Home
^1 USER MANUAL ^2 Accessory 57E
Contents
1. 5V C17 GND Da JEXP LA i poo P1B4 Pici 1 1 RD BDOT 3 p2 a 18 mE C18 8002 4 17 PCZ i GND i cem SV 35095 1 1 BDOT TP1 Boos 5 23 0316 2 GND GND 2 2 GND 2 GND 35V 04 Q4 PCT DATO x 500 DoT 8004 6 15 SELO Pise 3 3 8002 1UF 8005 7 05 Q5 714 DATI 5 a 1 8003 0 8505 8 D6 06 13 06 5 5 5 M sJ 4 DAT2 6 6 6 8504 CS0 SEL2 7 7 8005 AUF WR u BOOTSTRAP DAT3 Edge 8 8 00 SEL3 9px 9 5506 T R3 AE DATA 10 7X 10 8007 74HC4075 74HC574 FAASIS 5V 99
2. 57 Configuration Block Diagrams UBUS BACKPLANE 57 24 2 UMAC Turbo Amplifier Enc Motor 17 Accessory 57 18 UBUS 57 24 2 Acc 57E Configuration Block Diagrams 57 57 In order to process data from Acc 57E correctly MACRO Station CPU must firmware version 1 16 or newer If using the information from the Acc 57E converter for absolute position servo data set up variables at both the Ultralite and MACRO station for proper operation The absolute encoder data from the Acc 57E is processed as a parallel word input at the MACRO Station and then transmitted back to the Ultralite using the power on position servo node MACRO I variables In order for the Ultralite controller card to obtain the data set up the power on position variables at the Ultralite The on going position data will be processed as a standard quadrature encoder from the Acc 24E family card To obtain the absolute power on position the use must setup at the MACRO Station and I
3. 22 _ J1 J2 1 BT1 m J1 J2 H BOTTOM 57 Yaskawa Terminal Block Option ur TOP TB1 TB3 TB2 gi x P1 en X XOX J1 J2 BOTTOM Accessory 57E shi Terminal Block Option Acc 57E Mitsubi 2 o foj J3 x 1 24 BT1 x J2 Dojo cL Board Layout Accessory 57 HARDWARE SETTINGS The Acc 57 uses expansion port memory locations defined by the type of PMAC 3U Turbo or MACRO Station it is directly communicating to Typically these memory locations are used with other Delta Tau 3U accessories such as 9 48 optically isolated inputs 10 48 optically isolated outputs low power 24 inputs and 24 outputs low power all optically isolated Acc 12E 24 inputs and 24 outputs high power all optically isolated 14 48 615 TTL level I O Acc 28E 16 bit A D Converter Inputs up to four per card of these accessories have settings which tell them where the information is to be processed at either the PMAC 3U Turbo or the MACRO Station 3U Turbo PMAC
4. 57 57 The encoder absolute position data for motor is processed at Acc 57E while on going encoder position is processed at the Acc 24E2 card like a standard encoder The Acc 57E will request the absolute data from the encoder and process this data as parallel word Since the Yaskawa absolute encoders and Mitsubishi Drives have standard quadrature encoders outputs wire these signals to a standard Acc 24E2 24 2 or Acc 24E2S cards to obtain the on going position data for PMAC To read the absolute data setup PMAC variables Ixx10 and Ixx95 Once these parameters are setup correctly the absolute data can be obtained at either power up software restart command or with the online motor specific restart command where n stands for the motor number For both the UMAC Turbo and the Turbo UMAC MACRO systems Ixx10 will be setup to tell the controller where the absolute data resides and Ixx95 tells the controller how to process the absolute data For non Turbo UMAC MACRO systems Ix10 is used to tell the controller where the absolute data resides and how to process the data For the Yaskawa Encoder Ixx98 and Ixx99 must also be setup at the UMAC Turbo to process the data from Ixx10 and Ixx95 On non Turbo Ultralite MACRO systems I8x and I9x must also be setup in conjunction with Ix10 Acc 57E Theory of Operation 9 Accessory 57E
5. 12 I8x Motor xx Resolver Third Gear Ratio Yaskawa only for non Turbo eee 12 I9x Motor xx Second Resolver Gear Ratio Yaskawa Encoder only for non Turbo 12 Example Turbo UMAC Yaskawa Absolute Encoder Setup eee 12 Example Turbo UMAC Mitsubishi Absolute Encoder Setup eee 13 POWER ON PHASING WITH 57 0 15 loc c 15 i 15 7D ens Sepp daska 15 16 57 CONFIGURATION BLOCK DIAGRAMS 17 Yaskawa Servo Pack Diagtam 17 Yaskawa Generic Absolute Encoder Setup Mitsubishi Absolute Encoder Setup 2 17 ACC 57E SETUP FOR UMAC 11 se tone esso aseo Pe eon enn tns e Pase Pn tan Pase sees etos 19 Acc 57E Absolute Encoder Addresses for 19 Power On Feedback Address for PMAC2 Ultralite U n enne inneren 19 Absolute Position for Ultralite 1 2 d
6. E 12 5V 5V JUMPERS voc E 13 HX U2A GND 5V aers 14 Ex 4 U2B 80925555 58 vec DAT6 AUF xz 47K ee sme po Sfo 800712 qs K BK 17 X T 3 PD6 11 _0 18 X ho 00771 19 x ajs a zle RST 20 gt lt 4 Ha 8 ors 21 gt lt 21 21 2 TP9 A 2 2 8 E De 00775 23 wef 23 22 RD C22 OUT 6 eue oe gt P174FCT16245ATA 5 GND 5 00177 RESET Iro GND TSSOP GND 26 26 He 27 Fx 27 gt lt 15 EQU 1 8000 19 2 EQU 2 28 28 P lt 8001 18 91 DT 287901 di ER 29 gt lt PAGNO 29 29 PAGND 02 02 30 15 30 30 A 15V 8002 17 D3 4 2 ser TUF GND 8003 16 5 RESET 5V 31 GND GND GF 31 31 END 4 1664 D4 6 JUMPERO 32 _ 6 0 32 32 O 5V H3 BD05 14 95 05 7 pcs CON32 CON32 2 HEADER 1X8 TPA 131 068 8007 12 9 ia E2 08 018 d 04 R27 11 PD6 2 3 5 3 o 17 1 RESET o VCC ___3 GND 5V JUMP 12 1 0 2 FOR TURBO 30 CPU 603382 9 UF BT1 PRDO JUMP 2 2 0 3 FOR MACRO_3U CPU 602804 10 R39 3 6V C24 748 574 DS1233A TO92 CE 9 NDo m 5V ve MOK 1 4078
