Home

Example Applications

image

Contents

1. 34 Habplan User Manual Example Applications 20 Component windows in Habplan for testing the flow class component 21 Habgen regime class table forexample4 22 Poly data table for example 4 eee bee ee de we RE em 23 Modeltool and model setup forms for example 4 Lob even 24 Modeltool and model setup forms for example 4 Lob plant 25 PMRC model setup for example4 26 Modeltool and model setup forms for example 4 Lob even contd 27 Modeltool and model setup forms for example 4 Lob plant contd 28 Modeltool and model setup forms for example 4 Lob plant contd 29 Modeltool and model setup forms for example 4 Lob even contd 30 Modeltool and model setup forms for example 4 Lob plant contd 31 Modeltool and model setup forms for example 4 Lob even contd 32 Modeltool and model setup forms for example 4 Lob plant contd 33 Modeltool and model setup forms for example 4 Lob plant contd 34 Modeltool and model setup forms for example 4 Lob even contd 35 F1 F2 amp F3 model setup forms for Example4 36 CCFlow and Block forms for Example 4 37 Bio2 and spatial model forms for Example 4 38 Graphs for Example 4 lt e cscs aop soa kosok a a n 39 GISViewer for Example 4 aana a Habplan User Manual Example Applications 5 40 BestSchedule window for Example 4 o 59 41 Output control window for Exa
2. Plant Fertilize Product fi Plant Fertilize Product Figure 27 Modeltool and model setup forms for example 4 Lob plant contd Pushing the Apply button causes the clear cut operation to be applied in Period 1 just as it was to create the normal flow component above However now we have added a planting that results in 400 trees per acre after a 4 year lag This means that these polygons can contribute to habitat before being cut and possibly after the replanted trees have grown Also the Site index is assumed to improve by 14 due to genetic gains The output is the Habplan User Manual Example Applications 47 polygon size and the threshold is CV 1000 so nothing is output unless the polygon has at least 1000 Cubic Feet of volume per acre The Period 3 form says to leave a residual of N 1000 which means don t cut in the non action years since there will never be that many trees per acre However there is output in non action years as long as there is a threshold CV of at least 1000 Now select the Poly Regime Table rows where Regime DN and Type is Planted or Seeded Pine The do nothing DN regimes are handled separately when creating Habitat Flow component data because doing nothing may result in leaving habitat intact Make the model setup forms look like those shown in Figure 28 Copy Plant Fertilize Product ES Copy Plant Fertilize Product Figure 28
3. Habplan3 We ll begin by setting up the Objective function components that will be needed for this problem We ll need 2 flow components a Biological type 2 component a Block component and a Spatial Model component Now select the Config option under the Misc menu i e Misc Config Make the Configuration form look like the example shown in Figure 11 ma Configuration Control x Top Level Components N of Flows 2 N of Biol Type 1 0 N of Biol Type 2 1 N of SpaceMods 1 N per Row on Form 4 Next gt Figure 11 Configuration form for example 3 So there are 2 flows 0 Biol Type 1 1 Biol Type 2 and 1 Space Mods Now click the Next button to choose the number of Block and CCFlow components associated with the first Flow Figure 12 You want 1 of each of these subFlow components Click Next again and choose the number of subFlows for Flow component 2 Figure 13 You don t want any subflows for the second Flow which is the Habitat component Habplan User Manual Example Applications 26 F C Configuration Con X Sub Flow Components N of Block 1 N of CCFlowd 1 Next gt Figure 12 First subflow form for example 3 Fr C Configuration Control X Sub Flow Components N of Block 0 N of CCFlow 0 Finish Back gt Figure 13 Second subflow form for example 3 Now
4. The first step is to select the Hab radioButton on the ModelTool This immediately creates an extra Habitat period that requires a model assignment The idea here is that the actions in the normal flow periods are controlled as with a normal flow component and non action years are controlled by the Habitat period model This results in Habitat components producing output in every year of the planning horizon For this problem the horizon is 20 years Note that habitat flows should use the same regimes that were created for the so called normal flow component because Habplan only allows a regime to be assigned to a polygon if that regime appears in all components that are currently in the objective function Begin by opening the ModelTool on the Poly Regime Table and select the Hab box On the Poly Regime Table select to which Flow Table you want habitat output data written say Flow 2 Now push the InitFlow button This will create a blank Flow 2 Table with 20 output years Remember that we must produce the same regimes for each polygon as were produced for the Normal Flow Component above So it makes sense to do things in the same order as for the Normal Flow component Habplan User Manual Example Applications 45 Select all rows in the Poly Regime Table where Type ROW Swamp Pond Open or Non Productive Then make the model Setup Forms look like the example shown in Figure 26 Cg Model Selection Tool Period pest o
5. and then there are all possible combinations of 2 thinnings within the 15 years subject to a 10 year lag between thinnings 3 2 Applying Growth Models To Make Flow Components We have generated the required regimes Now it is time to create the data that Habplan needs for a Flow Component This is generally done by growing each stand and applying a treatment at the time indicated by the specific regime In this case the treatment is either clearcut thin or do nothing Habgen is capable of creating 3 types of Flow components 1 A normal flow component that gives the year and output for each period of the regime 2 A habitat flow component that gives an output for each year of the planning period This type of flow usually produces non zero output only if the amount of residual vegetation exceeds some threshold The idea is that there must be enough residual vegetation for the stand to qualify as habitat 3 An ending age class flow component that allows you to control the age class distribution at the end of the planning period to assure long term sustainability A variation on this is to control the distribution of last entry times Ending age class distribution makes sense when clearcutting is the principal management technique Distribution of last entry times might be useful when thinning is the management technique This component is made possible by using the following trick the x axis on the flow graph shows the age class and the y ax
6. ll also use the Habplan GIS viewer that can be opened under the Tool menu Tool GIS_View Start by resetting the other components weights 1 0 Tool Weight 1 Then open the SMod1 form and fill in the data field with ex500 block dat since an SMod component can conveniently use the same file as a BK component Then set the goal to 1 0 and enter the following into the text area at the bottom CC 1 BP 1 CC 2 BP 1 This says to put CC 1 s and CC 2 s next to BP s if possible In other words Borrow Pits should have clearcuts in the first 2 years adjacent to them Maybe you d want to do this because there is some reclamation activity that needs to be done to borrow pits and this ensures that other work will be taking place nearby Now enter the F1 component then the BK1 1 component then the Bio2 1 component and let Habplan run until the entered component check boxes turn red Suspend Habplan and open the GIS viewer Select the Regime option so that coloring is according to assigned regimes Then press Draw to read the data and draw the polygons according to the current regime assignments Press the Table button to see how colors are assigned to regimes In general CC regimes are shades of green T regimes are shades of blue DN is orange and BP s are cyan So our simple spatial model will try to put light greens adjacent to cyan Now check the SMod1 box and start Habplan aga
7. the RD regime is used to mark roads and the BP regime marks borrow pits in this example All polygons need at least 1 regime assigned to them Assigning a special marker regime allows us to later color the roads and borrow pits on the GIS display or to use the spatial model to put thinnings near BP s for example CC is a clearcut regime The 1 15 in period 1 means that there will be a CC regime for each of the first 15 years This will be a 15 year plan and we need to fullfill the requirement that there be management regimes for every year so that even flow can be attained The thinning regime T is a bit more complicated The 1 15 1 10 in period 1 means that there should be a thinning regime in each of years 1 15 If there was a 1 15 2 then every other year would get a thinning regime The 10 means that there must be a 10 year lag until the second thinning in period 2 and the 0 15 specification for period 2 means that a second thinning is optional in any of years 1 15 Therefore T 140 represents a regime for Habplan User Manual Example Applications 11 thinning in year 1 only and T 5 15 represents a regime for thinning in both years 5 and 15 Now select the Poly Data tab and look at the polygon table To load the data for this example select the File menu on the Poly Data Table then select ReadData File ReadData A file selection window opens Go into the ex500 directory and open the fil
8. 1 Component L0 xc File Selector File Option BlockSize fileName 2x500 block dat notBlock Options regime period separated by or i Ki1T SmallBlocks GreenUp 3 Blocksize Min 10 Max 150 J ist Order Neighbors Goal 1 iil gt Actual Goal NaN Min 11 Mac 150 Target Min 10 Verify data for Polygon Figure 16 Component windows in Habplan BK1 Habplan assumes all other regimes create blocks unless told otherwise For this problem we only need to consider the CC regimes and all thinning regimes should be declared to be notBlocks We declare thinning regimes as notBlocks by entering T on the block form This causes Habplan to autodetect all regimes that start with a T After entering T left click on the T and all detected thinning regimes should show in the Habplan Console Notice that the 2 period thinning regimes are repeated with an 2 to indicate that the second period is also a notBlock Habplan User Manual Example Applications 31 3 7 4 Configuring the CCFlow Component Moving right along let s add a CCFlow component You need to specify the regimes now that DO contribute to blocksize or more specifically the regimes that you want CCFlow to monitor We do this by entering a CC under CCFlow Options on the CCFlow edit form This causes Habplan to autodetect all regimes that start with a CC The CCFlow component gives you
9. 1 0 under Tool on main Habplan window and start over For this example the F1 flow graph tons of wood shows that the desired trend and starting value were attained within user specified levels The user can change the goal settings on the F1 edit form if this level of variation is unacceptable However becoming more restrictive with one component may make it harder to attain convergence on other components The top C1 1 graph clearcut acres shows the level of clearcutting increasing over time but doesn t deviate from the trend too much The user could increase the goal setting on the C1 1 edit form to constrain this trend if necessary The bottom C1 1 graph shows the ratio of F1 flow wood volume to C1 1 flow clearcut acres i e tons harvested per acre per year The Block size graphs BK1 1 show the trend in Max Min and average blocksize over time top graph The Block graphs also show how much area is devoted to blocks that are within the block size min and max limits as well as the area of blocks above and below the limits bottom graph The requested maximum of 180 on the BK1 1 edit form was met However the SFI average of 120 may be exceeded in some years In order to lower the average the user would have to lower the maximum somewhat Habplan is very interactive and requires the user to experiment with the various settings until they attain the desired goals To save some of your schedules and accompanying outp
