Home

User`s Manual Model US1000 Digital Indicating

image

Contents

1. MAN mode selection MAN Manual O operation 4 Alarm Alarm Alarm output output2 output3 PV high limit PV low limit PV high limit T MV Retransmission Digital output voltage output 3 O Terminal CD Parameter Analog signal Legend l Function we nnn Digital signal IM 5D1A01 02E 2 25 E Loop Control with PV Auto selector US1000 11 Two universal input terminals AIN1 and AIN2 are provided The type of MV output can be selected from those in Table 2 4 in Section 2 1 by setting the MVS1 parameter Cascade input or feedforward input or PV input 1 tracking input Cascade input via communication Asad D Option Kadi Analog input Analog input Analog input type type type Analog input Analog input Analog input range conversion range conversion range conversion v Analog input Analog input Analog input bias bias bias Square root Square root Square root computation computation computation v Analog input Analog input Analog input filter filter filter Ten segment linearizer selection e Cascade Feedforward Ten segment input filter input filter x Q 5 CMS Cascade ratio Cascade bias CAS bias gain OFF FFS SV number selecti PID computation lt Do Tracking signal STOP RUN Preset MV Q MAN CAS AUTO Manual operation Q MVS1 MV selection
2. reference point hysteresis reference deviation reference point 1 PM 7 PM PM M Preset MV Preset MV Preset MV Preset MV 1 PMc PMc 1 Pi Cool g ide side Cooling ide preset MV preset MV preset MV preset MV App 1 2 IM 5D1A01 02E IM 5D1A01 02E U2 USER parameter 2 U3 USER parameter 3 U4 USER parameter 4 U5 USER parameter 5 U6 USER parameter 6 U7 USER parameter 7 U8 USER parameter 8 Integral lt i iw 8 D Derivative time Derivative time 7 MH 8 MH Uppe i Upper limit of output of output Lower limit E Lower limit tput 7 MR Manual reset Hysteresis N U Ss T 7 Hc Cooling side relay hysteresis T Deadband RHY gons P wW aj pe Preset MV fo a si preset MV preset MV Ten segment linearizer 1 menu YG Output 9 10 Input 10 1 Y10 Output 10 1 X11 Input 11 11 Output 11 PMD Ten segment linearizer 1 mode 2 X1 Input 1 2 1 2 Input 4 2 Y4 Output 4 2 X5 Input 5 2 Output 5 2 X6 Input 6 2 Output 1 2 Input 2 2 Y2 Output 2 2 X3 Input 3 3 Output 3 4 5 6 Output 6 2 Y7 Output 7 2 X8 Input 8 2 Y8 Output 8 2 X9 Input 9 2 Y9 Output 9 2 10 Input 10 2 Y10 Output 10 2 X11 Input 11 2 Output 11 11 PS IN Password input Appendix 1 Parameter
3. Cascade ratio Cascade bias CAS AUTO MAN mode selection Tracking signal When the controller R stopped or cascado oop is opened the peiiareaide internal CLOSE Q output value tracks the secondary side SV STOP RUN CELL ee ie a een ete RUN STOP switching i MAN Manual opran O C Alarm Alarm Alarm Alarm DO will be output output2 output3 output4 OFF when PV high limit PV low limit PV high limit PV low limit FAIL output Valve position Position Retransmission Retransmission Digital output feedback input proportional current output 1 voltage output 3 control relay Terminal C Parameter Analog signal output Legend O L Function wenn Digital signal 2 38 IM 5D1A01 02E Chapter 2 Controller Mode US Mode 2 12 Loop Control with PV Switching and Two Universal Inputs US mode 14 This US mode provides a control function that switches between two PV inputs by either a contact input signal or according to a PV range The function is the same as that of loop control with PV switching US mode 6 except for the following two points e Analog input 2 terminal AIN2 that allows the universal input is used for PV input 2 e Analog input 3 terminal AIN3 can be used for cascade input feedforward input or tracking input When using a tracking input a tracking flag function must be assigned to a contact input DI For information about contact input assignment
4. 0 LP1 n PID n A2 Alarm2 setpoint Deviation alarm PV velocity O0 LP2 n 1 8 alarm EUS 100 0 to 100 0 1 n A3_ Alarm 3 setpoint sy alarm EU 0 0 to 100 0 n A4 Alarm4 setpoint MV alarm 5 0 to 105 0 IM 5D1A01 02E 3 51 3 15 Parameters for Contact Input Ay 3 52 At the time of shipping the US1000 controller s contact inputs have already been assigned with the functions frequently used for each controller mode US mode Refer to the function diagrams in Chapter 2 NOTE Only personnel with a sufficient understanding of the US1000 controller and custom computation functions are qualified to change the settings of the following parameters as necessary Those who are still beginners in regards to operating the US1000 controller or who do not thoroughly understand custom computation function should use the controller at the default value settings Changing the settings of these parameters may disable some of the functions assigned to each US1000 controller mode US mode Setup parameter Main Sub Parameter CAS1 Description Loop 1 mode switchover to CAS when the DI changes to on AUTI Loop 1 mode switchover to AUTO when the DI changes to on MANI Loop 1 mode switchover to MAN when the DI changes to on CAS2 Loop 2 mode switchover to CAS when the DI changes to on AUT2 Loop 2 mode switchover to AUTO when the DI changes
5. OOO MVS2 6 Retransmission voltage output 3 Lege 2 14 Unit conversion range conversion Square root computation Analog input filter p Feedforward bias gain PV high limit PV low limit PV high limit PV low limit Analog input type Analog input range conversion Display Dt massage CAS AUTO MAN bias i Analog input Square root computation Analog input filter Ten segment linearizer PV filter FFS CAS AUTO MAN mode selection sues Digital output O Terminal E Parameter nd L Function DO will be OFF when FAIL output Alarm output4 Alarm output3 Alarm output2 Analog signal Digital signal IM 5D1A01 02E Chapter 2 Controller Mode US Mode E Cascade Control US1000 21 Control is performed based on a position proportional PID computation so as to ensure that the MV output and control valve opening always match Two universal input terminals AIN1 and AIN2 are provided The MV output is a position proportional control relay output OUTR terminal A valve position feedback input is provided Cascade input via f Cascade input or ae Primary PV input communication Secondary PV input feedforward input Digital input Option H i f Analog input Analog input Analog input i i i type type type Analog input range conversion Analog input ra Unit conversio
6. This parameter is used to adjust a US1000 controller at the factory If you change the setting of this parameter the US1000 controller may not operate normally CAUTION Only personnel with an understanding of the US1000 controller and custom computation functions are qualified to change the settings of the following parameters as necessary Those using the US 1000 controller for the first time and those not knowledgeable about the custom computation function should use the default values of the following parameters assigned to the controller Setup parameter Main menu CONF Submenu DO and DI All the parameters under the submenus above If you change the settings of these parameters some of the functions assigned to each US1000 controller mode US mode may not work IM 5D1A01 02E Contents Introduction sscdcsccssceetesckctcesiaces coesistacZascecbs sk wscicseusicess cave unsczescscdasewesacceesdaeds covousecsesdacdesasceccesosese al Documentation Conventions cccccccccccscccssscssssscssesscecccecscssesscecssssssesssosssssscssosssscsscsccees bil OS A LO e EAE E EEEE E E E E EE AE RER MIM CONTENIS ives ceded cecccediescceedeccascdisc ccadedsucesadeSucdsvedeccessccbacdstecevcdsedesectsvcdecesotdcbecdadecescses coeccedesecesesW 1 Examples of US1000 Applications csccssssccsssscssssscssssscssssccssssscssssccssssscsssscces Lod 2 Controller Mode US Mode sscsscssccsscccsscceccescecsecesscss
7. Index B Balance less andBumpless Operation ose 3 30 Blasi 8 3s ss acs ei svessoeusesciacaeeis 3 7 3 10 3 14 3 15 BS cs canst ds ces casuees en evens hastens A Sesebect eee 3 59 BS E E E TAT 3 10 Bumpless Tuning 20 eee eee cseeeeeesecneeenees 3 30 BuImOuts r 3 9 3 43 C OE E fos doses A EE 3 58 CSI eihar tvs ts put e E ebaseesiee bias 3 57 ON VAE E E 3 57 Eo e T TE 3 57 CS4 E A aes eiWeethinds 3 57 CSD ARETE ES 3 57 CAS AUTO MAN Mode Selection oe 2 3 CAST eee a a E ER 3 52 CAG eds hes a ess BATA AAR ee eee 3 52 Cascade Bias sisisissssssseessaassssciscusessnesipasshascstseasss 3 11 CascadeCLOSE honie tiro rererere TES 3 12 Cascade Control US1000 00 aaeesssssseseesesesssseee 2 13 Cascade Control US1000 1 1 oo eects 2 14 Cascade Control US1000 21 saesssssssesesssssssseeee 2 15 Cascade Control with Two Universal Inputs USI000 1 I on 2 37 Cascade Control with Two Universal Inputs US1000 21 cists sessshiseshonestisssesesteccsees 2 38 Cascade Input oo eee eeeeseeeecseeeecneeaes 2 2 3 1 1 Cascade OPEN oesreste esiisa si eea 3 12 Cascade Primary loop Control US1000 00 2 8 Cascade Primary loop Control US1000 1 1 2 9 Cascade Secondary loop Control US1000 00 2 10 Cascade Secondary loop Control US 1000 1 Diss 2 11 Cascade Secondary loop Control US1000 21 2 12 OBS ear ae re oor aE porra E EE ipsias taatai 3 11 CE r E E E E E EE E EE 3 11 CMS oirrese Hote aac EE ER E ei 3
8. aaa ees E Temperature and Humidity Control Dry and wet bulb temperatures can be controlled using a single US 1000 controller for an air condi tioning system US1000 11 only US1000 Temperature and humidity control US mode 12 Wet bulb temperature 00000001 Dry bulb temperature _ 1 MV Dry bulb output temperature Q for heater MV output MV output i for heater for spray i 7 MV Start Stop K i Relative output humidity for Wet bulb calculation spra Thyristor temperature spray Air Heater conditioning system Load Spray 1 4 IM 5D1A01 02E 2 Chapter 2 Controller Mode US Mode Controller Mode US Mode The US1000 controller has control functions to meet various kinds of control loops as shown in Table 2 1 These control functions are called controller modes or US modes The controller mode US mode is first set when configuring the US1000 controller functions Table 2 2 shows the parameter for setting the controller mode US mode To set this parameter refer to the separate instruction manual US1000 Digital Indicating Controller IM 5D1A01 01E This chapter describes each controller mode function showing function block diagrams The funda mental description is in Section 2 1 Single loop Control US mode 1 Other descriptions specific to each US mode function are in the sections dedicated to their respective US mode functi
9. output3 output4 OFF when PV high limit PV low limit PV high limit PV low limit FAIL output MV Retransmission voltage output 3 Digital output O Terminal C Parameter L Function e Digital signal Analog signal Legend IM 5D1A01 02E 2 37 E Cascade Control with Two Universal Inputs US1000 21 Control is performed based on a position proportional PID computation so as to ensure that the MV output and control valve opening always match Two universal input terminals AIN1 and AIN2 are provided The MV output is a position proportional control relay output OUTR terminal A valve position feedback input is provided Cascade input via Cascade input or PV input 1 communication feedforward input PV input 2 Digital input E Option ps i Analog input Analog input Display i type type massage Analog input type Analog input range conversioi mro mn range conversion Unit conversion Analog input bias Analog input range conversion Analog input ias Analog input Square root bias sa i computation Square root i Square root computation Analog input q 9 filter computation Analog input filter ilter Cascade Ten segment input filter linearizer Feedforward input filter Ten segment linearizer PV filter Feedforward bias gain T
10. Heating current output 6 Voltage pulse output 1 Cooli 1 5 Cooli 7 Current output 2 ooling pulse output 5 ooling current output 7 Loop 1 Loop 1 Loop 1 OUTIR 55 to 57 Control relay output 0 3 Cooling control relay output 4 Cooling control relay output 6 Alarm output 4 1 2 Heating control relay output 5 Heating control relay output 7 Table 2 8 Loop 2 MV Output for US1000 11 Set Up in Dual loop Control or Tempera ture and Humidity Control Type of control computation Value of MVS2 Terminal Terminal Time proportional PID 0 1 Heating cooling Heating cooling code No Continuous PID 2 computation 4 5 computation 6 7 ON OFF computation 3 Loop 2 a Loop 2 Loop 2 OUT2A 49 50 Retransnissionoutput 073 Heating pulse output 4 Heating current output 6 Voltage pulse output 1 Cooli l tout 5 Cooli ee Current output 2 ooling pulse output 5 ooling current output 7 Loop 2 Loop 2 Loop 2 OUT2R 58 to 60 Control relay output 0 3 Cooling control relay output 4 Cooling control relay output 6 Alarm output 4 1 2 Heating control relay output 5 Heating control relay output 7 2 32 IM 5D1A01 02E Chapter 2 Controller Mode US Mode Cascade input or feedforward input or Cascade input PV input 1 tracking input via communication PV input 2 Digital input S DDOD Analog input Analog input type type Unit conversion Analog input range conversion Option i a a eee Analo
11. MV voltage output 3 2 26 Re transmit PV Alarm output3 Alarm output2 Alarm output1 Sie e Retransmission on Digital input eve MAN mode selection or esa betta I leat Coie le os AUTO mode selection 5 RUN STOP switching Alarm output4 PV high limit PV low limit PV high limit PV low limit Digital output el DO will be OFF when FAIL output Lege L Function O Terminal C Parameter nd Analog signal Digital signal IM 5D1A01 02E E Loop Control with PV Auto selector US1000 21 Chapter 2 Controller Mode US Mode Control is performed based on a position proportional PID computation so as to ensure that the MV output and control valve opening always match Two universal input terminals AIN1 and AIN2 are provided The MV output is a position proportional control relay output OUTR terminal A valve position feedback input is provided Cascade input or feedforward input or tracking input Cascade input via communication Digital input Manual PV input 1 Option ee Analog input Analog input Analog input j i i type type type Analog input Analog input Analog input 3 inpu range conversion range conversion AUTO MAN Analog input Analog input Analog input Bedik i bias bias bias quare root Square root quare root computation computation computation Analog input
12. Square root Square root computation computation v Analog input filter Dual PV switching Ten segment linearizer fil PV filter Vv Analog input type Analog input ter Dual PV switching CMS Cascade ratio Cascade bias Vv CASO 5 AUTO MAN PID computation Preset MV Manual operation IM 5D1A01 02E STOP RUN STOP switching Alarm Alarm Alarm output output2 output3 PV high limit PV low limit PV high limit Re transmit PV MV Retransmission a voltage output 3 Digital output O Terminal C Parameter Analog signal Legend Function renner Digital signal 2 21 E Loop Control with PV Switching US1000 11 Two universal input terminals AIN1 and AIN2 are provided The type of MV output can be selected from those in Table 2 4 in Section 2 1 by setting the MVS1 parameter Cascade input or feedforward input or Cascade input via eee tracking input communication Digital input 5 898 Option ft ba Analog input type Unit conversion iie he A MAN Analog input bias Square root Square root computation 4 Square root computation computation v Analog input Analog input Analog input filter filter filter Ten segment linearizer Dual PV switching Feedforward input filter i 4 Q Feedforward z CMS bias gain PV filter Q OFF VE Cascade bias F
13. The manual reset parameters available are 1 MR to 8 MR but the controller uses 1 MR only except when the preset PID or zone PID function is used Operation parameter Main Sub Parameter Description Setting Range Default 0 LP1 n PID 3 3 32 IM 5D1A01 02E Chapter 3 Parameters 3 9 6 Direct Reverse Action of Control Control action that increases MV to achieve a positive deviation PV gt SV and reduces MV to achieve a negative deviation PV lt SV Control action that reduces MV to achieve a positive deviation and increases MV to achieve a negative deviation Direct action Reverse action Parameters to switch between the direct or reverse action are provided as 1 DR to 8 DR but the controller uses only 1 DR except when the preset PID or zone PID function is used Operation parameter Main Sub Parameter Description Setting Range Default 0 LP1 n PID 0 Reverse action 0 LP2 n 1 8 n DR Direct reverse action switchover 1 Direct action 0 Proportional band n P MV Direct action PV 100 50 Reverse action PV 0 Negative deviation SV Positive deviation Figure 3 9 5 Direct Action and Reverse Action IM 5D1A01 02E 3 33 3 10 Parameters for Preset PID and Zone PID The US1000 controller can have multiple groups of preset PID parameters and switches between these parameter groups according to the controlled process condition This function is called
14. are provided The type of MV output can be selected from those in Table 2 4 in Section 2 1 by setting the MVS2 parameter Cascade input via Cascade input or PV input 1 communication feedforward input PV input 2 Digital input w OS aa Option Analog input Analog input Display type type massage Analog input Unit conversion Unit conversion Tracking signal When the controller is stopped or cascade loop is opened the primary side internal CLOSE output value tracks the Fae ie secondary side SV E gt Ree Ces NRE Se Mean eR arr OPEN CLOSE switching i STOP Preset MV Manual O operation A range conversion i Analog input 7 Analog input v x y range conveRSION Araog inipon range A CAS AUTO Analog input Square root Analog input i jas computation jas i 1 Square root i Square root ic tah computation i f i Analog input Analog input filter filter Cascade Feedforward i i Ten segment input filter input filter Ten segment i i linearizer linearizer i Feedforward i i bias gain f Po PV filter Cascade ratio i i Cascade bias Pdi teal i E OO Re ae ee CAS AUTO MAN mode selection __j on PID computation RUN STOP switching Alarm Alarm Alarm Alarm DO will be output output2
15. 1 to 120s OFF IM 5D1A01 02E Chapter 3 Parameters 3 6 Parameters for Ten segment Linearizer The two functions described below are possible using a ten segment linearizer Which function to use is specified by the parameter n PMD refer to subsection 3 6 2 whose default is set to ten segment linearizer biasing Ten segment linearizer biasing This function is used to correct the input signal affected by sensor deterioration Corrected values are output by adding the corresponding output values Y to each of the 11 points of optionally set input values X The values on the X axis of a ten segment linearizer for biasing are set with parameters n X1 to n X11 and the values on the Y axis are set with parameters n Y1 to n Y11 Output Y Corrected value a the sum of actual input and bias values ao Actual input Ten segment linearizer bias Figure 3 6 1 Ten segment Linearizer Biasing Ten segment Linearizer Approximation This function is used when the input signal and the required measurement signal have a non linear relationship for example when trying to obtain the volume from a sphere tank level Output values Y can be set optionally according to the 11 points of optionally set input values X The values on the X axis of a ten segment linearizer for approximation are set with parameters n X1 to n X11 and the values on the Y axis are set with parameters n Y1 to n Y11 Output Y Ten segment lineariz
16. 11 COLD aoai eiior oS EEEE EEE S i 3 2 Communication Functions ccccccecesseeeeees 2 2 3 59 Contact Input aise ccceccsescks cedesseescouneesceedes 2 2 3 52 Contact Output oo eee eeceeeeeeeeeeneceeees 2 3 3 46 3 55 Continuous PID Computation ow eee 3 23 Control Acton ssccccissesscetlesssasssastscsscsonstseescons 3 33 Control Computation oo eee eee eee cee eneeeeees 3 22 Control Period sos ssssyssutsesteetesisstiseeesesssesgeesestaass 3 56 Controller Mode oo cece eee eeeeeceeeeeeeseeeeeeeeaes 2 1 CRD E E TT 3 11 CICH E E E E EE ie AS 3 25 CIC ces EEE 3 25 Cycle Time eina aaa an 3 24 3 25 Index 1 D Deadbaid issons orrei enoe atest kts 3 26 Decimal Point Position oo ee eeeeeeeeeeseceeeeeeteeeneeees 3 6 Derivative Action meierei 3 29 Deviation Display Range sseessssesseeseeesereereseeeeses 3 21 Direct Reverse Action cceceeeeesseeereeeseeeeeeees 3 33 Display Scale Snn ncini e rennan 3 6 DLN areires Aieteonehestenttotet 3 59 DNR eiar Ride AR SR Reeds 3 20 DOW be easel Basten ete E E Mees pede treats 3 55 DOZ tine asl Sena ee 3 55 DOB saissdih bees ies ieas shee E Rha cane esha be 3 55 DPI see anyhoo SAR aie Ale Shi eae 3 52 JB AA EA E EE E EE 3 52 Dry and W et bulb Calculations oo 3 5 Dual loop Control US1000 1 1 oaeee 2 32 F FAM Outp t aeea a 3 51 Ii e DREE OEE A OE EEEO EEE E 3 14 FRO nere N ea Rn a ns 3 14 Feedforward Control ssessssseseessessesesseseeseeeeseeses
17. 3 41 OVESHOOL ginei a voiau 3 18 3 31 P PDPI is diets shied al n an i 3 6 l A D A EE OEE EE E EEE 3 6 PRH I eek nein ease nia aes 3 5 PRED eean sea E ANE 3 5 PRUT chsceiii beh ea Gh ties estes 3 5 PRED ei leek E E EE EE EN 3 5 Parameter Initialization sseeeeeeeeeeeeeeeeseeerer eree 3 61 Parameter Map aereis App 1 1 PARE i n Siig nie Rate a ks 3 59 Passive Alarms csc sesesevecssh svete sossh evepesesbesssess eases 3 47 IM 5D1A01 02E Index PASS WOM armeniar ees siieas 3 58 PID cctgintidg his E seek as 3 58 PID Control Mode oo eee eseceecseceseeeeeeeees 3 30 PID Group s 32s0 vessel eit lane ea ae 3 34 PID Parameters munne a iae Sa EERE 3 28 Position proportional PID Computation cc eeeeeeeeseeeeee 2 7 3 23 3 27 Power on and Power Recovery o eeeeeeseeseseeeeeee 3 2 PPID pore e E 3 34 3 39 Preset MV reenn nen n i 3 43 Preset o I D AAEE a ERNEA 3 34 3 39 Proportional Action eseseeseseeeseseeersererrereererssen 3 28 PSN ere r E N SEE SRS 3 58 PS r a E E A E A ahy 3 59 A anI EA A E EEE EEE S te seedy 3 24 PV Auto selector cccccccccccccscccseeeceeeeeseeees 2 24 2 42 PV Bl ser e E i estesetvie vy 3 10 PV FET e atin Bak eee ate 3 10 PY An put eonen eie tase aseonsees crevasses EEA 2 2 PY Range 2 5 stuat arava ee tek 3 5 PV SWitchin ge a pentinis ernis 2 19 2 39 PV Tracking eei nieee pie o 3 19 TERV n10 e HEESEN SAA SETAE EEE ETE EEN 2 3 PYR Pe ana a Cee EE An R 3 46 PVT eanne n n tint
18. Alarm Alarm output output2 output3 output4 PV high limit PV low limit PV high limit PV low limit Gry Gr Digital output vave position Position Boel Mra Retransmission jeedback INpu proportional current outpu voltage outpu A ortrol relay ledena O Terminal C Parameter Analog signal output L Function wen nae Digital signal IM 5D1A01 02E 2 31 2 9 Dual loop Control US mode 11 This US mode provides two control computation units to allow control of two loops using just a single controller Loops and 2 can be operated and monitored separately When using the tracking input a tracking flag function must be assigned to a contact input DI For information about contact input assignment refer to Section 3 15 Parameters for Contact Input E Dual loop Control US1000 11 Two universal input terminals AIN1 and AIN2 are provided The types of MV output for loop 1 and loop 2 can be selected by setting the MVS1 and MVS2 parameters respectively Table 2 7 Loop 1 MV Output for US1000 11 Set Up in Dual loop Control or Tempera ture and Humidity Control Type of control computation Value of MVS1 Terminal Terminal Time proportional PID 0 1 Heating cooling Heating cooling code No Continuous PID 2 computation 4 5 computation 6 7 ON OFF computation 3 Loop 1 a Loop 1 Loop 1 OUTIA 16 18 Retransmission output 0 3 Heating pulse output 4
19. Computation Types for Each Controller Model US1000 00 Time proportional PID computation with voltage pulse output continuous PID computation US1000 11 Time proportional PID computation with relay output or voltage pulse output continuous PID computation ON OFF computation heating cooling computa tion US1000 21 Position proportional PID computation Control Computation Type and MV Output Type Setup parameter Main Sub Parameter Description Setting Range Default 0 Control relay output MVS1 MV1 selection 1 Voltage pulse output 2 2 Current output USMD OUT 3 Control relay output for ON OFF computation MVS2 MV2 selection 4 to 12 Output for heating cooling 2 computation see the next page MVS1 and MVS2 Parameters MVS1 and MVS2 are used to set the MV output type Either or both of them must be set according to the controller mode US mode The controller does not display parameters that do not need to be set e Set MVS1 except the following cases e Cascade control US mode 4 cascade control with two universal inputs US mode 13 Set MVS2 e Dual loop control US mode 11 temperature and humidity control US mode 12 Set both MVS1 and MVS2 e US1000 21 the position proportional model Set neither MVS1 nor MVS2 regardless of controller mode US mode TIP When the controller mode is cascade primary loop control US mode 2 leave the MVS1 setting at the
20. Default CMPL AIN A RII Analog input 1 reference junction compensation OFF ON ON A RJ2 Analog input 2 reference junction compensation OFF ON ON IM 5D1A01 02E 3 9 3 3 3 3 1 3 3 2 3 10 Parameters for PV Computation Normally used at defaults The computation on measured values carried out after a series of computations on the analog input signal is called PV computation The PV computations contain the PV biasing and PV filtering PV Bias In some cases the obtained PV value is smaller than the actual value by a constant quantity due to the physical circumstances of the detecting element For example the ambient temperature inside a furnace is often measured to substitute it for a material s temperature In such cases add a constant value for biasing When there is a dispersion in PV values between other equipment a fine adjustment is possible using this function The PV biasing and analog biasing are similar functions refer to subsection 3 2 5 However PV bias should be used normally because it is given as an operation parameter and its value can be changed during operation PV value inside the controller PV input value PV bias Operation parameter Main Sub Parameter Description Setting Range Default OLEI PAR BS PV bias EUS 100 0 to 100 0 BUS 0 PV Filter This filter is used to improve controllability or to correct the phase of an input si