7. Encoder Type Controller Ixx95 Value Yaskawa UMAC Turbo 988008 Yaskawa UMAC MACRO 720000 unsigned F20000 signed Mitsubishi UMAC Turbo 200008 unsigned A00008 signed Mitsubishi UMAC MACRO 720000 unsigned F20000 signed Ixx98 Motor xx Resolver Third Gear Ratio Yaskawa Only for Turbo Ixx98 tells the PMAC how many counts per revolution the Yaskawa Encoder has The units for this parameter are in counts per revolution divided by 4096 The counts per revolution are based on the decode value of I7mn0 Usually 4x decode is used If the Yaskawa absolute encoder being used has 32768 counts per revolution then set Ixx10 to the following value 32768 1 98 8 4096 Note Changing the sign of the calculated value changes the sense of the absolute feedback data UMAC Turbo I Variable Setup for Power On Position 11 Accessory 57 1 99 Motor Second Resolver Gear Ratio Yaskawa Encoder only for Turbo This is used to let the PMAC know what the remainder from the Ixx98 division is For most Yaskawa encoders this value will be zero because the majority of their encoders are based on a power of two line count 1024 2048 4096 etc Example The number of lines per revolution of the Yaskawa absolute encoder in the system is 8192 PMAC will multiply this term by 4 and read 8192x4 32768 counts rev 1 99 0 18 Motor xx Resolver Third Gear Rat
8. ees que 16 00 Slop our nja 2 50 poor 18 Q Di 3 GND 1 RXD TIO 212 9 BD02 17 4 RXD 2 12 TXD TXD 1 A RIN 196 BD03 16 03 0915 PC3 ENCODER 1 1 R31 004 1518400 D 6 Pca HEADER 2X2 OPT2 ONLY 1K Boog 14045 057 Pes PHAM CHA RDN 8005 1319 8 PC6 1 7 4 01 REDLED wS 079 por caat a 9 2 22 10 11 08 6 CHAL 11 PD GND NC7SZ125 CHBL SDP SDN cikti CHB1 30 20 74HC14 ge R9 vec CHBl PRD1 9 CHB1 C25 74 574 CHC1 o GND 5 1 JP5 vec 74 4075 4 7K 1 AUF 2 ONLY 1 J4 74 14 ENCPWR1 GND 1 11 R1 11 ENCPWR1 RXD 2 12 SDP 8 5V GND OPT2 ONtY2 9 GND Lis 2 m veco me 44 RH p 3 GND a8 X 12 R1 4 Eie Ere 97 04 RDP 6 3 CS18 5 BADI 96 A03 320 PT2 ONLY 514 6 BANS 95 02 391 Zo CS12 7 BAN 94 AOT sw1 PN eu oF a ga BCSXX 5V 10 CD Bor 10 3 HEADER24 OPTION 1 MITSUBISHI ENCODER 422 PORT WR Poo 1 9 4 AUF R2 DS8921 OPT2 ONLY 1 Mes 89 I 12 U7A 510 TIP32A CON1 i 7 6 Ai GND GND R21 BSCAN TET i 87 CSENO 1 2 CSENG BESETE 15d RESET
9. 5 086 SW DIP 6 9 390 2 E BTDI 16 TDI OUTO 85 OUTO GND R2 Q2 3 GND 1 YASKAWA EXTRA 2 AXES 1 17 84 8005 2K 74HC14 SEN2 OPTION 2 MITSUBISHI I F OPT2 T 189 CO0 8005 as 8004 HEADERS OPTION 3 cor BDOS az 8003 R2 i 81 8002 U7B 510 3 8002 go 8001 5 3152 ig BEQUI 8001 79 BD00 9 3 4 _ 1 BEQUL 8000 76 2 BEQUI 13 R2 390 3 NC NC 8 28 4 HEADERS vecio Ha i GND 3 1 TMS BEQU2 9121 72 GND 1 BEQU2 See 7 2 BEQU2 70 i 53 69 C1 CSEN2 5 6 CSENZ HEADER 3 HEADER 14 2 OPT1 GND 68 15 HSIPBNOS CLS114LDDV T 1 35v PROGRAMMING HEADER R26 J1 ENCODER 2 COMPONENT SIDE DIRECTLY UNDER J5 66 0 5 2K 4 INSTALL THIS ONLY ON THE GOE 0 65 Yi GND GND PHA2 SECOND TWO AXIS CARD Y GND 2 ue 63 1 GND 3 13 ND p62 4 14 PHC1 61 SENT 5 15 PHCT Ceo x BTCK i NT 6 16 59 INS CSENS 9 8 __ 17 58 TN2 18 en 57 INT R28 19 1 INO t 20 FGND 55 CT13 54 CT12 2 ENCPWR2 NN pa ENCPWR2 51 HEADER 1X10 J2 9 GND GND ISPLSI2064E UNIV DECODE GND 1 100 GND 2 GND 3 13 HEADER 14X2 FEM OPT1 ONLY TP8 SENZ 4 14 CLS114LDDV UBI NSTALL SOKET ON THE M
10. CLOSE CLOSE Y 78D00 03 CLOSE CLOSE CLOSE CLOSE CLOSE OPEN CS12 Y 79D00 03 CLOSE CLOSE CLOSE OPEN CLOSE OPEN Y 7AD00 03 CLOSE CLOSE OPEN CLOSE CLOSE OPEN Y 7BD00 03 CLOSE CLOSE OPEN OPEN CLOSE OPEN Y 78E00 03 CLOSE CLOSE CLOSE CLOSE OPEN CLOSE CS14 Y 79E00 03 CLOSE CLOSE CLOSE OPEN OPEN CLOSE Y 7AE00 03 CLOSE CLOSE OPEN CLOSE OPEN CLOSE Y 7BE00 03 CLOSE CLOSE OPEN OPEN OPEN CLOSE Y 78F00 03 CLOSE CLOSE CLOSE CLOSE OPEN OPEN CS16 Y 79F00 03 CLOSE CLOSE CLOSE OPEN OPEN OPEN Y 7AF00 03 CLOSE CLOSE OPEN CLOSE OPEN OPEN 57 0 03 5 CLOSE refers to the ON position of switch and OPEN refers to OFF position on switch MACRO Station Switch Settings Chip 3U Turbo PMAC Dip Switch SW1 Position Select Address 6 5 4 3 2 1 Y 8800 CLOSE CLOSE CLOSE CLOSE CLOSE CLOSE CS10 Y 9800 CLOSE CLOSE CLOSE OPEN CLOSE CLOSE Y A800 CLOSE CLOSE OPEN CLOSE CLOSE CLOSE Y B800 FFE0 CLOSE CLOSE OPEN OPEN CLOSE CLOSE Y 8840 CLOSE CLOSE CLOSE CLOSE CLOSE OPEN CS12 Y 9840 CLOSE CLOSE CLOSE OPEN CLOSE OPEN Y A840 CLOSE CLOSE OPEN CLOSE CLOSE OPEN Y B840 FFE8 CLOSE CLOSE OPEN OPEN CLOSE
11. USER MANUAL Accessory 57E AN DELTA TAU Data Systems Inc NEW IDEAS IN MOTION Single Source Machine Control Power Flexibility Ease of Use 21314 Lassen Street Chatsworth CA 91311 Tel 818 998 2095 Fax 818 998 7807 www deltatau com Copyright Information 2007 Delta Tau Data Systems Inc rights reserved This document is furnished for the customers of Delta Tau Data Systems Inc Other uses are unauthorized without written permission of Delta Tau Data Systems Inc Information contained in this manual may be updated from time to time due to product improvements etc and may not conform in every respect to former issues To report errors or inconsistencies call or email Delta Tau Data Systems Inc Technical Support Phone 818 717 5656 Fax 818 998 7807 Email support deltatau com Website http www deltatau com Operating Conditions AII Delta Tau Data Systems Inc motion controller products accessories and amplifiers contain static sensitive components that can be damaged by incorrect handling When installing or handling Delta Tau Data Systems Inc products avoid contact with highly insulated materials Only qualified personnel should be allowed to handle this equipment In the case of industrial applications we expect our products to be protected from hazardous or conductive materials and or environments that could cause harm to the controller by damaging comp
