Home

SCORBOT-ER 9Pro

image

Contents

1. Pin Pin Description Robot Side Axis Telephone Pin Description ID J1 Cable Color Controller Side J2 1 5V red 5V 16 COMMON yellow COMMON 2 13 CHA3 Encoder Pulse A 3 green CHA 2 14 CHB3 Encoder Pulse B white CHB 2 15 CHC3 Encoder Index Pulse black CHC 2 33 MSWITCH Home Switch blue MSWITCH 2 5V red 5V 20 COMMON yellow COMMON 3 17 CHA4 Encoder Pulse A 4 green CHA 3 18 CHB4 Encoder Pulse B white CHB 3 19 CHC4 Encoder Index Pulse black CHC 3 34 MSWITCH Home Switch blue MSWITCH 2 5V red 5V 24 COMMON yellow COMMON 4 21 CHAS Encoder Pulse A 5 green CHA 4 22 CHBS Encoder Pulse B white CHB 4 23 CHCS Encoder Index Pulse black CHC 4 35 MSWITCH Home Switch blue MSWITCH 2 5V red 5V 28 COMMON yellow COMMON 5 25 CHA6 Encoder Pulse A 6 green CHA 5 26 CHB6 Encoder Pulse B white CHB 5 27 CHC6 Encoder Index Pulse black CHC 5 36 MSWITCH Home Switch blue MSWITCH 37 Internal jumper to pin 16 to detect when the cable is disconnected SCORBOT ER 9Pro 7 4 User Manual 8 Maintenance The maintenance and inspection procedures recommended below will ensure the best possible performance of the robot over an extended period Daily Operation At the start of each working session check the robot and controller in the following order 1 Before you power on the system che
2. The limit switches are mounted on a disk which is attached to the robot s frame The disk for axis3 is shown in Figure 7 6 Figure 7 5 SCORBOT ER 9Pro Limit Switch The output shaft of the Harmonic Drive moves relative to the microswitch disk As the joint moves a cam on the Harmonic Drive output shaft reaches a point at which it forces the actuating button of the limit switch into a position which activates the switch ACTUATING BUTTON LIMIT SWITCH RL Vo OLAS EAS LIMIT ES SWIT A f EY ON AS O A omc LIMIT SWITCH S S DRIVE OUTPUT DISK kE Figure 7 6 Limit Switch Activation SCORBOT ER 9Pro 6 4 User Manual When the limit switch is activated it causes a control error resulting in the activation of COFF control off mode and an impact protection message CON control on mode must be activated and the robot arm must be manually moved using Scorbase or a teach pendant away from the impact condition Hard Stops When the software limits and or the end of travel switches fail to halt the movement of the robot arm it is possible that the momentum of the robot arm will drive it until it reaches its mechanical limit When the joint reaches this hard stop the impact protection and thermic protection processes detect an error thus activating COFF CON must be activated and the robot arm must be manually moved away from the impact condition Home Swit
3. 13 14 Motor 5 Pink M4 B 31 32 Motor 6 White M5_A 48 49 Motor 6 Green M5_B SCORBOT ER 9Pro 7 2 User Manual Pin Pin Description Belden Wire Pin Description No Robot Side J1 Color Controller Side P1 50 24VDC Red 24VDC 17 24VDC RET Black 24V RET Encoder Cable and Connector The encoder cable which connects the controller to the motor encoders and optical home switches contains 36 leads Figure 8 3 shows the D37 female connector that joins the encoder cable to the controller s back panel The following table details the connector pin functions and describes the cable wiring rr a ae RR E A S AA OS Figure 8 3 D37 Connector Table 8 2 Encoder Cable and D37 Connector Pin Signal Name Robot Side Axis Telephone Signal Name ID J1 Cable Wires Controller Side J2 Color 1 5V red 5V 8 COMMON yellow COMMON 0 5 CHAI Encoder Pulse A 1 green CHA 0 6 CHB1 Encoder Pulse B white CHB 0 2 CHC1 Encoder Index Pulse black CHC 0 31 MSWITCH Home Switch blue MSWITCH 1 5V red 5V 12 COMMON yellow COMMON 1 9 CHA2 Encoder Pulse A gt green CHA 1 10 CHB2 Encoder Pulse B white CHB 1 11 CHC2 Encoder Index Pulse black CHC 1 32 MSWITCH Home Switch blue MSWITCH User Manual 7 3 SCORBOT ER 9 PRO
4. dirt salt iron powder or similar substances Where subject to vibrations or shocks Where exposed to direct sunlight Where subject to chemical oil or water splashes Where corrosive or flammable gas is present Where the power line contains voltage spikes or near any equipment which generates large electrical noises Do not abuse the robot arm Do not operate the robot arm if the encoder cable is not connected to the controller Do not overload the robot arm The combined weight of the workload and gripper may not exceed 2kg 4 4 1b It is recommended that the workload be grasped at its center of gravity Do not use physical force to move or stop any part of the robot arm Do not drive the robot arm into any object or physical obstacle Do not leave a loaded arm extended for more than a few minutes Do not leave any of the axes under mechanical strain for any length of time Especially do not leave the gripper grasping an object indefinitely The Scorbot robot is dangerous and can cause severe injury Use with extreme caution Set up a protective screen or guardrail around the robot to keep people away from its working range ii Table of Contents ER REA 1 A E O 1 NC Rah 11 sce assed ede HER BEE TER REIF RS BAR ea scons econ ean ceo nan T EEEE AEE hace 1 1 Einpaeking and Handl np Se el 1 1 Unpacking the Robot isis nn u 1 1 Handling TS MUCHOS so eek 1 2 Acceptance e e codo 1 2 Repackins SAME ta 1
