions are interrupted 42 e User Interface User Manual BLADOPT Button Continue After pressing this button the model continues its calculations with possibly modified
33. ass or a user defined wind speed distribution listboxes IEC Wind Class Here the IEC wind class 1 4 can be defined textboxes Shape Energy yield Weibull distribution The shape factor of the Weibull wind speed distribution for the energy production wse Allowable value 1 lt wse lt 10 Average Energy yield Weibull distribution The average wind speed for the Weibull wind speed distribution for the energy production vae Allowable values 1 lt vae lt 25 ms 48 e User Interface User Manual BLADOPT Shape Fatigue loading Weibull distribution type The shape factor of the Weibull wind speed distribution for the fatigue load spectrum wsf Allowable values 1 lt wsf lt 10 Average Fatigue loading Weibull distribution type The average wind speed for the Weibull wind speed distribution for the fatigue load spectrum vaf Allowable values 1 lt vaf lt 25 m s tab Cost This tab contains the cost related design parameters BLADOPT lt New file gt 1 1 1 x Intenmupt Continue the cost function control window radiobuttons Parametric Engineering Toggle to choose parametric or engineering cost functions See 3 4 checkboxes The parametric costs which can be de selected are User Manual BLADOPT User Interface e 49 Rotor Rotor cost function included in analysis when active Gear box Gearbox cost function included in analysis when active Generator synchron
34. at the mass of the tower is minimal with the following design restrictions three strength requirements 1 extreme loads 2 fatigue loads 3 buckling The tower design varies the taper of the diameter and the wall thickness linearly with the height Assumptions in the design model are that e Diao 1 c_Dia_top Dia e T_towerTop 0 01 m e diameter varies linearly with the height e wall thickness varies linearly with the height In Figure 8 the model of the tower is shown Figure 8 the tower model Tower resonance requirements are shown in the table below soft soft Viower lt a Qmin stiff soft Viewe gt b Qnax amp Viower lt a bladesQuin stiff stiff Vie gt c blades Qu The strength and eigenfrequency of the tower is determined with simple beam theory including the na celle and rotor mass for the first bending eigenfrequency 28 e Cost functions User Manual BLADOPT The model results in a simple tower design described with the tower taper and the wall thickness taper which together with the tower height and the top diameter gives a complete description of the tower The resulting design complies with the given constraint w r t eigenfrequency and has sufficient strength w r t the given material strength parameters The engineering model results in e MASStower Viower e Tower foot diameter e Tower footwall thickness Blades The price of the blades is determined by the weight
35. aximum al mstryi yield stress msteel 1 m is sl Oo D D 1 G Cue c a b c d lope of S N curve Ir Engcost module l kg s tower material ltower material N m 2 kg m 3 lowable static stress lowable fatigue stress tower eigenfreg distance from rpmmin tower eigenfreg distance from rpmmax tower eigenfreg distance from nob rmpmin tower eigenfreg distance from nob rmpmax N m 2 N m 2 N m 2 d_tt c_buck esteel smste mstrex mstrfa mstryi COMMON twr c_c_1 c_d_tt c_buck esteel smste mstrex mstrfa mstryi amp a b c d User Manual BLADOPT 87 INCLUDE towprop i C C tower design data of the Engcost module C dia_tt diameter tower top m dia tf diameter tower foot m CG t_tf chosen thickness of tower foot wall m C t_tt tower top wall thickness m C t_towf the tower foot wall thickness E massto tower mass kg E mastop mass on tower top kg C futow REAL dia_tt t_tt dia_tf t_towf massto mastop futow COMMON towprp dia_tt t_tt dia_tf t_towf massto mastop futow 88 Annex Cost Module Include Files User Manual BLADOPT INCLUDE wepp i COMMON FOR THE ENERGY YIELD WEIBULL DISTRIBUTIONS pkl vector l nvwmax with the hr s per wind interval wk wk10 weybull k factor at 10 m for 2 vhavv Average windspeed at hubheight wk10 weybull k factor at 10 m v10 avera
36. component prices ariables n ivegen FAL cpowel FAL ctrans FAL cbedpl EAL chydr ccontr BAL cvent EAL cshaft FAL cyawbe EAL cfullb EAL cparkb FAL ctower FAL cmisc DUD DDD DD DDD DW Dw I LE D EAL cfound EAL cland FAL csite FAL ctran cerect ek MDM A CAN et D EAL cconne FAL cremot EAL cgener EAL ceng COMMON parp nana User Manual BLADOPT ate ol EAL cshaftbear ar rake rake et e al ri crotor cgear cstdgen cdirdrivegen cpowel ctrans cbedplate chydr ccontrol cvent cshaft cshaftbear cyawbear cfullbrake cparkbrake ctower cmisc cfound cland csite ctran cerect cconnect cremote cgeneral ceng 83 INCLUDE safcon i C C cost price data safety and control system for Engcost C CG base price of control and safety 1 EE cost price coef of actuator 1 kKW C Cx 73 cost price coef of pitching 1 C sf_1 service factor of actuator C sf_2 service factor of blade REAL CEL EZ Sd 8 2 COMMON safcnt c_c_1 c_c_2 c_c_3 sf_1 sf_2 84 e Annex Cost Module Include Files User Manual BLADOPT INCLUDE spect i C C data for the load prediction module C E uaver array met 10 minuten gemiddelde windsnelheden C aa0pa array met vlaag amplituden C wisa array met aa
37. dimensional lift coefficient cd is the 2 dimensional drag coefficient cm is the 2 dimensional moment coefficient To indicate that no more lines should be read a line with 4 zeros should be added Behind the line with the 4 zeros the program will not read any line Files with more than 128 data lines will result in an error message The data given should expand from 0 to 360 Default cost data There are two different kind of cost data files the defins def and the define def The defins def contains the engineering price constants coefficients for the engineering cost model and the define def file contains the engineering price constants coefficients for the parameteric cost model The files are shown in the ap propriate sections User Manual BLADOPT 61 62 e Annex File formats User Manual BLADOPT Annex Cost Module Include Files INCLUDE assembly i CM Cost price data assembly for Engcost CM eest cost price coefficient km 9 CM sf service factor E CM ascost assembly cost 1 REAL c_c_l REAL sf COMMON assmbly sf c_c_1 User Manual BLADOPT 63 INCLUDE blades i CO CO O OO OO OO OO OO OO OO OO amp cost price data of the blades of the optimum turbine for Engcost c_c_1 blade cost coefficient fl kg c_c_2 tip cost coeffient fl kg c_mass coefficient of mass of tip sfcntr safety factor for control so southwell coefficient
38. dule Include Files User Manual BLADOPT INCLUDE paramet i C CM Definitions of parametric variables Do not change without CM recompilation of the total program E CM nelmax maximum number of blade elements INTEGER nelmax PARAMETER nelmax 40 C CM nvwmax maximum number of wind speed intervals C INTEGER nvwmax PARAMETER nvwmax 128 CM nprmax maximum number of profiles C INTEGER nprmax PARAMETER nprmax 16 C CM nrmax maximum number of chord twist changes in input C INTEGER nrmax PARAMETER nrmax 16 E CM maxcon maximum number of conditions for noise calculations e INTEGER maxcon PARAMETER maxcon 1 CM maxcon maximum number of coefficient cl cd cm per profile C INTEGER mxaedt PARAMETER mxaedt 192 C CM dimmax maximum number of design parameters to be optimized e INTEGER dimmax PARAMETER dimmax 10 C CM parameters for the approximation and evaluation of CM approximation routines C CM nptsmax maximum number of points used in the function CM approximation INTEGER npt smax PARAMETER nptsmax 256 CM neptma maximum number of data points to evaluate fit with 256 INTEGER neptma PARAMETER neptma 1 E CM edwkln dimension of arrays FITIWK FITVLS RESIDS INTEGER edwkln PARAME
39. e fact that function evaluations i e determine the COE for a specific design take quite some computational effort the optimisation strategy applied is such that the number of function evaluations is also assumed to be minimised Optimisation Strategy A promising method found in literature which is also used for other technologies is a combination be tween a 0 order conjugate direction method and a higher order optimisation method which uses an ap proximation of the true objective function The main advantage of this method is that the 0 order method User Manual BLADOPT Wind Turbine Optimisation e 3 is capable to determine a better solution with a low number of design iterations and is probably less sensi tive to non smooth object functions than the higher order optimisation algorithms The data obtained in this phase will be stored in a database to create a model approximating the true ob jective function When this loop ends due to the fact that one of the end criteria is are met or sufficient data is the database to create an approximate model the data in the database is used to construct a global approximation of the real objective function Such an approximated objective function is less sensitive to all kinds of distortion like numerical noise which are present in the real objective function A second op timisation algorithm based on a quadratic programming method is suitable to find the minimum of this function A quadrat