12. 10 57 Theory of Operation 57 UMAC TURBO I VARIABLE SETUP FOR POWER POSITION Ixx10 Motor Power On Position Address Ixx10 should be set to the location associated with the switch setting of the Acc 57E The following table shows the possible address settings of Ixx10 Base Address Channel 1 Channel 2 Channel 3 Channel 4 Y 78C00 Y 78C00 78 01 Y 78C02 Y 78C03 Y 79C00 Y 79C00 79 01 Y 79C02 Y 79C03 Y 7AC00 Y 7AC00 Y 7ACOI Y 7AC02 Y 7AC03 Y 7BC00 Y 7BC00 7 01 Y 7BC02 Y 7BC03 Y 78D00 Y 78D00 Y 78D01 Y 78D02 Y 78D03 Y 79D00 Y 79D00 Y 79D01 Y 79D02 Y 79D03 Y 7AD00 Y 7AD00 Y 7ADOI Y 7AD02 Y 7AD03 Y 7BD00 Y 7BD00 Y 7BD01 Y 7BD02 Y 7BD03 Y 78E00 Y 78E00 Y 78E01 Y 78E02 Y 78E03 Y 79E00 Y 79E00 Y 79E01 Y 79E02 Y 79E03 Y 7AE00 Y 7AE00 Y 7AE01 Y 7AE02 Y 7AE03 Y 7BE00 Y 7BE00 7 01 Y 7BE02 Y 7BE03 Y 78F00 Y 78F00 Y 78F01 Y 78F02 Y 78F03 Y 79F00 Y 79F00 Y 79F01 Y 79F02 Y 79F03 Y 7AF00 Y 7AF00 Y 7AFO1 Y 7AF02 Y 7AF03 Y 7BF00 Y 7BF00 7 1 Y 7BF02 Y 7BF03 Ixx95 Motor xx Power On Servo Position Format Ixx95 will be set to a value which tells the controller that the register from Ixx10 will be processed as an Acc 57E absolute encoder The following table shows the possible settings of Ixx95
13. 29 Accessory 57E SERVOPACK 1CN TERMINAL DESCRIPTION For X series motor and absolute encoder 30 Terminal Sigma I Description 1 SG OV 2 SG OV 3 PL1 Power supply for open collector reference 4 SEN SEN signal input 5 V REF Speed reference input 6 SG 0V 7 PULS Reference pulse input 8 PULS Reference pulse input 9 T REF Torque reference input 10 SG OV 11 SIGN Reference sign input 12 SIG Reference sign input 13 PL2 Power Supply for open collector reference 14 CLR Error counter clear input 15 CLR Error counter clear input 16 TQR M Torque monitor 17 VTG M Speed monitor 18 PL3 Power supply for open collector reference 19 PCO PG dividing output phase C 20 PCO PG dividing output phase C 21 BAT Battery 22 BATO Battery 23 12V Power supply for speed torque reference 24 12V Power supply for speed torque reference 25 V CMP COIN Speed coincidence signal output 26 V CMP COIN Speed coincidence signal output 27 TGON TGON output signal 28 TGON TGON output signal 29 S RDY Servo ready output 30 S RDY Servo ready output 31 ALM Servo alarm output 32 ALM Servo alarm output 33 PAO PG dividing output phase A 34 PAO PG dividing output phase A 35 PBO PG dividing output phase B 36 PBO PG dividing output phase B 37 ALOI Alarm co
14. ER HR eed n 29 SERVOPACK TERMINAL DESCRIPTIONN 30 SCHEMATICS suqus EUER 32 Table of Contents Accessory 57 INTRODUCTION UMAC s Acc 57E allows a UMAC interface to the Yaskawa or Mitsubishi absolute encoder The 57 15 part ofthe UMAC or MACRO Pack family of expansion cards and these accessory cards are designed to plug into an industrial 3U rack system The information from these accessories is passed directly to either the UMAC or MACRO Station CPU via the high speed JEXP expansion bus Other axis or feedback interface JEXP accessories include the following Acc 14E Parallel Feedback Inputs absolute enc or interferometers Acc 24E2 Digital Amplifier Breakout with TTL encoder inputs or MLDT Acc 24E2A Analog Amplifier Breakout with TTL encoder inputs or MLDT Acc 24E28 Stepper Amplifier Breakout with TTL encoder inputs or MLDT Acc 28E 16 bit A D Converter Inputs up to four per card 51 4096 times interpolator for 1 Vpp sinusoidal encoders e Acc 53E SSI encoder interface up to eight channels Up to eight Acc 57E boards can be connected to one UMAC providing up to 32 channels of encoder feedback Because each MACRO Station CPU can only service eight channels of servo data only two fully populated Acc 57E boards can be connected to the M
15. J1 Yaskawa Sigma Series Encoder Input Pin Symbol Function Description Notes 1 GND Common Encoder Common 2 GND Common Encoder Common 3 GND Common Encoder Common 4 SENI Power T5V 5 SENI Power T5V 6 SENI Power T5V 7 NC 8 NC 9 NC 10 NC 11 12 Input 3 13 Input Encoder Common 14 1 Channel 15 PHCI Output Channel C 16 PHAI Output Channel 17 PHAI Output Channel A 18 PHBI Output Channel 19 PHBI Output Channel B 20 FGND Common Encoder from Ground 1 Channel C is terminated at the connector The part number and manufacture information for connector 12 is as follows Manufacture 3M Part number N10220 52B2VC Connector Pinouts 23 Accessory 57E J2 Yaskawa Sigma Series Encoder Input 24 Pin Symbol Function Description Notes 1 GND Common Encoder Common 2 GND Common Encoder Common 3 GND Common Encoder Common 4 SEN2 Power T5V 5 SEN2 Power T5V 6 SEN2 Power T5V 7 NC 8 NC 9 NC 10 NC 11 12 Input T3V 13 Input Encoder Common 14 2 Output Channel 15 PHC2 Output Channel C 16 PHA2 Output Channel 17 PHA2 Output Channel A 18 PHB2 Output Channel 19 PHB2 Output Channel B 20 FGND Common Encoder from Ground 1 Channel C is terminated at the connector The part number and manufacture information f
16. OPEN Y 8880 CLOSE CLOSE CLOSE CLOSE OPEN CLOSE 514 Y 9880 CLOSE CLOSE CLOSE OPEN OPEN CLOSE Y A880 CLOSE CLOSE OPEN CLOSE OPEN CLOSE Y B880 FFF0 CLOSE CLOSE OPEN OPEN OPEN CLOSE 588 0 CLOSE CLOSE CLOSE CLOSE OPEN OPEN CS16 Y 98C0 CLOSE CLOSE CLOSE OPEN OPEN OPEN Y A8CO CLOSE CLOSE OPEN CLOSE OPEN OPEN 8 0 CLOSE CLOSE OPEN OPEN OPEN OPEN The default setting is All Closed position For Option 1 extra four channels the next four channels of the encoder data will be added on sequentially 04 07 Hardware Settings Accessory 57 5 Refer to layout diagram of Acc 57E for location of jumpers on board E Point Jumpers Jumper Config Description Default El 1 2 3 1 2 for bootstrap 2 3 2 3 for single chip mode E2 1 2 3 Jump 1 2 for Turbo 3U CPU and MACRO CPU 1 2 Jump 2 3 for legacy MACRO CPU before 6 00 For legacy MACRO Stations part number 602804 100 thru 602804 104 JP Jumpers Jumper Config Description Default JP1 1 2 1 2 for Option M Mitsubishi RS232 mode No jumper No jumper for Option M Mitsubishi RS422 mode JP2 1 2 1 2 for CPU reset No Jumper No jumper for normal operation JP3 1 2 1 2 for Option M Mitsubishi RS232 mode No jumper No jumper for Option M Mitsubishi RS422 mode 4 1 2 1 2