5. 3 a 2 1 SPECIMICALIONS nidad wn Lohan 2 1 ia nen os celo dls a a a do del 2 2 Work Eny lp io 2 2 aa 3 1 Installation isa 3 1 a AA A Aa 3 1 Controller and Computer Terminal Setup ooooonnccnonccnoncnonncnonononnnonnnononcnononnnnnnnn ccoo ernennen 3 1 LS A Rising 3 1 SCORBOT ER 9Pro Installation nee nina 3 3 Controller Installation 2 222 AI 3 3 ROLE TA er eno 8 E 3 3 Hardware Check asia dci 3 4 Homing the Ro e et 3 4 Peripheral instalo a A A A A 3 5 E E eubbeoeuaueeane tee 3 5 Pneumatic Gripper tai 3 5 DE Servo PP lu Be ka AIEEE 3 8 Activating th GPP sun kassel diia 3 9 OO 4 1 Operating Methods ini ness 4 1 SO 4 1 SCOT ASE DUMAS A Ea 4 1 A E 4 1 S ann I Ren BAe Te aaa RESTE RA Naa Sa EAS GIS TE 5 1 DIVER coaeadeaue deausasencbanasdecnenasbaneane tacos 5 1 A E aos 5 1 EG ESOT S CAN UNS ag iis a alas o e E 5 3 SCORBOT ER 9Pro MOTOS u a nung ua sub 5 4 Harmonie DAYS GEAR 5 5 Harmonie Driaye Gear Ratos sans ee 5 6 PRINS Gear RAD nee ee ees 5 7 Onis dades 6 1 Position and Limit Devicesin insnoeien dd adria E s Esi 6 1 A OO 6 1 Encoder Response Einem 6 3 End of Travel Emo Switches iu einmal 6 3 Hard OPS noto 6 5 HOME WU CAES E LESS al OS 6 5 E cachet 7 1 e ee lio lo ee o 7 1 Robot Power Cable and Comme ctor ccccccccccccessssssscececececsesensnseceeeceesceesenseseceseceeseeenees Encoder Cable and Cometa VEIS isc DA A dd o O ae Beriodie APEC rte Troubleshootin A O A Re 11 1 Unpa
6. Operating Methods The SCORBOT ER 9Pro robot can be programmed and operated in two ways The Scorbase for ER 9Pro ER 14Pro User Manual includes instructions on operating the robot Software Scorbase Software Scorbase for ER 9Pro ER 14Pro is a robot control software package which is supplied with the controller Its menu driven structure and off line capabilities facilitate robotic programming and operation Scorbase runs on any PC system with Microsoft Windows XP Vista 7 and communicates with the Controller through USB plug and play interface The Scorbase for ER 9Pro ER 14Pro User Manual provides detailed descriptions and examples of the Scorbase commands Teach Pendant The teach pendant is a hand held terminal which is used for controlling the SCORBOT ER 9Pro robot and peripheral equipment The teach pendant is most practical for moving the axes recording positions and sending the axes to recorded positions Other functions can also be executed from the teach pendant The Teach Pendant will only work if Scorbase is running on the PC and is in On line mode The Teach Pendant for Controller USB Pro User Manual fully describes the various elements and functions of the teach pendant User Manual 4 1 SCORBOT ER 9 PRO 5 Drive System The three main elements of the SCORBOT ER 9Pro drive system are shown in Figure 6 1 DC electrical motor Harmonic Drive gear Timing belt and pulleys Figure 6 1 shows the
7. be sure to secure the cables around the foam spool The robot should be repacked in its original packaging for transport If the original carton is not available wrap the robot in plastic or heavy paper Put the wrapped robot in a strong cardboard box at least 15cm about 6inches longer in all three dimensions than the robot Fill the box equally around the unit with resilient packing material shredded paper bubble pack expanded foam chunks Seal the carton with sealing or strapping tape Do not use cellophane or masking tape 1 3 SCORBOT ER 9Pro 2 Specifications The following table gives the specifications of the SCORBOT ER 9Pro Table 2 1 Specifications Robot Arm Specifications Mechanical Structure Vertical articulated enclosed casting Number of Axes 5 plus gripper Axis Range Axis 1 Base rotation 270 e Axis 2 Shoulder rotation 145 Axis 3 Elbow rotation 210 e Axis 4 Wrist pitch 196 e Axis 5 Wrist roll 737 Speed Effective Speed Maximum Speed e Axis 1 Base rotation 80 sec 140 sec e Axis 2 Shoulder rotation 69 sec 123 sec e Axis 3 Elbow rotation 77 sec 140 sec e Axis 4 Wrist pitch 103 sec 166 sec e Axis 5 Wrist roll 175 sec 300 sec Maximum Operating Radius 691mm 27 2 without gripper End Effector options Pneumatic Gripper Electric DC Servo Gripper Homing Op
8. power to the motors to which it is directly connected and receives signals from the corresponding limit and home switches When a limit switch is triggered the PCB automatically cuts off power to the motor that drives the axis In addition each PCB transfers power to the next PCB and sends encoder and home switch signals to the previous PCB The robot and encoder cables are directly connected to PCB 18100 The robot cable supplies power to the PCB and the encoder cable carries information from the encoders and the home switches for all six axes to the controller User Manual 7 1 SCORBOT ER 9 PRO Robot Power Cable and Connector Figure 8 2 shows the D SUB 50 male connector that joins the power cable to the controller s back panel N J Ow 0 0 6 Cot 06 06 00 a PS ER 0 70 OOS OO Oa ee ee ee Figure 8 2 D50 Connector The robot cable contains 14 leads The following table details the connector pin functions and cable wiring Table 8 1 Robot Power Cable and Wiring Connector Pin Pin Description Belden Wire Pin Description No Robot Side J1 Color Controller Side P1 1 2 Motor 1 Black MO_A 19 20 Motor 1 Red MO_B 36 37 Motor 2 Brown MIA 5 6 Motor 2 Orange M1 B 23 24 Motor 3 Yellow M2 A 40 41 Motor 3 Purple M2 B 9 10 Motor 4 Light blue M3_A 27 28 Motor 4 Blue M3_B 44 45 Motor 5 Grey M4_A
9. 360 17 Se 2048 When the encoder resolution is divided by the overall gear ratio of the axis the resolution of the joint is obtained Since the encoder is mounted on the motor shaft and turns along with it the resolution of the joint is expressed as Se N AXIS Soni Thus for example the resolution of joint 3 of the SCORBOT ER 9Pro is therefore as follows _ 0 176 0 000825 73 213 33 S The resolution is the smallest possible increment which the control system can identify and theoretically control The accuracy of the axis that is the precision with which it is positioned is affected by such factors as backlash mechanical flexibility and control variations End of Travel Limit Switches The SCORBOT ER 9Pro uses limit switches to prevent the joints from moving beyond their functional limits When a control error fails to stop the axis at the end of its working range the limit switch serves to halt its movement The switch is part of an electric circuit within the robot arm independent of the robot controller The limit switches used in the SCORBOT ER 9Pro are shown in Figure 7 5 User Manual 6 3 SCORBOT ER 9 PRO Each of axes 1 through 4 has two limit switches one at each end of the axis working range Axis 5 roll has no travel limit switches it can rotate endlessly When a gripper is attached to axis 5 its movements are controlled and limited by means of software only encoder