10. The negative 100 lag will increase all ages by 100 years which ensures that everything goes into the 22 age class This effectively separates these non even aged pines from what we re interested in i e even aged pines Now select all the remaining rows in the Poly Regime Table i e where Type Non Productive Open Pond ROW or Swamp Use the same settings as for the natural stands above and push the apply button This will put all these acres into age class 22 as well Now save the Flow 3 Table with WriteData under the File menu into Hab plan3 example ex1000 flowClass dat with no names in row 1 4 7 Generate the Block Data Select the Block Tab on and open the NabeTool Find the ex1000 stands shp file try Hab plan3 example ex1000 stands shp then press the ReadPolys button on the NabeTool This reads the shapefile for this problem Then setup the neighbor finding algorithm The simplest option of finding immediately adjacent neighbors was used for this example You can also find neighbors that have at least a specified proportion of shared boundary or neighbors can be determined by putting a buffer around each polygon Set this up as you like and press the Apply button Finding neighbors can take some time Then save the results using WriteData to Habplan3 example ex1000 block dat for use by Habplan later Don t put column names in row 1 during the save Habplan User Manual Example Applica
11. a graph of the acres cut each year and a graph of the yield per acre by year Restart Habplan with all weights set to 1 0 then add C1 1 CCFlow component by clicking the C1 1 checkbox on the main Habplan window After convergence the checkBox labels turn red you should see something like that shown in Figure 17 7 NCASI Habplan 3 0 1999 2005 0 x 7 C1 1 Component BICIE m F1 Component J 0 x er File Edit Graph Misc Tool File Selector File Option N of Iterations 10000 v FL v C1d v BK10 ex500 block dat Mileoo000 LJ EZ y Bio2 1 SMod1 n uspended before Iteration 2 CCFlow Options regime year separated by or Suspend Stop Alternative approach PREFIX CC oO _ C1 1 Component ee x 2 File Option JO BK1 1 Component JL 2 lt block mmn File Option 1 43 19729 Actual Goals 1 y yHat 0 78 1 yr to yr 0 78 Figure 17 Component windows in Hablplan CCFlow Habplan User Manual Example Applications 32 3 7 5 Configuring the Habitat Flow Component Now let s enter the Habitat Flow component F2 This component should show an opposite response to the block size constraints to that of the F1 component Since block size con straints allow fewer acres to be harvested this should result in more acres of habitat i e do nothing regimes contribute to habitat in the scenario used here With 5 components in
12. after clearcutting Residual 0 The Period 3 Setup form is what will be applied to all of the other years This says to cut the stands leaving a residual of 2000 Trees Per Acre and to only allow some output if the Threshold value of 1000 Cu Ft per acre is exceeded Since N can never reach 2000 there will be no additional cutting in off regime years and there will only be output when a stand has at least 1000 Cubic feet of wood remaining per acre This threshold condition can occur either before cutting or after regrowth The actual output variable is set to Size so the acreage of the polygon is output This is a lot to think about when filling out these forms It may help to look at the output in the Flow 2 Table Figure 6 after the Apply button is pushed Habplan User Manual Example Applications 19 a Model Selection Tool Period Periodi Lob Plant M period kon piam e seww Habitat koppan e sew Z Apply InitFlow Size 1 Scale Hab Class Norm ModelVar YourVar Copy Plant Fertilize Product 7 Copy Plant Fertilize Product Figure 5 Habitat setup forms for example 3 The habitat flow output table Figure 6 has a block diagonal appearance The output is highly compressed in the above image but you can see that there is no output from the year where clearcutting occurred until about 8 years after when the planting has grown suffici
13. be a 9 year lag however before the second thinning can occur hence the notation 1 20 1 9 for period 1 These regime classes are similar to example 3 but the planning horizon will be 20 years rather than 15 as for example 3 The planted and seeded pine will be assigned to CC regimes and the Natural Hwd and Pine will receive thinning regimes 4 2 Applying Regimes to Polygons Now we re ready to apply the regime classes to specific polygons The first step is to read some polygon data Select the Poly Data tab in Habgen Select ReadData under the Habplan User Manual Example Applications 38 File menu on the Poly Data Table A file selection window will open Then go to the ex1000 directory and read the habplan_ws dat file which contains the polygon data Now get the ColumnNames tool from the Tool menu and use the names in Rowl of the data as the Column Names for the Poly Data Table Then use the Row button on the Poly Data table to delete the names from row 1 Now your Poly Data table should look like the example shown in Figure 22 F Poly Data Table Natural Har Natural Har Planted Pine Natural Har Natural Har Planted Pine Natural Har Planted Pine Planted Pine Natural Har _ Natural Har Figure 22 Poly data table for example 4 It is imperative to ensure that each polygon has at least one
14. causes the planting to occur in Period 1 and then the clearcut in Period 2 The lag is taken care of since the planting won t count until 4 years pass as specified on the planting form so set Lag 0 In general don t use lags when planting is taking place This Habplan User Manual Example Applications 52 puts the right ages into the Flow Table except that the DN Regimes have age 21 This implies that they have pines at least 21 years old on them It depends on what the DN regime means for the Bareland Type This suggests that it means that the bareland polygon was immediately planted but the trees were never cut If you don t like this result you are left with the option of taking an editor and making changes manually to the Bareland DN polygons after saving the Flow output data to a file Now we need to select everything else and get Habgen to put it into an older age class that can be distinguished from even aged pine Remember we are using this component to track ending ages for even aged pine only Select the Natural Hardwood and Natural Pine rows in the Poly Regime Table Make the setup forms look like those shown in Figure 34 The model Setup forms have a thinning occuring in each of the 2 periods but the results from the thinnings are irrelevant because this is a Flow component for even aged pine The key to making this work is that the lag is set to 100 and the Max 22 which puts all ages gt 22 into the 22 age class
15. have to load these settings twice to allow Habplan to reconfigure the objective function for the multi district example This will load the settings for this example This provides a simple yet realistic demonstration of Habplan s multi district scheduling capability Multi district scheduling allows you to simultaneously control a superFlow that is composed of 2 or more subFlows Normally these subF lows come from Districts that you want to manage somewhat independently while at the same time attaining higher level objectives that de pend on accumulating each districts output The section on the Flow Component in the Habplan User Manual has more on this subject The example uses the same 419 polygon data set as the first example Sub districts are created by splitting polygons 1 200 into 1 file and polygons 201 419 into another The example has Flow 1 F1 as the superFlow consisting of subFlows F2 and F3 which come from the 2 districts Notice that checking the F1 component causes the data to be read for F2 and F3 which are automatically entered into the objective function You can remove them after the data are read if you prefer Now the F1 flow consists of the tons of wood being produced from all 419 stands whereas F2 and F3 are the flows from stands 1 200 and 201 419 respectively Open the F2 edit form under the Edit menu and change the slope to 03 to see how this affects the F1 and F3 flow graphs Likewise you can cha
16. regime So begin by selecting the DN row from the Regime Class Table Then select all rows from the Poly Data Table using Edit SelectAll Now go to the Poly Regime Table and press the MergeNew button in the lower right This merges the selected Regime Classes with the selected poly gons Now there should be a row for each polygon with the DN regime assigned This will ensure that all polygons are represented and in the correct order Order matters when using the GIS viewer The viewer assumes that the nt polygon in the shape file corresponds to the nt polygon in the Habplan data files If the GIS Viewer is not being used then order is Habplan User Manual Example Applications 39 not important to Habplan Now we need to replace the DN regime with the appropriate place holder regime for Row Pond and Open polygons Begin by assigning the ROW regime to the ROW Type polygons First select ROW in the Regime Class Table Then get the SelectionTool for the Poly Data Table First press UnSelect to clear previous selections Fill in the GE and LE columns in the Type row of the SelectionTool with ROW and press the Select button This should result in an information dialog popping up to tell you that 66 ROW polygons were selected Now go to the Poly Regime Table and press the MergeAdd button to add these ROW regimes Remember that MergeNew should only be pressed once when the table is initial
17. the objective function F1 C1 1 BK1 1 F2 Bio2 1 you should see something like that shown in Figure 18 TO NCASI Habplan 3 0 1999 2005 0X F2 Component File Edit Graph Misc Tool IIA ae 10000 f C No Model File Selector TA 0 ti Fl BK10 F2 r SMod1 uspended before Iteration 2 ByGone Yrs Start Suspend Stop file subFlows ex500 flowHabitat dat Q E1 Component ZI Timed start flow 20000 File Option Target Threshold lo 799999 Goal 05 FlowGoaljo g 1 Flow Model Slope Rate lo ICAA l gt Weight Flow 74752427E 7 Time0 74752427E 7 F2 Component File Option 7 Goals Time0 0 75 1 y yHat 0 84 1 yr to yr 0 91 flowHabitat Verify data for Polygon Figure 18 Component windows in Hablplan F2 Habplan User Manual Example Applications 33 The F2 flow is showing that habitat fluctuates and ranges between about 22 000 and 28 000 acres over the 15 year planning horizon The red lines at time 1 show the specified time0 value that we put on the flow forms Notice that F1 tends to fall further below this value as constraints are added but F2 tends to increase More constraints means more DN regimes which contribute to habitat 3 7 6 Configuring the Spatial Model Component Now look at the SMod1 component which is the spatial model component To appreciate its effects we
18. to create a component that allows you to control the amount flow of habitat over time We begin with the regimes already set up in the Poly Regime Table It is important to re use the same regime names so that a single regime assignment can effect more than 1 flow component Also if a regime is not present in every objective function component then Habplan considers that regime to be disallowed for any polygon The habitat component approach involves recording some output for every year of the Habplan User Manual Example Applications 18 planning period not just the years where a management action occurred If a polygon has at least a certain amount of wood vegetation on it then we will declare it to be habitat Immediately after a clearcut by this definition there will be no habitat However even a recent clearcut may provide some habitat in the real world For this example we won t worry about which animals use our habitat the purpose is to demonstrate the concept We ll also mix hardwood and pine habitats together just to demonstrate the method Go back to the Poly Regime Table and check the Habitat radioButton on the Model Selection Tool You ll notice that the Tool is cleared and a new Habitat period is added The model specified for the habitat period in this case it is period 3 will be applied to all the years that are not getting some specific management action Consider the thinning regime T 1 11 Years 1 and 11 hav
