Home

ADAS808: Create a composite set of adf34, adf40 and adf41 iso

image

Contents

1. 2 759e 01 2 112e 03 pixel no wvmin wvmax triplets 128 5 890e 01 2 242e 00 wavelenths in Angstrom Notes ADAS User manual Chap9 08 17 March 2003
2. ADFO4 Temperatures TINDEX Electron Input INDEX Electron Electron Input 1 2 000E 02 1 2 000E 02 2 000E 02 2 5 000E 02 2 5 000E 02 5 000E 02 3 1 000E 03 3 1 000E 03 1 000E 03 4 2 000E 03 4 2 000E 03 2 000E 03 5 5 000E 03 5 5 000E 03 5 000E 03 6 1 000E 04 6 1 000E 04 1 000 04 Temperature Units Reduced Temperature Units Reduced Temperature Units Reduced Edit Table Edit Table Edit Table Default Temperatures Default Temperatures Default Temperatures Edit the processing options data and press Done to proceed Browse Comments Cancel Done 4 The Browse Comments button has no effect at this time Clicking the Done button moves you forward to the next window Clicking the Cancel button takes you back to the previous window The processing configuration generator window is shown below 1 The processing window has three separate modes of operation which may be selected In Configuration Generator mode the window appearance is as shown below This mode must be completed before the other modes are meaningful and is described below 2 The sub window on the left permits the setting up of a promotional strategy for configuration generation You must note that this strategy applies to simultaneously to all ions selected on the Input window Single and double valence shell cases are chosen as required and the fields which are ADAS User manual Chap9 08 17
3. based on observational spectral regions of interest The principle is straightforward Consider a spectral region of interest Ay Ar which may be the range of a particular spectrometer or an interval of special diagnostic value For configurations J and J introduce the configuration average energies E and ER the transition array average energy AE E E and wavelength A he E E Configurations av ep av E lt E ADAS User manual Chap9 08 17 March 2003 such that the transition wavelength y Eel AoA j should be handled at high resolution that is level resolved while configurations such that the transition wavelength a Ants may be handled at low resolution that is configuration average In general there may be a set of wavelength intervals of interest and from the total number of configurations N is partitioned into the level resolved set numbering N Ce and the configuration average set numbering N Cy such that No No N c A further constraint may be imposed by setting a lower limit for transition R A probabilities thereby excluding very weak lines At the configuration average level this means a lel preliminary stage of the Cowan structure code package generates configuration average energies and reduced dipole matrix elements This stage is rapid and makes low demands on computer resources It is convenient therefore to provide a transition array spectrum display so that the
4. definition of wavelength regions of interest can be done directly in interaction with the display Immediate information is returned to the user on resolved level counts and on resolved and unresolved configuration counts so that the size of the subsequent full structure computations may be assessed and regulated The transition array spectrum in which the ordinates are reduced dipole matrix elements provides a relatively crude picture Transition arrays between excited configurations are on the same footing as those involving the ground configuration There is no real population information It is to be noted however that the first stage of the Cowan code package also returns the reduced Born matrix elements Thus a configuration average population calculation and emissivity production is possible without significant additional computational overhead The configuration average transition array emissivity coefficients for an ion provides a more realistic footing On the other hand at this first stage of structure calculation no basis for relative weighting of transition array emission functions from different ionisation stages is available Due to the sensitivity of the spectrum and dominant ionisation stage to electron temperature a constraint based on temperature is unsound at this point of the data generation exercise Equal weighting of ionisation stages abundances is the most appropriate choice ADAS808 presents either a reduced dipole or configuratio