17. erret e edere o DH e EaR EES 7 B SS JUMPE REID C IDOL LIU LLL LIUM LIMIT 7 Connector Descriptions RR 7 7 7 IANA 7 7 7 7 Hardware Address Limitations uqu 8 UMAC Card TYPOS sus 8 Chip Select 55 8 Addressing Conflicts 8 A Example 1 Acc 11E Acc 57E 8 Example 2 Acc 11E 65 seen eene nennen nennen 8 ACC 57E THEORY OF OPERATION 9 UMAC TURBO I VARIABLE SETUP FOR POWER ON POSITION 11 Ixx10 Motor xx Power On Position Address esses eere eren nennen nnne nnn 11 Ixx95 Motor xx Power On Servo Position Format eene enne nennen nennen nnne 11 Ixx98 Motor xx Resolver Third Gear Ratio Yaskawa Only for 11 Ixx99 Motor xx Second Resolver Gear Yaskawa Encoder only for Turbo
18. for Mitsubishi absolute encoder 1 F No Jumper No jumper for Yaskawa absolute encoder 1 Connector Descriptions TB1 and TB2 These are 12 position terminal blocks they are designed to take the Yaskawa absolute encoder signals as an input to the interface card for encoder 1 and TB2 for encoder 2 respectively They are used to connect to Yaskawa absolute encoder for both absolute data signals and the incremental pulses These terminal blocks have the same pin out as Acc 24E2 In order to share the incremental pulse signal with Acc 24E2 a physical cable connection has to be installed by the customer J1 and J2 These 20 pin D Sub connectors provide the direct connection for the Yaskawa Servo Pack user The pin outs on these connectors are the same as 2CN on the Servo Pack please reference the Yaskawa Servo Pack User Manual for details J3 and J4 These two 20 pin D sub connectors allow direct connection from the RS422 communications cable between the Mitsubishi drive and Acc 57E Option M card Up to 8 Mitsubishi drives can be connected on this card If there are only two drives involved in the system these two connectors can be used to connect the two drives respectively for more than two drives system a special daisy chained cable has to build by customer will mention in the system wiring section J6 Reserved for factor test use only J7 Lattice CPLD program connector for factory use only P1 UMAC Bus ba
19. the Compact MACRO Station will use to determine how to read the absolute position and report that position back to PMAC as an auxiliary response The following table shows the possible values for 1 Encoder Type 1 Value Yaskawa 34 address Mitsubishi 34 address unsigned B4 address signed 1x consists of two parts The low 16 bits last four hexadecimal digits specify the address on the MACRO Station from which the absolute position information is read The high eight bits first two hexadecimal digits tell the Compact MACRO Station how to interpret the data at that address the method 20 Acc 57E Setup for UMAC MACRO 57 MACRO MI11x Parallel Word Example Signed 24 bit Absolute data from Acc 57E at 8840 B 4 8 8 4 0 zs z22 2o te to tz 16 16 e a o 9 5 4 s 2 1 o 1 of bits location 584 Source Address 8840 Y address 0 X address 1 control bit Unsigned 0 signed 1 format bit X Y Address Bit If bit 22 of Ix10 is 0 the PMAC looks for the parallel sensor in its Y address space This is the standard choice since all I O ports map into the Y address space If this bit is 1 PMAC looks for the parallel sensor in its X address space Signed Unsigned Bit If the most significant bit MSB
20. 00 A8C0 B8C0 Addressing Conflicts When using only the type A UMAC cards or using only the type BUMAC cards in an application do not worry about potential addressing conflicts other than making sure the individual cards are set to the addresses as specified in the manual If using both type A and type cards in their rack be aware of the possible addressing conflicts If using the Type A card on a particular Chip Select CS10 CS12 CS14 or CS16 then do not use a Type B card with the same Chip Select address unless the Type B card is a general IO type If the Type B card is a general IO type then the Type B card will be the low byte card at the Chip Select address and the Type A cards will be setup at as the middle byte and high byte addresses Type A and Type B Example 1 Acc 11E and Acc 57E If using an Acc 11E and Acc 57E do not allow both cards to use the same Chip Select because the data from both cards will be overwritten by the other card The solution to this problem is to make sure both cards are not addressed to the same chip select Type A and Type B Example 2 Acc 11E and Acc 65E For this example allow the two cards to share the same chip select because the Acc 65E is a general purpose card The only restriction in doing so is that the Acc 65E must be considered the low byte addressed card and the Acc 11E must be jumpered to either the middle or high bytes Gumper E6A E6H Jumpers
21. 8 32768 4096 8 4 1498 8 I84 8 32768 4096 8 Acc 57E Setup for UMAC MACRO 21 Accessory 57 Axis Turbo Ultralite Ultralite Description 1 1199 0 191 0 Remainder from 98 calculation 2 1299 0 192 0 Remainder from Ix98 calculation 3 1399 0 193 0 Remainder from Ix98 calculation 4 1499 0 194 0 Remainder from Ix98 calculation Example UMAC MACRO Mitsubishi Absolute Encoder Setup For this example the Acc 57E will be addressed to the base address Y 8840 based on the SW1 settings We will also assume that we are setting up motors 1 2 3 and 4 as signed absolute encoders To properly set up the Acc 57E to read Mitsubishi absolute encoders do the following MSn MI11x Setup MS0 MI111 348840 MS0 MI112 348841 MS0 MI113 348842 MS0 MI114 348843 Ixx10 Setup Axis Turbo Ultralite Node Address Ultralite Signed 1 000100 20000 2 5000001 20001 3 000004 20004 4 000005 20005 Ixx95 Setup for Turbo Ultralite I195 F20000 Yaskawa absolute power on position setting I295 F20000 Yaskawa absolute power on position setting 1395 20000 absolute power on position setting 1495 5220000 Yaskawa absolute power on position setting 22 Acc 57E Setup for UMAC MACRO 57 CONNECTOR PINOUTS