21. Description Setting Range Default STUP PS IN Password input 0 to 30000 0 IM 5D1A01 02E 3 20 Parameters for Communications Function IM 5D1A01 02E Chapter 3 Parameters The US1000 controller can have an optional RS 485 communication interface The RS 485 communi cation interface supports the Modbus communication protocol and PC link communication protocol which is convenient for communicating with a Yokogawa PLC sequencer For information about the RS 485 communication function refer to the separate instruction manual US1000 Digital Indicating Controller Communications Function IM 5D1A01 10E Setup parameter Main CMLP Sub R485 Parameter Description Setting Range Default 0 Modbus ASCII PSL Protocol selection 5 Seg AR FONR 0 3 PC link communication with sum check BPS Baud rate oa 2400 4800 9600 19200 9600 PARI Parity N None E Even O Odd E STP Stop bit 1 2 1 DLN Data length 7 8 8 ADR Controller address 1 to 99 1 RSP T Minimum response time 0 to 10 x 10 ms 0 3 59 3 21 Other Parameters This section introduces and briefly explains the following parameters e USER parameters e Parameter initialization e Test mode 3 21 1 USER Parameters Operation parameter Main Sub Parameter Description Setting Range Default Ul USER parameter 1 19999 to 31500 Refer to the followin
22. Function wren nes Digital signal 2 44 IM 5D1A01 02E Chapter 2 Controller Mode US Mode 2 14 Custom Computation Control US mode 21 This US mode allows users to customize input and output computations signal assignments and operation displays To use the custom computation function the optional LL1200 PC based Custom Computation Building Tool is necessary The tool includes the LL1100 PC based Parameters Setting Tool which is used to set the parameters of the US1000 controller from a personal computer Main Specifications of Custom Computation Function Provided computation modules Basic four arithmetical operations logical operations ten segment linearizer approximation temperature and humidity calculation temperature compensation pressure compensation and others Customization of operation displays Customizing display types the display sequence and display conditions is possible IM 5D1A01 02E 2 45 3 Chapter 3 Parameters Parameters IM 5D1A01 02E The US1000 controller has two kinds of parameters Setup Parameters which are used to configure functions and Operation Parameters which are used for operation This chapter describes all of these parameters However refer to Chapter 2 for USM parameters Regarding Tables in This Chapter The information contained in the brackets above the table is the setup parameter or operation parameter Setting range or selection alternativ
23. MV continue R MD COLD Starts from a preset output value in MAN mode Operation continues Power Pi i Momentary A lt gt r i aye lt M power failure m Power failure 20 ms 2s Time of power failure Figure 3 1 1 Time of Power Failure and Operation Upon Power Recovery e Alarm action Continues But the alarms with waiting action immediately return to waiting status Refer to subsection 3 14 1 Alarm Types e Parameter settings Maintained e Auto tuning Canceled e Control action The operation prior to the power failure continues when the power failure is less than 2 seconds The operation varies according to the parameter R MD setting when the failure lasts for 2 seconds or longer Setup parameter Main Sub Parameter Description Setting Range Default HOT Continues the operation prior to R MD Restart mode power failure COLD CMLP C CTL COLD Starts in MAN mode R T Restart timer 0 to 60s Os R MD setpoint Control action after recovery HOT Operation mode and MV continue after recovery Starts in MAN manual operation after recovery MV is reset to the preset MV value COLD f gt n PM of operation parameters Parameter R TM is used to delay the start of the controller s operation by a specified period of time after the power is turned on R TM is used in cases where the controller should start up after the
24. and in this manual CAUTION If this symbol is indicated on the product the operator should refer to the explanation given in the instruction manual in order to avoid personal injury or death to either themselves or other personnel and or damage to the instrument The manual describes that the operator should exercise special care to avoid shock or other dangers that may result in injury or loss of life D Protective ground terminal This symbol indicates that the terminal must be connected to ground prior to operating the equipment aL Function ground terminal This symbol indicates that the terminal must be connected to ground prior to operating the equipment 3 If protection safety circuits are to be used for the product or the system controlled by it they should be externally installed on the product 4 When you replace the parts or consumables of the product only use those specified by Yokogawa 5 Do not modify the product IM 5D1A01 02E jii E Force Majeure A 1 Yokogawa does not make any warranties regarding the product except those mentioned in the WARRANTY that is provided separately 2 Yokogawa assumes no liability to any party for any loss or damage direct or indirect caused by the use or any unpredictable defect of the product WARNING Do not change the setting of the following US1000 controller parameter Setup parameter Main menu USMD Submenu TEST Parameter TST Test mode
25. and low limits alarm Setting 8 18 This alarm is issued when the deviation SV PV or PV SV is within the alarm setpoints The alarm numbered 18 has the waiting action Figure 3 14 2 Deviation alarm setpoin Hysteresis Upper limit SV Lower limit High limit deviation Low limit deviation Deviation of high and low limits Deviation within high and low limits Alarm occurs Alarm occurs Alarm occurs Figure 3 14 2 Deviation Alarms 7 SV high limit alarm Setting 21 This alarm is issued when SV rises to the alarm setpoint or above e The direction of the arrow indicates the direction of the SV change e The alarm is issued within the range of the arrows Alarm setpoint Hysteresis 8 SV low limit alarm Setting 22 This alarm is issued when SV falls to the alarm setpoint or below e The direction of the arrow indicates the direction of the SV change e The alarm is issued within the range of the arrows Hysteresis Alarm setpoint y IM 5D1A01 02E 3 49 9 MV high limit alarm Setting 23 This alarm is issued when MV rises to the alarm setpoint or above Alarm setpoint 0 100 e The direction of the arrow indicates the direction of the MV change e The alarm is issued within the range of the arrows Hysteresis 10 MV low limit alarm Setting 24 This alarm is issued when MV falls to the alarm setpoint or below Alarm setpoint 0 100 e The direction of the arrow indicates
26. and the furnace tempera ture can be controlled at an average maximum minimum or differential value of the two tempera tures The controller mode for loop control with PV auto selector and two universal inputs US mode 15 allows a controller to receive two points of temperature inputs directly Loop control with PV auto selector mode US mode 7 on the other hand requires a temperature converter for one of the two inputs because this controller mode provides only a single universal input Loop control with PV auto selector and two universal inputs US mode 15 or loop control with PV auto selector US mode 7 Furnace Upper part __US1000 PPE eon ncn 4 oN temperature I 7 4 gt of furnace i Target setpoint oO Upper part y I oO temperature O MV o i PV auto __ Oo selector f OSitout Lower part J D temperie gt Lower part temperature i i of furnace a ee ee tyre oes Bite sth ae ans i IM 5D1A01 02E 1 3 E Loop Control with PV hold Function During replacing the works in the furnace PV and MV values can be held by the contact input So that PV low limit alarm or MV wind up won t occur when the temperature in the furnace de creases temporarily according to replacing the works Loop control with PV hold function US mode 8 Switching signal US1000 Furnace 5 i Oo E i Switching PV signal o eese ee o oO oO Coco MV output
27. bias Square root Square root Square root computation computation computation Analog input Analog input filter filter Dual PV selection v Ten segment i linearizer Cascade input filter Vv o Feedforward bias gain PV filter OFF C FFS Cascade ratio Cascade bias Analog input filter Ten segment linearizer Dual PV switching Feedforward input filter SV number selection CASQ AUTO MAN r A E E E E E sce meas ece ss eestecah 4 MAN mode selection PID computation E Tracking signal 4 STOP RUN Preset MV Q RUN STOP switching 4 E SE E EEI E E E E EE EE OSE EEEN E A E Re E AE A nie MAN JCAS AUTO Manual O operation s MAN mode selection Alarm Alarm Alarm Alarm Towi be Re i Re i output output2 output3 output4 when erat etansmit eV high limit PV low limit PV high mit PV low limit FAIL output D Valve position Position Retransmission Retransmission Digital output feedback input roportional current output 1 voltage output 3 p Prd relay O Terminal CD Parameter Analog signal output Legend i L Function wenn een Digital signal IM 5D1A01 02E 2 23 2 7 Loop Control with PV Auto selector US mode 7 This US mode provides a control function that automatically selects either the larger or smaller value or sets the average value or difference of two PV input values as the PV input T
28. bump in MV when the operation mode is changed from MAN to AUTO mode the US1000 controller is provided with a function that absorbs the effects of operation mode changes made by the integral action A balance less and bumpless operation is allowed owing to this function and is always available regardless of whether there is any parameter setting Cooling side PID Parameters for Heating Cooling Computation Operation parameter Main Sub Parameter Description Setting Range Default n Pc Cooling side proportional band 0 0 to 999 9 999 9 0 LP1 Cag n Ic Cooling side integral time OFF 1 to 6000 s 1000 s n De Cooling side derivative time OFF 1 to 6000 s OFF For heating cooling computation parameters n P n I and n D which are described in subsection 3 9 1 PID Parameters are used for the heating side PID parameters The parameters n Pc n Ic and n Dc are used for the cooling side PID parameters See Also Subsection 3 9 1 PID Parameters and note that the functions of n Pc n Ic and n Dc are identical to those of n P n I and n D PID Control Mode Setup parameter Main Sub Parameter Description Setting Range Default as CTL MOD PID control mode 0 Batch control 1 Fixed point control 1 The US1000 controller has two modes of PID control batch control mode and fixed point control mode In these control modes the controller uses different PID control e
29. contact output terminals DO1 DO2 and DO3 are provided At the time of shipping the PV high limit PV low limit and PV high limit to be used as the high high limit alarms are assigned to the respective terminals For information about alarm functions refer to Section 3 14 Parameters for Alarm Output 2 3 E Single loop Control US1000 00 One universal input terminal AIN1 is provided Voltage pulse or current output can be selected for the MV output by setting the MVS1 parameter OUTIA terminal Cascade input via communication RS485 Option 3 Cascade input or feedforward input Analog input Analog input type type Analog input range conversion Unit conversion Analog input Analog input range conversion Analog input Square root bias computation Square root computation Analog input filter Analog input filter Cascade input filter Ten segment linearizer PV filter Cascade ratio Cascade bias Feedforward input filter Feedforward bias gain 6 STOP RUN Preset MV T Alarm outputi PV high limit Retransmission voltage output 2 4 4 PE SE es Oct A ape a i Ne eas RUN STOP switchover Alarm output2 PV low limit Cc Parameter Refer to Chapter 3 Analog signal Function Digital signal IM 5D1A01 02E E Single loop Control US1000 11 One universal input t
30. default value 2 When the controller mode is dual loop control US mode 11 or temperature and humidity control US mode 12 the setting range of MVS1 and MVS2 is 0 to 7 IM 5D1A01 02E IM 5D1A01 02E Chapter 3 Parameters The control computation types and MV output types are summarized in the following table Control Computation Type Time proportional PID Setting of MVSn 0 Description PID computation result is output in the pulse MV Output Type Control relay pulse output computation with relay output width of a time proportional on off signal output Aae proportion TP a 1 PID computation result is output in the pulse Voltage pulse P 8 width of a time proportional on off signal output Continuous PID computation PID computation result is output as an analog signal Current output ON OFF computation Heating cooling computation 4 to 12 SV and PV are compared and an ON or OFF signal is output according to the sign of the deviation The PID or ON OFF computation result is output as two types of signals for the heating and cooling output Control relay output Control relay voltage pulse or current output can be selected for each of heating side and cooling side outputs Position proportional PID computation None Control is performed so as to maintain the MV output in accordance with the control valve opening Position proportional co
31. executed within the specified control period See Also Section 5 1 Registering Auxiliary Operation Displays USER Displays of the separate instruction manual US1000 Digital Indicating Controller IM 5D1A01 01E for information about the sampling error counter IM 5D1A01 02E 3 18 Parameters for Display Functions 3 18 1 USER Display USER displays display data which are helpful during the controller operation Chapter 3 Parameters For information about USER displays refer to Section 5 1 Registering Auxiliary Operation Displays USER Displays of the separate instruction manual US1000 Digital Indicating Controller IM 5D1A01 01E Setup parameter Main Sub CONF U OPE Parameter Description Setting Range Default U 1AL USER display of loop 1 alarm OFF ON OFF U 2AL USER display of loop 2 alarm OFF ON OFF U SVN_ USER display of SV number OFF ON OFF U IPI USER display of loop 1 PID group number OFF ON OFF U 2PI USER display of loop 2 PID group number OFF ON OFF U AIL USER display of AIN1 measured value OFF ON OFF U AIZ USER display of AIN2 measured value OFF ON OFF U AI3 USER display of AIN3 measured value OFF ON OFF U PV1 USER display of PV1 OFF ON OFF U PV2 USER display of PV2 OFF ON OFF U SMP_ USER display of sampling error counter OFF ON OFF 3 18 2 SELECT Display IM 5D1A01 02E SELECT displays permit easy
32. i HY3 i PYS2 Alarm 3 1 Alarm 3 3 PYS2 hysteresis i hysteresis i menu lock i HY4 i R PWD i Alarm 4 Max value of Password 1 hysteresis t ret 3 scale setting 1 1 i lor i Min value of f duration time i ret 3 scale 1 1 i 1 1 1 1 1 1 1 1 1 1 1 i i App 1 4 IM 5D1A01 02E Appendix 1 Parameter Map CONF Detailed function gt setting menu gt USMD Controller function setting menu Submenu C S1 Protocol Registration for selection the SELECT 1 DO1 Registration for DO1 BPS C S2 DO2 Registration for Registration Baud rate the SELECT 2 for DO2 3 Rex C Registration for the SELECT 4 5 original submenu ured value AIN2 meas ured value U AI3 AIN3 meas ured value U PV1 PV1 U PV2 PV2 U SMP Sampling er ror counter CAS1 Loop 1 mode switchover to CAS AUT1 Loop 1 mode switchover to AUTO MAN1 Loop 1 mode sw IAN CAS2 Loop 2 mode switchover to CAS AUT2 Loop 2 mode switchover to AUTO MAN2 Loop 2 mode switchover to MAN R S RUN STOP switchover Loop 1 tracking flag Interruptive display 1 DP2 Interruptive display 2 MG1 Interruptive message 1 MG Interruptive message 2 MG3 Interruptive message 3 MG Interruptive message 4 Ten segment linearizer unit IM 5D1A01 02E Submenu VALV Valve calibration INIT Parameter
33. initialization US mode SMP Control period Input 1 type for AN telninal selection UNI1 MVS2 Input 1 unit RH1 Max value of Qutput t type for input 1 range OUTIA terminal RL1 A02 Min value of Output 2 type for Automatic input 1 range OUT2A terminal calibration SDP1 A03 Input 1 decimal Output 3 type for point position OUT3A terminal Do not use SH1 RVOP this mode Max value of Reverse display input 1 scale and operation SL1 Min value of input 1 scale TYP2 Input 2 type for AND felini UNI2 Input 2 unit RH2 Max value of Mi input 2 range SDP2 Input 2 decimal point position SH2 Max value of Max value of input 3 scale SL3 Min value of scale P DP1 PV1 decimal point position in cimal point position App 1 5 yes Index Numbers Alarm Outputs cece cece ce eeseceeeeeeeeeeeeeeeeeens Alarm Setpoint escsscesseesesssenseeesensenee eee Analog Input sci atcchiciatennien fs a a ea Anti reset W indup ou eeeesceececeeceeneeeereesaeeeeees AOL e e E orig EENE tbe PR E EE E erkegseaes IM 5D1A01 02E 3 51 3 58 3 58 3 58 3 9 3 9 3 9 3 7 3 7 3 7 3 8 3 8 3 8 3 8 3 8 3 9 3 9 3 8 3 8 3 59 3 46 3 46 3 46 3 46 3 46 3 51 3 47 3 46 3 3 3 31 341 3 41 3 41 3 15 3 31 3 38 3 52 3 52 3 38
34. input is used in control such as the flow rate ratio control introduced in Chapter 1 The RS 485 terminal is the communication input terminal for the RS 485 and is provided for control lers with optional communication functions In CAS operation mode the US1000 controller performs control using the cascade input from the RS 485 or AIN3 terminal as the target setpoint instead of using the value set with the parameter n SV Whether to use RS 485 or AIN3 terminal for cascade input can be specified using the parameter CMS For information about the CMS parameter and cascade input refer to Section 3 4 Parameters for Cascade Input 3 Cascade input section AIN3 terminal The AIN3 terminal is an analog input terminal for voltage input Like the RS485 terminal mentioned above the input from the AIN3 terminal can be used as a cascade input and computations can be performed on the input For information about the computations on inputs refer to Section 3 2 Parameters for Analog Input The input from AIN3 terminal can also be used as a feedforward input by setting the parameter FFS to AIN In this case the parameter CMS must be set to CPT The feedforward input value will be added to the result of PID computation For information about feedforward input refer to Section 3 5 Parameters for Feedforward Input 4 Contact input section 2 2 Two contact input terminals DI1 and DI2 are provided At the time of shipping the func
35. lag calculation which can remove more noise the larger time constant becomes see Figure 3 2 4 However an excessively large time constant will distort the waveform The analog input filter is similar to the PV filter described in subsection 3 3 2 Normally the PV input filter is used but in cases where a constant level of correction is required such as in an environment that contains a lot of noise the analog input filter should be used IM 5D1A01 02E 3 7 Setup parameter Main Sub Parameter Description Setting Range Default A FLI Analog input 1 filter OFF to 120s OFF CMPL AIN A FL2 Analog input 2 filter OFF 1 to 120s OFF A FL3 Analog input 3 filter OFF to 120s OFF Actual input With the proper time constant With an excessively large time constant Figure 3 2 4 Image of Measured Signal Correction by Analog Input Filters 3 2 7 Square root Extraction This calculation is used to convert a differential pressure signal from a throttling flow meter such as an orifice and nozzle Low signals are cut off at the point specified by parameter A LCn The slope below the lowcut point is fixed at 1 Setup parameter Main Sub Parameter Description Setting Range Default A SR1 Analog input 1 square root computation OFF ON OFF A LC1 Analog input 1 square root low signal cut off 0 0 to 5 0 1 0 cmp AIN A SR2 Analog input 2 square root com
36. limit is selected PV high limit PV low limit 866666 Switch to AUTO mode from CAS mode when DI2 is OFF RUN STOP switching DO will be OFF when FAIL output Digital output output Lege Analog signal O Terminal Parameter nd L Function Digital signal IM 5D1A01 02E Chapter 2 Controller Mode US Mode 2 4 Cascade Control US mode 4 This US mode provides two control computation units and enables cascade control using just a single controller Open close switching of the cascade loop is carried out by either a contact input DI2 or the O C parameter For information about open close switching of the cascade loop refer to Section 3 15 Parameters for Contact Input E Cascade Control US1000 00 One universal input terminal AIN1 is provided Voltage pulse or current output can be selected for the MV output by setting the MVS2 parameter OUTIA terminal Cascade input via ps Primary PV input communication Secondary PV input Digital input Asass Option Analog input type Unit conversion Analog input type Analog input range conversion Analog input range conversio Analog input jas Aga a Square root bias computation Square root computation Analog input Analog input v filter Ten segment linearizer PV filter Cascade ratio Cascade bias AUTO MAN Tracking signal When the controller is
37. line B flow rates is maintained at a constant value Square root extraction ratio multiplication and bias addition are carried out on the measured flow rate differential pressure of line A and the result is used as the cascade input for the line B control Line A gt Single loop control US mode 1 z E us1000 PV o i i gt i T Cascade o PV of a Square root Iti sical input i z Linea OF Seion Bias addition f i MV aie PV of o S root MV output Line B extraction PO output x Line B E Cascade Control This example shows cascade control using two inputs of measured temperature and flow rate US1000 Cascade control US mode 4 Measured Measured o Target setpoint AN PT100 temperature flow rate Vv i Measured Cascade temperature input Measured Square root MV Flowmeter flowrate extraction output Chilled water ee een m Chilled water return IM 5D1A01 02E 1 1 E Reactor Cascade Control In the cascade control of a reactor the temperature of the reactor content is raised by heated water from the start of the control process until the start of reaction After reaction the temperature will be controlled by chilled water When the PID computation result does not exceed 5
38. output Lege O Terminal C Parameter Analog signal nd L Function stn Digital signal 2 17 E Loop Control for Backup US1000 21 Control is performed based on a position proportional PID computation so as to ensure that the MV output and control valve opening always match Two universal input terminals AIN1 and AIN2 are provided The MV output is a position proportional control relay output OUTR terminal A valve position feedback input is provided Cascade input or Cascade input via Tracking input PV input feedforward input communication Backup input Digital Input Option ce Se ee eet Analog input Analog input Analog input type type type Areloginpul range conversion Analog input Analog input A range conversion _ range conversion ee l Analog input Square root bias computation Square root computation Analog input filter linearizer Analog input bias Square root computation Analog input filter Analog input filter Ten segment linearizer v Feedforward input filter input filter PV filter 3 Feedforward bias gain OFF Cascade ratio Q Cascade bias FFS SV number selection MAN mode selection Tracking switching Alarm Alarm DowilbeorF Alarm Alarm DO will be output1 output2 wheninputbumout output4 output3 OFF when MV PV PV high limit PV low limit pr AD error occurs PV low limit PV high
39. prevent a sudden change in the SV changing operation the US1000 controller has a function to change SV at a constant rate This rate is specified by setting the amount of change per hour or per minute Positive and negative rates can be set with separate parameters UPR and DNR respectively Setup parameter Main Sub Parameter Description Setting Range Default S LP1 3 TAT SLP2 SV TMU Time unit for ramp rate setting 0 1h 1 1 min 0 Operation parameter Main Sub Parameter Description Setting Range Default 0 LP1 UPR Setpoint ramp up OFF EUS 0 1 to 100 0 OFF oLp2 PAR DNR Setpoint ramp down OFF EUS 0 1 to 100 0 OFF Ramp rate determined by TMU and UPR SV change v SV M SV change E Ramp rate determined by TMU and DNR Time Figure 3 7 3 SV Rate of Change 3 20 IM 5D1A01 02E 3 7 5 Deviation Display Range and SV Bar Segment IM 5D1A01 02E Chapter 3 Parameters When the deviation between SV and PV exceeds the value of parameter DVB the bar segment that indicates SV flashes Upon default setting the SV bar segment flashes when PV deviates from SV by one or more bar segments Since PV and SV are both displayed on a single bar when the cascade loop is open or during dual loop control for example it is difficult to find the SV position when it is smaller than PV To avoid this problem set DVB at EUS 0 0 to make t
40. process has a large time constant or a long dead time control based on only the proportional action or proportional plus integral action may require a late or excessive corrective action If attention is paid on whether the deviation is increasing or decreasing and a corrective action is taken earlier the controllability will improve Derivative action changes the output in proportion to the differential value rate of change of deviation and the derivative time parameter sets the intensity of the derivative action Setting the derivative time parameter n D at OFF corresponds to derivative time 0 during which the derivative action does not work The n D parameter must be set off for the control of inputs that originally have vibrational characteristics for example inputs for prompt response such as pressure and flow rate and inputs from optical sensors PV SV Time A derivative time that is too long results in a short period of vibration in PV Figure 3 9 3 Derivative Action IM 5D1A01 02E 3 29 E Bumpless Tuning To prevent a bump in MV when the parameter n P is changed during manual tuning of the PID parameters the US1000 controller is provided with a function to absorb the effect of n P changes by an integral action This function allows for bumpless tuning and is always available regardless of whether there is any parameter setting E Balance less and Bumpless Operation 3 9 2 CX 3 9 3 3 30 To prevent a