5. valence shells configurations parameters Modi d Output ted Prepare Display sition on d driver lt p configs and arive offline lt level and config lt ni coy files end drivers counts grap y ADAS User manual Chap9 08 17 March 2003 Interactive parameter comments The input window is as shown below 1 Enter the element symbol Note that the element symbol and nuclear charge number boxes are linked so if one of them is changed the other is automatically updated Also set the minimum and maximum ion charges noting that the last ion of an element in this context is the hydrogen like stage with z Z 1 where z is the nuclear charge g 0 0 g 2 Three sets of electron temperatures must be specified These temperatures are passed through to the final drivers and ultimately are the temperatures used in the ADF04 AD11 and ADFI15 files The Input temperatures are usually the ADF standard reduced temperatures Note that the temperature set is editable and a user s units of choice may be selected 3 A pathway to ionisation potentials for all elements and their ions is required These data include the ground configurations and are provided in the Central ADAS archive packages adas adas adf00 ADAS 808 INPUT Nuclear charge Yu ugs adas adF00 tee n Central User Minimum ion charge 0 78 Element Maximum ion charge
6. zir T parity 1 3 parity 2 6 E23 M1 3 scale 93 99 93 93 93 temperature 25 2 00000E 02 5 00000E 02 1 00000E 03 2 00000E 03 5 00000E 03 1 00000E 04 2 00000E 04 5 00000E 04 1 00000E 05 2 00000E 05 5 00000E 05 1 00000E 06 2 00000E 06 2 20000E 06 2 20000E 06 2 20000E 06 2 20000E 06 2 20000E 06 2 20000E 06 2 20000E 06 2 20000E 06 2 20000E 06 2 20000E 06 2 20000E 06 2 20000E 06 Table 9 08c w_7_pp dat d Allan Whiteford 15 12 79 1 Comments are for losers amp FILES ifgfile ifg w_7_adf34 dat outfile w_7_adf04 dat amp END amp OPTIONS ip 1134988 8 coupling IC aval YES isonuclear NO lweight NO comments 2 numtemp 14 amp END do Sowa E Ta Be D gt Oe LT 213 4 Table 9 08d w_7_pec_drv dat wt 9 74 10 1475969 1 w_9_adf04 dat input adf04 file w_9_adf1ll1l dat output plt file w_9_adf15 dat output pec file w_9_adf40 dat output f_pec file lmetr false true to resolve metastables ltscl true true for z scaled temperatures ldscl false true for z scaled densiities lbrdi true true for ion temp broadening 13 no of temperatures 2 000E 02 5 000E 02 1 000E 03 2 000E 03 temperatures K 5 000F 03 1 000E 04 2 000E 04 5 000E 04 1 000E 05 2 000E 05 5 000E 05 1 000E 06 ADAS User manual Chap9 08 17 March 2003 2 000E 06 5 no of densities 1 000E 11 1 000E 12 1 000E 13 1 000E 14 densities cm 3 1 000E 15 2 no of wavelength intervals 128
7. ADAS808 Create a composite set of adf34 adf40 and adf41 iso nuclear driver files The program uses the IDL graphical user interface to automate preparation of the driver datasets required for large scale off line production of ADAS Baseline Atomic Data for complex atoms Drivers for many or all of the ionisation stages of a heavy element may be generated at the one time The drivers produced are the input datasets for offline running usually on massively parallel computers of the codes ADAS801 ADAS407 and ADAS810 Subsequent to ADAS808 the offline calculations may be executed automaticaaly under the control of a master script with final delivery of complete data in the ADAS data format classes ADF04 ADF03 ADF11 ADF15 and ADF4O0 The code allows the user to assess and regulate the subsequent size of the offline calculations on the basis of experimental spectral regions of interest available machine size and strategies in atomic structure modelling Background theory The fundamental part of the ADAS Baseline Atomic Data consists of ADFO04 files for each ion of an element archived in iso nuclear collections Each file comprises energy levels and A values for an ion computed using Cowan Atomic Structure Code and electron impact Maxwell averaged collision strengths in the Born approximations Implementation within ADAS is via the code ADAS801 This code has the Cowan Atomic Structure Code at its core but includes an IDL front end to acquire the in
8. March 2003 presented depends on that selection The one valence shell case is illustrated below 3 The valence shells are listed Clicking on a member of the list causes it to appear in the selection widget Then the choices made on the left at 4 apply to that valence electron 4 Make the preferred choices then click on the Set Default Configurations Button Done is appended to the chosen valence shell in the list widget Work through each shell in the list Note that a shell may be reworked simply by reselecting it 5 In like manner select the Two open shell button and then work through the two valence shell list 6 When the promotional strategy is complete enter an ion charge from the selected range in the text box The set of default configurations for that ion is presented in the table together with the number of levels which would result from that configuration The table is editable to add further configurations which are not entered by the promotional strategy A PG Sure ee Geers Le eee oe ee Seles Galece ail kaante ALi Toa charga ma wae fein ail Biaje AT Baile ije fh AET jpe 4 sjem hun Froma free imer hall Yea em taser arti Babel E Higit F irii ig oie Edit the peocuswing options data amd prans Dore bo procead E cancnt poma ote 7 8 The total level count for the ion is shown It is now possible to select configurations to be treated as resolved by activating the ri