40. e fatigue equivalent load can be used to make preliminary designs as long as the limitations of the method are known The fatigue equivalent load can be a measure of the fatigue load spectrum knowing the load and the number of cycles The following assumptions are made formulating the fatigue equivalent load fatigue damage formulation or summation of Palmgeren Miner is valid a simple fatigue formulation like a straight line on a log N log 0 graph load stress relation is linear a constant amplitude load cycle occurring Neq times induces an equal amount fatigue damage as the true variable amplitude design load spectrum In the fatigue formulations the factor U T S represents the allowable tensile or compressive strength The Miner sum can be calculated from this U T S value the stress spectrum and the fatigue formulation An inverse method would use the spectrum Miner sum and fatigue formulation to calculate a wanted value for U T S This inverse method is used to calculate the FEL a static load representing the total load spectrum for a given formulation and Miner sum With this method the actual extremes of the load and the FEL s are derived from the spectrum User Manual BLADOPT Load model in Dutch e 23 If the spectrum comprises of both positive and negative load values two FEL values are calculated The FEL is calculated as follows For every relevant combination of mean stress and amplitude in the
41. e meeste staalsoorten optreedt bij n 10 worden in Bladopt alle ranges f ds met een aantal ns lt 10 geschaald naar ns 10 Volgens deze procedure loopt de S N lijn voor n lt 10 vlak en wordt de vloeigrens niet overschreden Voor staal is er ook sprake van een vermoeiingsgrens waarbij boven n gt 10 de toelaatbare spanning niet meer afneemt In Bladopt wordt deze eigenschap gemodelleerd door ranges met sn gt 10 te schalen naar sn 10 Volgens deze procedure loopt de s n lijn voor n gt 10 eveneens vlak Als richtingsco ffici nt van de S N kromme voor staal wordt m 3 gebruikt De knik van m 3 naar m 5 welke volgens de Eurocode moet worden toegepast als de vloeigrens is overschreden wordt voorlopig niet gebruikt In feite wordt door bovengenoemde procedure de vloeigrens niet overschreden Voor vezelversterktekunstoffen wordt het aantal omwentelingen van de rotor gedurende de levensduur van de turbine als equivalent aantal gebruikt De ingevoerde UTS waarde welke een waarde is voor de sterkte van het GVK wordt door Bladopt omgerekend naar de vermoeiingsspanning welke volgens de S N kromme hoort bij het totaal aantal omwentelingen van de turbine 1P Vervolgens zal de bladconstructie worden beoordeeld met de 1P equivalente belastingen Voor GVK wordt een richtingsco ffici nt van m 10 gebruikt De gemiddelde spanning wordt in Bladopt conservatief niet in rekening gebracht Method of Fatigue Equivalent Loads FEL Th
42. e place up in the list Down After pressing this button the item selected in the list box is moved one place down in the list Bottom After pressing this button the item selected in the list box is moved to the bottom of the list i e it is the last to be optimised 56 e User Interface User Manual BLADOPT listbox The list box displays all specified chords and twists in the specified order You can select one chord or twist and move it up with the Up button or down with the Down button the list to the desired position Use the Top button to place the selected item on top of the list use the Bottom button to place it at the bottom Graph window In the Graph window the results of the model calculations are displayed in graphs With the Graphs menu you can select deselect the graphs or print the active graph X Model views iteration nr 4 Power velocity N Graph Window 8 x Power welocity 400000 300000 previous 2 200000 actual d initial 100000 0 10 20 30 40 50 60 Velocity m s Figure 19 a graph window Menu Graph The Graph menu lets you select and deselect graphs and make a printout of the active graph Power velocity Electrical power versus wind speed graph Torque velocity Torque versus wind speed graph Tipangle velocity Tip angle O versus wind speed for pitch controlled wind turbines Chord radius Chord distribution graph the 0 previous and last
43. e rotor dimensions i e rotor diameter Price c_c_1 Dia 25 c_c_2 _ blades c_c_3 In which the values for c c 1 8 000 26 e Cost functions User Manual BLADOPT cc 2 2 500 cc 3 1 250 that can be changed in the file defines def Drive Train The drive train is gearbox and gearbox support The price is strongly related to the input torque of the gearbox depending on the control strategy Price c_c_1 Pratea sf 1 8 1 0 The service factor sf is defined by the control strategy sf is determined according to the following table variable speed constant speed passive power regulation 1 5 active power regulation 1 2 1 8 In which the values for c c 1 900 which can be changed in the file defines def Electrical System The electrical system consists of the generator and the remaining electrical system not included in the wind farm cost The cost of the electrical system is mainly driven by the rated power The cost of the generator is nearly linear with the rated power with a weak quadratic part The cost of the electrical system is linearly with rated power For variable speed systems an extra cost item should be added for power electronics and control electronics The cost is taken to be Price p_gen p_el lvarsp p_var In which p_gen gen a Pratea _gen b Pratea _gen c p_el 05612 Pirita p_var cc I Pratea 250 Pratea 250 In which the
44. e solved numerically with regula falsi in the following way 1 First it is attempted to find the zero from equation 8 2 It is assumed that the zero is between 0 rad and max atan A Note that this approximately corresponds to a range of axial induction factor from a 0 to a 1 Thereto it is checked whether the zero is between 0 and max 2 or between Qmnax 2 and Emax Evalu ating the function values at these inflow angles performs this Then the appropriate set of begin values for the regula falsi procedure are known 3 If equation 8 does not yield a solution between p 0 rad and max than the search routine is given less strict constraints on inflow angle 4 If equation 8 does not yield a zero dependend on the actual lamda the axial induction factor is set to 1 A 2 50 or to 0 lt 0 5 Turbulent wake situation a gt 0 38 In the turbulent wake situation either equation 13 or equation 9 is solved The axial and tangential induc tion factors are known from the equations 15 and 3 The numerical procedure to find the inflow angle is similar to the procedure described above Rotor blade model The rotor blade model is shown in figure 2 The blade is defined by chord twist and thickness distribu tions A distribution can be given by giving for at least 2 positions the chord or thickness The twist distri bution can be given by giving the twist at at least 1 position The actual values of the chord thic
45. elastingscurves berekend 1 n voor een ideale regeling equi Deze curve hoeft slechts eenmaal te worden berekend 2 n voor een slechte regeling non Deze curve moet voor elke windklasse opnieuw worden berekend Met de beschikbaarheid van het rotortoerental Q en de pitchhoek 6 als functie van de windsnelheid U kan de aerodynamische subroutine de bijbehorende belastingen zoals Fx r 0 de klapmomenten op de bladsneden en het vermogen berekenen Uiteraard zijn geometrie gegevens beschikbaar zoals koorde en twist die ook nodig moeten zijn voor het bepalen van de P V curve Een belastingscurve moet worden berekend van V 1 tot V UV it 1 m s Ideale pitch regeling Voor de berekening van de belastingswisseling AM en het gemiddelde niveau My ave i ten gevolge van een vlaag wordt uitgegaan van een belastingscurve Hieronder wordt verstaan M r 0 als functie van de windsnelheid V Voor een ideale pitchregeling geldt een curve zoals gegeven in figuur 2 Tevens is aangegeven hoe het vermogen P pitchhoek 6 en het toerental W verandert als functie van de wind V De curve voor een ideale pitch regeling wordt verkregen door de aerodynamische subroutine aan te bieden wind U rotortoerental als functie van U een pitchhoek O voor U lt Unatea en een pitchhoek 6 voor U gt Uatea voor stall geregelde turbines rated vermogen voor U gt U atea voor pitch geregelde turbines In dit laatste geval zal de a
46. emaakt Het windvlagen model is gebaseerd op het Nederlandse handboek Wind deel 3 Een en ander is afhankelijk van turbine model d w z de turbine toeren vermogens regeling Turbine regeling Toeren regeling Er zijn twee typen toeren regelingen gebruikt e constant toeren regeling waarbij toerental constant is als functie van de windsnelheid iconst speed 1 Q rated e variabel toeren regeling waarbij iconst_speed lt gt 1 Q A R als U lt Urated Q Q rated als U gt U sated met A snellopendheid QOrated rated toerental windsnelheid R rotorstraal Vermogensregeling Er zijn twee typen vermogensregelingen gebruikt stall geregelde turbine waarbij de pitchhoek constant blijft en wordt ingegeven door de gebruiker pitch geregelde turbine waarbij voor U gt Uratea het elektrisch vermogen constant wordt gehouden op Bed door middel van het verstellen van de bladen De pitchhoek die hiervoor moet zorgdragen moet User Manual BLADOPT Load model in Dutch 13 worden gevonden door de a rodynamische subroutine van ECN De pitchhoek voor U lt Ujateq wordt ingegeven door de gebruiker Windspectrum Algemeen De belastingen worden berekend met gebruikmaking van deterministische vlagen welke zijn gedefinieerd met Handboek ontwerpwindgegevens windturbines versie 3 Waar mogelijk zijn echter IEC gegevens als invoer gebruikt Een windvlaag wordt voorgesteld als een sinusvormige variatie met amplitude A rondom een 10 m