41. section 4 7 1 AL4 Alarm 4 type OFF 1 to 29 see section 4 7 2 HY1 Alarm 1 hysteresis EUS 0 0 to 100 0 EUS HY2 Alarm 2 hysteresis MV alarm 0 0 to 100 0 V SLPI R HY3 Alarm 3 ue 0 5 S LP2 HY4 Alarm 4 hysteresis pyr T PV velocity alarm 1 to 9999 s 1s duration time 0 Always enabled 1 Disabled in STOP mode 2 Disabled in STOP or MAN mode AMD Alarm mode 3 8 alarms amp always enabled 0 4 8 alarms amp disabled in STOP mode 5 8 alarms amp disabled in STOP or MAN mode The alarm mode parameter AMD under the S LP2 main menu can only be set as 0 1 or 2 it cannot be set to 3 4 or 5 Set the alarm type hysteresis and other parameters for each of alarm outputs 1 to 4 IM 5D1A01 02E The various alarm types are listed below Chapter 3 Parameters Passive Alarms Passive alarms turn the contact OFF when the alarm occurs and ON when normal Other alarms active alarms turn the contact ON when the alarm occurs and OFF when normal Alarms With Waiting Action Alarm type Setting Alarm type Setting PV high limit 1 PV high limit with waiting action 11 PV low limit 2 PV low limit with waiting action 12 High limit deviation 3 High limit deviation with waiting action 13 Low limit deviation 4 Low limit deviation with waiting action 14 Deviation of high limit passive 5 Deviation of high limit pa
42. setpoint output function and a signal tracking output to the primary loop control ler both of which are required for a cascade secondary loop E Cascade Secondary loop Control US1000 00 One universal input terminal AIN1 is provided Voltage pulse or current output can be selected for the MV output by setting the MVS1 parameter OUTIA terminal Tracking signal Tracking switching Primary loop controller Cascade input via 250 Q PV input communication Gnd ee Analog input Analog input Option type type Unit conversion i Analog input range conversion Analog input bias Square root computation Analog input filter Analog input fie a r Cascade input filter Analog input range conversion Analog input jas th Square root computation Ten segment linearizer V bias vu 4 le 2 8 e PV filter STOP 4 RUN Preset MV Q Manual MAN operation S MV Retransmission voltage output 3 2 10 v SV Error signal Switch to AUTO mode from CAS mode when _DI2 is OFF Alarm Alarm DOwillbe OFA output output2 when CAS mode PV high limit PV low limit is selected Digital output O Terminal CD Parameter Analog signal Legend Function Digital signal IM 5D1A01 02E E Cascade Secondary loop Control US1000 11 Two universal input terminals AIN1 and AIN2 are provided The type of MV outpu
43. side MV2 1 to 1000 s 30s When the cooling side output is relay contact or voltage pulse that is parameter MVS1 or MVS2 has been set between 4 and 9 the cycle time of the cooling side MV output CTcl or CTc2 must be set For a description of the cycle time refer to subsection 3 8 2 Time proportional PID Computation and Cycle Time of MV Output IM 5D1A01 02E 3 25 Operation parameter Main Sub Parameter Description ies in 8 n He Cooling side relay hysteresis Setting Range Default 0 0 to 100 0 0 5 When the cooling side output is relay contact that is parameter MVS1 or MVS2 has been set between 4 and 6 a hysteresis band can be set around the ON OFF switching point SV For a description of the hysteresis refer to subsection 3 8 4 ON OFF Computation and Hysteresis Operation parameter 0 LP1 n PID O LP2 n 1 8 DB Deadband Heating cooling computation 100 0 to 50 0 Position proportional PID computation 1 0 to 10 0 3 0 A deadband positive is the area where no MV is output for the heating side or cooling side A deadband is set as a proportion of the output span For a negative deadband the MV output overlaps both the heating side and cooling side Positive deadband 20 mA 5 V DC 100 Heating cooling MV output Deadband 4 mA Heating 1 V DC 0 0 50 MV output gt 100 ON
44. 0 the cooling side MV output 0 to 100 is regulated when the result is 50 or more the heating side MV output 0 to 100 is regulated The controller mode for cascade control with two universal inputs US mode 13 allows a controller to receive two points of temperature inputs directly The cascade control mode US mode 4 on the other hand requires a temperature converter for one of the two inputs because this controller mode provides only a single universal input Cascade control with two universal inputs US mode 13 or cascade control US mode 4 PV 1 thermocouple sy iy PV 2 WS1000 peti a el A Target setpoint ooOooood thermocouple Cascade LO input Cooling side Heating side i i eke MV output MV output i PO tv ot PV2O plc Cooling side gt Q MV output Chilled water E Loop Control for Backup This controller mode is used to backup the MV output of higher level control equipment such as a programmable logic controller PLC Normally the process is controlled by the MV output from the higher level control equipment through the US1000 controller And if the equipment fails the control is automatically switched to the PID control by the US1000 controller on receiving a backup com mand contact input signal Loop control for backup US mode 5 Higher level control equipment ex PLC MV out
45. 0 0 to 2300 0 C 32 to 4200 F 0 2 of F S Platinel 2 16 0 0 to 1390 0 C 32 0 to 2500 0 F 0 1 of F S PR20 40 17 0 0 to 1900 0 C 32 to 3400 F 800 C and over 0 5 of F S Below 800 C Accuracy not guaranteed W97Re3 18 0 0 to 2000 0 C 32 to 3600 F 0 2 of F S W75Re25 RTD JPt100 30 200 0 to 500 0 C 300 0 to 1000 0 F 0 1 of F S 31 150 00 to 150 00 C 200 0 to 300 0 F 0 2 of F S Pt100 35 200 0 to 850 0 C 300 0 to 1560 0 F 0 1 of F S ITS90 36 200 0 to 500 0 C 300 0 to 1000 0 F 37 150 00 to 150 00 C 200 0 to 300 0 F 0 2 of F S Standard signal 0 4 to 2 0 V 40 0 400 to 2 000 0 1 of F S 1ltoS V 41 1 000 to 5 000 DC voltage 0to2 V 50 0 000 to 2 000 Oto 10 V 51 0 00 to 10 00 10 to 20mV 55 10 00 to 20 00 0 to 100mV 56 0 0 to 100 0 3 4 IM 5D1A01 02E 3 2 2 IM 5D1A01 02E Chapter 3 Parameters Analog Input Range and PV Range Setup parameter Main Sub Parameter Description Setting Range Default RHI Maximum value of analog input 1 Within instrument input Maximum level of range range instrument range RLI Minimum value of analog input 1 Within instrument input Minimum level of range range instrument range RH Maximum value of analog input 2 Within instrument input Maximum level of range range instrument range RI Minimum value of analog input 2 Within instrument input Minimum level of range range instrument range RH3 Maximum value of analog inp
46. 0000 one scale SL3 lt SH3 1090 SL3 Minimum value of analog input 3 19999 to 30000 00 scale SL3 lt SH3 IEN truer range b 2 000 V RLn 4 000V RHn c 0 0 Stn 100 0 SHn d 10 00 Stn 50 00 SHn a When the input type is set at 41 the instrument range is 1 000 to 5 000 V b In this example the analog input range is set as 2 000 to 4 000 V using parameters RLn and RHn c The default of the display scale is 0 0 to 100 0 d Parameters SDPn SHn and SLn have been set to __ 50 00 and 10 00 respectively Figure 3 2 3 Setting Input Scale 3 2 5 Analog Input Bias Normally used at default This biasing is used to correct sensor input characteristics compensating lead wire errors and so on The analog input biasing is similar to the PV biasing described in subsection 3 3 1 Corrected analog input value Analog input value Analog input bias Setup parameter Main Sub Parameter Description Setting Range Default A BS1 Analog input 1 bias EUS 100 0 to 100 0 EUS 0 CMPL AIN A BS2 Analog input 2 bias EUS 100 0 to 100 0 EUS 0 A BS3 Analog input 3 bias EUS 100 0 to 100 0 EUS 0 3 2 6 Analog Input Filter Normally used at default The analog input filter is used to remove noise from a PV input signal that contains high frequency noises such as flow rate and pressure signals The filter provides a first order
47. 2 decimal point position 0 to 4 1 The parameter settings in the table above are displayed with under bars _ and a period For example __ _ _ _ is the display shown when the setting of SDP1 is 1 Display Scale of Analog Input When the analog input type is specified as a standard signal or DC voltage signal the PV input signal is in voltage In this case the range of the voltage signal can be prescribed with parameters RHn and RLn Refer to subsection 3 2 2 Analog Input Range and PV Range However the signal still needs to be converted to the physical quantity unit of the controlled object SHn and SLn are the parameters used to carry out this conversion The signal is converted into the physical quantity unit of the controlled object which is a display scale The number of decimal places can be set with param eter SDPn Figure 3 2 3 Refer to subsection 3 2 3 Decimal Point Position of Analog Input IM 5D1A01 02E Chapter 3 Parameters Setup parameter Main Sub Parameter Description Setting Range Default Maximum value of analog input 1 19999 to 30000 SHI scale SL1 lt SH1 190 0 SLI Minimum value of analog input 1 19999 to 30000 00 scale SL1 lt SH1 i SH Maximum value of analog input 2 19999 to 30000 100 0 scale SL2 lt SH2 USMD IN S12 Minimum value of analog input 2 19999 to 30000 00 scale SL2 lt SH2 i Maximum value of analog input 3 19999 to 3
48. 8 Individual execution among 0 LP1 PID groups 9 Collective execution for 0 LP2 PAR AT Auto tuning selection 1 to 8 PID groups When PPID OFF parameter is set at 0 OFF or 1 A WARNING Do not use the auto tuning function for the following processes e Fast response processes such as flowrate and pressure e Processes in which a severe change in output even if temporary is undesirable e Processes in which any severe stress on the operating terminal is undesirable e Processes in which product quality can be adversely affected if PV fluctuates beyond its allowable range Auto tuning is a function in which the US1000 controller itself obtains and sets PID parameter values automatically Auto tuning is unavailable in ON OFF control The US1000 controller s auto tuning is based on a step response method Setting the operation parameter AT to 1 starts auto tuning The controller turns MV on and off in steps three times and calculates suitable values of proportional band integral time and derivative time from the response When auto tuning is running the controller shows an operation display with the LED lamps at both ends of the MV bar flashing see Figure 3 11 2 Start auto tuning Auto tuning in progress Flashing LED lamps at both ends of MV bar Auto tuning ends at the third peak SV Manis CS ane are ul Ee Rigo EN eg A Fee ne Ang ye Be Ny gry ke ee Rae eee MV is turned on and off
49. AIN2 are provided The MV output is a position proportional control relay output OUTR terminal A valve position feedback input is provided PV input 3 or cascade input or feedforward input or PV input 1 PV input 2 tracking input Cascade input via Digital input communication Rasy CNA Os Oz OH Option EEANN ene eee i Analog input Analog input Analog input i i type type type v Unit conversion Unit conversion Analog input range conversion Analog input Analog input range conversion range conversion Analog input bias Analog input Analog input Square root bias computation Square root Square root computation computation MAN Analog input filter Analog input filter Analog input filter Feedforward input filter Feedforward bias gain PEAR selection Ten segment linearizer v PV filter Cascade ratio Cascade bias C_n SV_ CAS AUTO AUTO mode selection or MAN mode selection ere ete ae Tate oes AUTO mode selection or MAN mode selection Alarm Alarm Alarm Alarm DO will be output output2 output3 output4 OFF when PV high limit PV low limit PV high limit PV low limit FAIL output se operation a Valve position elle Retransmission Retransmission Digital output feedback input l current output 1 voltage output 3 control relay O Terminal G Parameter Analog signal output Legend L
50. Analog input Analog input filter filter filter Ten segment linearizer i Input selection Cascade input Feedforward Ten segment filter input filter i linearizer ps Feedforward bias gain OFF i i Cascade ratio s FFS Cascade bias FONE EES Veg iT cr SV number selection O MIAN mode selection or AUTO mode selection Tracking signal i STOP RUN H Preset My 2 RUN STOP switching operation Re transmit PV Re transmit MV eS amp 2 Valve position Position Retransmission Retransmission feedback input proportional current output 1 voltage output 3 control relay output IM 5D1A01 02E Alarm output PV high limit DO will be OFF when FAIL output Alarm output4 Alarm output3 Alarm output2 PV low limit PV high limit PV low limit Digital output O Terminal CD Parameter Analog signal Legend Function wren nn Digital signal 2 27 2 8 Loop Control with PV hold Function US mode 8 This US mode provides a control function that switches the operation mode and holds the PV input and MV output values upon receiving a contact input signal when the PV input and MV output become erratic due to external disturbance When the contact input DI2 is on the controller holds the PV and MV output values and switches to MAN mode When the DI2 turns off the controller continues the operation at the held PV and MV output and switches smoothly i e without
51. Analog input Analog input i i type type type range conversion MAN Analog input range conversion Square root computation Analog input filter Ten segment linearizer Dual PV switching 4 Cascade input filter T Cascade ratio Cascade bias SV number selection MAN mode selection PID computation lt Tracking signal 4 STOP RUN j Preset MV Q itchi AAE N N re a a a RUN ASTOR SWIICHING eas o ee n CAS AUTO 4 MAN mode selection Alarm Alarm Alarm Alarm DO will be outputi output2 output3 output4 OFF when MV PV PV high limit PV low limit PV high limit PV low limit FAIL output e amp E OO amp amp amp amp 55 Manual operation Gma n e Digital output Valve position Position Retransmission Retransmission igital outpu feedback input proportional current output 1 voltage output 3 F control relay Legend O Terminal C Parameter Analog signal output j LO Function wren Digital signal IM 5D1A01 02E 2 41 2 13 Loop Control with PV Auto selector and Two Univer sal Inputs US mode 15 This US mode allows a total of three PV inputs to be used two universal inputs and one analog input It provides a control function that automatically selects either the largest or smallest value or sets the average value of two or three PV input values or difference between the PV input values as the PV input The function is t
52. Cascade bias Cascade ratio Cascade bias CAS1Q 5 AUTO1 MAN1 MAN mode fe etter eevee seleston eee Rear tered Renter ene eee ea gee Tracking signal 1 Preset MV Manual MAN 1 operation Q STOP Q RUN STOP switching a aaa y basses m ans CAS1 AUTO1 Manual MAN2 operation MAN mode selection s Alarm Alarm Alarm Alarm Alarm Alarm DO will be output1 output2 output3 output output2 output3 OFF when PV high limit PV low limit PV high limit PV high limit PV low limit PV high limit FAIL output voltage output 3 o for loop 1 for loop 2 Digital output PV low limit PV low limit Terminal Cc Parameter Function wwe eee Digital signal Retransmission Analog signal IM 5D1A01 02E 2 35 2 11 Cascade Control with Two Universal Inputs US mode 13 This US mode provides two control computation units and enables cascade control using just a single controller This function is the same as that of cascade control US mode 4 except for the following two points e Analog input 2 terminal AIN2 that allows the universal input is used for the secondary loop PV input e Analog input 3 terminal AIN3 can be used for the cascade input or the feedforward input of the primary loop 2 36 IM 5D1A01 02E Chapter 2 Controller Mode US Mode E Cascade Control with Two Universal Inputs US1000 11 Two universal input terminals AIN1 and AIN2
53. EU RiP retransmission output 2 scale 100 0 Pn i P RET2 3 6 RTL2 digit to 100 0 Minimum value of RET2 1 2 4 5 EU 0 0 to RTH2 RTL2 retransmission output 2 scale 1 digit ERDI P RET 3 6 0 0 to RTH2 1 digit Maxinuri valieor RET3 1 2 4 5 RTL3 1 digit to EU RIMS retransmission output 3 scale 100 0 ERHI S P RET3 3 6 RTL3 1 digit to 100 0 Minimum value of RET3 1 2 4 5 EU 0 0 to RTH3 RTLS retransmission output 3 scale 1 digit EREI P RET3 3 6 0 0 to RTH3 1 digit 100 0 CMLP RET 1 digit means to add 1 digit to the least significant value of the engineering unit digit means to subtract 1 digit from the least significant value of the engineering unit For example when RTL1 15 C RTL1 1 digit makes 15 1 C The terminal which can be used for the retransmission output differs depending on the controller model and suffix code and the type of control computation in use Set the necessary parameters by referring to subsection 3 13 1 Type of Retransmission Output Defaults are the maximum and minimum values of the PV range Refer to subsection 3 2 2 Analog Input Range and PV Range IM 5D1A01 02E 3 45 3 14 Parameters for Alarm Output Alarm outputs have been already assigned to the contact outputs as factory set defaults Refer to Chapter 2 Normally these assignments need not be changed The assig
54. ID Computation ow 3 24 Index 4 Time proportional PID Computation with Relay OUP ie cisiatag E keels ts 3 23 Time proportional PID Computation with V oltage Pulse Output ps eneee na 3 23 TMU neee er E E E 3 20 racking o na E peres Es EEEE ee 3 19 Tracking Flag eeen oeer snesen penssi oe bset 3 53 Tracking Output essssesseeesesseerreeereeresrrersresrsrees 2 10 Tracking Switching eeeeeseeeeeeeseereeeeerereerrerrereesee 2 3 TREY 20053205 ts Gotti need heh hes nie Bebe 3 52 RED sis seceeseadets EE EEE cdeses costes pote E 3 52 SDSL arcane tes inva So Seen honed 3 61 EMP A E E E ES 3 3 EYP ti 535 Baie E Meh E ee ead at 3 3 TMS ocd soedhedeceustes ceseevessesegss users aust E 3 3 U UAL tibetan inhi Miata 3 57 UIP n inner N 3 57 10A E eE E et Rena ae 3 57 1 DIA sd ost fees ceeds EEEE E 3 57 UAD nere a a aE IN haeee 3 57 WA e are r E A NE 3 57 VAD a a A E E kee 3 57 IDA nA A EENES E EE EEE SEES 3 57 UPV a a ESEE a 3 57 USMP n E E querer 3 57 USS VN e Suhel kbs REER 3 57 MD Tes sssagics ecb sss EOE wt EEEE EE EEE 3 60 U2 eee iia ee ea eee 3 60 UB code E E A E E enti eee 3 60 UNM wt cy e E E E tn ae 3 3 MIND E E EE RETE E 3 3 PRs f R Ee es 3 20 US Mode amnis ener s ER 2 1 USER Display seseeseseersesersesreseesererserersrereseeress 3 57 USER Parameter 2 19 2 24 2 39 2 42 3 60 USM e tet Ra ace 2 1 WSR e athe Beth Gieoeu E cheese tes 3 58 V VAD E E E EEEE 3 27 VV A EEE 3 27 A E E ES 3 27 MRS 45 c
55. L1i lt gt P RH1 RL2 le Range of analog input 2 s RH2 i R f analog input 1 RLI ange of analog input RHI 0 300 500 1000 C Figure 3 2 1 PV Range for a Control Having More than One Input 3 5 3 2 3 3 2 4 3 6 Dry bulb Input 1 Wet bulb Input 2 50 to 100 C 50 to 100 C Dry and wet bulb eee calculation 1 Sets P __ for P DP2 100 0 for P RH2 and 30 0 for P RL2 PV1 PV2 50 to 100 C 30 0 to 100 0 Figure 3 2 2 PV Range for Temperature and Humidity Control Decimal Point Position of Analog Input Parameters SDP1 to SDP3 are used to set the decimal point positions of analog inputs These param eters can be set only for standard signal and DC voltage signal inputs As for thermocouple and RTD inputs the decimal point positions of the instrument ranges listed in the analog input type table in subsection 3 2 1 apply P DP1 and P DP2 are the parameters that set the decimal point positions of PV1 and PV2 which are used in the internal computation of the controller Refer to subsection 3 2 2 Analog Input Range and PV Range Setup parameter Main Sub Parameter Description Setting Range Default SDP1 Analog input 1 decimal point position 0 to 4 1 SDP2 Analog input 2 decimal point position 0 to 4 1 USMD IN SDP3 Analog input 3 decimal point position 0 to 4 1 P DP1 PV1 decimal point position 0 to 4 1 P DP2 PV
56. Map To the next page for setup parameters From PS IN password input on OLPT the previous page Loop 1 operation menu CMLP Common setup menu Le setup menu Submenu SV Target setpoint ALM Alarm setting C CTL Common control setting Control function Control function Alar setting setpoint AMD Alarm mode AMD Alarm mode E D Y lt lt 3D 2 1 gt 5 eee cee CMS AL1 i ALI i gt MODE Cascade input Alarm 1 type locity limiter Alarm 1 type octy limiter Eronet RID PA mode ci Ne pico PV tracki Ae parol l ee Dds seting l racking tl tart l Alarm 2 type toea selection Alarm 2 type ode mode key lock AL3 i AL3 i lt gt Anti reset 1 MV operation ramp rate Alarm 3 type windup 1 1 DVB AL4 i i Cc Deviation Alarm 4 Feedforward 1 is 1 Square C mode display range larm 4 type input selection play range H cut off key lock loci HY1 i HY1 i A USR Alarm 1 1 Alarm 1 1 A mode USR hysteresis To the f hysteresis ii burnout action key lock menu lock Ne 1 original te 2 1 original A A RII M M B i l nalog input mode nystere is submenu hystere s submenu referente hc key lock menu lock HY3
57. N 3 19 PWD era A E ais Bees 3 58 a A D EEE EEE EE 3 16 PYIN o E R 3 16 PY2X rear E E E EN 3 16 la A AE EE E E Saw hee 3 16 PYSI EAE A EEEE EE E EE 3 58 PYS2 en a E NEA 3 58 R RMD eae ra ERE 3 2 RM a e a Rok E et en Ba 3 2 RUS EPE AEAEE SASER EEEE E E EEEE 3 52 RampRate s aeeoe s eieiei 3 20 Rae oi a e n R E 3 5 3 41 Reference Deviation sesesseeseerseresresrseererrersees 3 37 Reference Junction Compensation see eee 3 9 Reference Points oo eeeeeeseeeeeeceeeeeeeceeneesseeeneees 3 36 Relative Humidity oo eee cee ceseeeeceseeeeeneees 3 5 Relay enia a a iain E 3 24 3 25 Restat Mod sa re anete nitti aiir paa 3 2 Restart Timer eneen e aE i 3 2 j KA DA D AEE E A E A SE EEE 3 45 RET 2 ees cage hei ot igh ie ss ogee a es 3 45 RET 3 ys hice pete E EE ESEE EE 3 45 Retransmission Output oo eee eeeeeee eters 2 3 3 45 Reversed Display and Operation oo eee 3 44 Reversed Output oo cece cee ceeceseeeeceseeeeeeeeees 3 41 REDD Eeee ENEE Ne EEEE EO ES EEEE EEEE 3 5 Ie a AEE E EA EE S 3 5 RHA a N e E r EERS 3 5 RE r E R 3 5 Index 3 RES esis heh te Ral SAR AG ReneS ee 3 5 IRS ASD EE eves EE 2 2 3 59 RSP2D en eon ik es a eee ed as 3 59 RUN ST OP Switchover 0 0 0 2 3 3 43 3 53 RVOP 28 ori gti aoe Angie S 3 44 S e E PEE E S setts thoes A 3 18 Scale 46 453 ea aah O es 3 6 3 45 SIDR eari ar Ee EE EEE 3 6 SDP SS E E 3 6 SIDS E EEE ETE EEEE EEEE 3 6 Sec riy ge iene eal 3 58 SELECT Display arremete a 3 57 Self diagn
58. O and two universal inputs universal inputs Custom computation control 21 Controls by user defined control and computation O O functions Some US mode functions are not available depending on the controller model The US mode functions available are marked with O for US1000 00 US1000 11 and US1000 21 Table 2 2 Parameter to Set Controller Mode US Mode Setup parameter Main menu Submenu Parameter Description Range of setting Default USMD MD USM Controller mode US mode See the table above 1 IM 5D1A01 02E 2 1 2 1 Single loop Control US mode 1 This controller mode provides the basic control functions with a single control computation unit Following is a description of how to read the function block diagram for single loop control US1000 00 The numbers in parentheses correspond to the numbers in the diagram Most of these descriptions can also be applied to the function diagrams for other US modes 1 PV input section A series of computations can be performed on the PV input from the AIN1 terminal The AIN1 terminal is a universal analog input terminal that can receive direct signals from a thermocouple or RTD or voltage signal For information about the computations provided on the PV input refer to Section 3 2 Parameters for Analog Input and Section 3 3 Parameters for PV Computation 2 Cascade input section Optional communication function Cascade
59. OFF action on the heating side _ Heating side relay Ay Ee rs hysteresis 100 Heating cooling MV output 4 mA Heating 1 V DC 0 o0 50 MV output gt 100 Figure 3 8 4 Deadbands 3 26 Negative deadband 20 mA 5 V DC 100 Heating cooling MV output eee Cooling Heating 4mA 1 V DC 0 O 50 MV output gt 100 ON OFF action on both the heating and cooling sides Cooling side relay Heating side relay hysteresis hysteresis 1 lt gt ON Heating cooling MV output _Deadband Heating OFF 0 50 MV output gt 100 IM 5D1A01 02E Chapter 3 Parameters 3 8 6 Position proportional PID Computation and Valve Position x IM 5D1A01 02E Setup parameter Parameter Description Setting Range Default Reset valve position 0 1 Setting 1 clears valve position data The position data of a fully closed valve is saved when the SET ENT key is pressed after a valve is fully closed using the V key V L Valve in fully closed position Indefinite USMD VALV The position data of a fully opened valve is saved when the SET ENT key is pressed after a valve is fully opened using the A key V H Valve in fully opened position Indefinite Automatic calibration for V AT EA valve positioning OFF ON OFF Position proportional PID control is the control method that maintains th