22. ACRO Station This board provides up to four channels of absolute encoder inputs to the UMAC controller with both quadrature incremental encoder signal feedback as well as absolute position data To prevent data from being lost in the case of power loss or power off conditions a 3 3V battery is included on the board with a monitor circuit to provide an indication of any drop in excess of 596 In addition there are four jumpers on the board to allow the customer to reset the absolute position value See the related paragraphs below for a detailed description of the absolute encoder setup Options Acc 57E Basic card Two axes Yaskawa absolute encoder interface Acc 57E option Y Additional two axes Yaskawa absolute encoder interface additional card must be ordered with the basic card Acc 57E option M Eight axes Mitsubishi absolute encoder interface Mitsubishi Option can only be used with the MR J25 xA series drive Note The Acc 57E Option M cannot be combined with option Y and vice versa In order to avoid the confusion between these two different encoder user this manual will be divided into two parts Part I will be the manual for Yaskawa absolute encoder user Part II is for the Mitsubishi absolute encoder user Introduction 1 Accessory 57E Introduction Accessory 57 BOARD LAYOUT Acc 57E Yaskawa DB15 Option
23. AIN CARD vec vec Bg Y TP10 cont PS C27 T C28 cont 1UF GND 5V GND 5V _ R13 2 9 5V rea amare i B 15 Wk 2 PHA 320 m T 5 oi 51 Y D2 2 1 15 1 7 __ E vss AUF 03 45 11 28 10 I INSTALL THESE PARTS ON BOTH CARD ASSY 603276 100 HEADER 1X8 142152 41 ATX 1 D4 14 13 5 PHAS Not 4 Tour Hz aa ps Bog a ee tari INSTALLED 5 13 T20UT 12 ARX _ 2 012 06 12 45 PHAT DELTA TAU DATA SYSTEMS INC H RIIN RIOUT D7 2 rain 9 5 mE JUMPER 2 SOT23 5 3486 320 615 CE4 10 CSX1 R16 YASKAWA MITSUBISHI ABS ENCODER BOARD AN 01 61 A MAX232 FOR OPT 2 MISHUBISHI 85422 CSX2 T OR OPT 2 MISHUBISHI RS232 5 epz TERMINATION RESISTOR INSTALL AS NECESSARY Bie Document Number DB amp FIS FOR TEST PURPOSE ONLY 74 151 603484 322 Z 1 4 ARE CONNECTED TO THE MOUNTING HOLES ale Monday April 02 2001 Bnet 1 33
24. Memory Locations MACRO Station Memory Locations 078C00 079C00 58800 59800 07AC00 07BC00 A800 B800 078D00 079D00 8840 9840 07AD00 07BD00 A840 B840 078E00 079E00 8880 9880 07AE00 507 0 A880 B880 078F00 079F00 588 0 598 0 07AF00 07BF00 A8CO SB8CO The Acc 53E has a set of dipswitches telling it where to write the information form the absolute encoders Once the information is at these locations we can process the binary word in the encoder conversion table to use for servo loop closure Proper setting of the dipswitches ensures all of the JEXP boards used in the application do not interfere with each other Address Select DIP Switch S2 The switch two S2 settings will allow the user to select the starting address location for the first encoder Encoders two through eight will follow in descending order from the address selected by the S2 switch The following two tables show the dip switch settings for both the Turbo PMAC 3U and the MACRO Station Hardware Settings 5 Accessory 57E Turbo PMAC 3U Switch Settings Chip 3U Turbo Dip Switch SW1 Position Select PMAC Address 6 5 4 3 2 1 Y 78C00 03 CLOSE CLOSE CLOSE CLOSE CLOSE CLOSE CS10 Y 79C00 03 CLOSE CLOSE CLOSE OPEN CLOSE CLOSE Y 7AC00 03 CLOSE CLOSE OPEN CLOSE CLOSE CLOSE Y 7BC00 03 CLOSE CLOSE OPEN OPEN
25. bit 23 of 1x is 0 the value read from absolute sensor is treated as an unsigned quantity If the MSB is 1 which adds 80 to the high eight bits of the value read from the sensor is treated as a signed two s complement quantity Example UMAC MACRO Yaskawa Absolute Encoder Setup For this example the Acc 57E will be addressed to the base address Y 8840 based on the SW1 settings The four encoders for this example have 8192 lines per revolution or 32768 encoder counts with 4x decode We will also assume that we are setting up motors 1 2 3 and 4 To properly set up the Acc 5 to read Yaskawa absolute encoders do the following MSn MI11x Setup MS0 MI111 348840 MS0 MI112 348841 MS0 MI113 348842 MS0 MI114 348843 Ixx10 Setup Axis Turbo Ultralite Node Address Ultralite Signed 1 000100 40000 2 000001 40001 3 000004 40004 4 000005 40005 Ixx95 Setup for Turbo Ultralite I195 F20000 Yaskawa absolute power on position setting 1295 20000 Yaskawa absolute power on position setting I395 F20000 Yaskawa absolute power on position setting 1495 5220000 Yaskawa absolute power on position setting Yaskawa Scale Factor Ixx98 and 99 for Turbo and I8x and 19 for Non Turbo Axis Turbo Ultralite Ultralite Description 1 1198 8 181 8 32768 4096 8 2 1298 8 182 8 32768 4096 8 3 1398 8 183
26. bsolute Mitsubishi Mitsubishi absolute Mitsubishi absolute power power power power position on position on position on position setting setting setting setting signed signed signed signed AAA 13 Accessory 57E 14 UMAC Turbo I Variable Setup for Power On Position 57 POWER ON PHASING WITH ACC 57E brushless motors require some type of a phase search on power up to establish a relationship between the zero position of the motor s commutation cycle and the zero position of the feedback device Since the data from the Acc 57E 15 absolute the motor phase position relative encoder position 15 fixed and a no movement motor phase can be performed To properly phase the motor using the absolute data from the Acc 57E set up I variables Ixx81 Ixx91 for Turbo only Ixx75 and Ixx80 The no movement power on phase reference works as follows Initially when setting up the system this may be done in a lab setting the motor 15 forced to the zero position in its phase cycle The position of the absolute sensor is read by querying an M variable previously set up to point to the sensor After performing some math on this value the resulting value is stored in PMAC as Ix75 and represents the power on phase position offset Ix81 1s set to tell PMAC the address location where it can find the absolute sensor