47. en including 1 kW 2 1 kW 1 1 kW 70 e Annex Cost Module Include Files User Manual BLADOPT INCLUDE engcost i ac0o0Q0o0oo0o00o00o00o0000 00 000 0000 0 Q Include file for engineering cost functions values are set in user interface tab cost contains integer parameters which can have the value 0 zero or 1 one to indicate wheter the cost of the concerned component should be included in the total cost engbla rotor blade cost enghub hub cost engdrt drive train cost engwfa windfarm cost engels electrical system cost engsfs safety and control system cost engyam yaw mechanisme cost engnac nacelle cost engtow tower cost engass assembly cost EGER engbla enghub engdrt engwfa engels EGER engsfs engyam engnac engtow engass COMMON engcost engbla enghub engdrt engwfa engels engsfs engyam engnac engtow engass User Manual BLADOPT 71 INCLUDE engpri i C CM Include file for engineering cost model component prices REAL priass priwin prisac prihub pridrt amp priels prinac priyme pritow pribld COMMON engpri priass priwin prisac prihub pridrt amp priels prinac priyme pritow pribld 72 e Annex Cost Module Include Files User Manual BLADOPT INCLUDE extloa i C CM CM CM CM C Extreme loads on rotor blades at nodes between elements myext i maximum flatwise moment Nm mxext i maximum edgew
48. er tool BLADOPT BLADOPT is a nu merical optimization tool for designing horizontal axis wind turbine rotor blades The objective function of the optimization is the cost of energy calculated according to the recommended procedures of the IEA This implies that not only the energy yield but also the cost of the complete wind energy system has to be determined The rotor performance i e power curve and design loads are pre dicted using a quasi static rotor code and load module taking the chosen power control mode into account Two different component cost modules are implemented a parameteric one using only geometric pa rameters of the wind turbine and design wind spectrum parameters and a model based on engineering models for the tower and the rotor blade making use of a load prediction model The report describes the general set up of the optimization tool and each individual module The installa tion procedure for Windows 95 98 and WindowsNT and the deinstallation procedure The user s manual describes the entire user interface screens and each button and text box of those screens To be able to understand the source code of the component cost modules the include files and common block parameters are described in the Annex Keywords Windturbine optimization Theory and User manual Authorisation Name Signature Date Checked E T G Bot Approved L A H Machielse Authorised H J M Beurskens 92 e Annex Cost
49. ered If no maximum can be given enter a large number e g 100 rpm However it is always faster and safer to enter a realistic value User Manual BLADOPT User Interface e 55 Minimum order Parameter used when the approximate toggle is active The minimum order for an approximate model an approximate model of the first order is the lowest sensible value Allowable values integer gt 1 Maximum order Parameter used when the approximate toggle is active The maximum order for an approximate model an approximate model of the second or third order is probably the most sensible value however up to the fourth order is allowed Allowable values integer lt 4 Optimisation order window This window see Figure 18 enables you to change the order in which the specified design parameters should be optimised For a well defined problem without many local minima the order will not influece the outcome however in real problems the order will always influence the outcome That is why it is sen sible to change the order and or the start design Optimization order Type Radius Value if EI H ES Less Iess esi Cancel Chord 25 j Chord 95 0 26 Down Bottom Figure 18 Optimisation order window buttons Top After pressing this button the item selected in the list box is moved to the top of the list i e it is the first to be optimised Up After pressing this button the item selected in the list box is moved on
50. et you select an interpolation type Known types are 44 e User Interface User Manual BLADOPT e linear e spline not active e tension spline not active The text boxes below are used to define a rotor blade For each radial position indicated at least the num ber of the text boxes needs to be defined For each item chord twist thickness and profiles at least 2 ra dial positions have to be given see the blade definition of section Engineering cost blade model text boxes Radius Span wise position of the tip radius Allowable values 0 lt radius lt 100 Chord c r the width of the blade at span wise position r according to some aerodynamic convention Allowable values 0 lt c r lt 10 m Twist 0 7 the twist distribution of the blade by definition the twist angle is zero at the tip radius Allowable values 180 lt Dir lt 180 except at radius 100 where the twist equals 0 by definition Thickness t r the thickness distribution of the blade in of the chord only used in the cost function for the rotor blades Allowable values 0 lt t r lt 100 Profile path and name of the file which contains the profile aerodynamic coefficients cl cd and cm Format of the file s is explained in annex A When at a certain radial position a profile is already defined while this is not the intention one can delete the chosen profile by selecting the profile and use the delete key data control
51. ete mass in foundation kland D E 02 Specific land cost Hf1 m2 kc 0 E 02 Specific road construction Hf1 m2 lrd Ox E 03 Length of road per turbine in the group m wrd E 01 Width of road m kcable Cost of power lines per m cable E 02 Length of power cables per turbine in the ij group m ltpt 03 Length transportation plant to site km mstrfa maximum fatigue stress tower material N m 2 mstrex maximum static stress tower material N m 2 smste E 03 densisty of tower material 38 e Cost functions User Manual BLADOPT Installation System demands The BLADOPT model can run under Windows95 98 or WindowsNT The PC should have a Pentium II processor or higher and at least 32 Mb memory Procedure BLADOPT will be delivered on CDROM Place CDROM in the drive and activate Setup exe from the drive folder most likely D Setup will install BLADOPT on your system Directories files After installation of BLADOPT the following files should be present on your system in the folder C Program Files BLADOPT ui exe the BLADOPT program usrman hlp online help file st4unst log contains information for a proper removal of BLADOPT Removal The BLADOPT application can be removed by opening the icon My Computer on the desktop In this window open the icon Control Panel This will again open a window which contains the icon Add Remove Programs Clicking this icon will show a dialogue box with a list of programs insta
52. from the geometric and operational conditions The tip cor rection factor and c and care known as function of from equation 7 and the tables with profile coeffi cients respectively Then the axial and tangential induction factors are also written as function of the in flow angle From equations 1 and 2 it follows Gd 9 a p a P c Q 10 Cp 4 Note that substituting equation 10 in 9 yields equation 8 From the equations 3 and 10 it follows that 1 4 t a p A na j 11 1 tan g D I c 9 From the equations 8 to 11 the inflow angle p can be solved numerically This is described in section Solution Procedure Turbulent wake situation a gt 0 38 For a gt 0 38 a turbulent wake formula is assumed according to Wilson Then equation 1 is replaced by yV 2 0 96a f 0 5776 de C 12 This yields with equation 4 i 2 0964 v05776 Ha e 13 sin From the equations 12 and 2 it follows that EE E 14 C Then equation 14 and equation 3 yield a quadratic equation from which the axial induction factor can be solved from the inflow angle af g4 0 E tan 4f 1 A uno Ch 15 n 4f 1 A tan 05774 lanl 0 User Manual BLADOPT Wind Turbine Model e 9 Solution procedure Common situation a lt 0 38 The unknown inflow angle is solved from equation 8 see below The axial and tangential induction factors in these equations are known from the equations 11 and 10 The equations ar
53. ge windspeed at 10 m heigth hhub hub heigth z0 terrain roughness parameter for to determine wind speed at hub heigth vetui cut in wind speed vcuto cut out wind speed vrated rated wind speed rhoair density of air QaaQQQ0Q0aQ0Q0QQ0Q0Q02Q0090 REAL pkl nvwmax REAL wk10 v10 hhub z0 vcuti vcuto vrated rhoair INTEGER ivci ivr ivco COMMON weppco pk1 wk10 v10 hhub z0 vcuti vcuto amp vrated rhoair ivci ivr ivco User Manual BLADOPT 89 INCLUDE winfar i C CM C CM CM CM C cost coefficient data windfarm cost for the Engcost module GJ cost price coef connection auxiliaries CG cost price coef of infrastructures 6623 fees 1 REAL c_c_l c_c_2 c_c_3 COMMON winfr c_c_1 c_c_2 c_c_3 f1 kW 1 m 90 Annex Cost Module Include Files User Manual BLADOPT INCLUDE yawmec i C CM CM C CM C cost price coefficient of the yaw mechanism for the Engcost module cuci cost price coef REAL c_c_1 COMMON yawmch c_c_1 User Manual BLADOPT of yaw mechanism 1 kg 91 Date August 2001 Number of Report ECN C 01 011 Titel Theory and User Manual BLADOPT Author s B H Bulder S A M Barhorst J G Schepers F Hagg Principal s NOVEM ECN project number 7 4237 Principals order number 224 720 9636 Programme s Twin 2 Abstract This report contains the theory and user manual for the comput
