Home

PowerFlex 700S Reference Manual - Mid

image

Contents

1. Specifications amp Dimensions 1 19 Figure 1 10 PowerFlex 700S Bottom View Dimensions Frame 1 2 amp 3 Frame 1 Frame 2 08 5 4 27 gt e 167 5 6 59 lt 875 3 44 e 46 9 6 18 lt 67 5 2 66 gt SS 28 zis 3 Dia 47 5 1 87 2 0 87 Dia i LE autoen EE e 995 ce l I tL lt 0 0 0 8 7 E Ze 4 909006 25 5 fe 1 00 a E Sai 184 8 El o i le T T T T 7 28 E 638 d Bo 187 6 aja l E 2 185 1 620 _ 6 EE 7 39 P 2 7 29 a Bad a ns Ze H OA 040 040 133 3 E 1 OO cm fa i l 6 25 E Kat POOO a ELCH ze DEOKORGEORDS D o OD EZ O LTC O O voy Y Y Y 43 0 1 69 gt 70 0 2 76 gt 39 3 1 55 x lt 75 9 2 99 gt j 57 2 2 25 lt 96 0 3 78 gt lt 72 7 2 86 gt L 106 0 4 17 Le 139 4 5 49 gt 177 4 6 98 Frame 3 All Drives except 50 HP 480V Frame 3 50 HP 4800V Normal Duty Drive lt 105 3 4 15 105 3 4 15 gt 34 9 1 37 Dia i 22 2 0 87 Dia S 94 7 3 73 37 3 1 47 Dia lt 947 3 73 gt 2 Places 46 7 1 84 Dia 28 7 1 13 Dia 2 Places 28 7 1 13 Dia 2 Places 2 Places 2 Places sr ey 3 MES 7 400 toon A al O S L 4 GOR S 184 5 E o e E 184
2. Stop 25 0kS s 322 Acas C4 RMS 11 68mV immens cha 7 TT 8mv Ch4 10 0mva Figure 2 2 Current at 4kHz PWM Frequency Tek Stop 25 0kS s 94 Acgs C4 RMS 11 46mv Laonis trad TT EMV Ch4 10 0mvQ The benefits of increased carrier frequency include less motor heating and lower audible noise An increase in motor heating is considered negligible and motor failure at lower switching frequencies is very remote The higher switching frequency creates less vibration in the motor windings and laminations making lower audible noise This may be desirable in some applications Some undesirable effects of higher switching frequencies include derating ambient temperature vs load characteristics of the drive higher cable charging currents and higher potential for common mode noise A very large majority of all drive applications will perform adequately at 2 4 kHz Common Bus Systems Communications Detailed Drive Operation 2 13 Refer to Common Bus publication DRIVES IN001 for detailed information There are some special considerations for communicating to a PowerFlex 7005 through a 20 COMM module due to the use of DInt double integer and Real floating point type parameters How the data is handled depends somewhat on the type of controller used Therefore the considerations for ControlLogix and 16 bit controllers PLC 5 or SLC are ex
3. lt 183 gt PI Error ol R i PI Output utpu 1 a Q gt 1 Typically PI Reference 181 k 180 OX sn P WW gt LINK to p22 LPass P Gain Limit PI Feedback 182 PI High Limit C191 PI Lpass Filt BwC184 PI Prop Gain SEH PI Lower Limit C192 190 PI Integ Output Logic Command 14 Gain Limit PI Trim EE PI Trim Rst PI Integ Time Car PI Preload 185 15 PI Integ HLim PI Integ LLim y Process Pl Reference and Feedback The reference and feedback signals are the values present in parameter 181 PI Reference and parameter 182 PI Feedback PI Reference could be a set value or linked to a variable parameter such as an analog input Typically PI Feedback is linked to an analog input value received from a process line transducer The reference and feedback values are compared and an error signal is created This error signal is sent to a low pass filter The filter bandwidth is set by parameter 184 PI Lpass Filt BW in radian second The output of the filter is sent to the process PI regulator Detailed Drive Operation 2 93 Process Pl Regulator Parameter 185 PI Preload presets the process time When the PI Output is enabled the integral term of the process regulator will be preset to start parameter 180 PI Output at the value set in PI Preload Parameter 187 PI Integ Time is the integral term for the regulator It is in units of 1 seconds For example
4. i 93 Speed Trim 3 23 xX SpdTrim 3 Scale 24 gt Spd Ref Bypass2 A al from Speed as Toutai Reference EB ax OX bypass Ovr Smpl ms Posit Spd Output Speed Trim 2 318 gt o Ca gt Lo s wn from Position Control Lead Lag STrim2 Filt Gain C 25 D SpdTrim2 Filt BW 29 Autotune Speed Reference During the inertia test the autotune speed reference is used instead of the output of the speed trim summation Parameter 74 Atune Spd Ref sets the speed for the inertia test Bit 4 Inrta Tst En of parameter 157 Logic Ctrl State turns on during the inertia test and allows the autotune speed reference to bypass the output of the speed trim summation Logic Ctrl State 04 Inrta Tst En lt 157 X 04 from Speed Trim Autotune Bypass to Speed Limits Atune Spd Ref Speed Reference Limits At this point the summed speed reference is limited by parameters 75 Rev Speed Limit and parameter 76 Fwd Speed Limit Those limits are set to 125 and 125 of parameter 4 Motor NP RPM by default from Autotune to Current Bypass Limit Stop Detailed Drive Operation 2 121 Current Limit Stop When a current limit stop is commanded parameter 157 Logic Ctrl State bit 6 CurrLim Stop is set Then a O speed reference command is sent into the speed regulator bypassing the ramp and speed trim Logic Ctrl State CurrLim Sto
5. LS Total Inertia Ca ee Motor Spd Fdbk Inert Adapt Sel 00 Inrtia Adapt Load Est Inert Adapt BW Inert Adapt Gain 01 Motor Torque Ref From Spd Torque SE To Current Mode Selection Control Limit Torque Limits During speed changes a certain level of torque is required due to load inertia That level of torque is above the torque used to run at constant speed Inertia compensation calculates that torque based on the acceleration or deceleration rate Then that acceleration or deceleration torque can be fed forward into the torque control making for smoother accels and decels especially with high inertia loads Parameter 56 Inertia SpeedRef is linked to parameter 43 Ramped Spd Ref This becomes the speed reference that the inertia compensation block uses to calculate the acceleration or deceleration rate also known as the derivative of speed with respect to time Inertia compensation is enabled by turning on parameter 151 Logic Command bit 10 Inertia Comp Parameter 9 Total Inertia is calculated during the autotune and is used along with the calculated acceleration or deceleration rate to calculate the torque adder Parameter 57 InertiaAccelGain determines the gain for the inertia compensation during acceleration A gain of 1 results in 100 compensation Parameter 58 InertiaDecelGain determines the gain for the inertia compensation during deceler
6. Bit3 RLO TrgeEdg0 0 and Bit 4 RLO TrgEdg1 0 configures the registration to capture position on the rising edge of Digital Input 1 Bit5 RLO DirRev land Bit 6 RLO DirFwd 1 configures the registration to capture position when Encoder 1 feedback is forward counting up or reverse counting down All other bits left at default Note that bits 16 through 22 are for the second registration latch and are not used in this example e Set parameter 237 RegisLtch 0 1 Ctrl Bit 0 RLO Arm Req 1 to arm the registration Parameter 238 RegisLtch 0 1 Stat Bit 0 RLO Armed will be set to 1 e When Digital input 1 turns on parameter 238 RegisLtch 0 1 Stat Bit 1 RLO Found will be set to 1 and parameter 235 RegisLtch0 Value will contain the position counts of Encoder 0 that was captured Parameter 237 RegisLtch 0 1 Ctrl Bit 0 RSLO Arm Req will be set back to 0 when the registration is found e To arm the registration again set parameter 237 RegisLtch 0 1 Ctrl Bit O RSLO Arm Req 1 to arm the registration Parameter 238 RegisLtch 0 1 Stat Bit 0 RSLO Armed will be set to 1 again and Bit 1 RLO Found will be set back to 0 until Digital Input 1 turns on again Note To disarm the registration if it has not been found you can set parameter 237 RegisLtch 0 1 Ctrl Bit 1 RSLO Disarm Req 1 Parameter 237 RegisLtch 0 1 Ctrl Bit 0 RSLO Arm Req will be set back to 0 Then set parameter 237 RegisLtch 0 1 Ct
7. Autotune Start Up Menu The Start Up menu prompts the user for information and yes no responses as required The Motor Control Motor Data Feedback Configuration Power Circuit Test Direction Test Motor Tests and Inertia Measure submenus of the Start Up Menu are all related to the autotuning of the drive motor combination and will be covered in this section Detailed Drive Operation 2 5 Motor Control The Motor Control submenu asks you to select the motor control operating mode which sets the parameter 485 Motor Ctrl Mode Choices are FOC FOC2 Pmag Motor V Hz and Test e FOC selects field oriented control This should be the selection for AC squirrel cage induction motors e FOC selects field oriented control and is only used for a specific type of AC induction motor with motor thermal feedback For Phase II Control V2 003 or later V Hz selects volts per hertz control Pmag Motor selects control for permanent magnet motors e Test puts the drive in a test mode to perform the direction test Test is automatically selected during the direction test portion of the Start Up routine and does not need to be set manually by the user Next the motor control submenu asks you to select whether you have no dynamic braking an internal resistor for dynamic braking or an external resistor for dynamic braking When no dynamic braki
8. Delayed Spd Ref One Scan Delay Parameter 45 Delayed Spd Ref is delayed by one scan of the speed control loop Parameter 37 Spd Ref Bypass can be linked to parameter 45 Delayed Spd Ref instead of parameter 43 Ramped Spd Ref for use in SynchLink applications See SynchLink for more details Inertia Compensation Inertia compensation is used to calculate the level of torque required due to load inertia during speed changes For more information on inertia compensation see Inertia Compensation Friction Compensation The friction compensation block is used to calculate breakaway torque and the torque needed just to keep the motor running at a constant speed due to friction For more information on friction compensation see Friction Compensation Virtual Encoder The virtual encoder can be used as a position master for position following applications see the Position Loop Follower Electronic Gearing section of the Position Loop section for details on position control The advantage of following a virtual encoder instead of an actual encoder feedback is that the virtual encoder reference is much smoother and is not subject to noise The virtual encoder block generates a position counter based on the speed reference in parameter 43 Ramped Spd Ref Parameter 61 Virt Encoder EPR is used to specify the desired edges per revolution for the virtual encoder For example if parameter 61 is 4096 EPR this wou
9. Spd Reg PI Out Spd Ref Bypass2 Motor Speed Ref 302 gt a cas PI Regulator j Lead Lag Torque Control Es Lead Lag H gt Speed Trim 3 Motor Spd Fdbk Droop Spd Reg P Gain Spd Reg Gain je Spd Reg BW The main purpose of the speed PI regulator is to produce a torque reference for the current regulator block The following sections describe each portion of the speed PI regulator Speed Trim The speed trim blocks are used to sum the speed reference from the speed reference control loop with speed trim values from other sources Parameter 22 Speed Trim 2 provides a trim value with a lead lag filter By default it is linked to the output of the position loop parameter 318 Posit Spd Output For more information on lead lag filters refer to Lead Lag Filter on page 2 33 Parameter 23 Speed Trim 3 provides a scalable speed trim value The speed reference value for Speed Trim 3 is multiplied by the scaling parameter 24 Spd Trim 3 Scale Spd Trim 3 Scale is a linkable parameter This allows speed trim 3 to be scaled dynamically with an input signal if desired An example would be to have an analog input linked to the scale parameter The speed trim and the scale would then affect the value sent to the summation block 2 120 Detailed Drive Operation The speed trim values are summed with the speed reference from the speed reference control loop
10. 4 Ratiom 1 Notice that the encoder PPRs should not be included in the calculation for parameter 13 Spd Ref2 Multi Spd Ref2 Multi is rounded to the 4th decimal place The position loop gear ratios will be exact so that the follower tracks at 4 times the master s speed Position Offset Offsets can be added to the position reference Offsets are used to make a correction move to synchronize the follower to the master position A Added to Position Reference After EGR Deriv Posit Offset 1 C753 P Fa Co TEY Posit Offset 2 754 Filter E gt Posit Offset Spd C755 Rate Lim LPass Position Control 1 8 X Offset Pol Cao y 04 a 05 Position Status 8 X OffRefActl Position Control C740 05 X Offset Ref There are two offsets parameters 753 Posit Offset 1 and 754 Posit Offset 2 The offset speed must be entered in parameter 755 Posit Offset Spd if this is left at zero the move will not occur The position offset must be entered in counts of Detailed Drive Operation 2 73 feedback because it is added to the position reference after the EGR scaling Offsets must be maintained to keep the position I E if you enter a 300 in the offset the position loop will move 300 counts extra If you zero the offset command the motor will return to the previous position When it is necessary to zero the offset after a move without returning to the previous positi
11. Bits 5 RLO DirRev 6 RLO DirFwd 21 RL1 DirRev and 22 RL1 DirFwd set the direction of position capture see Table 2 G Trigger Direction Settings Bits 8 SL DI Filt 0 9 SL DI Filt 1 10 SL DI Filt 2 and 11 SL DI Filt 3 configure a filter for the digital input 1 and 2 see Table 2 H Filter Settings The filter requires the input signal to be stable for the specified time period Input transitions within the filter time setting will be ignored Bits 8 11 add 100ns filter per stage to external trigger Table 2 E Trigger Source Settings Bit 2 18 Bit 1 17 Description 0 0 Encoder Ch Z AND Ext Trig A 0 1 Ext Trig B Digital Input 2 1 0 Ext Trig A Digital Input 1 1 1 Encoder 0 Primary Encoder Z phase Table 2 F Edge Selection Settings Bit 4 20 Bit 3 19 Description 0 0 Capture on rising edge 0 1 Capture on falling edge 1 0 Capture on both edges 1 1 Disable capture Table 2 G Trigger Direction Settings Bit 6 22 Bit 5 21 Description 0 0 Not Configured 0 1 Reverse 1 0 Forward 1 1 Both Directions Detailed Drive Operation 2 83 Table 2 H Filter Settings Bit 11 10 9 8 Input Filter Setting 0 0 0 0 Filter disabled 0 0 0 1 100 ns filter 0 0 1 0 200 ns filter 0 0 1 1 300 ns filter 0 1 0 0 400 ns filter 0 1 0 1 500 ns filter 0 1 1 0 600 ns filter 0 1 1 1 700 ns fi
12. O0LO 48S WOr 0L9 380 W0YL OLO 3209 MO0pL Sl 0 0 Ol SL Ol HELI VOL 8 F 89 SUD Sl t 8d9adoz VN 98 380 W0p 98 4Z0 WOrt L st Ss 9 DL 9 O24 99 Sr EL LE 260 S20 edyadoe VN Sc8 380 W0y S38 320 MOp L E Ss DL E 9 DEI B i 722 20 6l 80 GO t dcados SHEM g S equiny Bojejeo ejqeJteny ron EI a XEN per XP UN XEN tw 90S E WWE 1U0D vAy Sdwy dH ON 7 asny 3 Jaquny uonedissiq 40 99 0 d 1948918 asny Aejaq Aejaq au suey funeg Goes J9MO4 abuey Wan ajqeysnipy YUM 19112 1010 WOYE HOI 10401 una w uoy juaua 3 eng sdwiy nding indu MA au S 0N 104 GP Z GET 925 9 SOWEAJ SODAS UONDE O1g Indu DY HOA 80Z 2 43 Detailed Drive Operation YN E 00y 09 094 OSE 099 OSE Oly SOE SOc LIZ 66L GZ YN 00y 009 009 D osy Wen o6 982 093 6l6 G 00L 9 ogzaaoz YN F F osz 0Ssp 009 003 00 003 80 lez St 109 Srl 09 VN osz 949 009 See 007 Gee 883 ble 361 6vZ 08L 94 9 c6lados YN E osz GLE 00S GIL Glo GLI 092 S6L DEL LOS eck os YN Wen Dk 009 003 00 002 lez 691 Sb F09 opt 09 9 pelados YN Os 00 Dik Sl Gee Gel GLL 96L Ol gn 86 0p VN zi osz GLE 00S SL 63 SL SL Ebt Ob 20S col 0S S 0 ELados YN 0006 NINO WOpL 001 00 00 O01 GIL 001
13. When slip compensation is enabled the dynamic speed accuracy is dependent on the filtering applied to the torque current The filtering delays the speed response of the motor drive to the impact load and reduces the dynamic speed accuracy Reducing the amount of filtering applied to the torque current can increase the dynamic speed accuracy of the system However minimizing the amount of filtering can result in an unstable motor drive The user can adjust parameter 99 Slip Comp Gain to decrease or increase the filtering applied to the torque current and improve the system performance For parameter 99 a higher value decreases filtering and a lower value increases filtering Speed Control Speed Mode Speed Regulation Speed Position Feedback Detailed Drive Operation 2 99 Figure 2 19 Rotor Speed Response Due to Impact Load and Clip Compensation Gain Impact Load Removed Increasing Sli Impact Load y Comp rk j Applied sl E LL a a Rotor Speed Increasing Slip Se eee x Cana Giir Reference 0 A 0 See Speed Position Feedback section for information about feedback devices and speed regulation with and without a speed feedback device See the Speed PI Regulator section for information about the speed regulator See the Torque Reference section for information about choosing the output of the speed regulator as the reference to the torque loop The speed feedback block selects the feedback device and scales the fee
14. Wiring and Grounding Guidelines for Pulse Width Modulated PWM AC Drives publication DRIVES INO01 for detailed information This publication is available online at http literature rockwellautomation com literature Refer to Wiring and Grounding Guidelines for Pulse Width Modulated PWM AC Drives publication DRIVES INO01 for detailed information http literature rockwellautomation com literature Refer to Wiring and Grounding Guidelines for Pulse Width Modulated PWM AC Drives publication DRIVES INOO1 for detailed information http literature rockwellautomation com literature 2 12 Detailed Drive Operation Cable Trays and Conduit Carrier PWM Frequency Refer to Wiring and Grounding Guidelines for Pulse Width Modulated PWM AC Drives publication DRIVES INO0O1 for detailed information http literature rockwellautomation com literature See Chapter 1 for derating guidelines as they travel to carrier frequency Parameter 402 PWM Frequency sets the carrier frequency In general the lowest possible switching frequency that is acceptable for any particular application is the one that should be used There are several benefits to increasing the switching frequency Refer to Figure 2 1 and Figure 2 2 Note the output current at 2 kHz and 4kHz The smoothing of the current waveform continues all the way to 10 kHz Figure 2 1 Current at 2kHz PWM Frequency
15. In 1 Real In 2 Real In 3 Real In 4 Real ojl T oj 0 l 0 NU T Trend Int Diet C70 tLe Trend In2 Dint Cra tLe Trend In3 Dint Gre Ls Trend In4 Dint 582 IR I gt I Trend Int Real CSC Trend in2 Real 675 Trend In3 Real 579 Trend In4 Real 583 H o l E o l S 7 tHe H Ia 1 Trend Out1 Dint 1 l Trend Out2 Dint 1 l Trend Out3 Dint 1 Trend Out4 Dint 572 576 i 580 m Trend Out1 Real m gt Trend Out2 Real m Trend Out3 Real ri Trend Out4 Real 1023 573 1023 577 1023 581 1023 585 Trend Mark Dint 567 Trend Mark Real 568 TrendBuffPointer 569 Unbalanced or Ungrounded Distribution Systems Unbalanced Distribution Systems This drive is designed to operate on three phase supply systems whose line voltages are symmetrical Surge suppression devices are included to protect the drive from lightning induced overvoltages between line and ground Where the potential exists for abnormally high phase to ground voltages in excess of 125 of nominal or where the supply ground is tied to another system or equipment that could cause the ground potential to vary with operation suitable isolation is required for the drive Where this potential exists an isolation transformer is strongly recommended Ungrounded Distribution Systems All drives are equipped with an MOV Metal Oxide Varistor that
16. Parameter 845 Dig Out Sel 0 User Select Parameter 846 Dig Our Data is linked to parameter 824 Local UO Status Parameter 847 Dig Our Bit 1 Digital Output Status Bits Parameter 824 Local I O Status bits 16 18 give the status of the digital outputs and can be used for troubleshooting the digital outputs When the bit in Local I O Status associated with the digital output is on this means that the logic in the PowerFlex 700S is telling that digital output to turn on When the bit associated with the digital input is off this means that the logic in the PowerFlex 700S is telling that digital output to turn off Options d 2 2 a a Diol lolo lololo l l l le l l 5la E Ialeloalealeioalea lo a 8 8 SESS ee ee 8 8 oly ele 8 8 8 88 8 8 18 lo E 31338 31381818 3813 381818 33 9 92 31818 818 31318 5555 55 SS SS SS AS AS NES cc 10 Cc 10 0 0 CC CC CC CCC DON EE CC CC COOQOOOQOOQOOQON 1 Default O O jO 0 JO JO JO JO jO JO jo JO O O O O JO JO JO O O JO JO O JO JO JO JO 0 O JO 0 0 False Bit 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 109 8 7 6 5 4 3 2 1 0 1 True Direction Control and Bipolar Reference The direction of rotation of the motor can be controlled by a forward reverse command or by the use of a bipolar signal Parameter 153 Control Options bit O Bipolar Sref selects this option When this bit is enabled 1 a bipolar speed reference is used In bipolar ref
17. Position Control can be controlled from DriveLogix by linking it to one of the FromDriveLogix words parameters 602 to 622 See the DriveLogix 5730 Controller User Manual publication 20D UMO003 Inertia adaptation is used to compensate for lost motion which occurs when a gear box and or springy coupling is present Inertia adaptation can allow the user to increase the speed regulator bandwidth by up to four 4 times For example a motor connected to a gearbox is shown Motor gear box Load This gearbox can be represented by a spring k and gear back lash BL Motor Load k BL When the speed of the motor increases there is a period of time represented by Ax before the teeth of the gearbox engage After that time there will be some twisting like a spring in the shaft after the teeth of the gearbox engage This lost motion causes mechanical instability and limits how high the speed regulator bandwidth can be set without causing instability Inertia adaptation detects the lost motion and a higher speed regulator bandwidth can be achieved without instability f slope due to springy nature k of shafts a after gearbox teeth engage AX backlash BL before gearbox teeth engage 2 54 Detailed Drive Operation Inertia Compensation Configuration See Speed PI Regulator Advanced Tuning for the Speed Regulator with Gearbox or Belt on page 2 126 for details on using inertia adaptation
18. Time Axis Output 1 Time Axis Rate A lt 203 gt Control Options eg Time Axis En Css 24 OR Time Func Generator Logic Command Time Axis En Gta 2 146 Detailed Drive Operation Torque Reference Trending When the PowerFlex 7008 is operated in Torque mode an external signal is used for a Torque reference Refer to Figure 2 26 for the firmware diagram Figure 2 26 Torque Reference Firmware Diagram Torque Ref 1 Torque Ref1 Div Torque Reference Input Parameter 111 Torque Ref 1 is used to supply an external reference for desired torque The scaling of this parameter is a per unit type where a value of 1 0 is equal to the rated motor torque Torque Ref 1 is then divided by parameter 112 Torq Ref Div This defines the scaled Torque Ref 1 Parameter 113 Torque Ref 2 is used to supply an external reference for desired torque The scaling of this parameter is a per unit type where a value of 1 0 is equal to the rated motor torque Torque Ref 2 is then multiplied by parameter 114 Torq Ref2 Mult This defines the scaled Torque Ref 2 The torque reference can be utilized when a master slave multi drive system is configured The torque reference into the slave can be scaled to create the proper torque output Keep in mind that the motors may be different ratings and this function is used to help the system share the load Parameter 115 Torque Trim can be u
19. to turn on bit 1 Spd S Crv En of parameter 151 Logic Command Link parameter 862 Bit Swap 1B Data to parameter 824 Local I O Status Parameter 862 Bit Swap 1B Data sets the data that you would like to compare Set parameter 863 BitSwap 1B Bit 3 This parameter indicates that bit 3 of parameter 824 is used Bit 3 of parameter 824 Local I O Status indicates that digital input 3 has turned on Link parameter 151 Logic Command to parameter 864 BitSwap 1 Result The result of bit swap will control parameter 151 The overall function of BitSwap 1 is that when digital input 3 turns on we turn on bit 1 Spd S Crv En of parameter 151 Logic Command For another example using multiple bitswaps and the 16 position selector switch to control the point to point position with Digital Inputs see Position Loop Point to Point on page 2 74 MOP The Motor Operated Potentiometer MOP allows the user to increase and decrease a DInt double integer or floating point value using two inputs The inputs can come from Digital Inputs a network or DriveLogix Lao Rate Increment Decrement Convert DInt Real 1086 x Scale S MOP High Limit MOP Low Limit MOP Scale Dint Detailed Drive Operation 2 151 Configuration Parameter 1086 MOP Control Motor Operated Potentiometer control and configuration The bits are as follows Bit 0 Increase if set increm
20. 1 and parameter 95 SReg Out Filt Gain 1 to disable the filters 5 Enable inertia adaptation parameter 132 Inert Adapt Sel bit O Inertia Adapt 6 Enable the drive and adjust the bandwidth BW for the application but do not exceed curve 2 When you adjust the BW you must set parameter 90 and parameter 133 to the same BW 7 You may hear an unusual high frequency sound which indicates adaptation is active A o o Maximum regulator Bandwidth vs inertia Ratio with Gear Box 15 o A _ _ _ 100 Bandwidth 50 HA AENA APA D 20 30 40 50 Ratio system inertia motor inertia Parameter 110 Speed Torque Mode is used to choose the operating mode for the drive The drive can be programmed to operate as a velocity regulator a torque regulator or a combination of the two Refer to the firmware flowchart shown in Figure 2 22 2 128 Detailed Drive Operation Figure 2 22 Firmware Flowchart ERR Logic Ctrl State Forced Spd from Speed Control I 157 X10 Spd Reg PI Out gt lt 302 0 at z H Selected Trq Ref gt Inertia Trq Add lt 59 gt X 1 HH DS l I FricComp Trq Add gt lt 69 e 2 ry 1 po in e 3 e Torque Step gt Al Max 1 Torque Ref 1 111 5 i ad Torque Ref1 Div 112 S H 1 6 I Torque Ref 2 113 Torqu
21. 100 For example with a 480V rated drive and BusReg Brake Ref 111 J2 x 480 x 111 100 bus voltage reference 753 5 VDC Note When the low voltage class is selected an additional multiplier of 1 2 is used For example parameter 401 Rated Volts 400V AC then parameter 401 1 2 480 VAC is used to determine the bus voltage reference e 42 x 400 x 1 2 x 111 _ 100 bus voltage referenc 753 5 VDC In this case if a drive has a selected low voltage class but is run on a high voltage class AC line the dynamic brake will not automatically turn on Parameter 416 Brake PulseWatts sets the peak power reference for determining the protection for an external brake resistor Parameter 416 is active only if the configuration is selected for an external brake parameter 414 Bus Brake Cnfg bit 1 is set to 1 When the internal brake resistor is used then the protection is determined from the drive internal values Normally this value is specified by the resistor vendor as the energy rating in Joules or a 1 second power rating in Watts with typical values in the range of 30 to 100 times higher than the resistor s continuous power rating Parameter 416 Brake PulseWatts Resistors peak energy in Joules 1 Sec where the resistor package s peak energy rating is obtained from the resistor manufacturer When the resistor package s peak energy rating cannot be obtained there are a few other ways to approximate paramet
22. 4 Max ElemTemp Act Maximum temperature that the resistor element can handle C 5 BodyTemp Act Predicted temperature of the resistor body C 6 ElemTemp Act Predicted temperature of the resistor element C 7 BTmpTrip Stat Maximum resistor body temperature has been exceeded when parameter 419 Brake TP Data 1 8 ETmpTripStat Maximum resistor element temperature has been exceeded when parameter 419 Brake TP Data 1 9 Int DB Ohms Rating of internal resistor when internal resistor is installed Ohms 10 Data State A value of 0 in parameter 419 Brake TP Data initial state 1 internal resistor data loaded 2 external resistor data loaded 11 MC BrakeEnbl A value of 0 in parameter 419 Brake TP Data dynamic braking disabled 1 dynamic braking enabled 12 1 rdb Inverse of the resistance 1 Ohms 13 1 th_eb Inverse of the thermal impedance from the resistor element to body Watts C 14 1 ce Inverse of the resistor element thermal mass C W sec 15 tamax Maximum ambient temperature of resistor C 16 1 th_ba Inverse of the thermal impedance from the resistor body to element Watts C 17 1 cb Inverse of the resistor body thermal mass C W sec 18 DB IGBT Amp IGBT current rating Amps Parameter 419 Brake TP Data displays the data selected in parameter 418 Brake TP Sel Refer to
23. 460 32 0 79 7 2390 12 70 4 66 5 50 80 3400 0 0 1326AS B310H 460 0 8 204 5 4090 0 30 6 2 4 0 70 6200 1326AS B330H 460 2 1 204 5 4090 0 90 6 6 0 2 10 6500 1326AS B420G_ 460 2 6 179 0 3580 1 20 6 7 8 3 20 5250 1326AS B440G 460 5 4 149 0 2980 2 00 6 16 2 6 40 5250 1326AS B460F 460 6 2 148 5 2970 2 80 6 18 6 9 00 4300 1326AS B630F 460 78 142 7 2140 2 40 8 18 5 10 70 4500 1326AS B660E 460 11 8 100 7 1510 3 40 8 29 8 21 50 3000 1326AS B690E 460 19 0 87 3 1310 5 00 8 41 3 36 40 3000 1326AS B840E 460 21 2 79 3 1190 4 70 8 39 5 37 60 3000 1326AS B860C 460 17 6 77 3 1160 6 00 8 44 4 49 30 2000 1326AH B330F 460 2 1 0 0 3000 0 75 9 0 3000 1326AH B440F 460 3 3 0 0 2500 1 22 13 8 2500 1326AH B540F 460 11 1 0 0 2500 2 60 47 2 2500 3050R 7 390 66 0 50 0 500 30 00 12 132 0 500 11050R 7 390 218 0 50 0 500 110 00 12 436 0 500 PET Position Loop Follower Electronic Gearing Detailed Drive Operation 2 69 Pulse Elimination Technique See Reflected Wave Technical Information General facts about using the Position Loop for follower applications 1 Parameter 768 PositReg P Gain is used for tuning 2 Parameter 770 Posit Reg Integ is normally not needed for position following applications and is disabled by factory default 3 The number of position counts per revolution depends on the type of feedback device used a When using an encoder for positioning the drive uses quadrature counts i e 102
24. 500 0 19 69 18 55 40 9 22 68 50 Refer toTable 1 B for frame information Weights include HIM DriveLogix controller with ControlNet daughtercard Hi Resolution Encoder Option and 20 COMM C ControlNet adapter Figure 1 3 PowerFlex 700S Frame 4 AA lt A __ gt lt D gt 13 0 0 55 7 0 0 27 2 Places lle Y eg c TA NA A OI 312 i D 12 28 Seet 0 Za ET E o o P Dimensions are in millimeters and inches 9 Jy so03 gt lt A 80 Lifting Holes 3 Places 031 4 Places Weight e kg bs Frame O E Drive Drive amp Packaging 4 220 0 6 66 251 9 9 92 758 8 29 87 201 7 7 94 192 0 7 56 738 2 29 06 24 49 54 0 29 03 64 0 O Referto Table 1 B for frame information e Weights include HIM DriveLogix controller with ControlNet daughtercard Hi Resolution Encoder Option and 20 COMM C ControlNet adapter 1 13 Specifications amp Dimensions Figure 1 4 PowerFlex 700S Frame 5 gt lt 65 0 26 lt AA gt lt A gt bl lt 259 1 10 20 gt gt lt 1500 59 gs D Detail c Se ay o O o at e Mmmm 0 B s E E P
25. DPI Data In D2 2 20 DPI Data Out A1 2 14 2 21 Index 6 DPI Data Out D2 2 21 DPI In DataType 2 13 2 20 2 21 DPI Out DataType 2 14 2 21 Drive OL JnctTmp 2 29 Drive OL Status 2 28 Encdr 0 Position 2 102 Encdr 0 Spd Fdbk 2 102 Encdr 0 1 Config 2 100 Encdr 0 1 Error 2 102 Encdr0 Position 2 101 Encdr0 Spd Fdbk 2 102 Encdr1 Position 2 71 2 81 2 102 Encdr1 Spd Fdbk 2 70 Encoder0 PPR 2 100 Encoder1 PPR 2 100 Exception Eventi 2 111 2 112 Exception Event2 2 88 Fault Clr Mask 2 58 Fault Clr Owner 2 64 Fault Status 1 2 32 Fault Status 3 2 32 FB Opt0 Posit 2 104 2 105 2 106 FB Opt0 Spd Fdbk 2 104 2 105 2 106 FB Opt1 Poet 2 104 FB Opti Spd Fdbk 2 104 Fdbk LsCnfg Alt 2 111 2 112 Fdbk LsCnfg Pri 2 1 2 32 2 111 2 112 Fdbk Option ID 2 105 Filtered SpdFdbk 2 121 Flux Current 2 6 Flying StartGain 2 39 FricComp Rated 2 40 FricComp Setup 2 40 FricComp Slip 2 40 FricComp Spd Ref 2 40 FricComp Stick 2 40 FricComp TrqAdd 2 40 FVC Mode Config 2 94 2 112 FW Functions Actl 2 39 FW Functions En 2 39 2 52 2 70 2 75 2 81 FW TaskTime Actl 2 145 FW TaskTime Sel 2 102 2 145 Fwd Speed Lim 2 64 Fwd Speed Limit 2 120 Heatsink Temp 2 28 2 29 In Posit BW 2 74 In Posit Dwell 2 74 Inert Adapt BW 2 127 Inert Adapt Sel 2 127 Inertia SpeedRef 2 54 Inertia Torq Add 2 54 InertiaAccelGain 2 54 Inv Ol Pend Cnfg 2 1 Inv OL Trip Cnfg 2 20 Iq Ref Limited 2 28 Jog Mask 2 58 Jog Owner 2
26. Detailed Drive Operation MtrSpd Simulated Motor Simulator Spd Calc Virt Edge Rev 225 Feedback Option Cards To Feedback Selection d MtrPosit Simulat There are three different feedback option cards that can be installed on the PowerFlex 7005 1 The Stegmann Hi Resolution Encoder Feedback Option Card 2 The Resolver Feedback Option Card 3 The Multi Device Interface MDI Option Card Only one of the option cards above can be physically installed on the drive at a time When the Stegmann Hi Resolution encoder option or Resolver option is installed the data is processed by feedback option card port 0 When the MDI option is installed it has a Stegmann Hi Resolution encoder processed by feedback option card port 0 and a linear sensor processed by feedback option card port 1 Note that feedback option port is used for position feedback only and cannot be used for motor feedback Parameter 250 FB Opt0 Posit contains the position feedback from either the Stegmann Hi Resolution encoder or the Resolver connected at port 0 Parameter 251 FB Opt0 Spd Fdbk contains the speed feedback from either the Stegmann Hi Resolution encoder or the Resolver connected at port 0 Parameter 252 FB Opt Posit contains the position feedback from the linear sensor when the MDI option is installed Parameter 253 FB Opt Spd Fdbk contains the speed feedback from the linear sensor when the MDI option is installed FB OptO S
27. Jog Speed 1 2 55 2 115 Jog Speed 2 2 55 2 115 Jogging a Position Follower Independent from the Master 2 73 L Lead Lag Filter 2 33 LeakInductance 2 6 LimGen X axis In 2 56 LimGen Y axis Mn 2 56 Limit Gen Hi Out 2 56 Limit Gen Lo Out 2 56 Index 4 Limit Generator 2 56 Limited Spd Ref 2 25 2 115 Line Undervolts 2 87 2 89 Links 2 56 Using Drive Executive 2 57 Using the HIM 2 57 Local WO Status 2 22 2 23 2 24 2 79 2 80 2 150 Logic 1A Bit 2 157 Logic 1A Data 2 157 Logic 1B Bit 2 157 Logic 1B Data 2 157 Logic 2A Bit 2 157 Logic 2A Data 2 157 Logic 2B Bit 2 157 Logic 2B Data 2 157 Logic Command 2 40 2 54 2 70 2 71 2 75 2 81 2 93 2 111 2 113 2 123 2 143 2 145 Logic Config 2 157 Logic Ctrl State 2 93 2 120 2 124 Logic Mask 2 58 Logic Status 2 89 2 91 2 93 Logic Cmpr State 2 157 2 158 Low Pass Filter 2 32 Low Voltage Directive 2 30 M Masks 2 58 Max Spd Ref Lim 2 115 Maximum Freq 2 60 Maximum Voltage 2 60 MC Diag Error 1 2 7 MC Diag Error 2 2 7 MC Diag Error 3 2 7 MC Status 2 89 2 91 Min Spd Ref Lim 2 115 MOP 2 150 MOP Control 2 151 2 152 MOP High Limit 2 151 MOP Level Dint 2 151 MOP Level Real 2 151 MOP Low Limit 2 151 MOP Rate 2 151 MOP Scale Dint 2 151 Motor Control Mode 2 58 Field Oriented Control 2 59 Permanent Magnet Control 2 59 Volts Hertz Control 2 60 Motor Ctrl Mode 2 5 2 58 2 59 2 96 2 97 Motor Fdbk 2 110 Motor Fdbk Sel 2 110 Motor Nameplat
28. Logic Config e Parameter 1068 Logic 2A Bit selects the bit of parameter 1067 Logic 2A Data for the first input to Logic Block 2 Note To invert the selected input enter the desired bit as negative Use 32 to invert bit 0 e Parameter 1069 Logic 2B Data selects the data word for the second input to Logic Block 2 See parameter 1062 Logic Config e Parameter 1070 Logic 2B Bit selects the bit of parameter 1069 Logic 2B Data for the second input to Logic Block 2 Note To invert the selected input enter the desired bit as negative Use 32 to invert bit 0 2 158 Detailed Drive Operation Compare Blocks The compare block are used to compare two floating point values and indicate which value is larger It is possible to use the DInt to Real converter to convert one double integer parameter to a floating point value and use that value as an input to a compare block Logic Cmpr State Cmpr 1 A lt B Compare 1A Compare 1B Cmpr 1 A gt B Cmpr 2 A lt B Compare 2A Compare 2B Cmpr 2 A gt B Configuration e Parameter 1062 Logic Cmpr State bits 4 Cmpr 1 A lt B through 7 Cmpr 2 A gt B display the logical states of the compare functions parameters 1071 Compare 1A 1074 Compare 2B A value of 0 False and 1 True e Parameter 1071 Compare 1A sets input A for the Compare 1 The results of the compare are displayed in parameter 1062 Logic Cmpr State Availabl