10. SCORBOT ER 9Pro User Manual intelitek Copyright 2011 Intelitek Inc SCORBOT ER 9Pro Catalog 200034 Rev B March 2011 Every effort has been made to make this book as complete and accurate as possible However no warranty of suitability purpose or fitness is made or implied Intelitek is not liable or responsible to any person or entity for loss or damage in connection with or stemming from the use of the software hardware and or the information contained in this publication Intelitek bears no responsibility for errors which may appear in this publication and retains the right to make changes to the software hardware and manual without prior notice INTELITEK INC 444 East Industrial Park Drive Manchester NH 03109 537 Tel 603 625 8600 Fax 603 625 2137 website www Intelitek com Safety The SCORBOT ER 9Pro is a potentially dangerous machine Safety during operation is of the utmost importance Use extreme caution when working with the robot Precautions 10 ee The following chapters of this manual provide complete details for proper installation and operation of the SCORBOT ER 9Pro The list below summarizes the most important safety measures Define a safety area as detailed on Figure 4 1 Make sure the robot base is properly and securely bolted in place Make sure the cable from the body to the base can move freely during all movements of the robot s base axis Make sure both the
11. ach the gripper to the gripper mounting flange at the end of the robot arm 2 Connect the gripper cable to the electrical connector on the robot arm Make sure the connector is oriented as shown in Figure 4 13 Make sure the gripper cable is positioned as shown in Figure 4 14 4 Carefully execute the robot HOME command Stay close to the teach pendant or controller If the gripper cable becomes entangled or excessively stretched during the homing abort the procedure immediately 5 The gripper has a rotation of 270 Do not attempt to move the gripper beyond this limit SCORBOT ER 9Pro 3 8 User Manual 6 At the end of each work session before turning off the controller or before homing the robot make sure the gripper s position is as shown in Figure 4 14 Axis 6 is reserved by default controller configuration for a servo gripper To connect a different device as axis 6 you must change the system configuration by means of the Hardware Setup that is found under Options on the Menu Bar Figure 4 13 Connecting Gripper to SCORBOT ER 9Pro Figure 4 14 Connecting Gripper to SCORBOT ER 9Pro Activating the Gripper Open and close the gripper in order to verify that it is functioning To do so select View Manual Movement Control the gripper using the manual movement window which appears This window can be used for both the electric and the pneumatic gripper User Manual 3 9 SCORBOT ER 9 PRO 4
12. actual movement of the axis however is limited by the arm s mechanical structure 5 7 SCORBOT ER 9 PRO 6 Position and Limit Devices This chapter describes the various elements in the SCORBOT ER 9Pro which play a part in the positioning of the robot arm and the limiting of its motion Encoders End of Travel Switches Hard Stops Home Switches Encoders The location and movement of each SCORBOT ER 9Pro axis is measured by an electro optical encoder attached to the motor which drives the axis The encoder translates the rotary motion of the motor shaft into a digital signal understood by the controller Figure7 1 shows the encoder mounted on a SCORBOT ER 9Pro motor The encoder used on the SCORBOT ER 9Pro contains a single light emitting diode LED as its light source Opposite the LED is a light detector integrated circuit This IC contains several sets of photodetectors and the circuitry for producing a digital signal A perforated rotating disk is located between the emitter and detector IC Figure 7 1 SCORBOT ER 9Pro Encoder User Manual 6 1 SCORBOT ER 9 PRO As the encoder disk rotates between the emitter and detectors the light beam is interrupted by the pattern of bars and windows on the disk resulting in a series of pulses received by the detectors The SCORBOT ER 9Pro encoders have 512 slots as shown in Figure 7 2 An additional slot on the encoder disk is used to generate an index pulse C pu
13. ches The SCORBOT ER 9Pro uses an optical home switch on each axis to identify the fixed reference or home position The home switch is mounted on the same disk as the end of travel switches and a flag is attached to the Harmonic Drive output shaft as shown in Figure 7 7 During the homing procedure the robot joints are moved one at a time Each axis is moved until the flag cuts the beam of light When that occurs the optical detector on each joint sends a specific signal to the controller Once the home switch location has been detected the axis motor continues to rotate until its encoder produces an index pulse The point at which that occurs is the axis home position OPTICAL OPTICAL FLAG HOME FAG HOME AXIS NOT AT HOME AXIS AT HOME Figure 7 7 Home Switch Activation User Manual 6 5 SCORBOT ER 9 PRO 7 Wiring Figure 8 1 is a schematic diagram of the SCORBOT ER 9Pro cable connections The wire braid which connects the robot to the controller contains a power robot cable and an encoder cable PCB 18300 PCB 18100 POWER FA _ ROBOT Controller USB PRO gt an ENCODERS ae GROUND Figure 8 1 SCORBOT ER 9Pro Cabling The body upper arm and forearm links each contain a printed circuit board PCB The motors encoders limit switches and home switches for each axis are directly connected to one of these three internal PCBs Two wire braids connect the PCBs Each PCB transfers