60. Retransmission voltage output 3 O Terminal C Parameter nd Analog signal Lege L Function wenn ees Digital signal 2 30 IM 5D1A01 02E Chapter 2 Controller Mode US Mode E Loop Control with PV hold Function US1000 21 Control is performed based on a position proportional PID computation so as to ensure that the MV output and control valve opening always match One universal input terminal AIN1 is provided The MV output is a position proportional control relay output OUTR terminal A valve position feedback input is provided Cascade input or feedforward input or Cascade input via Ane PV input tracking input communication Digital input sno GOO v Option i b 9 6 Analog input Analog input i i type type H i Unit conversion Analog input Analog input ag range conversion range conversion CAS Py hold and i f M AN mode or i AUTO mode Analog input i i bias Square root computation Analog input Analog input filter filter E Pv hold 4 4 Pyano eni l Analog input bias Square root computation Dual PV selection Cascade input filter OT CFFS Ten segment l 9 PV filter Cascade ratio Cascade bias CAS mode selection g signal STOP ad Preset MV Manual RUN STOP switching DO will be OFF when FAIL output Alarm Alarm
61. SV number selection MAN mode selection CASQ AUTO MAN kee Os ee eee ee eee PID computation Tracking signal 4 STOP KATY RUN STOP switching Preset MV gt Q i TENA MAN J CAS AUTO paa 99 Raila tities cuauctota eraoro onrera MAN mode selection jc p Alarm Alarm Alarm Alarm ae 7 outputi output2 output3 output4 when MV selection MVS1 Retransmit PV high limit PV low limit PV high limit PV low imit FAIL output OG amp MV Retransmission Digital output voltage output 3 O Terminal C Parameter nd Lege L Function wenn eee Digital signal Analog signal 2 22 IM 5D1A01 02E Chapter 2 Controller Mode US Mode E Loop Control with PV Switching US1000 21 Control is performed based on a position proportional PID computation so as to ensure that the MV output and control valve opening always match Two universal input terminals AIN1 and AIN2 are provided The MV output is a position proportional control relay output OUTR terminal A valve position feedback input is provided Cascade input or feedforward input or Cascade input via PV input 1 PV input 2 tracking input communication Digital input S ANE v Option ae PE i Analog input Analog input type type B MAN Analog input i range conversion v Analog input range conversion Analog input range conversion Analog input Analog input Analog input bias bias
62. User s Model US1000 Manual Digital Indicating Controller Functions IM 5D1A01 02E MMi oo YOKOGAWA MDE f 2nd Edition Yokogawa Electric Corporation Introduction This instruction manual describes the functions of the US1000 Digital Indicating Controller in detail Read this manual together with the separate instruction manual for the US1000 Digital Indicating Controller when setting up your US1000 controller E Contents of This Manual This manual contains the following e Examples of the US1000 s applications e Description of each controller mode US mode e Description of all the parameters E Intended Readers This manual is intended for personnel in charge of instrumentation and setup of the controller E Related Documents The following are the documents related to the US1000 Digital Indicating Controller Read them as necessary The codes enclosed in parentheses are their document numbers US1000 Digital Indicating Controller IM 5D1A01 01E This manual introduces the basic functions and provides instructions for the general operation of the US1000 controller US1000 Digital Indicating Controller Communication Functions IM 5D1A01 10E Manual for using the US1000 communication function Supplied with models having the optional communication function LL1100 PC based Parameters Setting Tool IM 5G1A01 01E Manual for setting US1000 parameters from a personal computer Supplied with the LL1100 PC
63. a preset PID or zone PID depending on the switching method Preset PID is a function in which the operator switches PID groups by setting the parameter SVNO SV number selection Zone PID is a function in which PID groups are switched automatically corresponding to the PV ranges set by the zone PID reference point parameters n RP A TIP A PID group denotes a set of parameters that belong to the operation parameter submenus 1 PID to 8 PID Each PID group has one target setpoint SV four alarm setpoints and one of each PID parameter and other parameters A maximum of 8 sets of PID groups can be used per control loop and each parameter is numbered from 1 to 8 These numbers are called either a PID group number or an SV number 1 PID submenu Parameter Parameter Parameter Parameter Parameter i i i i i i i i f i i i i i i i i i i i Parameter i 1 rae 1 i i i i i i i i i i i i j i i f Parameter i i 3 10 1 Preset PID 3 34 i i Parameter i Parameter Parameter Parameter Parameter Parameter Parameter 2 PID submenu peices 8 PID submenu Parameter Parameter Parameter Parameter Parameter i i i i i i Parameter h pi f i i i i i Parameter Select either the preset PID or zone PID by setting the parameter PPID T
64. an also be changed using the v7 and A keys on the front panel Doing this will also change the setting of the n SV parameter itself Operation parameter Main Sub Parameter Description Setting Range Default ees eae n SV Target setpoint EU 0 0 to 100 0 EU 0 SUPER Function The SUPER function is an overshoot suppressing function based on fuzzy inference This function is highly effective in the following cases when used together with the auto tuning function Refer to Section 3 11 Parameters for Auto tuning e An overshoot must be suppressed e Rise up time needs to be shortened e Load varies often e SV is changed frequently Operation parameter Main Sub Parameter Description Setting Range Default 0 LP1 OLP2 PAR SC SUPER function selection OFF ON OFF NOTE The SUPER function operates using the PID parameters All of the parameters for PID computation P proportional band I integral time and D derivative time must therefore be set to their appropriate values The SUPER function will not operate when I or D is set to OFF When the SUPER function is set on the controller monitors deviations in order to detect the possibil ity of an overshoot When the possibility of an overshoot is detected the controller changes the target setpoint to a virtual value somewhat smaller than the actual value auxiliary SV and continues contr
65. an e EEEE E E E E EES 3 57 3 19 Parameters for Security Functions sesseseesseeressseesrersesrsrsrsesreesrerrersrsrereee 3 58 3 19 1 Key Operation Prohibiting Function ssseeeeseeeessseesrsreersreesrerssrrrrsrrersre 3 58 3 19 2 Menu Display Prohibiting Function e seseeeessesessseesrsresrsrrsreerssreresreresre 3 58 319 3 PASSWOLK sce en aeeie fosct Gsctinbeads shale ETRE lees Rods EE Aden Moa ede EERTE 3 58 IM 5D1A01 02E 3 20 Parameters for Communications Function cccccsscscceeesesecececesesseeeeeeees 3 59 321 Other Parameters i 520 cck Sos a Acoso ges hoed E W05Gs ao des ages r 3 60 S E NUSER Parameters cc isccesvciescsecocsvessveh E EE E EE EEN 3 60 3 21 2 Parameter Initialization iseic teoei ari a 3 61 3 21 3 Test Mode Appendix 1 Parameter Map e ssssscoessscsssecesocesooesoosesocessocesocesoosssosssoesssocesoessoossss ADP 1 1 NOX nreno n a a n a n aa a a n aa na LAERET REVISION RECOPG 5 cc irticcecccsccccsbeestencssdeaccascescesoccescsessoasceccssdeseassccbccceusssscescoscadcossdesceascssaceoscesse I IM 5D1A01 02E vii Chapter 1 Examples of US1000 Applications 1 Examples of US1000 Applications This chapter contains examples of applications that use each controller mode US mode These examples will help you to find out which controller mode is applicable for a particular control and what equipment can be included in the control E Flow Rate Ratio Control The ratio of line A and
66. any bumps to AUTO mode When using the tracking input with US1000 11 or US1000 21 a tracking flag function must be assigned to a contact input DI For information about contact input assignment refer to Section 3 15 Parameters for Contact Input 2 28 IM 5D1A01 02E Chapter 2 Controller Mode US Mode E Loop Control with PV hold Function US1000 00 One universal input terminal AIN1 is provided Voltage pulse or current output can be selected for the MV output by setting the MVS1 parameter OUTIA terminal Cascade input or feedforward input or Cascade input via are PV input tracking input communication Digital input Opti i Analog input topan i type i v Analog g input i A m range conversion maod and nalog input AUTO mode range conversion Analog input i Analog input las i i bias i o computation Analog input Analog input filter filter i i A a a eee fee ee eee ee etc e ee tc eee cence tseeeeeeeceeeed Pycnole ag l Dual PV selection Ten segment 7 Cascade Feedforward input f input filter filter l l Feedforward PV filter bias gain OFF Q F Tracking signal l PID computation l STOP RUN se acca tne nse Masia ee on ta RUN STOP switching oj ani MAN J CAS AUTO Boe E NEAN Me AUTO mode MAN mode switching ___ Alarm Alarm Alarm Re transmit output output2 output3 PV PV high limit PV
67. ark labels supplied as necessary with the controller As shown in Figure 3 12 5 when the parameter AOn analog output type is set at 2 or 3 the bar display and the direction of manual operation remain normal and the correspondence between the controller s internal value and the output signal is reversed On the other hand when RVOP is set at ON the bar display and the direction of manual operation are reversed and the correspondence between controller s internal value and the output signal remains normal Setup parameter USMD OUT RVOP Reverse display and operation of MV OFF ON 100 0 al EREE je l OC mark labels Increases output MV bar increments toward the left Decreases output MV bar decrements toward the right Figure 3 12 4 Display in Reversed Display and Operation of MV Reversed display and operation of MV RVOP ON Negative output AOn 2 20mA 20mA Output signal 4mA 4mA 0 100 0 100 Controller s internal value in Controller s internal value in manual operation manual operation Figure 3 12 5 Difference between Reversed Display and Operation of MV and Reversed Output IM 5D1A01 02E Chapter 3 Parameters 3 13 Parameters for Retransmission Output The retransmission output function is a function which outputs the controller s PV SV or MV in an analog signal standard signal to a device such as a recorder The output range of the analog signa
68. as MV e The contact input for the RUN STOP switchover has switched to the STOP status and the operation mode is AUTO or CAS e An input burnout or an abnormality in an analog digital conversion circuit has occurred during the AUTO mode or CAS mode operation e The controller has been powered on or recovered from a power failure when parameter R MD is set at COLD Refer to Section 3 1 Parameters that Determine the Action at Power on and Power Recovery Operation parameter Main Sub Parameter Description Setting Range Default 0 LP1 n PID n PM Preset MV 5 0 to 105 0 5 0 O LP1 n 1 8 n PMc Cooling side preset MV 5 0 to 105 0 0 0 A NOTE A preset output value is free from the limitations of the upper and lower limits of output Refer to subsection 3 12 2 Output Limiter IM 5D1A01 02E 3 43 3 12 5 Reversed Display and Operation of MV 3 44 This function is used to open close a valve with a reverse key operation Setting the parameter RVOP to ON reverses the MV bar s direction of increment when manually operated As shown in Figure 3 12 4 the right end of the MV bar becomes the 0 position and the left end the 100 position The key normally the MV decrease key adopts the function of increasing MV and the key normally the MV increase key adopts the function of decreasing MV The OC marks at the ends of the MV bar can be reversed using the spare OC m
69. ate Operation parameter Main Sub Parameter Description Setting Range Default MODE SVNO_ SV number selection 1 to8 1 NOTE To specify a PID group number SV number with parameter SVNO be sure to turn off all the contact inputs registered to parameters SV BO to SV B3 Refer to Section 3 15 Parameters for Contact Input See Also Set USER display parameter U SVN to ON for displaying the selected SV number during operations See section 5 1 of the separate US1000 Digital Indicating Controller manual for information about the USER display 3 10 3 Zone PID IM 5D1A01 02E To use the zone PID function set the PV ranges for PID group switching using the zone PID refer ence point parameters beforehand Hysteresis at switching can also be set It is also possible to combine switching over PV ranges and switching according to deviation Operation parameter Main Sub Parameter Description Setting Range Default nPID EU 0 0 to 100 0 provided that 6 n RP Zone PID reference point 1 RPS lt 2 RP lt 3 RPS EU 100 0 0 LP1 5 4 RP lt 5 RPS6 RP 0 LP2 7 PID RHY Zone PID hysteresis EUS 0 0 to 10 0 EUS 0 5 8 PID RDV Zone PID reference deviation OFF EUS 0 0 to 100 0 OFF 3 35 1 Zone PID Reference Point Up to 6 reference points for zone PID can be set within a measurement range As shown in the figure below 7 zones are created by s
70. ation parameter Main Sub Parameter Description Setting Range Default 0 LP1 OLP2 PAR CFL Cascade input filter OFF 1 to 120 s OFF 3 4 3 Cascade Ratio and Cascade Bias IM 5D1A01 02E Operation parameter Main Sub Parameter Description Setting Range Default 0 LP1 CRT Cascade ratio 0 001 to 9 999 1 000 0 LP2 PAR CBS Cascade bias EUS 100 0 to 100 0 EUS 0 The ratio multiplication and bias addition given by the following expression can be performed on the cascade setpoint Cascade setpoint after computation Cascade setpointx CRT CBS where CRT represents the cascade ratio and CBS the cascade bias 3 4 4 3 12 OPEN CLOSE Switchover for Internal Cascade Control Cascade OPEN The internal cascade loop the primary and secondary loops inside a controller is disconnected Cascade CLOSE The internal cascade loop the primary and secondary loops inside a controller is connected Operation parameter Main Sub Parameter Description Setting Range Default MODE O C OPEN CLOSE switchover CLOSE OPEN CLOSE OPEN CLOSE switchover of an internal cascade loop is also possible using a contact input For information about this method refer to Section 6 6 OPEN CLOSE Switchover of Cascade Loop in the separate instruction manual US1000 Digital Indicating Controller IM 5D1A01 01E Note that the OPEN CLOSE swit
71. based Parameters Setting Tool LL1200 PC based Custom Computation Building Tool IM 5G1A11 01E Operation manual for creating custom computations by the US1000 controller This manual also describes examples of custom computations The LL1200 PC based Custom Computation Building Tool includes the LL1100 PC based Parameters Setting Tool LL1200 PC based Custom Computation Building Tool Reference IM 5G1A11 02E This is the functions manual necessary for creating custom computations by the US1000 controller This manual should be referred to in order to find out and understand what functions offered by the LL1200 FD No IM 5D1A01 02E 2nd Edition Jun 2004 KP AllRights Reserved Copyright 1998 Yokogawa Electric Corporation IM 5D1A01 02E i Documentation Conventions E Symbolic The following symbolic are used in this manual A WARNING Indicates that operating the hardware or software in a particular manner may damage it or result in a system failure AN NOTE Draws attention to information that is essential for understanding the operation and or features of the product A TIP Gives additional information to complement the present topic and or describe terms specific to this document CX See Also Gives reference locations for further information on the topic E Description of Displays Some of the representations of product displays shown in this manual may be exaggerated simplified or partially omitted for rea
72. callup of frequently accessed operation parameters from an operation display For information about SELECT displays refer to Section 5 3 Registering Quick Parameter Call up Functions SELECT Displays of the separate instruction manual US1000 Digital Indicating Con troller IM 5D1A01 01E Setup parameter Main Sub CONF C SEL Parameter Description C S1 Registration for the SELECT display 1 C S2 Registration for the SELECT display 2 C S3 Registration for the SELECT display 3 C S4 Registration for the SELECT display 4 C S5 Registration for the SELECT display 5 Setting Range OFF 201 to 773 see section 5 3 Default OFF 3 57 3 19 Parameters for Security Functions The US1000 controller has the following security functions to prevent careless or accidental data changes e Key operation prohibiting function e Menu display prohibiting function e Password 3 19 1 Key Operation Prohibiting Function This function is provided to disable lock specific operation keys For information about the function refer to Section 4 9 Setting Other Functions as necessary of the separate instruction manual US1000 Digital Indicating Controller IM 5D1A01 01E Setup parameter Main CMLP Sub KLCK Parameter Description Setting Range Default SVC SV setting key lock on operation displays OFF ON OFF A V Data setting key lo
73. chover by contact input takes priority over the switching by the O C setting parameter Primary loop PV Primary loop SV XZ PID computation 1 Secondary loop SV VW CLOSE O O OPEN Secondary loop PV PID computation 2 MV Figure 3 4 1 Switching between Cascade OPEN and Cascade CLOSE IM 5D1A01 02E Chapter 3 Parameters 3 5 Parameters for Feedforward Input E Feedforward Control In the feedback control generally performed the PID action works only after the effect of the distur bance appears in PV This delays the recovery to the normal state When the disturbance can be measured however the effect of the disturbance can be nullified by adding a corrective signal that corresponds to the degree of that disturbance to the controller s MV before the effect appears in the controlled process This operation is called feedforward control For example in the pH control illustrated in Figure 3 5 1 the flow of waste water is measured as the feedforward input and added to the controller s MV after passing through the feedforward gain and biasing operation This means that the quantity of the neutralizing solution can be controlled so as to nullify the effect of the waste water Waste i Control Feedforward Compensation Neutralizing Solution gt Figure 3 5 1 Feedforward Control 3 5 1 Selection of Feedforward Input A NOTE When the FFS parameter is set at AIN always set t
74. ck OFF ON OFF lt gt MV operation key lock OFF ON OFF C C mode key lock OFF ON ON A A mode key lock OFF ON OFF M M mode key lock OFF ON OFF 3 19 2 Menu Display Prohibiting Function 3 58 This function is provided so that specific operation parameter menus will not be displayed as desired For information about the function refer to Section 4 9 Setting Other Functions as necessary of the separate instruction manual US1000 Digital Indicating Controller IM 5D1A01 01E Setup parameter Main CMLP Sub MLCK Parameter Description Setting Range Default MODE Mode menu lock OFF ON O LP1 O LP1 menu lock OFF ON OFF O LP2 O LP2 menu lock OFF ON ON PID PID menu lock OFF ON OFF USR USR menu lock OFF ON ON PYS1 PYS1 menu lock OFF ON OFF PYS2 PYS2 menu lock OFF ON ON 1 The default may be OFF or ON depending on the controller mode 3 19 3 Password Once a password is set the controller requires the password to be input when transferring to a setup parameter display For information about password refer to Section 4 9 Setting Other Functions as necessary of the separate instruction manual US1000 Digital Indicating Controller IM 5D1A01 01E Setup parameter Main Sub Parameter Description Setting Range Default CMLP MLCK PWD Password setting 0 No password 1 to 30000 0 Main Sub Parameter
75. d These are described in subsection 3 9 2 Cooling side PID Parameters for Heating Cooling Computa tion Individual PID parameters are described here Operation parameter Main Sub Parameter Description Setting Range Default 0 1 to 999 9 0 0 to 999 9 for n P Proportional band heating cooling computation 999 9 O LP1 n PID RASTE 0 LP2 n 1 8 nJ Integral time OFF 1 to 6000 s 1000 s n D Derivative time OFF 1 to 6000 s OFF 1 Proportional Band n P The control method in which the control output magnitude is proportional to the deviation is called proportional action P action The PV variation span or deviation which is expressed as a percent age and is required to change the control output control computation output from 0 to 100 is called the proportional band Generally the output becomes 50 when PV matches SV The proportional action can remove the vibration from the output the demerit of ON OFF action Small P P proportional action PV Medium P SV Large P Time The smaller P becomes the more vibration in PV Figure 3 9 1 Proportional Action A TIP Keep the following points in mind when performing fine adjustment on the proportional band obtained from the auto tuning function or when you tune the proportional band manually e Change the proportional band from a larger to smaller value e If cycling appears it means the proportional ba
76. differ greatly IM 5D1A01 02E Chapter 3 Parameters 3 12 Parameters for MV Output This section describes the range of analog output used for MV or the retransmission output the parameters that set the upper and lower limits of MV and other items The MV output type is deter mined by the MV selection parameter MVS1 or MVS2 Refer to Section 3 8 Parameters for Control Computation 3 12 1 Analog Output Type Setup parameter Main Sub Parameter Description Setting Range Default AOI Analog output 1 type for 0 4 to 20 mA 0 OUTIA terminal 1 0 to 20 mA Analog output 2 type for 2 20 to 4 mA USMD OUT A92 OUT2A terminal 3 20 to 0 mA o AO3 Analog output 3 type for 0 1 to 5 V 1 0 to 5V 0 OUT3A terminal 2 5to1V 3 5to0V These parameters are used to set the output ranges of the OUTIA OUT2A and OUT3A terminals A setting of 2 or 3 makes the output have a negative relationship with the manual operation and control computation results that is the output decreases as the controller s internal value increases This differs from the reversed MV display and operation function in which the MV bar display and the direction of increase decrease of MV operation key remain normal Refer to subsection 3 12 5 Reversed Display and Operation of MV The relationship between the output signal and the controller s internal value is negative 20 mA Output signal 4mA 0 Contr
77. dix 1 Parameter Map IM 5D1A01 02E The parameter maps help you retrieve the desired parameters by showing the individual configuration diagrams for the operation and setup parameter groups Make use of this appendix together with parameter tables given in chapter 3 when setting parameters Some parameters are hidden i e unavailable depending on the model names or controller modes US modes App 1 1 MODE ones Mode menu loperation menu PAR Computation parameter O C OPEN CLOSE R switchover ning SVNO SC SV number SUPER selection funct 8 Proportional 8 1 CRT Integral time To the Cascade ratio original CBS a CRT Cascade ratio CBS submenu Cascade bias CFL H CFL Cascade Uppe it Cascade put filter of output input filter Feedforward Lower limit f output 7 MR Manual reset FBI Feedforward t bias FBO Feedforward f output 1 MR Manual reset H Hysteresi Di a FFL Feedforward input filter 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 Hc Cooling side relay hysteresis DB Deadband Cool relay hy e Cooling side relay hysteresis relay hysteresis 7 DB 8 DB Deadband Deadband RHY RDV Zone PID Zone PID 1 RP Zone PID
78. e The 8 alarm mode is the function that uses loop 2 alarm outputs 1 to 4 for loop 1 alarm outputs 5 to 8 This mode is unavailable with the controller mode US mode for cascade control dual loop control temperature and humidity control or cascade control with two universal inputs To use the 8 alarm mode specify 3 4 or 5 to the parameter AMD The alarm outputs 5 to 8 for loop 1 can then be set up by setting the alarm type alarm setpoint and other alarm related parameters for loop 2 Alarm outputs 5 to 8 can be accessed by setting them as contact outputs or reading them via commu nication from an external device The alarm setpoint of loop 2 and the display scale of analog input 2 are interlocking Specify the same value to the display scale of analog input 1 and 2 CX See Also Section 3 16 Parameters for Contact Output of this manual or the separate instruction manual US1000 Digital Indicating Controller Communication Functions IM 5D1A01 10E 3 14 2 Alarm Setpoint Set an alarm setpoint for each of alarm outputs 1 to 4 When the 8 alarm mode is specified loop 2 alarm setpoints 1 to 4 are used for loop 1 alarm setpoints 5 to 8 Operation parameter Main Sub Parameter Description Setting Range Default PV high limit EU 100 0 Deviation alarm EUS 0 0 MV high limit 100 0 MV low limit 0 0 PV velocity EUS 100 0 Other alarms EU 0 0 nAL Alarm 1 setpoint _ py alarm EU 100 0 to 100 0
79. e large proportional gain PV will be able to reach SV quickly because the PID group automatically switches to 8 PID when deviation grows large When the deviation is reduced to a smaller value than the reference deviation the controller changes back to the operation with the PID group of the zone that corresponds to the current PV value For example assume that the controller s measurement range is 0 to 1000 C An RDV setting of 1 will make a reference deviation of 10 C Assuming that SV is 500 C which is in zone 2 the RDV upper limit will be 510 C and the RDV lower limit 490 C When PV goes out of this reference deviation range the controller stops using parameter 2 PID and starts using parameter 8 PID Zone 3 Zone PID Wits cred EEA E EAE AE AE reference point 2 RDV upper limit 510 C Reference deviation 10 C SV 500 C h A De e l Reference deviation 10 C RDV lower limit 490 C Zone PID reference point 1 Uses parameter 2 PID _ i Uses parameter 8 PID Figure 3 10 3 Zone PID Reference Deviation See Also Set USER display parameter U 1PI or U 2PI to ON for displaying the used PID group number during operations See section 5 1 of the separate US1000 Digital Indicating Controller manual for information about the USER display 3 37 3 11 Parameters for Auto tuning Operation parameter Main Sub Parameter Description Setting Range Default OFF 1 to