27. btaining absolute position at power up or upon request n The Ultralite must have Ix10 set up the Turbo Ultralite needs both Ixx10 and Ixx95 set up to enable this power on position function For power on position reads as specified in this document MACRO firmware version 1 116 or newer is needed the Turbo Ultralite firmware must be 1 938 or newer and lastly the standard Ultralite users must have firmware version 1 17 or newer Ix10 permits an automatic read of an absolute position sensor at power on reset If Ix10 is set to O the power on reset position for the motor will be considered to be 0 regardless of the type of sensor used There are specific settings of PMAC s PMAC2 s Ix10 for each type of MACRO interface The Compact MACRO Station has a corresponding variable I11x for each node that must be set 57 Setup for UMAC MACRO 19 Accessory 57E Absolute Position for Ultralite Compact MACRO Station Feedback Type Ix10 Ix10 Firmware version 1 17 and above Unsigned Signed Yaskawa Absolute Encoder Converter 72000n F2000n Mitsubishi Absolute Encoder Converter 74000n F4000n n is the MACRO node number used for Motor x 0 1 4 5 8 9 C 12 or D 13 Absolute Position for Turbo Ultralite Ixx95 720000 740000 F20000 F40000 Addresses are MACRO Node Numbers MACRO Node Ixx10 for Ixx10
28. ck plane connector Jumpers 7 Accessory 57E Hardware Address Limitations Some of the older UMAC IO accessories might create a hardware address limitation relative to the newer series of UMAC high speed IO cards The Acc 57E would be considered a newer high speed IO card The new IO cards have four addresses per chip select CS10 CS12 CS14 and CS16 This enables these cards to have up to 16 different addresses The 9 10 Acc 11E and Acc 12E all have one address per chip select but also have the low byte middle byte and high byte type of addressing scheme and allows for a maximum of twelve of these IO cards UMAC Card Types UMAC Card Number of Addresses Category Maximum of cards Card Type Acc 9E Acc 10E 4 General IO 12 A Acc 12E Acc 65E Acc 66E 16 General IO 16 B Acc 67E Acc 68E Acc 14E Acc 28E Acc 36E 16 ADC and DAC B Acc 59E Acc 53E 57 16 Feedback B Acc 58E Devices Chip Select Addresses Chip UMAC Turbo MACRO Type A Card UMAC Turbo Type B Card MACRO Type B Card Select Type A Card 10 078C00 FFEO or 8800 078 00 079C00 8800 9800 07ACO00 07BC00 A800 B800 12 078D00 FFES or 8840 078D00 079D00 8840 9840 07AD00 8078000 A840 B840 14 078E00 FFFO or 8880 078E00 079E00 8880 9880 07AE00 07 00 A880 B880 16 078F00 88C0 078F00 079F00 88C0 98C0 07AF00 07BF
29. de output open collector output 38 ALO2 Alarm code output open collector output 39 ALO3 Alarm code output open collector output 40 S ON Servo ON input 41 P control input 42 P OT Forward over travel input 43 N OT Reverse over trivial input 44 ALM RST Alarm reset input 45 P CL Forward external torque limit ON input 46 N CL Reverse external torque limit ON input 47 24V IN External power supply input 48 PSO Phase S signal output 49 PSO Phase S Signal output 50 FG Frame ground Servopack ICN Terminal Description 57 Servopack ICN Terminal Description 31 Accessory 57 SCHEMATICS 32 Servopack ICN Terminal Description Accessory 57 Schematics
30. el Acc 57E third channel Acc 57E fourth channel Acc 57E N N Ne Ixx95 Setup 1195 5988008 Yaskawa absolute power on position setting 1295 988008 Yaskawa absolute power on position setting 1395 988008 Yaskawa absolute power on position setting 1495 988008 Yaskawa absolute power on position setting 12 UMAC Turbo I Variable Setup for Power On Position 57 Ixx98 Setup 1198 8 1298 8 1398 8 1498 8 Ixx99 Setup 1199 0 1299 0 1399 0 1499 0 Example Turbo UMAC Mitsubishi Absolute Encoder Setup Ixx98 Ixx98 Ixx98 Ixx98 Ixx99 Ixx99 Ixx99 Ixx99 32768 4096 32768 4096 32768 4096 32768 4096 remainder remainder remainder remainder OO from from from from Ix98 Ix98 Ix98 Ix98 calculation calculation calculation calculation For this example the Acc 57E will be addressed to the base address Y 78D00 based on SW1 settings We will also assume that we are setting up motors 1 2 3 and 4 as signed absolute encoders To properly setup the Acc 57E to read Mitsubishi absolute encoders do the following Ixx10 Setup 1110 78D00 1210 578001 1310 578002 1410 578003 Ixx95 Setup 1195 5400008 1295 5400008 1395 5400008 1495 5400008 UMAC Turbo I Variable Setup for Power On Position first channel Acc 57E Second channel 571 third channel Acc 57E fourth channel Acc 57l Mitsubishi absolute a