29. O6 983 09 6l6 G 99 9 09zgd0z YN osz 00S 009 Sez ose Sze 80 99 L F09 294 Sh VN F 5 007 009 009 00 osy 00 80 fhe kezi 0 9Z 803 99 9 lt 6Lados YN 3 ES osz osy 00S 003 00 002 00 Sez OSL 60S Il Ze YN osz 009 009 Sez 0S Gee 992 S6L L 109 J9L S 9 yslados YN z OS 00 Dip Sel Gee SC GIL Get vol ESE 86 DEI VN osz GLE 00S GA 34g GLL Gi pl OEL Fiy zel 0 S O badoe YN 0006 NINO WOyL S OSI 00 DEI Ge 003 Gcl GIL DEI 36 S08 Z8 ze VN 5 OSL ose Sp OSI WEI os GIL cet Del b ELL DEI S volados YN 0006 NINO NOpL OS ose OSE OLL 00 OLL v9SL EZLL lt 6 S0 yg S8L zz y 0808003 YN 0006 NINO WOyL 001 00 00 06 GLI 06 EIL 98 282 693 eZ St G8b pb 0z08a0z VN 00 9 NINO INOpL 001 00 003 08 Sel 08 98 b i Oil GES Lb oU EI eS0adoe YN 00 9 NINO WOp SY0 384 WOY e DI GLI GIL 09 001 09 G i UE 8v O91 Grr SZ LU EI zvogaoz VN 000b NINO INOp 2e0 383 N0p1 E 06 era era 0p WI Ov 909 HEI ade LOL 962 FG F z Sege YN 00S3 NINO NOp 920 3830 S29 380 WO0OY SZ9 3Z9 NOY L 0 001 001 0 0s 0 ee 822 EGcl ER OEZ H 99 320800 VN 029 384 W0Y 4 029 380 WNOb 029 3c9 NO0Y 0 D D D Ge 03 9 6l GZ 2S LSL ec v L Stoado VN 919 383 N0p 9L9 380 NOp 919 3Z9 N0OY L Sl Dk 0p CL 03 CL Li Lei LL FE G6 F dd 9d6ado0s VN
30. Toggle bit 0 Stop in the logic command word on and then off to perform a ramp stop To configure the drive for 3 wire control with a coast stop For parameter 153 Control Options set bit 8 3WireControl 1 To control from digital inputs 1 Set one of the parameters 825 830 DigInx Sel 19 Coast Stop 2 Set a second parameter 825 830 DigInx Sel 5 Start To control from a communication network 20 COMM module 1 Toggle bit 1 Start in the logic command word on and then off to perform a start 2 Toggle bit 9 CoastStop in the logic command word on and then off to perform a coast stop Detailed Drive Operation 2 133 To configure the drive for 3 wire control with a current limit stop For parameter 153 Control Options set bit 8 3WireControl 1 To control from digital inputs 1 Set one of the parameters 825 830 DigInx Sel 18 CurLim Stop 2 Set a second parameter 825 830 DigInx Sel 5 Start To control from a communication network 20 COMM module 1 Toggle bit 1 Start in the logic command word on and then off to perform a start 2 Toggle bit 8 CurrLimStop in the logic command word on and then off to perform a current limit stop Note In 3 wire mode all stops commanded by pressing the HIM Stop button are ramp stops Configuring the Start and Stop for 2 Wire Control Maintained Start and Stop To configure the drive for 2 wire control with a ramp stop Set paramete
31. double integer or real floating point When the bit is turned off it means the data transmitted will be DInt When the bit is turned on it means the data transmitted will be floating point The default is all DInt words SynchLink Diagnostics Parameters 894 SL CRC Err Accum through 903 SL Error History provide diagnostic information for SynchLink Parameter 894 SL CRC Err Accum displays the total accumulated number of CRC Cycle Redundancy Check errors Clearing a fault resets this accumulator This data is visible on the SynchLink diagnostics tab of the Peer Communication window Parameter 895 SL CRC Error displays the number of CRC errors that occurred during the last test last 8 mS This data is visible on the SynchLink diagnostics tab of the Peer Communication window Parameter 896 SL BOF Err Accum displays the total accumulated number of BOF Beginning of Frame errors Clearing a fault resets this accumulator This data is visible on the SynchLink diagnostics tab of the Peer Communication window Parameter 897 SL BOF Error displays the number of BOF errors that occurred during the last test last 8 mS This data is visible on the SynchLink diagnostics tab of the Peer Communication window Parameter 898 SL CRC Err Limit identifies the number of CRC errors per test per 8 mS allowed before the drive declares a SynchLink CRC Error exception event Set this limit on the SynchLink diagnostics tab of the Peer Com
32. e The output is available as a positive output parameter 207 Limit Gen Hi Out and a negative output parameter 208 Limit Gen Lo Out Limit Gen Hi Out LimGen X axis In Limit Gen Lo Out LimGen Y axis Mn LimGen Y axis Mx Links are software connections between two parameters This allows one parameter to receive information from another parameter Provides information Parameter Type Source Parameter Symbol Source gt Nee A Destination Receives information E N EE Detailed Drive Operation 2 57 Each destination parameter can only have one source parameter However source parameters may be linked to multiple destination parameters The information from the link always flows from the source to the destination parameter Information Information Several default links are set in the drive as default Modifying these links can be done two ways Information a at Using the HIM Access the destination parameter you wish to use for the link This cannot be done from the ALT Parameter view window only the parameter list When you access the parameter you want to edit press the ALT then the View button This will display a window with the mode selection Use the up down arrow keys on the top row of buttons to select Defined Link and press Enter When in this mode pressing the Select button will allow you to enter the source parameter number Using Drive Executive Double click on the
33. 0 20 30 40 50 Ratio system inertia motor inertia Advanced Tuning for the Speed Regulator with Gearbox or Belt When using a system with a gearbox or belts the backlash or lost motion can cause instability To alleviate this we have a feature called inertia adaptation which compensates for lost motion Follow the steps below to use inertia adaptation 1 Identify motor and system inertia in seconds The motor inertia can be determined by performing an inertia test with the motor uncoupled from the load or the motor inertia in seconds can be calculated using the following formula p WK x RPM 308 xT where WK is the inertia in Ibft RPM is the base motor speed of the motor and Tace is the rated torque of the motor in Ibft Te can be calculated by the following 7 _HPx5252 ace RPM where HP is the nameplate horsepower of the motor and RPM is the base motor speed of the motor System Inertia parameter 9 is determined by performing the inertia test with the load coupled or the value in seconds can be calculated using the formulas above if WK is known for the system Speed Torque Mode Select Detailed Drive Operation 2 127 2 Set parameter 90 Spd Reg BW Do not exceed the bandwidth limit of curve 2 below based on the ratio of motor inertia to system inertia 3 Set parameter 133 Inert Adapt BW parameter 90 Spd Reg BW 4 Verify that the Lead Lag filters are off parameter 93 SRegFB Filt Gain
34. 151 Dig In6 Sel 2 52 2 53 2 151 Dig Out1 Bit 2 24 Dig Out Data 2 24 Dig Out1 Sel 2 24 Digln Debounce 2 22 Digital Inputs 2 22 Configuration 2 22 Technical Information 2 22 Digital Outputs 2 23 Configuration 2 23 Status Bits 2 24 Dimensions 1 11 Dimensions Bottom View 1 19 Dint2Real In 2 156 Dint2Real Result 2 156 Dint2Real Scale 2 156 Direction Control Bipolar Reference 2 24 Direction Mask 2 58 Direction Owner 2 64 Distribution Systems 2 148 2 149 Unbalanced 2 148 Ungrounded 2 148 DPI 2 25 Client Server 2 25 Peer to Peer Operation 2 26 Producer Consumer Operation Overview 2 26 DPI Data In A1 2 13 2 20 2 21 DPI Data In D2 2 20 DPI Data Out A1 2 14 2 21 DPI Data Out D2 2 21 DPI In DataType 2 13 2 20 2 21 DPI Out DataType 2 14 2 21 Drive OL JnctTmp 2 29 Drive OL Status 2 28 Drive Overload 2 27 Theory of Operation 2 27 DriveLogix 2 27 Dynamic Braking 2 29 Dynamic braking 2 7 E Efficiency 2 30 Electronic Gearing 2 30 EMC Directive 2 30 EMC Directive 2 30 Encdr 0 Position 2 102 Encdr 0 Spd Fdbk 2 102 Encdr 0 1 Config 2 100 Encdr 0 1 Error 2 102 Encdr0 Position 2 101 Encdr Spd Fdbk 2 102 Encdr1 Position 2 71 2 81 2 102 Encdr1 Spd Fdbk 2 70 Encoder0 PPR 2 100 Encoder1 PPR 2 100 Example to Control the Point to Point Position with Digital Inputs 2 78 Exception Eventi 2 111 2 112 Exception Event2 2 88 F Fault Clr Mask 2 58 Fault Clr Owner 2 64 Fault Status 1 2 32 Fault Statu
35. 158 degrees F const Relative Humidity 5 to 95 non condensing 5 to 95 non condensing Shock 10G peak for 11 ms duration 1 0 ms 15G peak for 11ms duration 1 0 ms Vibration 0 152 mm 0 006 in displacement 1G peak 5 5 Hz 2 mm 0 0787 in displacement 1G peak EN50178 EN60068 2 6 Atmosphere Important Drive must not be installed in an area where the Important Drive must not be installed in an area where the ambient atmosphere contains volatile or corrosive gas vapors or ambient atmosphere contains volatile or corrosive gas vapors dust If the drive is not going to be installed for a period of time it or dust If the drive is not going to be installed for a period of must be stored in an area where it will not be exposed to a time it must be stored in an area where it will not be exposed to corrosive atmosphere a corrosive atmosphere Electrical AC Input See Input Voltage Range Tolerance on page 1 5 for Full Power See Input Voltage Range Tolerance on page 1 5 for Full Power Voltage Tolerance and Operating Range and Operating Range Frequency Tolerance 47 63 Hz 47 63 Hz Input Phases Three phase input provides full rating for all drives Single phase Three phase input provides full rating for all drives operation provides 50 of rated current Single phase operation provides 50 of rated current DC Input Voltage Tolerance 10 of Nominal Bus Voltage above 10 of Nominal Bus Voltage above Displacement Power Fac
36. 2 119 Speed Trim 3 2 55 2 93 2 119 Speed Position Feedback Encoder 2 99 Feedback Device 2 99 Feedback Option Cards 2 104 FIR Filter 2 102 Motor Simulator 2 103 Motor Speed Feedback and Scaled Speed Feedback 2 109 Position Feedback 2 110 Sensorless 2 103 Speed Torque Mode Select 2 127 SpeedTrim3 Scale 2 55 SReg FB Filt BW 2 34 2 125 2 126 Sreg FB Filt BW 2 121 Sreg FB Filt Gain 2 121 SReg Out Filt BW 2 34 Sreg Out Filt BW 2 124 SReg Out Filt Gain 2 127 SReg Torq Preset 2 124 SRegFB Filt Gain 2 34 2 126 2 127 SregFB Filt Gain 2 125 SregOut Filt BW 2 125 2 126 SRegOut FiltGain 2 34 SregOut FiltGain 2 124 2 125 2 126 Start Inhibits 2 89 2 100 2 131 Start Mask 2 58 Start Owner 2 64 Start Acc Boost 2 60 Start Stop Modes Configuring the Start and Stop for 2 Wire Control 2 133 Configuring the Start and Stop for 3 Wire Control 2 132 Start Up 2 134 StatorInductance 2 6 StatorResistance 2 6 Stegmann0 Cnfg 2 105 Stop Modes 2 134 Stop Owner 2 64 STrim2 Filt Gain 2 36 2 73 2 77 Surrounding Air Derates 1 8 Switch Dint 1 NC 2 155 Swtch Dint 1 NO 2 155 Swtch Dint 1 Out 2 155 Swtch Real 1 NC 2 154 Swtch Real 1 NO 2 154 Swtch Real 1 Out 2 154 Sync Generator 2 144 SynchLink 2 134 Buffered Data 2 138 Configuration 2 134 Direct Data 2 135 Master PowerFlex 700S Setup 2 141 Multiply Block 2 137 Slave PowerFlex 700S Setup 2 143 Speed Synchronization Example 2 140 SynchLink Rev 2 139 2 140 T TachSwitch Level 2 111
37. 2 5 Motor Test curas slots aed wits Saka edna wie il NEE AEN laa ayes 2 6 Inertia KEE 2 6 Troubleshooting a MC Commissn Fail Fault during Autotune 2 7 Auxiliary Power Supp 2 7 Bus Regulation Braking 2 7 Description ion ii ea eee eth yee Ree eet ds 2 7 Technical Informations cc EELER SEELEN Re E ee eee pb E 2 7 Bus Regulator Braking Configuration 0 0 0 0c cece eee 2 8 Cable eu Bian in E SRA ee aR E GR oe Oe 2 11 Cable Motor Lengths istisi eenaa a aA nee eee eens 2 11 Cable PO Wer decile Seo deans 2 11 Cable Trays and Conduit o 2 12 Carrier PWM Frequency 2 12 Common Bus Syst niS cid E Ed DE EE a d de 2 13 COMMUNICATIONS EEN See NEE eed oe ee EEN 2 13 ControlLogix System erii ai A eed ee hae ates deta 2 13 PLE SOT SLE Syst m ENN See E NNN ee MEN SEN ee cee MEN ECH 2 15 Copy Cat EE 2 19 Current Limit pacts a wis o saan ote whew Goo we ta E 2 20 Datalink anio bn ye tes ae eo hades 2 20 Configuring Datalinks 0 0 0 ee ccc cece cence 2 20 Decel Timer ise A Bin Ee rs 2 21 Digital Inputs Ae wns cena aca teal aire weal an Ghee hatha a eee 2 22 Technical Information 0 0 0 cece eee cece eee eens 2 22 Digital Input Configuration 0 0 0 een eens 2 22 Digital Outputs s soci veces hb pea les Vetere es Be ee ET te eee e e 2 23 chnical Informations oe A Ae ee he A da 2 23 Digital Output Configuration 0 0 0 cee ete nee 2 23 Digital Output Status Bus 2 24 Dir
38. 2 Setup Link parameter 865 BitSwap 2A Data to parameter 864 BitSwap 1 Result Parameter 865 BitSwap 2A Data sets up any data you would like to pass through to the result and is linked to the result from bit swap 1 Set parameter 866 BitSwap 2A Bit 1 Parameter 866 BitSwap 2A Bit sets the bit that you would like to turn on in the result and is set to bit 1 in order to use bit swap 2 to turn on bit 1 of parameter 1022 Sel Switch Ctrl Link parameter 867 Bit Swap 2B Data to parameter 824 Local I O Status Parameter 867 Bit Swap 2B Data sets the data to compare Set parameter 868 BitSwap 2B Bit 4 Parameter 868 BitSwap 2B Bit sets which bit of parameter 824 Local 1 O Status is used Bit 4 of parameter 824 indicates that digital input 4 has turned on The overall function of BitSwap 2 is that when digital input 4 turns on bit 1 is turned on as the result which is eventually passed through to control bit 1 Sel Swtch 00 of parameter 1022 Sel Switch Ctrl Bit Swap 3 Setup Link parameter 870 BitSwap 3A Data to parameter 869 BitSwap 2 Result Parameter 870 BitSwap 3A Data sets up any data you would like to pass through to the result and is linked to the result from bit swap 2 Set parameter 871 BitSwap 3A Bit 2 Parameter 871 BitSwap 3A Bit sets the bit that you would like to turn on in the result and is set to bit 2 because in order to use bit swap 3 to turn on bit 2 of parameter 1033 Sel Switch Ct
39. 3 2 96 Skip Speed Band 2 96 SL BOF Err Accum 2 139 SL BOF Err Limit 2 139 2 140 SL BOF Error 2 139 SL Buf Data Rx00 2 138 SL Buf Data Rx17 2 138 SL Buf Data Tx00 2 139 SL Buf Data Tx17 2 139 SL Clr Events 2 135 SL Cre Err Accum 2 139 SL CRC Err Limit 2 139 2 140 SL CRC Error 2 139 SL Dir Data Rx00 2 135 SL Dir Data Rx03 2 135 SL Dir Data Tx00 2 136 SL Dir Data Tx03 2 136 SL Error History 2 139 2 140 SL Error Status 2 140 SL Mult A In 2 138 SL Mult B In 2 138 SL Mult Base 2 138 SL Mult Out 2 138 SL Mult State 2 137 SL Node Cnfg 2 134 2 143 SL Real2DInt In 2 138 SL Real2DInt Out 2 138 SL Rx CommFormat 2 134 SL Rx DirectSel 0 2 138 SL Rx DirectSel0 2 135 2 137 SL Rx DirectSel3 2 135 2 137 SL Rx PO Regis 2 135 SL Rx P1 Regis 2 135 SL System Rev 2 139 SL Tx CommFormat 2 134 SL Tx DirectSel0 2 136 2 138 SL Tx DirectSel3 2 136 Slip Comp Gain 2 98 Slip RPM FLA 2 98 Slip RPM Meter 2 98 Spd Err Filt BW 2 33 2 38 2 103 2 121 2 125 Spd Fdbk Scale 2 109 Spd Ref 1 2 2 Spd Ref 2 Multi 2 72 Spd Ref Bypass 2 117 2 142 Spd Ref2 Multi 2 70 Spd Reg BW 2 36 2 38 2 73 2 77 2 123 2 125 2 127 Spd Reg Droop 2 29 Spd Reg Gain 2 123 Spd Reg Neg Lim 2 124 Spd Reg P Gain 2 123 Spd Reg PI Out 2 124 Spd Reg Pos Lim 2 124 Spd Trim 3 Scale 2 119 Spd Trq Mode Sel 2 128 2 129 SpdRef SpdTrm1 2 118 SpdRef Filt BW 2 118 SpdRef Filt Gain 2 118 SpdReg Anti Bckup 2 122 Sp
40. 5 165 1 El J isi d 650 E a II Bu Ra 726 E 160 1 ean S y SE SE 14 TT T 6 30 D e i i 160 1 5 95 F 6 30 127 7 IO O H ge SL Ei ROZAS CX O DOHO OOK O O IO OF OQ ODIO TOTO OO 7 HL II LE YY LL YY El DONORA Vent Plate Y m n y y 22 7 0 89 29 0 1 14 gt 22 7 0 89 lt lt 66 0 2 60 gt 29 0 1 14 lt 97 0 3 82 66 0 2 60 gt lt 137 2 5 40 gt lt 130 0 5 12 lt 187 0 7 36 gt lt 186 0 7 32 gt Dimensions are in millimeters and inches 1 20 Specifications 4 Dimensions Figure 1 11 PowerFlex 700S Bottom View Dimensions Frame 4 5 8 6 Frame 4 Frame 5 75 HP 480 V 55kW 400V 47 0 1 85 Dia 4104 0 4 09 IO 7 2 Places 93 2 3 67 ZZ 202 087 Dia 65 3 2 5
41. 64 Jog Speed 1 2 55 2 115 Jog Speed 2 2 55 2 115 LeakInductance 2 6 LimGen X axis In 2 56 LimGen Y axis Mn 2 56 Limit Gen Hi Out 2 56 Limit Gen Lo Out 2 56 Limited Spd Ref 2 25 2 115 Line Undervolts 2 87 2 89 Local I O Status 2 22 2 23 2 24 2 79 2 80 2 150 Logic 1A Bit 2 157 Logic 1A Data 2 157 Logic 1B Bit 2 157 Logic 1B Data 2 157 Logic 2A Bit 2 157 Logic 2A Data 2 157 Logic 2B Bit 2 157 Logic 2B Data 2 157 Logic Command 2 40 2 54 2 70 2 71 2 75 2 81 2 93 2 111 2 113 2 123 2 143 2 145 Logic Config 2 157 Logic Ctrl State 2 93 2 120 2 124 Logic Mask 2 58 Logic Status 2 89 2 91 2 93 Logic Cmpr State 2 157 2 158 Max Spd Ref Lim 2 115 Maximum Freq 2 60 Maximum Voltage 2 60 MC Diag Error 1 2 7 MC Diag Error 2 2 7 MC Diag Error 3 2 7 MC Status 2 89 2 91 Min Spd Ref Lim 2 115 MOP Control 2 151 2 152 MOP High Limit 2 151 MOP Level Dint 2 151 MOP Level Real 2 151 MOP Low Limit 2 151 MOP Rate 2 151 MOP Scale Dint 2 151 Motor Ctrl Mode 2 5 2 58 2 59 2 96 2 97 Motor Fdbk 2 110 Motor Fdbk Sel 2 110 Motor NP FLA 2 20 2 61 Motor NP Hertz 2 60 Motor NP Power 2 61 Motor NP Pwr Units 2 61 Motor NP RPM 2 1 2 21 2 61 2 115 2 120 Motor NP Volts 2 60 Motor Poles 2 61 Motor Posit Est 2 103 Motor Spd Fdbk 2 67 2 109 2 121 Motor Speed Est 2 103 Motor Speed Ref 2 121 Motor Torque Ref 2 14 Mtr Current Lim 2 20 Mtr Fdbk Alt Sel 2 99 Mtr Fdbk Sel
42. 925 211 917 gt SL Rx PO Regis 3 918 gt SL Rx P1 Regis gt a 10 915 gt SL Rev Events Direct Data Transmit Parameters Parameters 911 SL Tx DirectSel0 through 914 SL Tx DirectSel3 select what direct transmit data you want to send The most common settings for these parameters are e No Data No data is selected for that transmit word e 1 SL Multiply See details on Multiply Block on page 2 137 e 2 EventPO0 Transmits registration value from Registration Latch 0 e 3 EventPl Transmits registration value from Registration Latch 1 Event P1 is not functional over SynchLink at the time of publication e 10 Event Status Transmits the found bits for Registration Latch 0 1 status e 21 Dir Tx Data Use this selection to transmit a parameter Parameters 965 SL Dir Data Tx00 through 968 SL Dir Data Tx03 contain the values for direct data transmitted to SynchLink When 21 Dir Tx Data is selected the corresponding direct transmit parameter parameters 965 through 968 parameters can be linked to source parameters e 22 Dir Rx Data Use this selection to transmit data that was received on SynchLink straight through e 23 E0 Accum Use this selection to transmit Encoder 0 counts directly through before they enter the feedback control loop This eliminates the update delay of the feedback control loop e 24 El Accum Use this selection to transmit Encoder 1 counts directly th
43. Config set this parameter to configure the logic routine in parameters 1063 Logic 1A Data 1070 Logic 2B Bit The result of this logic routine is displayed in parameter 1062 Logic Cmpr State There are three configurable logic blocks as displayed above Each block can be configured as AND NAND OR NOR XOR NXOR Select the functions as desired Multiple operation selection for one block will result in the first selection LSB being the active mode e Parameter 1062 Logic Cmpr State bits 0 Logic 1 Rslt 1 Logic 2 Rslt and 2 Logic 3 Rslt display the logical states of the Logic routine parameters 1063 1070 A value of 0 False and 1 True e Parameter 1063 Logic 1A Data selects the data word for the first input to Logic Block 1 See parameter 1062 Logic Config e Parameter 1064 Logic 1A Bit selects the bit of Par 1063 for the first input to Logic Block 1 Note To invert the selected input enter the desired bit as negative Use 32 to invert bit 0 e Parameter 1065 Logic 1B Data selects the data word for the second input to Logic Block 1 See parameter 1062 Logic Config e Parameter 1066 Logic 1B Bit selects the bit of parameter 1065 Logic 1B Data for the second input to Logic Block 1 Note To invert the selected input enter the desired bit as negative Use 32 to invert bit 0 e Parameter 1067 Logic 2A Data selects the data word for the first input to Logic Block 2 See parameter 1062
44. Drive is loading firmware for motor control Technical Information The start and stop mode refers to how you want to control the drive s start and stop functions There are two basic modes of start and stop control 3 wire and 2 wire 3 wire control indicates that the start and stop are momentary inputs 3 wire control also indicates that there is one input for the start command and one input for the stop command The term 3 wire comes from the fact that when using this type of control with digital inputs one wire is used for the start input one wire is used for the stop input and one wire is used for the common 2 wire control indicates that the start and stop are combined as one maintained input The input must be on to start and to remain running Then the same input is turned off to stop The term 2 wire comes from the fact then when using this type of control with digital inputs one wire is used for the combined start stop input and one wire is used for the common For the stop command there are three different types of stopping that can be performed coast stop ramp stop and current limit stop 2 132 Detailed Drive Operation 1 Coast Stop when in coast stop the drive acknowledges the stop command by shutting off the output transistors and releasing control of the motor The load motor will coast or free spin until the mechanical energy is dissipated 2 Ramp Stop when in ramp stop the drive acknowledges the sto
45. Lengths Refer to http www ab com support abdrives documentation index html for detailed technical papers Refer to Wiring and Grounding Guidelines for Pulse Width Modulated PWM AC Drives publication DRIVES IN001 for detailed information This publication is available online at http literature rockwellautomation com literature See Speed Reference on page 2 113 2 96 Detailed Drive Operation Skip Speeds Note Skip speeds are only active when parameter 485 Motor Ctrl Mode 3 V Hz Some machinery may have a resonant operating speed that must be avoided to minimize the risk of equipment damage To assure that the motor cannot continuously operate at one or more of the points skip speeds are used Configuration Speed Speed Reference 7 Skip 1 2 Band gt Skip Speed gt Skip 1 2 Band gt aan 1050 RPM 900 RPM 7 750 RPM Parameters 136 Skip Speed 1 through 138 Skip Speed 3 are available to set the speeds to be avoided The value programmed into the skip speed parameters sets the center point for an entire skip band of speeds The width of the band range of speed around the center point is determined by parameter 139 Skip Speed Band The range is split half above and half below the skip speed parameter If the commanded speed of the drive is greater than or equal to the skip center speed and less than or equal to the high value of the band ski
46. Par 222 Motor Fdbk Sel as the Position regulators position feedback The following options are available 0 Encoder 0 1 Encoder 1 2 Reserved 3 Mtr Fdbk Pri 4 Motor Sim 5 FB Opt Port0 6 FB Opt Port1 Note Options 5 and 6 are only available when compatible feedback option card is installed Option 3 is the default setting Speed Feedback Loss Ride Through The speed feedback loss ride through function provides an automatic switch over from the primary motor speed feedback device to the alternate motor speed feedback device when a primary motor speed feedback device fault is sensed If the alternate speed feedback device has failed the switching will not be allowed and the drive will fault The active device can be monitored and manual switching between the primary and alternate devices is available This function has also been referred to as tach loss switch over and encoder loss ride through The drive determines that the encoder has faulted based on a combination of hardware detection and monitoring the rate of change of the motor speed The hardware fault detection is based on illegal encoder states and improper encoder switching patterns The rate of change of motor speed detection is determined by a rate of change greater than a user defined speed change Hardware detection of feedback loss for the feedback option cards is based on the type of device used and specific fault det
47. Power Loss Mode 2 88 Power Loss Time 2 88 Power Loss Ride Through 2 86 PreCharge Delay 2 89 2 90 2 91 PreChrg Control 2 89 2 90 2 91 PreChrg Err Cnfg 2 90 PreChrg TimeOut 2 90 PreChrgTimeout 2 91 Preset Speeds 2 92 Process PI Loop 2 92 Process PI Limits 2 93 Process PI Output 2 93 Process PI Reference and Feedback 2 92 Process PI Regulator 2 93 Pt Pt Accel Time 2 77 Pt Pt Decel Time 2 77 Pt Pt Filt BW 2 77 Pt Pt Posit Ref 2 52 2 75 2 78 2 79 PWM Frequency 2 12 R Ramped Spd Ref 2 40 2 54 2 116 2 117 Rated Volts 2 9 2 89 Real2DInt In 2 156 Real2DInt Result 2 156 Real2DInt Scale 2 156 Reflected Wave 2 94 RegisLtch 0 1 Cnfg 2 81 2 84 RegisLtch 0 1 Ctrl 2 84 RegisLtch 0 1 Stat 2 84 RegisLtch0 Value 2 81 2 84 RegisLtch0 1 Ctrl 2 83 RegisLtch0 1 Stat 2 83 Reslvr0 CableBal 2 107 2 108 Reslvr0 Carrier 2 108 Reslvr0 Config 2 106 Reslvr0 In Volts 2 108 Reslvr0 SpdRatio 2 107 2 108 Reslvr0 Status 2 109 Reslvr0 Type Sel 2 107 Rev Speed Lim 2 64 Rev Speed Limit 2 120 RFI Filter Grounding 2 95 RslvrO XfrmRatio 2 108 Run Boost 2 60 Run Inhibit Stat 2 131 Rx Buf Data Type 2 138 Rx Dir Data Type 2 135 S S Curve Time 2 116 Scaled Spd Fdbk 2 109 S Curve 2 95 Second Order Low Pass Filter 2 33 Sel Switch Ctrl 2 79 2 80 2 153 2 154 2 155 Sel Swtch In00 2 153 Sel Swtch In15 2 153 Selected Spd Ref 2 24 SelSwtch DintOut 2 154 SelSwtch In00 2 79 SelSwtch In03 2 79 SelSwtch RealOut 2
48. Ref to parameter 799 BasicIndexOutput Refer to Position Loop Point to Point on page 2 74 for further details on using the point to point loop To use the indexer to control a position offset link parameter 753 Posit Offset 1 or parameter 754 Position Offset 2 to parameter 799 BasicIndx Output Note that the position offset can be used in either the Point to Point Position or the Position Follower modes Parameter 798 BasicIndx Preset is a value that is preloaded into the indexer output on drive power up By default BasicIndx Preset is set to 0 Toggling parameter 740 Position Control bit 14 BscIndx Prst will also preload the value of BasicIndx Preset into the indexer output Controlling the Indexer from Digital Inputs Program one of the digital inputs parameters 825 Dig In1 Sel through 830 Dig In6 Sel to 21 Indx Step Toggle that digital input to index forward Inertia Adaptation Detailed Drive Operation 2 53 Program a second digital input parameters 825 Dig In1 Sel through 830 Dig In6 Sel to 22 Indx StepRev Toggle that digital input to index reverse Controlling the Indexer from a Network or DriveLogix Toggle parameter 740 Position Control bit 12 BscIndx Step to index forward Toggle 740 Position Control bit 15 BscIndxStpRv to index reverse Position Control can be controlled by from a network by using a Datalink Refer to Datalinks on page 2 20 for details on using Datalinks
49. Servo Kaell Gate a 2 121 Speed Regulator Ganz 2 122 Speed Regulation Anp Backup 2 122 Proportional Gain mag ls imed an a awe oda a baaa A 2 123 Integral Gal tarios a operar Chas Ghee des Gah heed pee Gea 2 123 Droo EE 2 124 Speed Regulator Output Limits 0 0 2 0 cee ee eee 2 124 Speed Regulator Output blter 0 0 0 eens 2 124 Speed Regulator Tuning 0 0 cee eee eee teens 2 125 Basic Tuning with a Gear Box or Bech 2 125 Advanced Tuning for the Speed Regulator with Gearbox or Belt 2 126 Speed Torque Mode Select 2 127 Speed Regulation Mode 2 128 Torque Regulation Mode 2 129 vi Index Min Mode Max Mode o oooooooo e eee eens 2 129 SUMMA A A a a tdt 2 130 Zero Torque Mod EE 2 130 STATS A A a So ee 2 131 Start Stop Md cr A e ea ui 2 131 T chnical InformatwOn ines du A EA ae eee ENN EN ENN E EEN hele Ee 2 131 Configuring the Start and Stop for 3 Wire Control Momentary Start and Stop 2 132 Configuring the Start and Stop for 2 Wire Control Maintained Start and Stop 2 133 eh D we eee ne e e io do da th 2 134 Stop Modes i serrate teh aaa eae Reels Manele as alae aise we ae ER 2 134 Synchlank My ay nb deeg LOS hee Sie oes r ie Mee Ree Teach eieiei 2 134 SynchLink Configuration 0 2 ec eeee nents 2 134 SynchLink Direct Data 0 ene eee e ene 2 135 Multiply Block i suse eech id dee dE Aaa Ate A Se A D 2 137 Buffered Dat EENEG NEE de dE ee 2 138
50. Turn off Lead Lag filters parameter 93 SregFB Filt Gain 1 parameter 95 SregOut FiltGain 1 5 Run the drive and observe its performance particularly gear noise chatter 6 If performance is smooth throughout the speed range the tuning test is done If gear noise or chatter is present continue with step 7 7 Reduce parameter 90 Spd Reg BW or progressively turn on the Lead Lag filters A through D below with D being the most aggressive Stop when the drive is sufficiently smooth A Parameter 95 SregOut FiltGain 0 7 parameter 96 SregOut Filt BW 35 B Parameter 95 SregOut FiltGain 0 5 parameter 96 SregOut Filt BW 20 C Parameter 95 SregOut FiltGain and parameter 93 SRegFB Filt Gain 0 7 parameter 94 SReg FB Filt BW and parameter 96 SregOut Filt BW 35 2 126 Detailed Drive Operation 8 9 Bandwidth D Parameter 95 SregOut FiltGain and parameter 93 SRegFB Filt Gain 0 5 parameter 94 SReg FB Filt BW and SregOut Filt BW 20 If gear noise or chatter is still present after turning on the filters repeat steps 2 through 7 with a lower speed regulator BW If the desired bandwidth cannot be achieved due to gear noise or chatter follow the procedure for advanced tuning of the speed regulator with a gearbox To 20 G Maximum regulator Bandwidth vs inertia Ratio with Gear Box Ei _ _ _ _ _ _ _ _ _ _ 100 Fi
51. a command x o Ze x lt a Zig y mario 3323855587 oD gD o o el g sS 2333833352 al lt z lt x lt x lt xB2o Start Owner Bit 7 16151413121110 Adapter 0 0 10 O JO 0 1 J0 When the local Start button is pressed the display indicates that the command is coming from the HIM Digital Input Start Owner Dt Adapter Terminal Block 2 DriveLogix Not Used 2 9 Adapter 5 2 Not Used Adapter 3 N Adapter 2 Adapter 1 The Start Owner indicates that there is not any maintained Start commands causing the drive to run Digital Input Stop Owner Bit Adapter Terminal Block 2 DriveLogix CID Not Used S 9 Adapter 5 O Not Used Adapter 3 Adapter 2 Adapter 1 The operator then checks the Stop Owner Notice that bit 0 is a value of 1 indicating that the Stop device wired to the Digital Input terminal block is open issuing a Stop command to the drive Until this device is closed a permanent Start Inhibit condition exists and the drive will not restart 2 66 Detailed Drive Operation Peak Detect There are two peak detectors that can be used to detect the peak for a parameter value Configuration Link parameter 213 PkDtct1 In Real or parameter 212 PkDtct1 In Int to the parameter that you wish to detect a peak depending on
52. backlash There are two lead lag blocks used in the speed regulator loop One is in the forward path and the other is in the feedback path Kn Wn Forward Path Parameter 95 SRegOut FiltGain Parameter 96 SReg Out Filt BW Feedback Path Parameter 93 SRegFB Filt Gain Parameter 94 SReg FB Filt BW For moderate filtering Set Kn 0 7 Wn 0 35 For Heavy filtering Set Kn 0 5 Wn 20 Both the Forward and Feedback filters can be set to the same value to increase their effectiveness Detailed Drive Operation 2 35 Lead Lag Filter Lead When Kn is greater than one Kn gt 1 the lead lag filter operates as lead filter The original equation is re written into a term that can be used to utilize the lead function Wn is divided throughout the equation Two new terms are developed The lead term Wld is used to display the lead of the filter The lag term Wlg is used to show the lag of the filter Knxs wn Ss wn Knxs wn 1 s wn 1 s Wld 1 s Wlg 1 wn Wie Wig Kn Wld Figure 2 11 Kn gt 1 Lead Filter gain kri Lead kn gt 1 kn Figure 2 11 shows the bode plot of the lead function The lead term is used to counteract lags in the system The speed loop bandwidth appears to the position loop as a low pass filter or a lag The lead filter can be used to cancel the speed loop lag and replace it with a faster lag In the following example The system appears as a lag with a 5 r
53. be adjusted to achieve the desired torque If the material being wound unwound breaks the load will decrease dramatically and the motor can potentially go into a runaway condition Torque Ref 1 Cao Torq Ref1 Div a Torque Ref 2 Torq Ref2 Multi 7e X Torque Trim 115 Torque Reference Parameter 111 Torque Ref 1 is divided by parameter 112 Torq Ref1 Div Parameter 113 Torque Ref 2 is multiplied by parameter 114 Torq Ref2 Mult Parameter 115 Torque Trim can be used to trim the torque For example Torque Trim can be linked to an analog input or to the Process PI output The final torque reference in the Torque Mode is the sum of scaled Torque Ref 1 scaled Torque Ref 2 and Torque Trim Min Mode Max Mode This operating mode compares the speed and torque commands The algebraically minimum value is used This mode can be thought of as a Speed Limited Adjustable Torque operation Instead of operating the drive as a pure torque regulator the runaway condition can be avoided by limiting the speed A winder is a good example for the application of the Min Spd Trq operating mode Max mode would be used if both speed and torque are negative Figure 2 23 illustrates how min mode operates The drive starts out operating as a torque regulator The torque reference causes the motor to operate at 308rpm The speed reference is 468rpm so the minimum is to operate as a torque regulator While operating in tor
54. bits 1 In 1 Real through 4 In 4 Real to correspond to the data type for the parameters you are trending When the corresponding bit is off the parameter will be DInt When the corresponding bit is on the parameter will be Real 5 Set parameter 566 Trend PreSamples to the number of data points to store prior to the trend trigger pre trigger data This can be set between 0 and 1022 samples 6 Set parameter 556 Trend Control bit O Enbl Collect to enable the trend When the trend is triggered parameter 557 Trend Status bit 1 Triggered will be set When the trend has completed parameter 557 Trend Status bit 2 Complete will be set 7 To play back the data you can monitor parameters 572 Trend Out DInt or 573 Trend Our Real 576 Trend Ou DInt or 577 Trend Out2 Real 580 Trend Out3 DInt or 581 Trend Out3 Real and 584 Trend Out4 DInt or 585 Trend Out4 Real depending on the data type The output parameters can be monitored in DriveObserver or you can link analog outputs to the output parameters and monitor the analog output with a chart recorder or oscilloscope Then set parameter 556 Trend Control bit 15 Auto Output to automatically play back the output trend data at the rate entered in parameter 559 Trend Rate Note that data can be played back at a slower rate than it was recorded by changing Trend Rate before turning on Trend Control bit 15 Auto Output Additional Trend Parameters P
55. clear a fault The individual bits for each parameter are as follows Bit 0 Terminal Blk Bit 1 Local HIM Bit 2 Ext DPI Comm Bit 3 Aux DPI Comm Bit 4 Reserved Bit 5 Int DPI Comm Bit 6 Reserved Bit 7 DriveLogix Example A customer s process is normally controlled by a remote PLC but the drive is mounted on the machine The customer does not want anyone to walk up to the drive and reverse the motor because it would damage the process The local HIM drive mounted Adapter 1 is configured with an operator s panel that includes a REV Button To assure that only the PLC connected to Adapter 5 has direction control the Direction Mask can be set as follows Direction Mask 00100000 Adapter 76543210 This masks out the reverse function from all adapters except Adapter 5 making the local HIM Adapter 1 REV button inoperable See Owners later in this chapter or PowerFlex 7008 User Manual publication 20D UM006 for more information Parameter 485 Motor Ctrl Mode selects the type of motor control to use This parameter is set during the HIM assisted startup when asked to select the Motor Control The settings for Parameter 485 Motor Ctrl Mode are e 0 FOC selects field oriented control Field oriented control is used with AC squirrel cage induction motors for high performance e 1 FOC2 selects field oriented control and is only used for a specific t
56. control the value of speed reference 1 Parameter 1091 MOP Scale DInt set this value for scaling of the DInt MOP output The MOP is calculated and controlled as a REAL value MOP Use this scale to adjust for an integer value Use this parameter to scale the conversion from Par 1090 to Par 1092 Parameter 1092 MOP Level DInt is the actual output value of the MOP as a DInt number This value is scaled by parameter 1091 MOP Scale DInt Controlling the MOP from Digital Inputs Program one of the digital inputs parameters 825 Dig In1 Sel through 830 Dig In6 Sel to 23 MOP Inc Turn on the digital input to increase the MOP level at the rate programmed Program a second digital input parameters 825 Dig In1 Sel through 830 Dig In6 Sel to 24 MOP Dec Turn on the digital input to decrease the MOP level at the rate programmed A digital input can also be programmed to 25 MOP Reset Turning on this digital input resets the MOP level to 0 2 152 Detailed Drive Operation Controlling the MOP from a Network or DriveLogix Turn on parameter 1086 MOP Control bit O Increase to increase the MOP level at the rate programmed Turn on parameter 1086 MOP Control bit 1 Decrease to decrease the MOP level at the rate programmed Parameter 1086 MOP Control bit 2 Reset can be toggled to reset the MOP level Parameter 1086 can be controlled from a network by using a Datalink Refer to Datalinks on page 2 20 for details o