80. e Default USMD MD SMP Control period 50 100 200 500 ms 200 NOTE Changing the control period clears the controller displays once and restarts the controller There are some restrictions as listed below on the use of the 50 ms 100 ms or 200 ms control period If these conditions are not satisfied the specified control period may not be achieved There is no restriction when 500 ms is specified Restrictions on the 50 ms control period e Only applicable for the US1000 00 controller model e Only applicable for the controller mode US mode of single loop control e SUPER function is disabled e The following alarm types cannot be specified high limit deviation setting 3 5 13 15 low limit deviation setting 4 6 14 16 high and low limits deviation setting 7 17 deviation within high and low limits 8 18 self diagnostic setting 27 28 and FAIL output setting 29 Restrictions on the 100 ms control period e Only applicable for the US1000 00 controller model e Cascade control cannot be specified as the controller mode US mode Restrictions on the 200 ms control period e When custom computation is to be used a maximum of 30 computation modules is permitted It is possible to check whether or not the specified control period is appropriate by the USER display of sampling error counter The sampling error counter counts up once when all the control process ing cannot be
81. e PID parameters of the PID group number specified to parameter AT For example when AT has been set at 3 the values of 3 P 3 1 and 3 D will be obtained When parameter AT is set at 9 the obtained PID values will be stored to the PID parameters of PID groups to 8 e When the controller is set up for heating cooling computation auto tuning will not be performed for the zone where on off control is specified when the proportional band n P or n Pc is set at 0 but transfer to the next zone PID group 7 Reference point 6 6 RP X Reference point 2 2 RP PID group 2 Reference point 1 1 RP PID group 1 Minimum value of PV range Intermediate value For PID group 8 the of reference points intermediate value of the PV range is used for SV Figure 3 11 3 Auto tuning When Setting AT to 9 under Zone PID A TIP 3 40 At the time of shipping the reference points are set at the same value as the maximum value of the PV range EU 100 To execute auto tuning under zone PID change the reference point settings to proper values In either of the following cases set the maximum and minimum values of the PV range so that the intermediate value of each zone will be appropriate for auto tuning for example set the mini mum value of the PV range to room temperature e Reference point 1 and the minimum value of the PV range differ greatly The uppermost reference point and the maximum value of the PV range
82. e other for lower temperatures and a sudden change in PV must be avoided when switching the thermocouple In a PV rising process input switching starts when input reaches the lower limit for PV switching The PV gradually becomes closer to input 2 and when it exceeds the upper limit for PV switching the PV completely transfers to input 2 Figure 2 6 1 1 Conversely in a PV falling process input switching starts when input 2 reaches the upper limit for PV switching The PV gradually becomes closer to input 1 and when it falls below the lower limit the PV completely transfers to input 1 Figure 2 6 1 2 Input 2 high temperature side PV os Upper limit for Nu re ae PV switching Lower limit for PV switching cma i low temperature side Time M PV Input 1 Switching PV Input 2 Figure 2 6 1 1 Switching within Specified PV Range Rising PV 2 19 Input 2 high temperature side Upper limit for h Te SSL PV switching Lower limit for PV switching Input 1 low temperature side _ _ OOO PV Input 2 Switching PV Input 1 Figure 2 6 1 2 Switching within Specified PV Range Falling PV 2 Switching at the PV upper limit specified with U1 U3 1 This method should be selected in cases where for example two thermocouples are used one for higher temperatures and the other for lower temperatures and a sudden change in PV is allowed when switching the thermocouple MV will change s
83. e tracking input is unavailable or assigned to the AIN2 or AIN3 terminal depending on the control ler mode US mode For detailed information see the function block diagrams in Chapter 2 Con troller Mode US Mode 5 SV B0 SV B1 SV B2 SV B3 SV number selection These parameters are used to set an SV number selecting function under the preset PID Refer to subsection 3 10 2 SV Number Selection for Preset PID SV numbers are 1 to 8 and are specified according to the patterns in the following table SV Contact statuses number Bit 0 Bit 1 Bit 2 Bit 3 1 ON OFF OFF OFF 2 OFF ON OFF OFF 3 ON ON OFF OFF 4 OFF OFF ON OFF 5 ON OFF ON OFF 6 OFF ON ON OFF 7 ON ON ON OFF 8 OFF OFF OFF ON IM 5D1A01 02E 3 53 A NOTE To select an SV number by means of the parameter SVNO or communication all the contacts regis tered to SV BO to SV B3 must be turned off 6 DP1 DP2 Operation display for interruption These parameters are used to set a function to display the custom display used in the custom computation function When the contact registered to parameter DP1 or DP2 is turned on the custom display which has been registered to the custom display switching condition DP1 on or DP2 on will be displayed interrupting the operation display at that time 7 MG1 MG2 MG3 MG4 Interruptive message display These parameters are used to set a
84. e valve position to achieve MV by monitoring MV and the feedback input from the valve The feedback input from the valve is sent by a feedback slide slide rheostat attached to the valve stem The relay is controlled to make the valve position correspond to the MV using both the feedback input and control computation result position proportional PID control Motor operated valve US1000 Control computation Control Resistance motor Resistance position proportional relay contact output Valve position feedback input Pipe line Figure 3 8 5 Controlling the Motor operated Valve by Position proportional PID Control See Also See section 4 9 17 Calibration of valve position US1000 21 only of the separate US1000 Digital Indicating Controller manual for the operations 3 27 3 9 Parameters for PID Computation This section describes PID computation and the parameters related to PID computation 3 9 1 PID Parameters When the controller uses the zone PID or preset PID function see Section 3 10 Parameters for Preset PID and Zone PID a maximum of 8 sets of PID parameters can be set When the controller does not use either of these only 1 P 1 I and 1 D are used For heating cooling computation parameters n P n I and n D which are described here are used for the heating side PID parameters For the cooling side PID parameters n Pc n Ic and n Dc are use
85. ectoccseccoscosvecsoucsetcavessecossecsvecesessve 2 L 2 1 Single loop Control US mode 1 eee ee eeseseeeeeeseecaecaeecaeenseeaecnseenees 2 2 2 2 Cascade Primary loop Control US mode 2 oe eee eeeeseesecneeecneeneees 2 8 2 3 Cascade Secondary loop Control US mode 3 oe eee cee ceseeteeeteeeeee 2 10 2 4 Cascade Control US mode 4 0 eee ceccceceeeceesseecesnececeeeeceseeecseseeeeneeeeneas 2 13 2 5 Loop Control for Backup US mode 5 eee ee ceeseececeee cee ceneeeeeseeeeees 2 16 2 6 Loop Control with PV Switching US mode 6 eee eee eeeeereeeeeeee 2 19 2 7 Loop Control with PV Auto selector US mode 7 ce eeeeeseeeneeseeeeeeeeees 2 24 2 8 Loop Control with PV hold Function US mode 8 eee eeeeesecereeeneeeeee 2 28 2 9 Dual loop Control US mode 11 wee ee ee eeeseceneeceeceeeceeeeceaeceeeeceseeenaeceees 2 32 2 10 Temperature and Humidity Control US mode 12 wee eeeeeeeee 2 34 2 11 Cascade Control with Two Universal Inputs US mode 13 oe 2 36 2 12 Loop Control with PV Switching and Two Universal Inputs US Ode TA ss are e hs oes abet E E A AEE REE 2 39 2 13 Loop Control with PV Auto selector and Two Universal Inputs US mode TS ss aii E E on hd Qld ES wa aes 2 42 2 14 Custom Computation Control US mode 21 ee eeeeeneesseceeeeceeeeeneeeeees 2 45 Der Parameters ses vss sheaves ev casecacasss cota eros ancene TEES duns ensatasbeatsbvecntabenssvas semsenaseansieise L 3 1 Parameters that Determine the Action at Power o
86. ed from those in Table 2 4 in Section 2 1 by setting the MVS1 parameter PV input 3 or cascade input or feedforward input or Analog input type Analog input type Analog input type PV input 1 PV input 2 tracking input ioital i Cascade input via pain Rg4g5 Communication D D 15 1s Option i l Ige Unit conversion Analog input range conversion Analog input Analog input x l range conversion Anag input AUTO MAN ias i H Analog input Analog input Square root REE ee bias computation Square root computation Square root computation Analog input filter Analog input Analog input filter filter P B V3 v Cascade aE input filter 4 OFF Ten i inearizer Z Cascade ratio Cascade bias AUTO mode selection or MAN mode selection Alarm Alarm Alarm Alarm DO will be output output2 output3 output4 OFF when PV high limit PV low limit PV high limit PV low limit FAIL output MV Retransmission Digital output voltage output 3 Terminal Cc Parameter Legend O Analog signal Function wr nn nen Digital signal IM 5D1A01 02E 2 43 E Loop Control with PV Auto selector and Two Universal Inputs US1000 21 Control is performed based on a position proportional PID computation so as to ensure that the MV output and control valve opening always match Two universal input terminals AIN1 and
87. eeeneeseeeneeeaeenees 3 25 3 8 5 Heating Cooling Computation and Cycle Time Hysteresis atid Dead bang anono na ar R E E shvatawvestuwstensyetees 3 25 3 8 6 Position proportional PID Computation and Valve Position 3 27 3 9 Parameters for PID Computation s sssesesseesesseressseesrsreerrresrrrresrerererreseeseseene 3 28 3 9 1 PID Parameters siiri eneee iesper eantas resse a o erai e Eroe SE IPEE Eep EaR Ri 3 28 3 9 2 Cooling side PID Parameters for Heating Cooling Computation 3 30 3 9 3 PED Control MOd6 ys eneen yet toes ust whois E RSS 3 30 3 9 4 Anti reset WINdUp cs ovni aniei pr r E E AE e 3 31 39 3 Manual RESet arron eren keete e s ae rene repe e ir E NES 3 32 3 9 6 Direct Reverse Action of Control esesessseeessseeseereseesesesrsreresreerereereses 3 33 3 10 Parameters for Preset PID and Zone PID sssessessesseeeesseeseeresreresrsrrsrerrsreersrees 3 34 310 1 Preset PIDs niise a a S E a iE 3 34 3 10 2 SV Number Selection for Preset PID s osssseesseeesereseeseseesrsrerrsresesrensrees 3 35 3 10 3 Zone PDair erneer iaa aea a wet RE EE eE ERSS 3 35 3 11 Parameters for AUtO tUNING eseerseesreeeseeerserereressrsrssestsseeresrerrsreeesrsreseeee 3 38 3 12 Parameters for MV Output sssi roires i EA ar E renea REA aE 3 41 3 12 1 Analog Output Type eren s ea eae a SE IEE VSN EEN 3 41 3 122 Output LIMIET saie arase anene es raS EE EEE EE day EAE EEEE SEEE 3 42 3 12 3 Output Rate of change Limit
88. en the signal is on When the controller is stopped the preset MV value is set with the parameter n PM or n PMc output as MV output For information about the parameter n PM and n PMc refer to subsection 3 12 4 Preset MV Operation mode can be switched to CAS AUTO and MAN using the Cc 3 and Mm keys on the controller s front panel respectively In MAN mode the MV output can be operated using the and keys on the controller s front panel For information about the operation mode and operations refer to Chapter 6 Operation in the separate instruction manual US1000 Digital Indicating Controller IM 5D1A01 01E 7 MYV output section The result of control computation is output to the OUT1A terminal as an MV output The type of MV output can be selected from voltage pulse and current using the MVS1 parameter For information about MV outputs refer to Section 3 8 Parameters for Control Computation and Section 3 12 Parameters for MV 8 Retransmission output section The OUT3A terminal is used solely for retransmission output Retransmission output is the function for retransmitting the signal of PV SV or MV data in the controller to a device such as a recorder At the time of shipping the function is set to retransmit PV For information about the retransmission output refer to Section 3 13 Parameters for Retransmission Output 9 Contact output section IM 5D1A01 02E Three
89. ent such as another controller or a programmable controller Normally the controller outputs the MV output received from the higher level equipment tracking the input from an AIN3 terminal On receiving a FAIL signal from the higher level equipment the controller starts controlling the equipment instead E Loop Control for Backup US1000 00 One universal input terminal AIN1 is provided Voltage pulse or current output can be selected for the MV output by setting the MVS1 parameter OUTIA terminal Cascade input via Tracking input PV input communication Backup input Digital input Option f Analog input Analog input type type Unit conversion Analog input range conversion Analog input f range conversion Analog input bias Analog input 5 i f uare roo bias computation Square root computation Analog input filter Ie Analog input filter Ten segment linearizer PV bias PV filter Cascade bias 9 AUTO MAN Tracking switching STOP RUN EETA S a ES EEA RUN STOP switching eee eeeeneneeeee CAS AUTO MAN Manual O operation 9 5 Alarm Alarm DO will be OFF e transmit output output2 when input bumout MV selection MVS1 PV high limit PV ow irit AD ero occur A amp MV Retransmission Digital outout voltage output 3 p O Terminal CD Parameter Analog signal Legend Function ee Digital signal 2 16 IM 5D1A01 02E E Loop Control for Bac
90. er ssseesssseeeseeeeseeresesrsserresrerrsrenrsrenreses 3 43 32124 Preset MV insener aa a br an EEE ieee ASE S TES 3 43 3 12 5 Reversed Display and Operation of MV sssssessesessseesessesesesrersreereseereses 3 44 3 13 Parameters for Retransmission Output 0 0 eee eee ceeceeeceeeeeeeeeeeeeseneeaee 3 45 3 13 1 Type of Retransmission Output ssssseesssseeesereeseereresreserrrseerrsrenrsreereses 3 45 3 13 2 Scale of Retransmission Output sseessessesesseeesssresrsrsserrrerrrrsreessrereses 3 45 3 14 Parameters for Alarm Output eee cseesecneceseceeceseeeeeeseeeeeeeeeeeeeseeees 3 46 3 14 1 Alarm TY pes wssssicesvscscct sip egsseasdeste ai a E sie epeacee Habe E eE EESE 3 46 3 142 Alarm SempOme isos secs hoes fh e a r EEEE EE EE E E AEEA 3 51 3 15 Parameters for Contact Input sseeeseeeesesseeessreresessrsresreresrerrseeresrereseeresreee 3 52 3 15 1 Contact Input Functions s sesseseseseeeessseeseeseeererterssreesrsserresrerrsrenreseseses 3 53 3 15 2 Changing Contact Input Assignments ssessseeesseeseeseeererseeresreerereereses 3 54 3 16 Parameters for Contact Output seesssssesssseeesserereeessrsessrsessreresrenrsrenresesresenee 3 55 3 17 Parameter that Determines Control Period 0 00 00 eee eee ceeeeeeeeeeeeeeneeees 3 56 3 18 Parameters for Display Functions 0 0 0 0 ceeceeceseeeeceseeeeeeeeeeeeeeeeeeeees 3 57 3218 1 USER Display n ihe cedes idk see ee RD E aE E EE i EE a 3 57 3 182 SELECT Display oreni
91. er approximation Input x Figure 3 6 2 Ten segment Linearizer Approximation IM 5D1A01 02E 3 15 3 6 1 3 16 Unit of Ten segment Linearizer Ten segment linearizer 1 and 2 are used for loop 1 and loop 2 respectively Setup parame ter Main Sub Parameter Description Setting Range Default PYIX Ten se gment linearizer 1 12 input unit 0 1 ABSO 2 ABS1 3 ABS2 py1y Ten segment linearizer 1 4 ABS3 5 ABS4 6 EU AIN1 13 output unit 7 EUS AIN1 8 EU AIN2 9 CONE hates Ten segment linearizer 2 EUS AIN2 10 EU AIN3 11 PY2X input unit EUS AIN3 12 EU PV1 13 EUS 14 PV1 14 EU PV2 15 EUS PV2 PY2Y Ten segment linearizer 2 15 output unit 12 EU PV1 The same engineering unit specified for loop 1 PV 13 EUS PV1 The engineering unit that corresponds to the loop 1 PV range span 14 EU PV2 The same engineering unit specified for loop 2 PV 15 EUS PV2 The engineering unit that corresponds to the loop 2 PV range span For general use use the defaults of the parameters for ten segment linearizer biasing and change the settings of the parameters as follows for ten segment linearizer approximation PY1X 12 PY1Y 12 PY2X 14 PY2Y 14 The values from 0 to 11 are used for the custom computation function Do not set these values for general use See Also Appendix 2 of the separate instruction manual US1000 Digital Indicating Contro
92. er setting at the default value 2 Tracking signal Cascade input via PV input communication Digital input S Analog input Option Analog input type type range conversion Analog input 5 range conversion Ana pg input ias Square root Analog input bias computation Square root computation Analog input v filter Analog input fier v Ten segment linearizer Cascade ratio Cascade bias SR AUTO MAN PV filter PID computation M Tracking switching ww STOP 4 RUN A E E EE E E ASA UL EE EE E E aa ai operation s Alarm Alarm DOwillbe OFF output output2 when input bumout PV high limit PV low limit or AD error occurs MV Retransmission Digital output my voltage output 3 pi Secondary loop controller Analog signal O Terminal ED Parameter Legend E Function 2 wwe nee Digital signal 2 8 IM 5D1A01 02E Chapter 2 Controller Mode US Mode HM Cascade Primary loop Control US1000 11 Two universal input terminals AIN1 and AIN2 are provided The MV output is a current output OUTIA terminal Leave the MVS1 parameter setting at the default value 2 Cascade input or Cascade input via PV input feedforward input communication Tracking signal J Digital input S 2 Ait An CENENA Analog input Analog input type type Analog in
93. erminal AIN1 is provided The type of MV output can be selected from those in the table below by setting the MVS1 parameter Chapter 2 Controller Mode US Mode Table 2 4 MV Output for US1000 11 Type of control computation Value of MVS1 Terminal Terminal 7 i code No Bara a Ag os 1 Heating cooling Heating cooling Heating cooling ON OFF computation 3 computation 4 to 6 computation 7 to 9 computation 10 to 12 Retransmission output 0 3 Retransmission output 4 Retransmission output 7 Retransmission output 10 OUTIA 16 18 Voltage pulse output 1 Heating pulse output 5 Heating pulse output 8 Heating pulse output 11 Current output 2 Heating current output 6 Heating current output 9 Heating current output 12 Heating control relay Heating control relay Heating control relay OUTIR 55 to 57 hae pe cael gt 3 output 4 output 7 output 10 cama 2 Alarm output 4 5 6 Alarm output 4 8 9 Alarm output 4 11 12 OUT2A 49 50 Retransmission output 2 Retransmission output 2 Cooling pulse output Cooling current output OUT2R 58 to 60 Alarm output 3 Cooling control relay output Alarm output 3 Alarm output 3 1 Value of MVS2 for cascade control and cascade control with two universal inputs IM 5D1A01 02E 2 5 Cascade input via Cascade input or Digital input PV input communication feedforward input a D DODD Option l Anal
94. es of the parameter For EU and EUS refer to Appendix 2 in the separate Submenu code to which the parameter belongs instruction manual US1000 Digital Indicating Controller Main menu code to which the parameter belongs Parameter code IM 5D1A01 01E Ly Brief description es value T j Main Sub Parameter Description Range of setting Default Parameters of the same function are distinguished by the number in their parameter codes For example RH1 RH2 RH3 In this chapter these parameters are expressed by one code with the numbers represented as n for convenience sake For example RHn See Also Some parameters are not displayed depending on the controller model and controller mode US mode For information on parameter call up and setting operations refer to the separate instruction manual US1000 Digital Indicating Controller IM 5D1A01 01E 3 1 3 1 Parameters that Determine the Action at Power on 3 2 and Power Recovery A momentary power failure of less than 20 ms has no effect on the controller action The controller continues to operate normally Following a power failure that lasts for 20 ms or longer however the controller will operate as described below upon a power recovery see Figure 3 1 1 e Parameter settings are maintained e Alarms with waiting action return to a waiting status e Auto tuning is canceled R MD HOT Operation mode and
95. eter Description Setting Range Default DOI Relay output flag registration for DO1 Set the functions D register or I relay DO2 aces tput Aap maior one ee 1 to 1700 D register Relay output flag registration 5001 to 7048 I relay DO3 for DO3 F Example Depends on COME DO DO4 Transistor output flag Loop alarm output 1 5689 eM registration for DO4 Loop 1 alarm output 2 5690 parameter DOs Transistor output flag Loop 1 alarm output 3 5691 registration for DOS Loop 1 alarm output 4 5693 Loop 2 alarm output 1 5697 DO6 Transistor output flag Loop 2 alarm output 2 5698 registration for DO6 Loop 2 alarm output 3 5699 Do7 Transistor output flag Loop 2 alarm output 4 5701 registration for DO7 At the time of shipping the US1000 controller s contact outputs have already been assigned with the functions frequently used for each controller mode US mode Refer to the function diagrams in Chapter 2 Therefore the contact output assignments need not be changed for general use To change the assignments register a D register or I relay number of the flag to be output to a contact output parameter For example to assign the loop 2 alarm output 1 to the DOS contact output register 5697 to parameter DOS Note that the US1000 00 has only three contact output terminals DO1 DO2 and DO3 3 55 3 17 Parameter that Determines Control Period min 3 56 Setup parameter Main Sub Parameter Description Setting Rang
96. etting 6 reference points between the minimum value EU 0 and the maximum value EU 100 of the PV range A PID group is assigned to each zone Maximum value of PV range P RH1 EU 100 Zone 7 uses parameter 7 PID Reference point 6 6 RP ae l N NG PV uses parameter n PID where n is the zone number of the zone that PV enters Reference point 2 2 RP koeee Zone 2 uses parameter 2 PID Reference point 1 1 RP Zone 1 uses parameter 1 PID Minimum value of PV range P RL1 Time Figure 3 10 1 Zone PID Reference Points 2 Zone PID Hysteresis Hysteresis for zone switching can be set around reference points The hysteresis is set using the parameter RHY under the 7 PID submenu and is applied in common to all of the reference points The range of setting is 0 0 to 10 0 of the instrument range span Zone PID reference point 1 Hysteresis band RHY gt lt gt lt gt lt PID group 1 PID group 2 PID group 1 PID group 2 Figure 3 10 2 Zone PID Hysteresis 3 36 IM 5D1A01 02E Chapter 3 Parameters 3 Zone PID Reference Deviation IM 5D1A01 02E If the deviation IPV SVI grows larger than the reference deviation during the zone PID operation the controller stops using the PID group being used at that time corresponding to the zone and restarts operation using the parameters under the 8 PID submenu For example by setting the proportional band parameter of 8 PID to a small valu
97. function which displays a pre defined message on the PV digital display Up to four messages can be defined The optional LL1100 PC based Parameters Setting Tool is necessary to define these messages 3 15 2 Changing Contact Input Assignments nN 3 54 To change contact input assignments register the I relay number of the contact input to the parameter of the function to be assigned For example to assign the loop 1 tracking flag to DI7 register 5167 to parameter TRF1 NOTE In some controller modes US modes D register or I relay numbers which are not for the contact input are assigned to the parameters for contact input as default settings These settings should not be changed because it will disable some functions of the controller mode IM 5D1A01 02E Chapter 3 Parameters 3 16 Parameters for Contact Output IM 5D1A01 02E NOTE Only personnel with a sufficient understanding of the US1000 controller and custom computation functions are qualified to change the settings of the following parameters as necessary Those who are still beginners in regards to operating the US1000 controller or who do not thoroughly understand custom computation function should use the controller at the default value settings Changing the settings of these parameters may disable some of the functions assigned to each US1000 controller mode US mode Setup parameter Sub Param
98. g U2 USER parameter 2 19999 to 31500 0 U3 USER parameter 3 19999 to 31500 0 USR U4 USER parameter 4 19999 to 31500 0 U5 USER parameter 5 19999 to 31500 0 U6 USER parameter 6 19999 to 31500 0 U7 USER parameter 7 19999 to 31500 0 U8 USER parameter 8 19999 to 31500 0 USER parameters must be set in the following controller modes and can also be used for the custom computation function US mode Loop control with PV switching USM 6 and US mode Loop control with PV auto selector and two universal inputs USM 14 U1 PV upper limit for PV switching Default 0 U2 PV lower limit for PV switching Default 0 U3 Switching condition Default 0 U3 0 Switching within specified PV range set in U1 and U2 U3 1 Switching at PV upper limit set in U1 U3 2 Switching by contact input US mode Loop control with PV auto selector USM 7 U1 Input selection Default 2 U1 0 Accepts the maximum value between inputs 1 and 2 U1 1 Accepts the minimum value between inputs 1 and 2 U1 2 Accepts the average value of inputs 1 and 2 U1 3 Accepts the difference between inputs 1 and 2 input 2 input 1 US mode Loop control with PV auto selector and two universal inputs USM 15 U1 Input selection Default 2 U1 0 Accepts the maximum value between input 1 input 2 and input 3 U1 1 Accepts the minimum value between input 1 input 2 and input 3 U1 2 Accepts t