19. 1 Regime Generation with Habgen 3 1 1 Do Nothing and Place Holder Regimes 3212 Plantation Regimes ok ka ke ee DRA wee RE ew ea ees aioe Thamne Regies soroas s ioyos dee A eS 3 2 Applying Growth Models To Make Flow Components 23 Bilal Component e gos as we bd a aose Se we Oe A 3 4 A Habitat Flow Component cui a ee ee wR 3 5 A Class Flow Component aoao a Ra OE RRR ES 3 6 Building A Block Component 6 64 be ee es a eR et DI As sacs s a sere ma red Se a ee OPS OSE Oe ed 3 7 1 Configuring the First Flow Component 3 7 2 Configuring the Bio2 Component o s scs ra aeui AE E ko iE di 3 7 3 Configuring the Block Component 3 7 4 Configuring the CCFlow Component 3 7 5 Configuring the Habitat Flow Component Habplan User Manual Example Applications 2 3 7 6 Configuring the Spatial Model Component 33 3 7 7 Testing the Flow Class Component o 34 4 Example 4 An Application of Habplan and Habgen to a Larger Problem 36 4 1 4 2 4 3 4 4 4 5 4 6 4 7 4 8 4 9 Regime Class Generation so ic serra 37 Applying Regimes to Polygons 2 02456 bab a 37 Creating a Normal Plow sc cosu es 00 Meee a RR a 40 The Bites Component a aoaaa ee rr AAA eR 43 Creating a Habitat Flow Component o 44 Creating a Class Flow Component veces a a 50 Gene
20. 12 61 ROW 66 234 Roads gas and power lines railroads etc Seeded Pine 19 145 Loblolly Swamp 31 253 There is a shapefile for this problem to allow GIS display However the shapefile is large 7 6MB compressed so it is a separate operation to download the example 4 shape file After downloading do jar xvf ex4shapefile jar to unpack the shapefile into Hab plan3 example ex1000 stands shp Habplan User Manual Example Applications 37 4 1 Regime Class Generation The Habgen Regime Class Table was set up as shown in Figure 21 Period Period2 lo Jo JO JO TARTA 1 Row Figure 21 Habgen regime class table for example 4 First is the standard do nothing regime DN along with place holder regimes for ROW type polygons Ponds and Open areas See example 3 for more comments on place holder regimes These are used mainly as spatial identifiers during the Habplan analysis The BARE regime will be used to plant the Bareland and then clearcut the plantations The planting can be done in either year 1 or year 2 and then there must be a 14 year lag before clearcutting This is denoted by the notation 1 2 1 14 So the first period action is to plant and the second period action is to cut There is a clearcut regime CC that has 1 period with an action occuring in one of the years 1 20 The thinning regime T allows for 2 thinnings that can occur anytime during years 1 through 20 There must
21. 2 and spatial model forms for Example 4 The Bio 2 data is read and the goal is set to 5 which says to attempt to get 50 of the maximum volume that could be achieved The maximum is what you d get by assigning the maximum volume regime to each polygon without considering any other factors The SMod1 component uses the block dat file What is being asked for here is to put do nothing regimes near ponds i e DN PONDS 1 More requests for spatial juxtaposition can be included Habplan User Manual Example Applications 57 as long as each one is separated by a The 1 says to put DN and PONDS regimes together whereas a 1 would say to keep them apart See the Habplan Documentation for more information about using these components Read the other examples too for other details on how to use Habplan Now run Habplan by entering one component at a time into the objective function after the preceding component has turned red converged Assuming you go from left to right you d enter F1 then C1 1 then BK1 1 It is not a bad idea to Suspend the run when you enter a new component and it reads its data although it is not necessary to Suspend Display the graphs for each component as you proceed and you should see something like that shown in Figure 38 mm F2 Component fe a x File Option C1 1 Component EVE BK1 1 Component 5x NCASIHabplan 3 0 1999 2005 x File Option F
22. Habplan Example Applications NCASI Statistics and Model Development Group Version 2 January 23 2006 Abstract A number of example applications of Habplan and Habgen are described here in detail Before working through these examples it would be wise to run through the Habplan User Manual and Habplan Tutorials found on the Habplan website The first example comes packaged with the Habplan download file see the Habplan documenta tion The other examples should be downloaded separately if you want to reproduce the example applications After downloading the examples zip file into the same direc tory that contains the Habplan3 directory do the following 1 jar xvf examples zip MS Internet Explorer should offer to unzip this file for you 2 cd Habplan3 and 3 java Habplan3 If you have installation problems look at the installation instructions in the Habplan documentation for more suggestions NCASI http ncasi uml edu Habplan User Manual Example Applications Note that Habgen can use lots of memory To allow Java to access more memory consider starting Habgen like this java mx1500m Habgenl This allows Habgen to use up to 1500 MB of RAM For more information on Habgen consult the Habgen User Manual Habplan User Manual Example Applications Contents 1 Example 1 A Simple Application of Habplan 2 Example 2 Multi District Scheduling With Habplan 3 Example 3 Using Habgen and Habplan Together 3
23. Modeltool and model setup forms for example 4 Lob plant contd Remember that Period 1 applies to year 1 for do nothing regimes which actually have no action years and Period 3 applies to years 2 N In this case the setup forms say to leave a residual of N 1000 and to output the stand size if there is at least CV 1000 This allows the DN regime to contribute to habitat flow Don t forget to press the apply button Now Select Natural Pines Then make the setup forms look like the example shown in Figure 29 This applies the same thinnings to the action Periods 1 and 2 The Period 3 activity is to thin down to BA 1000 i e do nothing and the stand size will be output whenever CV is greater than or equal to 1000 Habplan User Manual Example Applications 48 ModelVar Yourvar Plant Plant Fertilize Product Plant Fertilize Product L Figure 29 Modeltool and model setup forms for example 4 Lob even contd Now select the DN regime for Natural Pines and make the Period 1 form look like the Period 3 form above This says to do nothing for all years of a DN regime and to output the stand size whenever CV is greater than or equal to 1000 Hopefully this is all starting to make sense by now The process of setting up a Habitat Flow is tedious but can be done quickly once you understand what needs to be done Now select all rows where Type Bareland
24. No Model File Selector C No Model File Selector C No Model File Selector file subFlows ex1000 flow1 dat file subFlows ex1000 flowHab dat file subFlows ex1000 flowClass dat ByGone Yrs ByGone Yrs ByGone Yrs 21 22 Time0 start flow 2000000 Goal 1 __ fil Ir Timeo start flow 15000 Goa a afi J Time0 start flow 500 cai C Target Threshold lo 0 Target Threshold lo 0 Target Threshold lo Goal 05 Flow Goal 8 ii gt Goal 05_ Flow Goal 8 ii gt Goal 05 FlowGoal s m gt Flow Model Slope Rate 0 Ed Flow Model Slope Rate 0 lt i gt Flow Model Slope Rate o Weight Flow 1 0 Timeo 1 0 Weight Flow 1 0 Timed 1 0 j Weight Flow 1 0 Timeo 1 0 Actual Goal Actual Goal Actual Goal verify data for Polygon 2 Verify data for Polygon Verify data for Polygon 2 Figure 35 F1 F2 amp F3 model setup forms for Example 4 Each form gives the location of its data There is a time0 starting value with Goal 1 The small goal for time0 says that it is not very important to start at exactly the specified value The Flow Goal 0 8 says that even flow is somewhat important The Flow Slope Rate 0 so we re looking for a flat trend over time The ByGone years are set to 21 and 22 Habplan User Manual Example Applications 55 for F3 Age Class flow This is becau
25. Poly Data table At this point there should be 9066 rows in the Poly Regime Table Check this by selecting the last row and looking at the row selection information at the top of the SelectionTool Assign thinning regimes to the Natural Hardwood and Natural Pine types Select the T row in the Regime Class Table Then select the Natural Hardwood and Natural Pine rows in the Poly Data Table Press MergeAdd in the Poly Regime Table Finally the Bareland polygons should be assigned to the BARE regime Select the Habplan User Manual Example Applications 40 BARE regime from the Regime Class table and select the Bareland polygons from the Poly Data Table Press MergeAdd on the Poly Regime Table This completes the process of assigning regimes to polygons 4 3 Creating a Normal Flow Models are applied by selecting rows in the Poly Regime Table and then setting up the ModelTool as required Begin by selecting all the placeholder regimes Use the SelectionTool to select all polygons assigned to the following regimes ROW PONDS or OPEN Then open the ModelTool and set the period model to LobEven From the drop down menu select the Flow 1 Table for output data then push the Apply button This will cause the selected placeholder regimes to have Yearl and Outputl set to 0 in the Flow 1 Table which allows Habplan to recognize these as do nothing regimes Select all rows in the Poly Regime Table where Type is Pla
26. Site Period2 none Setup i Lag 1 Max 21 7 Age Ignore as a ES v Threshold Apply InitFlow Size 1 Scale Hab Class hresholdVar none i 0 Info Copy Plant Fertilize Product Figure 32 Modeltool and model setup forms for example 4 Lob plant contd The Lob Plantation model is used to implement the single period clearcutting regime as it was for the normal flow component above On the model selection tool a lag of 1 year is allowed for replanting and any ages exceeding 21 will go into the end of period 21 age class Habplan User Manual Example Applications 51 Age is left checked which causes the Age at last entry to be added to the time since last entry However the age after a clearcut goes to 0 so this affects only the DN regimes In this case the results are the same whether or not Age is checked Select all rows where Type Bareland in the Poly Regime Table Fill out the model setup forms like those shown in Figure 33 Model Selection Tool Period Lag 0 Max 21 Age InitFlow Size 1 Scale Hab Class Norm SS Setup Lob Plant for Period ModelVar Yourvar i i Omer Yourvar Residual hresholdVar a Info Copy e Fertilize Product A Info Copy Plant Fertilize Product Figure 33 Modeltool and model setup forms for example 4 Lob plant contd This
27. ata by clicking the Decay button on the bottom of the Flow Table specifying a carbon Half Life and clicking Decay Flow Figure 3 Half Life 5 Decay Flow Inverse a Figure 3 Example of decay FlowTool for generating carbon flow data In order to break the carbon flow data into various components eg landfilled carbon degradable carbon amp non degradable carbon the Add and Copy features on the bottom of the Flow Table are useful See the Habgen documentation section Flow Output Table for more information 3 3 Biological Component Habplan uses biological components to weight regimes according to rankings that are pro vided in the Biological Type II data Typically regimes would be ranked according to a measure such as Net Present Value NPV or total harvested volume depending on the user s objectives Habgen allows you to create this data from the Flow data To create this ranking data click on the Bio Output tab At the bottom of the Bio Output Table click Init to initialize the table Now click the NPV button to open the Value Setup Form The Value Setup Form allows the user to compute NPVs or LEVs for polygon regime combinations based on output data in the Flow Tables This is done by specifying a per unit value for outputs in the respective Flow Tables together with an Habplan User Manual Example Applications 17 interest rate for discount
28. bplan where the Bio2 data are by putting ex500 biol dat in the File text field Then set the goal to 0 5 With Goal Kind set to Max this results in Habplan attempting to attain 50 of the maximum possible volume over the 15 year period In fact goals on most components are treated as if attaining or 05 of the user specified value is OK Therefore Habplan will be happy to get 45 of the max volume Now save these settings again into ex500 xml i e do a File Save WARNING You should set all weights to 1 0 before doing a Save This ensures that next time you reload all components will start with the default weights The appropriate weights for each component depend on the data and the components that are currently in the objective function Now press Start Then check the Bio2 1 checkBox After you see red on both F1 and Bio2 1 press Suspend You should see something like that shown in Figure 15 The overall attained volume hasn t been impacted by the Bio2 1 component Notice that the weight was driven to the lowest possible value essentially 0 At this point Habplan gives up and says you have convergence In fact you have attained 61 of the max which is shown on the form to be 1 0165E8 In other words the Bio2 1 component isn t needed to attain this level of flow Don t worry about this now When we add the Block Component next then the Bio2 component s efforts will become noticeable 3 7 3 Conf