57. destination parameter The parameter XX dialog box displays Click on the Link Source tab Select the Parameter radio button and select the source parameter in the Selected Parameter field Parameter 21 Speed Trim 1 Properties Value Link Source Link Sinks Documentation Link Source C No Link e Parameter Eind Parameter RE Selected Parameter P 175 Setpt 2 Data P 176 pt2 TripPoint P 177 Setpt 2 Limit t2 280 PI y y Available Drive Links 172 p ua Total Drive Links 200 _Parameter Help 2 58 Detailed Drive Operation Masks Motor Control Mode A mask is a parameter that contains one bit for each of the possible adapters Each bit acts like a valve for issued commands Closing the valve setting a bit value to 0 stops the command from reaching the DriveLogix Opening the valve setting a bit value to 1 allows the command to pass through the mask into the DriveLogix Table 2 B Mask Parameters and Functions Parameter Name No Function Logic Mask 670 Determines which adapters can control the drive When the bit for an adapter is set to 0 the adapter will have no control functions except for stop Start Mask 671 Controls which adapters can issue start commands Jog Mask 672 Controls which adapters can issue jog commands Direction Mask 673 Controls which adapters can issue forward reverse direction commands Fault Clr Mask 674 Controls which adapters can
58. e Parameter 1057 MulDiv 2 Input the input value to be scaled as need with the Multiplication and Division function This input will be multiplied by parameter 1058 MulDiv 2 Mul and then divided by parameter 1059 MulDiv 2 Div The result will be loaded to parameter 1060 MulDiv 2 Result Equation Par 1057 Par 1058 Par 1059 Par 1060 PowerFlex drives are sometimes referred to by voltage class This class identifies the general input voltage to the drive This general voltage includes a range of actual voltages For example a 400 Volt Class drive will have an input voltage range of 380 480VAC While the hardware remains the same for each class other variables such as factory defaults and power unit ratings will change In most cases all drives within a voltage class can be reprogrammed to another drive in the class by using parameter 403 Voltage Class to reset a drive to a different setup within the voltage class range As an example consider a 480 volt drive This drive comes with factory default values for 480V 60 Hz with motor data defaulted for U S motors HP rated 1750 RPM etc By setting the Voltage Class parameter to Low Voltage this represents 400V in this case the defaults are changed to 400V 50 Hz settings with motor data for European motors kW rated 1500 RPM etc 2 160 Detailed Drive Operation Watts Loss The following table lists watts loss data for PowerFlex 700S drives running at full
59. eng sdwy yndjno yndu dH nd sejoN 104 Er S LA 89S Y Sewesy SEd1A9q UONIAJO1H Indu JY HOA DES Detailed Drive Operation 2 44 VN 007 009 009 0S osy osz Olv BEI SOZ SEL 66L OLL YN 00p 092 092 ose oss OSE D I 982 093 UL Sse cel 9 8rzadoz YN WEI 00S 009 DG Sle osz ELE SS3 0ZL g i vol 06 VN F 007 009 009 WS osp 0S2 688 O22 SOZ gl 661 OlL 9 j08tadoe VN E 0S 007 oss 005 00 o0z 088 Ole Oli EOL 9EL SZ VN osz 00S 009 WEI GIE 0S3 SSZ Z8L DI 921 pol 061 9 9614003 VN e Si OS GLE GLE GC 003 GeL 89L tvt 96 Z 9 616 Sp e VN E A 0S JAS 00S OSI Sle OSL 9l BEL Sel 6 8 bbe SG SL ados VN S Os 00 00 OLL sz OLL Oli 8cl 98 vos vIg SP VN OSI 00 00p Sel See Gol Blo SOL 969 SO0L D I 9600003 VN 001 00 RS 06 SL 06 ttti 801 cl 8 lv 689 e VN A a z osL 00 00 OLL 00 OLL gel v6 s8 vos v L8 Sv Y 2200003 VN 001 0S UG 06 OSI 06 cll v8 cd 8lv 689 DEI LE 900005 VN F z 001 003 003 W I Sel W I 98 v9 991 Z9 S G i D I 2909003 VN B 09 Os DL 09 06 09 vl 99 ev 38d Oplo 2c ovodaoe VN Sv09 384 NOpL 0S Sel Sel SV 08 SV 09 SV 18 ve OSE GLIFT8L veoddoe VN 0 384 W0rl 0S Oc Oc DE 09 DE SY EE DEI Z6L v8c
60. equal parameter 76 Fwd Speed Lim Based on tuning of the drive the speed could overshoot the commanded speed If parameter 335 Abs OverSpd Lim is set to zero and an overshoot in speed occurs the drive will fault on an absolute overspeed Drive is configured as a torque follower Ifthe mechanical connection to the load is severed the torque command to the drive will probably be greater than the motor unloaded will require to maintain the system speed This will cause the motor speed to increase until the torque command is met Setting parameter 335 Abs OverSpd Lim to the desired tolerance will cause the fault to occur when the motor speed exceeds the limit of Fwd Speed Lim or Rev Speed Lim Abs Overspd Lim An owner is a parameter that contains one bit for each of the possible adapters The bits are set high value of 1 when its adapter is currently issuing that command and set low when its adapter is not issuing that command Table 2 C Owner Parameters and Functions Parameter Name No Function Stop Owner 677 Indicates the adapters that are presently issuing a valid stop command Start Owner 678 Indicates the adapters that are presently issuing a valid start command Jog Owner 679 Indicates the adapters that are presently issuing a valid jog command Direction Owner 680 Indicates the adapter that currently has exclusive control of direction changes Fault Clr Owner 681 Indicate
61. have a range from 10 to 20000 PPR Parameter 156 Start Inhibits bit 10 Encoder PPR will be set if the PPR value doesn t correspond with any of these cases n lx mod75 mod125 Jmod 225 mod 375 mod 625 mod1125 1 75 125 225 375 625 1125 2 150 250 450 750 1250 2250 4 300 500 900 1500 2500 4500 8 600 1000 1800 3000 5000 9000 1200 2000 3600 6000 10000 18000 32 2400 4000 7200 12000 20000 ol CO N O 01 A Gol P CO S o 512 10 1024 2048 12 14096 13 8192 14 16384 A Parameter 233 Encdr 0 1 Config sets the configuration options for the encoders The bits for Encder 0 1 Config are defined as follows Options alale ajale SISSIES S G j ja S E E EE 2 2 EEES S lala j lt S E ici e 81818 2 22 8 8 ASA EE 8 2 8 56 8 8 lg 2 8 3 82 8 3 le D VO O SE CSC C O O E E E ES E S C C O OD0 O CS CE C O0 OD S C CSE C C C C C ec poc poc pers w w foc jos pers feos fons feos posos fons joss pos foc oc oc jun joss pos OS E joss joss HI fons joss fons fons IO Default o fo o fo fi ft fo fo ft Jo jo fi ft fo ft fo fo fo fio fp ft ft fo ft fo o ft ft fo ft D 0 rare Bit 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 109 8 7 6 5 4 38 2 1 0 1 True The function of the bits in Encder 0 1 Config are as follows e Bits 0 EncO Filt bur through 3 EncO Filt bt3 or Bits 16 Enc1 Filt b
62. instead of issuing a start to the drive a speed regulate mode can be selected The drive will then immediately accelerate the motor without the need for flux up time Important Zero Torque may excessively heat the motor if operated in this mode for extended periods of time No load or flux current is still present when the drive is operating in zero torque mode A motor with an extended speed range or separate cooling methods blower may be required Start Inhibits Start Stop Modes Detailed Drive Operation 2 131 Absolute Min Mode Absolute Min Mode selects the smallest absolute algebraic value to regulate to when the torque reference and torque generated from the speed regulator are compared This section covers Start Inhibits parameter 156 Run Inhibit Stat This parameter indicates the cause of no response to a start request Bit 0 Description 0 Drive is Faulted 1 No Enable signal present 2 Software Ramp Stop request present 3 Software Coast Stop request present 4 Software Current Limit Stop request present 5 Power Loss 6 Power EE prom error 7 Flash upgrade in progress 8 Start request present 9 Jog request present 10 Encoder PPR error 11 Bus Precharge not complete 12 Digital input configuration error 13 Motion Shtdwn 14 Permanent Magnet motor Feedback Error 15 Position feedback selection 16 Gate shutdown 17 Safe Off enabled 18 MC Config
63. integers The following examples are for transmitting and receiving the different types of Datalinks The following program examples are from an SLC but function the same in a PLC 5 Figure 2 3 Reading DINT Datalinks in an SLC or PLC 5 CoP Copy File Source AN11 114 Dest N13 114 Length 2 Figure 2 4 Writing DINT Datalinks in an SLC or PLC 5 Figure 2 5 Reading Floating Point Datalinks in an SLC or PLC 5 Source N13 112 Dest F12 5 Length 1 Detailed Drive Operation 2 19 Figure 2 6 Writing Floating Point Datalinks in an SLC or PLC 5 CoP Copy File Source F12 6 Dest N13 12 Length Copy Cat This feature allows you to upload a complete set of parameters to the LCD HIM This information can then be used as backup or can be transferred to another drive by downloading the memory Generally the transfer process manages all conflicts If a parameter from HIM memory does not exist in the target drive the value stored is out of range for the drive or the parameter cannot be downloaded because the drive is running the download will stop and a text message will be issued The user than has the option of completely stopping the download or continuing after noting the discrepancy for the parameter that could not be downloaded These parameters can then be adjusted manually The LCD HIM will store a number of parameter sets memory dependant and each individual set can be named for clarity 2 20 Detailed Drive Operati
64. may vary See publication 140M SG001 8 20BC085 current rating is limited to 45 degrees C ambient e 20BC205 current rating is limited to 40 degrees C ambient Maximum allowable rating by US NEC Exact size must be chosen for each installation 540 Volt DC Input Protection Devices Footnotes found on page 50 HP Rating DC Input Ratings Output Amps Drive CatalogNumber Frame ND HD Amps kw Cont 1 Min 3 Sec Fuse Non Time Delay Fuse 2 20DD014 1 10 Ti 14 7 9 5 15 4 16 5 22 30 HSJ25 20DD022 1 15 10 23 3 15 1 22 24 2 33 45 HSJ400 20DD027 2 20 15 28 9 18 8 30 33 44 60 HSJ50 20DD034 3 25 20 36 4 23 6 37 40 5 54 70 HSJ70 20DD040 3 30 25 42 9 27 8 43 51 68 80 HSJ90 20DD052 3 40 30 55 7 36 1 56 60 80 100 HSJ100 20DD065 3 50 40 69 7 45 4 72 78 104 150 HSJ125 20DD077 4 60 84 5 54 7 77 85 116 150 HSJ150 50 67 9 45 4 65 98 130 150 HSJ150 20DJ096 1 5 55 105 3 68 3 105 116 158 200 HSJ175 45 84 5 54 7 85 128 170 150 HSJ175 20DJ125 0 5 55 137 1 88 9 125 138 163 250 HSJ200 45 105 3 68 3 96 144 168 200 HSJ200 20DJ156 6 90 171 2 110 9 170 187 255 300 HSJ350 Ki 137 1 88 9 140 210 280 250 HSJ350 20DJ180 6 110 204 1 132 2 205 220 289 400 HSJ350 90 171 2 110 9 170 255 313 300 HSJ350 20DJ248 6 132 260 286 390 550 HSJ400 111 205 308 410 400 HSJ400 20DJ261 9 200 299 186 261 287 410 500 170M6608 150 235 146 20
65. oC OSr 0 00 voz vez O91 6 0080003 YN 00 009 oss 093 00 osz Oly 80 S0Z Gel rozl obl YN 00 002 002 Gee 00S Ger Olv 282 192 IL gel Jee gl L9zaaoz SIM Siequiny fojero op oy XW n XEN g XEN y UW tj XEN UIN 99S EI UNL WOO vu su GH GN 3 u 3 Jequnn oredissig iggy 9Buey yuana ajqeysnipy 7740199 0dd z 434219 s6uney funeg fojejeo JaMOd UUM 19118 S JOJOW NOY L WOU 10101 n3119 asny ej q w uoy asny ej q au juawa3 eng sduy inding indu MA a3MIQ sajon Jo 5p Z 302d 985 6 Sowes SEd Aaq uo199101d Indu DY HOA 00p Detailed Drive Operation 2 46 YN z osz 00S 009 Seg Dip Sez O9 D i 08l Il 691 OSL YN SS S 00y 002 002 00 OSS 00 GIE E22 Bre vel Eez 003 9 8readoz YN WEG osr 009 002 OSE 002 cle vecs D ll Z Jil YN WE 00S 009 gzz 00 Sezi O22 86t 08L IL 691 0OSL 9 08Laadoz YN osz GIE 009 GIL 0Sc Lt 0S3 88l GU 60l JEL OOL YN Wen DF 009 003 OSE 003 e z ll D ll eck Jl Scl 9 osados YN 5i S SS Gel OSE OSE Gel 002 Sct 891 rl 96 ER 106 SZ YN z OSI GLE 00S OSI OSZ OS E91 8 El Sek 926 Ji 00L S ScLados YN 0006 NINO WNOpL 001 00 8 00 001 DL 00L YSL 9tL 22 109 Eil 09 YN Sel OSE O
66. operation is intended to protect the drive from excessive inrush currents in the presence of input AC line disturbances and allow the drive to continue normal operation without user intervention However there is also a concern for safe auto restart operation By default the drive is configured to fault and not auto restart if the power line dropout lasts more than two seconds configuration at the system and user level Incorrect selection s may ATTENTION The user must determine safe auto restart and fault A result in personal injury due to machine motion Precharge Frames 1 through 4 The precharge implementation and control varies with drive size and type For frames through 4 the precharge hardware is located on the power circuit board This is basically a resistor and bypass relay in series with the positive DC bus between the front end rectifier and the bus capacitor The bypass relay control is 408 Detailed Drive Operation 2 87 described below Also note that these drives can be wired for either AC line power or DC common bus The precharge function will work the same for either AC or DC power input Precharge Frames 5 and Higher AC Input Stand Alone Drives For frames 5 and higher AC Input the precharge function is implemented with an SCR rectifier such that the SCRs are phase advanced to limit the inrush current into the bus capacitor s This phase advanced precharge is not controlled by the drive and should normally b
67. output by the drive The Closed Loop IT function and the Torque Current Reference are compared and the algebraic minimum is used for the Torque Current Reference See the Drive Overload section for a description of the Open Loop and Closed Loop IT Functions Datalinks are used to transfer I O data from a communication adapter i e ControlNet 20 COMM C or DeviceNet 20 COMM D to a controller Datalinks allow parameter values to be changed without using messaging Configuring Datalinks This section contains information on configuring the Datalink parameters in the PowerFlex 7005 There are also parameters in the communication adapters that must be configured to use Datalinks See the sections on the individual adapters i e 20 COMM C 20 COMM D for more information on setting up the Datalinks in the adapter Data In Parameters Parameters 651 DPI Data In A1 through 658 DPI Data In D2 are inputs to the drive from the controller and are used to write to parameters To write to a parameter that parameter must be linked to one of the parameters 651 through 659 Then set the appropriate bit in parameter 650 DPI In Data Type to indicate if that parameter is a DInt double integer or Real floating point Turn the bit off for DInt and turn the bit on for floating point A total of eight parameters can be written with the Data In parameters Decel Time Detailed Drive Operation 2 21 Example Configuration 1 Writing a DInt
68. parameter 769 Position Error must be within for parameter 741 Position Status bit 10 In Position to turn on Parameter 783 In Posit Dwell sets a delay time in seconds that parameter 769 Position Error must be within parameter 782 In Posit BW before parameter 741 Position Status bit 10 In Position turns on Technical Information General facts about the point to point position loop 1 Uses only parameter 768 PositReg P Gain for tuning Parameter 770 Posit Reg Integ is not used in point to point mode 2 The number of position counts per revolution depends on the type of feedback device used a When using an encoder for positioning the drive uses quadrature counts i e 1024 encoder 4096 counts per motor revolution b When using a Stegmann absolute hi resolution encoder the drive counts 1048576 counts per revolution c When using a Resolver the drive counts 65536 counts per revolution 3 Speed regulator tuning directly affects the position loop performance The speed regulator should be tuned before the position loop 4 For best performance positioning should be used with a dynamic brake or regenerative system Overview The point to point positioning feature gives the user the ability to position the load without an external position controller The point to point function of the position loop moves from the current location to the commanded location then holds that position until given a new refe
69. provides voltage surge protection and phase to phase plus phase to ground protection which is designed to meet IEEE 587 The MOV circuit is designed for surge suppression only transient line protection not continuous operation With ungrounded distribution systems the phase to ground MOV connection could become a continuous current path to ground Energy ratings are listed below Exceeding the published phase to phase or phase to ground energy ratings may cause physical damage to the MOV PowerFlex drives contain protective MOVs and common mode capacitors that are referenced to ground To guard against drive damage these devices should be disconnected if the drive is installed on an ungrounded distribution system where the line to ground voltages on any phase could exceed 125 of the nominal User Functions Detailed Drive Operation 2 149 R Joules J L Phase to Phase MOV Rating Three Phase Ss Joules J Includes 2 Phase Phase MOVs AC Input d I Joules J 4 Phase to Ground MOV Rating Joules J Includes Phase Phase amp Phase Ground MOVs Ground Device Rating V AC 240 480 600 240 480 600 240 480 600 Phase Phase Total 160J 320J 280J 320J 280J _300J Phase Ground Total___220J 380J 360J 410 360 370J line to line voltage Refer to your PowerFlex 700S User Manual publication 20D UMO06 for details There are several user functions available in the drive for custom control e Parameter 1000 UserFunct Ena
70. the configuration of the receive port e Bit 6 Sys Rev Err indicates the system revision in the received data does not match the value of Par 900 SynchLink Rev e Bit 7 Mult TimeKpr indicates more than one node on the SynchLink system is configured as a time keeper Options ved ved ved ved ved ved ved ved TimeKpr SIE Ier Rese O Rese Rese Rese Default O JO 0 0 False Bit 15 14 13 12 11 10 1 True gt 1Sys Rev Err 22 Comm Frmt Er gt Pckg Msg Err S Many CRC Err NS Many BOF Err 1 S Rx Loss S Sync Loss Rese N gt Mult Speed Synchronization Example This example describes how to setup SynchLink to synchronize the ramped speed reference for two PowerFlex 700S Phase II drives using DriveExecutive DriveExecutive must be v3 01 with v3 03 patch installed or later To check if the patch is installed in DriveExecutive click Help gt Details to check component versions RADrvSynchLink dll must be version 3 3 or later Note that the SynchLink Setup dialog box in DriveExecutive configures the appropriate SynchLink parameters for you as you go through the setup Detailed Drive Operation Once connected to the drive in DriveExecutive select Drive gt Display SynchLink El File Edit view D Peripheral Tools Window Help DG W amp Conec to Drive Undefined Nod Create Database E Bl 0 PowerF 7 ef Overvi Upload from 0 PowerFlex 7
71. the data type To detect positive peak values turn on parameter 210 PeakDtct Ctrl In bit 2 Peak Sel To detect negative peak values turn off parameter 210 PeakDtct Ctrl In bit 2 Peak1 Sel The peak value is contained in parameter 215 Peak Detect1 Out To reset the output of the peak detector toggle on then off parameter 210 PeakDtct Ctrl In bit 0 Peak 1 Set The output will match the value in parameter 214 PeakDtct1 Preset which is a default of 0 To hold the output of the peak detector at the present value turn on parameter 210 PeakDtct Ctrl In bit 1 Peak 1 Hold The change bit parameter 211 PeakDtct Status bit O Peak 1 Chng is set to true for one scan if the peak detect value changes otherwise the change bit is set to False The change bit is also set to False if the detector is in Set or Hold mode PeakDtct Ctrl In Peak 1 Set PeakDtct Ctrl In Peak 1 Hold E l Peak Detect1 Out I PA lt 215 gt CDA PeakDtct1 Preset PkDtct1 In Real 213 x PkDtct1 In Dint oy 2 PeakDtct Ctrl In Peak1SelHigh Peak Detect PeakDtct Status Peak 1 Chng Peak Detect2 Out Ht T 211 PeakDtct Ctrl In Peak 2 Set PeakDtct Ctrl In D Peak 2 Hold PkDtct2 In Real PkDtct2 In Dirt s0 PeakDtct Ctrl In PeakDtct2 Preset Peak2SelHigh Peak
72. when the PI Integ Time is 2 the integrator output equals 1 per unit in 1 second for 1 per unit error 1 per unit means 100 The output of the integrator is limited by parameter 188 PI Integ Hlim and parameter 189 PI Integ Llim PI Integ Hlim is in per unit and has a range from 0 to 8 A value of 1 for PI Integ Hlim can represent base motor speed rated motor torque or 1009 of some external function The output of the integrator after the integrator limits can be viewed in parameter 190 PI Integ Output PI Prop Gain sets the proportional gain of the regulator For example when PI Prop Gain is 2 the output of the proportional block will equal 2 per unit in 1 second for a 1 per unit error The output of the integrator parameter 190 PI Integ Output and the output of the proportional block are summed together Process PI Limits To prevent the regulator output from exceeding a range an upper and lower limit can be programmed Parameter 191 PI High Limit sets the high limit for parameter 180 PI Output signal PI High Limit is in per unit and has a range from 0 to 8 A value of for PI High Limit can represent base motor speed rated motor torque or 100 of some external function Process PI Output At this point of the process PI loop some conditions must be met to turn on the PI output otherwise the PI output is 0 The PI output can be turned on in one of two ways 1 Parameter 151 Logic Command
73. 00 170M6611 250 343 213 300 450 600 700 170M6611 20DJ460 10 350 527 327 460 506 770 900 170M6613 300 441 274 385 578 770 900 170M6613 20DJ500 10 450 572 356 500 550 750 1000 170M6608 350 481 299 420 630 840 1000 170M6608 20DJ590 11 500 676 420 590 649 956 cn 2 per 170M6609 pns 450 595 370 520 780 956 En 2 per 170M6609 pns 20DJ650 11 500 744 463 650 715 1062 m 2 per 170M6610 phs 500 676 420 590 885 1062 700 2 per 170M6610 phs 20DJ730 11 600 836 520 730 803 1095 iu 2per 170M6611 phs 500 744 463 650 975 1170 z 2per 170M6611 phs 1 Also applies to R voltage class Fuses must be applied in the leg and leg of the DC Common Bus 2 The power source to Common Bus inverters must be derived from AC Voltages 600V or less as defined in NFPA70 Art 430 18 NEC Battery supplies or MG sets are not included The following devices were validated to break current of the derived power DC Bus Disconnects Allen Bradley Bulletin No 1494 30 to 400 A Bulletin No 194 30 to 400 A or ABB OESA 600 amp 800 A OESL all sizes Fuses Bussmann Type JKS all sizes Type 170M Case Sizes 1 2 and 3 or Ferraz Shawmut Type HSJ all sizes For any other devices please contact the factory Grounding General HIM Memory HIM Operations Detailed Drive Operation 2 51 Refer to Wiring and Grounding Guidelines for Pulse Width Modulated PWM AC Drives publication DRIVE
74. 005 2 24 Linear Download O PowerFlex 7005 2 Eg Monito 23 Motor a Dynam CA Speed Ea Torque 143 Proces l Positiot Faults Events and Alarms gt Ea Speedy E8 Utility Ea Comme E3 Inputs Ea User Fi Ea Defaull Groups Properties 2 141 The SynchLink Setup dialog box displays as shown below This is the dialog box used to setup SynchLink M SynchLink Setup PowerFlex 7005 2 Data speed ref Receive Format Undefined Transmit Format Undefined Source Refresh Values Master PowerFlex 700S Drive Setup Transmitting Drive 1 In the master or transmitting drive select the desired transmittal format in the Transmit Format field For this example select 4 Direct Words 8 Buffered Words Below the Transmit Format field for Direct Word 0 do the following a Click the arrow next to the Type field and select Parameter 2 142 Detailed Drive Operation b Click the button to the right of the Source field and select 43 Ramped Spd Ref This setting is to transmit the ramped speed from the master SynchLink Setup PowerFlex 700S 2 Data Speed Ref Receive Format Undefined Type Source Parameter 43 Ramped Spd s Undefined DINT Undefined DINT Undefined DINT Undefined DINT Undefined DINT Undefined DINT Undefined DINT Undefined DINT Undefined DINT Undefined DINT U
75. 091 D l 08 SOE l OF YN OS 00 007 Gel Gee Sel GLL GL Ol 90p 86 OF 9 volados YN 0006 NINO INOpL e 001 00 00 00L 084 001 OCL SOL 08 SOE CEL Sc 0 v 0808d0 YN 0006 NINO WO bL 001 Sle Sle 06 OSI 06 SOL el DI Z93 Ch l D Se PI 0Z08d03 YN 0089 NINO WOpL 001 008 003 09 001 09 08 9 29 86L ZZY St 03 zsogaoz YN 00E9 NWO WOP L 9t9 384 W0Y 4 z os Ost Weil os 06 0s 9 co cy 091 SBE OL Sk zrogaoz YN 000y NINO INOpL 2E0 383 NO0yL z 0s 001 001 Ge 09 ce vb ES 8c LOL sz 94 OL z 8z08a0 VN 00S3 NINO NOpL S320 384 NOb S2O 480 WOrl 929 329 NOY L 0 08 08 D 06 ER Eel ove cc 8 66h S GZ L degt VN 9109 383 N0y 9L0 380 WNOv 9LO 329 MOpL 0 09 09 02 oe 02 ed 891 est LS ZEL l S LU sLogdoz VN 019 383N0y OL9 380 WNOb OLO 329 MO0pL Ss Es Es CL D cl vvt QOL 96 FEI CR c LU 9468003 YN 010 383 NOp L 0 9 380 W0YL OLO 320 WNO0pL SL Ge ES DL SL DL CL 6 89 vo 68 EL lt LI 8d9ados VN 98 380 NOp L 99 3Z9 WO0P L H Sl Sl G 8 S v9 ey cv Pl EC 9 0 L Li edvadoe YN 928 380 N0p 9z9 3Z9 N0Y L CL DL E 9 EE vo ce ZO UE G0 L edeadoe SHEM ggSequny Dote aigle OD XEN XEN g XEN UN T EW gun 99S UIE M07 WAX sdwy GH ON 7 saquinn uonedissiq ig 19M891g asny Aejaq asny Aejaq au sBuney Buney 3 bojejeo J9MOd abuey Juang ajqeysnipy UA 18 18IS 107014 WOY L NIA 103014 HEIN au UON uawa
76. 11 0 the precharge control is disabled held in precharge and the drive is inhibited from running see parameter 156 Start Inhibits Otherwise when parameter 411 1 the user precharge is enabled Using a digital input for the precharge enable is recommended for common bus systems where a drive may be disconnected and reconnected to the common bus system The digital input should be connected through an auxiliary contact on the cabinet disconnect switch Failure to provide a hardware disconnect precharge control may lead to very large inrush currents and associated drive damage if a reconnection is made before the drive can sense the power loss This precharge enable provides a user controlled permissive to the precharge function The drive must not be in an undervoltage condition Parameter 409 Line Undervolts sets the under voltage level as a percent of drive rated volts parameter 401 Rated Volts An undervoltage is detected by comparing the parameter 306 DC Bus Voltage to the percent of line voltage set in parameter 409 Line Undervolts times parameter 401 Rated Volts times the square root of 2 The undervoltage condition is displayed in parameter 555 MC Status bit 15 DC Bus Low The drive bus voltage must be stable not rising The bus voltage stable condition is determined by comparing the bus voltage to a filtered value of the bus voltage Initially when power is applied to the drive the bus voltage will rise as
77. 11 90 2510 MPG A050 091 230 5 0 275 0 2750 0 75 12 15 6 2 60 3775 MPG A110 031 230 20 2 122 0 1220 2 20 12 53 0 17 20 2875 MPG A110 091 230 17 0 184 0 1840 1 60 12 33 2 8 30 3500 MPG B010 031 460 1 6 162 7 2440 0 34 8 4 4 1 33 6450 MPG B010 091 460 0 7 357 3 5360 0 23 8 15 0 41 6450 MPG B025 031 460 4 0 219 0 2190 0 92 12 11 3 4 02 4838 MPG B025 091 460 1 9 175 0 1750 0 54 12 5 2 2 95 5900 MPG B050 031 460 16 3 92 0 920 1 20 12 32 5 12 40 2510 MPG B050 091 460 3 4 290 0 2900 0 79 12 9 9 2 60 4560 MPG B110 031 460 12 9 112 0 1120 2 00 12 31 1 17 00 2420 MPG B110 091 460 10 6 184 0 1840 1 60 12 20 5 8 30 3500 1326AB B410G 460 25 118 0 3540 1 00 4 74 2 70 5000 1326AB B410J 460 3 5 165 0 4950 1 40 4 10 4 2 70 7250 1326AB B420E 460 2 8 70 0 2100 1 10 4 8 5 5 00 3000 1326AB B420H 460 5 5 137 3 4120 2 20 4 15 6 5 10 6000 1326AB B430E 460 3 9 67 7 2030 1 40 4 11 7 6 60 3000 1326AB B430G 460 5 6 114 3 3430 2 30 4 16 8 6 40 5000 1326AB B515E 460 6 1 70 3 2110 2 30 4 18 3 10 40 3000 1326AB B515G_ 460 9 5 88 7 2660 2 90 4 28 5 10 40 5000 1326AB B520E 460 6 7 71 0 2130 2 90 4 20 1 13 00 3000 1326AB B520F 460 8 8 70 3 2110 2 90 4 26 4 13 10 3500 1326AB B530E 460 9 5 74 3 2230 4 20 4 28 5 18 00 3000 1326AB B720E 460 17 5 70 0 2100 6 80 4 52 5 30 90 3500 1326AB B720F 460 27 5 117 0 3510 11 70 4 66 5 31 80 5000 1326AB B730E 460 22 8 78 3 2350 9 60 4 66 5 39 00 3350 1326AB B740C 460 20 9 52 3 1570 8 70 4 62 7 53 00 2200 1326AB B740E
78. 153 Servo Lock Gain 2 121 Setting the Electronic Gear Ratio EGR and Speed Reference Scaling 2 71 Skip Speed 1 2 96 Skip Speed 3 2 96 Index 11 Skip Speed Band 2 96 SL BOF Err Accum 2 139 SL BOF Err Limit 2 139 2 140 SL BOF Error 2 139 SL Buf Data Rx00 2 138 SL Buf Data Rx17 2 138 SL Buf Data Tx00 2 139 SL Buf Data Tx17 2 139 SL Clr Events 2 135 SL Cre Err Accum 2 139 SL CRC Err Limit 2 139 2 140 SL CRC Error 2 139 SL Dir Data Rx00 2 135 SL Dir Data Rx03 2 135 SL Dir Data Tx00 2 136 SL Dir Data Tx03 2 136 SL Error History 2 139 2 140 SL Error Status 2 140 SL Mult A In 2 138 SL Mult B In 2 138 SL Mult Base 2 138 SL Mult Out 2 138 SL Mult State 2 137 SL Node Cnfg 2 134 2 143 SL Real2DInt In 2 138 SL Real2DInt Out 2 138 SL Rx CommFormat 2 134 SL Rx DirectSel 0 2 138 SL Rx DirectSel0 2 135 2 137 SL Rx DirectSel3 2 135 2 137 SL Rx PO Regis 2 135 SL Rx P1 Regis 2 135 SL System Rev 2 139 SL Tx CommFormat 2 134 SL Tx DirectSel0 2 136 2 138 SL Tx DirectSel3 2 136 Slip Comp Gain 2 98 Slip Compensation 2 97 Slip RPM FLA 2 98 Slip RPM Meter 2 98 Spd Err Filt BW 2 33 2 38 2 103 2 121 2 125 Spd Fdbk Scale 2 109 Spd Ref 1 2 2 Index 12 Spd Ref 2 Multi 2 72 Spd Ref Bypass 2 117 2 142 Spd Ref2 Multi 2 70 Spd Reg BW 2 36 2 38 2 73 2 77 2 123 2 125 2 127 Spd Reg Droop 2 29 Spd Reg Gain 2 123 Spd Reg Neg Lim 2 124 Spd Reg P Gain 2 123 Spd Reg PI Out 2 124 Spd Reg Pos
79. 2 112 Task Time 2 145 Test Points 2 145 Thermal Regulator 2 145 Time Axis Rate 2 145 Time Function Generator 2 145 Torq Refi Div 2 129 2 146 Torq Ref2 Mult 2 146 Torque Torque Reference Input 2 146 Torque Mode Select 2 127 Torque Pos Limit 2 13 Torque Ref 1 2 129 2 146 Torque Ref 2 2 129 2 146 Torque Ref1 2 21 Torque Reference 2 146 Torque Trim 2 93 2 129 2 146 Total Inertia 2 6 2 54 2 123 Trend Control 2 147 Trend In1 Dint 2 147 Trend In1 Real 2 147 Trend In2 Dint 2 147 Trend In2 Real 2 147 Trend In3 Dint 2 147 Trend In3 Real 2 147 Trend nd Dint 2 147 Trend In4 Real 2 147 Trend Mark Dint 2 147 Trend Mark Real 2 147 Trend Out Dint 2 147 Trend Out Real 2 147 Trend Out2 Dint 2 147 Trend Out2 Real 2 147 Trend Out3 Dint 2 147 Trend Out3 Real 2 147 Trend Out4 Dint 2 147 Trend Out4 Real 2 147 Trend PreSamples 2 147 Trend Rate 2 146 2 147 Trend Status 2 147 Trend Trig Bit 2 147 Trend Trig Data 2 147 Trend TrigA Dint 2 147 Trend TrigA Real 2 147 Trend TrigB Dint 2 147 Trend TrigB Real 2 147 TrendBuffPointer 2 147 Trending 2 146 Tx Buf Data Type 2 139 Tx Dir Data Type 2 136 U Unbalanced Index 13 Distribution Systems 2 148 2 149 Ungrounded Index 14 Distribution Systems 2 148 2 149 Ungrounded Distribution Systems 2 148 User Display HIM 2 51 User Functions 2 149 UserFunct Actual 2 149 UserFunct Enable 2 149 2 154 V v 2 6 2 11 Virt Edge Rev 2 103 Virt Encdr Dlyed 2 117 Virt En
80. 2 52 Detailed Drive Operation Indexer Bsclndx Step 740 312 C740 OR A BsclndxStpRv C740 15 C740 1 OR Bsclndx Rev O 13 Basiclndex Step ED BasiclndexPreset The indexer function takes a step increment and adds to or subtracts from a DInt parameter The indexer output would normally be used in conjunction with the point to point position loop or with a position offset Typical applications for the indexer are indexing conveyors such as a conveyor feeding a punch press Enabling the Indexer The firmware function for the position loop must be turned on by setting parameter 147 FW Functions En bit 16 Position Ctrl 1 Set parameter 740 Position Control bit 11 BscIndx Enbl 1 Position Control Bsclndx Prst Tao 14 OR Power up Position Control 1 Bsclndx Enbl 799 gt Basiclndx Output Poo Configuring the Indexer Parameter 797 BasicIndx Step sets the position units for each indexer step When the indexer is used in conjunction with the point to point loop parameters 745 PositRef EGR Mul and 746 PositRef EGR Div are used to scale the position reference The indexer could be used in conjunction with the point to point position loop or with a position offset To use the indexer to control the point to point position link parameter 758 Pt Pt Posit
81. 3 Mechanical Gear Train AAAM Bm BL Kspring The resonant frequency is defined by the following equation Jm is the motor inertia seconds Jload is the load inertia seconds Kspring is the coupling spring constant rad sec Detailed Drive Operation 2 37 Jm Jload JK j resonance d spring x load Figure 2 14 shows a two mass system with a resonant frequency of 62 radians second One Hertz is equal to 27 radians second Figure 2 14 Resonance 62 rad oscillation no comp 1 6 T T T T T T Motor Torque Motor PU 14 Roll PU 1 2 1 0 8 0 6 0 4 10 12 14 18 20 The small inset shows a better representation of resonant frequency better The PowerFlex 700S has a notch filter in the torque reference loop to eliminate such noise from the system The notch filter frequency is parameter 118 Notch Filt Freq Due to the fact that most mechanical frequencies are described in Hertz Notch Filt Freq is in Hertz as well Figure 2 15 shows the same mechanical gear train as in Figure 2 14 Notch Filt Freq is set to 10 2 38 Detailed Drive Operation Figure 2 15 10 Hz Notch Notch 10Hz 62rad oscillation T T T T T I I Motor Torque Motor PU Roll PU 0 8 0 6 0 4 0 2 e 2 4 6 8 10 12 14 16 18 20 Conclusion There are several filters used in the PowerFlex 700S for various applications The process trim uses a simpl
82. 3 Real 2 147 Index 9 Trend Ind Dint 2 147 Trend In4 Real 2 147 Trend Mark Dint 2 147 Trend Mark Real 2 147 Trend Out Dint 2 147 Trend Out Real 2 147 Trend Out2 Dint 2 147 Trend Out2 Real 2 147 Trend Out3 Dint 2 147 Trend Out3 Real 2 147 Trend Out4 Dint 2 147 Trend Out4 Real 2 147 Trend PreSamples 2 147 Trend Rate 2 146 2 147 Trend Status 2 147 Trend Trig Bit 2 147 Trend Trig Data 2 147 Trend TrigA Dint 2 147 Trend TrigA Real 2 147 Trend TrigB Dint 2 147 Trend TrigB Real 2 147 TrendBuffPointer 2 147 Tx Buf Data Type 2 139 Tx Dir Data Type 2 136 UserFunct Actual 2 149 UserFunct Enable 2 149 2 154 Virt Edge Rev 2 103 Virt Encdr Dlyed 2 117 Virt Encdr Posit 2 117 Virt Encoder EPR 2 117 Virtl Edge Rev 2 103 Voltage Class 2 159 XReg Integ HiLim 2 73 XReg Integ LoLim 2 73 Xreg Spd HiLim 2 73 2 77 Xreg Spd LoLim 2 73 2 77 Xsync Gen Period 2 144 Xsync In 1 2 144 Xsync In2 2 144 Xsync In3 2 144 Xsync Out 1 2 144 Xsynch Out 3 Dly 2 144 Peak Detect 2 66 Peak Detect1 Out 2 66 2 67 PeakDtct Ctrl In 2 66 2 67 PeakDtct Status 2 66 PeakDtct1 Preset 2 66 Permanent Magnet Control 2 6 Permanent Magnet Motors 2 67 PET 2 69 Index 10 PI Feedback 2 92 PI High Limit 2 93 PI Integ Hlim 2 93 PI Integ Llim 2 93 PI Integ Output 2 93 PI Integ Time 2 93 PI Loop 2 92 PI Lpass Filt BW 2 33 2 38 2 92 PI Output 2 93 2 118 PI Preload 2 93 PkDtct1 In Int 2 66 PkDtct1 In Real 2 66 2 67 PM Mtr CEMF Coef 2 6 PM Q Induct
83. 4 encoder 4096 counts per motor revolution b When using a Stegmann absolute hi resolution encoder the drive counts 1048576 counts per revolution c When using a Resolver the drive counts 65536 counts per revolution 4 Speed regulator tuning directly affects the position loop performance The speed regulator should be tuned before the position loop 5 For best performance positioning should be used with a dynamic brake or regenerative system Overview The position follower feature in the PowerFlex 700S gives the user the ability to follow the position of a master motor without an external position controller The position loop adds to or subtracts from the speed reference using Speed Trim 2 to correct for the following error and keep the positions of both encoders locked The resulting motor speed reference enters the speed regulator loop Gear ratios can be set up to follow at different rates of speed and position Typical applications for a geared follower would be for a roller following another part of a machine and a filler and capper machine for bottling 2 70 Detailed Drive Operation The following is a block diagram overview of the position follower mode Position Control Task 2 from Master Encoder from Follow Encoder Posit Spd Output PositReg P Gain 318 Ce e Aux Posit Ref Posit Reg Integ Speed Trim 2 OS l x l C
84. 5 Specifications A Dimensions 1 15 Figure 1 6 PowerFlex 700S Frame 9 480 0 18 90 5 0 0 20 14 0 0 55 E i ante g 363 3 14 32 gt 0058 7 lt 240 0 9 45 gt F 29039 Seel kita enz a fr Y weg Wire Way 1150 0 45 28 1120 0 44 09 Nameplate Y Y f n O e s gt lt 9 0 0 35 Lifting Hole 21 0 0 83 Dimensions are in millimeters and inches Weight kg bel Drive Drive amp Packaging 480 18 9 1150 45 28 2 13 37 400 15 75 T 44 09 142 9 315 176 9 390 1 16 Specifications 4 Dimensions Figure 1 7 PowerFlex 700S Frame 10 632 5 z d 23 50 R 23 84 GE 534 7 Y 498 0 420 21 05 c lt 19 61 a lt 1 65 T e d Eh i a J 2234 0 2275 0 Aten Bradey 89 57 L gt 87 95 2201 8 E row Y 86 68 NR f T Y Y Y 3 EN This dimension is the depth for drives with the optional door mounted HIM installed IEN Weight kg Ibs Drive Drive amp Packaging 597 23 5 2275 89 57 a 45 24 9 534 21 05 A 75 86 68 432 950 447 985 1 17