31. for Ixx10 for Ixx10 for Number MACRO IC 0 MACROIC1 MACROIC2 MACRO IC3 0 000100 000010 000020 000030 1 000001 000011 000021 00003 1 4 000004 000014 000024 000034 5 000005 000015 000025 000035 8 000008 000018 000028 000038 9 000009 000019 000029 000039 12 00000C 00001C 00002C 00003C 13 00000D 00001D 00002D 00003D Compact MACRO Station Feedback Type 95 95 Unsigned Signed Yaskawa Absolute Encoder Converter 720000 F20000 Mitsubishi Absolute Encoder Converter 200008 A00008 When the Ultralite has Ix10 set to get absolute position over MACRO it executes a station auxiliary read command MS node I920 to request the absolute position from the Compact MACRO Station The station then references its own I11x value to determine the type format and address of the data to be read MACRO Absolute Position Setup through 18 1x specify whether where and how absolute position is to be read on the Compact MACRO Station for a motor node 1x controls the xth motor node which usually corresponds to Motor x on PMAC and sent back to the Ultralite If MI11x is set to 0 no power on reset absolute position value will be returned to PMAC If MII Ix is set to a value greater than 0 then when the PMAC requests the absolute position because its Ix10 and or Ix81 values are set to obtain absolute position through MACRO sending an auxiliary MS node MI920 command
32. in ret ERU eee eR 20 Absolute Position for Turbo Ultralite 20 MACRO Absolute Position Setup eset rere ertet tette Fee nha 20 Table of Contents i Accessory 57E MACRO Ix Parallel Word Example seen eene nre erinnere erret 21 Example UMAC MACRO Yaskawa Absolute Encoder eee 21 Example UMAC MACRO Mitsubishi Absolute Encoder Setup eee 22 CONNECTOR 23 Yaskawa Sigma Series Encoder Input esses ener nennen enne nnne nnn 23 J2 Yaskawa Sigma Series Encoder Input nennen enn 24 J3 Mitsubishi RS422 25 J4 Mitsubishi 5422 Input enne enne tenete nennen nne 25 ACG 57E TERMINAL BLOCKS 22222000000 et intent bo tese de soos pe EE RB De Fase dade Rae 27 Connector TBI Top Encoder uyu io tenter eren ee eR ek 27 Connector T B2 Top Encoder 2 uu l nen etre etie Penes rp con er rk de pes 27 ACC 57E DB15 CONNECTOR 2 4 4 00 28 Connector J1 Top Encoder 1 onte e n nine RR ELE HE EE RR Yen 28 Connector J2 Top Encodet 2 ect uet hi RETE E EX
33. io Yaskawa only for non Turbo I8x tells the PMAC how many counts per revolution the Yaskawa Encoder has The units for this parameter are in counts per revolution divided by 4096 counts per revolution are based on decode value of I7mn0 Usually 4x decode is used If the Yaskawa absolute encoder you are using has 32768 counts per revolution then the user will set Ixx10 to the following value 32768 8 4096 I9x Motor xx Second Resolver Gear Ratio Yaskawa Encoder only for non Turbo This is used to let the PMAC know what the remainder from the I9x division is For most Yaskawa encoders this value will be zero because the majority of their encoders are based on a power of a two line count 1024 2048 4096 etc Example The number of lines per revolution of the Yaskawa absolute encoder in the system is 8192 PMAC will multiply this term by 4 and read 8192x4 32768 counts rev 32768 18 8 4096 19 0 Example Turbo Yaskawa Absolute Encoder Setup For this example the Acc 57E is addressed to the base address Y 78D00 based on the SW1 settings The four encoders for this example have 8192 lines per revolution or 32768 encoder counts with 4x decode Also assume that we are setting up motors 1 2 3 and 4 To properly setup the Acc 57E to read Yaskawa absolute encoders do the following Ixx10 Setup 1110 78D00 1210 78D01 1310 78D02 1410 578003 first channel Acc 57E second chann
34. ith Acc 57E 15 Accessory 57 1 80 Ixx80 controls power up mode including the phasing search method 1f used for Motor xx If Ixx80 bit 0 is 1 Ixx80 1 or 3 this is done automatically during power up reset cycle and it also be done In response to a on line command to the motor or a on line command to the coordinate system containing the motor If Ixx80 is set to 0 phasing will also be done in response to a on line command to the motor or a on line command to the coordinate system containing the motor Encoder Controller Ixx81 Ixx91 Yaskawa UMAC Turbo Servo IC Address 180000 Yaskawa Turbo Ultralite MACRO IC Address 180000 Mitsubishi UMAC Turbo Servo IC Address 100008 Mitsubishi Turbo Ultralite MACRO IC Address 150000 16 Power On Phasing with Acc 57E 57 ACC 57E CONFIGURATION BLOCK DIAGRAMS Yaskawa Servo Pack Diagram UBUS BACKPLANE J1 ACC 57E TB1 ACC 24E2 UMAC Turbo UMAC MACRO Yaskawa JUSP TA50P Servo Pack CN1 Yaskawa CN2 J Enc Motor Yaskawa Generic Absolute Encoder Setup Mitsubishi Absolute Encoder Setup UBUS BACKPLANE 1 57 24 2 Amplifier
35. manufacture information for connector J2 is as follow Manufacture 3M Part number N10220 52B2VC Connector Pinouts 25 Accessory 57E 26 Connector Pinouts 57 ACC 57E TERMINAL BLOCKS Connector TB1 Top Encoder 1 Pin Symbol Function Description Notes 1 1 or 1 Input Output Enc 1 Positive A Channel 2 PHAI Input Output Enc 1 Negative A Channel 3 1 or 1 Input Output Enc 1 Positive B Channel 4 CHBI or Input Output Enc 1 Negative B Channel 5 1 or Input Output Enc 1 Positive C Channel Index channel 6 CHCI PHCI Input Output Enc 1 Negative C Channel Index channel 7 ENCPWR Output Digital Supply Power for encoder 8 GND Common _ Digital Reference 9 Power T5V 10 Input T3V 11 BAT Input Encoder Common 12 FGND Connector TB2 Top Encoder 2 Pin Symbol Function Description Notes 1 CHA2 or 2 Input Output Enc 2 Positive A Channel 2 CHA2 2 Input Output Enc 2 Negative A Channel 3 2 or PHB2 Input Output Enc 2 Positive B Channel 4 2 PHB2 Input Output Enc 2 Negative B Channel 5 2 Input Output Enc 2 Positive C Channel Index channel 6 CHC2 or PHC Inp