99. g input type Analog input 3 range conversion i Analog input SV number selection Analog input range conversion jas z A Analog input Analog input bias bias Square root Square root F computation Computation wae Analog input Analog input filter i filter gp linearizer bd bd MA BS Square root computation Cascade C Feedf ascade input filter epee input filter Cascade ratio Cascade ratio Cascade bias i Cascade bias Preset MV M SUN SO ENG cans eget soem one ee CAS1 AUTO1 een Lo CAS2 AUTO2 MAN mode selection operation Q m i Alarm Alarm Alarm Alarm Alarm Alarm DO will be outputi output2 output3 outputi output2 output3 OFF when PV high limit PV low limit PV high limit PV high limit PV low limit PV high limit FAIL output Q MAN1 Manual O operation s Alarm Alarm Retransmission output 4 output 4 voltage output 3 Digital output for loop 1 for loop 2 PV low limit PV low limit O Terminal C Parameter Analog signal Legend L Function wren Digital signal IM 5D1A01 02E 2 33 2 10 Temperature and Humidity Control US mode 12 This US mode provides a control function that controls the temperature and relative humidity in parallel The temperature control uses dry bulb temperature and the relative humidity control uses both dry and wet bulb temperatures for control c
100. gdom Milano Italy Velizy villacoublay France Johannesburg Republic of South Africa YOKOGAWA AMERICA DO SUL S A Headquarters amp Plant Praca Acapulco 31 Santo Amaro Sao Paulo SP BRAZIL CEP 04675 190 Phone 55 11 5681 2400 Facsimile 55 11 5681 4434 YOKOGAWA ENGINEERING ASIA PTE LTD Head office 5 Bedok South Road Singapore 469270 SINGAPORE Phone 65 6241 9933 Facsimile 65 6241 2606 YOKOGAWA ELECTRIC KOREA CO LTD Seoul Sales office 395 70 Shindaebang dong Dongjak gu Seoul 156 010 KOREA Phone 82 2 3284 3000 Facsimile 82 2 3284 3019 YOKOGAWA TAIWAN CORPORATION Head office 17F No 39 Sec 1 Chung Hwa Road Taipei 100 TAIWAN Phone 886 2 2314 9166 Facsimile 886 2 2314 9918 YOKOGAWA AUSTRALIA PTY LTD Head office Centrecourt D1 25 27 Paul Street North North Ryde N S W 2113 AUSTRALIA Phone 61 2 9805 0699 Facsimile 61 2 9888 1844 YOKOGAWA INDIA LTD Head office 40 4 Lavelle Road Bangalore 560 001 INDIA Phone 91 80 227 1513 Facsimile 91 80 227 4270 LTD YOKOGAWA ELECTRIC Grokholskiy per 13 Build 2 4th Floor 129010 Moscow RUSSIA FEDERATION Phone 7 095 737 7868 Facsimile 7 095 737 7869
101. gnal The filter provides first order lag calculation The PV filter and the analog input filter have similar functions refer to subsection 3 2 6 However the PV filter should be normally used because its time constant is given as an operation parameter and can be changed during operation Operation parameter Main Sub Parameter Description Setting Range Default 0 LP1 OLP PAR FL PV filter OFF 1 to 120s OFF IM 5D1A01 02E Chapter 3 Parameters 3 4 Parameters for Cascade Input 3 4 1 Selection of Cascade Input The destination of cascade input can be specified using the CMS parameter The signal from the cascade input destination is taken for the target setpoint cascade setpoint when the controller is in CAS mode When the CMS parameter is set at AIN the cascade input is the signal from the analog input terminal AIN2 or AIN3 When it is set at CPT the cascade input is the signal from RS 485 terminal Setup parameter Main Sub Parameter Description Setting Range Default S LP1 AIN Analog input S LP SV CMS Cascade input selection CPT Communication AIN 3 4 2 Cascade Input Filter This filter performs a first order lag calculation on the cascade setpoint value from the analog input terminal when the CMS parameter described in subsection 3 4 1 is set at AIN This calculation is not performed on the cascade setpoint transmitted via RS 485 communication Oper
102. he CMS parameter refer to subsection 3 4 1 to CPT in order to prevent the feedforward input from being acquired by the controller as a cascade input when the Cc key is pressed by mistake Set the above even when the RS 485 communication function will not be used To use a feedforward input set the FFS parameter at AIN The use of feedforward input is however limited by the model of the controller and controller mode US mode Check if a feedforward input can be assigned to any terminal referring to the function block diagrams in Chapter 2 Setup parameter S LP1 CTL FFS Feedforward input selection OFF Disabled AIN Analog input OFF IM 5D1A01 02E 3 13 3 5 2 3 14 Feedforward Input Filter Bias and Gain The gain filtering and biasing calculation given by the following expression can be provided on the feedforward input MV MV FF FF Fon 1 1 F S Fly Fa Fao where Operation parameter Feedforward input after gain filtering and biasing calculation MV obtained by feedback control Feedforward gain Feedforward input filter Feedforward input Feedforward input bias Feedforward output bias Main 0 LP1 Sub PAR Parameter Description Setting Range Default FGN Feedforward gain 9 999 to 9 999 1 000 FBI Feedforward input bias 100 0 to 100 0 0 0 FBO Feedforward output bias 999 9 to 999 9 0 0 FFL Feedforward input filter OFF
103. he SV bar segment continually flash Alternatively set DVB at EUS 100 to make the SV bar segment always lit Setup parameter Main Sub Parameter Description Setting Range Default SI sv DVB Deviation display range EUS 0 0 to 100 0 EUS 1 65 100 100 SV bar Deviation between ae segment iati Deviation flashing rected m SV and PV for loop 2 between SV and PV lt KO SV and PV __ Es p m for loop 1 S SV bar segment PV bar 7 E for loop 2 flashing a i z SV bar segment a for loop 1 flashing lt Ve EO Yd OO az A l A 0 AED 0 eee ll SV display for single loop control Figure 3 7 4 Deviation Display Range and SV Bar Segment SV display for dual loop control 3 21 3 8 Parameters for Control Computation 3 8 1 3 22 The type of control computation can be selected for each control loop Selecting the control computa tion type also determines the MV output type relay current etc This section describes each type of control computation and the settings specific to the control computation The control computation types that can be selected for each controller model are shown below Since the control computation of the US1000 21 the position proportional model is fixed at position proportional PID computation with relay output it does not need the computation type to be set Applicable Control
104. he average value of input 1 input 2 and input 3 U1 3 Accepts the difference between inputs 1 and input 2 input 1 U2 Number of inputs Default 0 U2 0 Uses two points inputs 1 and 2 U2 1 Uses three points inputs 1 2 and 3 3 60 Chapter 3 Parameters 3 21 2 Parameter Initialization When the parameter INIT is set on the controller initializes all parameters other than the US mode input output parameters communication parameters and valve calibration parameters The controller also prepares to set related parameters in the ranges and scales specified by the input output param eters For information about parameter initialization refer to Section 4 6 Writing the Data Defined So Far Parameter Initialization of the separate instruction manual US1000 Digital Indicating Controller IM 5D1A01 01E Setup parameter Main Sub Parameter Description Setting Range Default USMD INIT INIT Parameter initialization OFF ON OFF 3 21 3 Test Mode A NOTE Do not change the following parameter Doing so may cause the US1000 controller to malfunction Setup parameter Main Sub Parameter Description Setting Range Default USMD TEST TST Test mode Do not use this mode The test mode is for testing and adjusting the US1000 controller Users must not access its parameter IM 5D1A01 02E 3 61 Appendix 1 Parameter Map Appen
105. he same as that of loop control with PV auto selector US mode 7 except for the following two points e Analog input 2 terminal AIN2 that allows the universal input is used for PV input 2 e Analog input 3 terminal AIN3 can be used for PV input 3 cascade input feedforward input or tracking input To use this terminal for PV input 3 set USER parameter 2 U2 to 1 When using a tracking input a tracking flag function must be assigned to a contact input DI For information about contact input assignment refer to Section 3 15 Parameters for Contact Input The selection of PV is carried out according to the following USER parameters Table 2 10 USER Parameters for Loop Control with PV Auto selector and Two Universal Inputs Main menu Submenu Parameter Description Range of setting Default Input selection 0 Accepts the maximum value between inputs 1 2 and 3 1 Accepts the minimum value between inputs 1 2 and 3 U1 USER parameter 1 2 Accepts the average value of inputs 1 2 and 3 2 USR 3 Accepts the difference between input 1 and input 2 G e input 2 input 1 0 Uses two points inputs 1 and 2 Ue HSER parameter 2 1 Uses three points inputs 1 2 and 3 9 2 42 IM 5D1A01 02E Chapter 2 Controller Mode US Mode E Loop Control with PV Auto selector and Two Universal Inputs US1000 11 Two universal input terminals AIN1 and AIN2 are provided The type of MV output can be select
106. he selection of input is specified by USER parameter 1 U1 2 Accepts average value of input 1 and input 2 3 Accepts the difference between input and input 2 i e input 2 input 1 Table 2 6 USER Parameters for Loop Control with PV Auto selector Main menu Submenu Parameter Description Range of setting Default Input selection 0 Accepts the maximum value between input and input 2 USR _ Ul USER parameter 1 1 Accepts the minimum value between input and input 2 2 2 24 When using the tracking input with US1000 11 or US1000 21 a tracking flag function must be assigned to a contact input DI For information about contact input assignment refer to Section 3 15 Parameters for Contact Input IM 5D1A01 02E Chapter 2 Controller Mode US Mode E Loop Control with PV Auto selector US1000 00 One universal input terminal AIN1 is provided Voltage pulse or current output can be selected for the MV output by setting the MVS1 parameter OUTIA terminal Cascade input via PV input 1 PV input 2 communication Digital input RS485 wv Option Analog input Analog input type type nit conversion MAN Analog input Analog input range conversion range conversion Analog input Analog input bias bias Square root Square root computation computation Analog input Analog input filter filter Input selection Ten segment linearizer v Cascade ratio PV filter Cascade bias
107. ing Range Default TYP1 Analog input 1 type for AIN1 terminal See section 4 4 41 C Celsius A UNII Analog input 1 unit oF Fahrenheit C USMD IN TYP2 Analog input 2 type for AIN2 terminal See section 4 4 41 5 C Celsius N UNI2 Analog input 2 unit oF Fahrenheit Cc TYP3 Analog input 3 type for AIN3 terminal See section 4 4 41 3 3 Table Analog Input Types Input type Setting Range C Range F Accuracy Thermocouple K 1 270 0 to 1370 0 C 450 0 to 2500 0 F 0 C and over 0 1 of F S 2 270 0 to 1000 0 C 450 0 to 2300 0 F Below 0 C 0 2 of F S 3 200 0 to 500 0 C 200 0 to 1000 0 F K below 200 C 2 of F S J 4 200 0 to 1200 0 C 300 0 to 2300 0 F T 5 270 0 to 400 0 C 450 0 to 750 0 F T below 200 C 1 of F S 6 0 0 to 400 0 C 200 0 to 750 0 F B 7 0 0 to 1800 0 C 32 to 3300 F 400 C and over 0 1 of F S Below 400 C 5 of F S S 8 0 0 to 1700 0 C 32 to 3100 F 0 15 of F S R 9 0 0 to 1700 0 C 32 to 3100 F N 10 200 0 to 1300 0 C 300 0 to 2400 0 F 0 1 of F S E 11 270 0 to 1000 0 C 450 0 to 1800 0 F 0 C and over 0 1 of F S L 12 200 0 to 900 0 C 300 0 to 1600 0 F Below 0 C 0 2 of F S U 13 200 0 to 400 0 C 300 0 to 750 0 F E below 200 C 1 5 of F S 14 0 0 to 400 0 C 200 0 to 1000 0 F 0 2 of F S W 15
108. k Rech BAR aR EE 3 27 NAIVE ecessesessseescihsssascssties sce ssesseeiosts 3 27 3 42 3 44 Valve Position Feedback oo ee eeeeceeeeeeereeeeeeee 2 7 Voltage Pulse os u cssccssvtpcsssscssgsesenseveacousescaeteees esse 3 24 Z Zone PID aonesha 3 34 3 35 3 39 IM 5D1A01 02E Revision Record Manual Title Model US1000 Digital Indicating Controller Functions Manual number IM 5D1A01 02E Edition Data First Aug 1998 Newly published Second Jun 2004 Change of the company name Revised Item Written by Yokogawa Electric Corporation Published by Yokogawa Electric Corporation 2 9 32 Nakacho Musashino shi Tokyo 180 8750 JAPAN YOKOGAWA Yokogawa Electric Corporation YOKOGAWA ELECTRIC CORPORATION Network Solutions Business Division 2 9 32 Nakacho Musashino shi Tokyo 180 8750 JAPAN Phone 81 422 52 7179 Facsimile 81 422 52 6793 Sales Branch Offices Tokyo Nagoya Osaka Hiroshima Fukuoka YOKOGAWA CORPORATION OF AMERICA Headquaters 2 Dart Road Newnan GA 30265 1094 U S A Phone 1 770 253 7000 Facsimile 1 770 251 0928 Sales Branch Offices Texas Chicago Detroit San Jose YOKOGAWA EUROPE B V Headquaters Databankweg 20 3821 AL Amersfoort THE NETHERLANDS Phone 31 334 64 1611 Facsimile 31 334 64 1610 Sales Branch Offices Houten The Netherlands Wien Austria Zaventem Belgium Ratingen Germany Madrid Spain Bratislava Slovakia Runcorn United Kin
109. kup US1000 11 Two universal input terminals AIN1 and AIN2 are provided The type of MV output can be selected from those in Table 2 4 in Section 2 1 by setting the MVS1 parameter Cascade input via Cascade input or Tracking input Chapter 2 Controller Mode US Mode PV input communication feedforward input Backup input Digital input Rasy GOOD Option i i i i i Analog input Analog input Analog input i f i i H type type type fn Or eer range conversion Analog input Analog input i i range conversion range conversion Toe l 1 1 Analog input Analog input Square root bias bias 4 Square root Square root computation computation Analog input filter Analog input Analog input Ten segment Ten segment linearizer linearizer i i i Feedforward i i input filter input filter PV filter P i 5 O Feedforward i CEMS bias gain i OFF FFS i i E a va SV number selection Fea a tae Atel MAN mode selection __ SA te a A Tracking switching Blatt cers J eet ste ieee cere eel RUN STOP switching fa MAN mode selection MV IM 5D1A01 02E Retransmission voltage output 3 Alarm output PV high limit PV low limit Pr AD error occurs PY low limit PV high limit Alarm DOwilbe OFF output2 when input burnout DO will be OFF when FAIL output Alarm output3 Alarm output4 E 2 Digital
110. l is set using parameter AOn Refer to subsection 3 12 1 3 13 1 Type of Retransmission Output Setup parameter Main Sub Parameter Description Setting Range Default RET1 Retransmission output 1 type Seo eee 3 CMLP RET RET2 Retransmission output 2 type OEE Dae TEV ats 2 3 MV1 4 PV2 5 SV2 6 MV2 OFF Disabled 1 PV1 2 SV1 3 MV1 4 PV2 5 SV2 6 MV2 RET3 Retransmission output 3 type The terminal which can be used for retransmission output differs depending on the controller s model and suffix code and the type of control computation in use Refer to the block diagrams in chapter 2 and confirm the code and number of the terminal that can be used for retransmission output Then set the following parameters e To use the OUTIA terminal for the retransmission output RET1 RTH1 RTL1 e To use the OUT2A terminal for the retransmission output RET2 RTH2 RTL2 e To use the OUT3A terminal for the retransmission output RET3 RTH3 RTL3 3 13 2 Scale of Retransmission Output Setup parameter Parameter Description Setting Range Default Maximum value of RET1 1 2 4 5 RTL1 1 digit to EU RI retransmission output 1 scale 100 0 P RET1 3 6 RTL1 1 digit to 100 0 hs RET1 1 2 4 5 EU 0 0 to RTH Minimum value of Sr RTE retransmission output 1 scale 1 digit o i P RET 3 6 0 0 to RTHI 1 digit Ris mim valisa RET2 1 2 4 5 RTL2 1 digit to
111. limit FAIL output 6868 G460O Valve position Position Retransmission Retransmission feedback input proportional current output 1 voltage output 3 Digital output control relay output O Terminal C Parameter Analog signal Legend Function wenn Digital signal 2 18 IM 5D1A01 02E Chapter 2 Controller Mode US Mode 2 6 Loop Control with PV Switching US mode 6 This US mode provides a control function that switches between two PV inputs by a contact input signal or according to a PV range The method of PV switching is specified by USER parameter 3 U3 as shown in the table below and the range for PV switching is specified by USER parameters 1 and 2 U1 U2 Table 2 5 USER Parameters for Loop Control with PV Switching Main menu Submenu Parameter Description Range of setting Default U1 USER parameter 1 PV upper limit for PV switching 0 U2 USER parameter 2 PV lower limit for PV switching 0 USR Switching condition U3 USER parameter 3 0 Switching within the PV range specified by U1 and U2 0 1 Switching at the PV upper limit specified by U1 2 Switching by contact input The following are the description of the switching methods specified by USER parameter 3 1 Switching within the PV range specified by U1 and U2 U3 0 IM 5D1A01 02E This method should be selected in cases where for example two thermocouples are used one for higher temperatures and th
112. linearizer n input 7 EU 66 7 to 105 0 EU 0 0 n Y7 Ten segment linearizer n output 7 EUS 66 7 to 105 0 EUS 0 0 n X8 Ten segment linearizer n input 8 EU 66 7 to 105 0 EU 0 0 n Y8 Ten segment linearizer n output 8 EUS 66 7 to 105 0 EUS 0 0 n X9 Ten segment linearizer n input 9 EU 66 7 to 105 0 EU 0 0 n Y9 Ten segment linearizer n output 9 EUS 66 7 to 105 0 EUS 0 0 n X10 Ten segment linearizer n input 10 EU 66 7 to 105 0 EU 0 0 n Y10 Ten segment linearizer n output 10 EUS 66 7 to 105 0 EUS 0 0 n X11 Ten segment linearizer n input 11 EU 66 7 to 105 0 EU 0 0 n Y11 Ten segment linearizer n output 11 EUS 66 7 to 105 0 EUS 0 0 n PMD_ Ten segment linearizer n mode 0 Biasing 1 Approximation 0 IM 5D1A01 02E 3 17 3 7 Parameters Related to Target Setpoint and SUPER 3 7 1 3 7 2 3 18 Function A maximum of 8 target setpoint values SV can be set for each loop of the US1000 controller It is possible to improve controllability by setting the SUPER function time for ramp rate setting and other functions to each SV Target Setpoint SV A maximum of 8 target setpoint values 1 SV to 8 SV can be set for each loop however use 1 SV only for simple single loop control For information on how to use the controller switching between multiple SVs refer to subsection 3 10 2 SV Number Selection for Preset PID The SV set with parameter n SV c
113. ller IM 5D1A01 01E for the meanings of EU and EUS IM 5D1A01 02E 3 6 2 Parameters to Set Ten segment Linearizer Chapter 3 Parameters These parameters set the inputs and outputs of a ten segment linearizer for both biasing and approxi mation The parameters with n 1 are for loop 1 and those with n 2 are for loop 2 Parameter n PMD specifies the type of ten segment linearizer Operation parameter Main PYSn n 1 2 Sub Parameter Description Setting Range Default n X1 Ten segment linearizer n input 1 EU 66 7 to 105 0 EU 0 0 n Y1 Ten segment linearizer n output 1 EUS 66 7 to 105 0 EUS 0 0 n X2 Ten segment linearizer n input 2 EU 66 7 to 105 0 EU 0 0 n Y2 Ten segment linearizer n output 2 EUS 66 7 to 105 0 EUS 0 0 n X3 Ten segment linearizer n input 3 EU 66 7 to 105 0 EU 0 0 n Y3 Ten segment linearizer n output 3 EUS 66 7 to 105 0 EUS 0 0 n X4 Ten segment linearizer n input 4 EU 66 7 to 105 0 EU 0 0 n Y4 Ten segment linearizer n output 4 EUS 66 7 to 105 0 EUS 0 0 n X5 Ten segment linearizer n input 5 EU 66 7 to 105 0 EU 0 0 n Y5 Ten segment linearizer n output 5 EUS 66 7 to 105 0 EUS 0 0 n X6 Ten segment linearizer n input 6 EU 66 7 to 105 0 EU 0 0 n Y6 Ten segment linearizer n output 6 EUS 66 7 to 105 0 EUS 0 0 n X7 Ten segment
114. low limit PV high limit Retransmission voltage output 3 Digital output O Terminal CD Parameter Analog signal Legend L Function wenn Digital signal IM 5D1A01 02E 2 29 E Loop Control with PV hold Function US1000 11 One universal input terminal AIN1 is provided The type of MV output can be selected from those in Table 2 4 in Section 2 1 by setting the MVS1 parameter Cascade input or feedforward input or Cascade input via Ste PV input tracking input communication Digital input a ee CACACE Option coor Se Set Sena Analog input Analog input type type Analog input Analog input range conversion range conversion Analog input bias Square root computation Analog input filter PV hold PVNOId e ter e e aaee ae iea Pasen aeann besser cages Feedforward input filter Feedforward bias gain FF CAS Py hold and MAN mode or AUTO mode las Square root computation Analog input filter Analog input Dual PV selection linearizer n Cascade ratio EV filter Cascade bias Cascade input filter SV number selection t Ol acki g sig al CAS mode selection STOP TRUN Preset MV_ gt Q MAN Manual O operation s RUN STOP switching Alarm Alarm Alarm Alarm DO will be outputi output2 output3 output4 OFF when PV high limit PV low limit PV high limit PV low limit FAIL output Digital output MV
115. mains the same when the contact status changes from on to off 2 O C OPEN CLOSE switchover This parameter sets a cascade OPEN CLOSE switching function which is effective only in cascade control or cascade control with two universal inputs Cascade OPEN denotes the status where the primary and secondary loops inside the controller are disconnected and cascade CLOSE denotes the status where the loops are connected as a cascade loop the control computation result of the primary loop is passed to the secondary loop as SV For cascade OPEN the contact is on and for cascade CLOSE it is off 3 R S RUN STOP switchover The controller operation stops when the contact is switched from off to on runs when the contact is switched from on to off When you power off the controller which is in stop status the contact becomes off Then you power on the controller the controller will still be in stop status In this case once switch the contact to on and then off to run the controller CX See Also For information on the stopping controller conditions refer to section 6 13 of the separate US1000 Digital Indicating Controller manual 4 TRF1 TRF2 Tracking flag The tracking input from the AIN2 or AIN3 terminal is effective when the contact is on and the controller outputs the tracking input as MV The tracking input is not effective when the contact is off and the controller outputs the control computation result as MV Th
116. mber Analog input selection bias Square root computation Square root Square root computation computation Analog input filter Analog input filter Analog input filter Ten segment linearizer Dual PV switching Ten segment linearizer Cascade ratio Cascade bias 4 STOP Ron CE R a AAA RUN STOP switching _ i Manual CAS AUTO operation s MAN mode selection Alarm Alarm Alarm Alarm pavio Re i outputi output2 output3 output4 when MV selection MYSI etransmit ev high imit PV low limit PV high imi PV low imit FAIL output Digital output My Retransmission voltage output 3 O Terminal C Parameter nd Lege L Function wn nnn nee Digital signal Analog signal 2 40 IM 5D1A01 02E Chapter 2 Controller Mode US Mode E Loop Control with PV Switching and Two Universal Inputs US1000 21 Control is performed based on a position proportional PID computation so as to ensure that the MV output and control valve opening always match Two universal input terminals AIN1 and AIN2 are provided The MV output is a position proportional control relay output OUTR terminal A valve position feedback input is provided Cascade input or feedforward input or Cascade input via PV input 1 PV input 2 tracking input communication Digital input e S Option E ee ee Analog input
117. meter n SV are used for auto tuning e The PID values obtained from auto tuning will be stored to the PID parameters of the PID group number specified to parameter AT For example when AT is set at 3 the values of 3 P 3 I and 3 D will be obtained e When parameter AT is set at 9 auto tuning is executed for PID groups 1 to 8 in succession and the PID values obtained are stored to the PID parameters of the respective groups 3 When zone PID is being executed PPID 2 A WARNING There is a possibility that the controlled process will be damaged when PV reaches the limit of the process To prevent this set the reference points and the maximum value of the PV range P RHn so that the PV does not exceed the limit of the controlled process before starting auto tuning with AT set at 9 under zone PID IM 5D1A01 02E 3 39 Maximum value of PV range e Regardless of the current zone number auto tuning is executed for the PID group of the number specified to the AT parameter e The SV at the start of auto tuning is used for auto tuning However when parameter AT is set at 9 the SV used for auto tuning will be as shown in Figure 3 11 3 For PID groups to 7 auto tuning is performed taking the intermediate value of each zone for SV For PID group 8 auto tuning is performed taking the intermediate value of the maximum and minimum values of the PV range for SV e The PID values obtained through auto tuning will be stored to th
118. meters 3 8 4 ON OFF Computation and Hysteresis The output type of ON OFF computation is relay contact A hysteresis band can be set around the ON OFF switching point SV Operation parameter Main Sub Parameter Description Setting Range Default ON OFF computation EUS 0 0 ON OFF computation EUS 0 LP1 n PID to 100 0 Position proportional 0 5 Position proportional PID 0 LP2 n 1 8 n H Hysteresis PID or heating cooling or heating cooling computation computation 0 0 to 100 0 0 5 A NOTE When the relay is expected to be turned on and off frequently set a somewhat wider hysteresis in consideration of the fact that the service life of the output relay will be significantly reduced Hysteresis band feats oho 1 1 1 1 L 1 1 1 1 1 1 1 1 1 1 1 1 1 f ON ON MV OFF l OFF Figure 3 8 3 Hysteresis for ON OFF Computation 3 8 5 Heating Cooling Computation and Cycle Time Hysteresis and Deadband In heating cooling computation the PID computation result is output as two signals for heating and cooling CX See Also Subsection 3 9 2 Cooling side PID Parameters for Heating Cooling Computation for information on the PID computation for heating cooling computation Setup parameter Main Sub Parameter Description Setting Range Default CTcl Cycle time of cooling side MV1 1 to 1000 s 30s CMLP C CTL CTc2 Cycle time of cooling