29. ce class i e roughly the same number of acres will have been last entered 15 years ago as 1 year ago Remember that flow Class components show acres on the y axis and class on the x axis whereas all other flow components show the planning year on the x axis See the example 4 application of the Class Flow Component for more information 3 6 Building A Block Component Select the Block Tab to get to the Block Table Now we want to create a block input data file that gives the neighbors of each stand This is what Habplan needs in order to control block sizes and to implement the Spatial Model component Open the NabeTool by pressing the Habplan User Manual Example Applications 24 button on the Block Table You should now see something like the Block Table example as shown in Figure 10 GB Block Table File Edit Tools Polygon Neighbor 5 6401 310000395 5 6401 310000396 5 6401 310000393 5 6401 310000394 5 6401 310010865 5 6401 310011362 55 1122 310000387 55 1177 310000389 55 1177 310011182 55 1177 310000385 25 1177 310013402 55 1177 310000384 3100 T Nabe Tool FindFile ex500 s3 1Stands shp Select Neighbor Finding Method Adjacent 25 50 73 Buffer 0 r Apply ReadPolys Cancel Figure 10 Block table for example 3 Your Block Table probably won t be filled in yet so begin by pressing the FindFile button o
30. cting the file Hab plan3 project ex500 xml If you go through the example you will learn how to create the following Habplan objective function components Flow Bio2 CC Flow Block and SMod In addition a special Habitat Flow component is created with Habgen as part of this exam ple This example includes 483 polygons with data on age site index basal area trees per acre and forest type There is also an associated shapefile s31Stands shp to allow for GIS display This is a site in the Southeastern USA Begin by getting into the Habgen directory and typing java Habgen1 Use the drop down menu to select New then click OK You can size the Habgen window so that all eight tabs fit across the top If you make the window too narrow the tabs wrap around which could be confusing On a slow computer it may take some time for Habgen to appear Habplan User Manual Example Applications 10 3 1 Regime Generation with Habgen The regime class table will be showing This is where the user specifies all the regimes that will be assigned to polygons Start by filling out the regime class table as shown in Figure Kg Regime Class Table File Edit Tools Period Period2 A Row Row Col coi Save Figure 1 Habgen regime class table for example 3 The DN RD and BP regimes are all do nothing regimes Every polygon should be assigned a DN regime unless you have a good reason not to
31. del that requires Basal Area Site Base age 50 and Age Since the Site value we have is for base age 25 this will cause the growth to be reduced which is good since these are hardwoods We don t want to clearcut so let s put 80 in the residual box This tells Habgen to leave 80 square feet of BA Now press the Copy button on the Period1 Setup form to copy these settings into the Period2 Setup Form This means that the second thinning will do the same thing 10 years after the first thin Note that stands with less than 80 BA will not be cut at all Make sure that you uncheck Size 1 then press the Apply button on the ModelTool Remember that Size 1 causes the per acre value to be put into the Flow 1 Table whereas Habplan wants the per polygon value Habplan User Manual Example Applications 16 Now save the data in the Flow 1 Table by doing Edit WriteData into Hab plan3 example ex500 flowl dat This is the input flow component data that you will even tually read into Habplan Don t put the column names in row 1 If one were interested in tracking decayed carbon volume over time one would first generate Flow data representing harvested carbon volume as opposed to harvested timber volume output carbon volumes by using the Scale option on the ModelTool to enter a timber to carbon conversion factor The user would then convert the harvested carbon volume Flow data to decayed carbon volume d
32. e a thinning and all other years would default to the Habitat model specifications We ll also specify a threshold value This has the effect of outputting what is left on the site rather than what is removed If there is less vegetation remaining on the site than the threshold value nothing is output The residual after a cut will obviously determine what threshold can be attained later Normally you should use the same models and residual cut values for the management action periods that were used to create the non habitat flow component We just did this in the above Flow Component Section Now we have to repeat most of the steps done in the Flow Component Section Choose to write the data to the Flow 2 Table On the Model Selection Tool click InitFlow Now let s do the Pine stands first 1 Select the 4496 polygons where Type is Pine or Pine0 in the Poly Regime Table 2 Now fill out the Model Setup forms to look like those in Figure 5 and click Apply The Period1 form Residual 0 causes Habgen to apply clearcutting as before to the years specified in the various CC regimes The planting section of the form is set so that at year 5 there will be 1000 trees per acre and the site quality will increase by 14 due to improved stock Year 5 on the planting form means that a planted stand is ignored until 5 years after planting where planting occured immediately after clearcutting Note that planting can only happen
33. e called polygon data The ReadData option will always open into the Habgen example directory so you should consider storing your own Habgen data in sub directories of Hab gen example This is an ascii space delimited file containing data for 483 polygons Read it in and you ll see that row 1 contains the column names IfEverythinglsSqueezedIntoCol umnl read it again and say yes for the space delimited question The first row contains column names First you should get Habgen to use row 1 to name the columns by selecting Tools ColumnNamesTool RowlNames Now select row 1 with the mouse and delete it by pushing the row at the bottom of the table After deleting row 1 move to the next table by selecting the Poly Regime tab Remember to use Edit Undo if you delete something prematurely 3 1 1 Do Nothing and Place Holder Regimes The Poly Regime Table is where you combine the basic polygon data with the regimes specified in the Regime Class Table It is essential to begin the process by assigning a DN regime to every polygon This creates a place holder for each polygon in the Poly Regime Table and keeps polygons in the correct order for the rest of this process Therefore go to the Regime Class Table and select the DN row Now go to the Poly Data Table and select all rows as follows Edit SelectAll Now go back to table 3 the Polygon Regime Table and push the MergeNe
34. e checked on the Model Selection Tool Figure 9 Firstly choose to output data to Flow 3 and initialize the flow The next step would be to select all Pine and Pine0 types with the SelectionTool Then make the Model Selection Tool look like the example in Figure 9 Habplan User Manual Example Applications 23 Period Periodi Period2 Setup Lag 0 Max _ Age Apply InitFlow Size 1 Scale Hab 8 Class Norm Figure 9 Model selection tool for example 3 Leave the Lag value at 0 This is for putting in a time lag until planting occurs following a clearcut Now we want time since last entry so Lag 0 is appropriate The Max value should be blank This is the largest age class that should be identified If you wanted to keep track of ages up until 20 for example then set Max 20 and ages greater than 20 will go into the age 20 bin This is useful for keeping a flow component from having a few acres of very old trees that will prevent the flow from being smooth Run through the process of selecting the Hwd trees next and applying the models as was done for the first flow component Then save the results from the Flow 3 Table in a file called flowClass dat to be used by Habplan Here we have used the flow Class option to create a flow component that will control the time since last entry This can be viewed as a proxy for disturbance This component will be used to create an even distribution of acres in each disturban
35. e class 16 level causes the overall flow to be very unsmooth Habplan was tricked into allowing class 16 to be wildly different by telling it on the yellow F2 edit form that 16 is a ByGone year To Habplan this means that it shouldn t worry about class 16 and it focuses on classes 1 15 If the Block component is added then even more stands are assigned to do nothings and class 16 gets more out of line with classes Habplan User Manual Example Applications 36 1 15 The ByGone year trick will often be useful for this type of Flow component since the upper classes may be out of line with the earlier ones Read more about ByGone years in the Habplan User Manual under the Flow Form section 4 Example 4 An Application of Habplan and Habgen to a Larger Problem This is a problem consisting of 1046 polygons from the Southern US This is similar to example 3 except that the planting option in the ModelTool is used to deal with the Bareland polygons Also the planning horizon is 20 years Read the overview section for more general information For the purposes of this example the data are categorized as presented in Table 1 Table 1 Categorized data for Example 4 Type Count Acres Description Bareland 80 2208 Current cutover polygons Natural Hardwood 369 7620 Natural Pine 29 98 5 Loblolly Non productive 21 123 Gullies cemetaries etc Open 37 32 Wildlife patches non forested yet productive Planted Pine 382 11469 Loblolly Pond
36. ecify the regimes that contribute to clearcut acres or whatever kind of acres you want to control the flow for In this case it is CC 1 through CC 20 which Habplan User Manual Example Applications 56 are automatically detected by entering CC into the form There will be a red background until the parent flow data are read in order to verify the validity of these regimes The Block form requires you to specify the regimes that do NOT contribute to block size the opposite of the CCFlow requirement For this problem the NotBlock regimes are the thinning regimes for periods 1 and 2 and the Bareland regime for period 1 Period 1 of the Bareland regime is to plant so this isn t counted as a block creating regime However period 2 of the BARE regime is clearcutting so it should contribute to block sizes By entering T and BARE 1 in the notBlock Options section of the Block edit form Habplan will know to detect all thinning regimes and all Bareland regimes for period 1 Note There may sometimes be debate about what exactly a notBlock regime is Now set up the Bio 2 and Spatial Model forms to look like those shown in Figure 37 a Bio2 1 Component Bll SMod1 Component olx File Selector File Selector Type 2 Biological file lex1000 bio2 dat ex1000 block dat Goal Kind max w Goal 0 5 L o5 Wal Lu o Weight 1 0 Goal Sum Mac Verify data for Polygon Figure 37 Bio
37. ently such that there is at least 1000 cu feet per acre The output then goes from 0 to the acreage of the polygon This indicates that this polygon now represents some acres of habitat Now it becomes possible to control the flow of habitat acres Now let s handle the do nothing regimes When the habitat box is checked do nothing regimes are handled differently In habitat mode internally a do nothing regime is handled as if it has a management action in year 1 Therefore you need to fill out the setup forms appropriately The purpose of this is to make it possible for a do nothing regime to contribute Habplan User Manual Example Applications 20 Flow 2 Table File Edit Tools Polygon Regime RD DN CC 1 CC 2 CCH 3 CC 4 CCHS lt E CC 6 NININININ N N NIN iN N NIN NIN po pon aa E Fa Fi Ped Ped Bed Bed Fod Pid E SSA SSA Figure 6 Habitat flow output table for example 3 habitat This makes sense when doing nothing makes a heavily vegetated polygon available for other uses by wildlife The next step is to select all of the DN regimes in the Poly Regime Table Then fill out the setup forms to look like those in Figure 7 This setup says to cut to a residual BA of 300 a