85. 5 PM TestWait Time Then the DC excitation position will be changed by 90 electrical degrees with the frequency defined by parameter 508 PM Test Freq Ref and the rate change of the frequency defined by parameter 507 PM Test FreqRamp The 90 degree phase shifted d axis current with the current value defined by parameter 509 PM Test Ref is continuously applied for the time interval defined by parameter 505 PM TestWait Time The value of parameter 504 PM AbsEnc Offst is determined by value in the absolute position sensor counter Back EMF Measures the permanent magnet motor CEMF motor voltage feedback coefficient and stores the value in parameter 523 PM Mtr CEMF Coef Inertia Test The final test is the inertia calculation The motor and load machine inertia is used to set the bandwidth of the speed regulator During the test the motor will accelerate to the speed set in parameter 74 Atune Spd Ref at a specified torque set by parameter 129 Atune Torq Ref The test then calculates the time in seconds to accelerate the motor at rated torque from zero to base speed and stores that value in parameter 9 Total Inertia Auxiliary Power Supply Bus Regulation Braking Detailed Drive Operation 2 7 Troubleshooting a MC Commissn Fail Fault during Autotune The MC Commissn Fail fault occurs when either the Power Circuits diagnostics test fails or one of the Motor Tests fails To find out specifically why the fault occurr
86. 5 308 410 500 170M6608 20DJ300 9 250 343 213 300 330 500 630 170M6610 200 281 174 245 368 490 630 170M6610 20DJ385 10 300 441 274 385 424 600 700 170M6611 250 343 213 300 450 600 700 170M6611 20DJ460 10 350 527 327 460 506 770 900 170M6613 300 441 274 385 578 770 900 170M6613 20DJ500 10 450 572 356 500 550 750 1000 170M6608 350 481 299 420 630 840 1000 170M6608 20DJ590 11 500 676 420 590 649 956 E per 170M6609 pns 450 595 370 520 780 956 SC per 170M6609 pns 2 50 Detailed Drive Operation HP Rating DC Input Ratings Output Amps Drive Catalog Number Frame ND HD Amps kw Cont 1 Min 3 Sec Fuse Non Time Delay Fuse 2 20DJ650 11 500 744 463 650 715 1062 so 2 per 170M6610 phs 500 676 420 590 885 1062 7 2 per 170M6610 phs 20DJ730 11 600 836 520 730 803 1095 w 2per 170M6611 pns 500 744 463 650 975 1170 700 2 per 170M6611 phs 1 Also applies to P voltage class Fuses must be applied in the leg and leg of the DC Common Bus 2 The power source to Common Bus inverters must be derived from AC voltages 600V or less as defined in NFPA7O Art 430 18 NEC Battery supplies or MG sets are not included The following devices were validated to break current of the derived power DC Bus Disconnects Allen Bradley Bull
87. 5000 MPL A420P 230 9 0 268 7 4030 2 00 8 32 5 4 74 5000 MPL A430P 230 11 9 234 0 3510 2 20 8 47 4 5 99 5000 MPL A430H 230 8 6 184 7 2770 1 80 8 31 8 6 21 3500 MPL A4520P 230 12 4 234 0 3510 2 20 8 35 4 5 99 5000 MPL A4520K 230 10 6 223 3 3350 2 10 8 30 4 5 99 4000 MPL A4530F 230 9 5 144 7 2170 1 90 8 29 7 8 36 2800 MPL A4530K 230 14 4 196 0 2940 2 50 8 43 8 8 13 4000 MPL A4540C 230 6 6 93 3 1400 1 50 8 20 5 10 20 1500 MPL A4540F 230 13 0 162 0 2430 2 60 8 38 2 10 20 3000 MPL A520K 230 16 3 208 0 3120 3 50 8 46 0 10 70 4000 MPL A540K 230 29 3 180 7 2710 5 50 8 84 9 19 40 4000 MPL A560F 230 29 3 125 3 1880 5 50 8 84 9 27 90 3000 MPL B310P 460 1 7 290 0 4350 0 72 8 3 0 1 58 5000 MPL B320P 460 3 2 281 3 4220 1 30 8 5 0 2 94 5000 MPL B330P 460 4 3 258 7 3880 1 70 8 7 0 4 18 5000 MPL B420P 460 4 5 255 3 3830 1 90 8 9 2 4 74 5000 MPL B430P 460 6 5 233 3 3500 2 40 8 12 0 6 55 5000 MPL B4520P 460 6 0 260 7 3910 2 50 8 17 0 6 10 5000 MPL B4530F 460 5 0 167 3 2510 2 20 8 13 4 8 36 3000 MPL B4530K 460 7 8 198 0 2970 2 60 8 19 1 8 36 4000 MPL B4540F 460 6 4 187 3 2810 3 00 8 16 3 10 20 3000 MPL B4560F 460 8 3 144 7 2170 3 20 8 25 5 14 10 3000 MPL B520K 460 8 1 208 0 3120 3 50 8 23 3 10 70 4000 MPL B540K 460 14 5 177 3 2660 5 40 8 42 4 19 40 4000 MPL B560F 460 14 5 123 3 1850 5 40 8 42 4 27 90 3000 MPL B580F 460 18 4 132 7 1990 7 10 8 66 5 34 00 3000 MPL B580J 460 22 6 101 3 1520 5 40 8 66 5 34 00 3800 MPL B640F 460 22 7 106 0 1590 6 10 8 46 0 36 70 3000 MPL B6
88. 6 for other functions Digital Input Configuration Parameter 825 830 DigIn x Sel can be set to the following values O Reserved 13 Jog 2 26 PI Trim En 1 Enable 14 Normal Stop 27 DI Trim Hold 2 Clear Faults 15 Spd Ref Gel 28 PI Trim Bet 2 Ext Fault 16 Spd Ref Sel1 29 Trend Trig 4 Nom Stop CF 17 Spd Ref Sel2 30 PreCharge En 5 Start 18 CurLim Stop 31 See Note below table 6 Reverse 19 Coast Stop 32 Hrd OvrTrvl 7 Run 20 AccelDecel2 33 Hrd OvrTrvl 8 Reserved 21 Indx Step 34 UserGen Sel0 9 Reserved 22 Indx StpRv 35 UserGen Sel1 10 Jog 1 23 MOP Inc 36 UserGen Sel2 11 Reserved 24 MOP Dec 37 UserGen Sel3 12 Reserved 25 MOP Reset 38 ExtFault Inv Note Option 31 is Regis 1 Ltch for Digital Input 1 and Regis 2 Ltch for Digital Input 2 In addition the Digital inputs can be used for other functions by using parameter 824 Local I O Status and the Bit Swap User Function Refer to Bit Swap on page 2 149 for an example Parameter 823 DigIn Debounce sets the filtering for each Digital Input Opti Io ioo Il ioo Io IO AAA AAA Aa Aaa a a a a ajaloo jo ptions E EE E E EEE EE E E EEIEIE E E EE E E E E E E EE E
89. 60F 460 27 2 81 3 1220 6 15 8 67 9 48 00 3000 MPL B680D 460 24 0 123 3 1850 9 30 8 66 5 48 00 2000 MPL B680F 460 33 9 79 3 1190 7 50 8 67 9 60 00 3000 MPL B860D 460 33 6 96 0 1440 12 50 8 67 5 83 00 2000 MPL B880C 460 33 6 72 7 1090 12 60 8 69 0 110 00 1500 2 68 Detailed Drive Operation Motor NP Motor NP Motor NP Current System Cont Motor Motor NP Volts FLA Frequency Motor NP RPM Power Motor peak Stall Torque Max Model Number Line Line V rms A rms Hz Oper RPM KW Poles A rms N m RPM Parameter 1 2 3 4 5 7 MPL B880D 460 40 3 86 7 1300 15 00 8 113 2 110 00 2000 MPL B960B 460 29 7 78 7 1180 16 00 8 63 6 130 00 1200 MPL B960C 460 38 9 76 0 1140 14 80 8 88 4 124 30 1500 MPL B960D 460 50 2 98 0 1470 20 00 8 102 5 130 00 2000 MPL B980B 460 31 8 72 0 1080 17 00 8 70 7 150 00 1000 MPL B980C 460 48 2 67 3 1010 16 80 8 99 0 158 20 1500 MPL B980D 460 63 6 93 3 1400 22 00 8 141 4 150 00 2000 MPG A004 031 230 1 8 222 7 3340 0 21 8 4 0 0 60 6000 MPG A010 031 230 2 1 189 3 2840 0 36 8 6 0 1 21 4875 MPG A010 091 230 0 9 295 3 4430 0 19 8 2 3 0 41 5900 MPG A025 031 230 9 9 181 0 1810 0 88 12 19 8 4 65 5200 MPG A025 091 230 3 0 168 0 1680 0 52 12 8 5 2 95 5625 MPG A050 031 230 24 7 120 0 1200 1 50 12 53 0
90. 7 gt 54 1 2 13 Dia 22 2 0 87 Dia jf Places CES uy ZA 62 7 2 47 Dia D oa 2 Places F i KE 189 7 SS 9 52 7 47 7 z d Fini 177 9 7 00 DARDO i QD Q RP cas iss OES CO OO VEH e 141 9 E O UY OOI OOO O es 559 H DD SS o 6 28 A 105 1 O O OO 6 E OOO Of OSSD O ru Ma T Y Y voy y C A 28 0 1 10 26 8 1 06 lt gt So 85 0 3 35 gt 36 8 1 45 lt gt I lt 150 0 EC 50 7 2 00 Le A 255 0 10 04 63 8 2 51 gt m 112 0 4 41 gt lt 180 0 7 09 gt Frame 5 100 HP 480 V 55kW 400V Frame 6 34 9 1 37 Dia 56 2 221 gt Habs PE go 7 247 Dia Teas 42 6 1 68 22 2 0 87 Dia ET F 45 6 1 80 3 Places is ae 31 9 1 26 _ Junction Box Za Ce a Y 7 7 s PAZ LOS OA WY El SS g D ay AS NADA AIK XT ge db gt CO aig f H Jal Lo lo p Y 8 4 edoooodo0o0 DI e 1854 ee 1485 PD LOS 7 30 E 2 585 ODO TO usel JE O00 OH 151 8 o o 4 59 IL 00 5 98 l LEET QOO HEET axe 1 de OOOO lodo el LA Me ail 47 1 1 85 Le 52 1 2 05 l p 69 1 2 72 gt Te o lt 130 1 5 12 28 0 1 10 lt gt an T 11 03 44 0 1 73 66 4 Ga dl 330 1 13 00 Po 5 04 gt 232 3 9 15 Dimensions are in millimete
91. 8 104 60 110 60 175 175 NA 20DF082 5 75 2 50 79 0 94 4 82 190 120 100 200 100 375 375 NA a 2 50 57 7 689 60 190 123 80 125 80 225 225 NA 20DF098 5190 2 40 94 7 113 98 108 127 125 200 125 375 375 NA 75 2 40 79 0 944 82 123 140 100 200 100 375 375 NA 20DF119 6 110 2 50 115 1837 119 131 Jg 150 250 150 400 NA 9 2 50 94 7 113 98 147 196 125 200 125 375 NA 20DF142 6 132 2 50 138 165 142 156 213 175 300 175 450 NA 110 2 50 115 137 119 179 238 150 250 150 400 NA Notes 1 Minimum protection device size is the lowest rated device that supplies maximum protection without nuisance tripping 2 Maximum protection device size is the highest rated device that supplies drive protection For US NEC minimum size is 125 of motor FLA Ratings shown are maximum 3 Circuit Breaker inverse time breaker For US NEC minimum size is 125 of motor FLA Ratings shown are maximum Motor Circuit Protector instantaneous trip circuit breaker For US NEC minimum size is 125 of motor FLA Ratings shown are maximum 5 Bulletin 140M with adjustable current range should have the current trip set to the minimum range that the device will not trip H Manual Self Protected Type E Combination Motor Controller UL listed for 208 Wye or Delta 240 Wye or Delta 480Y 277 or 600Y 347 Not UL listed for use on 480V or 600V Delta Delta systems 7 The AIC ratings of the Bulletin 140M Motor Protector
92. 9 132 110 200 150 150 150 160 132 132 110 200 150 160 132 250 200 200 150 200 160 160 132 250 200 10 l 200 160 300 250 250 200 250 200 200 160 300 250 250 200 350 300 350 250 315 250 250 200 350 300 250 250 450 350 400 350 355 315 250 250 450 350 450 350 400 315 11 L 315 250 500 450 450 400 450 355 315 250 500 450 355 315 500 500 500 450 500 450 355 315 500 500 400 355 600 500 600 500 560 500 400 355 600 500 12 l 450 400 700 600 700 650 630 560 450 400 700 600 500 450 800 700 800 700 710 630 500 450 800 700 560 500 900 800 900 700 800 630 560 500 900 800 1 12 Specifications amp Dimensions Figure 1 2 PowerFlex 700S Phase Il Frame 1 3 Frame 1 Shown 58 0 23 dia 4 5 5 0 22 B E 312 12 28 Dimensions are in millimeters and Sy 4 inches 8 0 0 31 Slim Expanded Weight kg fe Frame A Max AA B C Max D E Drive Drive amp Packaging 1 135 0 6 31 166 9 657 336 0 13 23 1200 0 7 87 105 0 4 13 320 0 12 60 7 03 15 5 9 98 22 2 222 0 8 74 1253 9 9 99 1342 5 13 48 200 0 7 87 192 0 7 56 1320 0 12 60 12 52 27 6 15 20 33 5 3 222 0 8 74 253 9 9 99 517 5 20 37 1200 0 7 87 192 0 7 56
93. 917 SL Rx PO Regis receives value from Registration Latch 0 of transmitter e 3 Event P1 Parameter 918 SL Rx P1 Regis receives value from Registration Latch 1 of transmitter Event Pl is not functional over SynchLink at the time of publication e 10 Event Status Parameter 915 SL Rev Events receives registration found bits for Registration Latch 0 1 from registration of transmitter Bit 0 is for Registration Latch 0 and Bit 1 is for Registration Latch 1 Important The clear bit in parameter 916 SL Clr Events of the receiving drive must be toggled to clear the corresponding found bit in parameter 915 before the receiving drive can receive a new value for the Registration Latch PO or P1 Parameter 928 Rx Dir Data Type bits 0 through 3 select whether the direct data words received over SynchLink will be DInt double integer or real floating point data When the bit is turned off the received data will be DInt data When the bit is turned on the received data will be floating point data The default is all DInt words 2 136 Detailed Drive Operation Rx Dir Data Type SLDir00 Real Rx Word 00 from SL Hardware lt 928 Figure 2 24 Diagram of Direct Receive Data Word 00 SL Rx Direct SelO tH Convert Dint Real SL Dir Data Rx00 o l Ly EEN SL Mult Base SL Mult Out lt 926 gt 923 1 lt SL Mult B In x D
94. Alt 2 111 2 112 2 113 Mtr Fdbk Sel Pri 2 99 2 111 2 112 2 113 Mtr OL Trip Cnfg 2 32 Mtr Trq Ref 2 4 MtrPosit Simulat 2 103 MtrSpd Simulated 2 103 MulDiv 1 Input 2 159 MulDiv 2 Input 2 159 Notch Filt Freq 2 37 2 38 Opt 0 Regis Ltch 2 86 Opt 1 Regis Ltch 2 86 Opt0 1 Regis Cnfg 2 86 Opt0 1 RegisCnfg 2 85 Opt0 1 RegisCtrl 2 85 Opt0 1 RegisStat 2 86 Output Curr Disp 2 63 Output Voltage 2 21 Peak Detect1 Out 2 66 2 67 PeakDtct Ctrl In 2 66 2 67 PeakDtct Status 2 66 PeakDtct1 Preset 2 66 PI Feedback 2 92 PI High Limit 2 93 PI Integ Hlim 2 93 PI Integ Llim 2 93 PI Integ Output 2 93 PI Integ Time 2 93 PI Lpass Filt BW 2 33 2 38 2 92 PI Output 2 93 2 118 PI Preload 2 93 PI ReferencePI Reference 2 92 PkDtct1 In Int 2 66 PkDtct1 In Real 2 66 2 67 Index 7 PM AbsEnc Offst 2 6 PM Mtr CEMF Coef 2 6 PM Q Inductance 2 6 PM Stator Resist 2 6 PM Test Freq Ref 2 6 PM Test FreqRamp 2 6 PM Test Ref 2 6 PM Test Idc Ramp 2 6 PM TestWait Time 2 6 Posit Detct1 In 2 80 2 81 Posit Offset 1 2 52 2 72 2 76 Posit Offset 2 2 72 2 76 Posit Offset Spd 2 72 2 76 Posit Ref Sel 2 71 2 75 Posit Reg Integ 2 69 2 74 Posit Spd Output 2 119 PositDetct1 Stpt 2 81 Position Actual 2 4 2 80 Position Cmmd 2 74 Position Control 2 21 2 52 2 53 2 71 2 73 2 75 2 76 2 78 2 81 Position ErrCnfg 2 1 2 32 Position Error 2 74 Position Fdbk 2 74 2 110 Position Offset 2 2 52 Position S
95. B Wu Allen Bradley Adjustable Frequency AC Drive Phase II Control Reference Manual Automation Important User Information Solid state equipment has operational characteristics differing from those of electromechanical equipment Safety Guidelines for the Application Installation and Maintenance of Solid State Controls Publication SGI 1 1 available from your local Rockwell Automation Sales Office or online at http www ab com manuals gi describes some important differences between solid state equipment and hard wired electromechanical devices Because of this difference and also because of the wide variety of uses for solid state equipment all persons responsible for applying this equipment must satisfy themselves that each intended application of this equipment is acceptable In no event will the Rockwell Automation be responsible or liable for indirect or consequential damages resulting from the use or application of this equipment The examples and diagrams in this manual are included solely for illustrative purposes Because of the many variables and requirements associated with any particular installation the Rockwell Automation cannot assume responsibility or liability for actual use based on the examples and diagrams No patent liability is assumed by Rockwell Automation with respect to use of information circuits equipment or software described in this manual Reproduction of the contents of this ma
96. CE EMC requirements does not guarantee an entire machine or installation complies with CE EMC requirements Many factors can influence total machine installation compliance Essential Requirements for CE Compliance Conditions 1 6 listed below must be satisfied for PowerFlex drives to meet the requirements of EN61800 3 1 Standard PowerFlex 700S CE compatible drive 2 Review important precautions attentions statements throughout this document and the PowerFlex 700S User Manual publication 20D UM006 before installing drive 3 Grounding as described on page 1 4 of the user manual 4 Output power control I O and signal wiring must be braided shield cable with a coverage of 75 or better metal conduit or equivalent attention 5 All shielded cables should terminate with proper shielded connector 6 Conditions in Table 2 A PowerFlex 700S EN61800 3 EMC Compatibility 1 Table 2 4 PowerFlex 700S EN61800 3 EMC Compatibility e Second Environment First Environment Restricted Distribution Restrict Motor Cable to 30 m 98 ft Restrict Motor Cable to 150 m 492 ft Any Drive and Option Any Drive and Option External Filter Required 1 6 Y Y Y 1 External filters for First Environment installations and increasing motor cable lengths in Second Environment installations are available Roxburgh models KMFA RF3 for UL installations and MIF or Schaffner FN3258 and FN258 models are recommended Refer to http w
97. Comp Slip Ce C68 gt FricComp Rated The following tables provide drive ratings including continuous minute and 3 second and recommended AC line input fuse and circuit breaker information Both types of short circuit protection are acceptable for UL and IEC requirements Sizes listed are the recommended sizes based on 40 C and the U S N E C Other country state or local codes may require different ratings Fusing If fuses are chosen as the desired protection method refer to the recommended types listed below If available amp ratings do not match the tables provided the closest fuse rating that exceeds the drive rating should be chosen IEC BS88 British Standard Parts 1 amp 2 1 EN60269 1 Parts 1 amp 2 type gG or equivalent should be used UL UL Class CC T RK1 or J must be used Circuit Breakers The non fuse listings in the following tables include both circuit breakers inverse time or instantaneous trip and 140M Self Protecting Motor Starters If one of these is chosen as the desired protection method the following requirements apply IEC and UL Both types of devices are acceptable for IEC and UL installations Detailed Drive Operation 2 42 YN a 00h 0S4 D I EE oss OSE Oly SOE S03 ZIZ 661 Gol YN 00y 009 009 0S ost osz
98. Control Analog I O and Digital I O e Task 2 includes the Speed Reference Control Position Control and Process PI Control e Task 3 includes User Functions The times are set by parameter 146 FW TaskTime Sel as listed below Parameter 146 Task 1 Time Task 2 Time Task 3 Time 0 0 5 mSec 2 mSec 8 mSec 1 0 5 mSec 1 mSec 8 mSec 2 0 25 mSec 1 mSec 8 mSec After changing the Task Time in parameter 146 FW TaskTime Sel a drive reset must be performed via the HIM navigate from the Main Menu to Diagnostics gt Faults gt Reset Device or drive power must be cycled before the change will be active Parameter 148 FW TaskTime Actl will then display the actual Task Time Test points are used to monitor values in the drive for diagnostic information xxxx TP Sel selects a value to monitor for diagnostics xxxx TP Data shows the value selected by xxxx TP Sel Refer to Drive Overload on page 2 27 The Time Function Generator ramps the output of the function generator at the rate in parameter 202 Time Axis Rate e When parameter 153 Control Options bit 24 Time Axis En or parameter 151 Logic Command bit 3 Time Axis En 1 the output ramps from 0 0000 to 1 0000 at the Time Axis Rate set in parameter 202 e When parameter 153 Control Options bit 24 Time Axis En or parameter 151 Logic Command bit 3 Time Axis En 0 the output ramps from 1 0000 to 0 0000 at the Time Axis Rate set in parameter 202
99. Detect PeakDtct Status EN Peak 2 Chng Detailed Drive Operation 2 67 Example e Link parameter 213 PkDtct1 In Real to parameter 300 Motor Spd Fdbk e Verify that parameter 210 PeakDtct Ctrl In bit O Peak 1 Set and bit 1 Peak 1 Hold are off e For parameter 210 PeakDtct Ctrl In turn on bit 2 Peak1 SelHigh e Parameter 215 Peak Detect Out will contain the positive peak value of Motor Spd Fdbk e To reset the output of the peak detector for parameter 210 PeakDtct Ctrl In toggle on and then off bit O Peak 1 Set Permanent Magnet Motors The following table contains a list of specifications for the permanent magnet motors compatible with PowerFlex 7008 drives Note that you must have a high resolution Stegmann or compatible resolver Table 2 D Motor Name Plate and Rating Specifications Motor NP Motor NP Motor NP Current System Cont Motor Motor NP Volts FLA Frequency Motor NP RPM Power Motor peak Stall Torque Max Model Number Line Line V rms A rms Hz Oper RPM KW Poles Arms ml RPM Parameter 1 2 3 4 5 7 MPL A310P 230 3 4 294 0 4410 0 73 8 9 9 1 58 5000 MPL A310F 230 21 185 3 2780 0 46 8 6 6 1 58 3000 MPL A320P 230 6 4 271 3 4070 1 30 8 20 9 3 05 5000 MPL A320H 230 46 208 7 3130 1 00 8 13 6 3 05 3500 MPL A330P 230 8 5 280 7 4210 1 80 8 26 9 4 08
100. Figure 1 9 PowerFlex 700S Frame 12 alle a sie 632 5 1196 05 24 80 47 09 g e 6055 a 23 84 21 05 gt 32 3 a 4980 _ 420 1 27 19 61 1 65 D gt Bl B ap O A il 2234 0 Se Ste Sms 87 95 2201 8 See y 86 68 6 Y Y Y 6 Torio Ta El a el a This dimension is the depth for drives with the optional door mounted HIM installed Je E ic ES o die ol Dimensions are in millimeters and inches
101. Frames 1 through A 2 86 Precharge Frames 5 and Higher AC Input Stand Alone Drives 2 87 Precharge Frames 5 and Higher DC Input Common Bus Drives 2 87 Ride Through Operation 2 87 Ride Through Configuration 0 0 0 eee cee eee eens 2 88 Ride Through Timeout baut 2 88 Precharge Operation 2 03 52 cee geet as a E het sks 2 88 Precharge Timeout Fault 2 0 0 ee ccc cette 2 90 External Precharge tdt A Oe i at a e ri A 2 91 Precharge Staeine cua wae hoe paa aia heads beware 2 91 Motor Sim Mode Ze carrnd beet Ze Ed enh lida ged aden ch 2 91 External Power Supply ora da Se eee noni et lb 2 92 Preset Ped mir Snare Pea gk Serene toe aa eer 2 92 Process BL LOOP turista on AE NEE whee Buse NEE Seo ates 2 92 Process PI Reference and Feedback 2 92 Process Pl Regulatoro v o boogie po detent See ee Ean a eed eas 2 93 Process PT Limits NEEN SE eee bas Sek ee ee Pe ee ed 2 93 Process PI Output en A dN ead GAR od Si 2 93 Reflected WaVe 210 a Gare hea ret he heey EE cla beeen Ree d 2 94 ee EE 2 95 Skip Speeds ts ii ote Pee dee A ce ed eS AA ee 2 96 CONSUMO A BSE oe MELEE Won Sew REL EE 2 96 Slip Compensation o 2 97 Confisuration ti e ds al Mad 2 98 Speed Control Speed Mode Speed Regulation 0 0 0 cee eee eee 2 99 Speed Position Feedback 2 99 Peedback Device 8 Zeene cir ari pha ein staat tne wt i eee ae Ae En 2 99 Encoder oi he bt Aha aver A A Ee Ve tn 2 99 PIR Plena dno head che ian ape
102. Hertz operation creates a fixed relationship between output voltage and output frequency Configuration Volts Hertz control is selected by setting parameter 485 Motor Ctrl Mode 3 V Hz Volts Hertz allows a wide variety of patterns using linear segments The default configuration is a straight line from zero to rated voltage and frequency This is the same volts hertz ratio that the motor would see if it were started across the line As seen in the diagram below the volts hertz ratio can be changed to provide increased torque performance when required The shaping takes place by programming five distinct points on the curve 1 Parameter 527 Start Acc Boost is used to create additional torque for breakaway from zero speed and acceleration of heavy loads at lower speeds Parameter 528 Run Boost is used to create additional running torque at low speeds The value is typically less than the required acceleration torque The drive will lower the boost voltage to this level when running at low speeds not accelerating This reduces excess motor heating that could be caused if the higher start accel boost level were used Parameters 529 Break Voltage and 530 Break Frequency are used to increase the slope of the lower portion of the Volts Hertz curve providing additional torque Parameters 1 Motor NP Volts and 3 Motor NP Hertz set the upper portion of the curve to match the motor design and mark the beginning o
103. III SH e 300005 VN S30 383 NOvL S320 380 WNOb L S3O 320 INOyL 0 08 08 0 Sy 0 ove cc Svl 903 GL Ik codos VN 0309 383 N0p 029 380 W0p 029 3Z9 NW0Y L oz 09 09 oz DE D i FEZ alt St OOL vol Gei GZ vyloddoe VN 9L9 383 NOyL 9LO 380 NOp L 9L9 3Z NOY L Sl Sy SY GH Er St S I EL et SZ 80L vy FS L LLOaaOZ VN 0OLO 3834 WN0p OLO 380 NOp 0L9 3c9 NOY L GL WS WS GL OU st cel 66 Z8 FG 62 cz yl 0d8aa0 VN z e98 380 NO0y 98 329 WNOvL A 03 03 9 Ol 9 GL GS OS ce OV Gl oc i Dd COO0e VN 0va 380 NOy Ovd 420 WOrl Z GL cl 9 Z 9 09 Sv Ge oc ce S20 Stl vdeadd03 VN 6cg 380 NOy Scd 4c0 WOrl GL 8 9 Gis F Pa Et 8b SG0 SZ0 L Ldzadoz SHEM gSequinn Boejeo jqeeay co AN o EN RN vUN APN Gy HIN 99S E UI L YOO WAX sdwy dH ON 3 asny 3 J9qUINN uoledissiq o obuey UNID 10ME91g asny ejag Aejaq au s6uney funeg Bojen 13M0d jualin ajqeysnipy ym 19118 S JOJO WOY L Joo yn9119 SWIL UON juawa 3 eng sdwy nding ynduy MA 3MIQ sejoN 104 GP Z 9DEA 89S 9 Sawesy sao1nag U0129 04d indu OY HOA 00p 2 45 Detailed Drive Operation syd 19d z og8 sud ad z osp sud ed z og9 sud ed z 0S7 YN 8 0031 0091 syduad 1 0041 sud sad 006 sud ed 1 ooe sud ad 1 006 ogzi oe 0S9 OSY os9 sse syd a
104. JE wD IS IS ISIS 155 FSIS JS 5 IS ISIS S IBIS SS 1S S ISIS ISIS 1a 1S S S S S y DOF IN e IO 00 ES IN OD 00 ESF IN I O 090 IN OD 00 ITTF IN IK OD 00 IN Ie OD Z lo lo lo lo lo o lo lolll tlt tloa ala A ala ala q es Las Ja La g Sc S S S E E SC S S SE SC E E E E S S SD EE Default O jo jo jo Jo Jo jo jo o jo jo jo 1 oui jo jo jo jo o jo Jo jo 1 lo O jo JO JO O 1 O O False Bit 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 109 8 7 6 5 4 3 2 1 0 1 True Digital Outputs bk Detailed Drive Operation 2 23 High Speed Digital Inputs Local UO Status Digln 824 301 H Tr SynchLink Prt0 1 Bit Filter Debounce Dig In1 Sel LJ RegisCnfg Cas Select 823 J01 02 Se Digln Debounce 03 04 10111 05 Standard Digital Inputs Local I O Status fos 824 403 Lu 823 11 12 Debounce Dig In3 Sel Digln Debounce 13 14 Selector 15 Digital Input Status Bits Parameter 824 Local I O Status bits 1 through 6 give the status of the digital inputs When the bit in Local I O Status associated with the digital input is on this means that the PowerFle
105. Lim 2 124 Spd Trim 3 Scale 2 119 Spd Trq Mode Sel 2 128 2 129 SpdRef SpdTrm1 2 118 SpdRef Filt BW 2 118 SpdRef Filt Gain 2 118 SpdReg Anti Bckup 2 122 SpdReg Integ Out 2 124 SpdTrim2 Filt BW 2 36 2 73 2 77 Specification Heat Dissipation 1 5 Input Output Ratings 1 4 Speed Comp 2 54 Speed Control 2 99 Speed Feedback 2 99 Speed Mode 2 99 Speed Mode Select 2 127 Speed Parameters Ref A Sel 2 113 Speed PI Regulator 2 119 Autotune Speed Reference 2 120 Basic Tuning with a Gear Bo or Belt 2 125 Current Limit Stop 2 121 Integral Gain 2 123 Proportional Gain 2 123 Servo Lock 2 121 Speed Error 2 121 Speed Reference Limits 2 120 Speed Regulation Anti Backup 2 122 Speed Regulator Output Filter 2 124 Speed Regulator Output Limits 2 124 Speed Trim 2 119 Speed Ref 1 2 114 2 138 2 151 Speed Ref 2 2 14 2 70 2 114 Speed Ref A Sel 2 70 2 75 2 113 Speed Ref B Sel 2 113 Speed Ref Divide 2 114 Speed Ref2 Multi 2 114 Speed Reference 2 113 Direction Control and Bipolar Reference 2 115 Friction Compensation 2 117 Inertia Compensation 2 117 Jog Reference 2 115 Speed Reference Bypass and Delayed Speed Reference 2 117 Speed Reference Filter 2 118 Speed Reference Limits 2 115 Speed Reference Scale 2 118 Speed Reference Scaling 2 114 Speed Reference Select 2 113 Speed Trim1 2 118 Stop Command 2 115 Virtual Encoder 2 117 Speed Reference Select 2 119 Speed Regulation 2 99 Speed Regulator Tuning 2 125 Speed Trim 1 2 93 2 118 Speed Trim 2
106. Max Spd Ref Lim are used to set the forward and reverse speed limits for the speed reference Parameter 30 Min Spd Ref Lim sets the negative speed limit and parameter 31 Max Spd Ref Lim sets the positive speed limit These limits are set to 125 and 125 of parameter 4 Motor NP RPM by default Parameter 41 Limited Spd Ref contains the value of the limited speed reference Logic Ctrl State Limited Sped Ref To Ramp From Direction Control Min Spd Ref Lim ED Max Spd Ref Lim ED Stop Command When a stop command is issued parameter 157 Logic Ctrl State bit O Spd Ref En is set to 0 causing a zero speed to be selected When Logic Ctrl State bit 0 is set to 1 the selected speed or jog reference is used Accel Decel Ramp and S Curve Parameter 32 Accel Time 1 sets the acceleration time in seconds from 0 speed to the speed in parameter 4 Motor NP RPM Parameter 33 Decel Time 1 sets the deceleration time in seconds from the speed in parameter 4 Motor NP RPM to 0 2 116 Detailed Drive Operation Reference Limits Logic Command SpdRamp Dsbl Logic Command Spd S Crv En 157 02 The ramp rate in RPM sec can be determined For example the ramp rate for acceleration would be Motor NP RPM Accel Time The ramped reference can be viewed in parameter 43 Ramped Spd Ref The accel decel ramp generator can be bypassed for certain functions When parameter 151 Logic Command b
107. N 98 380 N 98 420 W Ss D D 6 CL 6 36 9 L9 GS ES 06 Hl S Ld93003 VN 3 0yg 380 N 0y8 320 N Z Sl SI 9 6 9 6S erl BEI lel OF oS H z 6de3003 YN S d 4cO W E Sh Ol E 9 EI 8p ge Za te EZ os H L Z Zd33003 VN 3 9Lg 330 N Ss 9 d y CG 9 al a vi EL os Y GO UL 2dbadoe SHEM y siequiny Bojejeo alqeleny co XEN y XEN ey XR m UN Xen UI se ul L uoo WAY sduy Qo 2HA GH GN F 5 1OJ09J01d 3 Je0un uonedissiq HOI 19MB91g asny ej q asny ej q au bail Buey bojejeg 19MOd abuey Juano ajqeysnipy Uu 19 42 S 10401 NOP L 10101 ynog w j uoy juaua 3 eng sdwy inding suey ndul duet WA dH 3MIQ sejON 104 GP Z 9DEA 9IS 9 SAWEIH SIDINASG UONDAJOIH NU DY HOA 009 Detailed Drive Operation 2 49 690 Volt AC Input Protection Devices See Notes below Drive kw Dual Element Time Non Time Delay Circuit Motor Circuit Power Catalog Rating PWM Freq Temp Input Ratings Output Amps Delay Fuse Fuse Breaker Protector Dissipation Number ND HD kHz oC Amps kVA Cont 1Min 3Sec Mal Max 2 Mail Max 2 max 0 Max 77 Watts 20DF052 5145 4 50 46 9 56 1 52 57 78 60 110 60 175 175 NA 37 5 4 50 40 1 48 0 46 69 92 50 90 50 150 150 NA 20DF060 5155 4 50 57 7 168 9 60 op 90 80 125 80 225 225 NA 45 l4 50 46 9 561 52 7
108. Parameter using a Datalink e Parameter 740 Position Control is linked to parameter 651 DPI Data In A1 e Parameter 650 DPI In DataType bit 0 DPI A1 Real is set to 0 The value that is sent to DPI Data In A1 from the controller will show up in Position Control Example Configuration 2 Writing a Real Parameter using a Datalink e Parameter 111 Torque Ref1 is linked to parameter 651 DPI Data In A1 e Parameter 650 DPI In DataType bit 0 DPI A1 Real is set to 1 The value that is sent to DPI Data In A1 from the controller will show up in Torque Ref 1 Data Out Parameters Parameters 660 DPI Data Out A1 through 667 DPI Data Out D2 are outputs from the drive to the controller and are used to read parameters To read to a parameter one of the parameters 660 through 667 must be linked to it Then set the appropriate bit in parameter 659 DPI Out DataType to indicate if that parameter is a DInt or floating point Turn the bit off for DInt and turn the bit on for floating point A total of 8 parameters can be read with the Data Out parameters Example Configuration 3 Reading a DInt Parameter using a Datalink e Parameter 660 DPI Data Out A1 is linked to parameter 741 Position Status e Parameter 659 DPI Out DataType bit 0 DPI A1 Real is set to 0 The value from DPI Data Out A1 to the controller contains the value of Position Status Example Configuration 4 Reading a Real Parameter using a Datal
109. S INO01 for detailed information This publication is available online at http literature rockwellautomation com literature See Copy Cat The User Display The User Display is shown when module keys have been inactive for a predetermined amount of time The display can be programmed to show pertinent information Setting the User Display Step GTO Example Displays 1 Press the Up Arrow or Down Arrow to scroll to Operator Intric Press Enter A A Operator Intrfc Change Password 2 Press the Up Arrow or Down Arrow to scroll User Display to User Display Press Enter lt Parameters 3 Select the desired user display Press Enter Scroll to the parameter that the user display will be based on 4 Press Enter Set a scale factor 5 Press Enter to save the scale factor and move to the last line 6 Press the Up Arrow or Down Arrow to change the text 7 Press Enter to save the new user display Setting the Properties of the User Display The following HIM parameters can be set as desired e User Display Enables or disables the user display e User Display 1 Selects which user display parameter appears on the top line of the user display e User Display 2 Selects which user display parameter appears on the bottom line of the user display e User Display Time Sets how many seconds will elapse after the last programming key is touched before the HIM displays the user display
110. S IS 2 B B 18 8 ols e EES 21318 3 S 9 S 5 2 8 2 319 l le S Go o o Jo B S Qio jo Jo Cc Oo 5 S x j Ion IO juwo JO Default O 0 O 0 O 0 O O O 0 O O O O O 0 0 False Bit 15 14 13 12 11 109 8 7 6 5 4 3 2 1 0 1 True Motor Speed Feedback and Scaled Speed Feedback The motor speed feedback is selected according to the feedback device selection The value for motor speed feedback appears in parameter 300 Motor Spd Fdbk The speed feedback enters the speed regulation loop from Motor Spd Fdbk The filter for the speed feedback is shown in the speed regulation loop section A low pass filter branches off of the motor speed feedback This low pass filter filters out high frequency before displaying the speed feedback on the HIM Parameter 72 Scaled Spd Fdbk provides a user scalable speed feedback It is multiplied by the value in parameter 73 Spd Fdbk Scale Motor Spd Fdbk to Speed Control To HIM Display Scaled Spd Fdbk Spd Fdbk Scale 2 110 Detailed Drive Operation Position Feedback Parameter 777 Position Fdbk selects the position feedback device for the position control loop The feedback device used for Position control may be an independent selection from the motor speed control feedback device in Par 222 Motor Fdbk Sel If the position feedback is to be the same as the Motor feedback select option 3 Motor Fdbk This selection will set the selected feedback of
111. SE Sel Di Sel bl 90l 96 6bZ 106 92 9 9600003 YN 0006 NNO NOpL 001 osz 093 08 Gel 08 OEL 86 S9 967 969 Si YN 0006 NINO WObL S 001 00 00 001 DL OOL 9LL 98 ZZ 109 Ei 09 t 2200003 YN 0006 NINO WNOpL 00 osz osz 08 Sel 08 vol 8L S9 96v 96S Ob 09 S90ad0 802 00 89 NINO WNObL F OL Del 003 09 Obl 09 08 09 p 6 Cp DEI Or zsoaadoz vS 000b NINO 0bL SYO 383 NObL oS OS D I oS 06 0s 89 IS Ov FOEI LOE GI DEI oroadoz 61S O00b NWO 0b1 S7O 484 NOrL 0S Sel Sel Ov W I Ov vS GOv ve B i cle D Se i ve0ado 29y 000b NINO 0b 2 0 484 WOrl e 0s 001 001 Ge 09 Ge bv eE Le 902 82 sl 03 z 200003 68 00S2 NWO 0r S20 383 WNObL S20 380 WOy S20 329 M0pL o 08 08 Sz 0s Ge ee cve zel 99L 66t OL ot L ecoddde LZZ 9L9 384 W0Y4 910 48C WOrl 9LO 320 MN0b1 D oS Di GIL DEI GLb ge SOl tt vol SZL GZ OL F Erg 919 383 NOp 9LO 380 NO0yL 9LO 320 MNOb SL 0p 0y SL 02 st GO bel Eb BI F6 S SZ Li LLOad0 Ole 0 9 384 NO0Y L OLO 380 NOy L OLO 330 MNObL oi o D DL CL DL ct 88 08 ZS 69 S LI Odsadoe Sel 9d 480 WOrl 98 4Z0 WOrl A D D 9 Ol 9 GL GS OS de BEI z EI LU Odsadoe LLL 8 0y8 380 N0pyL 0vg8 320 MNObL H CL D Y 8 v 09 Gr ve ce 97 sl el L vd adoe 04 d 420 WO0rl SL 8 9 oe vo Le yv 91 S20 L Li Idette SHEM sequin Dote ajqejreay on DEN io XI XEN HIN ey XEN
112. SL T Gel eek 211 eleda YN WEI 00p 00p SL 00 GIL zl vel lvl Gel c 108 9 vylaqoe YN z y OSI GlE GLE Sek 002 Sel 66 996 626 oS Z 00k YN E 5 osz Gle 94E OSL osz WE Sel Zell AL os Z pel 9 Sebaqoe VN 0006 NINO N 3 001 DEI 008 001 GLI 00L DEL Ob A VSL eZ Or al G2 YN DEL SIE GLE Sel 00 Gcl Gell 60L 66 996 6726 Ov Z 001 S 6603003 VN 00E9 NWO WN 001 0S Ge 06 Sel 06 Oe v6 9 909 78S oS Z 09 YN 0006 NWIO N a 001 00 00 06 Wel 06 OLL 98 Al Ui eel os Z SZ 9 203008 VN 00 9 NINO N z a 001 See See 08 Sel 08 POL 8Z 39 909 728s 0s Z 08 09 y 2903003 YN 00 9 NINO W F z 001 DD 002 09 OLL 09 28 919 cp 96p lp 06 H Ov 0S 2603003 YN 000b NINO StO 383 001 ost OSI 09 06 0s v9 87 lv 168 9 0s Y EI 0p LvO3003 VN O00pNW z 9 384 N os Sel Sel Ov OL Ov bi GOv zej S0E vez os H oi 0 ze0adoz VN 0063 NINO 0 383 IN 0s 001 001 Ge 09 Ge Pk EI Le LSe sve 0s Y O S3 z 03003 YN 00S lt NINO S320 383N S20 380 N 20 4z0 W 0 08 08 0 0s 0 ve F9 Gei Ole zoz 06 H St 03 z 2303003 VN 910 383 9L0 380 N 910 420 W D 06 09 D 0p D l Ee 28 JL 091 vol 0s Y OL Sk L ZLO3003 VN 019 383 0OLO 380 N 010 420 W SL Ov Ov Sh Ge Sh el FEL LL ZOL 66 os Y SZ OL LLO3dOS VN OLO 383 N 0OLO 380 N OLO 330 N SL 0 Es DL 02 Ol SEL 66 61 8 82 os Hl S GZ L 0d63003 Y
113. S_P125_TorquePosLimit will write a value of 1 000 to parameter 125 in the drive OP Copy File Source PF700S_P125_TorquePosLimit Dest PF7005 0 UserDetinedData 0 Length 1 2 14 Detailed Drive Operation Example to read a floating point Datalink Parameter 303 Motor Torque Ref displays the torque output to the motor Parameter 303 is a Real floating point parameter scaled in per unit a value of 1 000 is equivalent to 100 motor torque 1 Link parameter 660 DPI Data Out A1 to parameter 303 Motor Torque Ref 2 Set parameter 659 DPI Out DataType bit 0 DPI Al Real 1 3 Verify that the Datalink is enabled in the 20 COMM module 4 In RSLogix5000 create a tag PF700S_P303_MotorTorqueRef of type REAL 5 Use the COP instruction to copy the DINT input tag for Datalink A1 PF700S 1 UserDefinedData 0 in this example to the tag PF700S_P303_MotorTorqueRef 6 The tag PF700S_P303_MotorTorqueRef contains the value of parameter 303 OP Copy File Source PF700S 1 UserDefinedData 0 Dest PF700S_P303_MotorTorqueRet Length 1 Explicit Messaging When using explicit messaging on DeviceNet ControlNet or Ethernet in the ControlLogix system the message type CIP Generic is used The data is transferred over ControlNet in the same data type as the parameter in the PowerFlex 7005 Make sure that the data type for the Source and Destination tags in your ControlLogix message instruction matches the data t
114. Scaling Position reference can be entered in user units by using the EGR scaling Parameters 745 PositRef EGR Mul and 746 PositRef EGR Div are used to scale the position reference PositRef EGR Out Geared Position Reference Selected Position Reference PositRef EGR Mul PositRef EGR Div Example To use degrees of motor revolution for the positioning units scale as follows With a 1024 encoder on the motor this translates to 4096 counts per revolution quadrature position counts Parameter 745 PositRef EGR Mul 4096 Parameter 746 PositRef EGR Div 360 This scaling translates the position reference of 0 360 degrees to 0 4096 position counts This will allow you to enter degrees of motor rotation for the position reference Position Offset Offsets can be added to the position reference Offset are used to make a correction move to synchronize the follower to the master position A Added to Position Reference After EGR Deriv Posit Offset 1 Posit Offset 2 y A Filter Posit Offset Spd Rate Lim LPass Position Control X Offset Pol Cao oa 741 V 05 Position Status Position Control X OffRefActl X Offset Ref C740 05 There are two offsets parameters 753 Posit Offset 1 and 754 Posit Offset 2 The offset speed must be entered in parameter 755 Posit Offset Spd if this is left at zero the move will not occur The position offset must be entered in cou