54. he energy yield and the design load spectrum e the cost of the wind turbine determined per component based on design parameters and or response parameters like design loads have to be determined e the optimisation algorithm In the specification of BLADOPT the recommendation for improvement of the PVOPT program 2 are taken into account The objective for the BLADOPT program is the lowest Cost of Energy COE To calculate the cost of energy it is necessary to calculate the energy yield the investment cost for the turbine and the operation and maintenance cost Together with some economic parameters like interest rate and economic lifetime it is then possible to determine the cost per kWh electricity generated The design parameters that can be optimised with BLADOPT are the chord and twist distribution the rotor diameter the rotor speed and the rated power although not all at the same time Each parameter that be optimised should be constrained at the lower and upper side otherwise it might occur that the program ends up with a design that is not realis able The design conditions are e the wind spectrum for the energy production and e the wind distributions for the load spectrum To reduce the number of design parameters it is recommended to couple parameters in such a way that the optimisation process is fast and the results are in such a way that the designer does not need to smooth the results to come to a real product Due to th
55. heck the non linearity of it with respect to the objective function Approximation Models The reason for making an approximation of the real physical problem has been discussed in 1 Approximation models can be classified as follows e a simplified engineering model formal approximation or e a general approximation generic approximation e g based on a multidimensional polynomial curve or surface fitting Formal approximations are for the BLADOPT code not applicable since the wind and load prediction part is already very simplified version of the real problem Generic approximations can easily be made for these problems Local Approximations Local approximations are sufficiently accurate only in a limited region of the design space namely in the vicinity of the point at which they are generated Typically they are used to generate an approximate problem formulation that is solved for an optimum solution point A new approximate formulation is then generated and solved until the process is sufficiently converged For building a generic approximation with Taylor series first order only around Xo e d EOD KDE 3 gt i l Xi Z 4 e Wind Turbine Optimisation User Manual BLADOPT For some applications this approximation is not good enough even near the design point Xo Higher order expansions need however a fast increasing number of function evaluations A way to get around this is the so called reciprocal approximation
56. hulp van tabel 4 worden berekend uit Aorc 0 052C4 H 145 6 SS T Y 1 0 344 U waarbij Ca 1 00 1 64 of 2 52 User Manual BLADOPT Load model in Dutch 17 De amplitude van de OP mode waarmee de belastingen moeten worden berekend wordt mede samengesteld uit de hogere modes volgens A opca Aop Aipy Aap A3p Aap Het aantal wisselingen per levensduur bedraagt nj ca tj 8760 Nu P 100 Py met P 80 18 2 Nour 3600 2 Ty aantal wisselingen per uur ta rekenwaarde vlaagduur ter bepaling van een aantal vlagen per uur Resultaat Het resultaat van een windspectrum berekening is een aantal van i_max_wind aantal windklassen 7 data regels waarin per regel is opgenomen de windklasse snelheid U de amplitude Aj aantal wisselingen van de vlaag per levensduur sn n P mode mode Per windklasse bestaat het spectrum dus uit 7 vlagen bestaande uit Table 6 Vlagen per windklasse Omschrijving U Aj sn mode turbulentie doorsnijding U A am Nyj3 3 turbulentie doorsnijding U Ase Nyo 2 turbulentie doorsnijding wind schering ES coherente vlaag U A op CA 1 00 Nyj CA 1 00 0 S coherente vlaag A op CA 1 64 Du CA 1 64 0 coherente vlaag U A op CA 2 52 Nyj CA 2 52 0 U Aus Dvil 1 Beperkte set vlagen Tabel 6 geeft een overzicht van een beperkte set vlagen die kunnen worden gebruikt om snel een spectrum voor een stall geregelde turbine en een pitch
57. ic algorithm needs the Hessian matrix whose components are the second partial de rivatives of the objective function with all variables which can easily be determined especially because the derivatives can be determined analytically Then the combination of design parameters that results in a local or the global minimum of the approximated objective function is evaluated with the real objective function As already mentioned before the number of parameters optimised in the BLADOPT program will be lim ited to 10 parameters e g 3 to 5 radial stations for chord 3 to 5 radial stations for twists rotor diameter and tower height Future extensions of this program to HATOPT a program by which the complete wind turbine can be optimised motivated the decision to use the procedure as shown here The conjugate direction method of Powell COBYLA 6 7 is used in the first nges 1 function evaluations to get sufficient data to create sufficient data for the so called response surface which is the approximation of the physical model In the following section some information is gathered with respect to approximated models and how to find the optimum for the approximated and real model To use the proposed procedure efficiently a strategy has to be determined which parameters to optimise first or which parameters have to be increased to a higher order in the approximation This can best be evaluated by doing a sensitivity analysis per design variable to c
58. ine is producing electricity into the grid These costs are divided into the following separate items e Foundation e Electrical Connections e Land e Remote Control e Site Preparation e General Site Cost e Transportation e Engineering Cost e Erection Below a summary of the cost models is given which is copied integral including equation numbers from 4 Rotor Cc WE 3a ifV Extreme lt 60 m s 65 Rated V 2 f Sag 3b if V extreme gt 60 m s and fixed pitch blades then factor MAX f1 f2 Crotor 120D n factor 5 Where n is the total number of blades manufactured divided by the number of blades in the rotor 32 e Cost functions User Manual BLADOPT Gear Box Cgear 1 28 0 Nm 2 52 Standard Generator Solve n from Log n 7 0 7 Log P kKW 0115 Log P kW 7 then use in CstaGenerator 1700krypek Enclosure PKW n 8 Where Krype 0 75 asynch 1 0 synch KEnclosure 1 0 basic open 1 8 enclosed protected T 0 95 Direct Drive Generator Coirbrivecen 2520 P kWn 1 091 0 303 log P kW 13 Power Electronics C PowerElectronics keg P kWp nere 14 where n is assumed to be equal to the number of rotors The other parameters are defined as Parameter Synch Asynch kpr 1600 4800 Epe 0 074 0 234 Transformer Crans 4500 0 017 PrranspKW 2 anet 15 where the power figure may or may not be equal to the power of o
59. inuten gemiddelde windsnelheid U De vaststelling van U en A en het aantal malen dat zo n wisseling in de levensduur van de windturbine voorkomt wordt beschreven in het handboek Als invoer van het spectrum kan gebruik worden gemaakt van de IEC windklassen of door in de betreffende invoerschermen een Weibull vorm en gemiddelde op te geven Voor de 10 minuten gemiddelde windsnelheid op ashoogte V ave heeft de IEC norm een viertal klassen gedefinieerd Table 2 Basis parameters voor wind turbine klassen Parameters Wind turbine class Reference wind speed V er m s 50 42 5 37 5 30 Annual average wind speed V ve m s 10 8 5 7 5 6 A hs 016 016 016 016 a 2 2 B Is 0 18 0 18 a 3 3 Het handboek stelt voor het bereik van 10 minuten gemiddelde windsnelheden te verdelen in klassen Wind Windinterval Rekenwaarde U klu 9 25 ds klasse 1 4 6 2 20 En 2 6 8 i i Viit 7 i mmm 3 8 10 Kl 6 ig o Z 6 4 10 12 5 14 ___ E E 4 13 __ _ ___ FF rr 5 12 14 3 10 _ 10 _ 6 14 16 E E a 8 e 6 7 16 18 kiso 4 ESCH Mi 8 18 V tit Table 3 De klasse indeling van de windsnelheden Figure 4 Inpassing Vin en Vuit windklasse 14 e Load model in Dutch User Manual BLADOPT Het aantal windklassen dat wordt meegenomen is afhankelijk van de inschakelwindsnelheid V en de uitschakelwindsnelheid Va Figuur 1 laat zien hoe dat gebeurt Als voorbeeld is Vin