38. es of managing each stand under each of the 16 different regimes The NPV from option 16 do nothing regime is arbitrarily set to 1 By including the Bio2 1 component in the objective function the algorithm is biased toward assigning schedules that yield maximum NPVs The user can control the min and max blocksize and the time window within which blocks are considered greenup window by opening the BK1 1 edit form under Edit The default greenup window for blocks is set to 2 years option 16 is denoted as a non block option minimum blocksize is set to 20 acres and maximum blocksize is set to 180 acres Under Edit open the F1 edit form The default settings ensure that year to year flow deviation is kept within 15 to 25 percent and year 0 flow is initialized at 140 000 tons and allowed to deviate by 5 15 percent To include components in the Habplan objective function click the checkboxes on the main Habplan window You will receive a notification if the data were read properly Run the program for a few hundred iterations and the Metropolis algorithm should converge on a solution that meets the preset goals Convergence here means the relative deviations or tolerances are within the user specified goals or 5 percent When the preset goal for a particular component is being achieved the component turns red on the main Habplan win dow yellow if goal is exceeded and black if goal is not achieved Therefore You will know t
39. esidual 0 i e there was no residual after the treatment The Year and Output columns contain the year in the planning period and the per polygon outputs in cubic volume Go back to the Poly Regime Table and select Size 1 reselect the Pine and Pine0 rows then hit Apply to see the per acre output Per acre values should not be submitted to Habplan but you might want to look at them to check on how reasonable the model is Go to the Flow 1 Table again to look at the per acre values Then select Edit Undo to get back to per polygon values in the Flow 1 Table Now we need to fill out the Flow 1 Table for the RD and BP place holder regimes Go to the Poly Regime Table and use the SelectionTool to select all polygons where Type is Road and then again where type is Other Note that there should be 81 Road and 22 Other polygons Now press Apply on the ModelTool This fills in the Yearl and Outputl columns with 0 s for Roads and Other polygons Habplan requires this in order to know that these are do nothing regimes Look at the Flow 1 Table to verify that this worked The thinning regimes T were saved for last Since these are applied to hardwoods we ll be greatly abusing the models currently in Habgen Go to the Poly Regime Table and use the SelectionTool to select the 3069 rows where Type is Hwd Now use the ModelTool and select the LobEven model for Period1 This is a mo
40. for last Select all polygons in the Poly Regime Table where Type Bareland This gets all the BARE and associated DN regimes 960 rows Set up the models to look like the example presented in Figure 24 Applying this setup will cause the Bareland polygons to be clearcut in year 1 and then replanted Since the land is bare clearcutting will result in no output note that some Bareland polygons erroneously have trees on them e g polygon 2217 After a 4 year lag there will be 400 trees per acre i e at year 5 Then the second period will clearcut what was planted in the first period You could use the PMRC models here because N is supplied by you as the trees per acre at year 5 The setup for the PMRC models would look like the example shown in Figure 25 Notice that when using the PMRC models the user has the option of breaking down output data by product classes To access this Habplan User Manual Example Applications 42 Model Selection Tool Period vea oopan e Setup perioa2 Lapa Seu Info Copy Plant Fertilize Product Info Plant Fertilize Product Figure 24 Modeltool and model setup forms for example 4 Lob plant capability click Product on the Setup form Now sepcify a Top Diameter and a DBH Range for the product class It may be useful for example to output pulpwood data to Flow 1 chip n saw data to Flow 2 and sawtimber data to Flow 3 The user also has the o
41. from the Poly Regime Table This is the only remaining category that will contribute to the Big Pine Habitat Make the setup forms look like those presented in Figure 30 Setup Lob Plant for Period1 Setup Lob Plant for Period2 ModelVar YourVar Residual Planting YourVar Residual Ignore Size 7 7 y Info Copy Plant Fertilize Product Plant Fertilize Product Info Copy Plant Fertilize Product Figure 30 Modeltool and model setup forms for example 4 Lob plant contd This will cause the first period to consist of a planting such that there are 400 trees per acre after a 4 year lag The second period form causes the Period 1 planting to be clearcut Habplan User Manual Example Applications 49 and the stand size is output if the Threshold CV is greater than or equal to 1000 in other words there will be no output at the time of clearcut because all the habitat is removed The Period 3 form says to output the stand size when CV is greater than or equal to 1000 for all other years As it turns out the DN regimes were already handled almost correctly for the Bareland Recall that our BARE regime is to plant in year 1 or 2 and then to clearcut after a 14 year lag Recall also that for Habitat Flows the Period 1 form is what happens in yearl for a DN regime and the Period 3 form is what happens in all other years This mea
42. hat Habplan has converged on a solution when all the components on the main Habplan window turn either red or yellow You can also experiment with having different components in the model by unchecking a few components Remember that the F1 component must be entered before you can enter a subcomponent like C1 1 or BK1 1 Habplan User Manual Example Applications 7 Go ahead and experiment with opening entry forms for the components with the Edit menu and displaying graphs with the Graph menu Graph colors and settings can be changed by selecting the File or Option menu on the graph You can try selecting the DoubleBuffer option to see if double buffering makes the graph updates go faster or smoother Double buffering seems to work well with windows but not with Unix Click on SaveColors under the graph File menu to permanently save any changes to the graph settings Do this for each graph While Habplan is running you might try changing the slope rate for the flow model from plus to minus to notice the immediate impact However in real runs changing settings in mid run may prevent convergence This is because the adaptive parameters may need to change significantly when settings are changed Many changes in settings could result in adaptive weight parameters reaching their machine imposed limits the maximum size for a floating point number If this happens just leave your settings change all weight parameters to
43. he Habplan main menu means the goal is exceeded but the Fitness function still counts such components as being converged So the best schedule had a fitness value for this run of around 7 48 After stopping Habplan Press Load to load one of the saved schedules and Restore to return to the prior schedule Notice that the best schedule was held for 7725 iterations so apparently it is hard to beat with the current settings Now Load the best schedule and then save output to text files that you can do addi tional work on Open the Output form under the File menu and make it look like the Habplan User Manual Example Applications 60 one shown in Figure 41 to save the basic schedule and the flow results Press Delete twice to remove any pre existing saves and then press Save to save the current schedule to text files See the Habplan Documentation for more information on outputing data to text files E Habplan Output Control Import Autosave every o r iterations Save ne Include Schedule SaveFile fhome jaggett myjava Habplans exa Include Flow SaveFile Jhomejaggett myiava Habplan3 fexa _ Include Block1 1 SaveFile fhome sjaggett fnvyjavafHabplans fexe Include Flow SaveFile home jaggett rnyjava Habplan3 fexa Include Flows SaveFile lfhome jaggett myjava Habplanz fexa gt Include Graph SaveFile home fjaggett myiava Habplan3 fexa Figure 41 Output control window for Exam
44. hp 0 23 30 73 100 Regime Polygon Table Draw Zoom 2 le _ MU Info Figure 39 GISViewer for Example 4 Remember that you normally want to select Regime mode so that the viewer colors the polygons according to the regime color table Access the color table by pushing the Habplan User Manual Example Applications 59 Table button The coloring above shows do nothings in orange and CC regimes in shades of green Look at the Habplan Documentation for more information on the GIS Viewer 4 9 Saving Habplan Output Use the BestSchedule tool under the Tool menu to define what you mean by a good schedule and then to automatically save some of the best schedules for later restoration See the Habplan Documentation for more information Figure 40 shows what the BestSchedule window might look like for this problem Best Schedule Control Save N Eest Dynamic Best 7 48 Current 6 45 ltersHeld 7725 Hail ei fl Deki fi Gr 1 Ora 1 MbBio2 1 1 JsMod1 1 Figure 40 BestSchedule window for Example 4 It is set up to save the best 5 schedules as Habplan runs The idea here is that a fitness function is specified and the schedules with the highest fitness are deemed best In this case each converged component contributes 1 to the fitness In addition the goal on the Bio2 component is added because Bio 2 is checked Note that a component being yellow on t
45. iguring the Block Component Now open the Block form as Edit BK1 1 The BK1 1 notation means this is the first block component associated with F1 See the Habplan Documentation for more details on this Enter ex500 block dat in the file text field Set the green up period to be 3 years and the min and max block sizes to 10 and 150 Now reset the weights on the F1 and Bio2 1 components to 1 0 Tool Weight 1 and save these settings into ex500 xml Now Start Habplan and then enter the BK1 1 component check the BK1 1 checkbox with Habplan still running Look at the BK1 1 graph and you ll see that eventually Habplan finds a configuration such that the Block sizes are within the 10 150 range you requested Habplan User Manual Example Applications 29 C NCASI Habplan 3 0 1999 2005 0 x _ Bio2 1 Component f m TE File Edit Graph Misc Tool File Selector Use Units N of Iterations 10000 O Use units Type 2 Biological file ex500 biol dat Fl cid BK1 3 Goal Kind Goaljo5 Hm F2 Y Bio2 1 SMod1 Weight 1 0E 6 Goal 0 61 Sum 1 016530769E8 Max 1 647720853E8 Start O F1 Component 0 x Verify data for Polygon File Option Figure 15 Component windows in Hablplan for example 3 Bio2 You will also notice immediately that the Block component has constrained the result so that
46. ile Option File Edit Graph Misc Tool use units N of Iterations oo000l v cid V JBK1d v F2 K F3 V Bio2 1 V SMod1 Start Suspend Stop Figure 38 Graphs for Example 4 The flows are along the top The volume flow F1 ranges from about about 2 million to 2 5 million cubic feet per year For the first 10 years there are about 15000 acres of big pine habitat per year F2 then it increases to 16500 acres for the last 10 years There are around 315 acres of even aged pine F3 in each of the 1 20 year age classes at the end of the planning horizon The F3 graph is difficult to read because so many acres are dumped into the dummy age classes 21 and 22 Habplan User Manual Example Applications 58 The flow of clearcut acres goes down over time C1 1 component upper CCF Low graph but the volume per acre ratio is increasing over time lower C1 1 graph There are 2 BK1 1 graphs The upper graph shows the min max and mean block sizes by year Note that the max blocksize is within the max limit of 150 acres This min max range renders an average annual blocksize of approximately 30 acres The lower graph shows that for every year of the planning horizon all block acres are within the specified limits Finally for our problem the GISViewer might look like that shown in Figure 39 F O Habplan GIS Viewer 0 x lt File ex1000 stands s