115. Skip Speed 1 Adjusted Skip Band w Recalculated Skip Frequency 0 RPM D he band is outside the speed limits the skip band is inactive Skip Speed 1 Inactive Skip Band Fwd Speed Limit D RPM Note Slip compensation is only active when parameter 485 Motor Ctrl Mode 3 V Hz As the load on an induction motor increases the rotor speed or shaft speed of the motor decreases creating additional slip and therefore torque to drive the larger load This decrease in motor speed may have adverse effects on the process If speed control is required to maintain proper process control the slip compensation feature of the PowerFlex drives can be enabled by the user to more accurately regulate the speed of the motor without speed feedback When the slip compensation mode is selected the drive calculates an amount to increase the output frequency to maintain a consistent motor speed independent of load 2 98 Detailed Drive Operation Configuration Slip compensation is enabled by setting parameter 153 Control Options bit 19 SlipComp En 1 The amount of slip compensation to provide is selected in parameter 98 Slip RPM FLA If desired the user may adjust parameter 98 to provide more or less slip As mentioned above induction motors exhibit slip which is the difference between the stator electrical frequency or output frequency of the drive and the induced rotor frequency The slip frequen
116. Specifications amp Dimensions Figure 1 8 PowerFlex 700S Frame 11 42 0 1 65 So oS LS RX 2s oe w 3 a0 T SS on 8 O 38 j Si N Hi N Na NES NA om 202020202020209 202090909 8989998989893989 3089998089 203090999030909 203090003 889090925209030 889992009 909000990980099 929909099 908090003030900 303090009 988000930839099 889999029 8880990959909909 9890990099 889995095209090 889992009 9800050909050909 9898089803 988200990899009 593050305 8080900050909059 8080990099 e is 889099985209990 889992029 909000900050009 909090009 2 ou 0209000200020009 090202090 CO a 9809000000009009 9926080995 E d 090909090909090 2526258586 gz 29 9908090900020009 9909090209 Ra 898090505090908 909099009 e se 8809992808099955 9698269803 9808080909080909 898080805 E 2090202020808090 8020209080 3 2090909000909090 8090202080 9808090905300990 9898089808 3 8862820999099209 9928290999 J 9800809899899999 9830990989 ki 0090000000000000 2595952525 E 9898280309000805 9892550999 3986080098259995 9886990995 B e 808080808080808 0808080808 h E mo es LO o Le 19 co o N aL oF ele N E Na This dimension is the depth for drives with the optional door mounted HIM installed Dimensions are in millimeters and inches Specifications amp Dimensions
117. Symbol Description of Symbol Units S Laplace Operator o Frequency radians sec Oco Cut off Frequency radians sec Low Pass Filter A low pass filter is designed to pass low frequencies and attenuate high frequencies The break point between high and low is called the cut off frequency Figure 2 7 Bode Plot Low Pass Filter w 10 rad sec Bode Diagram r Magnitude dB Phase deg ot Frequency rad sec Detailed Drive Operation 2 33 The Process Control Loop has a low pass filter immediately after the error signal The break frequency is set by parameter 184 PI Lpass Filt BW The filter is used to eliminate unwanted noise in the feedback Typical range is between 10 rad sec to 50 rad sec Second Order Low Pass Filter A second order low pass filter is similar to a low pass filter however the magnitude rolls off twice as fast as a first order low pass filter Also the phase shift of a second order filter is from 0 to 180 compared to 0 to 90 of a first order filter Figure 2 8 Second Order Low Pass Filter Bock Diagram ree f e 10f System sys 7 Frequency rad sec 9 85 EI Magnitude dB 5 91 4 230 4 Magnitude dB Phase deg 180 E e el A i 10 10 10 Frequency rad sec There is a second order low pass filter in the Speed Control Regulator This filter is located after the speed error signal The break frequency is set by parameter 89 Spd Err Filt BW
118. SynchLink Diagnostics 2 0 0 eee eee eee 2 139 Speed Synchronization Example 0 0 0 cece eee eee ee nee 2 140 Master PowerFlex 700S Drive Setup Transmitting Drive 2 141 Follower PowerFlex 700S Setup Receiving Drive ssssnuunuuruusuun 2 143 Reset SynchLink M caia ga ore ie 2 143 Sync Generator a da statin we i eR 2 144 Configuration Ve tee bak Dn BIRO ee Ce nee a 2 144 Task Time 24 2c es Re Sek eg ee a a eA ai et Ae LE laz hel Be eh EN 2 145 Test optesch DEN bind bbe Gide Sie Lex See ee Gee ee es 2 145 Thermal Regulator nores earen goatee eet henge epee wage hee 2 145 Time Function Generator 2 145 Torque References ick ieee A id eer E a oe A 2 146 Torque Reference Input 2 146 Trending rise ds ep Sena gegen aa 2 146 Configuration neni ie a alee eae ia endl E 2 146 Unbalanced or Ungrounded Distribution Systems 2 148 Unbalanced Distribution Systems 2 148 Ungrounded Distribution Systems 2 148 User PUNCHONS i eet o a ee aa ea kein 2 149 Bit SWapses sac see eg eek eee a ee eb es ee eee 2 149 MOP ee eg a e de foe a Acte E Bh etic BR eal SN 2 150 Configuration 2 ia a bP eed bee ech dev Ree been 2 151 Controlling the MOP from Digital Inputs 0 0 0 eee eee eee eee 2 151 Controlling the MOP from a Network or Drive oni 2 152 Selector S witChes sisi ee ee A eA Ke ee ee ee la a 2 152 DInt to Real and Real to DInt Converter 2 155 Logic BIOCKS suicido darian br e obs que
119. The break frequency is set to five times 5x the Speed Loop Bandwidth This filter is used to attenuate any high frequency noise that the speed loop would not be able to control Lead Lag Filter The PowerFlex 700S incorporates a generic lead lag filter The filter has the following Laplace transfer function Knxs wn s wn Kn is the gain term for the filter and Wn is the frequency term for the filter Lead Lag Filter lag When Kn is less than one Kn lt 1 the filter behaves like a low pass filter 2 34 Detailed Drive Operation Figure 2 9 Kn lt 1 Lag Filter gain Lag kn lt 1 3 i i l a e gt w rad sec 3 wn kn Figure 2 9 shows the lead lag in a lag configuration The unique aspect of this filter is that the gain stops once the input frequency is equal to Wn Kn Another aspect to this filter is that there is a mild phase shift during the attenuation Figure 2 10 shows the bode plot of the lag configuration Kn is set to 0 7 and Wn is set to 35 rad sec The time domain shows a 100 rad sec sinusoidal input Notice that the phase shift between input and output are marginal Figure 2 10 Bode Plot and Time Domain of Lag Kn 0 7 w 35 ao z 2 Bode Diagram g gt 3 E 4 S 2 3 E a 2 o a a 10 10 10 Frequency rad sec output 0 7 input 100 rad sec The lag configuration is good for eliminating unwanted noise and disturbance such as
120. This parameter displays the actual output frequency of the drive The output frequency is created by a summation of commanded frequency and any active speed regulator such as slip compensation PI Loop bus regulator The actual output may be different than the commanded frequency Output Power Parameter 311 This parameter displays the output kW of the drive Motor Power is the calculated product of the torque reference and motor speed feedback A 125ms filter is applied to this result Positive values indicate motoring power negative values indicate regenerative power The output power is a calculated value and tends to be inaccurate at lower speeds It is not recommended for use as a process variable to control a process 2 64 Detailed Drive Operation Overspeed Limit Owners Output Voltage Parameter 307 Displays RMS line to line fundamental output voltage at the drive output terminals This data is averaged and updated every 50 milliseconds The actual output voltage may be different than that determined by the sensorless vector or V Hz algorithms because it may be modified by features such as the Auto Economizer The absolute overspeed limit parameter parameter 335 Abs OverSpd Lim is an adjustable setting This sets a limit tolerance below parameter 75 Rev Speed Lim and above parameter 76 Fwd Speed Lim that is allowable This can be used as a safe working speed limit Example 1 Example 2 Speed reference is set to
121. Um 32767 0 32767 0 lt F12 0 32489 52 lt Source B 32767 0 32767 0 lt Source A 32489 52 lt Source B 65536 0 Detailed Drive Operation 2 17 The feedback is also scaled so that base motor speed 32767 The PLC can only handle 16 bit integers so the feedback has to be handled differently to account for references above 32767 or below 32768 The following example shows how to read feedback values more than base motor speed and less than twice base motor speed Equal Source A N11 111 N11 110 D lt 0 lt Source B 1 65536 0 BE 65536 0 lt F12 2 DD Equal Equal Source A N11 110 32768 0 0 lt 32768 0 lt Source B 32768 0 F12 2 32768 0 lt 0 0 lt Limit Test Equal Low Lim 32767 0 Source A N11 111 N11 110 D lt Source B 1 1 lt N11 110 High Um 32767 0 32767 0 lt Less Than 4 lt B Equal Source A N11 110 Source A N11 111 N11 110 0 lt 0 lt Source B D 65536 0 0 lt 65536 0 lt F12 2 132768 0 9 F12 4 2 18 Detailed Drive Operation Datalink Programming Datalinks are transmitted and received through messages on Ethernet ControlNet or DeviceNet and through block transfers on RIO The PLC and SLC are limited to 16 bit integers and floating point In order to send or receive floating point Datalinks we have to swap the LSW and MSW and utilize the COP copy instruction Because the PLC and SLC do not support 32 bit integers 32 bit Datalinks remain split into 2 16 bit
122. VFD to the motor The correction software modifies the PWM modulator to prevent PWM pulses less than a minimum time from being applied to the motor The minimum time between PWM pulses is 10 microseconds The modifications to the PWM modulator limit the over voltage transient to 2 25 per unit volts line to line peak at 600 feet of cable 400 V Line 540V DC bus x 2 25 1215V 480 V Line 650V DC bus x 2 25 1463V 600 V Line 810V DC bus x 2 25 1823 V The software is standard and requires no special parameters or settings E 7 I 500 e Inverter V div f t 1670 Vpk 500 Motor V div The above figure shows the inverter line to line output voltage top trace and the motor line to line voltage bottom trace for a 10 HP 460V AC inverter and an unloaded 10 HP AC induction motor at 60 Hz operation 500 ft of 12 AWG cable connects the drive to the motor Initially the cable is in a fully charged condition A transient disturbance occurs by discharging the cable for approximately 4ms The propagation delay between the inverter terminals and motor terminals is approximately 1ms The small time between pulses of 4ms does not provide sufficient time to allow the decay of the cable transient Thus the second pulse arrives at a point in the motor terminal voltage s natural response and excites a motor over voltage transient greater than 2 pu The amplitude of the double pu
123. When a function is disabled the parameters cannot be changed The parameters associated with the disabled function will not be displayed on the HIM module Parameter 149 FW Functions Actl will display the actual functions that are enabled or disabled Making a change to FW Functions En will take affect as soon as the change is made To view parameters in DriveExecutive for a firmware function that has just been turned on you can either create a new database after you have enabled the function in the drive or turn on the show hidden parameters feature in DriveExecutive by selecting View gt Options gt Components operation In all other cases the motor speed is known from the feedback device and a normal start may be used even if the motor is rotating provided the user has determined that the system is safe for re starting while rotating q ATTENTION The Flying Start function is only used for sensorless The Flying Start feature is used in sensorless mode to start a rotating motor as quickly as possible and resume normal operation with a minimal impact on load or speed When a drive running in sensorless mode is started in its normal mode it initially applies a frequency of 0 Hz and ramps to the commanded speed If the drive is started in this mode with the motor already spinning large currents will be generated An overcurrent trip may result if the current limiter cannot react quickly enough The likelihood of an overcurrent tri
124. abled when using the drive as a position follower To disable the speed reference ramp set parameter 151 Logic Command bit O SpdRamp Dsbl 1 Enabling the Position Loop The firmware function for the position loop must be turned on by setting parameter 147 FW Functions En bit 16 Position Ctrl 1 Detailed Drive Operation 2 71 To enable the position loop set parameter 151 Logic Command bit 13 Position En 1 Then to allow the output of the position loop to trim the speed set parameter 740 Position Control bit 1 Speed Out En 1 Position Reference Selection For a position follower application set parameter 742 Posit Ref Sel 1 Aux PositRef The auxiliary position reference is generally used for position following applications 742 Posit Ref Sel Selected Interp Position Position Reference 1 Aux PositRef Ga Pt Pt Posit Ref Link parameter 743 Aux Posit Ref to the position for the feedback device For example to follow Encoder 1 link parameter 743 Aux Posit Ref to parameter 240 Encdr1 Position Encoder 1 position becomes the position reference for the position loop Setting the Electronic Gear Ratio EGR and Speed Reference Scaling The position reference can scaled by using the EGR scaling Parameters 745 PositRef EGR Mul and 746 PositRef EGR Div are used to scale the position reference lt 744 gt PositRef EGR Out Selected Position A N Geared Position Reference D Re
125. adian second response The lead filter was set to compensate for the 5 radian second response Wld 5 The lag filter was set to 50 radian second response Wlg 50 Knis set to Wlg Wld 50 5 10 Wnis set to Wlg 50 2 36 Detailed Drive Operation Figure 2 12 Lead Filter Added to System Step Response 15 0 9 0 8F 0 6 Amplitude o e gt 0 02 04 06 0 8 1 1 2 Time sec Figure 2 12 shows the results of adding the lead lag The system had a response of 5 radians second By adding the lead lag filter the system response was increased to 50 radians second There is lead lag filter for the position loops speed reference The parameters are Kn Parameter 25 STrim2 Filt Gain Wn Parameter 26 SpdTrim2 Filt BW A typical use would be to set the lead function Wld to the velocity bandwidth parameter 90 Spd Reg BW and the lag Wlg function to approximately five times 5x the lead term Notch Filter A Notch Filter is used to remove a specific frequency On analog inputs and outputs a notch filter could be used to eliminate any 60Hz noise received from adjacent 120 volt digital input and output wires The PowerFlex 700S has a notch filter that is used to eliminate any resonant signal created by mechanical gear train The mechanical gear train consists of two masses the motor and the load and spring mechanical coupling between the two loads This is shown in Figure 2 13 Figure 2 1
126. ailure is detected A value of 0 disables the automatic switching of speed feedback devices Only automatic switching from the primary device specified in parameter 222 Mtr Fdbk Sel Pri to the alternate device specific in parameter 223 Mtr Fdbk Sel Alt is available Switching from the alternate to the primary device must be done manually by setting parameter 151 Logic Command bit 2 TackLoss Rst from 0 to 1 Parameter 155 Logic Status bit 12 Tach Loss Sw shows which speed feedback device is currently active A value of 0 in bit 12 indicates that the primary speed feedback device selected in Mtr Fdbk Sel Pri is active A value of 1 in bit 12 indicates that the alternate speed feedback device selected in Mtr Fdbk Sel Alt is active Parameter 222 Mtr Fdbk Sel Pri selects the primary speed feedback device It is not intended to use the sensorless selection as the primary or active speed feedback device as there is no feedback loss detection used with sensorless operation Parameter 223 Mtr Fdbk Sel Alt selects the alternate speed feedback device Any selection of feedback devices including sensorless operation is available providing a corresponding motor type and associated feedback device is present Settings for parameter 222 Mtr Fdbk Sel Pri and parameter 223 Mtr Fdbk Sel Alt 0 Encoder 0 3 Reserved 1 Encoder 1 4 Motor Sim 2 Sensorless 5 FB OptPort0 Para
127. ance 2 6 PM Stator Resist 2 6 PM Test Freq Ref 2 6 PM Test FreqRamp 2 6 PM Test Ref 2 6 PM Test Idc Ramp 2 6 PM TestWait Time 2 6 Point to Point Acceleration and Deceleration 2 77 Point to Point Re Reference 2 78 Poet Detct1 In 2 80 2 81 Posit Offset 1 2 52 2 72 2 76 Posit Offset 2 2 72 2 76 Posit Offset Spd 2 72 2 76 Posit Ref Sel 2 71 2 75 Posit Reg Integ 2 69 2 74 Posit Spd Output 2 119 PositDetct1 Stpt 2 81 Position Actual 2 4 2 80 Position Cmmd 2 74 Position Control 2 21 2 52 2 53 2 71 2 73 2 75 2 76 2 78 2 81 Position ErrCnfg 2 1 2 32 Position Error 2 74 Position Fdbk 2 74 2 110 Position Loop Follower Electronic Gearing 2 69 Enabling the Position Loop 2 70 Position Reference Selection 2 71 Speed Reference Ramp 2 70 Speed Reference Selection 2 70 Position Loop In Position Detect 2 74 Position Loop Point to Point 2 74 Enabling Position Loop 2 75 Jogging 2 78 Position Offset 2 76 Position Reference Scaling 2 76 Position Reference Selection 2 75 Speed Reference Selection 2 75 Position Loop Position Watch 2 80 Position Loop Registration 2 81 Encoder 0 and 1 Registration 2 81 Position Loop Output Limits 2 73 Position Offset 2 72 Position Offset 2 2 52 Position Status 2 21 2 74 2 81 PositRef EGR Div 2 52 2 71 2 72 2 76 2 78 PositRef EGR Mul 2 52 2 71 2 72 2 76 2 78 PositReg Integ 2 73 PositReg P Gain 2 69 2 73 2 74 2 77 Power Loss Level 2 87
128. arameter 567 Trend Mark DInt marks the start of data for trend buffers that are using integer data The Trend Marker can be used to provide a scope trigger signal for the Auto Output function Parameter 568 Trend Mark Real marks the start of data for trend buffers that are using real data The Trend Marker can be used to provide a scope trigger signal for the Auto Output function Parameter 569 TrendBuffPointer selects the trend buffer element to be displayed in the Trend Output Parameters when the trend function is inactive not collecting data samples A zero value points to the element that corresponds to the trigger event Negative values point to pre trigger data Positive values point to post trigger data When the Auto Output function is running this parameter will automatically sequence through it s full range at a rate set by Parameter 559 Trend Rate 2 148 Detailed Drive Operation Trend Control Trend TrigA Dint 560 gt y Trend TrigA Real Trend TrigB Dint 562 gt y Trend Status Trend TrigB Real Triggered H Trend Trig Data 564 SSC Trend Status Trend Trig Bit 565 Complete Buffer Full Trend Control Case 0 2 Enbl Collect Trend Data Trend Control 556 Y 1 Trend Control Caas 2 Trend Control E gt 3 Trend Control E gt 4
129. arameter 740 Position Control bit 16 X Watch 1 En 0 to reset parameter 741 Position Status bit 8 Post Watch1 to 0 The PowerFlex 700S drive has the ability to capture the feedback position upon an event occurrence using registration When using DriveLogix Motion with the PowerFlex 700S the Motion Arm Registration MAR can be used to control registration Encoder 0 and 1 Registration There are two registration latches where each one can be configured for Encoder 0 or Encoder 1 e Parameter 235 RegisLtch0 Value displays the registration data of port O and indicates the position reference counter value latched by the external strobes The strobe signal used to trigger the latch is configurable by Parameter 236 RegisLtch 0 1 Cnfg e Parameter 236 RegisLtch 0 1Cnfg configures the registration latch at port 0 or port to be used with Encoder 0 or Encoder 1 respectively 2 82 Detailed Drive Operation Bits 0 RLO Encoder 1 and 16 RL1 Encoder 1 select the encoder for the input source of latched data Setting bit O selects encoder 1 resetting the bit to zero selects encoder 0 Bits 1 RLO TrgSrc0 2 RLO TrgSrc1 17 RL1 TrgSrcO and 18 RL1 TrgSrc1 select the trigger source see Table 2 E Trigger Source Settings Bits 3 RLO TrgEdg0 4 RLO TrgEdg1 19 RL1 TrgEdg0 and 20 RL1 TrgEdg1 select which edges signal the position see Table 2 F Edge Selection Settings
130. art Stop Modes Refer to Wiring and Grounding Guidelines for Pulse Width Modulated PWM AC Drives publication DRIVES IN001 for detailed information This publication is available online at http literature rockwellautomation com literature A jog reference is usually used to run the motor at some preset low speed Two separate jog speeds can be used as a speed reference parameter 29 Jog Speed 1 or parameter 39 Jog Speed 2 A jog could be initiated by a Digital Input by the Logic Command word from a DPI Adapter such as a HIM or by the Logic Command word from DriveLogix In turn a valid jog command initiated from one of those adapters will turn on either bit 18 in parameter 152 Applied LogicCmd to select jog speed 1 or bit 23 in Applied LogicCmd to select jog speed 2 Note that the jog command is a maintained type of logic so that the jog speed will be active while the jog command bit is maintained 2 56 Detailed Drive Operation Limit Generator Links Applied LogicCmd C182 7 18K 152 E i ol Selected Spd Ref Hi Jog Speed 1 Ca Jog Speed 2 lt The limit generator generates a high and low limit based on an input e The input parameter 206 LimGen X axis In is a linkable destination The input range is 0 0000 to 1 0000 e The output is equal to parameter 205 LimGen Y axis Mn when the input is equal to 0 0000 e The output is equal to parameter 204 LimGen Y axis Mx when the input is equal to 1 0000
131. at all times even when the drive is stopped and restarted An absolute feedback device such as a Stegmann Hi resolution multi turn encoder can also be used in absolute mode in order to retain position feedback during power loss Hi Resolution Stegmann encoders provide absolute position feedback for up to 4096 motor revolutions To enable absolute mode set parameter 740 Position Control bit 6 AbsPositCtrl 1 To define zero position position the motor shaft to where you would like zero position to be Set parameter 740 Position Control bit 9 SetZeroPosit 1 This setting redefines where the zero position of the motor shaft will be Then set parameter 740 Position Control bit 9 SetZeroPosit 0 Parameters 745 PositRef EGR Mul and 746 PositRef EGR Div are not used in absolute mode Therefore the position reference is always scaled to feedback counts in absolute mode while the drive is stopped or powered down the drive will move to the position reference set in parameter 758 Pt Pt Posit Ref when started For applications where the motor shaft should not move on the initial start load the value from parameter 763 Position Actual into parameter 758 Pt Pt Posit Ref before starting the drive q ATTENTION When absolute mode is on if the motor shaft is moved Example to Control the Point to Point Position with Digital Inputs Digital Inputs can be used to control up to 16 positions for the point to point loop by using
132. ation Parameter 60 DeltaSpeedScale is a multiplier for the torque output of the inertia compensation block It is used in center wind and center unwind applications to compensate for diameter build up The inertia compensation outputs the calculated torque to the parameter 59 Inertia Torq Add Inertia Torq Add is summed with the output of the friction compensation block and the torque generated by the speed reference loop That summed torque enters the torque selection block refer to Torque Reference for more information Parameter 55 Speed Comp contains the rate of acceleration or deceleration calculated in the inertia compensation block This parameter is used in following Input Devices Input Modes Input Power Conditioning dog Detailed Drive Operation 2 55 applications Link parameter 23 Speed Trim 3 to Speed Comp and set parameter 24 SpeedTrim3 Scale to 0 002 to reduce position error in following applications S Curve Spd Ref Inertia SpeedRef Inertia Torq Add a An 43 gt Link SE AL Logic Command o Torque inertia Comp Ce 10 Inertia Comp Control 4B1 Total Inertia GER InertiaAccelGain E Speed Comp Se E lt lt InertiaDecelGain DeltaSpeedScale Contactors Refer to Motor Start Stop Precautions Circuit Breakers Fuses Refer to Fuses and Circuit Breakers Filters EMC Refer to CE Conformity Refer to St
133. ation or change to flux only operation See Ride Through Configuration below Power Loss Level its 16 bit 22 1 Integer voltage falls below this level the drive prepares for an automatic reset Enter a i 15 95 percentage of the bus voltage derived from the high voltage setting for the voltage class For example on a 400 480V drive 0 221 x 480Vac x J2 150Vdc In cases where the precharge control is independent or external to the drive firmware the ride through function can still be used to stop PWM operation saving controller power and restart operation after the return of power is sensed In this case the ride through sequence will not be directly coordinated with the precharge operation For external precharge hardware functionality is provided so that the user may provide coordinated operation 2 88 Detailed Drive Operation Ride Through Configuration The drive s response to a power disturbance can be selected in parameter 406 Power Loss Mode Settings for Parameter 406 Power Loss Mode 0 Coast 1 Reserved 2 Continue 3 Reserved 4 Reserved 5 Flux Only Coast default The coast mode stops power to the motor PWM disabled and the motor coasts until power returns or a fault occurs At the time when the motor PWM is disabled the precharge device bypass where controlled by the drive is also opened Then the precharge logic is reset so that the drive starts another precharge cycle After
134. ations Dimensions PowerFlex 700S Specifications 0 0 0 cece cece e teens 1 1 Input Output Ratings s s cy vec aa aka aioe ee ene dia adi 1 4 Input Voltage Rangelolerance eee eee eee 1 5 Heat Dissipation va isc onda rada wees wo Sete ens o woos ae eevee 1 5 Muert EE 1 6 De rating Guidelines vino na a ein ld la Ee ws EAL Beat a 1 8 PowerFlex 7005 Altitude and Efficiency 1 8 Elter E e CEET EEN 1 11 Detailed Drive Operation Accel Ke voii IS a AAA ia oad Ae 2 1 ALAS t a taras 2 1 Configuration viii NEEN BU eds EEN Be a ss 2 1 Application EXample eer dde de tee O E ea 2 1 Analog Inputs aii A eee ea de 2 2 Analog Input Specifications 2 2 Analog Input Configuration 2 2 Configuration Example 20 0 0 ccc cece eee ene eens 2 2 Analog Outputs sita ENEE e ENEE ages oo aie NEE peice dua ante yen 2 3 Analog Output Specifications 0 0 0 cee eens 2 3 Analog Output Configuration 0 0 0 0 cece eee eens 2 3 Example Configuration Lim eee ne ae Ae eee a 2 4 Example Confisuration 2342 00 ose A eA yee i 2 4 ZetoiManuak e roren e bee dens nek eee IEN RE teed Aenea Ghee ced ds 2 4 AUTOS eii dt A ar ee TE eh T 2 4 Autotune Start Up Men 2 4 Motor Controlado teeth E a RA GAS ER tee Al daa th Ee 2 5 Motor Data s sii oda e shin eeu dwt eta wide dee Bee aes 2 5 Feedback Configuration 0 0 0 cece eee teen een ees 2 5 Power Circuit lesbian elites aii dde 2 5 Direction Test ege oe eee ida
135. ator is at 50 of the time out time e Bit 6 IT Foldback indicates the drive closed loop current limit is in a fold back condition The value of the fold back is proportional to the calculated junction temperature e Bit 7 Jnc Over Temp indicates the junction temperature has exceeded the maximum temperature for the power semiconductor device Drive Over Temperature Frame 9 Only Droop G Filter 2 Order LPass ks s ServoLck Dynamic Braking Detailed Drive Operation 2 29 The drive over temperature fault is set at 92 C The fault is detected if the heat sink temperature parameter 313 Heatsink Temp or parameter 345 Drive OL JnctTmp exceeds 125 C The open loop current limit is originally designed for 25 duty cycle at 110 output current On the other side the High Horsepower drive allows 10 duty cycle at 110 output current The open loop current limit function cannot prevent the drive from having an over temperature fault Droop is used to shed load and is usually used when a soft coupling of two motors is present in an application The master drive speed regulates and the follower uses droop so it does not fight the master The input to the droop block comes from the torque output of the speed regulator before limiting The output of the droop block reduces the speed reference Parameter 86 Spd Reg Droop sets the amount of base motor speed that the speed
136. bit 12 PI Trim En is turned on and the drive is running The running state is indicated by parameter 155 Logic Status bit 1 When both of these conditions are true parameter 157 Logic Ctrl State bit 31 ProsTrim En will be on 2 Parameter 153 Control Options bit 23 PI Trim EnOut is turned on Now the PI output is used to trim speed torque or some external loop To trim the speed loop link parameter 21 Speed Trim 1 or parameter 23 Speed Trim 3 to parameter 180 PI Output To trim the torque loop link parameter 115 Torque Trim to the PI Output To trim some other loop link the desired parameter to PI Output For example to use analog output 1 as a trim signal to other equipment link Anlg Out 1 Real to PI Output 2 94 Detailed Drive Operation Reflected Wave Parameter 510 FVC Mode Config bit 9 ReflWaveComp enables reflected wave compensation The pulses from a Pulse Width Modulation PWM inverter using IGBTs are very short in duration 50 nanoseconds to 1 millisecond These short pulse times combined with the fast rise times 50 to 400 nanoseconds of the IGBT will result in excessive over voltage transients at the motor Voltages in excess of twice the DC bus voltage 650V DC nominal at 480V input will occur at the motor and can cause motor winding failure The patented reflected wave correction software in the PowerFlex 700S will reduce these over voltage transients from a
137. ble is used to enable or disable user functions in the drive The drive does not require a drive reset for a change to take affect Bit 0 User Params enables use of user DInt and floating point parameters 1002 through 1021 Bit1 Sel Switches enables a 16 selection switch a DInt switch and a Real switch Bit2 Converts enables converters for Real to DInt or DInt to Real data Bit3 Logic Functs enables blocks that can be configured as AND NAND OR NOR XOR NXOR and enables the compare functions Bit 4 Multi Div Math enables multiply divide functions Bit 17 MOP enables the MOP motor operated potentiometer e Parameter 1001 UserFunct Actual will show the actual user functions enabled Bit Swap The bit swap allows you to compare word A with word B and replace the selected bit from word A with the selected bit of word B BitSwap 1 Result BitSwap 1A Data BitSwap 1A Bit BitSwap 1B Data BitSwap 1B Bit 2 150 Detailed Drive Operation Example of Using a Bit Swap and Digital Input for Custom Control This example uses a bit swap to enable and disable the S curve using digital input 3 Set parameter 860 BitSwap 1A Data to O This parameter sets up any data you would like to pass through to the result Set parameter 861 BitSwap 1A Bit 1 This parameter sets the bit that you would like to turn on in the result and is set to bit 1 because we want to use bit swap
138. cdr Posit 2 117 Virt Encoder EPR 2 117 Virtl Edge Rev 2 103 Voltage Class 2 159 W Watts Loss 2 160 www 1 1 2 30 X XReg Integ HiLim 2 73 XReg Integ LoLim 2 73 Xreg Spd HiLim 2 73 2 77 Xreg Spd LoLim 2 73 2 77 Xsync Gen Period 2 144 Xsync In 1 2 144 Xsync In2 2 144 Xsync In3 2 144 Xsync Out 1 2 144 Xsynch Out 2 Dly 2 144 Xsynch Out 3 Dly 2 144 www rockwellautomation com Power Control and Information Solutions Headquarters Americas Rockwell Automation 1201 South Second Street Milwaukee WI 53204 2496 USA Tel 1 414 382 2000 Fax 1 414 382 4444 Europe Middle East Africa Rockwell Automation Vorstlaan Boulevard du Souverain 36 1170 Brussels Belgium Tel 32 2 663 0600 Fax 32 2 663 0640 Asia Pacific Rockwell Automation Level 14 Core E Cyberport 3 100 Cyberport Road Hong Kong Tel 852 2887 4788 Fax 852 2508 1846 Publication PFLEX RM003A EN E September 2005 Copyright 2005 Rockwell Automation Inc All rights reserved Printed in USA
139. cle time on time on time of 100 The On Times Off Times ratio is fixed If only 1 2 of the listed time is spent at a given level the only 1 2 the off time is necessary to reset the cycle Input Voltage Range Tolerance Heat Dissipation Specifications A Dimensions 1 5 Nominal Line Nominal Motor Drive Full Power Drive Operating Drive Rating Voltage Voltage Range Range 200 240 200 200T 200 264 180 264 208 208 208 264 240 230 230 264 380 400 380 3801 380 528 342 528 400 400 400 528 480 460 460 528 500 600 600 5751 575 660 432 660 Frames 1 4 Only 500 690 600 5751 575 660 475 759 Frames 5 amp 6 Only 690 690 690 759 475 759 Drive Full Power Range Nominal Motor Voltage to Drive Rated Voltage 10 Rated current is available across the entire Drive Full Power Range Drive Operating Range e Nominal Motor Voltage 10 to Drive Rated Voltage Drive Output is linearly derated when Actual Line Voltage is less than the Nominal Motor Voltage ke 5 2 o v E S 5 g 2 f gt Derated Power Range No Drive i i i Output H lt Full Power Range i gt E Drive Operating Range gt Nominal Motor Voltage 10 gt i Drive Rated Voltage gt i Nominal Motor Voltage gt Drive Rated Voltage 10 gt Actual Line Voltage Drive Input Example Calculate the maximum power of a 5 HP 460V motor connected to a 480V rat
140. ction in parameter 222 Mtr Fdbk Sel Pri 2 Enter a valid feedback device selection in parameter 223 Mtr Fdbk Sel Alt 3 Setting parameter 365 Fdbk LsCnfg Pri to 1 Alarm 4 Setting parameter 366 Fdbk LsCnfg Alt to 2 FltCoastStop recommended but not necessary 5 Setting the speed change detection level in parameter 224 TachS witch Level 6 Setting parameter 153 Control Options bit 16 Auto Tach Sw to 1 for automatic switch over 7 Setting parameter 510 FVC Mode Config bit 22 SrLssRdThru to 1 when sensorless operation is selected in parameter 223 Logic Command TachLoss Rst 151 2 Control Options eg AutoTach Sw isd io Re Motor Spd Fdbk jen Eege g d 300 gt ate Speed Feedback 1 from Alternate Device I Gu Logic Status TachLoss Sw Automatic and manual switching of feedback devices is inhibited if a loss in parameter 320 Exception Event1 bits 2 4 as appropriate is sensed on the device to which switching was to take place The drive will fault when it is configured for speed feedback loss ride through and the primary device fails when the alternate device has failed and is also configured to fault If the alternate device is not configured to fault then switching to the alternate device will be inhibited and operation on the primary feedback device will continue Note that operation on the primary device will continue even with that device s failu
141. cy translates into a slip speed resulting in a reduction in rotor speed as the load increases on the motor This can be easily seen by examining Figure 2 18 Figure 2 18 Rotor Speed With Without Slip Compensation Slip Compensation Slip Compensation Inactive Active Load Load 3 Applied Applied IA Noload Y 5 0 5 p u Load amp 1 0 p u Load 1 5 p u Load X Time Without slip compensation active as the load increases from no load to 150 of the motor rating the rotor speed decreases approximately proportional to the load With slip compensation the correct amount of slip compensation is added to the drive output frequency based on motor load Thus the rotor speed returns to the original speed Conversely when the load is removed the rotor speed increases momentarily until the slip compensation declines to zero The amount of slip added to the speed command is displayed in parameter 107 Slip RPM Meter Slip compensation also affects the dynamic speed accuracy ability to maintain speed during shock loading The effect of slip compensation during transient operation is illustrated in Figure 2 19 Initially the motor is operating at some speed and no load At some time later an impact load is applied to the motor and the rotor speed decreases as a function of load and inertia And finally the impact load is removed and the rotor speed increases momentarily until the slip compensation is reduced based on the applied load