14. ck the following items The installation meets all safety standards All cables are properly and securely connected Cable connector screws are fastened The gripper is properly connected The air supply for a pneumatic gripper is functioning properly Any peripheral devices or accessories which will be used such as the teach pendant or a remote EMERGENCY button are properly connected to the controller 2 After you have powered on the system check the following items No unusual noises are heard No unusual vibrations are observed in any of the robot axes There are no obstacles in the robot s working range 3 Bring the robot to a position near home and activate the Home procedure Check the following items Robot movement is normal No unusual noise is heard when robot arm moves Robot reaches home position in every axis Periodic Inspection The following inspections should be performed regularly Check robot mounting bolts for looseness using a wrench Retighten as needed Check all visible bolts and screws for looseness using a wrench and screwdriver Retighten as needed Check cables Replace if any damage is evident User Manual 8 1 SCORBOT ER 9Pro The following robot components may require replacing after prolonged use of the robotic arm causes them to wear or fail DC Servo Motors e Motor Brushes Timing Belts V Rings e Harmonic Drives Cross Roller Bearings Troubleshooting Whene
15. cking and Handling This chapter contains important instructions for unpacking and inspecting the SCORBOT ER 9Pro robot arm Read this chapter carefully before you unpack the SCORBOT ER 9Pro robot and controller Unpacking the Robot The robot is packed in expanded foam as shown in Figure 1 1 To protect the robot during shipment a metal plate holds the gripper mounting flange to the robot base The plate is fixed to the flange with three bolts and to the base with two bolts Use a 3mm hex socket wrench to detach these bolts Save these bolts and the plate You will need them should you repack the robot for shipment Save the original packing materials and shipping carton You may need them later for shipment or for storage of the robot Figure 1 1 SCORBOT ER 9Pro in packing User Manual 1 1 SCORBOT ER 9Pro Handling Instructions The robot arm weighs 53 5 kg 117 7 lb Two people are needed to lift or move it Lift and carry the robot arm by grasping its body and or base Do not lift or carry the robot arm by its upper arm or forearm Acceptance Inspection After removing the robot arm from the shipping carton examine it for signs of shipping damage If any damage is evident do not install or operate the robot Notify your freight carrier and begin appropriate claims procedures The following items are standard components in the SCORBOT ER 9Pro package Make sure you have received all the items listed on
16. d in Figure 4 11 Figure 4 7 Pneumatic Gripper Figure 4 8 SCORBOT ER 9Pro with Pneumatic Gripper 3 Refer to Figure 4 12 Connect the two transparent 1 4 O D hoses from the quick connectors at the back of the robot arm to the CYL ports on the pneumatic valve Connect a 5 bar 90 PSI air supply to the IN port on the valve SCORBOT ER 9Pro 3 6 User Manual 4 Refer to Figure 4 9 Connect the valve to the controller s User Power Supply as follows Connect the black wire to a common terminal Connect the red wire to the normally open NO terminal of any unused relay output 5 Connect 24VDC in accordance with your valve s specification to the common C terminal of the same relay output as shown in Figure 4 9 Attach the valve to the controller or any other metallic surface by means of the valve s magnetic base Figure 4 10 Pneumatic gripper valve connection example front connection User Manual 3 7 SCORBOT ER 9 PRO WIRES TO CONTROLLER QUICK COUPLER FOR PNEUMATIC GRIPPER CONNECTOR FOR SERVO GRIPPER FROM AIR SUPPLY x AIR HOSES TO ROBOT GRIPPER MOUNTING FLANGE Figure 4 11 Gripper Connectors Figure 4 12 Pneumatic Solenoid Valve DC Servo Gripper The electric DC servo gripper is shown in the inset in Figure 4 13 The robot must be homed before you mount the gripper Refer to Figures 4 13 and 4 14 1 Using a3 mm hex wrench and four M4x10 socket screws att
17. der reading should rise for rotation in one direction and fall for rotation in the opposite direction If this does not occur there is a problem in the encoder or its circuitry If the encoder readings do not change check whether the encoder connector is properly connected to the rear controller panel The problem may be caused by faulty encoder connectors on the robot s internal PCB s the repeatability of the robot Try to identify the faulty axis If many or all axes are faulty look for an electrical noise source in your environment Check the controller s ground and the robot s ground connection to the safety ground terminal at the back of the controller e Check the encoder 8 3 SCORBOT ER 9Pro Bring the robot to a starting position Using a pencil draw a fine continuous line on the robot which crosses from the cover of one link to the cover of the adjacent link at the joint in question Select View Dialog Bars Encoder Counts to display the encoder readings Click the Control Off icon to disable servo control and then physically move the axis in question to another position Then return to the starting position marked by the line you drew Check the encoder reading for the axis again It should be within 5 counts of the previous reading if not the encoder needs to be replaced Note for more precision in repeatability always start from the same position when moving to a specific location Thus wherever the axi