47. in If the big text area hasn t turned white on the SMod form you have a typo Now change the draw iterations on the GIS viewer from 0 to 10 so the display will refresh after every 10 iterations Watch some of the small BP cyan areas that have pines near them You should notice more light greens appearing near these cyan areas Cyan areas surrounded by hardwoods blue won t be impacted Habplan will never be able to meet the 100 goal on the SMod component so at some point you need to lower the goal or the weight on the SMod1 component will be increased until it reaches the upper limit for weights in Habplan Figure 19 shows a zoomed in view using the GIS viewer that shows how some of the Habplan User Manual Example Applications 34 small cyan areas tend to have lots of light green around them Remember that the spatial model is stochastic so you won t get rigid compliance to your requests Habplan GIS Viewer 73 A Ped ot att strani ade oi 50 Regime Polygon Table Draw Zoom Info Figure 19 Example of zoomed in view using GIS viewer 3 7 7 Testing the Flow Class Component Finally we ll take a look at the 3rd type of flow component Remember that we set this up above to allow for controlling the distribution of the time to last entry that would exist at the end of the planning period To simplify the demonstration of this component let s start over by reloading the saved se
48. ing If there are costs associated with the various regimes these can also be accounted for by clicking the Cost button and entering the per acre costs associated with the various regimes by period For this example however we will rank regimes according to total harvested volume We do this by entering a value of 1 for Flow 1 data Flow 2 and Flow 3 Tables do not contain any data and an interest rate of 0 Figure 4 By entering an interest rate if 0 the NPV computation becomes a simple summing function giving total harvested volumes associated with each polygon regime combination Now if for example you wanted to apply different values and interest rates to different regimes you could use the SelectionTool under Tools to select the rows to which you want to apply the NPV computations The default however would be to apply the computations to all regimes With the Bio Output Table initialized and the Value Setup Form filled out click Calculate on the bottom of the Value Setup Form to fill in the Bio Output Table Flow 1 Value Flow 2 Value Flow 3 Value NPY Interest Rate Calculate _ Year Cost Figure 4 Value Setup Form for example 3 Now save the Biological Output data Edit WriteData into Habplan3 example ex500 biol dat This is the Biological Type II file that Habplan wants 3 4 A Habitat Flow Component This will demonstrate one way
49. is shows acres For all other flow components the x axis is the planning period year Habplan User Manual Example Applications 14 The 3 types of flows are demonstrated below Habgen has a limited number of stand level growth models at this time They are applied at the Regime Class Table First notice that there are 3 Flow tabs Flow 1 Flow 2 and Flow 3 at the top of the main Habgen window and notice the Flow drop down menu at the bottom of the Poly Regime Table The Flow drop down menu allows you to select which Flow table you want the data to be written to this is handy for example when you create flow data for multiple products i e pulpwood data could be written to Flow 1 chip n saw data to Flow 2 and sawtimber data to Flow 3 For this example select Flow 1 Now press the ModelTool button to get to the growth models for producing output for the regimes The ModelTool Figure 2 opens with model none selected for each period In this case there are 2 periods eS Model Selection Tool Period Period1 Period2 Apply InitFlow Size 1 Scale Hab Class 8 Norm Figure 2 Model selection tool for example 3 Click on none for Period1 and select the LobPlant model This is a stand level model developed by Burkhart et al 1972 for old field loblolly pine plantations Then click on the Setup button in the modelTool Now click on Info in the Setup Window to read about this
50. ized with one regime for each polygon Now select PONDS in the Regime Class Table Clear the selections from the Poly Data Table then select all the Swamp and then Pond polygons in the Poly Data Table Now use MergeAdd to add these regimes to the Poly Regime Table Select Open in the Regime Class Table and select the Open type polygons in the Poly Data Table Now use MergeAdd to add these to the Poly Regime Table At this point you have assigned some polygons both a DN regime and a place holder regime In this case the DN regime will interfere with the use of a placeholder regime so the DN regime must be deleted Do this by using the SelectionTool on the Poly Regime Table to select rows that have Regime DN and Type ROW or Type Swamp or Type Pond or Type Open Then delete these 146 rows by pressing the Delete button on the Selec tionTool Assign the clearcut regimes to Planted and Seeded Pine Do this by first selecting the CC row in the Regime Class Table Then select the Planted Pine rows in the Poly Data Table by putting Planted Pine in the Type row of both the GE and LE columns of the Selection Tool Make sure the other rows of the SelectionTool are blank Then add the Seeded Pine rows by doing a second selection Now go to the Poly Regime Table and press merge add This expands the CC regimes and creates 20 new rows in the Poly Regime table for each selected pine polygon from the
51. k something like that in Figure 14 C NCASI Habplan 3 0 1999 2005 0Xx 7 F1 Component File Edit Graph Misc Tool p C No Model File Selector BK1 SMod1 uspended before Iteration 1578 w AAAA Start Suspend Stop m F1 Component ox Time0 start flow 83000000 Goallo 1 40 gt File Option file subFlows ex500 flow dat ByGone Yrs Target Threshold 0 lo Goal 05 FlowGoal o s 4 mJ Flow Model Slope Rate 0 Ed gt Weight Flow 69779968262 Timed 74752427E 7 Goals Time0 0 85 1 y yHat 0 86 1 yr to yr 0 78 Verify data for Polygon Figure 14 Component windows in Habplan for example 3 F1 Notice that the checkbox F1 is red This indicates that your goals are met i e the flow is more or less flat and doesn t change too much from one year to the next The weights on the Flow form are adjusted until the goals are met If you see a yellow F1 then the goals Habplan User Manual Example Applications 28 are exceeded and similarly a black F1 means the goals haven t been attained yet See the Habplan Documentation to learn more about filling out Flow Forms and Flow Components 3 7 2 Configuring the Bio2 Component Now lets add the Biological Type 2 component Open the Bio2 1 form Edit Bio2 1 Note that if there were 2 Bio2 components the second would be Bio2 2 Now tell ha
52. ll off regime years It says to cut down to a residual of 800 BA Since no stand can reach 800 BA this is equivalent to saying never cut on Habplan User Manual Example Applications 22 Model Selection Tool Period Model Period1 Period2 Lob Even Lob Even Habitat Lob Even Apply InitFlow Size 1 Scale Hab Class Norm gt Setup Lob Even for Period3 ModelVar Yourvar Yourvar Residual BA BA Size Size Info Copy Plant Copy Plant Fertilize Product Figure 8 Habitat setup forms for example 3 ofF regime years The Habitat Flow component is complete Now save the flow output data to Habplan3 example ex500 flowHabitat dat 3 5 A Class Flow Component This is a third type of flow component that is useful for controlling the ending age class distribution when clear cutting is the principal management tool Since this problem involves thinning regimes we will use the option of controlling the time of last entry This allows one to control the flow of last entry times Last entry times should correspond to how much recovery there has been since the last disturbance This component is quite simple to create You need to run through roughly the same process that was used to create the first flow component Except now the Class radio button should b
53. low 2 Table File menu and save the Habitat Flow data to Habplan3 example ex1000 flowHab dat or to somewhere for later use by Hab Habplan User Manual Example Applications 50 plan Don t put column names in row 1 4 6 Creating a Class Flow Component This component can be used to keep track of the ending age class distribution of even aged pines For this problem that includes the following types Planted Pine Seeded Pine and Bareland The trick here is to process the other types so they ll be handled properly when you get to the Habplan run This flow component will give the age class on the x axis and the y axis will show the number of acres in that class at the end of the 20 year planning period We will let any even aged pines that are older than 20 go into age class 21 We ll trick Habgen into putting non pine types into age class 22 So we ll end up with a flow that shows end of period pine age class for years 1 to 20 and all older ages in class 21 We ll also show how to trick Habplan into not worrying about keeping Flows smooth after year 20 so this component will only influence the ending distribution of pines for ages 1 20 Let s begin by specifying Flow 3 as the table to which output data should be written Now select the Planted Pine and Seeded Pine rows in the Poly Regime Table Make the model setup forms look like those shown in Figure 32 gt Model Selection Tool Period Periodi Lob Plant
54. message that 81 rows were selected Now delete these rows so that Roads have only a RD regime If you make a mistake you can recover with Edit Undo Now we need to repeat this process to replace DN regimes assigned to class Other with BP regimes The Other type denotes borrow pits Here are the steps again 1 Select BP in the Regime Class Table 2 Use the SelectionTool in the Poly Data Table to select rows of Type Other 3 Go to the Poly Regime table and press MergeAdd 4 Use the Polygon Regime Table SelectionTool to select and delete all rows where Regime DN and Type Other This leaves all Other rows with only a BP regime Before going on let s verify that there are 483 rows in the Polygon Regime table Go to the last row and click on it The SelectionTool should say the First and Last selected row numbers are 483 upper left of SelectionTool If not you made a mistake and should redo the preceeding steps 3 1 2 Plantation Regimes Now go back to the Regime Class Table and select the CC row Move one table ahead to the Poly Data Table and use the SelectionTool to select all Pine and Pine0 rows Do this by entering Pine in the GE column and Pine0 in the LE column in the Type row of the SelectionTool and clearing any other entries in the SelectionTool Now press UnSelect to be safe then press Select You should have selected 281 row
55. model The setup window will have the appropriate variables selected because the names being used are what this model expected If you had used different names you would need to identify the proper variables with the setup tool For example if you called basal area ba instead of BA the setup tool couldn t find it In general it s a good idea to use the ColumnNames tool to name the columns so the models will auto find the right variables Click InitFlow on the Model Selection Tool This initializes the selected Flow output table by creating a row for each polygon regime combination Now select the 4496 Pine and Pine0 rows in the Poly Regime Table with the SelectionTool This includes all DN and Habplan User Manual Example Applications 15 CC regimes Then press Apply on the ModelTool If you did not manually initialize the Flow table a window will open that says the Flow Table will be re initialized Click OK Now the model is being applied to each of the 4496 selected rows in the Table When it s done the model column for Pine rows should be filled with LobPlant This is just to remind you what model was used for that row Click on the Flow 1 tab to observe the output data in this Flow Table You should see entries for Yearl and Outputl next to DN and CC regime rows We used the default setting on the LobPlant Setup Form which was to clearcut the stand it was set to R