142. d z 0001 sud sad Z oog syd ed z ogz sud od z 009 YN 0002 0003 sud sed 1 ooog syd sad 1 0001 syd eg 1 oner sud aad 1 0001 oni eme oez 90S oez OOF LL oezaaoz syd sad z ogg sud ed z sze sud ed z 0s9 sud sed Z SZE YN 0031 009 sydad 1 0021 syd ed oer sud sed 1 oog ad ed 1 osz ml 88 065 807 069 srel syd 19d Z og8 syd ed zZ ogy syd ad z og9 sud ed z 09y YN gt 0031 0091 syduad 1 OOZL Sud ed 1 006 sud sad 1 ooe Sud ed 1 006 ml oul os9 osr gen Sse LL osgaadoz syd sad z 094 syd ed z sze syd ed z 099 sud sad Z SZE YN S 008 0031 syd sed 1 oog syd sed 1 ogo sud ad 1 OOLL ad ed 1 0g9 moi 082 036 ooe gege syd 19d z og8 syd ad Z ze sud ed z 009 sud ed z Sze YN 7 S 0021 0091 syd ed 1 OOZL syd sed U 08 sud sad 1 one sudied 1 03 orot org 068 80b oes SIE LL oesaaoz YN 008 0031 0001 Ge 0001 azg mg 0 9 ozy Sez tyl ooz YN 008 0031 00pL Gen OOLL Gen osz 089 00S eee g t osz or oosaadoz YN 7 E ES 008 008 0001 00S 008 oos 022 ae see 192 E ooz YN 008 o0z o0z Gls 006 Gls 044 90S 09 zle sv osz 01 O9raaoz YN 009 008 008 GI GI G 009 OSr 00 poz pez O91 YN 008 008 0001 00S 008 oos 009 ver sge 19 Aug 002 ol sgeaaoz YN 00p 002 ES Ger 00S Ger t 89 oc 991 Ore zel YN S 00p 008 008 GIE 9 9
143. dReg Integ Out 2 124 SpdTrim2 Filt BW 2 36 2 73 2 77 Speed Comp 2 54 Speed Ref 1 2 114 2 138 2 151 Speed Ref 2 2 14 2 70 2 114 Speed Ref A Sel 2 70 2 75 Speed Ref B Sel 2 113 Speed Ref Scale 2 118 Speed Ref1 Divide 2 114 Speed Ref2 Multi 2 114 Speed Trim 1 2 93 2 118 Speed Trim 2 2 119 Speed Trim 3 2 55 2 93 2 119 SpeedTrim3 Scale 2 55 SReg FB Filt BW 2 34 2 125 2 126 Sreg FB Filt BW 2 121 Sreg FB Filt Gain 2 121 SReg Out Filt BW 2 34 Sreg Out Filt BW 2 124 SReg Out Filt Gain 2 127 SReg Torq Preset 2 124 SRegFB Filt Gain 2 34 2 126 2 127 SregFB Filt Gain 2 125 SregOut Filt BW 2 125 2 126 SRegOut FiltGain 2 34 SregOut FiltGain 2 124 2 125 2 126 Start Inhibits 2 89 2 100 Start Mask 2 58 Start Owner 2 64 Start Acc Boost 2 60 Statorlnductance 2 6 StatorResistance 2 6 Stegmann0 Cnfg 2 105 Stop Owner 2 64 STrim2 Filt Gain 2 36 2 73 2 77 Switch Dint 1 NC 2 155 Swtch Dint 1 NO 2 155 Swtch Dint 1 Out 2 155 Switch Real 1 NC 2 154 Switch Real 1 NO 2 154 Switch Real 1 Out 2 154 SynchLink Rev 2 139 2 140 TachSwitch Level 2 111 2 112 Time Axis Rate 2 145 Torq Ref1 Div 2 146 Torq Ref2 Mult 2 146 Torque Pos Limit 2 13 Torque Ref 1 2 129 2 146 Torque Ref 2 2 129 2 146 Torque Ref1 2 21 Torque Trim 2 93 2 129 2 146 Total Inertia 2 6 2 54 2 123 Trend Control 2 147 Trend In Dint 2 147 Trend Int Real 2 147 Trend In2 Dint 2 147 Trend In2 Real 2 147 Trend In3 Dint 2 147 Trend In
144. dback signal This section will describe in detail how each of these functions operates Feedback Device Parameter 222 Mtr Fdbk Sel Pri selects the feedback device for motor speed and position feedback The possible settings for parameter 222 are 0 Encoder 0 1 Encoder 1 2 Sensorless 3 Reserved this setting is not used 4 Motor Sim 5 FB Opt Por Parameter 223 Mtr Fdbk Alt Sel selects an alternate feedback device when a feedback loss is detected on the primary device The possible settings for Mtr Fdbk Alt Sel are the same as the possible settings for Mtr Fdbk Sel Pri Encoder There is one standard encoder input A second encoder input board is optional The encoder inputs are rated for Incremental Dual Channel Quadrature type Isolated with differential transmitter Output Line Drive The encoder inputs can accept 5V DC or 12V DC selected via dip switches There is a encoder supply on the drive that can be set for 5V DC or 12V DC via dip switches 2 100 Detailed Drive Operation An encoder offers good performance for both speed and torque regulation applications Encoder feedback is required for applications with high bandwidth response tight speed regulation torque regulation of 2 or when the motor is required to operate at less than 1 120th of its base speed Parameters 232 Encoder0 PPR and 242 Encoder PPR set the pulse per revolution rating of the encoders These parameters
145. determined by the limited current controlled by the precharge device The filtered value of bus voltage will lag behind the actual bus voltage until the bus capacitor charging is complete then the values will converge A difference between the filtered and actual bus voltage determines if the bus voltage is stable The drive must not be running PWM active except in coordination with ride through After the initial drive precharge has completed a power loss may present conditions for precharge to be restarted ex low bus voltage However if the drive output is active parameter 155 Logic Status bit 0 Enabled the restart of precharge will be inhibited until the drive is stopped PWM not active Also refer to Power Loss Ride Through for controller coordinated PWM disable and precharge operation If the drive is running and the user removes the precharge enable this condition will be ignored until the drive is disabled PWM stops Then the precharge function will be started again The drive precharge delay must be completed After conditions 1 through 4 above are met parameter 472 PreCharge Delay must be completed before the precharge device bypass is commanded If any of the above conditions become false during the precharge delay period the delay timer is reset If parameter 2 90 Detailed Drive Operation 472 PreCharge Delay is set less than 200 mSec then an internal 200 mSec delay is used Parameter 472 PreCharge D
146. e 2 61 Motor NP FLA 2 20 2 61 Motor NP Hertz 2 60 Motor NP Power 2 61 Motor NP Pwr Units 2 61 Motor NP RPM 2 1 2 21 2 61 2 115 2 120 Motor NP Volts 2 60 Motor Overload 2 61 High Overload 2 62 Low Overload 2 61 Motor Poles 2 61 Motor Posit Est 2 103 Motor Spd Fdbk 2 67 2 109 2 121 Motor Speed Est 2 103 Motor Speed Ref 2 121 Motor Start Stop 2 62 Mounting 2 62 Mounting Dimensions 2 62 Mtr Current Lim 2 20 Mtr Fdbk Alt Sel 2 99 Mtr Fdbk Sel Alt 2 111 2 112 2 113 Mtr Fdbk Sel Pri 2 99 2 111 2 112 2 113 Mtr OL Trip Cnfg 2 32 Mtr Trq Ref 2 4 MtrPosit Simulat 2 103 MtrSpd Simulated 2 103 MulDiv 1 Input 2 159 MulDiv 2 Input 2 159 N Notch Filt Freq 2 37 2 38 Notch Filter 2 36 O Opt 0 Regis Ltch 2 86 Opt 1 Regis Ltch 2 86 Opt0 1 Regis Cnfg 2 86 Opt0 1 RegisCnfg 2 85 Opt0 1 RegisCtrl 2 85 Opt0 1 RegisStat 2 86 otor Torque Ref 2 14 Output Curr Disp 2 63 Output Devices 2 63 Cable Termination 2 63 Drive Output Disconnection 2 63 Output Reactor 2 63 Output Display 2 63 Current 2 63 Frequency 2 63 Power 2 63 Voltage 2 64 Output Voltage 2 21 Overcurrent 2 20 Overspeed Limit 2 64 Owners 2 64 P Parameter Access Level 2 67 Parameters Abs OverSpd Lim 2 64 Accel Time 2 1 Alarm Status 1 2 1 2 91 Alarm Status 3 2 1 Analog Out Sel 2 4 Anlg Ini Data 2 2 2 129 Anlg In1 Filt BW 2 2 Anlg In Scale 2 2 Anlg In1 Value 2 2 Anlg Ini Data 2 2 Anlg Int Filt Gain 2 2 Anlg Int Offset 2 2 A
147. e Ref2 Mult 114 A y orque Ref2 Mult Abs Torque Trim 115 Min As shown in Figure 2 22 parameter 110 Spd Trq Mode Sel is used to select the mode of operation Zero torque current is allowed when set to zero 0 Set to a value of 1 the drive and motor are operated in speed mode The torque command changes as needed to maintain the desired speed Set Spd Trq Mode Sel to a value of two 2 for torque mode In torque regulation mode the drive controls the desired motor torque The motor speed is the result of torque command and load present at the motor shaft Min and Max mode are selected by values 3 and 4 respectively These modes offer a combination of speed and torque operation The algebraic minimum or maximum of speed torque will be the operating point for the Min and Max modes The drive automatically switches from speed to torque mode or from torque to speed based on the dynamics of the motor load The Min mode is typically used with positive torque and forward speed operation the minimum of the two being closest to zero The Max mode is opposite typically used with reverse speed and negative torque the maximum being the least negative closest to zero Sum mode is selected when Spd Trq Mode Sel is set to a value of 5 This mode allows an external torque command to be added to the speed regulator output when desired Speed Regulation Mode Operating as a speed regulato
148. e completed by the minimum precharge time required by the drive The drive will not complete precharge until the bus voltage is stable and above the under voltage level Precharge Frames 5 and Higher DC Input Common Bus Drives There are two versions of these DC Input or common bus drives The first has a resistor with an SCR bypass in series with the positive DC bus in front of the bus capacitor The second does not have any precharge hardware and is intended for user applications where the precharge hardware and control is provided by the user Drives with the resistor and SCR bypass internal have the same precharge control as frame 1 4 above hardware and control incorrect configuration and or control may result ATTENTION In cases where the user is providing the precharge A in drive damage Ride Through Operation An incoming power loss to the drive is detected by a 22 volt drop in bus voltage or a bus voltage that drops below the under voltage level as determined in parameter 408 Power Loss Level see table below The return of incoming power is detected by an 11 rise in bus voltage and a bus voltage level greater than the undervoltage level set in parameter 409 Line Undervolts If the undervoltage condition is selected as a fault parameter 393 BusUndervoltCnfg 2 FltCoastStop then the drive will not restart if the incoming power returns Upon sensing a power loss the drive can be configured to coast continue oper
149. e flux test is performed the motor will rotate The drive accelerates the motor to the speed set in parameter 19 Atune Spd Ref default is 85 of base speed and then coasts for several seconds This cycle may repeat several times then decelerate to a low speed and shut off This test stores the value for flux current in parameter 488 Flux Current For Permanent Magnet Control the following motor tests are performed Stator Resistance Test This test identifies the motor stator resistance and stores the value into parameter 522 PM Stator Resist The motor should not rotate during this test Stator Inductance Test This test identifies the motor stator inductance and stores the value into parameter 520 PM Q Inductance The motor should not rotate during this test Encoder Offset The absolute position sensor counter offset from the rotor flux center position for a Permanent Magnet PM motor This value is determined by an automated measurement procedure which uses parameter 505 PM TestWait Time 506 PM Test Idc Ramp 507 PM Test FreqRamp 508 PM Test Freq Ref and 509 PM Test Ref First the Flux Producing d axis current is applied to the stator starting with OA and with 0 Hz Current increases with the ramp rate defined by parameter 506 PM Test ldc Ramp to the peak current value defined by parameter 509 PM Test Ref The current is continuously applied at this level for the time interval defined by parameter 50
150. e functions are A lt B A gt B e Parameter 1072 Compare 1B sets input B for the Compare 1 The results of the compare are displayed in parameter 1062 Logic Cmpr State Available functions are A lt B A gt B e Parameter 1073 Compare 2A sets input A for the Compare 2 The results of the compare are displayed in Par 1062 Logic Cmpr State Available functions are A lt B A gt B e Parameter 1074 Compare 2B sets input B for the Compare 2 The results of the compare are displayed in Par 1062 Logic Cmpr State Available functions are CA lt B A gt B Voltage Class Detailed Drive Operation 2 159 Multiply Divide Blocks The multiply divide blocks are used to multiply and divide floating point parameters It is possible to use the DInt to Real converter to convert one double integer parameter to a floating point value and use that value as an input to a multiply divide block MulDiv 1 Input MulDiv 1 Mul MulDiv 1 Div MulDiv 1 Result MulDiv 2 Input MulDiv 2 Mul MulDiv 2 Div MulDiv 2 Result 1 m gt e Parameter 1053 MulDiv 1 Input is the input value to be scaled as need with the Multiplication and Division function This input will be multiplied by parameter 1054 MulDiv 1 Mul and then divided by parameter 1055 MulDiv 1 Div The result will be loaded to parameter 1056 MulDiv 1 Result Configuration Equation Par 1053 Par 1054 Par 1055 Par 1056
151. e low pass filter to eliminate undesirable noise in the feedback circuit The cut off frequency of the low pass filter is set by parameter 184 PI Lpass Filt BW Typical values would range from 15 20 radians second The speed loop uses a second order low pass filter after the speed error term is developed The cut off frequency of the second order low pass filter is by parameter 89 Spd Err Filt BW Typical value for this parameter is five times 5x the speed loop bandwidth parameter 90 Spd Reg BWJ There are several lead lag filters used in the PowerFlex 700S The lead lag filter has two terms The first term is the filter gain Kn and the second term is the filter frequency Wn The filter can be used as lag to eliminate noise from entering the control loop The filter can be used as a lead to increase overall system performance To eliminate noise lag use with the light or heavy filter Kn Wn Light 0 7 35 Heavy PES To use the lead function 1 Set Wld equal to the desired lead in radians second 2 Set Wlg equal to 5x Wld 3 Wn Wlg 4 Kn Wlg Wld The torque reference has a notch filter used to eliminate resonance signals The notch frequency is set by parameter 118 Notch Filt Freq This frequency is set to the mechanical resonance in hertz Firmware Functions Flying Start Detailed Drive Operation 2 39 Parameter 147 FW Functions En allows the user to enable and display firmware functions in the drive
152. e of 0 4V DC state voltage of 0 4V DC Maximum Input Frequency 400 kHz 400 kHz Stegmann Option Encoder Voltage Supply 11 5V DC 130 mA 11 5V DC 130 mA Hi Resolution Feedback Sine Cosine 1V P P Offset 2 5 Sine Cosine 1V P P Offset 2 5 Maximum Cable Length 182 m 600 ft 182 m 600 ft RS 485 Interface Hi Resolution Feedback Option card obtains the following Hi Resolution Feedback Option card obtains the following information via the Hiperface RS 485 interface shortly after information via the Hiperface RS 485 interface shortly after power up Address Command Number Mode Number of turns power up Address Command Number Mode Number of Number of Sine Cos cycles Checksum turns Number of Sine Cos cycles Checksum Customer I O Plug P1 Hi Allen Bradley PN S94262912 Allen Bradley PN 94262912 Res Weidmuller PN BL3 50 90 12BK Weidmuller PN BL3 50 90 12BK Resolver Option Excitation Frequency 2400 Hz 2400 Hz Excitation Voltage 4 25 26 Vrms 4 25 26 Vrms Operating Frequency Range 1 10 kHz 1 10 kHz Resolver Feedback Voltage 2V 300 mV 2V 300 mV Maximum Cable Length 304 8 meters 1000 ft 304 8 meters 1000 ft DriveLogix User Available MemoryBase 1 5 megabytes 1 5 megabytes Battery 1756 BA1 Allen Bradley PN 94194801 0 59g lithium 1756 BA1 Allen Bradley PN 94194801 0 59g lithium Serial Cable 1761 CBLPM02 to 1761 NET AIC 1761 CBLPADO to 1761 NET AIC 1756 CP3 directly to contro
153. echarge delay times or could be closed loop by monitoring the precharge done status parameter 555 MC Status bit 11 of each drive before the next drive in the sequence is enabled for precharge The maximum value for PreCharge Delay is limited by parameter 410 PreChrgTimeout The maximum value for PreCharge Delay is determined by the following calculation PreCharge Delay max PreChrgTimeout 1 Motor Sim Mode When the motor simulation mode is selected the precharge requirements are ignored and the precharge done condition is not needed for running the drive 2 92 Detailed Drive Operation Preset Speeds Process Pl Loop External Power Supply If the drive is used with an external power supply the user should not request a precharge until the drive incoming power is available If the user does request a precharge without incoming drive power a precharge timeout fault will occur if configured for a fault There are seven 7 preset speeds available for use Refer to Speed Reference for more information The drive has a process PI loop that can be used to trim speed torque or some other function Logic Ctrl State Logic Status ProcsTrim En A 155 gt 1 Running amp 157 131 OR Logic Command Control Options K 12 ProcsTrim En Gs PI Trim EnOut 153 123
154. ection Control and Bipolar Reference 0 0 eee eee eee eee 2 24 Drive Peripheral Interface OP 2 25 Chen Server ona sis ond AEN dene ER woven blues ame haw os ees Sheela E 2 25 Producer Consumer Operation Overview 2 26 Peer to P er Operation is priv See dia Mia anes tne wine ahd 2 26 Klek few A ica 2 27 Drive Overload lt j o iiss ced a St dee cc AA ea eet ei 2 27 Theory of Operation 0 0 0 cece cece E e teen ene 2 27 Drive Over Temperature Brame 9 Only A de NEE EEN Be ee Es 2 29 tree 2 ites Nee A A e AN te dE 2 29 Dynamic Braking AEN A ete TE ee 2 29 enge EE 2 30 Electronic Gearing sie seen ek ancy oN erie Seta rd dd 2 30 CE Conformity ccd cent a A 2 30 Low Voltage Directive 73 23 EEC 1 2 0 0 0 nee 2 30 EMC Directive 89 336 EEC 0 ccc eet nen 2 30 General N tese hadnt hee ina ween aes 2 31 Essential Requirements for CE Compliance 0 0 00 eee ee eee ee 2 31 A A eis 2 31 Configuration ee Bene nee hehe heey cc bead deseo ida 2 32 Application Example vecina ra eee eee eek ey RSS 2 32 Filters jig ao ek eh eek e bra ghey teas Se en Ge eae Se es Sa he ote 2 32 Key e ean fees bead a aa ot aaa aga aaa AAR 2 32 Nomenclattires toi shes wach hea ie ume ia hoa Ben eR Ree Dea nek AE 2 32 Low Pass Filter espais geo boe e lt 2 32 Second Order Low Pass Plter cor 2 33 Esadilas Pl EE Ee AE 2 33 Notch Filter ett de ons ace han he ra ae pin ER ral ts E 2 36 CONCIUSION EEN 2 38 Firmware Buppen e
155. ection implemented on the feedback option card The rate of change of motor speed detection is the same implementation as for encoder feedback Speed feedback loss ride through is not allowed in position mode If the encoder loss ride through function was allowed in a positioning system it is likely that the alternate feedback device will supply an arbitrary position feedback value when an encoder loss is detected This in turn could result in unintended motion in the drive system attempts to automatically switch feedback devices with minimum disturbance a system disturbance will occur In some cases feedback device degradation may occur before complete failure takes place The user must determine if the encoder loss ride through function is appropriate for each application ATTENTION Even though the encoder loss ride through function Detailed Drive Operation 2 111 Speed Feedback Loss Ride Through Configuration Parameter 151 Logic Command bit 2 TackLoss Rst provides a manual switch between primary and alternate speed feedback devices with a 0 to 1 bit transition A transition from 1 to 0 does not cause a change in operation Parameter 152 Applied LogicCmd bit 2 TachLoss Rst shows the status of parameter 151 Logic Command bit 2 TachLoss Rst switch Setting parameter 153 Control Options bit 16 Auto Tach Sw to a value of 1 enables the automatic switching of speed feedback devices when a f
156. ed before clearing the fault check the bits in the following parameters 463 MC Diag Error 1 464 MC Diag Error 2 or 465 MC Diag Error 3 You may use an auxiliary power supply to keep the 700S Control Assembly energized when input power is de energized This allows the Main Control Board DriveLogix controller and any feedback option cards to continue operation Refer to User Manual for connection information Frames 1 6 Refer to the Auxiliary Power Supply option 20 24V AUX1 and publication PFLEX INO10 Frames 9 amp Up You must set Par 153 Control Options bit 17 Aux Pwr Sply to enable this feature Auxiliary Power Supply Specifications Voltage Current Min Power Min 24V DC 5 3A 75W Description This information serves as a supplement to the PowerFlex 7008 Phase II Control User Manual publication 20D UM006 addressing items specific to the PowerFlex 7005 bus regulation and dynamic braking Please refer to the User Manual for details on the 700S dynamic braking wiring and setup and the PowerFlex Dynamic Braking Resistor Calculator Selection Guide publication PFLEX AT001 for application techniques on dynamic braking These publications are available online at http literature rockwellautomation com literature Technical Information The bus regulator limits the maximum bus voltage for systems that do not have or have limited braking or regenerative capabilities The bus regulator limits the bu
157. ed drive supplied with 342V Actual Line Voltage input e Actual Line Voltage Nominal Motor Voltage 74 3 74 3 x 5 HP 3 7 HP e 74 3 x 60 Hz 44 6 Hz At 342V Actual Line Voltage the maximum power the 5 HP 460V motor can produce is 3 7 HP at 44 6 Hz a I uv LI 5d HE e No Drive Output HP Motor Drive Output 480V gt 460V gt 528V Actual Line Voltage Drive Input 342V gt See Watts Loss on page 2 160 1 6 Specifications amp Dimensions Mounting Mounting Clearances Frames 1 6 Aa lA With Adhesive Label 101 6mm see below 4 0 in With Adhesive Label see below A 101 6mm 4 0 in ca o a 2 Ge Frame 9 pS gt 400 0 mm 400 0 mm 15 75 in 15 75 in EU EJ A S 50 0 mm 80 0 mm 50 0 mm 1 97 in 4 3 2 in gt 4 1 97 in a A 350 0 mm 350 0 mm 13 8 in 13 8 in v v Figure 1 1 Minimum Mounting Clearance Requirements 50 8mm 2 0 in AT e 200 0 mm 7 87 in wy gt 101 6mm 4 0 in EE t 800 0 mm 31 50 in y 1 7 Specifications amp Dimensions Frame 11 1000 mm 39 3 in Remove Top Label amp V
158. eed Set this to the positive speed at which you want the drive to run for point to point moves Tuning Tips The speed regulator of the drive must be tuned prior to tuning the Position Loop Refer to Speed PI Regulator of this manual for tips on tuning the speed regulator Do not attempt to set the accel decel rates of the point to point position loop faster than can be accomplished by the system Attempting to set the accel decel rates faster than the system can handle will cause instability in the position loop Do not attempt to operate beyond the torque limits of the drive motor combination Typically parameter 768 PositReg P Gain should be set between 1 5th to 1 3rd of parameter 90 Spd Reg BW Parameter 768 PositReg P Gain may be set higher using lead compensation on the Position Regulator Output Lead Lag filtering of the position regulator output is accomplished via the speed trim 2 filter Set parameter 25 STrim2 Filt Gain and parameter 26 SpdTrim2 Filt BW so that SpdTrim2 Filt BW Strim2 Filt Gain Speed Reg BW For example with parameter 90 Spd Reg BW 40 rad sec set parameter 26 SpdTrim2 Filt BW 200 rad sec and set parameter 25 Strim2 Filt Gain 5 The lead lag filter will effectively cancel the 1 40 sec lag This will allow a higher parameter 768 PositReg P Gain for increased stability Parameter 761 Pt Pt Filt BW sets the bandwidth of a low pass filter which affects smoothness at the s
159. eed error after the servo lock is added and the anti backup is subtracted This signal is then sent to the integral gain block The integral gain block outputs a torque command relative to the error integrated over a period of time Parameter 82 Spd Reg I Gain sets the integral gain of the speed regulator It s value is automatically calculated based on the bandwidth setting in Spd Reg BW and the inertia of the system in Total Intertia Integral gain may be manually adjusted by setting Spd Reg BW to a value of zero Units are per unit torque sec per unit speed For example when Spd Reg I Gain is 50 and the speed error is 1 the integral output will integrate from 0 to 50 motor rated torque in 1 second When parameter 153 Control Options bit 12 Jog NoInteg is turned on this tells the speed regulator not to use the integral gain during jog commands When parameter 151 Logic Command bit 5 SReg IntgHld is turned on the Integrator holds its output at the present level until the bit is turned off again When parameter 151 Logic Command bit 6 SReg IntgRst is turned on the output of the integrator is set to O When the Integ Reset bit is turned back off the integrator output starts integrating up again from 0 When parameter 153 Control Options bit 18 SpdRegPreset is turned on the value in parameter 303 Motor Torque Ref is added to the integrator output When 2 124 Detailed Drive Operation SpdRegPre
160. elay has a calculated maximum value based on parameter 410 PreChrg TimeOut PreCharge Delay PreChrg TimeOut 1 0 second Also see Precharge Staging for common and shared bus drives below Precharge Control Functional Diagram Digital Input 30 PreChrg En s o 1 o Digital Input 30 Precharge Request PreChrg Control P411 OH X 1 Enable 0 Hold PreChrg A se0Q el PreCharge Delay Timer Ride Through Active gt R an Q P472 Precharge Done Enabled PWM Active DD gt P555 bit 11 S Q Bus Voltage Stable L Low Bus Voltage gt Has Q Reset A ai Precharge Timeout Fault The precharge control logic has an associated precharge timeout fault to alert the user if the precharge is not completed within the timeout period Parameter 381 PreChrg Err Cnfg provides the configuration control for the precharge timeout fault Parameter 410 PreChrgTimeout sets the period or delay for this timeout fault default 30 seconds The timeout timer is not started until the user requests a precharge either through the hardware input digital input or through parameter 411 PreChrg Control The precharge timeout fault is intended only to alert the user that there may be a problem in the precharge control The precharge fault for the most part it does not affect the precharge operation If conditi
161. en down into the following bits Bit 0 Brake Enable When this bit is set to 1 it enables the internal brake transistor 7th IGBT When this bit is set to 0 then the internal brake transistor is disabled Bit 1 Brake Extern When this bit is set to a 1 it configures the brake operation for an external resistor Then the external brake resistor protection is based on the peak watts entered into parameter 416 Brake PulseWatts and the continuous watts entered in parameter 417 Brake Watts When this bit is set to 0 it configures the brake operation for an internal resistor Then 416 Brake PulseWatts and 417 Brake Watts are not active Bit 2 BusRef Hi Lo This bit configures whether bus regulation or dynamic braking turns on first This bit is only active when parameter 414 Bus Brake Cnfg bits 0 and 3 are both set to 1 When this bit is set to 1 the dynamic braking turns on first at the DC bus voltage set by parameter 415 Bus Reg Brake Ref and then the bus regulator turns on if the DC bus voltage continues to rise at the DC bus voltage set by 415 Bus Reg Brake Ref plus 4 5 When this bit is set to 0 the bus regulator turns on first at the DC bus voltage set by 415 Bus Reg Brake Ref and then the dynamic braking turns on when there are any transients above 415 Bus Reg Brake Ref Bit 3 Bus Reg En When this bit is set to 1 bus regulation is enabled When this bit is set to 0 bus regulation is disabled Set param
162. ent Plate NA Heavy Duty 0 to 40 degrees C 32 to 104 degrees F 50 C lt gt 200 mm 7 87 in III 20202090202020 26220262 0909090909090909 9909090909 Q808080808050808 0808080009 8020000090000000 8090909090 8090900020909090 8090909090 090900000000090 090900090 8090909090009000 80909090900 8080008000809090 8080900090 8000009000900090 8090900000 8090909090009000 9090909090 020009000009090 090900090 8000002080200090 8080900090 8880990902990999 0809090909 8090900080909090 8090909999 000900090009000 090900000 BE E El 8080909090009009 8090909090 E 80000000 xe 80808080 8080009000000000 9080009090 3 GE GE E 0809090909090009 0909090009 3 8080200090909090 82080090009 8080000000000000 9080009090 8080008000800090 9090909000 EE 090009000 2090000000000090 9806080308 9090090300090999 9898080803 e 000000000000000 000000000 fer IP 20 NEMA Type Open IP 00 NEMA Type Open Remove Top Label 50 C 45 C 0 to 40 degrees C 32 to 104 degrees F IP 20 NEMA Type 1 No Action Required All Except 20DC072 40 C 20DC072 Required Action Normal Duty 40 C Removing the adhesive label from the drive changes the NEMA enclosure Acceptable Surrounding Air Temperature amp Required Actions rating from Type 1 to Open type Drive Catalog Number Frame Size Frame 9 amp up 1 8 Specifications amp Di
163. ents the MOP level output from parameter 1087 MOP Rate to parameter 1088 MOP High Limit Bit 1 Decrease if set decrements the MOP level output from parameter 1087 MOP Rate to parameter 1088 MOP Low Limit Bit 2 Reset if set resets the MOP level output to zero and Bit 0 Increment and Bit 1 Decrement are inhibited Bit 3 Reset Stop if set resets the MOP level output to zero when stop is set Bit 4 Reset PwrLs if set resets the MOP level output to zero when power is lost Note If either Bit 3 or Bit 4 is not set the MOP level output will be saved until Bit 2 Reset is set Parameter 1087 MOP Rate sets the rate of change increment or decrement for the MOP The setting 0 1 sec will equate to an increment or decrement of 0 1 for every second active If this is used for the speed reference that equals 10 of base speed every second for a total of 10 seconds to reach base speed reference Parameter 1088 MOP High Limit sets the upper limit for the MOP output The MOP cannot be incremented above this level Parameter 1089 MOP Low Limit sets the lower limit for the MOP output The MOP cannot be decremented below this level Parameter 1090 MOP Level Real or parameter 1092 MOP Level DInt can be linked to the parameter that you wish to control via the MOP function For example link parameter 10 Speed Ref 1 to parameter 1090 MOP Level Real to
164. er 416 Brake Pulse Watts 1 Brake PulseWatts 75 000 watts Ibs x Resistor element weight lbs where 75 000 represents a specific heat of 0 11 cal Kg C steel or nichrome and a temperature rise of 350 C and the resistor element weight is the total weight of the resistor wire element in pounds not the entire weight of the resistor cage For example a resistor with a nichrome element that weights 10 Ibs would have Parameter 416 Brake PulseWatts 75 000 x 10 750 000 Watts 2 Brake PulseWatts Time Constant x parameter 417 Brake Watts where the Time constant equals the amount of time for the resistor to reach 63 of its rated temperature with applied rated watts parameter 417 Brake Watts 2 10 Detailed Drive Operation Parameter 417 Brake Watts sets the continuous watts for determining the protection for an external brake Enter the continuous watt rating of the resistor cage found on the resistor cage nameplate or from the resistor manufacturer for this parameter This parameter is active only if the configuration is selected for an external brake Bus Brake Cnfg bit 1 set to 1 When the internal brake resistor is used then the protection is determined from the drive internal values Parameter 369 Brake OL Cnfg determines how the drive reacts when the brake protection is exceeded Regardless of the setting in Brake OL Cnfg the drive prevents the 7th IGBT from switching when the brake resistor protect
165. er position is in quadrature counts the drive counts 4x the encoder PPR per motor revolution The encoder blocks generate speed feedback seen in parameter 231 Encdr 0 Spd Fdbk and parameter 241 Encdr0 Spd Fdbk Processing Processing To Feedback Selection Encdr 0 1 Config To Feedback Selection Encoder1 PPR FIR Filter The recommended setting for the FIR filter is eight 8 taps when parameter 146 FW TaskTime Sel is set to O or 1 0 5ms for task 1 When parameter 146 FW Detailed Drive Operation 2 103 Task Time Sel is set to 2 0 25 ms for task 1 the recommended setting for the FIR filter is 16 taps This sets the noise bandwidth for 120 rad sec The recommended setting reduces the effect of noisy feedback on the system but values above 120 rad sec for the speed regulator bandwidth may not be effective In some cases it may be desirable to increase the noise bandwidth in order to allow a speed regulator bandwidth higher than 120 rad sec The setting of the FIR filter and parameter 89 Spd Err Filt BW can be changed to achieve a higher noise bandwidth according to the following tables FIR and P89 Spd Err Filt BW Settings when P146 FW TaskTime Sel 0 or 1 FIR filter setting taps 1 2 4 8 16 32 64 127 Spd Err Filt BW rad sec 2000 1500 1300 600 300 1580 75 38 Noise bandwidth rad sec 400 300 220 120 60 30 18 8 FIR and P89 Spd Err Filt BW Settin
166. erence mode parameter 40 Selected Spd Ref indicates both the speed magnitude and the direction Positive speed reference values forward direction and negative speed reference values reverse direction When this bit is disabled a unipolar speed reference is used In unipolar mode the speed reference is limited to a minimum value of zero 0 shown by the Max selection block as shown in the diagram below In this case parameter 40 Selected Spd Ref supplies only the speed magnitude The direction is determined by parameter 152 Applied LogicCmd bits 20 Forward and 21 Reverse The forward reverse direction button on the HIM is one possible source for the Applied LogicCmd direction bits The following chart explains the effect that the direction button on the HIM has based on the condition of the Bipolar SRef bit Bipolar Reference Controlled By HIM HIM Direction Button Enabled Yes Changes the motor direction due to a HIM supplied or command signal Enabled No Has no effect on motor direction Direction determined by sign of Par 40 Selected SpdRef Disabled Yes Changes the motor direction due to a HIM supplied forward or reverse Applied LogicCmd bit Disabled No Changes the motor direction due to a HIM supplied forward or reverse Applied LogicCmd bit Drive Peripheral Interface DPI Detailed Drive Operation 2 25 In either Bipolar or Unipolar mode the selected directi
167. ers 801 807 and 813 Anlg Inx Value is the sum of the A D output and Anlg Inx Offset Anlg Inx Value is displayed as either voltage or mA depending on the dip switch setting of the input Parameters 802 808 and 814 Anlg Inx Scale scales Anlg Inx Value to the range of parameters 800 806 and 812 Anlg Inx Data A destination parameter such as a speed reference can then be linked to Anlg Inx Data Parameters 801 810 and 816 Al x Filt Gain and parameters 805 811 and 817 Anlg Inx Filt BW are used to filter the analog input data Refer to Lead Lag Filter on page 2 33 for detailed information Analog I O Units Al1 Current TB1 01 em TB1 02 or Anlg In1 Offset 821 300 lt 801 Anig In1 Value Anlg Ini Data xX kn s wn 800 s wn Lead Lag Anlg In1 Scale Al 1 Filt Gain 804 gt Anlg In1 Filt BW 805 Configuration Example This example illustrates how to setup a speed reference to follow a 0 10V analog input signal and null out a small amount of offset from the A D converter on the analog input Parameter 803 Anlg Int Offset 0 0144V Parameter 802 Anlg In1 Scale 0 1 per 1V Parameter 804 Anlg In Filt Gain 1 Parameter 805 Anlg In1Filt BW 0 Parameter 10 Spd Ref 1 is linked to parameter 800 Anlg In Data With a desired parameter 801 Anlg In1 Value of OV the drive was reading 0 0144V To null out analog
168. etailed Drive Operation The following are the possible resolver settings P277 272 273 274 275 Reslvr0 Type Sel Reslvr0 Spd Ratio Reslvr0 Carrier Reslvr0 InVolts Reslvr0 XfrmRatio Description 0 Disabled 1 0 0 0 0 No resolver configured 1 T2014 2087x1 1 2381 26 0 4538 Tamagawa TS 2014N181E32 TS 2087N1E9 TS 2087N11E9 2 T2014 2087x2 2 2381 26 0 4538 Tamagawa TS 2014N182E32 TS 2087N2E9 TS 2087N12E9 3 T2014 2087x5 5 2381 26 0 4538 Tamagawa TS 2014N185E32 TS 2087N5E9 4 MPL 460v 1 4000 8 0 25 AB Motor with integrated Resolver 5 Reserved 1 9300 22 0 5 Not supported 6 Siemens 1FT6 1 4000 5 0 5 Siemens 1FT6 series Motors with integrated Resolver 7 PrkrHn ZX600 1 7000 4 25 0 4706 Parker Hannifin ZX600 series Motor with integrated Resolver 8 Reserved 1 2500 12 0 5 Not Supported for Speed Regulation 9 1326Ax 460v 1 4000 8 0 25 AB Motor with integrated Resolver 10 Reserved 1 9000 15 5 0 5013 Not Supported for Speed Regulation 11 Reserved 1 2500 7 1 7 Not Supported for Speed Regulation 12 Reserved 1 9300 22 0 5 Not Supported 13 Reserved 1 2000 6 36 0 5 Not Supported for Speed Regulation 14 AmciR11XC107 1 2381 26 0 4538 Advanced Micro Controls R11X C107 Parameter 272 Reslvr0 SpdRatio specifies the speed ratio for the resolver option card at port 0 The speed ratio comes from the following formula Speed ratio electrical revolut
169. ete within the timeout period the drive faults and disables the PWM output External Precharge In cases where the user must provide external drive precharge hardware and control the following should be considered e The current limit necessary to protect the drive and fuses e The breaking capability of the precharge device e The regenerative capability of the drive system e Whether or not ride through control will be accommodated e Impedance isolation that may be needed between drives e Braking requirements e Sharing between drives e The power disconnect operation in a system The drive s precharge and ride through functions will still run even though the actual precharge hardware is not controlled by the drive The drive s enable parameter 155 Logic Status bit O Active precharge enable controlled with a digital input or parameter 411 PreChrg Control and precharge done parameter 555 MC Status bit 11 PreChrg Done parameters are available for the external precharge ride through control in cases where the users would like to provide coordinated operation between the external precharge and the drive s ride through operation Precharge Staging Parameter 472 PreCharge Delay can be used in conjunction with precharge enable see 1 above to coordinate the precharge operation of a group of drives Typical uses may include common bus or shared bus applications The precharge coordination can be open loop using different pr