60. is when active Drive train Drive train cost function included in analysis when active Wind farm Wind farm cost function included in analysis when active Electrical system Electrical system cost function included in analysis when active Safety and control Safety and control cost function included in analysis when active Nacelle Nacelle cost function included in analysis when active Yaw mechanism Yaw mechanism cost function included in analysis when active Tower Tower cost function included in analysis when active Assembly Assembly cost function included in analysis when active The other check boxes are Noise The aerodynamic noise will be calculated and the cost per dBA above the zero noise level will be included in the total cost of the wind turbine when active Extra costs Extra cost of the turbine indicated in the box Extra Cost compensating for cost not yet included in the parametric engineering cost will be included in the total cost of the wind turbine when active textboxes Noise Zero level The noise level below which no extra cost is taken into account for the total turbine cost Allowable values gt 0 Noise costs The cost in dBA for the calculated noise level above the noise zero level Allowable values gt 0 User Manual BLADOPT User Interface 51 Extra costs The extra costs to be added to the calculated total cost for the wind turbine when the extra cost button is active A
61. ise moment Nm fu_ext cycle fatigue equiv tower axial force N REAL myext 0 nelmax mxext 0 nelmax fu ext COMMON extreme myext mxext fu_ext User Manual BLADOPT 73 INCLUDE fatigue i C C 1 P aero and mass fatigue loads on rotor blade at nodes C between elements C 1 P fatigue equivalent moment on tower top C myfat i 1 P fatigue equiv flatwise moment Nm C mxfat i 1 P fatigue equiv edgewise moment Nm G mx i 1 P mass moment in edgewise direction Nm fu_fat 1 P fatigue equiv tower axial force N C REAL myfat 0 nelmax mxfat 0 nelmax fu fat REAL mx 0 nelmax COMMON fatigue myfat mxfat fu Tat ms 74 e Annex Cost Module Include Files User Manual BLADOPT INCLUDE fatmat i C CM CM C CM CM C Fatigue material constants for blade and tower material read from define def mspar 1 m is slope of S N curve blade spar msteel 1 m is slope of S N curve tower mat REAL mspar msteel COMMON fatmat mspar msteel User Manual BLADOPT 75 INCLUDE forcoe i C E Blade node forces as function of the wind speed C Rotor power as function of wind speed C Rotor coefficients as function of wind speed Cc axialf k i array with axial force for wind speed interval C i at element boundary k Cc leadf k 1 array with lead force for wind speed interval i at element boundary k
62. ius where profile changes to iprof 1 C rtip radius tip device if ltip TRUE C EELDE thickness tip profile in tip chord root_t thickness root profile in root chord C sectio 15 character variable with names of aero sections C INTEGER nob nchdat ntedat nthdat nclcd nuprof REAL rchord chordi rtetap tetapi rthick thicki alfa amp clin cdin cmin dia rp root_t tip_t rtip sldty CHARACTER 128 sectio COMMON geom rchord nrmax chordi nrmax amp rtetap nrmax tetapi nrmax gt rthick nrmax thicki nrmax gt alfa mxaedt nprmax clin mxaedt nprmax gt edin mxaedt nprmax cmin mxaedt nprmax gt dia nob root_t tip_t rtip sldty gt nchdat ntedat nthdat nclcd nprmax gt nuprof rp nprmax 1 COMMON geopro sectio nprmax 78 e Annex Cost Module Include Files User Manual BLADOPT INCLUDE hub i C CM engcost coefficients for the hub C CM c_c_1 cost coefficient hub CM c_c_2 cost coefficient blade bearings CM c_c_3 cost coefficient hub CM REAL 6 26 15 626 2626 3 COMMON hb c_c_1 c_c_2 c_c_3 User Manual BLADOPT f1 dia 1 2 7 fl blade 79 INCLUDE nacelle i C CM CM C CM CM C cost price coefficient data of the nacelle for the model m_c_l mass coef of nac GEL cost price coef REAL mce l e ec 1 COMMON nacell m c 1 e c 1 elle of nacelle f L m 3 l kg Engcost 80 Annex Cost Mo
63. kness and twist at the element boundaries are determined by linear inter extra polation of the given values An aero dynamic profile has to be supplied at least for one radial station The blade model assumes that the first indicated chord is the radius where the aerodynamic properties begin The elements more to the rotor centre are assumed not to have aerodynamic properties The following definitions are used in the aerody namic model 1 The first element with aerodynamic properties is the element containing the first radial station with a chord definition 2 All interpolations between supplied values for chord twist and thickness are linearly 3 The tip twist angle is 0 The radial stations to define a blade have to be selected carefully in conjunction with the number of ele ments When e g the radial station of the largest chord is in the middle of an element the interpolation to the element boundaries can result in an element with a much smaller surface than expected at forehand See e g in figure 2 where the dotted line indicates the actual used surface while the solid line indicates 10 e Wind Turbine Model User Manual BLADOPT Rp2 Rr2 R l Rc2 R 3 Cc Fig 2 the aerodynamic blade model the desired chord distribution Choosing the number of elements in such a way that the largest chord is just to the left of an element boundary can solve this Loading on the rotor blade The above results
64. lled on your system Select BLADOPT from the list and click the button Add Remove After clicking this but ton the BLADOPT application will be removed from your system User Manual BLADOPT Installation 39 40 e Installation User Manual BLADOPT User Interface Activating BLADOPT Main window The main window see Figure10 gives you the possibility to adjust design parameters start model calcu lations and view the model results The window contains a number of tabs and menus that will be ex plained in the next paragraphs BLADOPT lt New file gt EN File Options Help General Blade Power Wind Cost Economy Optimization 4 years Vi m s m y 25 m s out m AM H m s Design life 2 Hub height 3 Rotor Diameter 3 III Nr of blades Pai 1 225 kg m3 Pitch radius m kee H 1 Pitch angle degrees Pitch angle 8 degrees storm Se REG Tea Figurel0 the main window User Manual BLADOPT User Interface e 41 Menu File The File menu has several items Depending on the state of the program one or more of these items cannot be selected the gray ones New Start a new design with default values for the design parameters Open Open an already existing design database Save Save the current settings and model results in the current database Save as Save the current settings and model results in another database Close Close the currently open design datab
65. llowable values gt 0 tab Economy The Economy tab contains the economy related design parameters BLADOPT lt New file gt merapi Barint 1 H the economy control window textboxes Interest The interest rate used to determine the annual cost of the wind turbine in The user can possibly correct this value for the assumed inflation rate Allowable values gt 0 Depreciation period Economic life time in years of the wind turbine usually shorter than the technical lifetime Allowable values gt 0 52 e User Interface User Manual BLADOPT O and M costs Operating and maintenance cost as a percentage of the total cost of the wind turbine Allowable value gt 0 Array energy losses Factor used to decrease the energy yield due to wind farm operation wake losses or assumed down time of the wind turbine Allowable values gt 0 When the price performance is the target this can be achieved by setting the interest on rate on zero the depreciation period on 9999 and the O amp M cost and array energy losses to zero tab Optimisation In this tab see Figure 17 the design parameters which must be optimised can be selected Constraints and step sizes can be set BLADOPT lt New file gt Ed File Options Help General Blade Power wind Cost Economy Optimization m Chords and Twist Fixed Value Minimum Maximum Chodim O Phs 25 Twist degree V fS ho F
66. ment partaking in aerodynamic calculations prof nelmax profile identification for element i Kk AAA AAA AAA AAA AAA AA AAA AAA AAA AAA AAA AAA AAA A AAA A AAA AAA AAA AAA AAA AAA AAA AA A aaan CR CE CEN FR Aaa ee a MG REAL s chord twist thckns blroot rootch rootpi dels INTEGER prof iaero nelem COMMON elem s 0 nelmax chord 0 nelmax Kk AAA AAA AAA AA AAA AAA AAA AAA AAA AAA AAA AA A A A A A A AA AAA A AAA AAA AAA AAA AAA AA A AA A amp twist 0 nelmax thckns 0 nelmax prof nelmax amp blroot rootch rootpi dels iaero nelem C KKEKKKK KKK KKK KKK KKK KKK KK KKK KKK KKK KKK KKK KKK KKK KKK KKK KKK KA KKK KKK AAA AA AAH C dfax k d f axiaal ds 5 rho vw 2 E dftan k d f tangential ds 5 rho vw 2 dtorg k d axial torque ds 5 rho vw 2 E Cc notice that k iaero 1 is at blade root C C REAL aprime dfax dftan dtorg dflmor COMMON aerele aprime 0 nelmax dfax 0 nelmax amp dftan O nelmax dtorg 0 nelmax dflmor 0 nelmax User Manual BLADOPT 69 INCLUDE elesys i cost price data of the electrical system generators for Engcost a generator cost coe b generator cost coe E E Fh Fh Fh generator cost coe c_1 cost price coef c_c_2 variable speed cost price coef ngen number of generators CO OO OO OO COOC REAL ai Drog et cele re 2 INTEGER ngen COMMON elecsy a b c c_c_1 c_c_2 ng
67. moeiing equivalente belasting Inleiding De hiervoor berekende belastingsspectra zijn te complex om snel een windturbine mee te ontwerpen Echter door gebruik te maken van de vermoeiing equivalente belasting kan eenvoudig en snel bepaald worden of vermoeiing danwel statische sterkte ontwerp sturend is Hierna wordt aangegeven hoe de vermoeiing equivalente belasting cycle kan worden berekend uit het variabele amplitude belastingsspectrum Schade Voor de bepaling van de vermoetingschade is van belang ranges ds levels Is en aantal wisselingen sn de s n lijn van het gebruikte materiaal De berekening van de schade pm van een belasting t g v een windvlaag is weergegeven in figuur 4 Het effect van het level van de belasting Is is voor de eenvoud niet meegenomen De schade pm van een belasting i ds is het quoti nt van het aantal wisselingen van belasting I sny en het aantal toegestane wisselingen gn bij de range ds volgens de s n lijn behorende bij het gebruikte materiaal pm sn gn Indien het level van belang is is gn ook een functie van het level Vervolgens dient de schade pm van alle belastingsgevallen te worden gesommeerd volgens de Palmgren Miner regel tot een totale schade pmsom alle windvlagen i_max_wind Vermoeiingsschade ymewind i l pm 1 Afhankelijk van het materiaal kan ook het niveau van belang zijn voor de schadeberekening Een voorbeeld van een dergelijk materiaal is vezel versterk