18. drive system for axes 1 through 4 of the SCORBOT ER 9Pro The roll axis axis 5 transmission does not contain the pulleys and timing belt only a Harmonic Drive is used Note that the illustrations of components shown in this chapter are for descriptive purposes and may not be the actual components used in the SCORBOT ER 9Pro TIMING BELT PULLEY PULLEY B N HARMONIC DRIVE Nao GEAR MICROSWITCH H D OUTPUT SHAFT ENCODER Na yrs Figure 6 1 The SCORBOT ER 9Pro Drive System Motors The SCORBOT ER 9Pro robot arm is driven by DC electric motors These actuators convert signals from the controller electric power into rotations of the motor shaft mechanical power User Manual 5 1 SCORBOT ER 9 PRO A robot arm such as the SCORBOT ER 9Pro imposes severe requirements on the actuators such as the following The robot motor must rotate at different speeds and with a high degree of accuracy For example if the robot is to be used for a spray painting application it must be able to accurately follow the defined path at the specified speed The robot motor must allow fine speed regulation so that the robot will accelerate and decelerate as required by the application The robot motor must supply large torques throughout its speed range and also when the joint is stationary The robot motor must be able to stop extremely quickly without overshooting the target position and perform rapid changes i
19. e electric current via the brushes Brushes These connect the rotating commutator to the electric current source Electrical Connections Housing STATOR Bearing Permanent Magnet Bearing BRUSHES Commutator Shaft Winding Commutator Plate Figure 6 3 Basic Structure of a DC Motor User Manual 5 3 SCORBOT ER 9 PRO SCORBOT ER 9Pro Motors The SCORBOT ER 9Pro uses permanent magnet DC motors to drive the axes Axes 1 2 and 3 of the SCORBOT ER 9Pro are powered by the motor shown in Figure 6 4 Axes 4 and 5 are powered by the motor shown in Figure 6 5 These motors are able to move at extremely high rates of revolution to move loads with high torques and with encoder attached to achieve a very high resolution Table 6 1 Motor Specifications Motor Axes 1 2 3 Motor Axes 4 5 Peak Rated Torque 143 oz in 27 8 oz in Rated Torque 32 oz in 12 5 oz in Maximum Operating Speed 4000rpm 4500rpm Weight 1 29k 2 841b 0 28k 0 621b Figure 6 4 Motor on Axes I 2 and 3 Figure 6 5 Motor on Axes 4 and 5 SCORBOT ER 9Pro 5 4 User Manual Harmonic Drive Gears User Manual The Harmonic Drive transmission used in the SCORBOT ER 9Pro shown in Figure 6 6 offers a very high gear ratio The Harmonic Drive gears used in the SCORBOT ER 9Pro have four main components e Circular spline a solid steel ring with inter
20. e only when Scorbase is On line for the first time If the system has already been homed and you change Scorbase to Off line mode there is no need to home the system again when you return to On line mode When Scorbase is in Off Line Mode or when Robocell is installed the homing procedure is not required although it can be executed Peripheral installation For all peripherals once they have been physically installed they must be added in Scorbase Make sure USB Pro controller servo control is off The Motors state indicator on the front panel of the controller must be in Off state unlit Select Options Hardware Setup and select the peripheral that has been added Gripper Installation The gripper is attached to the flange at the end of the robot arm whose layout is shown in Figure 4 6 Pneumatic Gripper The pneumatic gripper shown in Figure 4 7 is controlled by a 4 2 solenoid pneumatic valve which is activated by one of the controller s relay outputs The valve is 24VDC and can draw its power from the controller s User Power Supply The robot must be homed before you mount the gripper User Manual 3 5 SCORBOT ER 9 PRO M4 amm DEEP 88 mm Figure 4 6 Gripper Mounting Flange Layout 1 Using a hex wrench and four M4x10 socket screws attach the gripper to the robot arm flange 2 Connect the coiled double hose from the gripper to the quick coupling on the robot s forearm as indicate
21. encoder cable and the robot power cable are properly connected to the controller before it is turned on Make sure the robot arm has ample space in which to operate freely Make sure a guardrail or rope has been set up around the SCORBOT ER 9Pro operating area to protect both the operator and bystanders If the distance between the robot and the Controller is greater than 1 5m ensure that an EMERGENCY button is easily accessible either with an external EMERGENCY button or from the Teach Pendant Do not enter the robot s safety range or touch the robot when the system is in operation Press the controller s EMERGENCY button before you enter the robot s operating area Turn off the controller s POWER switch before you connect any inputs or outputs to the controller To immediately abort all running programs and stop all axes of motion do one of the following Press the red EMERGENCY button on the controller Press the EMERGENCY button on the Teach Pendant Warnings 1 3 Do not operate the SCORBOT ER 9Pro until you have thoroughly studied this User Manual and the Controller USB Pro and Scorbase for ER 9Pro ER 14Pro User Manuals Be sure you follow the safety guidelines outlined for both the robot and the controller Do not install or operate the SCORBOT ER 9Pro under any of the following conditions Where the ambient temperature drops below or exceeds the specified limits Where exposed to large amounts of dust