56. mple 4 o o 60 List of Tables 1 Categorized data for Example 4 a aoaaa a RSE BEGG eS 36 Habplan User Manual Example Applications 6 1 Example 1 A Simple Application of Habplan This is the example that comes with the Habplan3 zip file Upon starting Habplan this example can be run by clicking on the example419 xml option under the Habplan File menu This will fill out the component forms and point to the appropriate data files You may get an error dialog that says Habplan is not configured properly Just press the autoconfig button then restart Habplan and try again This example uses basic harvest scheduling data sets consisting of 419 loblolly pine stands from the southeastern US Management regimes options 1 through 15 are to clearcut the stand in years 1 through 15 and option 16 is to do nothing with the stand during the 15 year planning period The FLOW data F1 give the total yield in tons for each stand under each option The Biol 1 data is based on picking 20 training stands for each of the 16 options The trainers are the stands that produced the most flow for the option The biological variables for the Biol 1 component are 1 flow from the best option and 2 stand size For more information on the Bio1 1 component see the Biological Type 1 Data section in the Habplan User Manual The Bio2 1 data represents Net Present Values NPV for each stand regime combination i e discounted valu
57. n the Nabe Tool to locate the shape file Now press ReadPolys and you should get a message that says 483 polygons were read The default setting is Adjacent with the slider at 0 This says to find immediately adjacent neighbors that touch at even a single point Increasing the slider to 25 would require neighbors to share at least 25 of their combined perimeters See the Habgen documentation on the Block Output Table for more information Press the Apply button on the NabeTool and you should fill the table with the results shown above Now save this using File WriteData to Hab plan3 example ex500 block dat This file can be used for the Habplan Block component and the Spatial Model component Note that the Block Table gets the size information from the Poly Data Table not by directly computing polygon sizes from the shapefile Habplan User Manual Example Applications 25 3 7 Running Habplan Now let us move on to using the data we just generated in Habplan First exit from Habgen by selecting Exit from the global File menu As it exits Habgen will ask you if it should save the data in the Tables Normally you will say Yes to these questions Then next time you start Habgen and select to load the Previous option everything will look the same as when you last exited Try restarting now to check on this Start Habplan by moving to the Habplan directory cd Habplan3 and typing java
58. nd to output the size of the polygon whenever there is a least 1000 cubic feet per acre on the polygon Since there is never a BA as high as 300 there will be no cutting which maintains the do nothing character of the DN regime However the DN regime can now contribute to the flow of habitat Make sure the Threshold is set to CV Handle the RD and BP regimes in almost the same way except the threshold should be increased to 100000 This will ensure that output is always 0 We are therefore assuming that Roads and Borrow Pits don t contribute to habitat Habplan User Manual Example Applications 21 gt Model Selection Tool Period Period1 Period2 Habitat Info Copy Plant Fertilize Product ES Copy Plant Fertilize Product Figure 7 Habitat setup forms for example 3 Let s move on to the hardwoods Period 2 is irrelevant for the pines or do nothing regimes because there is no period 2 for these regimes However there is a period 2 for the T regimes so Habgen must include a period 2 setup form Begin by selecting all remaining rows i e where Type Hwd Now make the setup forms look like those in Figure 8 and press the Apply button on the Model Selection Tool The above setup will cut the hardwood stands down to 80 square feet of BA at the years designated in each regime The output will be acres as long as there is a residual BA that exceeds 90 The period3 form applies to a
59. nge the F1 slope and see the effect on the districts represented by F2 and F3 Habplan User Manual Example Applications 9 F2 and F3 also have blocksize components BK1 2 and BK1 3 These BK components read neighborhood data that consist only of polygons 1 200 and 201 419 respectively A superF low component F1 is not allowed to have BK components since block issues should be handled at the district level Likewise the subFlow components can have CCF low com ponents but the superFlows cannot On the other hand Biological components and Spatial Model components read more in Habplan User Manual apply to all Districts simultaneously This means that the data input for these components must include all polygons from all districts If you want to have a different Spatial Model component for each district this could be accomplished by editing the data to eliminate the neighbors of polygons in the other districts Polygons with no neighbors are unaffected by a Spatial model component 3 Example 3 Using Habgen and Habplan Together A test data set is included in Habgen1 example ex500 polygon table This example walks you through the complete process of generating the data with Habgen download Hab gen from the Habgen website and then building up a Habplan run by establishing the settings as you go However you can by pass this and access the Habplan settings im mediately by selecting Open under the Habplan File menu and sele
60. ns that our DN regime will be evaluated as if planting occured in yearl and then cutting was never allowed because N cannot reach 1000 as the Period 3 form requires This is the best that Habgen can do at this time without the user having to edit the Flow output results by hand Now select the rows where Type Natural Hardwood in the Poly Regime Table This is the only remaining type that hasn t been dealt with This type won t contribute to Big Pine habitat and must be processed accordingly Make the setup forms look like those presented in Figure 31 ModelVar Yourvar BA BA BA Size v Threshold Size Size v Threshold ThresholdVar hresholdVar Info Copy Plant Fertilize Product Info Copy Plant Fertilize Product Info Copy Plant Fertilize Product Figure 31 Modeltool and model setup forms for example 4 Lob even contd The Period 1 and Period 2 forms do a thinning but there is no output unless BA exceeds 1000 which can t happen The non action years controlled by Period 3 will do a thinning too but will not allow output The important thing here is not to have any Big Pine acreage output from a Natural Hardwood stand In this case the DN regime doesn t need any special consideration You could also set the BA Residual in Period 3 to 1000 to prevent the thinning but the output will still be 0 Now select WriteData from the F
61. nted Pine or Seeded Pine This will include all the CC regimes and the DN regimes for Planted or Seeded Pine Now open the ModelTool and set Period1 to the LobPlant model The default settings have residual 0 clearcut so no alterations to the defaults are required Now press the apply button Select all Natural Pine and Hardwood rows in the Poly Regime Table This gets all the T regimes and accompanying DN regimes Now assign the LobEven model to both Periods with a Residual BA of 60 So the ModelTool and model Setup Forms should look like the example shown in Figure 23 Then press the Apply button and the outputs for these regimes will be created in the Flow 1 Table Note 1 The LobEven model is not a great choice for hardwoods but there is no hardwood model currently available for Habgen Also the site index required by the model is base age 50 whereas the site index for these data is base age 25 So the model will most likely understate the true volumes Note 2 You can t use the PMRC models because trees per acre is 0 i e N 0 The PMRC models would predict zero volumes in this case Habplan User Manual Example Applications 41 CD Model Selection Tool Period Period1 Period2 hresholdVar lt Info Copy Plant Fertilize Product Info Copy Plant Fertilize Product Figure 23 Modeltool and model setup forms for example 4 Lob even The Bareland polygons are saved
62. omen r sew Peroa Labeven CN pawat oomen e sap oN Setup Lob Even for Period1 Figure 26 Modeltool and model setup forms for example 4 Lob even contd The Period1 form controls the action that will occur in yearl since these are place holder DoNothing regimes This ability to do something in year 1 for a do nothing regime might sometimes be useful for habitat creation The Period3 form controls what happens in all other years Later we will need to deal with the DN regimes for other types because of this feature i e the Period1 setup applies to year 1 for do nothing regimes Both forms are setup the same and do the following 1 a residual BA of 1000 is left on the polygon which means that nothing is removed 2 the output variable is Size so the polygon size Habplan User Manual Example Applications 46 is output 3 there is no output unless the remaining per acre Cubic Volume on the polygon is greater than or equal to 1000 Since most of these polygons have BA 0 the output will be 0 i e these polygons don t contribute to habitat Now select the Planted Pine and Seeded Pine rows in the Poly Regime Table Then make the model setup forms look like those in Figure 27 lt p Model Selection Tool Period perioaa foma Jr sep perioa2 TT CTN paoia ETT Seu InitFlow Size 1 Scale Hab Class Norm ModelVar Yourvar
63. ple 4 As mentioned in Example 1 another option for saving Habplan output data is to check the Import box on the top left of the Habplan Output Control Window This option results in the checked schedule and component output data being saved automatically to the specified directory when a Habplan schedule is saved for later import using the Save Habplan User Manual Example Applications option under File on the main Habplan window 61
64. press the Finish button Then you need to quit and restart Habplan Habplan will now have the new configuration Begin by changing N of Iterations to at least 10000 then open the first Flow component configuration form i e Edit F1 3 7 1 Configuring the First Flow Component Tell Habplan where the first flow component s data is by entering ex500 flow dat into the field near the File Selector button Habplan automatically looks under the example directory if an incomplete path is given This makes it convenient to keep your data in a subdirectory of Habplan3 example Then make the following additional settings 1 Set Time0 start Flow to 8000000 Set its goal to 0 1 A small goal like this means that it s not very important that the Flow Habplan User Manual Example Applications 27 actually start at 8000000 We d be happy with anywhere from 10 percent to 190 percent of this value 2 Now set the Flow Goal to 0 8 and the Flow Slope Rate to 0 0 So we want the flow to be somewhat even and level over time 0 slope 3 Now save these settings to a file called ex500 xml in the Habplan project directory by selecting Save under the File menu Now check the F1 checkbox on the main Habplan form open the F1 graph Graph F1 and press the start button You ll see the graph changing after each iteration After some iterations press the Suspend button and your screen should loo
65. previous example Figure 4 i e Flow 1 Value 1 and Interest 0 Now initialize the Bio Output Table click Init and press Calculate Save this data to Habplan User Manual Example Applications 44 Habplan3 example ex1000 bio2 dat for use by Habplan using the WriteData option under the File menu Do not put column names in row 1 Remember that the Bio 2 component needs to be created immediately after the flow component that it is based on since it involves summing over the outputs in the Flow Table s Note By checking the Year box on the Value Setup Form the Bio2 data computations are based only on Flow data in the LAST output year This option is handy when assigning a value to residual volumes present in the last year of the planning horizon 4 5 Creating a Habitat Flow Component Suppose we want to control the flow of Big Pine habitat This might be good for red cockaded woodpeckers for example First consider the logic that leads to a Big Pine habitat flow component One pine stand could contribute to this habitat until year 10 when it is clearcut Likewise another stand of pines that is too small at year 1 might begin to add to Big Pine habitat at year 10 if its cutting is delayed Hardwoods never contribute to this habitat Habgen has a built in capability to create a particular kind of habitat flow component Its use requires careful attention when setting up the models