170. eter 414 Bus Brake Config for your configuration The following is a summary of possible settings for Bus Brake Config Bus Brake Config Desired Operation Setting External regeneration 0000 Dynamic braking with internal resistor 0001 Dynamic braking with external resistor 0011 Bus regulation only 1000 Bus regulation first then dynamic braking with internal resistor 1001 Dynamic braking with internal resistor first then bus regulation 1101 Bus regulation first then dynamic braking with external resistor 1011 Dynamic braking with external resistor first then bus regulation 1111 Parameter 415 Bus Reg Brake Ref sets the turn on bus voltage threshold for the bus regulator and the dynamic brake Actual values are modified by the configuration selected in Bus Brake Config When using common DC bus drives adjustment of Bus Reg Brake Ref allows a limited coordination of brake operation with other drives For example when you have two common bus drives and one drive is larger than the other set the larger drive to turn on at a lower Detailed Drive Operation 2 9 voltage than the smaller drive In this manner the smaller drive does not try to dissipate all of the dynamic braking energy Note Actual bus voltage reference values are determined as a percentage of parameter 401 Rated Volts and the selected voltage class 2 x Par 401 Rated Volts x Par 415 Bus Reg Brake Ref VDC bus voltage reference
171. etin No 1494 30 to 400 A Bulletin No 194 30 to 400 A or ABB OESA 600 amp 800 A OESL all sizes Fuses Bussmann Type JKS all sizes Type 170M Case Sizes 1 2 and 3 or Ferraz Shawmut Type HSJ all sizes For any other devices please contact the factory 650 Volt DC Input Protection Devices HP Rating DC Input Ratings Output Amps Drive Catalog Number Frame ND HD Amps kW Cont 1 Min 3 Sec Fuse Non Time Delay Fuse 2 20DD014 1 10 75 147 9 5 14 16 5 22 30 HSJ30 20DD022 1 15 10 23 3 15 1 22 24 2 33 45 HSJ40 20DD027 2 20 15 28 9 18 8 27 33 44 60 HSJ50 20DD034 2 25 20 36 4 23 6 34 40 5 54 70 HSJ60 20DD040 3 30 25 42 9 27 8 40 51 68 80 HSJ80 20DD052 3 40 30 55 7 36 1 52 60 80 100 HSJ90 20DD065 3 50 40 69 7 45 4 65 78 104 150 HSJ100 20DD077 4 60 84 5 54 7 77 85 116 150 HSJ150 50 67 9 45 4 65 98 130 150 HSJ150 20DJ096 1 5 75 105 3 68 3 96 106 144 200 HSJ175 60 84 5 54 7 77 116 154 150 HSJ175 200 125 1 5 100 137 1 88 9 125 138 163 250 HSJ200 75 105 3 68 3 96 144 168 200 HSJ200 ENSCH 6 125 171 2 110 9 156 172 234 300 HSJ300 100 187 1 88 9 125 188 250 250 HSJ300 ENKE 6 150 204 1 132 2 180 198 270 400 HSJ400 125 171 2 110 9 156 234 312 300 HSJ400 20DJ248 6 200 248 273 372 550 HSJ400 150 180 270 360 400 HSJ400 20DJ261 9 200 299 186 261 287 410 500 170M6608 150 235 146 205 308 410 500 170M6608 20DJ300 9 250 343 213 300 330 500 630 170M6610 200 281 174 245 368 490 630 170M6610 20DJ385 10 300 441 274 385 424 600 7
172. f the constant horsepower region Parameters 531 Maximum Voltage and 532 Maximum Freq slope that portion of the curve used above base speed Maximum Voltage Motor NP Volts Break Voltage Start Acoal Boost Run Boost Break Motor NP Hertz Maximum Frequency Frequency Motor Nameplate Motor Overload Detailed Drive Operation 2 61 Parameter Name No Function Motor NP Volts 1 The motor nameplate base voltage defines the output voltage when operating at rated current rated speed and rated temperature Motor NP FLA 2 The motor nameplate defines the output amps when operating at rated voltage rated speed and rated temperature It is used in the motor thermal overload and in the calculation of slip Motor NP Hertz 3 The motor nameplate base frequency defines the output frequency when operating at rated voltage rated current rated speed and rated temperature Motor NP RPM 4 The motor nameplate RPM defines the rated speed when operating at motor nameplate base frequency rated current base voltage and rated temperature This is used to calculate slip Motor NP Power a The motor nameplate power is used together with the other nameplate values to calculate default values for motor parameters to and facilitate the commissioning process This may be entered in horsepower or in kilowatts as selected in the previous parameter or kW for certain catalog numbers and HP for other
173. ference Deriv Gear Rat PositRef EGR Mul 745 PositRef EGR Div 746 Example In this example the encoders are mounted on the motors The motors are directly coupled to the load and we want the follower to run at four 4 times the speed of the master PPRm 1024 PPR PPRf 1024 PPR Ratiof Ratiom 4 1 where PPRm the PPR of the master encoder PPRf the PPR of the follower encoder Ratiof Ratiom the desired ratio between the follower speed and the master speed 2 72 Detailed Drive Operation PositRef EGR Mul CPRf xRatiof _4096x4 PositRef EGR Div CPRmxRatiom 4096x1 where CPRf the counts per revolution of the follower feedback device For an incremental encoder this is four 4 times the encoder PPR For a Stegmann Hi Res encoder this is 1048576 For a Resolver this is 65536 CPRm the counts per revolution of the master encoder For an incremental encoder this is four 4 times the encoder PPR For a Stegmann Hi Res encoder this is 1048576 For a Resolver this is 65536 Solving for the lowest common denominator the 1024 values on the top and bottom cancel out so that PositRef EGR Mul _ 4 PositRef EGR Div 1 Therefore parameter 745 PositRef EGR Mul 4 and parameter 746 PositRef EGR Div 1 This will set up the position loop of the follower to move four 4 counts for every one 1 count of the master Spd Ref 2 Multi is calculated Ratiof _4_ Spd Ref2 Multi
174. g Closed Loop IT Function The drive will also adjust the torque current limit level based on the values in Parameter 358 Iq Ref Limited parameter 313 Heatsink Temp and the thermal characteristics of the drive contained in the power EE memory Under normal operating conditions the function typically sets the limit at 250 of the continuous drive rating If the function determines that the power device junction temperature is approaching maximum it will reduce this limit to the level required to prevent additional heating of the inverter This level could be as low as the continuous rating of the drive output amps If the inverter temperature decreases the function will raise the limit to a higher level Drive Overload Status Drive Overload Status can be monitored in parameter 346 Drive OL Status e Bit 0 NTC Shorted indicates the Negative Temperature Coefficient NTC device has a short circuit e Bit 1 NTC Open indicates the NTC has an open circuit e Bit 2 HS OverTemp indicates heatsink temperature is above 105 C for ratings 1 1 11 0A 115 C for 14 34A 100 C for 40 52A e Bit 3 HS Pending indicates heatsink temperature is above 95 C for ratings 1 1 11A 105 C for 14 34A 90 C for 40 52A e Bit 4 IT Trip indicates the drive has exceed the 3 second rating of either the 150 normal duty rating or 200 of the heavy duty rating e Bit 5 IT Pending indicates the drive OL integr
175. g parameters for speed reference 1 and 2 Speed Ref Scale is a linkable parameter This allows the speed reference value to be scaled dynamically with an input signal if desired An example would be to have an analog input linked to the scale parameter The speed reference and the scale would then affect the value sent to the speed regulator Scaled Spd Ref lt 46 gt to Speed Trim from Speed Ref Filter Speed Ref Scale Speed Trim 1 At this point in the speed reference control loop parameter 21 Speed Trim 1 is added to the speed reference Speed Trim 1 can be used as a trim to the speed reference For example Speed Trim 1 can be linked to parameter 180 PI Output which is the output of the Process PI loop The resulting parameter 47 SpdRef SpdTrm1 is sent into the speed regulator loop Speed PI Regulator From Speed Ref Detailed Drive Operation 2 119 Scaled Spd Ref SpdRef SpdTrm1 to Speed Regulator from Speed Ref Scale Speed Trim 1 The drive takes the speed reference specified by the speed reference control loop and compares it to the speed feedback The speed regulator uses proportional and integral gains to adjust the torque reference sent to the motor This torque reference attempts to operate the motor at the specified speed This regulator also produces a high bandwidth response to speed command and load changes Figure 2 21 Overview of the Speed PI Regulator Loop Speed Trim 2
176. ge fragmentation is not required The following types of messaging are covered Drive status running faulted etc Drive commands start stop etc Control logic parsing operations e g mask and owner parameters Entering Flash programming mode Soft login and logout of peripheral devices enabling disabling of peripheral control Peer to Peer Operation Peer to Peer messaging allows two devices to communicate directly rather than through the master or host i e drive They are the same priority as C S messages and will occur in the background If an LCD HIM is attached to the PowerFlex 700S drive it will be able to directly request off board parameters using Peer to Peer messages i e no proxy support needed in the drive PowerFlex 700S drives can use all six communication ports because Peer to Peer proxy operations are not needed All Peer to Peer operations occur without any intervention from the user regardless whether proxy or normal P P operation no setup is required No Peer to Peer proxy operations are required while the drive is in Flash mode All the timing requirements specified in the DPI system Control and Messaging specifications are supported Peripheral devices will be scanned pinged at a 10ms rate Drive status messages will be produced at a 5ms rate while peripheral command messages will be accepted by the drive as they occur i e change of state Based on these timings the following wors
177. ges in encoder direction bit 6 or 22 may require changing parameter 153 Control Options bit 10 Motor Dir Bit 7 EncO EdgTime or bit 23 Encl EdgTime configures the method of sampling used by the Velocity Position Loop VPL Setting the bit chooses Edge to Edge sampling while resetting the bit to zero chooses Simple Difference sampling Simple Difference sampling calculates speed by examining the difference between pulse counts over a fixed sample time Edge to Edge sampling adjusts the sample time to synchronize with the position count updates from the daughter card improving the accuracy of the speed calculation Bits 10 En0SmpIRate bt0 through 12 En0SmplRate bt2 or bits 26 En1SmplRate bt0 through 28 En1SmplRate bt2 sets the number of taps for an Finite Impulse Response FIR filter see Table 2 M_FIR Filter Settings Table 2 K Encoder Input Filter Settings Bit 3 19 2 18 1 17 0 16 Encoder Bit Filter Settings 1000 ns filter 1100 ns filter 1200 ns filter 1300 ns filter 1400 ns filter 1500 ns filter Aa sa 2 2 22 ui CH CO CO CO CO CO CH 0 0 0 0 Filter disabled 0 0 1 100 ns filter 0 1 0 200 ns filter 0 1 1 300 ns filter 1 0 0 400 ns filter 1 0 1 500 ns filter 1 1 0 600 ns filter 1 1 1 700 ns filter 0 0 0 800 ns filter default setting 0 0 1 900 ns filter 0 1 0 0 1 1 1 0 0 1 0 1 1 1 0 1 1 1 2 102 Detailed Drive Operation Table 2 L Multiplier and Direc
178. gs when P146 FW TaskTime Sel 2 FIR filter setting taps 1 2 4 8 16 32 64 127 Spd Err Filt BW rad sec 4100 3200 2200 1300 600 300 150 75 Noise bandwidth rad sec 690 530 380 240 120 60 30 15 Sensorless Sensorless mode is used when zero speed or more than a 120 1 speed range is not required Parameter 226 Motor Speed Est contains the estimated motor speed used when sensorless mode is selected The estimated speed feedback is based on voltage feedback from the motor Parameter 227 Motor Posit Est is an estimated position for sensorless mode It is calculated based on parameter 226 Motor Speed Est and the value in parameter 225 Virtl Edge Rev Virt Edge Rev is a user defined value for the number of pulses per motor revolution Motor Speed Est 226 to Feedback Selection Motor Posit Est Virt Edge Rev Motor Simulator The simulator mode allows the drive to be operated without a motor connected and is meant for demo purposes only If a motor is connected with this mode selected very erratic and unpredictable operation will occur Parameter 228 MtrSpd Simulated contains the simulated speed feedback Parameter 229 MtrPosit Simulat contains the simulated position feedback It is calculated based on the simulated speed feedback and the value in parameter 225 Virt Edge Rev Virt Edge Rev is a user defined value for the number of pulses per motor revolution 2 104
179. gy YIN 99S E UN 1 YOO vgl sdwy GH ON 7 5 101991014 asn4 3 J4equinn uonedissiq WOU SNE asny Aejaq ejag aw buney Bojejeo J9MOd abuey Juano aqersn py Uu 19 42 S Joo NOP L Jo10O ynag auI UON juaula 3 eng sdwy inding s uney ndul dH 3MAQ sejoN 104 GP Z SE 99S Y Sawiesy SIDINSG UONDAJOIH AU JY HOA 08t 2 47 Detailed Drive Operation syd ed z 098 syd sed z osp sud ed z 059 sud ed ot YN 0031 0091 sud sed 1 ooz Sud sed 1 006 sud sed 1 oog ed ed 1 006 OZLL 26 0S9 pel 089 008 syd sad Z 008 syd sad Z 0001 syd ed z oog sud sed z 092 ld sy YN e 0002 0002 syd sed 1 0003 sud sad 1 0001 syd sad 1 00S sed 1 0001 een eg 0 EZ 209 oez 009 LL oezaaoz syd ed z 0Gg syd sed Z sze sud ed z 059 sud ed Z gue YN 0031 0091 sud ed 1 0041 Sud 4ed 1 OGz sud sed 1 oog sud4ed Ume Z90L opp 065 oer 0685 008 syd sed z geg sud ed z osp sud ed z 0s9 sud ed zer YN gt gt 0031 0091 sud sed 1 0021 Sud ad 1 006 syd 1 d 1 00 1 ad ed 1 006 z90 SLZ 059 OFS geg 00S 11 oS9aaoz syd sad z 094 sud ed z sze syd ed z ogg syd ed z sze YN 7 008 0031 syd ted 1 oos Sud ad 1 og9 sudued OOLL ad ed 1 os9 956 O82 OZS ZES eent syd sad z ogg sud ed Z sze
180. hLink Refer to SynchLink on page 2 134 for more information SL System Time lt 317 gt Xsync In 1 Xsync In 2 Xsync In 3 Xsync Gen Period Configuration 788 Latch 1 l l O 790 Latch d ne Scan T 1 Delay O 793 Latch ie i Scan 1 Delay SE S I 0 5ms t I 9 38 0 5ms 20787 Sync Pulse Generator 787 Sync Generator 789 gt Xsync Out 1 Xsync Out 2 Xsync Out 2 Dly lt 794 gt Xsync Out 3 Xsync Out 3 Dly Xsync Status lt 786 7 00 Sync Pulse Parameters 788 Xsync In 1 and 789 Xsync Out 1 can be used to synchronize a DInt parameter Parameters 790 Xsync In2 through 792 Xsynch Out 2 Dly can be used to synchronize a DInt parameter and delay it one scan Parameters 793 Xsync In3 through 795 Xsynch Out 3 Dly can be used to synchronize a floating point parameter and delay it one scan Parameter 787 Xsync Gen Period sets the scan time of the synch generator The following options are available 0 5 mSec 1 1 mSec 2 2 mSec 3 4 mSec 4 8 mSec The default setting is 1 1 mSec Task Time Test Points Thermal Regulator Time Function Generator Detailed Drive Operation 2 145 Task Times are adjustable for the 3 Tasks in the drive e Task 1 includes the Speed Regulator Speed Position Feedback Torque Control Current
181. hecks if the feedback is positive When it is not you can either power down and swap two of the encoder signals or you can change the drive s logic to change the sign of the feedback Then the test is performed again 2 6 Detailed Drive Operation Motor Tests This submenu performs the tests to measure the motor characteristics These tests can be performed with the motor coupled or uncoupled to the load but be aware that the motor will rotate during some of the tests For Field Oriented Control the following motor tests are performed Stator Resistance Test This test identifies the motor stator resistance and stores the value into parameter 491 StatorResistance The motor should not rotate during this test Stator Inductance Test This test identifies the motor stator inductance and stores the value into parameter 490 StatorInductance The motor should not rotate during this test Leakage Inductance Test This test measures the inductance characteristics of the motor A measurement of the motor inductance is required to determine references for the regulators that control torque The motor should not rotate during this test The test runs for approximately 1 minute and then stores the calculated value into parameter 492 LeakInductance A typical value is between 15 and 25 Flux Current Test This test is used to identify the value of motor flux current required to produce rated motor torque at rated current When th
182. ing 2 71 Position OSE gtt East oil po dd sta 2 72 Position Loop Output Limits 0 0 eee eee 2 73 T nme Tips inte Pe ane Ra Bd e ede Bec Ree tee Manin ENEE 2 73 Jogging a Position Follower Independent from the Master 2 73 Position Loop In Position Detect 0 0 0 0 ccc rere 2 74 Position Loop Point to Pont 2 74 Technical Information 00 0 c eee cece cece cece nee nee 2 74 OVELVIEW oii ie gle Aras ene eeh E eeh Mi on te bd 2 74 Speed Reference Selection 4 cee curier ne ee eee ees bende bees 2 75 Enabling the Position Loop 2 75 Position Reference Selectnon e es 2 75 Position Reference Scaling 0 0 cece ccc eects 2 76 Position OMset EE 2 76 Point to Point Acceleration and Deceleration 0 0 cee eee ee eee 2 77 Position Loop Output Lmmts eens 2 77 T nme hn sane ote Cae et ot MO Ae he Bese CP Maren Ry atta sn anh ale 2 77 JOS SIN Go ech oo cathe ech A gach e degen dee e Sech 2 78 Point to Point Re Reference 2 78 Absolute Point to Point Positioning 2 78 Example to Control the Point to Point Position with Digital Inputs 2 78 Position Loop Position Watch 2 80 Position Loop Registration 0 eee eee en eee nena 2 81 Encoder 0 and 1 Registration 0 0 0 cee ee ccc cece ene 2 81 Feedback Option O and 1 Registratnon 00 0 cece eee ee eee 2 84 Power Loss Ride Through 2 0 0 cece cece eee nena 2 86 Precharge
183. ink e Parameter 660 DPI Data Out A1 is linked to parameter 307 Output Voltage e Parameter 659 DPI Out DataType bit 0 DPI Al Real is set to 1 The value from DPI Data Out A1 to the controller contains the value of Output Voltage Parameter 33 Decel Time 1 sets the rate at which the drive ramps down its output during a ramp Stop command or during a decrease in commanded speed The rate established is the result of the programmed Decel Time and the programmed motor rated speed parameter 4 Motor NP RPM as follows Motor RPM Parameter 4 _ Decel Rate RPM sec Decel Time Parameter 33 Times are adjustable in 0 0001 second increments from 0 01 to 6553 5 seconds Programming zero seconds will cause the drive to use 0 1 second 2 22 Detailed Drive Operation Digital Inputs Technical Information There are a total of six Digital Inputs e Digital Input 1 and Digital Input 2 are 12VDC or 24VDC Sinking Hi Speed They are configured for 12 VDC or 24VDC via DIP switches default 24VDC Use Digital Input 1 and Digital Input 2 for position registration e Digital Input 3 is 24VDC Sinking e Shared Common for Digital Inputs 1 2 and 3 e Digital Inputs 4 5 and 6 are 24VDC or 115VAC Sink Source They are configured for 24VDC or 115VAC via DIP switches default 24VDC e Shared Common for Digital Inputs 4 5 and 6 e Digital Input 6 is a HW Enable by default A jumper is used to disable HW Enable and use Digital Input
184. input 1 parameter 803 Anlg In1 Offset was set to 0 0144V Parameter 10 Spd Ref 1 is a per unit parameter meaning that a value of 1 equates to base motor RPM Therefore to scale parameter 800 Anlg In Data to give us a value from 0 to 1 for a 0 10V signal parameter 802 Anlg In1 Scale was set to 0 1 per 1V Parameter 805 Anlg In1 Filt BW was set to 0 so that no filtering took place on analog input 1 Analog Outputs Detailed Drive Operation 2 3 Analog Output Specifications There are two analog outputs differential configurable for 10V or 0 20mA via dip switches The D A digital to analog converter is 11 bits plus the sign bit Analog Output Configuration Parameter 831 and 838 Anlg Outx Sel can be programmed to the following selections 0 User Select 10 PI Feedback 20 Gd Spd Fdbk 1 Output Freq 11 PI Error 21 RampedSpdRef 2 Sel Spd Ref 12 PI Output 22 Spd Reg Out 3 Output Curr 13 Reserved 23 MOP Level 4 Trq Cur Iq 14 Reserved 24 Trend 1 Dint 5 Motor Flux 15 Motor TrqRef 25 Trend 1 Real 6 Output Power 16 MtrTrqCurRef 26 Trend 2 Dint 7 Output Volts 17 Speed Ref 27 Trend 2 Real 8 DC Bus Volts 18 Speed Fdbk 9 PI Reference 19 Torque Est Additionally the analog outpu
185. ion determined in Brake PulseWatts and Brake Watts is exceeded Some possible settings for this parameter are Parameter 369 Brake OL Cnfg Setting Drive Operation 0 Ignore The drive does not generate the fault 38 Brake OL Trip or alarm Brake OL Trip 1 Alarm The drive generates an alarm Brake OL Trip but does not generate the fault 38 Brake OL Trip 2 FitCoastStop The drive generates the fault 38 Brake OL Trip and issues a coast stop 3 FitRampStop The drive generates the fault 38 Brake OL Trip and issues a ramp stop 4 FitCurLimStop The drive generates the fault 38 Brake OL Trip and issues a current limit stop Cable Control Cable Motor Lengths Cable Power Detailed Drive Operation 2 11 Parameter 418 Brake TP Sel selects a value to monitor for diagnostics of the dynamic brake protection Possible selections for parameter 418 Brake TP Sel are Parameter 418 Brake TP Sel Setting Description 0 Zero Do not monitor any test point for the brake protection 1 Duty Cycle Actual duty cycle of the dynamic brake IGBT where a value of 0 in parameter 419 Brake TP Data full open and 1 full on 2 Power Actual Actual power applied to the resistor Watts 3 Max BodyTemp Maximum temperature that the resistor body can handle C
186. ion at other frequencies Dimensions The following are the PowerFlex 700S dimensions Table 1 B PowerFlex 700S Frames o AC Input DC Input S 208 240 380 400V 480V 600V 690V 540V 650V NDHP HDHP NDHP HDHP NDkW HDkW NDHP HDHP NDHP HDHP NDHP HDHP NDHP HDHP NDHP HDHP 0 75 0 37 1 0 0 75 0 75 0 55 1 0 75 1 0 5 1 5 0 75 2 0 1 5 1 5 0 75 2 1 5 2 1 2 2 15 3 0 2 0 2 2 15 3 2 3 2 4 0 2 2 5 0 3 0 4 0 2 2 5 3 5 3 5 5 4 0 7 5 5 0 5 5 4 0 7 5 5 7 5 5 75 5 5 10 7 5 10 7 5 11 15 15 10 15 10 2 7 5 5 5 10 7 5 15 11 20 15 20 15 18 5 15 25 20 25 20 3 11 75 15 10 22 18 5 30 25 30 25 15 11 20 15 30 22 40 30 40 30 37 30 50 40 50 40 4 18 5 15 25 20 45 37 60 50 60 50 22 18 5 30 25 5 30 22 40 30 55 45 75 60 75 60 75 55 55 45 75 60 30 30 50 40 55 45 100 75 100 75 90 75 55 45 75 60 55 45 100 75 55 45 100 75 6 45 37 60 50 90 75 125 100 125 100 110 90 90 75 125 100 55 45 75 60 110 90 150 125 150 125 132 110 90 75 125 100 66 55 100 75 132 110 200 150 110 90 150 125 110 90 150 125 132 110 200 150 132 110 200 150
187. ions mechanical revolutions pole count 2 Parameter 273 Reslvr0 Carrier specifies the resolver carrier frequency for the resolver option card at port 0 Parameter 274 Reslvr0 In Volts specifies the resolver input voltage for the resolver option card at port 0 Parameter 275 Rslvr0 XfrmRatio specifies the resolver transformation ratio for the resolver option card at port 0 Parameter 276 Reslvr0 CableBal specifies the resolver cable balance for the resolver option card at port 0 Detailed Drive Operation 2 109 Parameter 269 Reslvr0 Status indicates status of the resolver option card port 0 The bits are defined as follows Bit 0 Cable Tune indicates a cable tune is in progress Bit 1 Tune Result indicates the tuning Parameter type When set it indicates the tuning is using the parameter database When cleared it indicates the tuning is using derived data Bit 2 Mtr Turning indicates that the motor is turning Bit 3 Cable Comp Bit 4 Energized indicates the resolver is energized Bit5 Resolver Dir indicates the resolver direction Bit 8 Open Wire indicates a problem with the cable open circuit Bit 9 Power Supply indicates problem with the option card s power supply Bit 10 Diag Fail indicates the option card has failed its power up diagnostics Bit 11 Select OK Options gt a 2 o x Glo E Les E
188. ise Immunity Showering arc transients up to 1500V peak Showering arc transients up to 1500V peak Power Ride Thru 15 milliseconds at full load 15 milliseconds at full load Logic Control Ride Thru 0 25 sec drive not running 0 25 seconds drive not running Ground Fault Trip Phase to ground on drive output Phase to ground on drive output Short Circuit Trip Phase to phase on drive output Phase to phase on drive output Agency Certification The drive is designed to meet applicable requirements of the following codes standards IEC 61800 2 Adjustable speed electrical power drive systems General requirements IEC 61800 5 1 Adjustable speed electrical power drive systems Safety requirements NFPA 70 US National Electric Code NEMA 250 Enclosures for Electrical Equipment c UL us UL and cUL Listed to UL508C and CAN CSA 22 2 No 14 95 The drive is designed to meet applicable requirements of the following codes standards IEC 61800 2 Adjustable speed electrical power drive systems General requirements IEC 61800 5 1 Adjustable speed electrical power drive systems Safety requirements NFPA 70 US National Electrical Code UL and cUL Listed to UL508C and CAN CSA 22 2 No 14 95 cE Marked for all applicable European Directives EMC Directive 89 336 EEC Emissions EN 61800 3 Adjustable Speed electrical power drive systems Part 3 Immunity EN 61800 3 Second Environment Restricted Distribu
189. it 0 SpdRamp Dsbl 1 the ramp is bypassed The output of the accel decel ramp can also be held at its present value by setting parameter 151 Logic Command bit 4 SpdRamp Hold 1 Logic Command SpdRamp Hold 04 Limited Spd Ref Ramped Spd Ref OI From Speed Logic Ctrl State SRef Ramp En EE S Curve Time Logic Ctrl State SRef SCrv En The drive can produce a linear ramp output or an S curve signal The S curve is used when parameter 151 Logic Command bit 1 Spd S Curve En is on and the ramp is not bypassed Parameter 34 S Curve Time sets the time in seconds that the S curve will be applied at the beginning and at the end of the ramp Half of the time specified in parameter 34 is added to the beginning of the ramp and half to the end of the ramp as shown in the example below The result of the S curve block can be seen in parameter 43 Ramped Spd Ref Time in Seconds 0 5 sec 0 5 sec Accel Time 5 0 seconds S Curve Time 1 0 second Total Ramp Time 6 0 seconds Detailed Drive Operation 2 117 Speed Reference Bypass and Delayed Speed Reference By default parameter 37 Spd Ref Bypass is linked to parameter 43 Ramped Spd Ref However if you wish to bypass the rest of the speed reference control loop Spd Ref Bypass gives the capability to link to other parameters S Curve Spd Ref Spd Ref Bypass Ko E gt
190. lator Tuning Detailed Drive Operation 2 125 Basic Tuning with a Gear Box or Belt This section provides guidelines for basic tuning of the speed loop when the motor is coupled to the load through a gear box 1 Identify motor and system inertia in seconds The motor inertia can be determined by performing an inertia test with the motor uncoupled from the load or the motor inertia in seconds can be calculated using the following formula J WK x RPM 208 xT acc where WK is the inertia in bf RPM is the base motor speed of the motor and Tac is the rated torque of the motor in Ibft TL can be calculated using the following formula p HPx5252 ace RPM where HP is the nameplate horsepower of the motor and RPM is the base motor speed of the motor System Inertia parameter 9 is determined by performing the inertia test with the load coupled or the value in seconds can be calculated using the formulas above if WK is known for the system 2 Set the desired bandwidth in parameter 90 Spd Reg BW Do not exceed the bandwidth limit of curve 1 based on the ratio of motor inertia to system inertia 3 Make parameter 89 Spd Err Filt BW 5 parameter 90 Spd Reg BW Note For speed regulator bandwidths up to approximately 200 rad sec parameter 89 Spd Err Filt BW can be left at the factory default of 700 rad sec starting with v2 003 firmware because of the addition of an FIR finite infinite response filter 4
191. ld be equivalent to a 1024 PPR quadrature encoder Parameter 62 Virt Encdr Posit is a 32 bit integer that contains the pulse count output of the virtual encoder block Parameter 63 Virt Encdr Dlyed is a 32 bit integer that contains the pulse count output of the virtual encoder block delayed by one scan of the speed reference loop This parameter can be used to send a virtual position reference over SynchLink for position follower applications Refer to SynchLink on page 2 134 for more details 2 118 Detailed Drive Operation lt 62 Virt Encdr Posit Ramped Spd Ref from Ramp Can Une Virt Encdr Dlyed Scan Ce Virtual Encoder Delay Virt Encoder EPR Speed Reference Filter A lead lag filter for the selected speed reference can be turned on by setting parameter 153 Control Options bit 1 Sref Filt En 1 Parameter 35 SpdRef Filt Gain sets the gain for the filter and parameter 36 SpdRef Filt BW sets the bandwidth for the filter For more information on lead lag filters see Lead Lag Filter on page 2 33 From Ramp ITA Lee s wn Reference Scale Control Options SRef Filt En SpdRef Filt Gain SpdRef Filt BWC 36 Speed Reference Scale The speed reference value up to this point is multiplied by the scaling parameter 38 Speed Ref Scale Speed Ref Scale is applied to all of the selected speed references as opposed to the specific scalin
192. ller 1747 CP3 directly to controller 1761 CBLPM02 to 1761 NET AIC 1761 CBLPADO to 1761 NET AIC 1756 CP3 directly to controller 1747 CP3 directly to controller category 3 2 category 3 2 Compact I O Connection Up to 16 modules Up to 16 modules Cable 20D DL2 CL3 20D DL2 CL3 20D DL2 CR3 20D DL2 CR3 1 4 Specifications 4 Dimensions Input Output Ratings Each PowerFlex drive has heavy duty torque capabilities The drive ratings can be found on pages 2 42 2 50 Also see Drive Overload on page 2 27 The drive s IT protection dictates overload cap s amount and duty cycle Ratings are in the tables listed below Table 1 A shows expected times Table 1 A IT Curve 10000000 0 1000000 0 100000 0 10000 0 2 E 1000 0 i 100 0 10 0 1 0 de o o oo de ei de oo ae oo o o oo N x ROS S we H Current Current Time On s Time Off s Duty Cycle 150 3 0 57 5 0 145 3 4 58 5 6 140 3 9 59 6 3 135 4 7 61 7 1 130 5 7 63 8 3 125 7 4 66 10 0 120 10 4 73 12 5 115 17 8 89 16 7 114 20 7 95 17 9 113 24 7 104 19 2 112 3038 117 20 8 111 40 7 138 22 7 110 60 0 180 25 0 109 69 2 180 27 8 108 81 8 180 31 2 107 100 0 180 35 7 106 128 6 180 41 7 105 180 0 180 50 0 104 300 0 180 62 5 103 900 0 180 83 3 102 5 4500000 180 100 0 Time On s time at current level shown Time Off s time at 100 current Duty Cy
193. load full speed and factory default PWM frequency of 4kHz Table 2 V 480V Watts Loss at Full Load Speed 4kHz Drive ND HP 480V AC Total Watt Loss 0 5 92 1 103 2 117 3 135 5 210 75 243 10 271 15 389 20 467 25 519 30 543 40 708 50 2 60 2 75 2 100 2 125 12 150 2 Includes HIM 8 Information not available at time of publication A Abs OverSpd Lim 2 64 Absolute Point to Point Positioning 2 78 Accel Time 2 1 Alarm Status 1 2 1 2 91 Alarm Status 3 2 1 Alarms 2 1 Analog Input Configuration 2 2 Analog Input Specifications 2 2 Analog Inputs 2 2 Analog Out Sel 2 4 Analog Output Configuration 2 3 Analog Output Specifications 2 3 Anlg In1 Data 2 2 2 129 Anlg In1 Filt BW 2 2 Anlg In Scale 2 2 Anlg In1 Value 2 2 Anlg In Data 2 2 Anlg Int Filt Gain 2 2 Anlg Ini Offset 2 2 Anlg In1 Scale 2 2 Anlg In1Filt BW 2 2 Anlg Out 1 Real 2 93 Anlg Out1 Dint 2 4 Anlg Out Scale 2 4 Applied LogicOmd 2 24 2 55 2 111 2 113 Atune Spd Ref 2 6 2 120 Atune Torq Ref 2 6 Auto Restart 2 4 Auto Manual 2 4 Autotune Direction Test 2 5 Feedback Configuration 2 5 Inertia Test 2 6 Motor Control 2 5 Motor Data 2 5 Motor Tests 2 6 Power Circuit Test 2 5 Start Up Menu 2 4 Aux Posit Ref 2 71 Auxiliary Power Supply 2 7 B BasiclndexOutput 2 52 Index BasicIndx Preset 2 52 BasicIndx Step 2 52 Bit Swap 1B Data 2 79 2 150 Bit Swap 2B Da
194. lsed motor over voltage is determined by a number of variables These include the damping characteristics of the cable bus voltage and the time between pulses the carrier frequency modulation technique and duty cycle RFI Filter Grounding S Curve Detailed Drive Operation 2 95 The plot below shows the per unit motor overvoltage as a function of cable length This is for no correction versus the modulation correction code for varied lengths of 12 AWG cable to 600 feet for 4 and 8 kHz carrier frequencies The output line to line voltage was measured at the motor terminals in 100 feet increments No Correction vs Correction Method at 4 kHz and 8 kHz Carrier Frequencies Vbus 650 fe 60 Hz 2 6 No Correction 4 kHz Carrier 2 5 Corrected 4 kHz Carrier 7 2 4 No Correction 8 kHz Carrier Corrected 8 kHz Carrier 2 3 2 2 2 1 2 Ze Seege per Unit Vout Vbus 19 4e 1 8 1 7 1 6 0 100 200 300 400 500 600 Cable Length Feet Without the correction the overvoltage increases to unsafe levels with increasing cable length for both carrier frequencies The patented modulation correction code reduces the overvoltage for both carrier frequencies and maintains a relatively flat overvoltage level for increasing cable lengths beyond 300 feet To determine the maximum recommended motor cable lengths for a particular drive refer to Cable Motor
195. lter 1 0 0 0 800 ns filter default setting 1 0 0 1 900 ns filter 1 0 1 0 1000 ns filter 1 0 1 1 1100 ns filter 1 1 0 0 1200 ns filter 1 1 0 1 1300 ns filter 1 1 1 0 1400 ns filter 1 1 1 1 1500 ns filter Parameter 237 RegisLtch0 1 Ctrl configures the control for registration latch O and 1 Set bit 0 RLO Arm Req or bit 16 RL1 Arm Reg to arm the registration logic for the next trigger event The particular latch will be armed and ready to be strobed on the next occurrence of the trigger input Set bit 1 RLO DisarmReq or bit 17 RL1 DisarmReq to disarm the registration logic for next trigger event Parameter 238 RegisLtch0 1 Stat indicates the control status of registration Joch O and 1 Bit0 RLO Armed or bit 16 RL1 Armed indicates the registration latch is armed Bit 1 RLO Found or bit 17 RL1 Found indicates the registration event has triggered the latch Rising edge of Arm request will set the Armed status bit Rising edge of Disarm request will clear the Armed status bit 2 84 Detailed Drive Operation Encoder 0 Example This example will set up registration to capture Encoder 0 position Digital input 1 will be the trigger e Parameter 236 RegisLtch 0 1 Cnfg BitO RLO Encl 0 selects Encoder 0 Bit 1 RLO TrgSercO 0 and Bit 2 RLO TrgScrc1 1 selects digital Input 1 for the trigger
196. lue sent over SynchLink One of the SynchLink Transmit Direct Selects parameter 911 through 914 must be set to 1 SL Multiply to send the value over SynchLink For example to use the multiply block to scale the ramped speed reference and send it over SynchLink link parameter 921 SL Real2DInt In to parameter 43 Ramped Spd Ref Set parameter 923 SL Mult Base to 10 000 Then set parameter 911 SL Tx DirectSel0 1 SL Multiply to send the result in parameter 922 SL Real2DInt Out over SynchLink Buffered Data Buffered Data Receive Parameters Follower Parameters 934 SL Buf Data Rx00 through 951 SL Buf Data Rx17 contain values that you receive from SynchLink as buffered data Destination parameters can be linked to this buffered data Parameter 933 Rx Buf Data Type bits 0 through 17 select whether each word of buffered data that is transmitted is DInt double integer or real floating point When the bit is turned off it means the data received will be DInt When the bit is Detailed Drive Operation 2 139 turned on 1t means the data received will be floating point The default is all DInt words Buffered Data Transmit Parameters Master Parameters 970 SL Buf Data Tx00 through 987 SL Buf Data Tx17 can be linked to source parameters that you want to send out SynchLink as buffered data Parameter 969 Tx Buf Data Type bits O through 17 select whether each word of buffered data that is transmitted is DInt
197. lue to a 0 10V analog output signal e Parameter 831 Analog Out Sel 15 MotorTrqRef e Parameter 835 Anlg Out Scale 0 1 per Volt Motor torque is a per unit value where a value of corresponds to 100 motor torque Therefore parameter 831 Anlg Out Scale is set to 0 1 per 1V so that when Mtr Trq Ref 1p u the analog output 1 0 1 10V Example Configuration 2 This configuration sends parameter 763 Position Actual out to a 0 10V analog output signal e Parameter 831 Analog Out Sel 0 User Select e Parameter 832 Anlg Out DInt is linked to parameter 763 Position Actual e Parameter 835 Anlg Out Scale is set to 214748364 7 per Volt Parameter 763 Position Actual is an integer parameter with a range from 2147483648 to 2147483647 Parameter 832 Anlg Our DInt is used because parameter 763 Position Actual is an integer parameter Parameter 835 Anlg Our Scale is set to 214748364 7 per Volt so the analog output will give 10V when the position is 2147483647 and will give 10V when the position is 2147483647 The Auto Manual function on the LCD HIM is not functional on the PowerFlex 700S Auto tuning is a procedure that involves running a group of tests on the motor drive combination Some tests are checking the drive hardware while others configure the drive parameters to maximize the performance of the attached motor The auto tuning procedure can be done using the Start Up menu of the HIM