22. lse once for each full rotation of the disk This index pulse serves to determine the home position of the axis The photodetectors are arranged so that alternately some detect light while others do not The photodiode outputs are then fed through the signal processing circuitry resulting in the signals A A B B I and I as shown in Figure7 3 Comparators receive these signals and produce the final digital outputs for channels A B and I The output of channel A is in quadrature with that of channel B 90 out of phase as shown in Figure 7 4 The final output of channel I is an index pulse When the disk rotation is counterclockwise as viewed from the encoder end of the motor channel A will lead channel B When the disk rotation is clockwise channel B will lead channel A COMPARATORS PROCESSING CIRCUITRY EMITTER wm DETECTOR Figure 7 3 Encoder Circuitry Figure 7 4 Encoder Output Signals SCORBOT ER 9Pro 6 2 User Manual Encoder Resolution From the quadrature signal the Controller USB Pro measures four counts for each encoder slot thus quadrupling the effective resolution of the encoder The resolution of the encoder is expressed as _ 360 n Sr Where Sp is the resolution of the encoder n is the number of counts per encoder revolution The encoders used in the SCORBOT ER 9Pro have 512 slots generating 2048 counts per motor revolution The encoder resolution is therefore o
23. n direction Since mounting motors on the robot arm adds to the robot s weight and inertia the robot motors must be light and compact yet powerful As shown in Figure 6 2 the motors of the SCORBOT ER 9Pro are located on the axes they drive with a two stage axes 14 or one stage axis 5 transmission MOTOR 5 ON MOTOR 3 MOTOR 2 MOTOR 1 Be Figure 6 2 Motor Locations in SCORBOT ER 9Pro SCORBOT ER 9Pro 5 2 User Manual DC Motor Structure The principles of operation of electrical motors in general and DC motors in particular are based on an electrical current flowing through a conductor situated within a magnetic field This situation creates a force which acts on the conductor Figure 6 3 shows the basic structure and components of a DC motor comparable to the structure of the motors used in the SCORBOT ER 9Pro This motors has three main components Stator This is a static component which creates the magnetic field The stator may be a permanent magnet or an electromagnet consisting of a coil wound around thin iron plates Rotor This is the component which rotates within the magnetic field The external load is connected to the rotor shaft The rotor is generally composed of perforated iron plates and a conducting wire is wound several times around the plates and through the perforations The two ends of the conductor are connected to the two halves of the commutator which are connected to th
24. nal gear teeth usually fixed to the robot link Wave generator a slightly elliptical rigid disk which is connected to the input shaft with a ball bearing mounted on the outer side of the disk Flexspline a flexible thin walled cylinder with external gear teeth usually connected to the output shaft Dynamic spline a solid steel cylinder with internal gear teeth The external gear teeth on the flexspline are almost the same size as the internal gear teeth on the circular spline except there are two more teeth on the circular spline and the teeth only mesh when the wave generator pushes the flexspline outwards Because the wave generator is elliptical the flexspline is pushed out in two places As the motor rotates the input shaft the wave generator rotates and the location of meshing teeth rotates with 1t However because there are two less teeth on the flexspline it has to rotate backwards slightly as the wave generator rotates forwards For each complete rotation of the input shaft the flexspline moves backwards by two teeth Figures 6 7 and 6 8 show the different steps in this process FLEXSPLINE WAVE GENERATOR DYNAMIC SPLINE CIRCULAR SPLINE Figure 6 6 Harmonic Drive Structure 5 5 SCORBOT ER 9 PRO Harmonic Drive Gear Ratios As in all gears the gear ratio of the Harmonic Drive is the ratio of the input speed to the output speed If the number of teeth on the flexspline is Ny then for every
25. om the Safety Ground stud Place the ground wire terminal onto the stud then replace and tighten the washer and nut 2 Plug the D37 connector into the Robot Encoders port Tighten the retaining screws on the connector 3 Plug the D50 connector into the Robot motors port Tighten the retaining screws on the connector Figure 4 4 Robot Controller Back Before you begin make sure the controller POWER switch is turned off When disconnecting the robot from the controller do it in the reverse order that is Disconnect the D50 Robot Power connector Disconnect the D37 Encoders connector Disconnect the ground wire User Manual 3 3 SCORBOT ER 9 PRO Hardware check Check that all the wires are correctly installed See Figure 4 4 pe Ee E Having installed the hardware it is necessary to perform a check to see that the hardware is working correctly This is performed as follows Turn on the controller Turn on the computer Start Scorbase Select Options On Line decline the option to turn control on Select View Dialog Bars Encoder Counts Manually move each axis separately while watching the Encoder Counts window As each axis is moved the numbers pertaining to it should change Should all the numbers change for all of the axes this indicates that the robot is functioning and communicating with the controller Press F5 to turn control on Select View Manual Movement Control each axis with the
26. or TP Make sure all robot and encoder cables are properly connected SCORBOT ER 9Pro 8 2 User Manual 2 Robot does not find Home position in one or all of the axes Make sure the homing command was properly issued Make sure all robot and encoder cables are properly connected Make sure Scorbase is correctly configured Refer to the Scorbase for ER 9Pro ER 14Pro User Manual Make sure system homing parameters are properly set Refer to the Scorbase for ER 9Pro ER 14Pro User Manual Check whether the optical home switch for this axis is functioning To do this Select View Movement Information Physically move each axis in the two directions in which it moves while watching the Movement Information window The area in which the axis value in Home Switch reads 0 is the axis Home area Where the value is 1 is outside it s Home area If the axis value in the Movement Information window does not change possible causes are Faulty arm circuitry Faulty optical switch optical switch not properly mounted Faulty driver circuitry 3 One of the axes does not function 4 Errors in User Manual Check the axis fuse on the rear panel of the Controller Check the encoder Select View Dialog Bars Encoder Counts to display the encoder readings OFF Click the Control Off icon to disable servo control and then physically move the axis in question in both directions The enco