66. ption of specifying herbicide and or bedding treatments at planting and or nitrogen and or phosphorous application Access the herbicide and bedding capabilities by clicking Plant and access the fertilization capability by clicking Fertilize For more information on these features consult the Habgen User Manual This completes the data required for the first flow component This data can be saved us ing WriteData under the Table s File menu Save it to Habplan3 example ex1000 Flow1 dat for use by Habplan Tell Habgen to NOT put the column names in rowl Habplan User Manual Example Applications 43 LN Model Selection Tool Period Periodi Period InitFlow ModelVar Yourvar Fertilize Product i Info Copy Plam Fertilize Product Figure 25 PMRC model setup for example 4 4 4 The Bio 2 Component The Bio 2 component is used by Habplan to rank the regimes assigned to each polygon according to relative importance Habgen allows you to create a Bio 2 component based on NPV or LEV or simply by summing up the output values for each period in the Flow component s For more on creating Bio2 data see the Biological Output Table section in the Habgen User Manual With the harvest volume data still in the Flow 1 Table go to the Bio Output Table click the NPV button and fill in the Value Setup Form as you did in the
67. rate the Block sta carl ara a aa a a ox 52 Ranning Habplan For Example 4 s es 645 6 iaa OE Re HS 54 carino Habplan apt s orcos s ioyos awe ea Ree RAS ed ee ES 59 Habplan User Manual Example Applications 3 List of Figures 10 11 12 13 14 15 16 17 18 19 Habgen regime class table for example 3 10 Model selection tool for example 3 14 Example of decay FlowTool for generating carbon flow data 16 Value Setup Form for example3 0 000 a 17 Habitat setup forms for example 3 aoaaa ee ee ee 19 Habitat flow output table for example 3 2 5 44 454 carau es 20 Habitat setup lors me example 3 s d 2 4 2 5854 2h a we 2 ew x 21 Habitat setup lorms ior example 3 s o e oy gu are a ee A ee ee 22 Model selection tool for example 3 gt ss cs e tods wee ee ee 24 23 Block table for example 3 koro rie 24 Configuration form lor example g coros co eones eee ae eR Re eS 25 First subllow form tor examples r cos scs a be ek e aoe e Ree E 26 Second subflow form for example 3 o o eae 26 Component windows in Habplan for example 3 F1 27 Component windows in Hablplan for example 3 Bio2 29 Component windows in Habplan BK1 30 Component windows in Hablplan CCFlow 0 31 Component windows in Hablplan F2 32 Example of zoomed in view using GIS viewer
68. s Now move 1 more table ahead to the Regime Class Table and press MergeAdd to add CC regimes to the existing DN regimes for pines This may cause your computer to work for a few seconds The Regime Class Table should now have 4 698 rows Verify this by clicking on the last row and looking at the SelectionTool If there wasn t the complication of Road and Other types we could have selected both the DN and CC regimes and gotten to this point in 1 step However most real problems aren t that easy In general you can drag the mouse to do multiple selects in a table without using the SelectionTool or hold the ctrl key while clicking on multiple rows Habplan User Manual Example Applications 13 3 1 3 Thinning Regimes The hardwood polygons must be managed differently from the pine plantations Therefore we ll create some thinning regimes for hardwoods Go to the first tab Regime Class Table and select the T regime Now move 1 ahead to the Poly Data Table and use the Selec tionTool to select the 99 polygons of type Hwd Remember to do an UnSelect first and to enter Hwd into both columns of the Type row Now move ahead to the Poly Regime Table and press MergeAdd This will increase the size of this table to 7668 rows Take a close look at the T regimes that were generated Notice the effect of the 10 year lag There is a regime for thinning only once for each of the 15 years
69. se age class 21 was used to hold all acres of pine that were older than 20 Age class 22 holds all acres of non pine The byGone specification tells Habplan not to worry about these years in the even flow calculations i e age classes 21 and 22 can be anything as far as Habplan is concerned and that s fine The CCFlow C1 1 and Block components BK1 1 are associated with a parent flow component in this case the parent is Fl They get much of the information they need from the parent flow data Therefore CCFlow and Block components must be entered into the objective function after the parent flow is entered These components are often referred to as sub components Set up the CCFlow and Block Forms under the Edit menu to look like those shown in Figure 36 O C1 1 Component m a BK1 1 Component Jime BlockSize fileName jex1000 block dat ex1000 block dat notBlock Options regime period separated by or iT CCFlow Options regime year separated by or JBAREG1 Alternative approach PREFIX A locksize Mino Max iso Weight 5811749E 12 0 01 fau Actual Goal NaN Min 0 Max 148 Target Min 0 1 9011911E38 Actual Goals 1 y yHat 0 44 1 yrto yr 0 73 Figure 36 CCFlow and Block forms for Example 4 Both components use the same data file containing polygon sizes and neighbors The clear cut flows computed by the CCFlow component require only the polygon sizes The CCFlow form requires you to sp
70. the Bio2 1 request of 50 can no longer be attained You ll need to lower the Bio 2 request to about 0 38 or the block sizes will quickly go out of bounds Habplan forces you to interactively adjust goals to make your request feasible If you lower the Bio2 1 goal to 0 38 and let Habplan converge you should see something like that shown in Figure 16 All 3 Objective Function Components have converged The desired block size constraints are attained but the level of the flow graph has gone down considerably since the block size component was added Clearly constraining blocksizes can be costly This depends very much on the particular dataset and its neighborhood structure If we had computed neighbors using a buffer around each polygon the cost of the block contraints would be increased This is because each polygon would have more neighbors if neighbors only had to be within the surrounding buffer as opposed to being strictly adjacent But wait We haven t talked about which regimes create blocks and which ones should be considered notBlocks The notBlock options regimes should be entered into the block form Habplan auto detects the do nothing regimes BP RD and DN for this problem Habplan User Manual Example Applications 30 7 NCASI Habplan 3 0 1999 2005 0 x O F1 Component Ja File Option cia BK1d Bio2 1 SMod1 suspended before Iteration 2 stare _susper a BK1 1 Component O __BK1
71. tions 53 Period Period1 Period2 Lag 100 Max 22 Age a Apply Size 1 Scale Hab 8 Class Norm Figure 34 Modeltool and model setup forms for example 4 Lob even contd Habplan User Manual Example Applications 54 4 8 Running Habplan For Example 4 There are 3 flow components for this example but only one of the flows will have a block component and a CCFlow component to control flow of clearcut acres In addition there is a Bio 2 component to provide some biasing toward regimes that produce the most volume and a Spatial Model Component The first step would be to use the Config Tool under the Misc menu to set up the correct objective function configuration In this case you can also open the ex1000 xml saved settings file and Habplan will automatically reconfigure if necessary However Habplan won t run for more than 500 polygons without a password In order to run example 4 use this case sensitive password timberCruiser unless you already have a password Assuming the configuration is done begin by looking at the 3 flow components which were created above with Habgen F1 is for the wood volume flow F2 controls the flow of Big Pine Habitat F3 controls the end of period age distribution for even aged pine acres Open the F1 F2 and F3 forms under the Edit menu and make them look like those shown in Figure 35 F1 Component i xi F2 Component lt F3 Component C
72. ttings and adding F1 to the objective function Then let Habplan run until F1 indicates convergence by turning red Now we will replace the original Habitat F2 component with the Flow Class component Do this by changing the data on the F2 edit form to ex500 flowClass dat Click the F2 checkbox on the main Habplan window then edit the F2 Form so it looks like that shown in Figure 20 Open the F2 graph and let Habplan User Manual Example Applications 35 Habplan run until F2 is red You should have something like that shown in Figure 20 7 NCASI Habplan 3 0 1999 2005 0 x F2 Component File Edit Graph Misc Tool 2 C No Model File Selector file subFlows lex5 00 flowClass dat EyGone Yrs 16 F1 Component File Option Time0 start flow 2000 Goar 1 bH J Target Threshold 0 o Goal 05 Flow Goal 8 Flow Model Slope Rate lo Weight Flow 09385681152 Timed 74752427E 7 Goals Time0 0 75 1 y yHat 0 88 1 yr to yr 0 81 flowHabitat y y y y Verify data for Polygon Figure 20 Component windows in Habplan for testing the flow class component The F2 component graph shows that the time of last entry classes have somewhat more than 2000 acres for each of classes 1 15 The Do Nothing classes all go into class 16 since they were not entered over the 15 year planning horizon Notice that the F2 component has converged even though th
73. ut data click Output under File on the main Habplan window This pops up the Habplan Output Control Window Check Schedule and all objective function components you wish to save and for each component enter the directory path to which you want the data saved Either save manually by clicking Save or use Autosave every which will save all checked components after Habplan User Manual Example Applications 8 a specified number of iterations One iteration consists of making a complete pass of the Metropolis algorithm over all polygons Another option is to check the Import box on the top left of the Habplan Output Control Window This option results in checked schedule and component output data being saved automatically to the specified directory when a Habplan schedule is saved for later import using the Save option under File on the main Habplan window Navigate to the specified directory to access output data For more details on how to interpret the output data consult the Habplan User Manual section Habplan output to files Most selections from the menu act as toggles i e if a graph is showing and you select it it disappears 2 Example 2 Multi District Scheduling With Hab plan Access this example by selecting Open under the File menu on the main Habplan win dow Then select the file called ex419sub xml in the project directory You will probably
74. w button This should change the table so that it has 1 row for each polygon with DN specified in the Regime column For this example we also have the placeholder regimes RD and BP for roads and borrow pits Now we need to replace the DN regime for Roads with an RD regime Go to the Regime Class Table and select the RD row Then go to the Poly Data Table and open the SelectionTool i e Tools SelectionTool Now enter Road in the Type row of both the GE and LE columns since we want to select all rows where Type is exactly Road Now hit UnSelect to clear old selections then hit Select on the SelectionTool to select the 81 Road polygons Note that the SelectionTool by default keeps adding to the currently selected rows Therefore you must hit UnSelect if you don t want selections to accumulate Habplan User Manual Example Applications 12 Now go to the Poly Regime Table and press MergeAdd to add these RD regimes to the existing DN regimes You should see that the first Road polygon now has a DN and an RD regime Next you need to use the SelectionTool on the Poly Regime Table to select all DN Regimes for Roads so they can be deleted Roads should have only a RD regime So enter DN in the Regime row of the selection tool in both columns then enter Road in both columns of the Type row and click Select You should get a

Download Pdf Manuals

image

Related Search

Related Contents

  Star Micronics XB24-250 II User's Manual  選べる5カラー! 5タイプの罰  Stimuli™ 3.5 Manual - Haag  LC-32LE530E Operation-Manual ES    Winix 113100 Use and Care Manual  Foco de Seguridad LED  Whirlpool RF362LXTB0 User's Manual  Smart 16e Shelf  

Copyright © All rights reserved.
Failed to retrieve file