9. Mullane code Eissner form is the most compact and is generally adopted with very complex configurations A promotional strategy Consider a group of ions Y 2 Z Znin Zmax Of the element A set of configurations targetted on a structure calculation is established by promoting electrons from the ground configurations of the ions The criteria for promotion are shell based and not set up ion by ion rather they are for the group of ions of the element For complex ions it is possible to have ground configurations with more than one partially filled shell which are called valence shells By reviewing the ground configurations of the ion group a list of single valence shells present is identified likewise for double valence shells and in principal on to triple valence shells The promotional strategy depends on whether there is a single or double valence shell At this time ADAS808 has no strategy for triple and higher valence shells 1 In the single valence shell case we progress through each of the identified valence shell orbitals in turn Consider valence orbital n l Distinguish promotions upward in principal quantum number that is to nl shells such that An n n gt 0 from promotions downward in normal shell ordering with An lt Q Principal quantum shell promotions are determined by the permitted maximum lAn and by the sign of the promotion The negative case allows promotions to empty inner shells to be treated In similar
10. ctangle set a minimum value of the reduced dipole matrix element for transition array configurations to be included in the resolved set 6 To mark a rectangle first activate a square row button on the left of a row of the spectral ranges sub window so that it is displayed and the button on the right to make the row active for editing Drag out a horizontal line on the plot area using the right mouse button and release The rectangle may be stretched by catching an edge and dragging with the left mouse button The 2 selections Minin nax s Diin are shown in the boxes 7 The left hand button of a spectral range row defines configurations which contribute to lines in that range as requiring level resolution on the configuration list and that configuration is marked its button indicator light The selected configurations count is updated accordingly Remember to reselect an ion at 3 to update the configuration list sub window display after each alteration BEED PROG DHe dil kala Ali Beit All Benji AT jese ajon aa sjom fh ie semn fie 4 3 hie sa me F x ee A Fo b a 4 ee rat a or Lor Haber ef sale for im TIT cE E a Hieber H laala for heed coe i pu p HHE Edit the prommaring options data ami prani Dore bo procead The processing level count window is shown below 1 Clicking the Level Count button presents the window shown below The sub win
11. dow to the left displays a count summary plot 2 Display of configuration counts and level counts for each ion in the selected ion range may be chosen Note that the Total Levels and Total ADAS User manual Chap9 08 17 March 2003 Configurations may be shown prior to the calculating the survey spectrum Selected Levels and Selected Configurations require the survey spectrum to be calculated first The graph display scales may be adjusted 4 Note the summary information ba BN PROG OUTPUT O 1 The Text Output button activates writing to a text output file The file name may be entered in the editable File name box when Text Output is on The default file name paper txt may be set by pressing the button Default file ADAS User manual Chap9 08 17 March 2003 name A pop up window issues a warning if the file already exists and the Replace button has not been activated 2 The primary output is to an adf34 sub directory which can be entered and or selected Illustration Table 9 08a w_7_adf34 dat 2 5 2 10 1 0 5 d 09 5 d 11 2 0130 130 0265 010 O55 74 8 w 4f13 5s2 0 4f13 552 5p6 74 8 w 4f13 5s2 3 4f13 5s2 5p5 6pl 74 8 w 4f12 5s2 7 4f12 5s2 5p6 pl 74 8 w 4f 13 5s2 4f13 5s2 5p5 6sl1 74 8 w 4f12 5s2 4f12 5s2 5p6 6s1 74 8 w 4f13 5s2 4f13 5s2 5p5 5dl 74 8 w 4f13 5s2 4f13 5s2 5p5 6dl 74 8 w 4f12 5s2 4f12 5s2 5p6 5dl 74 8 w 4f12 5s2 4f12 5s2 5p6 6dl Table 9 08b w_7_inst dat z0 74