27. relevant buttons Watch the Encoder Counts window to see that it is responding correctly It is important to make sure that one has the emergency stop button on the controller within easy reach as the SCORBOT ER 9Pro could behave unexpectedly Homing the Robot After you have completed the robot installation execute the robot s Home routine as described below The robot must be homed before you mount the gripper Before you begin the homing procedure make sure the robot has ample space in which to move freely and extend its arm Turn on the controller Turn on the computer Start Scorbase Select Run Search home all axes OR E click the Search Home Fei icon A window opens displaying the number of the axis currently being homed Each time an axis is successfully homed a checkmark appears next to the axis number After the five axes and the gripper have been homed a checkmark appears next to Robot Figure 4 5 Homing Status Window SCORBOT ER 9Pro 3 4 User Manual To abort homing while the procedure is still in progress do one of the following Press F9 Stop command Press the red EMERGENCY button on the controller Press the EMERGENCY button on the Teach Pendant If the homing procedure fails a message appears The Search Home All Axes command executes the robot s homing procedure as well as that of any peripheral devices that have been configured in the Options Hardware Setup menu The command is availabl
28. revolution of the input shaft the output shaft rotates by 2 N of a revolution that is two teeth out of Ny teeth Hence Nf HD gear ratio _ _ a eo Nf The Harmonic Drive gear ratios for each of the SCORBOT ER 9Pro axes are as follows Wave Circular Axis 1 160 1 ee u Axis 2 160 1 Axis 3 160 1 Axis 4 100 1 Axis 5 100 1 Figure 6 7 Operation of the Harmonic Drive Dynamic Spline Circular Spline Flexspline Wave Generator Starting After several position input revolutions Figure 6 8 Operation of the Harmonic Drive SCORBOT ER 9Pro 5 6 User Manual Axis Gear Ratios Referring again to Figure 6 1 the transmission of axes 1 through 4 consists of two stages the timing belt drive and the Harmonic Drive The overall gear ratio of the output shaft which moves the axis is therefore expressed as NON 5 N au Where PulleyB PulleyA N o is the belt drive ratio that is the radii ratio N en is the Harmonic drive ratio as described above N axis 15 the overall gear ratio of the axis Table 6 2 SCORBOT ER 9Pro Gear Ratios Nr Nup Naxis Axis 1 1 33 1 160 1 213 33 1 Axis 2 1 52 1 160 1 243 8 1 Axis 3 113351 160 1 213 33 1 Axis 4 1 8 1 100 1 180 1 Axis 5 100 1 100 1 User Manual Thus one rotation 360 of axis 3 for example requires 213 33 rotations of the motor shaft The
29. rk Envelope The length of the links and the degree of rotation of the joints determine the robot s work envelope Figure 2 3 shows the dimensions and reach of the SCORBOT ER 9Pro while Figure 2 4 gives a top view of the robot s work envelope The base of the robot is normally fixed to a stationary work surface It may however be attached to a slidebase resulting in an extended working range SCORBOT ER 9Pro 2 2 User Manual Figure 2 4 Operating Range Top View User Manual 2 3 SCORBOT ER 9PRO 3 Installation Preparations Before you make any cable connections set up the system components according to the following Preparation instructions Controller and Computer Terminal Setup Place the controller and computer at a safe distance from the robot well outside the robot s safety range Make sure the setup complies with the guidelines defined in the Safety chapter in the Controller USB Pro User Manual Robot Setup Refer to Figures 4 1 4 2 and 4 3 1 Set up the SCORBOT ER 9Pro on a sturdy surface with at least one meter of free space all around the robot GUARDRAIL OR ROPE Figure 4 1 Robot Safety Range 2 Note that the robot cable clamp is located at the midpoint of the robot s horizontal range Using this midpoint as a reference set up the robot so that it faces in the proper direction towards the application or machine it will serve 3 Fasten the base of the robot to the work surface with
30. s in question is located always move to the end point via the same specific position 5 Unusual noise e Loose screws e Poor lubrication Ratcheting Worn motor brushes Worn timing belt Damaged harmonic drive 6 Unusual smell A motor or an internal PCB has burnt out and needs to be replaced 7 Axis axes vibrating too weak to carry load motion not smooth or jerks during or at end of motion System parameters are not properly adjusted Refer to the Scorbase for ER 9Pro ER 14Pro User Manual e Problem in axis driver card s in the controller Refer to the Controller USB Pro User Manual 8 Pneumatic gripper does not respond Check that all air hoses are connected properly Make sure the gripper is connected to the proper controller output Check the relay output to which the gripper is connected e Check whether the relays have been switched LED is lit When an output is in OFF state NC contact is shorted to COM and NO contact is disconnected from COM SCORBOT ER 9Pro 8 4 User Manual When an output is in ON state NO contact is shorted to COM and NC contact is disconnected from COM Check gripper configuration hardware setup select Options Hardware Setup 9 Error Messages For details on error messages refer to the System Messages chapter in the Scorbase for ER 9Pro ER 14Pro User Manual User Manual 8 5 SCORBOT ER 9Pro