119. moothly i e without any bumps however even when PV changes suddenly As shown in the figure below PV input 1 when input 1 is less than the upper limit for PV switch ing and PV input 2 when input 1 is no less than the upper limit for PV switching Hysteresis 0 5 of PV range is provided around the switching point Input 2 py high temperature side Upper limit for PV switching 75 i Input 1 low temperature side PV Input 1 PV Input 2 Figure 2 6 2 Switching at the Upper Limit for PV Switching 3 Switching by contact input U3 2 The PV switching function is assigned to the contact input DI2 e PV Input 1 when DI2 OFF e PV Input 2 when DI2 ON E Use of Tracking Input When using a tracking input with US1000 11 or US1000 21 a tracking flag function must be assigned to a contact input DI For information about contact input assignment refer to Section 3 15 Param eters for Contact Input 2 20 IM 5D1A01 02E Chapter 2 Controller Mode US Mode E Loop Control with PV Switching US1000 00 One universal input terminal AIN1 is provided Voltage pulse or current output can be selected for the MV output by setting the MVS1 parameter OUTIA terminal Cascade input via PV input 1 PV input 2 communication Digital Input aN A Option Analog input type Analog input Analog input range conversion range conversion Analog input Analog input bias bias
120. n v Analog input range conversioni Analog input las i Unit conversion Square root Analog input b computation Square root Square root 7 computation Analog i put computation Analog input Analog input I filter 5 4 iter ascade Ten segment linearizer ji 9 PV filter keedrorward Fa input filter PV filter Feedforward bias gain OFF Q Cascade ratio Cascade bias FFS CAS AUTO MAN mode selection Tracking signal When the controller is stopped or cascade loop is opened the primary side internal CLOSE Q output value tracks the IE AS SEEN TR Bees secondary side SV q A ee eee tt ee OPEN CLOSE switching Peet Levee ae oneness ee meres i STOP Preset MV MAN Manual O operation s RUN STOP switching Alarm Alarm Alarm Alarm DO will be outputi output2 output3 output4 OFF when PV high limit PV low limit PV high limit PV low limit Gr G amp G S S x Valve position Position Retransmission Retransmission o Co feedback input proportional current output1 voltage output 3 Digital output control relay F 7 output Terminal Cc Parameter Analog signal ip Legend O i J Function wenn Digital signal IM 5D1A01 02E 2 15 2 5 Loop Control for Backup US mode 5 This US mode provides a control function that is used in combination with higher level control equipm
121. n and Power Recovery 3 2 3 2 Parameters for Analog Input oe eee eeeceeeseecreeseecaecesecaecaeesecsseeeeeeeeeeees 3 3 3 2 1 Analog Input Type and Unit 0 ceeeeeeceeceeeceeeeeeseeeeeeseeeeeeeeas 3 3 3 2 2 Analog Input Range and PV Range uo eee eeeeeeeseeeeceeeeeeeeeeeeeeeneeees 3 5 3 2 3 Decimal Point Position of Analog Input eee ceeeeeeceeeeeeeeneeeee 3 6 3 2 4 Display Scale of Analog Input 0 0 eee cece ceseeeeceeeeeeceeeeeseeeeeeeseneeees 3 6 3 2 5 Analog Input Bias Normally used at default ee eeeeeeeeeeeee 3 7 3 2 6 Analog Input Filter Normally used at default 0 eeeeeeeeeeee 3 7 3 2 7 Square root Extraction eee cee csecsseesecsseesecesceseceseeeeeeeeseseaeeaeeeneeaes 3 8 3 22 82 Action at a Bumot a a ere e gedaan aeee eE Mtoe aeons 3 9 3 2 9 Reference Junction Compensation for Analog Input eee 3 9 3 3 Parameters for PV Computation Normally used at defaults 3 10 S33 PV Bias esiscuassiiiey ancien niin E A E geste oe Ria pets 3 10 33 2 PV PIM asc seth e e E ak Me nasy E hae Tar eatieeei NR 3 10 3 4 Parameters for Cascade Input 0 eee eeeseceeceseceeceseeeeeeseseeeeseeeeeeaeeeaeenee 3 11 3 4 1 Selection of Cascade Input 2 0 ee cece cess eeeceseeeeceseeeeeeseeeaecseeeneenaes 3 11 3 4 2 Cascade Input Filters inacccciinvieaia cinch E E E EEEE 3 11 3 4 3 Cascade Ratio and Cascade Bias eseeseseeeeeeseeeesereseersseerserrrsreserererees 3 11 3 4 4 OPEN CLOSE Switchover for Internal Cascade Con
122. nd is too small e An offset steady state deviation cannot be removed by tuning the proportional band 3 28 IM 5D1A01 02E Chapter 3 Parameters 2 Integral Time n I The function that automatically reduces offsets that cannot be avoided in principle using the propor tional action is called an integral action I action An integral action continually increases and decreases the output in proportion to the integrated deviation the product of the deviation span and the deviation duration time Integral action is generally used in combination with the proportional action This is referred to as a proportional plus integral action PI action Like a small proportional band a short integral time results in a vibrational PV The vibration derived from an integral action however has a longer period than that derived from a small proportional band An integral time that is too short results in a long period of vibration in PV Figure 3 9 2 Integral Action A TIP Keep the following points in mind when performing fine adjustment on the integral time obtained from the auto tuning function or when you tune the integral time manually e The main purpose is to reduce the offset e Change the integral time from a larger to smaller value e If the vibration lasts longer than that observed when a small proportional band is used it means the integral time is too small 3 Derivative Time n D In cases where the controlled
123. ned alarm outputs can be set up in the following 3 steps 1 Set alarm type hysteresis and other parameters for each of alarm outputs 1 to 4 Refer to subsection 3 14 1 Alarm Types The factory set defaults of alarm types are the following e Alarm type of alarm output 1 PV high limit e Alarm type of alarm output 2 PV low limit e Alarm type of alarm output 3 PV high limit This alarm can be used as a high high limit or a secondary high limit alarm e Alarm type of alarm output 4 PV low limit This alarm can be used as a low low limit or a secondary low limit alarm 2 Set an alarm setpoint for each of alarm outputs 1 to 4 Refer to subsection 3 14 2 Alarm Setpoint When an alarm occurs the ALM lamp on the front panel lights up To display the occurring alarm output numbers on the digital display on the front panel make the following setting in step 3 3 Register the loop 1 alarm or loop 2 alarm to a USER display Refer to subsection 3 18 1 USER Display or Section 5 1 Registering Auxiliary Operation Displays USER Displays of the separate instruction manual US1000 Digital Indicating Controller IM 5D1A01 01E 3 14 1 Alarm Types 3 46 Setup parameter Main Sub Parameter Description Setting Range Default ALI Alarm 1 type OFF to 29 see section 4 7 1 AL2 Alarm 2 type OFF 1 to 29 see section 4 7 2 AL3 Alarm 3 type OFF 1 to 29 see
124. nteniiingia Rete 2 5 2 32 3 22 MEVS2 E E E 2 5 2 32 3 22 IM 5D1A01 02E N TAT ee E E trash esh EE S dded ons 3 51 TA stig andere ER ee 3 51 HAI yeere Seccttod cate xt Sal N tects tons bie 3 51 TAA iste A ae ae ah aa Shinn a aed 3 51 DDD ges S E E E E E aes 3 28 ADB sich hih eae alee Ra ee et 3 26 ADE niieoe e E E S 3 30 ADR aa e a R eee ee 3 33 TI o E EREE EE E N E EEE tsoene 3 25 M a nis kaise Re 3 28 TUNG E EEE E E E EE 3 30 n MH ecien onra pi i ai Eai 3 42 SEON I ESAE E E E E E E 3 42 EMR niinno e a a eee 3 32 AP ienen a a E Sa 3 28 TPC eeri E RE N 3 30 TPN gos EAEEREN EEE EEEE EEE EEEE 3 43 DEPMC 222 isi ei ies ie aes 3 43 RSV are re r e a a n 3 18 DX wits Sak ne eae shia n a ias 3 17 TVD ASE E E atest tees 3 17 NOISE ities oe east See a Ae 3 7 O ODP YD reisn serie aE ERE 3 58 OLP inti Reg bie ea E a 3 58 OPC cesasied ase EEA 3 12 3 52 OUSEU sepsis eae een ales 3 32 ON OFF Computation oo eee 3 23 3 25 ON OFF Switchings oo eee cesses ceeeeeeeeeees 3 24 OPEN CLOSE edscvessdotedbeeshassntseniesccsbieseeeeeeeses 2 13 OPEN CLOSE Switchover ou 2 3 3 12 3 53 Operating Parameters ese eeeeeeeeeereeeteeeeneees App 1 2 Operation Display for Interruption ow 3 54 Operation Mode Switching ow ee 2 3 3 53 Output for US1000 1 1 eee eeeeeeeeeees 2 5 Output Limiter encima nie 3 42 OutputRanges oo eee eee ceeseceeceectecsseeseeesees 3 41 Output Rate of change Limiter oe eee 3 43 Output Type eee a e e e E e
125. ntrol relay output 1 The MV output types for the heating cooling computation are as follows Single loop control or cascade control Nee CO ON Heating control relay output cooling control relay output Heating pulse output cooling control relay output Heating current output cooling control relay output Heating control relay output cooling pulse output Heating pulse output cooling pulse output Heating current output cooling pulse output 10 Heating control relay output cooling current output 11 Heating pulse output cooling current output 12 Heating current output cooling current output Dual loop control or temperature and humidity control Both of the loop 1 and loop 2 have the same output combinations 4 Heating pulse output cooling control relay output 5 Heating control relay output cooling pulse output 6 Heating current output cooling control relay output 7 Heating control relay output cooling current output 2 Setting the proportional band n P or n Pc at 0 enables ON OFF signal resulting from ON OFF computation to be output 3 23 3 8 2 Time proportional PID Computation and Cycle Time of MV Output The cycle time of an MV output must be set for time proportional PID computation Setup parameter Main Sub Parameter Description Setting Range Default CT1 Cycle time of MV1 1 to 1000 s 30s CMLP C CTL CT2 Cycle time of MV2 1 to 1000 s 30s In time propo
126. o select neither of them for use set 0 0 Selects neither the preset PID nor the zone PID for use With this setting the controller displays only one PID group the parameters under 1 PID submenu and performs control computation using one set of PID parameters for any SV value 1 Selects the preset PID for use In this case the PID group number is specified by setting parameter SVNO SV number selection Refer to subsection 3 10 2 SV Number Selection for Preset PID 2 Selects the zone PID for use In this case set the zone PID reference point parameters n RP prior to operation Refer to subsection 3 10 3 Zone PID Setup parameter Main Sub CMLP C CTL Parameter PPID Description Preset PID function selection Setting Range 0 Disabled Preset PID 1 SV number selection 2 Zone PID Default IM 5D1A01 02E Chapter 3 Parameters 3 10 2 SV Number Selection for Preset PID Parameter SVNO is used for switching PID group numbers SV number hereafter when the preset PID function is used The SV number can also be switched by contact inputs Refer to Section 3 15 Parameters for Contact Input The switching by contact inputs takes priority over switching by parameter setting The SV number can be switched any time during operation When the SV number is switched SV changes at the preset SV rate of change Refer to subsection 3 7 4 SV Rate of Change Ramp R
127. og input Analog input eSa P E E i type type i range conversion AUTO MAN Analog input range conversion Analog input bias Square root computation Analog input filter Ten segment linearizer Cascade input filter Feedforward 9 bias gain CMS OFF PV filter Cascade ratio LED Cascade bias RUN STOP switching Manual operation Ret i Alarm Alarm Alarm Alarm wil pe 3 e transmi output output2 output3 output4 when MV selection MVS1 PV high limit PV low limit PV high limit PV low limit FAIL output 54666 6 6666666 Retransmission Digital output voltage output 3 O Terminal CD Parameter nd Lege L Function ww wn ee ee Digital signal Analog signal 2 6 IM 5D1A01 02E Chapter 2 Controller Mode US Mode E Single loop Control US1000 21 Control is performed based on a position proportional PID computation so as to ensure that the MV output and control valve opening always match One universal input terminal AIN1 is provided The MV output is a position proportional control relay output OUTR terminal A valve position feedback input is provided R Cascade input via Cascade input or Digital input PV input communication feedforward input RS485 CAE 3 D on Option Er e E Analog input Analog input i type type x AUTO MAN range conversion i PEIE E i Analog input range conversion Analog inpu
128. ol Then when there is no longer the possibility of an overshoot the target setpoint is gradually reset to its original value See Figure 3 7 1 The SUPER function operates using the PID parameters Be sure to set the PID parameters to their appropriate values by the auto tuning function before activating the SUPER function IM 5D1A01 02E Chapter 3 Parameters SUPER function ON SV Auxiliary SV Time Start fuzzy inference Figure 3 7 1 SUPER Function 3 7 3 PV Tracking Setup parameter Main Sub Parameter Description Setting Range Default S LP1 S LP2 SV PVT PV tracking selection OFF ON OFF PV tracking is the function that sets the SV equal to PV temporarily to prevent a sudden change in PV during any of the following events 1 power on 2 switching from MAN to AUTO mode 3 switching from STOP to RUN After SV is made equal to PV the SV is gradually changed to the preset SV value at a constant rate of change ramp rate that is determined by parameters TMU UPR and DNR refer to subsection 3 7 4 SV Rate of Change Ramp Rate Since setting UPR and DNR to OFF reduces the ramp rate to 0 be sure to set the appropriate values to parameters TMU UPR and DNR PV tracking enabled PV tracking disabled SV rate of change ramp rate Time Time Mode change Mode change Figure 3 7 2 PV Tracking IM 5D1A01 02E 3 19 3 7 4 SV Rate of change Ramp Rate In order to
129. oller s 100 internal value The MV bar display and the direction of increase decrease of MV operation key remain normal 20 mA 4mA 0 100 CO MMSEEEET Jo Decreases controller s internal value while output signal increases MV bar becomes shorter Increases controller s internal value while output signal decreases MV bar becomes longer Figure 3 12 1 Operation of Reversed Output when AO1 or AO2 is set to 2 IM 5D1A01 02E 3 41 3 12 2 Output Limiter Operation parameter Main Sub Parameter Description Setting Range Default n ML 0 1 to 105 0 Upper limit of 0 0 to 105 0 for heating side n MH output output limit in heating cooling 100 0 O LP1 n PID computation 0 LP2 n 1 8 5 0 to n MH 0 1 0 0 Lower limit of 0 0 to 105 0 for cooling side P i n ML ATena heating cooling computation output output limit in heating cooling 100 0 computation Ye Upper and lower limits of MV can be set when operation mode is AUTO or CAS Although param eters for output limiter are provided as 1 MH to 8 MH and 1 ML to 8 ML use only 1 MH and 1 ML except when preset PID or zone PID is to be used AK NOTE When the controller is set up for heating cooling computation the functions of n MH and n ML are as follows n MH Upper limit of heating side output n ML Upper limit of cooling side output n MH gt Outp
130. omputation When using a tracking input a tracking flag function must be assigned to a contact input DI For information about contact input assignment refer to Section 3 15 Parameters for Contact Input 2 34 IM 5D1A01 02E Chapter 2 Controller Mode US Mode E Temperature and Humidity Control US1000 11 Two universal input terminals are provided AIN1 terminal is for dry bulb temperatures and AIN2 for wet bulb temperatures The types of MV output for loop 1 and loop 2 can be selected from those in Tables 2 7 and 2 8 in Section 2 9 by setting the MVS1 and MVS2 parameters respectively Cascade input or i feedforward input or Cascade input via o Dry bulb temperature tracking input communication Wet bulb temperature Digital input KN ang mM AAA type y Option nee er a eee Analog input Analog input type type Analog input Unit conversion range conversion Analog input i range conversion Analog input bias Analog input 3 7 i uare roo bias computation Square root computation Analog input filter Ten segment linearizer Analog input MAN2 range conversion SV number selection MAN1 MAN2 Analog input bias Square root computation Analog input filter Analog input filter v Relative humidity calculation Ten segment linearizer Feedforward input filter Cascade input filter PV filter Feedforward filter s bias gain Cascade ratio
131. on Regarding the parameters shown in the diagrams refer to Chapter 3 Parameters Table 2 1 Controller Mode US Mode US1000 Controller mode Setting Description 00 11 21 Single loop control 1 Basic PID control O 1O o Cascade primary loop control 2 Operates as a primary controller in cascade control OJ Q Cascade secondary loop control 3 Operates as a secondary controller in cascade control OIOIO Cascade control 4 Performs cascade control with a single controller O O O Loop control for backup 5 PID control with backup function for the suppervisory system O O O Loop control with PV switching 6 PID control with dual PV switching function by contactin O O O put or PV range Loop control with PV auto selector 7 PID control with dual PV auto selector function by O O O minimum maximum average difference Loop control with PV hold function 8 PID control with a PV and MV hold function O O O Dual loop control 11 Basic PID control for independent two loops O Temperature and humidity control 12 Controls temperature and relative humidity independently O by PID control Cascade control with two universal inputs 13 Performs cascade control using two universal inputs OAO Loop control with PV switching 14 Performs loop control with PV switching using two O and two universal inputs universal inputs Loop control with PV auto selector 15 Performs loop control with PV auto selector using two O
132. ontrol with PV Auto selectorand Two Universal Inputs o c eee ceeeeeeeeees 3 60 Loop Control with PV Switching ow 3 5 3 60 Loop Control with PV Switching US 1000 00 __ 2 21 Loop Control with PV Switching US1000 1 1 2 22 Loop Control with PV Switching US1000 21 _ 2 23 Loop Control with PV Switching and Two Universal Inputs US1000 1 1 2 40 Loop Control with PV Switching and Two Universal Inputs US1000 21 ssesse 2 41 Loop Control with PV hold Function US1000 00 oe eee ee ceeseecseeseecaeenaeenes 2 29 Loop Control with PV hold Function US1000 1 1 oe eeeeeeecseeeecneeeaes 2 30 Loop Control with PV hold Function US1O00 21 hristian 2 31 M Mepa E E ER 3 58 MAN ene A R E 3 52 A Da TN PAE E EEEE EE EEEE 3 52 Manual Reset sseni eepe ary 3 32 Menu Display Prohibiting Function ww 3 58 MGI oe oth ani ie hes cian Shenae 3 52 MG scsi ce pt somcte cn omceiededtin E 3 52 MGB a8 ceva nadia en a ees 3 52 MG oe oeccoten coutansvaeecetsieesemnl divorcee E E 3 52 MOD 2 t5 BARA RRA Re ash Hoe es 3 30 MODE irescices ious Boss oestessonsan iat evs cede theses EAN 3 58 MV Bat sects ten a natal 3 44 MV Decrease Key ou eeeeseceeceseeseeeseeseeeeees 3 44 MV Increase Key oo eeeeeeeceeseeeecseessecneesseeneenaes 3 44 MV Output e renerrien respei 2 3 2 5 3 41 MV Output Type sesessesesseeeeesreseseisrrerrsrerrsreresreee 3 22 MVR weseeconstevestttiiensssessbitbertsooee vere atarenttad 3 43 MVS 1 oisistet he
133. ostic Alarm eseeeeeseeeeseeeeeereererrerreesee 3 50 Setpoint Output Function essesseeeseeeseeeeeeesreerreeee 2 10 SetupParameters oo eee eeeeseeeeeeeeeeeeeeeee App 1 4 SHI pne a r E A EEN 3 7 to n PAE E E ee 3 7 e m o A E EEE E E codes Peeraateess 3 7 SHUT ieo a Sie ha ee ES 3 42 SHUPGO WI s ne ipee reee ee Eee a REA EREE 3 42 Single loop Control US1000 00 owe 2 4 Single loop Control US1000 1 1 vo 2 5 Single loop Control US1000 21 wee 2 7 SIL A AA vans tetei tees EEEE EEE 3 7 S12 hoses aie achat BabA oe elk Rebs Bes 3 7 SUSY E E E EE utes Poeriatewss 3 7 SMP vs a e a hii N RE 3 56 Square root Extraction sseeesseeeseseesesesereerrreeesreees 3 8 SUP shee Sates E aie 3 59 SUPER ceessetu css esee rerne OEEO ea eies 3 18 SV eed in ve A A a as 3 18 SV BarSegment Sveria estes EE 3 21 SV Number oo n a eea pe 3 34 3 35 SV Number Selection oo eee cece eeeeeeeeeees 3 53 SV Rate of change oo eee ee ceeeeeeceeeeeeeeeeeeeeees 3 20 SViBO gs costes dovethuwcthc dt nied eat eat E 3 52 SV Bliss eceh ie ERG as eh eis 3 52 SVB EE EE ET 3 52 SV Bana oe natin ES 3 52 SVC ien na E E E 3 58 SVNO EE E lA Rik 3 35 Switching Condition oo eee 2 19 2 39 T Tarpet Setpoint sssrinin 3 18 Temperature and Humidity Control US1000 1 DV sscsssescascseee ei sshescieees 2 35 3 5 Ten segment Linearizer eee eteeeseeeeeeees 3 15 Test Mode sese inaen is s 3 61 Thermocouple Inputs oo eee eeeeeeeeeeeeeeeeeee 3 9 Time proportional P
134. other equipment IM 5D1A01 02E Chapter 3 Parameters 3 2 Parameters for Analog Input The US1000 controller can use a maximum of three analog inputs according to its model and suffix code The input type and range can be set for each parameter Example 1 For setting the type T thermocouple input a measurement range of 0 0 to 300 0 C and burnout action for analog input 1 Parameter menu Setup parameter USMD IN TYPI 6 UNII C RH1 300 0 RL1 0 0 A BO2 DNS Example 2 For setting the voltage input range of 1 to 5 V a display scale of 0 0 to 500 0 m H and square root extraction for analog input 3 Parameter menu Setup parameter USMD IN TYP3 41 RH3 5 000 RL3 1 000 SDP3 ___ SH3 500 0 SL3 0 0 A FL3 2 Two second filtering A SR3 ON A LC3 3 0 In the following pages each analog input parameter is described 1 US1000 00 can use two analog inputs and US1000 11 and US1000 21 can use three 3 2 1 Analog Input Type and Unit IM 5D1A01 02E Analog input and analog input 2 are universal and can be defined as either thermocouple RTD or DC voltage signal type Analog input 3 can receive either standard signals or DC voltage signals Select an analog input type from the analog input type list on the next page Units for analog input 1 and 2 are set using parameters UNII and UNI2 respectively Setup parameter Main Sub Parameter Description Sett
135. put from higher level equipment Backup command Target MV output setpoint y Backup US1000 MV command aon output Contact input lt 1 2 IM 5D1A01 02E Chapter 1 Examples of US1000 Applications E Loop Control with PV Switching In this example the furnace temperature is first controlled at ambient temperature and then gradually increased to the required work temperature where it is then controlled The controller mode for loop control with PV switching and two universal inputs US mode 14 allows a controller to receive two points of temperature inputs directly The loop control with PV switching mode US mode 6 on the other hand requires a temperature converter for one of the two inputs because this controller mode provides only a single universal input Loop control with PV switching and two universal inputs US mode 14 or loop control with PV switching US mode 6 Work temperature E l a Ambient temperature Switching signal Furnace g US1000 Target setpoint o Work ad y temperature Pv MV o Ambient suteng output o temperature i o 1 1 o k Work ee ee ae l MV output AAAA y SSR A E Loop Control with PV Auto selector The temperatures in the upper and lower parts of the furnace are measured
136. put ie i 7 type Unit conversion 5 Analog input Analog input Analog input range conversion range conversion i Analog input Analog input Analog input bias bias 5 Square root Square root Square root computation computation computation i i i Analog input Analog input Analog input o9 r p filter filter re i MAN v Ten segment Ten segment linearizer linearizer v PV bias Cascade Feedforward input filter input filter PV filter FFS i Ee Sore SV number selection MAN mode selection CAS AUTO ean mk ee Cali fun lk cp SoS ge Sh aS nn nik orn i e t ere PID computation Qolo aaaeeeaa aa ecg switching cae ee stop LAUN Preset MV 4 RUN STOP switching MAN mode selection i Alarm Alarm DOwilbe OFF Alarm Alarm DO will be Re transmit output output2 wheninputbumout output4 output3 OFF when PV high limit PV low limit r AD error occurs PY low limit PV high limit FAIL output pS Se I I 2502 Retransmission Retransmission Digital output current output 2 voltage output 3 Secondary loop controller O Terminal C Parameter Analog signal Legend Function wns Digital signal IM 5D1A01 02E 2 9 2 3 Cascade Secondary loop Control US mode 3 This US mode sets up a controller as the secondary loop controller when cascade control is to be performed using two controllers The mode provides a
137. putation OFF ON OFF A LC2 Analog input 2 square root low signal cut off 0 0 to 5 0 1 0 A SR3 Analog input 3 square root computation OFF ON OFF A LC3 Analog input 3 square root low signal cut off 0 0 to 5 0 1 0 100 0 Input value after square root extraction 0 0 Input 100 0 Lowcut point 0 0 5 0 Figure 3 2 5 Square root Extraction 3 8 IM 5D1A01 02E Chapter 3 Parameters 3 2 8 Action at a Burnout For thermocouple RTD and standard signal inputs the action at a burnout can be specified to each input When upscale is specified PV 105 0 and MV preset MV value operation parameter n PM When downscale is specified PV 5 0 and MV preset MV value operation parameter n PM Setup parameter Main Sub Parameter Description Setting Range Default OFF Disabled A BO1 Analog input 1 burnout action UPS Upscale OFF DNS Downscale OFF Disabled CMPL AIN A BO2 Analog input 2 burnout action UPS Upscale OFF DNS Downscale OFF Disabled A BO3 Analog input 3 burnout action UPS Upscale OFF DNS Downscale 3 2 9 Reference Junction Compensation for Analog Input The US1000 controller has a reference junction compensation function for the thermocouple inputs of analog input 1 and 2 When an external device is used for reference junction compensation 0 C set parameter A RJn to OFF Setup parameter Main Sub Parameter Description Setting Range