12. ght most buttons The number of levels in the resolved set of configurations is displayed in the lower box 9 There are two sets of Select All and Deselect All buttons which apply to the right most button selectors The upper pair apply to the lists for every ion in the whole ion range simultaneously The lower pair apply only to the currently displayed ion 10 Additional strategies for inner shell promotion are in development and are subject to change The processing configuration selection window is shown below 1 Clicking the Configuration Selection button presents the window shown below in which the sub window on the left is now used to show a a stick spectrum of the various transition arrays ADAS User manual Chap9 08 17 March 2003 2 Clicking the Calculate Survey Spectrum button spawns the calculation of the first stage of the Cowan code to obtain the necessary parameters The calculation may take a few minutes but then all information is available the stick plot is displayed Any further selections operate rapidly 3 The stick plot shows the transition arrays for every ion in the group Transition arrays for the ion selected at the right are marked with sticks in a contrasting colour 4 The wavelength range of the stick plot may be altered and logarithmic or linear axes chosen 5 The plot area is active The mouse may be used to delimit rectangular areas which are the spectral intervals of special interest The base of the re
13. ions principal quantum numbers greater than 9 may be required and for complex element ion shell occupancies greater than 9 also may occur To maintain the three character shell notation the integers beyond nine are represented alphabetically that is 10 a 11 b etc Thus in Standard form 2p 6f 11s is represented by 2p6 6fb bs1 In Eissner form each orbital starting from 1s is indexed The index is an integer up to 9 but continues through ADAS User manual Chap9 08 17 March 2003 the upper case alphabet and then through the lower case alphabet Thus 1s 1 2p 2 4f A A portion of the conversion table is Orbital 1s 2s 2p 3s 3p 3d 4s 4p 4d 4f Eissner 1 2 3 4 5 6 7 8 9 A Orbital 5s 5p 5d Sf 5g 6s 6p 6d 6f 6g Eissner B C D E F G H I J K The shell occupancy is represented as a two digit integer as 50 q and this precedes the shell index character Thus again the shell is represented by a three character field but is written with no separation between the fields in the whole configuration Thus in Eissner form 1s 2s 2p 6g is represented by 52152256361K ADAS works freely with both notations and subroutines in the ADAS library transform from one to the other Eissner form is the preferred form in ADAS series 7 codes since structure calculations there use the Autostructure code Standard form is the preferred form in ADAS series 8 codes since structure calculations there use the Cowan O
14. lculates such F AEE s and it is convenient for ADAS808 to prepare the drivers for offline execution of ADAS810 also Following interactive execution of ADAS808 all subsequent calculations and assembly of the complete ADAS Baseline Atomic Data are achieved by launching an integrated PERL script to the target high performance parallel computer system No further user intervention is required Configuration definition The set of working configuration for the atomic structure calculation is obtained by an electron promotional strategy starting from the ground configuration m m T nhn cc Nyyl py where q gt O for i 1 m and Vai N i l For complex systems there may be empty inner shells and multiple open shells Elements up to uranium are within the scope of ADAS808 The ground configurations for every ion of every element up to uranium are provided in the ADAS data format for general constants ADFOO as adas adas adf00 ground_configs lt element symbol gt dat An equivalent data set provides both the ground configurations and the ionisation potentials as adas adas adf00 ground_ionpots lt element symbol gt dat It is helpful to maintain a consistent pattern for configurations In ADAS two conventions are use namely the Standard form and Eissner form Standard form represents each shell with three characters with a space separating shells in the whole configuration as 1s2 2s2 2p representing 1s 2s 2p For certain calculat