31. the shipment s packing list If anything is missing contact your supplier Table 1 1 SCORBOT ER 9Pro Items Item Description SCORBOT ER 9Pro Includes Cabling Hardware for mounting robot 3 M8x60 bolts Robot Arm 3 M8 washers 3 M8 nuts Optional air hoses included Gripper Optional 2 Pneumatic Gripper includes options Pneumatic solenoid valve Hardware for mounting gripper 4 4M4x10 screws Electric DC Servo Gripper with encoder includes Hardware for mounting gripper 4 4Mx10 screws Controller USB Pro Includes Power Cable USB Cable TP By Pass Plug required when TP not connected Preinstalled on the Controller External Emergency By Pass Plug Preinstalled on the Controller Teach Pendant Includes Optional Teach Pedant USB Pro controller cable Mounting fixture Teach Pendant for Controller USB and USB Pro User Manual Software Scorbase for ER 9Pro ER 14Pro Documentation Controller USB Pro User Manual Robocell for ER 9Pro ER 14Pro User Manual Scorbase for ER 9Pro ER 14Pro User Manual SCORBOT ER 9Pro User Manual SCORBOT ER 9Pro 1 2 User Manual Repacking for Shipment User Manual Be sure all parts are back in place before packing the robot When repacking the robot for shipping bolt the flange and base to the metal plate Failure to do so may result in irreversible damage to the arm particularly to the Harmonic Drive transmissions Also
32. three sets of M8 bolt washer and nut Make sure the robot is securely bolted in place Otherwise the robot could become unbalanced and topple over while in motion 4 Grasp the robot body and turn the robot to each extreme of its base axis User Manual 3 1 SCORBOT ER 9 PRO Make sure the segment of cable from the body to the base is not obstructed and or cannot become caught under a corner of the robot s platform or work surface during all movements of the base axis Figure 4 2 Robot Base Layout Make sure the robot is mounted on a surface large enough to provide support for this segment of the robot cable during all movements of the base axis 5 Set up a guardrail or rope around the SCORBOT ER 9Pro operating area to protect both the operator and bystanders ROBOT CABLE TO CONTROLLER CABLE CLAMP CABLE SEGMENT BODY TO BASE PEEL ANS Figure 4 3 Robot Setup SCORBOT ER 9Pro 3 2 User Manual SCORBOT ER 9Pro Installation Controller Installation Perform the necessary installation and configuration procedures detailed in the Controller USB Pro User Manual Robot Installation Before you begin make sure the controller POWER switch is turned off The robot cable has a number of connectors Connect them to the controller according to following three steps Refer to Figure 4 4 1 Connect the green yellow wire to the Safety Ground Unscrew and remove the ground nut and washer fr
33. tical switch and encoder index pulse on each axis Feedback Incremental optical encoders with index pulse on each axis Actuators 24VDC servo motor on each axis Transmission Harmonic Drive gears and timing belts Maximum Payload 5kg 11 Ib with reduced acceleration e2kg 4 4 lb Full speed including gripper Position Repeatability 0 05mm 0 002 Weight 53 5 kg 117 7 1b Ambient Operating Temperature 2 40 C 36 104 F User Manual SCORBOT ER 9PRO Structure The SCORBOT ER 9Pro is a vertical articulated robot with five revolute joints With gripper attached the robot has five degrees of freedom This design permits the end effector to be positioned and oriented arbitrarily within a large workspace Figures 2 1 and 2 2 identify the joints and links of the mechanical arm Each joint is driven by a permanent magnet DC motor via a Harmonic Drive gear transmission and timing belt The movements of the joints are described in the following table Table 2 3 Joint Movements Axis No Joint Name Motion Motor No 1 Base Rotates the body 1 2 Shoulder Raises and lowers the upper arm 2 3 Elbow Raises and lowers the forearm 3 4 Wrist Pitch Raises and lowers the end effector 4 3 Wrist Roll Rotates the end effector 5 Figure 2 1 SCORBOT ER 9Pro Joints Figure 2 2 SCORBOT ER 9Pro Links Wo
34. ver you encounter a problem with your system try to pinpoint its source by exchanging the suspected faulty component for example robot controller teach pendant cable with one from a functioning system In general when trying to determine the source of a malfunction first check the power source and external hardware such as controller switches LEDs and cable connections Then check fuses you may also open the controller to check components according to the procedures and instructions detailed in the Controller USB Pro User Manual In addition make sure the controller is properly configured for the robot and gripper the software commands have been correctly issued and system parameters are properly set All troubleshooting procedures described in the section can be performed by the user Do not attempt to open the robot arm There are no user serviceable parts inside Do not alter Scorbase system parameters If you are unable to determine and or correct the problem contact your service representative Only qualified technicians may remove and or replace robot components 1 Controller functioning but the robot cannot be activated Make sure Scorbase is in Online Mode Select Options On line from the Menu bar Make sure an obstacle is not blocking the robot Make sure the green Motors LED is lit Make sure the controller is in the control off COFF state Then activate the control on CON state from the PC

Download Pdf Manuals

image

Related Search

Related Contents

AT Pro International Manual  Mode d`emploi  Premier Pre-amps  deadstorm-pirates-su..  Longshine 5-Port Switch 10/100/1000 Mbit/s Fanless  Libretto di Istruzioni Instructions Manual Manuel d'Instructions  取扱説明書 - 三和シヤッター工業  Smeg F610 Instructions for Use  Investir au Cameroun n°38  Magic Chef EWWC16MCG User's Manual  

Copyright © All rights reserved.
Failed to retrieve file