68. more than 10 parameters can be optimised at the same time The main difference for the user with the program PVOPT is that the optimisation objective is not opti mum energy yield but lowest cost of energy This implies that not only the energy yield is predicted but also the cost of the wind turbine components and the operation and maintenance costs are determined For all necessary cost items a user supplied value or a cost function is implemented Due to the multidisciplin ary models aerodynamic and cost engineering models in the program the BLADOPT code can be catego rised as a Multidisciplinary Design Optimisation program In this manual a short description can be found of the optimisation schemes the wind turbine model con sisting of a description of the aerodynamic model the cost functions the noise model and the economic analysis The user manual part contains a section on the installation of the program and the user interface User Manual BLADOPT Introduction 1 2 e Introduction User Manual BLADOPT Wind Turbine Optimisation Introduction In 1 the optimisation strategy for the BLADOPT program is selected To perform a multidisciplinary optimisation task a number of subjects have to be dealt with For wind tur bine design optimisation the following subjects have to be addressed e the objective and boundary conditions and constraint for the design parameters have to be defined e the aero elastic code to predict t
69. nd some are response parameters The design parameters which are not supplied via the user interface are read from the file define def that should be in the same directory as the project file Wind farm The cost of the wind farm e g the connection to the grid the cost of the infrastructure and the cost of the developer are strongly related to the rated power of the wind turbine Price c_c_1 Pratea c_c_2 Dia c_c_3 Assembly The assembly cost are all cost made between the factory and when the turbine is completely installed e g transport cost crane cost other handling cost The cost of assembling is strongly related to the rotor diameter and the tower height Price c_c_1 Dia 30 H 42 sf The default values for c c I 30 000 and sf 1 005 that can be changed in the file defines def Safety and Control The safety and control cost are the price of the control and safety systems The cost is not very sensitive to the design parameters of the wind turbine However a passive stall regulated wind turbine is of course cheaper than an active pitch regulated wind turbine Price c_c_ c_c_2 sf I If active control Price price c_c_3 sf 2 In which the values for c c 1 8 000 c_c 2 10 000 c_c 3 3 000 and for sf 1 1 2 sf_2 2 0 that can be changed in the file defines def Hub The hub structure is between rotor blade flange and rotor shaft The cost of the hub is strongly related to th
70. ne turbine The idea is that one trans former in principle can be used for a group of turbines It is therefore a good idea to separate both power and number of units from those of the turbines Nacelle Bedplate Creapiate 63 9 Q Nm 280234 n Hydraulics Cisa 529 D2 2 Control system Contro 30000 150000 n 18000108 19 Ventilation C Ventilation 14 P kW 20 User Manual BLADOPT Cost functions e 33 Primary shaft Cuainsnaf 1 6D 0 152 Q 1 Bearings for the Primary Shaft Coearingshaft 11000071 015 22 Yaw Bearings CrawBearing 3 06D n 2 23 Full Size Brake 47 J Rotor 0 095 numberOfBlades 3 based on 24 pesign 100 R meaning that brake is applied at a tip speed of 100 m s J rotor Design MbrakeSystem 0 0227 T 35 29 and 30 Disk CrullBrake 60 brakesystem wem 31 and 32 Parking Brake C parkingBrake 4 4D n 9 33 and 35 Tower Head Wy ayD 35 where a 0 5 extremely light a 1 0 normal an 2 0 extremely heavy Tower Operating conditions A separation between types must be made Pitch controlled turbine If not known use CT 0 65 together with rated wind speed V insert in 45 and continue Stall controlled turbine If the rotor design thrust coefficient is known continue using V cutout wind speed with 45 If also the thrust is known go directly to the step following Eq 45 below A Vri V 38
71. ng gegeven naast die van de ideale stationaire curve De belastingswisseling van een dergelijk trage regelaar is getekend in figuur 3 Eventueel kan een belastingsfactor worden toegevoegd AM noni My max non i My min non i factor My ave non i My max noni 7 M min non i factor 2 Realistische pitch regeling In werkelijkheid zal een regeling niet ideaal zijn maar ook niet oneindig traag De traagheid kan met behulp van een tijdconstante Te van de regeling worden ingevoerd De mate waarin de regeling een fluctuatie kan volgen wordt bepaald met eve exp Treg 2T4 voor OP vlagen en eve eXp Treg T mode n voor hogere modes waarin Ty vlaagperiode tijd halve sinus Triode n 2 Tn Q met n mode 1 2 3 4 Q toerental AM eve AM equii 1 eve AM noni M ave i EVE My ave equi i 1 eve S My ave non i Voor een stall geregelde constant toeren turbine zal de evenwichtscurve gelijk zijn aan de niet evenwichtscurve Resultaat Het resultaat van deze exercitie is een aantal van _max_wind regels met belastingsrange ds AM level Is My ave i aantal wisselingen sn Een dergelijk blok met belastingen moet worden aangemaakt voor Fx r 0 en de klapmomenten voor de bladsnedes 20 e Load model in Dutch User Manual BLADOPT V m s Vrated Figure 5 de evenwichtskrommen Figure 6 de niet evenwichtskrommen User Manual BLADOPT Load model in Dutch e 21 Ver
72. ntal wisselingen per levensduur C pmoda array met mode nummer E imxgus aantal gedefinieerde vlagen rotations number of rotor rotation per life time vstorm extreme wind speed according to IEC wind turbine class C C 1f array with flatwise load cycles format C igus ielem 1 range 2 mean vel lf array with edgewise load cycles format C igus ielem l range 2 mean vel Cc REAL uaver aa0pa wisa vstorm REA lf le INTEGER imxgus pmoda REAL 8 rotations COMMON gusts uaver 100 aa0pa 100 wisa 100 pmoda 100 User Manual BLADOPT imxgus vstorm rotations 1 100 0 nelmax 1 2 le 100 0 nelmax 1 2 85 INCLUDE storm i C C Data of blade loads at extreme windspeed C mysto k vector with flat moment at element boundary k Nm mxsto k vector with edge moment at element boundary k Nm C mzrst rotor torque at extreme windspeed Nm C fu_sto axial force during storm on tower head N stotor rotor torque during storm Nm REAL mysto 0 nelmax mxsto 0 nelmax fu_sto torsto COMMON storm mysto mxsto fu_sto torsto 86 e Annex Cost Module Include Files User Manual BLADOPT INCLUDE Tower ao00o0o0o0o0oo0o0o0000 000 0 00o cost price data of the tower c_c_l mass cost coef Ed tt tower top c_buck esteel mstrex maximum al for the tower diameter coefficient buckling constant elasticity smste density of tower modul material mstrfa m
73. o be used throughout the program C C g gravitational constant m s 2 pi goniometric constant pi atan2 1 1 C twopi goniometric constant equal 2 pi C conrad conversion from degree to radials pi 180 Ee E arcsma architecture depending smallest Real 8 REAL g DATA g 9 80665 REAL pi conrad twopi REAL 8 arcsma COMMON consta arcsma conrad pi twopi 66 e Annex Cost Module Include Files User Manual BLADOPT INCLUDE Control C23456789012345678901234567890123456789012345678901234567890123456789012 C G lvarsp true for variable speed turbines above rated power 11 E lambda tip speed ratio below maxrpm or below Prated E rpmmax maximum rotational speed in rpm for variable C speed wind turbine rpm E crommin minimum rotational speed in rpm for variable E speed wind turbine rpm rpms rotor speed constant speed wind turbine rpm C E lpitch true for pitch regulated false for stall C controlled E E ltip true for part span pitch control C pitnor normal pitch angle below vrated deg C pitsto pitch angle during stand still e g due to storm deg C tau pitch control time constant s E lstall true for pitching to stall above rated power C lequil true when equilibrium curves have to be determined C lteet true when rotor is teetered E E freq_t tower frequency for variable speed system should C be avoided for rotor speed rad s E REAL lambda