15. manner promotions are ranked according to the maximum A allowed with positive and negative Al handled separately Note that the valence shells treated in this manner are partially filled Promotions from inner closed shells excluding the valence shell which may generate many less important configurations are preferably restricted by setting the lowest n shell from which the promotion can occur and the highest n shell to which the promotion can take place Again it is single electron promotion which is done Finally it is a usual policy in accurate energy level calculations to include all the configurations of a complex if one of the configurations of the complex is present Such a policy can generate large numbers of configurations in the complex ion case It is helpful to decide if whole complexes associated with the single electron promotion configurations are to be included 2 A similar procedure may be applied in the two valence shellcase but with the permissions for each electron specified separately Configuration partitioning For complex ions the number of configurations which satisfy even quite restricted promotional rules can be large Also since these configurations often include more than one unfilled shell the level count for each configuration can be very large Mechanisms beyond the basic promotional rules are required to restrict the total level set to match available computer power In ADAS808 a second mechanism is introduced
16. n average emissivity transition array spectrum to the user These details are described in detail below Envelope features An envelope feature photon emissivity coefficient denoted by F A amp E is lower limit J4 min 2 for the transition arrays A on the reduced dipole matrix elements defined on a wavelength interval and is a composite feature arising from very many lines from a single ionisation stage The F FEC is suitable as a descriptor in wavelength intervals and at spectral resolutions where the individual component lines are unresolved or only partly resolved This situation occurs with very complex heavy element ions for which it becomes helpful and economical to handle the envelope feature rather than the individual line emissivity coefficients AEE s The primary use of ADAS808 is to set up calculations for very heavy species and so the wavelength intervals such as AA j above introduced as a focus for partitioning configurations are identified as the spectral intervals over which the envelope features are sought ADAS808 therefore provides drivers also for the F FEE calculations see ADAS810 for more details Program steps These are summarised in figure 9 08 Figure 9 08 Input Read adf00 Set promot Compute begin gt element ion 5 config data ional choices 7 config avge range and and evaluate and default structure Te set
17. put data the ADF34 driver and subroutines to organize output in ADAS standard forms ADF04 files and nomenclatures For medium heavy element ions with many electrons the ADAS801 calculations must be performed in intermediate coupling and include many configurations For such systems the preparation of configuration lists for the ADF34 drivers is prohibitively tedious and the calculations are massive Automated handling followed by offline execution on massively parallel machines is essential In ADAS the automated high throughput is achieved by firstly sophisticated interactive set up of the ADF34 drivers ADAS808 fulfills this latter purpose The complete ADAS Baseline Atomic Data includes also various derived data classes In simple systems these other data are generated by interactive execution of the codes ADAS407 ADAS408 and ADAS208 For medium heavy element systems it is convenient to use ADAS808 to set up additional drivers so that these codes also may be executed automatically offline Finally the complexity of heavy element emission means in practice that spectral analysis must often be carried out on unresolved or only partially resolved transition array features rather than on individual spectrum lines In ADAS a new derived quantity called a feature photon emissivity coefficient F FEE is introduced analogous to the emissivity coefficient FEC is intrdoduced to describe these envelope features The associated code ADAS810 ca

Download Pdf Manuals

image

Related Search

Related Contents

HP Photosmart 7700 User's Manual  CPS  HE Agreement Institution User Guide v6.4 clean  here. - Crow River Audio  PRIMERGY  Arat NS1007.10 holder  Trendnet TEW-638APB WLAN access point  Philips Impact Vacuum cleaner with bag FC8396/02  The MDS Mentor September 2008 - Texas Department of Aging and  QuickStix™ Kit for Roundup Ready  

Copyright © All rights reserved.
Failed to retrieve file