138. quations for both the CAS and AUTO operation modes Batch Control Mode follow up control In CAS mode Derivative of deviation PID control Good follow up capability at SV change In AUTO mode _PV derivative PID control Follow up capability at SV change and good stability Fixed point Control Mode In CAS mode PV derivative PID control Follow up capability at SV change and good stability In AUTO mode _ Proportional plus derivative PID control Good stability because of small MV variation at SV change IM 5D1A01 02E Chapter 3 Parameters E Block Diagram for Each PID Control Equation 3 9 4 Derivative of deviation PID control Since derivation is performed on deviation SV O FID a better follow up capability for the SV change im pe 3 is obtained PV PV derivative PID control D PI control i m Process a Process Since derivation is performed on PV a smaller variation in the output resulting from the SV change is obtained This method is suitable in situations where SV is not changed very often SV Since only the integral action works at the SV change there is no sudden change in MV even when SV is changed in steps from a personal computer or other device This control method produces stable control but its follow up capability is not so good This method is used for general fixed point control Anti reset Windup Setup parameter S LP1 S LP CTL AR Anti reset windup AUTO 50 0
139. refer to Section 3 15 Parameters for Contact Input The method of PV switching and the PV range for switching are specified with the following USER parameters USR Table 2 9 USER Parameters for Loop Control with PV Switching and Two Universal Inputs Main menu Submenu Parameter Description Range of setting Default Ul USER parameter 1 PV upper limit for PV switching 0 U2 USER parameter 2 PV lower limit for PV switching 0 Switching condition 0 Switching within the PV range specified by U1 and U2 U3 USER parameters 1 Switching at the PV upper limit specified by U1 2 Switching by contact input EN See Also IM 5D1A01 02E Section 2 6 Loop Control with PV Switching for information about the USER parameter 3 2 39 E Loop Control with PV Switching and Two Universal Inputs US1000 11 Two universal input terminals AIN1 and AIN2 are provided The type of MV output can be selected from those in Table 2 4 in Section 2 1 by setting the MVS1 parameter Cascade input or feedforward input or Cascade input via PV input 1 PV input 2 tracking input communication Digital input S O E nr e Analog input Analog input Analog input type type type Unit conversion Unit conversion Analog input range conversion Analog input Analog input range conversion range conversion Analog input bias Analog input Option Tati bias SV nu
140. rtional PID computation the fundamental period of time at which the relay or voltage pulse output turns ON and OFF is called the cycle time The type of output used relay or voltage pulse is set using parameter MVS1 or MVS2 The cycle time of MV output can be set in seconds using parameter CT1 or CT2 The proportion of ON time within the cycle time is proportional to the MV output ON ON ON time OFF OFF lt 4 gt lt gt Cycle time Cycle time Figure 3 8 1 Cycle Time of MV Output A short cycle time enables fine control but may reduce the service life time of the controller s output relay and the input contact of the final control element due to the fact that the number of ON OFF switchings is increased Generally the cycle time of MV output is set between 10 and 30 seconds for relay contact output The following figure compares the actions of different cycle times when MV output 50 Cycle time 10s Cycle time 20s Cycle time 40 s A UA a Figure 3 8 2 Comparing ON OFF Actions of Different Cycle Times 3 8 3 Continuous PID Computation With continuous PID computation the result of the PID computation is output in a current signal analog outp ut in proportion to the result EN See Also Section 3 9 Parameters for PID Computation for information on PID computation and subsection 3 12 1 Analog Output Type for information about analog output types 3 24 IM 5D1A01 02E Chapter 3 Para
141. s 3 13 Feedforward Input ssseeseseesesseeesssresesreersersreerssres 3 13 JE a E susteneld Bestel EEEE EOE EE E 3 14 FES 33d site earl a nan 3 13 FON eseina a a 3 14 Filtet denona ner 3 7 3 10 3 11 3 14 Docs coe seas E EE E EEEE EE EN 3 10 H Heating cooling Computation ow 3 23 3 25 HOT aea mrene ertoe E E EEE 3 2 AY dices ET T 3 46 TY OE EEE E EE E E E E 3 46 HY 3an Oa E a a a 3 46 HY k cst inaner Aan 3 46 Hyst r sis oo eee eeeeeeeeceneeceeeecneeeeneeeee 3 25 3 26 3 36 I NE e a ans EEN 3 61 Initial Zation nia 3 61 InputRange sasscisccascecteseciectasudiinindsnaden 3 5 Input Selection oo eee eeeeeeeeeeee 2 24 2 42 Input Type and Unit oo cece cteceseeeeeeees 3 3 Integral ACHOn ssiri tnie nas 3 29 Interruptive Message Display ssesesseeeeeeeeseeeeeeee 3 54 K Key Operation Prohibiting Function oe 3 58 Index 2 L Loop Control for Backup US1000 00 oe 2 16 Loop Control for Backup US1000 1 1 we 2 17 Loop Control for Backup US1000 21 on 2 18 Loop Control with PV Auto selector 3 5 3 60 Loop Control with PV Auto selector US1000 00 oe eee eeeeecseeseecseeaeenes 2 25 Loop Control with PV Auto selector US1000 1 1 oo eee ete cseeesecneeeaes 2 26 Loop Control with PV Auto selector US1O00 21 eee eee esii 2 27 Loop Control with PV Auto selector and Two Universal Inputs US1000 1 1 2 43 Loop Control with PV Auto selector and Two Universal Inputs US1000 21 sesse 2 44 Loop C
142. s to the alarm setpoint or above The alarms numbered 9 and 19 are passive and those numbered 11 and 19 have the waiting action e The direction of the arrow indicates the direction of the PV change The alarm is issued within the range of the arrows Alarm setpoint Hysteresis 2 PV low limit alarm Setting 2 10 12 20 This alarm is issued when PV falls to the alarm setpoint or below The alarms numbered 10 and 20 are passive and those numbered 12 and 20 have the waiting action e The direction of the arrow indicates the direction of the PV change e The alarm is issued within the range of the arrows Hysteresis Alarm setpoint y 3 High limit deviation alarm Setting 3 5 13 15 This alarm is issued when the deviation PV SV increases to the alarm setpoint or more The alarms numbered 5 and 15 are passive and those numbered 13 and 15 have the waiting action Figure 3 14 2 4 Low limit deviation alarm Setting 4 6 14 16 This alarm is issued when the deviation SV PV increases to the alarm setpoint or more The alarms numbered 6 and 16 are passive and those numbered 14 and 16 have the waiting action Figure 3 14 2 5 Deviation of high and low limits alarm Setting 7 17 This alarm is issued when the deviation SV PV or PV SV increases to the alarm setpoint or more The alarm numbered 17 has the waiting action Figure 3 14 2 3 48 IM 5D1A01 02E Chapter 3 Parameters 6 Deviation within high
143. so as to ensure that the MV output and control valve opening always match Two universal input terminals AIN1 and AIN2 are provided The MV output is a position proportional control relay output OUTR terminal A valve position feedback input is provided 2 12 Tracking signal 2 Tracking switching n i Primary loop controller 250 Q o Peay Error signa z ascade input via fie ik Saints Sine TA i PV input Cascade input inion Feedforward input Digital input A wW 000 Ooo Option a Analog input Analog input Analog input isplay i i i i type massage i i i i Analog input range conversioni Analog input bias v Square root computation Analog input filter P v linearizer E2 PV filter Valve position feedback input Unit conversion Analog input range conversion Analog input range conversioni Analog input Analog input bias ias v Square root Square root computation computation v Analog input filter Analog input filter Ten segment linearizer aes Feedforward input filter Cascade input filter yooo Q CAS AUTO MAN mode selection Alarm Re transmit MV output1 PV high limit Position Retransmission Retransmission proportional current output 1 voltage output 3 control relay Re transmit it Alarm DOwillbeOFH Alarm Alarm output2 whenCAS mode output4 output3 PV low
144. sons of convenience when explaining them ii IM 5D1A01 02E Notice E This Instruction Manual 1 This manual should be passed on to the end user Keep at least one extra copy of the manual in a safe place 2 Read this manual carefully to gain a thorough understanding of how to operate this product before you start using it 3 This manual is intended to describe the functions of this product Yokogawa Electric Corporation hereinafter simply referred to as Yokogawa does not guarantee that these functions are suited to the particular purpose of the user 4 Under absolutely no circumstances may the contents of this manual in part or in whole be transcribed or copied without permission 5 The contents of this manual are subject to change without prior notice 6 Every effort has been made to ensure accuracy in the preparation of this manual Should any errors or omissions come to your attention however please contact your nearest Yokogawa representative or our sales office E Protection Safety and Prohibition Against Unauthorized Modification 1 In order to protect the product and the system controlled by it against damage and ensure its safe use make certain that all of the instructions and precautions relating to safety contained in this document are strictly adhered to Yokogawa does not guarantee safety if products are not handled according to these instructions 2 The following safety symbols are used on the product
145. ssive with waiting action 15 Deviation of low limit passive 6 Deviation of low limit passive with waiting action 16 Deviation of high and low limits 7 Deviation of high and low limits with waiting action 17 Deviation within high and low limits 8 Deviation within high and low limits with waiting action 18 PV high limit passive 9 PV high limit passive with waiting action 19 PV low limit passive 10 PV low limit passive with waiting action 20 Alarm type Setting SV high limit 21 SV low limit 22 MV high limit 23 MV low limit 24 PV velocity alarm 25 PV velocity alarm passive 26 Self diagnostic alarm 27 Self diagnostic alarm passive 28 FAIL passive 29 Alarms numbered 11 to 20 are alarms with a waiting action These alarms do not issue alarms after the following events until the normal state is achieved e The power is turned on the power is recovered from the power failure SV is changed the SV number is switched or the alarm type is changed The following figure shows the operation of an alarm with the waiting action Treated as normal Normal Abnormal lt gt i lt 4 gt i lt 4 PV low limit Alarm output ON alarm setpoint In this area the controller does not issue alarms even when PV falls below the alarm setpoint Power on Figure 3 14 1 Alarm with Waiting Action IM 5D1A01 02E PV Time 3 47 1 PV high limit alarm Setting 1 9 11 19 This alarm is issued when PV rise
146. stopped or cascade loop is opened the primary side internal CLOSE Q OPEN x secondary side SV ge og eel 2 a8 23 see OPEN CLOSE switching _ STOP 4 RUN Preset MV Q RUN STOP switching MAN J CAS AUTO Manual opsin 9 He Alarm Alarm Alarm output output2 output3 PV high limit PV low limit PV high limit vy x Fg Q Aa OOA MV Retransmission Digital output voltage output 3 O Terminal CD Parameter Analog signal Legend L Function ee Digital signal IM 5D1A01 02E 2 13 E Cascade Control US1000 11 Two universal input terminals AIN1 and AIN2 are provided The type of MV output can be selected from those in Table 2 4 in Section 2 1 by setting the MVS2 parameter Cascade input via Cascade input or feedforward input Secondary PV input Primary PV input communication Digital input Option Analog input type Analog input type Analog input range conversioni Analog input bias Square root computation Analog input filter Analog input Analog input bias v linearizer PV filter Feedforward input filter v Cascade input filter Cascade ratio Cascade bias AUTO MAN Q PID computation Tracking signal When the controller is stopped or cascade loop is opened the primary side internal output value tracks the secondary side SV 3 OFF CLOSE Alarm output1 PV MV selection
147. t bias Analog input bias Square root computation Square root computation Analog input filter Analog input filter Ten segment linearizer Cascade input filter Feedforward input filter v PV filter Feedforward bias gain FFS SV number selection AUTO mode selection or MAN mode selection STOP y RUN ey Tey el ELE EN ee eee a RUN STOP switehing fo Manual MAN operation s CAS AUTO i AUTO mode selection or MAN mode selection Alarm Alarm Alarm DO will be Re transmit Re transmit tputi output2 output3 output4 OFF when MV PV PV low limit PV high limit PV low limit FAIL output a Valve position Position Retransmission Retransmission Digital output feedback input proportional current output voltage output control relay Terminal Parameter Analog signal output Legend O Cr Function wenn Digital signal IM 5D1A01 02E 2 7 2 2 Cascade Primary loop Control US mode 2 This US mode sets up a controller as the primary loop controller when cascade control is to be performed using two controllers The mode provides an output tracking function and an error signal output to the secondary loop controller both of which are required for a cascade primary loop E Cascade Primary loop Control US1000 00 One universal input terminal AIN1 is provided The MV output is a current output OUTIA termi nal Leave the MVS1 paramet
148. t can be selected from those in Table 2 4 in Section 2 1 by setting the MVS1 parameter Chapter 2 Controller Mode US Mode Tracking signal Tracking switching Primary loop controller Analog input filter Ten segment linearizer Preset MV Analog input range conversion Analog input bias 250 Q Cascade input via PV input Cascade input Apama Aa Feedforward input Option X Analog input type Analog input type Analog input range conversion Analog input type Analog input range conversion Analog input las Square root computation v Analog input filter Ten segment linearizer Feedforward input filter Feedforward bias gain OFF O sToP O Alarm Alarm IM 5D1A01 02E Retransmission voltage output 3 Display massage Switch to AUTO mode from CAS mode when DI2 is OFF 2 CAS AUTO MAN mode selection DO will be OFF v Re transmit output output2 whenCASmode output4 output3 MV selection MVS1 Retansmit on PV low limit is selected _ PV high limit PV low limit FO Digital output PEE ee Digital input DO will be OFF when FAIL output Lege O Terminal CD Parameter Analog signal nd L Function sses Digital signal 2 11 E Cascade Secondary loop Control US1000 21 Control is performed based on a position proportional PID computation
149. the direction of the MV change e The alarm is issued within the range of the arrows Hysteresis 11 PV velocity alarm Setting 25 26 This alarm is issued when PV changes more than the alarm setpoint value within the period of time specified in the parameter PVR T Hysteresis does not function The alarm numbered 26 is passive The PV rate of change alarm occurs in this area ee 100 C When PVR T 10 seconds and the alarm setpoint is set es at 20 C 50 C 10s 20s 30s 12 Self diagnostic alarm Setting 27 28 This alarm is issued upon the following events calibration value abnormal reference junction compensation failure analog digital conversion circuit failure EEPROM failure and input burnout The alarm numbered 28 is passive 3 50 IM 5D1A01 02E Chapter 3 Parameters 13 FAIL output Setting 29 The FAIL output is passive and turns the contact ON in normal state and OFF when FAIL conditions arise The FAIL conditions include RAM failure ROM failure system data abnormal CPU failure and power off A TIP The US1000 controller stops operation upon the FAIL conditions There is no MV output and alarm outputs are turned off CX See Also Subsection 8 5 2 Error Code Description of the separate instruction manual US1000 Digital Indicating Controller IM 5D1A01 01E for information about displays and what to do upon a self diagnostic alarm or FAIL output E The 8 alarm Mod
150. three times PID control using the PID parameter values obtained from auto tuning Figure 3 11 1 Operation of Auto tuning 3 38 IM 5D1A01 02E Chapter 3 Parameters ee Flashing LED lamps at both ends of MV bar graph Figure 3 11 2 Display during Auto tuning The step MV variation of auto tuning is regulated within the upper and lower limits of output opera tion parameters n MH and n ML The SV change made during auto tuning will be ignored and the SV at the start of auto tuning is maintained The SV rate of change function operation parameters UPR and DNR does not work while auto tuning is running E Auto tuning Operations under Preset PID and Zone PID Operation of auto tuning differs as described below depending on the setting of setup parameter PPID Refer to Section 3 10 Parameters for Preset PID and Zone PID 1 When only one set of PID parameters is used PPID 0 e Auto tuning can be executed only for PID group 1 e The setting of parameter AT is either OFF or 1 e The SV at the start of auto tuning is used for auto tuning e The PID values obtained from auto tuning will be stored to 1 P 1 I and 1 D 2 When preset PID is being executed PPID 1 e Auto tuning is executed for the PID group of the number specified to parameter AT regardless of the PID group number set with parameter SVNO e The SVs set for each PID group with para
151. tions for switching between RUN STOP and to switch the operation mode to MAN are assigned to DI1 and DI2 terminals respectively For detailed information about the functions assigned to contact inputs refer to Table 2 3 The assigned function can be changed to other functions e g switching to AUTO mode Refer to Section 3 15 Parameters for Contact Input for how to change Table 2 3 Functions of Contact Input Function Contact status and US1000 controller action RUN STOP switchover STOP when the contact is ON RUN when OFF CAS AUTO MAN mode Operation mode changes to CAS AUTO and MAN when the corresponding contact selection changes from OFF to ON Operation mode does not change from ON to OFF Tracking switching The tracking input from AIN2 or AIN3 is valid when the contact is ON the tracking input is invalid when OFF OPEN CLOSE switchover Cascade open when the contact is ON cascade close when OFF PV hold and MAN mode PV is held in MAN mode when the contact is ON AUTO mode when OFF or AUTO mode IM 5D1A01 02E Chapter 2 Controller Mode US Mode 5 PID computation unit The PID computation unit which represents the core of the control For information about the PID computation unit refer to Section 3 9 Parameters for PID Computation 6 RUN STOP and operation mode switching section The controller operates when the signal from DI1 terminal is off and stops wh
152. to 200 0 AUTO If a large deviation lasts for a long time MV will reach its maximum level because the integral action increases MV to its high limit If MV stays at this level even after PV reaches SV an overshoot may result To prevent this the controller stops the PID computation and holds MV when it reaches its limit This function is called anti reset windup PID computation is resumed when the deviation ratio obtained by the following expression has fallen below the value of the parameter AR Deviation ratio PV SV Proportional band n P x100 When parameter AR is set at AUTO the US1000 automatically determines the point at which to resume PID computation IM 5D1A01 02E 3 31 PID computation PID computation stopped resumed Upper limit of yo ise output n MH MV Time Deviation ratio AR Time Figure 3 9 5 Anti reset Windup Action 3 9 5 Manual Reset The manual reset parameter n MR can be set only when the integral time n D is set off When the integral time is set off and control is performed by only a proportional action or a proportional plus derivative action there will be an offset steady state deviation a phenomenon in which the deviation between PV and SV remains the same every time the process status changes The parameter used to reduce reset this offset manually is the manual reset parameter n MR The function that resets offsets automatically is the integral action
153. to on MAN2 Loop 2 mode switchover to MAN when the DI changes to on O C OPEN on CLOSE off switchover R S RUN off STOP on switchover CONF DI TRF1 Loop 1 tracking flag TRF2 Loop 2 tracking flag SV BO Bit 0 of SV number setting SV B1 Bit 1 of SV number setting SV B2 Bit 2 of SV number setting SV B3 Bit 3 of SV number setting DPI Operation display for interruption 1 DP2 Operation display for interruption 2 MG1 Interrupting message display 1 MG2 Interrupting message display 2 MG3 Interrupting message display 3 MG4 Interrupting message display 4 Setting Range Set the functions D register or I relay number 0 Not registered 1 to 1700 D register 5001 to 7048 I relay Example DI1 5161 DI2 5162 DI3 5163 DI4 5164 DI5 5165 DI6 5166 DI7 5167 Default Depends on USM parameter IM 5D1A01 02E Chapter 3 Parameters 3 15 1 Contact Input Functions This subsection describes the controller actions when the following setting parameters have been set for the contact input function 1 CAS1 AUT1 MANI CAS2 AUT2 MAN2 Operation mode switching These parameters set the operation mode switching functions The operation mode changes to CAS AUTO or MAN when the contact status changes from off to on The minimum on time is three times control period The operation mode re
154. trol 0 3 12 3 5 Parameters for Feedforward Input 0 eee eee ceseeeeceeceeeceeeeeeeeeeeeeseneeaee 3 13 3 5 1 Selection of Feedforward Input 20 eee ceeeseceeeseceeceeeceeenseeeeees 3 13 3 5 2 Feedforward Input Filter Bias and Gain 0 cee eeeeeeeeeseceececeneeeeeeees 3 14 IM 5D1A01 02E vi 3 6 Parameters for Ten segment Linearizer oo eee eee eeeceeeceeeeeeeeeeeeeeeneeaes 3 15 3 6 1 Unit of Ten segment Linearizer oo elec eeeseceeeteceeeeseceseeseeeeees 3 16 3 6 2 Parameters to Set Ten segment Linearizer 0 eee ee eeeeeeceeeeeeeee 3 17 3 7 Parameters Related to Target Setpoint and SUPER Function 3 18 327i A Target Setpoint S V ce vc cst eves ce psuesgs deh cps ees cet tes ce susie coset E a ee Rae ES Op useevesd 3 18 JTS SUPER PUNCHOD si csibio ei shi nkdaraig RE EE E E ieee 3 18 Ja PV rakin E e nee oe reee code td Gove E R Gh A S E ete tes 3 19 3 7 4 SV Rate of change Ramp Rate sssseseseeeessereseseesrsreresrreerrssreresereesre 3 20 3 7 5 Deviation Display Range and SV Bar Segment 0 eee eee ete eeeee 3 21 3 8 Parameters for Control Computation cece ce ceeeceeceeeeeeeeeeeeneeseeees 3 22 3 8 1 Control Computation Type and MV Output Type eee 3 22 3 8 2 Time proportional PID Computation and Cycle Time of MV Output 3 24 3 8 3 Continuous PID Computation eee ee cee ceeeeeeeeeeeeseecseesaecseeaeenees 3 24 3 8 4 ON OFF Computation and Hysteresis 00 0 0 eee ee eeeeseee
155. ut 3 Within instrument input 5 000 range range RL3 Minimum value of analog input 3 Within instrument input 1 000 USMD IN range range Thermocouple P RH1 Maximum value of PV1 range 19999 to 30000 RTD RH1 value Z lt OSE RIP REIS30000 voltage input 100 0 Thermocouple RTD RLI value voltage input 0 0 19999 to 30000 P RL1 Minimum value of PV1 range 0 lt P RH1 P RL1 lt 30000 Thermocouple RTD RH2 value voltage input 100 0 19999 to 30000 P RH2 Maximum value of PV2 range 0 lt P RH2 P RL2 lt 30000 Thermocouple RTD RL2 value voltage input 0 0 19999 to 30000 P RL2 Minimum value of PV2 range 0 lt P RH2 P RL2 lt 30000 Parameters RH1 to RL3 are used to set the range used for control within the instrument range shown in the analog input type list on the previous page Parameters P RH1 to P RL2 PV range are used to set the PV ranges used for the controller s internal computation when the controller performs loop control with PV switching or loop control with PV auto selector which receives two inputs of different measurement ranges see Figure 3 2 1 The parameters are also used to set the PV range for relative humidity data obtained from dry and wet bulb calculations in temperature and humidity control see Figure 3 2 2 The decimal point position of the PV range can be set with parameters P DP1 and P DP2 refer to subsection 3 2 3 PV range P R
156. ut from the terminal n ML gt 5 0 5 0 105 0 Range of internal MV Figure 3 12 3 Output Limiter E Shutdown Function This function fully closes a control valve beyond its positioner deadband This function is available when the output type is current of 4 to 20 mA and the operation mode is MAN When output is reduced using the V key until SHUT appears on the SV digital display the shutdown function starts to operate and the output falls to approx 0 0 mA 3 42 IM 5D1A01 02E Chapter 3 Parameters 3 12 3 Output Rate of change Limiter The output rate of change limiter prevents a sudden change in MV While the output rate of change limiter is active the derivative action is canceled It is thus necessary to use this limiter considering the effect of the cancellation when the control involves a derivative action Setup parameter Main Sub Parameter Description Setting Range Default S LP1 be Pik oes o SLP2 CTL MVR Output velocity limiter OFF 0 1 to 100 0 s OFF The following figure illustrates the change in MV when the output rate of change limiter is set at 2 second Output changes linearly at a rate of 2 per second MV 105 0 80 0 peite ea eee Output rate of change 2 0 second 20 0 5 0 Time 30 seconds Figure 3 12 3 Output Rate of change Limiter 3 12 4 Preset MV In the following situations the controller outputs the preset MV value

Download Pdf Manuals

image

Related Search

Related Contents

Samsung 713BMPLUS Manual de Usuario  Music_Emp_FX_1980 - Preservation Sound  Conditions générales d`achats  Holmes HAP 220 User's Manual  Manual de Usuario del Sistema de Costos ABC  DA型・DB型 電気チェーンブロック 取扱説明書    Symphony Hi Cool Operating Instructions  INSTALLATION GUIDE & USER`S MANUAL  

Copyright © All rights reserved.
Failed to retrieve file