74. of the blade in a simple manner Price c_c_1 pjaaes Masspiade tiPmass C_C_2 tipmass The mass of a rotor blade is determined with a rotor blade design model based on a simple engineering model Blade definition The blade is divided in three sections flange root airfoil see figure 2 for the blade geometry definitions The blade is defined by 4 different radius dependent quantities 1 chord distribution 2 twist distribution 3 thickness distribution 4 profile distribution The blade model uses the first radius where a chord is defined Rc 1 as the start of the first aerodynamic active section This chord is also used to determine the diameter of the blade root which has a fixed ratio with C This ratio is given in the defines def file The chord thickness and twist are linearly inter or extrapolated from the given input to the blade element boundaries This implies that at least two radial positions are needed to define a chord and thickness dis tribution For the twist only one radial position is sufficient because the twist is zero at the tip by default The airfoil sections start at the first radial position where a chord has been defined and run to the first ra dial position where a profile is defined If like in the figure above no radial position at the tip is defined for the airfoil distribution the last indicated airfoil would also be used for the tip section A tip angle can be enforced through
75. on model goes according to the relation below e ti n SEE T Oder N jes Nge order The resulting number of function evaluations is shown in table 1 E g when the approximated model should be of 2 order polynomial model for 7 design parameters at least 36 function evaluations are needed to construct such a multinomial Table 1 the number of parameters to make a polynomial of an order d with n design parameters Ndes order 0 1 2 3 4 1 1 2 3 4 5 2 1 3 6 10 15 3 1 4 10 20 35 4 1 5 15 35 70 5 1 6 21 56 126 6 1 7 28 84 210 7 1 8 36 120 330 Usually it will not be necessary to optimise all 7 design parameters at a time When the designer is inter ested to see what the sensitivity of one or more parameters is the results of those function evaluations will be stored and can be used to update the approximated model The algorithm used to make such an approximation model is given in the ToMS Transactions on Mathe matical Software database see 5 User Manual BLADOPT Wind Turbine Optimisation e 5 Each new function evaluation can be used to update and increase the reliability of the approximated ob jective function Finding the minimum of the approximation model The minimum of the approximated model is found using a classical method taking the constraints into account The method chosen is a Feasible Sequential Quadratic Programming FSQP algorithm a super linear convergent algorithm for directly tackling optimisation
76. ous Synchronous generator cost function included in analysis when active Generator asynchronous Asynchronous generator cost function included in analysis when active Generator direct drive Direct drive cost function included in analysis when active Power electronics Power electronics cost function included in analysis when active Transformer Transformer cost function included in analysis when active Nacelle bed plate Nacelle bed plate cost function included in analysis when active Hydraulics Hydraulics cost function included in analysis when active Control system Control system cost function included in analysis when active Ventilation Ventilation cost function included in analysis when active Primary shaft Primary shaft cost function included in analysis when active Bearing PS Bearing primary shaft cost function included in analysis when active Yaw bearing Yaw bearing cost function included in analysis when active Full size brake Full size brake cost function included in analysis when active Parking brake Parking brake cost function included in analysis when active Wind farm Windfarm cost included in analysis when active Tower Tower cost function included in analysis when active 50 e User Interface User Manual BLADOPT The engineering costs which can be de selected are Blades Blades cost function included in analysis when active Hub Hub cost function included in analys
77. ox true for box type construction else elliptical Espar Elasticity modulus of the spar Pa rho spar density of spar material kg m rho skin density of skin material kg m Omaxtat 1 cycle allowable fatigue stress Pa spar slope of the S N curve OmaxStat max allowable max stress Pa twin minimum skin thickness m csoverca chord for strength over chord for aerodynamic properties The Omaxfat is transformed into the n cycle equivalent fatigue stress 1 x lo Got Ten Mspar O pieg s Zn rotations in which otations Stands for the total number of rotor rotations or 1 P cycles which is determined in the spectrum module 30 Cost functions User Manual BLADOPT DEFINS DEF default values currency NFL symbol for the costs assembly 30000 cual 1 005 sf windfarm 74 ene 3000 Cr er 1900 edes safety control 8000 coa TI 10000 Ces 3000 ere 3 122 sf 1 S R sf 2 hub 8000 cal 2500 Mer 1250 GE drive train 900 ee electrical_system 0 25 a 255 b 50 lo 48000 Cari 65 CC 2 1 ngen nacelle 6000 mci 13 3750 c_e_1 yaw_mechanisme 6500 ete I tower 4 NFL kg 0 03 c_dia_tt L c_buckling Zld Estee 7800 rho steel 150 E 06 max allowab xtreme stress Pal 50 E 06 nax allowable fatigue stress Pa Die m in S_N curve 240 E 06 yield stress 08 RA ER
78. parameters Note that if parameters have been modified which makes it impossible for the model to continue this button will be disabled and you can only restart the model The calculations can be interrupted again by pressing the Interrupt button tab General This tab see Figure 10 contains the following text boxes to adjust general design parameters The fol lowing parameters can be modified textboxes Design life Niite the intended fatigue life years for the wind turbine This parameter is only used to determine the number of load cycles due to turbulence and rotor rotations for the tower and rotor blade Allowable values 0 lt Nig lt 1000 Changing this parameter will result in a restart with an empty database Hub height Hhub the height m of the rotor centre above ground level Allowable values Drotor 2 lt 200 Rotor diameter Den the diameter of the rotor m Allowable values 5 lt 200 Nr of blades Nbiade the number of rotor blades which make the rotor Allowable values integers 2 lt Nude lt 4 Pitch radius Ra radius m where a pitch bearing if there is one is positioned Allowable values 0 lt Rpit Drotor 2 Pitch angle Du Initial pitch angle For a stall regulated wind turbine this will be overruled by the power control al gorithm For a pitch controlled wind turbine the given pitch angle will be used below Vyatea Allowable values 180 lt 0 lt 180 Pitch angle s
79. plitude wordt meegenomen in het windspectrum 16 e Load model in Dutch User Manual BLADOPT Coherente vlagen Coherente vlagen zijn windvlagen die het gehele rotorvlak treffen Vlaagduurklasse Binnen zon windklasse worden ook de tijdsduur vlaagduurklasse en de amplituden in klassen verdeeld Table 4 De klasse indeling van de vlaagduurklasse Vlaagduur Interval Rekenwaarde Rekenwaarde Aatal uur klasse vk T s Ta s Tas Nu IR 2 30 30 7 5 240 met Ta rekenwaarde vlaagduurklasse voor berekening van de vlaagamplitude en Ta rekenwaarde vlaagduurklasse voor berekening van het aantal vlagen per uur Amplitude De grootte van de amplitude van een coherente vlaag in een windklasse is verdeeld in drie groepen die worden gekarakteriseerd door de kans Pa dat de amplitude wordt overschreden Hiermee is ook vastgelegd hoe vaak een dergelijke vlaag voorkomt Tabel 5 geeft de relatie tussen kans van voorkomen en overschrijdingskans Table 5 De verdeling van de vlaagamplituden naar overschrijdingskans _ Overschrijdingskans Pa Ca kans van voorkomen P 10 1 00 80 1 1 64 18 0 01 2 52 2 De amplitude van de coherente vlagen OP is afhankelijk van de windklasse Voor het berekenen van de vlaagamplitude van de coherente vlagen is nodig 2 O ueft Ou Ou O a ls DEE F ul CA GE TDI waarin Cyk constante Sueff effectieve turbulentie intensiteit De drie amplituden van de OP mode kunnen met be
80. problems which can handle linear or non linear inequality constraints and linear or non linear equality constraints The algorithm is described in 8 Objective function The objective function in BLADOPT is the Cost of Energy calculated according to the simplified proce dure described in the IEA Recommended Procedure see 10 LPC 1 a AUE TOM AUE In which I Initial investment a annuity factor depending on discount rate and economic lifetime AUE Annual utilised energy TOM Total levelized annual downline cost i e Operations and maintenance insurance retrofit cost and salvage cost This results in a yearly capital cost and operating and maintenance cost divided by the net energy produc tion minus losses with in the wind farm To determine the cost of energy it is necessary to determine a the following quantities e energy yield e total investment cost e operating and maintenance cost e economic parameters like interest and depreciation period The energy yield and total investment cost are determined by the wind turbine model and cost model while the operation and maintenance cost are a user supplied percentage of the total investment cost The economic depreciation period and interest percentage are also parameters to be supplied by the user 6 e Wind Turbine Optimisation User Manual BLADOPT Wind Turbine Model General description The wind turbine model is simplified to a high extend In f