36. onents or causing electrical shorts When our products are used in an industrial environment install them into an industrial electrical cabinet or industrial PC to protect them from excessive or corrosive moisture abnormal ambient temperatures and conductive materials If Delta Tau Data Systems Inc products are directly exposed to hazardous or conductive materials and or environments we cannot guarantee their operation REVISION HISTORY REV DESCRIPTION DATE CHG APPVD ADDED ACC 57E DB15 CONNECTOR OPTION P 28 29 11 16 07 CP S MILICI 57 Table of Contents INTRODUCTION pc 1 DPE a ro e t ede me p dee q We cg 1 BOARD ene 3 5 Yaskawa DBIS Option ioi ee eie ORA Der 3 Acc 57E Yaskawa Terminal Block 3 Acc 57E Mitsubishi Terminal Block Option sess nenne 4 5 IU Ed oC vb 5 Address Select DIP 5 5225 25 5 Turbo PMAC 30 Switch Settings eese E EK ennt nennt nennen 6 MACRO Station Switch 6 JUMPERS M 7 E Point TUmpets v s
37. or connector 12 is as follow Manufacture 3M Part number N10220 52B2VC Connector Pinouts 57 93 Mitsubishi RS422 Input EREHEEEHE Pin Symbol Function Description Notes 1 Common 2 RXD Read Input Serial Data input 3 NC No Connection 4 NC No Connection 5 RDP 6 NC No Connection 7 NC No Connection 8 NC No Connection 9 SDP No Connection 10 11 Common 12 TXD Transmit Output Transmit serial data 13 NC No Connection 14 No Connection 15 RDN 16 NC No Connection 17 NC No Connection 18 NC No Connection 19 SDN 20 NC No Connection The part number and manufacture information for connector 12 is as follow Manufacture 3M Part number N10220 52B2VC J4 Mitsubishi RS422 Input ERESERTSEH Pin Symbol Function Description Notes 1 GND Common 2 RXD Read Input Serial Data input 3 NC No Connection 4 NC No Connection 5 6 No Connection 7 NC No Connection 8 NC No Connection 9 SDP No Connection 10 NC No Connection 11 GND Common 12 TXD Transmit Output Transmit serial data 13 NC No Connection 14 No Connection 15 RDN 16 NC No Connection 17 NC No Connection 18 NC No Connection 19 SDN 20 NC No Connection The part number and
38. s feedback and how to decode this information On power up or when a reset motor 5 command is issued PMAC will look to this address grab the current position of the rotor add to it the pre determined offset parameter and instantly it knows where the motor is in its phasing cycle relevant to the current position No movement is necessary Ixx81 Ixx81 tells Turbo PMAC what address to read for absolute power on phase position information for Motor xx if such information is present This can be a different address from that of the ongoing phase position information which is specified by Ixx83 but it must have the same resolution and direction sense Ixx81 15 set to zero if no special power on phase position reading is desired as is the case for an incremental encoder Ixx91 Ixx91 tells how the data at the address specified by Ixx81 is to be interpreted It also determines whether the location specified by Ixx81 1s a multiplexer thumbwheel port address an address in Turbo PMAC s own memory and 1 space or a MACRO node number Ixx75 Ixx75 tells Turbo PMAC the distance between the zero position of an absolute sensor used for power on phase position specified by Ixx81 and Ixx91 and the zero position of Turbo PMAC s commutation cycle It is used to reference the phasing algorithm for PMAC commutated motor with an absolute sensor Ixx81 gt 0 See the Software Reference manual for the proper setting Power On Phasing w
39. ut Output Enc 2 Negative C Channel Index channel 7 ENCPWR Output Digital Supply Power for encoder 8 GND Common Digital Reference 9 SEN2 Power T5V 10 BAT Input T3V 11 Input Encoder Common 12 FGND Acc 57E Terminal Blocks 27 Accessory 57 ACC 57E 0815 CONNECTOR OPTION Connector J1 Top Encoder 1 pe p 3 GND Common DigtlRefeene C 5 CHBI or PHBI InpuvOutput Neg B Chan 6 CHAI or PHAI Input Output Enc 1 Neg 7 NC INC ENCPWR Digital Supply 12 1 Input Output Enc 1 Pos C Chan Index channel 1 or Input Output Enc 1 Pos B Chan CHAI 14 1 Input Output 1 Pos Chan je ______ 28 Acc 57E Terminal Blocks 57 Connector J2 Encoder 2 1 FGND Input 3V GND 4 Index channel 5 CHBI or PHBI InpuvOutput 2 Neg 6 CHAI or PHAI Input Output Enc2 Neg pz NC Notconnected O os c 9 ma metes ENCPWR Digital Supply CHC2 or PHC2 Input Output Enc 2 Pos C Chan Index channel 13 CHB2 orPHB2 Inpu Output Enc 2 B Cha CHA2 or PHA2 Input Output Enc 2 Pos A Chan BEEN pis JNC _____ _______ Acc 57E Terminal Blocks
40. xx10 and with the Turbo Ultralite Ixx95 Regardless of the type of Ultralite retrieving the power on position setup at the MACRO CPU is the same The information must be retrieved from MACRO Station variable MSn MI920 for each node transfer as specified by Ixx10 at the Ultralite Do not set up MSn MI920 because the MACRO Station will place the power on position the appropriate register at power up Note If MSn MI920 is monitored the power on position could be read incorrectly by the Ultralite Acc 57E Absolute Encoder Addresses for MACRO Base Address Channel 1 Channel 2 Channel 3 Channel 4 Y 8800 Y 8800 Y 8801 Y 8802 Y 8803 Y 9800 Y 9800 Y 9801 Y 9802 Y 9803 Y A880 Y A880 Y A881 Y A882 Y A883 Y B800 Y B800 Y B801 Y B802 Y B803 Y 8840 Y 8840 8841 8842 8843 9840 Y 9840 Y 9841 Y 9842 Y 9843 Y A840 Y A840 Y A841 Y A842 Y A843 Y B840 Y B840 Y B841 Y B842 Y B843 Y 8880 Y 8880 Y 8881 Y 8882 Y 8883 Y 9880 Y 9880 Y 9881 Y 9882 Y 9883 Y A880 Y A880 Y A881 Y A882 Y A883 5 880 5 880 5 881 5 882 Y B883 588 0 Y 88C0 88 1 88 2 Y 88C3 598 0 98 0 98 1 98 2 Y 98C3 Y A8CO Y A8CO 8 1 Y A8C2 Y A8C3 Y B8CO Y B8CO 8 1 Y B8C2 Y B8C3 Power On Feedback Address for PMAC2 Ultralite Both the Ultralite and the Turbo Ultralite allow o
Download Pdf Manuals
Related Search
Related Contents
Admiral Craft HDS-1200W Owner's Manual new-zenith-gr-om1-moon-manual-de-instruces-1 Manuale Utente in italiano 取扱説明書 - ノースワン株式会社 ウィンドチャージャーWG913 取扱説明書 BMS2500 Shed ASSEMBLY INSTRUCTIONS BG-SC 2240 P Artikel Focused on technology Motion Computing 002-15-0010 User's Manual Copyright © All rights reserved.
Failed to retrieve file