81. profile is implemented using the standard logarithmic profile In H U nub U 10m in which the Zo stands for the terrain roughness that needs to be supplied by the user The weibull scale factor is a 1 13 U ne The Weibull shape factor is extrapolated according to data also taken from 9 shown in figure 3 below The quadratic curve fit results in the following relation for the Weibull shape factor ky zs Eu D 0 00607385 Hub 2 64567E 05 Hub The wind speed distribution is determined for the same wind speed vector as the power curve and summed between Vin and Vu of the wind turbine to determine the average power of the wind turbine Multiplied with the number of hours per annum this yields the yearly electricity production 1 40 r 8 1 30 v T 5 1 20 measurement n quadratic fit E 2 1 10 1 00 A i urt A 0 50 100 150 200 height Figure 3 the height dependencies of the Weibull shape factor k 12 e Energy Yield Model User Manual BLADOPT Load model in Dutch Inleiding Dit hoofdstuk beschrijft het blok BELAST dat onderdeel uitmaakt van het blok KOSTPRIJS van Stork Product Engineering Het doel van blok BELAST is om het totale vermoeiingsspectrum te bepalen en deze tot een enkel getal de vermoeiings equivalente belasting te reduceren Eerst wordt het windvlagen model uit de doeken gedaan en daarna hoe de stap van een vlagenspectrum naar een belastingspectrum wordt g
82. spectrum a quasi U T S Uts is calculated With the maximum of all Uts values as starting value for UTS guess the Miner summation for the spectrum is calculated in general this sum will be too large From the initial value of UTS guess and the sum a second value for UTS guess is found Starting from this second value and using a root finder routine like the cord method the FEL is calculated Having calculated the necessary loads a structure can be designed from the combined loads The stress reserve factor SRF is found easily but the lifetime reserve factor LRF can not be calculated directly An approximation for the LRF is found as follows For the critical load often the flapping moment the Miner sum is calculated using a U T S equal to the FEL divided by SRF The LRF is defined as this Miner sum divided by the target value 24 e User Manual BLADOPT Cost functions Introduction Two types of cost functions are implemented in BLADOPT engineering and parametric cost functions The engineering cost functions are actually only real engineering models for the tower and rotor blade while for the remaining components parametric functions using geometric and or response parameters of the belast module as input The parametric cost functions are based on geometric properties and expected number of products made in the series production The user can alter the cost modules in two ways First the cost coefficients can be
83. t kunststof Range range Li S N lijn dsip 1 m l Sni Gni Gni Figure 7 S_N curve tegen belasting curve 22 e Load model in Dutch User Manual BLADOPT Equivalente belasting De totale vermoeiingsschade zal groter worden als de ranges ds met een factor f21 worden verhoogd Het aantal wisselingen sn verandert weliswaar niet maar de toegestane wisselingen gn zal bij een belasting f ds lager zijn waardoor pm sn gn groter zal zijn In figuur 4 is te zien wat het effect is voor bijvoorbeeld het verhogen van range ds tot ds f ds op de verhouding tussen de sn en gn Er kan een factor f worden bepaald waarvoor geldt dat de totale schade pmsom 1 De equivalente belasting is een belasting die eenmaal voorkomt en die dezelfde schade zal geven als het gehele spectrum en is daardoor een maat is voor het gehele spectrum De equivalente belasting is de belasting die wordt verkregen door de waarde van de s n lijn bij n 1 L te delen door factor f waarvoor de totale schade 1 ontstaat Toepassing in BLADOPT De belasting kan ook equivalent worden gemaakt voor een ander aantal Voor staal is het gebruikelijk om de belasting equivalent voor n 10 te gebruiken zodat de constructie kan worden beoordeeld met bijvoorbeeld de kerfwaarde van een lastype volgens de Eurocode Bij staal heeft de S N kromme meer details Zo mag de vloeigrens niet worden overschreden Omdat dit voor d
84. the user interface see tab general The root section is a cylindrical section with a diameter that equals a fixed ratio of the maximum chord This ratio D oo C can be defined in the file defins def but has a default value of 0 55 The airfoil section is build up of a skin and combined with a double elliptical or box type beam see ex ample with a double elliptical cross section in figure 9 The cross sections at the element boundaries are designed in such a way that they can resist the maximum static load and the equivalent fatigue load User Manual BLADOPT Cost functions e 29 Fig 9 Blade section with load carrying beam For each section a minimisation is performed on the cross sectional area constraint to be able to bear the fatigue and static loads This results in the definition of two concentric ellipses or boxes The outside el lipse or box is defined by the aerodynamic shape of the section the inside ellipse or box by the resistance moments needed to carry the loads The properties which are needed to design the blade result from the load spectra analysis and from con stants in the defins def file like material and price quantities The properties which are defined in the defins def file are c_c_l the cost per kilo blade mass NFL kg C622 the cost of a kilo tip mass NFL kg c_mass constant in tip mass equation tipmass c_mass R ip kg m sfentr safety and control factor Ib
85. torm The pitch angle for load calculations at V storm and rotor parked Allowable values 180 lt 00 lt 180 Vin Cut in wind speed m s at which the wind turbine is assumed to start Allowable values 1 lt Vin lt Vout Vout Cut out wind speed m s at which the wind turbine is assumed to stop Allowable values Vou lt 30 m s User Manual BLADOPT User Interface e 43 AV Wind speed interval m s which is used in the aerodynamic analysis Allowable values AV gt 2 Vou 1 1 127 Pair Density of the air usually 1 225 kg m at ground level Allowable values 0 5 lt Pair lt 1 5 Nr of blade elements Nem the number of equally spaced elements in which the blade is divided between the rotor centre and the blade tip Allowable values integer 5 lt Netem lt 20 tab Blade The Blade tab see Figure 11 contains blade specific parameters N BLADOPT lt New file gt x File Options Help General Blade Power wind Cost Economy Optimization linear v SEI linear v Thickness interpolation type linear x Chord interpolation type Twist interpolation type Radius fi 5 of tip radius Chord 2 m Twist f 5 degrees Thickness 21 of Chord IRMA a gt gt i Profile PO Browse Delete Add Interrupt Figure 11 the blade definition window listboxes Chord Twist Thickness interpolation type These list boxes l
86. uise 26 8D 63 C Assembly 0 05 y C 64 i i 1 NC where i symbolically refers to any of the cost items defined above Foundation Woc Wat Wr Determine what the design factor n should be use figure 8 of 4 Then iterate to get the tower foot ra dius using 4M n g R Ma 1382 Determine how much reinforcement is to be used in the casting A typical number can be 0 02 Also consider necessity for piling RF 75 Circumstances Kiling Good firm ground 1 0 Good sand 12 Sand clay 50 50 1 4 Clay 1 6 Severe clay cond 2 0 Wf 1382 R 74 C round Kpiting 0 123 1 3 33 Wy 76 Land Determine kz ana i e the cost of land per m Arana MAX 0 3 82 DiskArea 800 m 77 CLand KLand Land 78 Site Preparation Determine specific cost for road construction Low Graveled kc 30 36 e Cost functions User Manual BLADOPT High Cement kc 130 L and w length and width of road must be given in m Cite 5600 28 8L kcL w Transportation Crp 5 84 D 400 L km 0 486D Erection Cryec 93D 5 26000 where 6 0 for 1 and 2 blades 6 1 for 3 blades and more Electrical Connections C Connect 165L where L is the length of the cable Remote control Cremote 16000 General Site Costs Coeneral 5260D Engineering Ceng 2 6D Total Sum of the above 79 81 82 83 84 85 86
87. y default 1 of the interval between maximum and minimum chord is used 54 e User Interface User Manual BLADOPT Twist Value This box indicates the actual value of the twist at a certain span wise position Before the optimisation is started it shows the entered value in the tab Blade and during the optimisation it shows the value deter mined by the optimisation procedure Twist Minimum For each span wise position where the twist is to be optimised this can not be the tip chord a minimum value has to be entered Allowable values 180 lt 6 x lt 180 remember 6 100 0 Twist Maximum For each span wise position where the twist is to be optimised a maximum value has to be entered No default values are available If no maximum can be given enter a large number e g 25 m However it is always faster and safer to enter a realistic value Allowable values 180 lt 0 x lt 180 0 100 0 Rotor diameter Value This box indicates the actual value of the rotor diameter before the optimisation is started it shows the entered value in the tab General and during the optimisation it shows the value determined by the optimi sation procedure Rotor diameter Minimum When the rotor diameter is to be optimised a minimum value has to be entered If no minimum can be given enter a small number e g 1 m However it is always faster and safer to enter a realistic value Rotor diameter Maximum When the rotor diameter is to be

Download Pdf Manuals

image

Related Search

Related Contents

MPEG4 4CH DVR Quick Guid ee  Manual  Akai AMX  Casio Projector Range  製品安全データシート - CSTジャパン株式会社  Sprint Vital User Guide  Verbatim Portable USB Speaker System  Sony SNC-DH140  Manuel d`utilisation Sanyo PLC-SU20    

Copyright © All rights reserved.
Failed to retrieve file