198. ly supports the DPI communication pro tocol e The PowerFlex 700S will not communicate with SCANport devices e The PowerFlex 700S does not support LED HIMs Client Server C S messages operate in the background relative to other message types and are used for non control purposes The C S messages are based on a 10ms ping event that allows peripherals to perform a single transaction i e one C S transaction per peripheral per time period Message fragmentation because the message transaction is larger than the standard CAN message of eight data bytes is automatically handled by C S operation The following types of messaging are covered Logging in peripheral devices Read Write of parameter values Access to all parameter information limits scaling default etc User set access Fault Alarm queue access Event notification fault alarm etc Access to all drive classes objects e g Device Peripheral Parameter etc 2 26 Detailed Drive Operation Producer Consumer Operation Overview P C messages operate at a higher priority than C S messages and are used to control report the operation of the drive e g start stop etc A P C status message is transmitted every Sms by the drive and a command message is received from every change of state in any attached DPI peripheral Change of state is a button being pressed or error detected by a DPI peripheral P C messages are of a fixed size so support of messa
199. m SS i Encdr0 Position 24 i From Encdr1 Accum Encdr1 Position a i From Fdbk Opt0 Accum 26 1 FB Opt0 Posit i 900 00 From Fdbk Opt1 Accum FB Opt1 Posit lt 252 Multiply Block SynchLink has the ability to take one of the direct data words and multiply it by a constant or parameter value for features such as draw control Parameters for the multiply block must be setup in the Master as well as the Follower Parameter 927 SL Mult State contains overflow bits if the data for the multiply block is too large It contains the following bits e Bit0 Local Ovflow The result of the multiply function is too large e Bit 1 Rx Ovflow The data received from SynchLink is too large e Bit 2 Not used e Bit 3 Ftol Ovflow In the master the data converted from floating point to integer is too large Multiply Block Receive Parameters Follower Select the direct word on which to use the multiply block by setting one of the parameters 906 SL Rx DirectSel0 through 909 SL Rx DirectSel3 to 1 SL Multiply Note that the receive parameter selected to use the multiply block in the 2 138 Detailed Drive Operation follower must correspond to the transmit parameter selected to use the multiply block in the master e Parameter 924 SL Mult A In contains the value received from SynchLink after it was divided by parameter 923 SL Mult Base e Parameter 925 SL Mul
200. mensions Derating Guidelines Frame PowerFlex 700S Altitude and Efficiency Frame Type Derate All Altitude 100 2 lt a 90 3 2 5 80 70 0 1 000 2 000 3 000 4 000 5 000 6 000 Altitude m Efficiency typical 100 vs Speed 95 gt S 9 vs Load KE 9 a 85 Ee 80 75 A MA E AE TD TA ON 10 20 30 40 50 60 70 80 90 100 Speed Load ND Voltage Rating Enclosure Frequency Derate 400V 11 kW e Open 2 6kHz e NEMA Type o 04 e IP20 S 4 6 kHz 40 E 8 kHz e 30 3 S 10 kHz 20 40 50 60 70 80 90 100 of Output FLA 460V 15 HP e Open 2 6kHz e NEMA Type BER e P20 g 45 40 Eos E 90 a 20 40 50 60 70 80 90 100 of Output FLA Specifications amp Dimensions 1 9 ND Frame Voltage Rating Enclosure Frequency Derate 2 400V 15kW e Open e NEMA Type1 e 504 IP20 3 8 kHz 4 5 40 3 10 kHz 3 35 40 50 60 70 80 90 100 of Output FLA 460V 20 HP e Open 10 kHz e NEMA Type e Si e P20 48 E 10 kHz lt 46 y ER 2 4 40 50 60 70 80 90 100 of Output FLA 25 HP e Open 6 10 kHz e NEMA Type o e IP20 3 E 40 50 60 70 80 90 100 of Output FLA 1 10 Specifications am
201. meter 224 TachSwitch Level sets the detection level for the automatic speed loss switch over routine A drop in feedback speed at the percent of rated speed over a 0 5 mSec interval will cause a tach switch from primary to alternate device Setting this level lower will make the speed detection more sensitive and lower the minimum speed at which a speed switch could occur Setting this level higher will make the speed switch less sensitive and raise the minimum speed for speed switch detection Parameter 320 Exception Event1 bits 2 through 5 show the error status of the corresponding speed feedback device 2 Encdr0 Loss 3 Encdr Loss 4 FBOptO Loss 5 FB Opti Loss Parameter 365 Fdbk LsCnfg Pri and parameter 366 Fdbk LsCnfg Alt set the feedback loss configuration for each feedback device The primary feedback device should be configured to 1 Alarm The alternate feedback device should typically be configured to 2 FltCoastStop 2 112 Detailed Drive Operation Settings for Fdbk LsCnfg Pri and Fdbk LsCnfg Alt 1 Alarm 2 FliCoastStop Parameter 510 FVC Mode Config bit 22 SrLss RdThru must be set to 1 if sensorless operation is selected in Mtr Fdbk Sel Alt In all other cases Parameter 510 bit 22 should be set to 0 Speed Feedback Loss Ride Through Operation Setting up the feedback loss ride through function requires the following steps 1 Enter a valid feedback device sele
202. munication window Parameter 899 SL BOF Err Limit identifies the number of BOF errors per test per 8 mS allowed before the drive declares a SynchLink BOF Error exception event Set this limit on the SynchLink diagnostics tab of the Peer Communication window Parameter 900 SynchLink Rev indicates the current revision of the local SynchLink Programmable Logic firmware Parameter 901 SL System Rev indicates the system revision of the SynchLink network To be compatible on the network all nodes must have the same major revision 2 140 Detailed Drive Operation Parameter 902 SL Error Status and parameter 903 SL Error History indicates the presence of SynchLink faults This data is visible on the SynchLink diagnostics tab of the Peer Communication window e Bit 0 Sync Loss indicates SynchLink communication has failed after it had been established e Bit 1 Rx Loss indicates the receive port is not receiving data and the receive port configuration is set to receive data e Bit 2 Many BOF Err indicates the number of Beginning Of Frame BOF errors exceeds limit set by Par 899 SL BOF Err Limit e Bit 3 Many CRC Err indicates the number of Cyclic Redundancy Check CRC errors exceeds limit set by Par 898 SL CRC Err Limit e Bit 4 Pckg Msg Err indicates the received package sequence number has not matched for 1 0S e Bit 5 CommForm Err indicates the format of received data does not match
203. n Settings Bit 6 22 Bit 5 21 Description 0 0 Not Configured 1 Reverse 1 0 Forward 1 1 Both Directions e Parameter 255 Opt0 1 RegisCtrl configures the registration control on port 0 and port of the feedback option card Set bit 0 00 Arm Req or bit 16 Ol Arm Req to arm the registration logic for the next trigger event The particular latch will be armed and ready to be strobed on the next occurrence of the trigger input Set bit 1 00 DisarmReg or bit 17 O1 DisarmReq to disarm the registration logic for next trigger event 2 86 Detailed Drive Operation Power Loss Ride Through e Parameter 256 Opt0 1 RegisStat indicates the registration control status on port O and port 1 of the feedback option card Bit 0 Opt0 Armed or bit 16 Opt0 Armed indicates the registration latch is armed Bit 1 Opt0 Found or bit 17 Opt1 Found indicates the registration event has triggered the latch Rising edge of Arm request will set the Armed status bit Rising edge of Disarm request will clear the Armed status bit e Parameter 257 Opt 0 Regis Ltch displays the registration data of the feedback option card port 0 The registration data is the position reference counter value latched by the external strobes The strobe signal used to trigger the latch is configurable by the parameter 254 Opt0 1 Regis Cnfg e Parameter 258 Opt 1 Regis Ltch displa
204. n using Datalinks Parameter 1086 can be controlled from DriveLogix by linking it to one of the FromDriveLogix words parameters 602 to 622 Refer to the DriveLogix 5730 Controller User Manual publication 20D UMO003 for more details on setting up DriveLogix Selector Switches There are three different selector switches available 1 A switch that selects between up to 16 floating point values The result is available as a DInt double integer and floating point 2 A switch that selects between 2 floating point values The result is floating point 3 A switch that selects between 2 DInt values The result is DInt Detailed Drive Operation 2 153 16 Position Selector Switch Sel Swtch Ctrl C1022 00 Sel Swtch Ctrl 1022 01 02 03 04 WS ge SelSwtch RealOut i f SelSwtch In00 4029 d i SelSwtch In01 SelSwtch DIntOut SelSwtch In02 lt 1046 gt SelSwtch In03 1032 3 didas SelSwtch In04 SelSwtch In05 o SelSwtch In06 1035 N SelSwtch In07 1036 SelSwtch In08 1037 o SelSwtch In09 1038 9000 SelSwtch In10 SelSwtch In11 SelSwtch In12 SelSwtch In13 SelSwtch In14 SelSwtch In15 Configuration e Parameter 1022 Sel Switch Ctrl is the control parameter for the switches and selector switch user functions 16 Input Selector switches use bits 0 4 Bit0 SSW DataPass updates the output If bit O is low the output is NOT updated with the selected in
205. nas ta ow ee gaa as 2 102 Sensorless ici a eas hey ee ek hee dent hee Bae 2 103 Motor Simulator eaea oe eee ele tee eae ee RS a se LEN aE BE ba 2 103 Feedback Option Cards 2 104 Motor Speed Feedback and Scaled Speed Feedback 2 109 Position Feedback sc dee EN SEENEN dae coe ee ee EE dE eee we 2 110 Speed Feedback Loss Ride Through 0 0 0 cece eee eee ee 2 110 Speed References 5 ici eyewear ds Sad dE EE tea a ote he 2 113 Speed Reference Selection aca a del ed 2 113 Speed Reference Scaling coimas a eae Gee da tia Gel A 2 114 Jog LEE 2 115 Direction Control and Bipolar Reference 0 0 0 0 cee eee eee 2 115 Speed Reference Limits ENEE eee hea Wes 2 115 Stop COMME dolce EN a 2 115 Accel Decel Ramp and S Curve 0 0 0 cee ccc reee 2 115 Speed Reference Bypass and Delayed Speed Reference 2 117 Inertia Compensation 0 0 eee cece eee e nee nee 2 117 Friction Compensation tit ee e de 2 117 Virtual Encode EE 2 117 Speed Reference Filter oie rre als ee ad ely nce tds ates 2 118 Speed Reference Scale teorica bck he a aye A E ri 2 118 Speed Trim e a nd 2 118 Speed EL Regulators ves coven a ee slew a Ste NEEN EEN ee Dae Beale 2 119 Speeds Micros poes redes 2 119 Autotune Speed Reference 2 120 Speed Reference Limits 0 0 0 eee eee eee eens 2 120 Current Limit Stop ie bce A ea ee a ee eA eet Su aloe Soa lah 2 121 Speed Brrors 23 pieces ou ew EE hee eee hae wy eat Dti 2 121
206. ndefined DINT alelelalalalelalelele ls Lalelealelelelelelele le T Time Keeper Apply 3 Check the Time Keeper box The master will be the time keeper for SynchLink SynchLink Setup PowerFlex 7005 2 Data speed Ref Receive Format Undefined Type Source Parameter 43 Ramped Spd Undefined DINT Undefined DINT Undefined DINT Undefined DINT Undefined DINT Undefined DINT Undefined DINT Undefined DINT Undefined DINT Undefined DINT Undefined DINT dcososooacoaco Lalela lalala lalalala lal Lalalalalala lata lala lala 4 Click OK to apply the settings and close the SynchLink dialog 5 To synchronize the speed references you must add a time delay to the S Curve Speed Reference of the master by linking parameter 37 Spd Ref Bypass to parameter 45 Delayed Spd Ref Detailed Drive Operation 2 143 Follower PowerFlex 700S Setup Receiving Drive 1 In the follower or receiving drive select the receiving format in the Receive Format field to match the size of the data transmitted from the master drive For this example select 4 Direct Words 8 Buffered Words 2 Below the Receive Format field for Direct Word 0 do the following a Click the arrow next to the Type field and select Real b Click the button to the right of the Used By field and select 12 Speed Ref 2 This means that parameter 12 will be linked to Direct Word 0 fr
207. ng allows the speed control regulator to perform with high gains at high speeds Table 2 0 Bit Resolution Settings 10 bit resolution 12 bit resolution default setting 14 bit resolution olojo O oN 16 but resolution Detailed Drive Operation 2 107 Table 2 P Resolution and Least Significant Bits Used Resolution LSB Not Used Parameter 250 Increments by 16 bit All bits used 1 14 bit 2 LSB not used 4 12 bit 4 LSB not used 8 10 bit 6 LSB not used 64 The following table shows the maximum rpm of the motor depending on resolution setting Table 2 Q Resolution and Resolver Tracking Speed Maximum Carrier Tracking Speed for Tracking Speed Tracking Speed for Resolution Frequency X1 Resolver for X2 Resolver X5 Resolver 10 bit 34 kHz 55 K rpm 27 5 K rpm 11 K rpm 12 bit 24 kHz 13 8 K rpm 6 9 K rpm 2 76 K rpm 14 bit 14 kHz 3480 rpm 1740 rpm 696 rpm 16 bit 10 kHz 900 rpm 450 rpm 180 rpm Table 2 R FIR Filter Settings Bit 12 28 11 27 10 26 Number of Taps 0 0 0 1 0 0 1 2 0 1 0 4 0 1 1 8 1 0 0 16 1 0 1 32 1 1 0 64 1 1 1 127 Parameter 277 Reslvr0 Type Sel specifies the type of resolver Reslvr0 Type Sel automatically sets parameters 272 Reslvr0 SpdRatio through 276 Reslvr0 CableBal Parameters 273 Reslvr0 Carrier through 276 Reslvr0 CableBal cannot be changed by the user 2 108 D
208. ng is selected the bus regulator is turned on see Bus Regulation Braking of this manual for more details Motor Data This submenu asks you to enter whether the motor power is in units of kW or HP Then you are prompted to enter the motor nameplate data Accurate motor nameplate data is important for tuning the drive to the connected motor Feedback Configuration The Feedback Configuration submenu asks you to select the feedback device type Possible selections are Encoder 0 Encoder 1 Aux Speed Motor Sim or Option Card Encoder 0 and Encoder are for the encoders on the I O board When Encoder 0 or Encoder 1 are selected you must also enter the encoder ppr Motor Sim is to simulate a motor when there is no motor connected to the drive Option Card can be chosen when either the Resolver or Hi Resolution Encoder option cards are installed Power Circuit Test This submenu allows you to perform a diagnostic check to check the output section of the drive power circuit for shorts or open circuits Direction Test The direction test checks the actual direction relative to the commanded direction and checks for proper encoder feedback The test prompts you to answer if the motor direction is correct When it is not you can either power down and swap two of the motor leads or change the drive s logic to change the motor direction Then the test is performed again The test then c
209. nlg In Scale 2 2 Anlg In1Filt BW 2 2 Anlg Out 1 Real 2 93 Anlg Out Dint 2 4 Anlg Out1 Scale 2 4 Applied LogicCmd 2 24 2 55 2 111 2 113 Atune Spd Ref 2 6 2 120 Atune Torq Ref 2 6 Aux Posit Ref 2 71 BasiclndexOutput 2 52 BasicIndx Preset 2 52 Basiclndx Step 2 52 Index 5 Bit Swap 1B Data 2 79 2 150 Bit Swap 2B Data 2 80 Bit Swap 3B Data 2 80 BitSwap 1 Result 2 80 2 150 BitSwap 1A Bit 2 79 2 150 BitSwap 1A Data 2 79 2 150 BitSwap 1B Bit 2 79 2 150 BitSwap 2 Result 2 80 BitSwap 2A Bit 2 80 BitSwap 2A Data 2 80 BitSwap 2B Bit 2 80 BitSwap 3A Bit 2 80 BitSwap 3A Data 2 80 BitSwap 3B Bit 2 80 Brake OL Cnfg 2 10 Brake Pulse Watts 2 10 Brake PulseWatts 2 8 2 9 Brake TP Data 2 11 Brake TP Sel 2 11 Brake Watts 2 8 2 10 Break Frequency 2 60 Break Voltage 2 60 Bus Reg Brake Ref 2 8 Bus Brake Cnfg 2 8 2 10 Bus Brake Config 2 8 BusUndervoltCnfg 2 87 Compare 1A 2 158 Compare 1B 2 158 Compare 2A 2 158 Compare 2B 2 158 Control Options 2 24 2 39 2 93 2 98 2 101 2 111 2 112 2 118 2 123 2 132 2 133 2 145 DC Bus Voltage 2 89 Decel Time 2 21 2 132 Delayed Spd Ref 2 117 2 142 DeltaSpeedScale 2 54 Dig In1 Sel 2 52 2 53 2 151 Dig In6 Sel 2 52 2 53 2 151 Dig Out1 Bit 2 24 Dig Out Data 2 24 Dig Out1 Sel 2 24 Digin Debounce 2 22 Dint2Real In 2 156 Dint2Real Result 2 156 DInt2Real Scale 2 156 Direction Mask 2 58 Direction Owner 2 64 DPI Data In A1 2 13 2 20 2 21
210. nt 2 156 CompareBlockKsicotora ra la 2 158 Multiply Divide Block 2 159 Voltage Clas cima rl ts NEEN E NNER eta 2 159 Watt LOSS vii ada ro eos 2 160 Chapter 1 Specifications amp Dimensions PowerFlex 700S Specifications Category Specification Frames 1 6 690V Drive frames 5 amp 6 only Frames 9 amp up Protection 200 208V 240V 380 400V 480V 600V 690V 380 400V 480V 500V Drive 600V 690V Drive Drive Drive Drive Drive Drive Drive Drive Drive Drive AC Input Overvoltage Trip 247VAC 285VAC 475VAC 570VAC 690VAC 863VAC 475VAC 570VAC 611VAC 690VAC 863VAC Bus Overvoltage Trip 350VDC 405VDC 675VDC 810VDC 1013VDC 1164VDC 675VDC 810VDC 810VDC 1013VDC 1164VDC Bus Undervoltage Trip Adjustable Adjustable Nominal Bus Voltage 281VDC 324VDC 540VDC 648VDC 810VDC 931VDC 540VDC 648VDC 645VDC 810VDC 931VDC Heat Sink Thermistor Monitored by microprocessor overtemp trip Monitored by microprocessor overtemp trip Drive Overcurrent Trip Software Current Limit Hardware Current Limit Instantaneous Current Limit Calculated value 105 of motor rated to 200 of drive rated 105 of 3 sec rating 158 210 143 of 3 sec rating 215 287 Calculated value 105 of motor rated to 200 of drive rated 360 of rated Heavy Duty current typical Line Transients Up to 6000 volts peak per IEEE C62 41 1991 up to 6000 volts peak per IEEE C62 41 1991 Control Logic No
211. ntactor can be opened under load without damage to the drive It is recommended however that the drive have a programmed Enable input and that this input be opened at the same time as the output contactor Cable Termination Refer to Wiring and Grounding Guidelines for Pulse Width Modulated PWM AC Drives publication DRIVES IN001 for detailed information This publication is available online at http literature rockwellautomation com literature Output Reactor Bulletin 1321 Reactors can be used for drive input and output These reactors are specifically constructed to accommodate IGBT inverter applications with switching frequencies up to 20 kHz They have a UL approved dielectric strength of 4000 volts opposed to a normal rating of 2500 volts The first two and last two turns of each coil are triple insulated to guard against insulation breakdown resulting from high dv dt When using motor line reactors it is recommended that the drive PWM frequency be set to its lowest value to minimize losses in the reactors By using an output reactor the effective motor voltage will be lower because of the voltage drop across the reactor this may also mean a reduction of motor torque Output Current Parameter 308 Displays measured RMS drive output current Parameter 297 Output Curr Disp which is the integer equivalent of parameter 308 with internal storage in 1 10 Amps 10 1 0amp Output Frequency Parameter 310
212. nts of feedback because it is added to the position reference after the EGR scaling Offsets must be maintained to keep the position I E if you enter a 300 in the offset the position loop will move 300 counts extra If you zero the offset command the motor will return to the previous position When it is necessary to zero the offset after a move without returning to the previous position set parameter 740 Position Control bit 5 Xoff ReRef 1 Then set the offset value 0 Then set Position Control bit 5 Xoff ReRef 0 The system will not make an offset move when Position Control bit 5 Xoff ReRef is set Detailed Drive Operation 2 77 Point to Point Acceleration and Deceleration Parameter 759 Pt Pt Accel Time sets the acceleration time in seconds from zero to base motor speed Parameter 760 Pt Pt Decel Time sets the deceleration time in seconds from base motor speed to zero The Pt Pt Accel Time and Pt Pt Decel Time are only active in Point to Point mode The Default 10 seconds Position Loop Output Limits Parameter 772 Xreg Spd LoLim sets the negative speed limit at which the position regulator will output The default is set to 10 of the base motor speed Set this to the negative speed at which you want the drive to run for point to point moves Parameter 773 Xreg Spd HiLim sets the positive speed limit at which the position regulator will output The default is set to 10 of the base motor sp
213. nual in whole or in part without written permission of the Rockwell Automation is prohibited Throughout this manual we use notes to make you aware of safety considerations circumstances that can lead to personal injury or death property ATTENTION Identifies information about practices or damage or economic loss Attentions help you e identify a hazard e avoid the hazard e recognize the consequences Important Identifies information that is especially important for successful application and understanding of the product Shock Hazard labels may be located on or inside the drive to h alert people that dangerous voltage may be present DriveExplorer DriveTools32 and SCANport are trademarks of Rockwell Automation PLC is a registered trademark of Rockwell Automation ControlNet is a trademark of ControlNet International Ltd DeviceNet is a trademark of the Open DeviceNet Vendor Association COLOR KEYED is a registered trademark of Thomas amp Betts Corporation Manual Updates Summary of Changes This information summarizes the changes to the PowerFlex 7008 Adjustable Frequency AC Drive Phase II Control Reference Manual publication PFLEX RM003 since the last release Change See Page Initial release of this publication soc 2 Notes Summary of Changes Chapter 1 Chapter 2 Table of Contents Important User Information 1 2 Manual Updates Auer tcl EE Be aM oak Gace a 1 1 Specific
214. om SynchLink SynchLink Setup PowerFlex 700S 2 Data speed Ref Receive Format 4 Direct Words 8 Buffered Words Y Transmit Format Undefined Word Type Source 0 REAL 1 DNT 2 DNT DINT 0 DNT 1 DNT 2 DNT 3 DNT 4 DNT D DINT 6 DNT 7 DNT a 3 8 8 o oeeoaeaoeooeoe Lele lalalalalalala laleli tele E de de tele EA EA EA BA B Time Keeper 3 Click OK to close the SynchLink Setup dialog box 4 To set the follower to use Speed Reference 2 set parameter 27 Speed Ref A Sel 2 Speed Ref 2 Note that Speed Reference 2 in the follower will contain the ramped speed from the master drive Because the speed reference is already ramped the ramp in the follower can be disabled by setting parameter 151 Logic Command bit 0 SpdRamp Disable 1 Reset SynchLink After setting up the configuration SynchLink must be reset on both drives in one of the following ways e Set parameter 904 SL Node Cnfg bit 3 Reset SL 1 on the drives This bit will automatically transition back to O after SynchLink is reset OR e Perform a reset on the drives This can be done via the HIM by navigating from the Main Menu to Diagnostics gt Faults gt Reset Device OR e Cycle power on the drives 2 144 Detailed Drive Operation Sync Generator The synch generator can be used to synchronize a parameter and delay it one scan This can be used in conjunction with Sync
215. ompatibility EMC Directive has been demonstrated using harmonized European Norm EN standards published in the Official Journal of the European Communities PowerFlex drives comply with the EN standards listed below when installed according to the User and Reference Manual Declarations of Conformity are available online at http www ab com certification Low Voltage Directive 73 23 EEC e EN50178 Electronic equipment for use in power installations e EN60204 1 Safety of machinery Electrical equipment of machines EMC Directive 89 336 EEC EN61800 3 Adjustable speed electrical power drive systems Part 3 EMC product standard including specific test methods Faults Detailed Drive Operation 2 31 General Notes e If the adhesive label is removed from the top of the drive the drive must be installed in an enclosure with side openings less than 12 5 mm 0 5 in and top openings less than 1 0 mm 0 04 in to maintain compliance with the LV Directive e The motor cable should be kept as short as possible in order to avoid electromagnetic emission as well as capacitive currents Use of line filters in ungrounded systems is not recommended PowerFlex drives may cause radio frequency interference if used in a residential or domestic environment The user is required to take measures to prevent interference in addition to the essential requirements for CE compliance listed below if necessary e Conformity of the drive with
216. on Current Limit Datalinks Par 356 Mtr Current Lim The following methods are available for a drive to use to protect itself from an overcurrent or overload condition e Instantaneous Over Current Trip This is a feature that instantaneously trips or faults the drive if the output current exceeds this value The value is fixed by hardware and is typically 250 of drive rated amps This feature cannot be disabled e Software Over Current Trip This is a configurable trip function If parameter 377 Inv OL Trip Cnfg is set to Fault Coast to Stop the drive will trip on inverter overload This will occur when the Open Loop or Closed Loop IT function has detected an overload condition See the Drive Overload section for a description of the Open Loop and Closed Loop IT functions e Software Current Limit This feature selectively limits the current the drive will provide based on the several factors The setting in parameter 356 Mtr Current Lim will limit the current to the user changeable level range is 105 of Motor Flux Current to 800 of the motor nameplate entered in 2 Motor NP FLA The Open Loop IT function can also limit the output current if the calculation determines it is in the overload area of operation The Open Loop IT function and the Motor Current Limit parameters are routed to a minimum selection the algebraic minimum of the inputs is used as the current limit Also the Closed Loop IT function can limit the current
217. on set parameter 740 Position Control bit 5 Xoff ReRef 1 Then set the offset value 0 Then set Position Control bit 5 Xoff ReRef 0 The system will not make an offset move when Position Control bit 5 Xoff ReRef is on Position Loop Output Limits Parameter 775 Xreg Spd LoLim sets the negative speed limit at which the position regulator will output The default is set to 10 of the base motor speed Parameter 776 Xreg Spd HiLim sets the positive speed limit at which the position regulator will output The default is set to 10 of the base motor speed In position follower the position loop only needs to trim the speed a small amount because the drive is setup to follow the master speed reference Therefore Xreg Spd LoLim and Xreg Spd HiLim can be left at the defaults Tuning Tips The speed regulator of the drive must be tuned prior to tuning the Position Loop Refer to Speed PI Regulator of this manual for tips on tuning the speed regulator Typically parameter 768 PositReg P Gain should be set between 1 5th to 1 3rd of parameter 90 Spd Reg BW Parameter 768 PositReg P Gain may be set higher using lead compensation on the Position Regulator Output Lead Lag filtering of the position regulator output is accomplished via the speed trim 2 filter Set parameter 25 STrim2 Filt Gain and parameter 26 SpdTrim2 Filt BW so that SpdTrim2 Filt BW Strim2 Filt Gain Speed Reg BW For example
218. on can be determined from the sign of parameter 41 Limited Spd Ref Positive values indicate forward rotation and negative values indicate reverse rotation Logic Ctrl State lt 187 00 Control Options On Limited Spd Ref T 1 Selected Spd Ref d i from 3H2 gt lt 40 AA AA 1 m I I 0 imi 0 I Limit 0 1 gt let a Applied LogicCmd Min Spd Ref Lim Ca K152 20 K 152 21 Max Spd Ref Lim 31 jax ef Lim i np Unipol Fwd 0 1 t ot Unipol Rev 1 DPI is an enhancement SCANport that provides more functions and better performance SCANport was a CAN based Master Slave protocol created to provide a standard way of connecting motor control products and optional peripheral devices together It allows multiple up to 6 devices to communicate with a motor control product without requiring configuration of the peripheral SCANport and DPI both provide two basic message types called Client Server C S and Producer Consumer P C C S messages are used to transfer parameter and configuration information in the background relative to other message types P C messages are used for control and status information DPI adds a higher baud rate brand specific enabling Peer to Peer P P communication and Flash Memory programming support This communication interface is the primary way to interact with and control the drive i ATTENTION e The PowerFlex 700S on
219. on to a DInt value e Parameter 1052 Real2DInt Result is the resultant output of the conversion form a Real value to a DInt value after scaling Logic Blocks The logic block is used to perform the logical operations AND NAND OR NOR XOR and NXOR on user specified bits of user specified parameters Description of Logic operations AND When all bits compared are on the result will be true 1 When one of the bits compared is off the result will be false 0 NAND When all bits compared are off the result will be false 0 When one of the bits compared is off the result will be true 1 OR When one or all of the bits compared are on the result will be true 1 When all of the bits compared are off the result will be false 0 NOR When one or all of the bits compared are on the result will be false 0 When all of the bits compared are off the result will be true 1 XOR exclusive OR When one of the bits compared is on the result will be true 1 When all of the bits are on or all of the bits are off the result will be false 0 NXOR When one of the bits compared is on the result will be false 0 When all of the bits are on or all of the bits are off the result will be true 1 Detailed Drive Operation 2 157 Logic Config 1061 xx seoddececcsnainchts i Logic Cmpr State Logic 1 Result Logic 1A Data Logic 1A Bit Logic 2B Bit Configuration e Parameter 1061 Logic
220. ons change to complete or restart precharge the precharge control will function as described above independent of whether or not a precharge timeout fault has occurred Tf the drive does not complete precharge due to an unstable bus voltage then after the precharge timeout period the precharge control will complete precharge providing all of other conditions for precharge are met This control is based on the precharge timeout status and is independent of whether or not the precharge timeout is configured as a fault warning or none This feature could be useful in cases where bus disturbances are created by another drive in a common or shared bus installation Settings for parameter 381 PreChrg Err Cnfg 0 Ignore This disables the precharge timeout fault With this setting the drive ignores condition 3 above so that the drive does not check for an unstable bus voltage Then after the precharge timeout period the precharge control will complete precharge providing all of the other conditions for precharge are met This feature could be useful in cases where bus disturbances are created by another drive in acommon or shared bus installation Detailed Drive Operation 2 91 1 Alarm If the precharge does not complete within the timeout period the drive does not fault but it sets an alarm bit in parameter 326 Alarm Status 1 bit 30 Precharge Er 2 FltCoastStop This is the factory default setting If the precharge does not compl
221. ounting direction If set to 0 the direction is forward or up If set to 1 the direction is reverse or down e Bits 10 SmplRate bur 12 SmplRate bt2 configure the sample interval for measuring speed Table 2 N FIR Filter Settings Increasing the encoder sample interval improves speed measurement near zero speed Decreasing allows the speed control regulator to perform with high gains at high speeds e The remaining bits are reserved not used 2 106 Detailed Drive Operation Table 2 N FIR Filter Settings Bit 12 11 10 Number of Taps 0 0 0 1 0 0 1 2 0 1 0 4 0 1 1 8 1 0 0 16 1 0 1 32 1 1 0 64 1 1 1 127 Resolver Feedback Option The position feedback seen in parameter 250 FB Opt0 Posit from a Resolver counts at a rate of 65536 counts per motor revolution Parameter 251 FB Opt0 Spd Fdbk contains the speed feedback from the Resolver when connected at port 0 Parameter 268 Reslvr0 Config is used to configure the Resolver Feedback Option The bits for ReslvrO Config are defined as follows Options SmplRate bt0 Sl Reserved S Reserved N S Reserved SmplRate bn gt Reserved Reserved Reserved Reserved Reserved Reserved Reserved Reserved Reserved SmplRate bt2 Di Reserved Ol CO Reserved Reserved Reserved Reserved Reserved Reserved Reserved Reserved Reserved Reserved 0 False 1 True Default 0 J0 Bit a Sl Re
222. owerflex CN ME LU WU Y os A E H Ich d o A t 85 028 r T os Da 12 5 0 49 Dimensions are in millimeters and inches Weight 2 kg bs Frame Drive amp Packaging 308 0 12 16 339 9 13 38 644 5 25 37 275 4 10 84 225 0 8 86 1625 0 24 61 37 19 82 0 42 18 93 0 Refer to Table 1 B for frame information Q Weights include HIM DriveLogix controller with ControlNet daughtercard Hi Resolution Encoder Option and 20 COMM C ControlNet adapter G When using the supplied junction box 100 HP drives Only add an additional 45 1 mm 1 78 in to this dimension 1 14 Specifications amp Dimensions Figure 1 5 PowerFlex 700S Frame 6 Slim Expanded A Max AA C Max 403 9 15 90 435 8 17 16 850 0 33 46 275 5 10 85 300 0 11 81 es 32 48 Refer to Table 1 B for frame information Weights include HIM and Standard I O gt Le 85 0 33 lt AA 49 6 P A ei lt 180 071 4 95 y 360 6 14 20 Boise etail gt D gt ps c 4 O i al PE e D 312 12 28 PowerFlex j e o o B Y E o o o o Y N P f I cl lt o 126 3 8 5 0 33 Oj Lifting Holes 4 97 4 Places ERE 12 7 0 50 Dia Y Dimensions are in millimeters and inches G Add an additional 3 6 kg 8 00 Ibs for 200 HP drives kg lbs 71 44 157
223. owever it will exhibit some over shoot and under shoot Increasing the value of this term decreases the over shoot and under shoot which is desirable where back up cannot be tolerated However this tends to increase the following error This parameter has no affect on the drive s response to load changes The recommended setting is 0 1 to 0 5 The following is an example of how the anti backup affects the speed regulator s response Detailed Drive Operation 2 123 Over Shoot Over Shoot Error gt Ge Reference Error Feedback SpdReg AntiBckup 0 0 gt Feedback SpdReg AntiBckup 0 3 Under Shoot Under Shoot Proportional Gain The filtered speed error after the servo lock is added and the anti backup is subtracted is sent to the proportional gain block The proportional gain determines how much of a speed error occurs during a load transient Parameter 81 Spd Reg P Gain sets the proportional gain of the speed regulator It s value is automatically calculated based on the bandwidth setting in parameter 90 Spd Reg BW and parameter 9 Total Inertia Proportional gain may be manually adjusted by setting Spd Reg BW to a value of zero Units are per unit torque per unit speed For example when parameter 81 Spd Reg P Gain is 20 the proportional gain block will output 20 motor rated torque for every 1 error of motor rated speed Integral Gain The speed droop is subtracted from the filtered sp
224. p from Speed Limits 1 to Speed Error 0 H Speed Error The summed speed reference becomes parameter 301 Motor Speed Ref Then the filtered motor speed feedback parameter 300 Motor Spd Fdbk is subtracted from the motor speed reference to create a speed error There is a lead lag filter that can be used to filter the motor speed feedback The filter is setup by parameters 93 Sreg FB Filt Gain and 94 Sreg FB Filt BW The filtered speed feedback is configured in parameter 71 Filtered SpdFdbk The speed error can be filtered by a low pass filter by adjusting parameter 89 Spd Err Filt BW For more information on lead lag and low pass filters see Lead Lag Filter on page 2 33 Motor Speed Ref from Current Speed Error SC 501 if Limit Stop lt 301 gt 100 gt Po Servo Filter Lock Motor Spd Fdbk dordar from kn s wn 300 A LPass Feedback SEMA 7 Spd Err Filt BW Lead Lag Ces gt Filtered SpdFdbk O SReg FB Filt Gain 93 SReg FB Filt Bw 94 Servo Lock Servo lock is used for servo or positioning applications The effect of Servo Lock is to increase stiffness of the speed response to a load disturbance It behaves like a position regulator with velocity feed forward but without the pulse accuracy of a true position regulator The output of the servo lock block is summed with the filtered speed error Parameter 85 Ser
225. p Example If the duty cycle requires 150 rated output current for 1 minute of every 10 minutes the remaining 9 minutes must be at approximately 92 rated current or less to maintain output current less than 100 If the requirement is 1 minute out of 60 minutes the remaining 59 minutes must be at approximately 98 rated current or less Input Contactor Precautions and reapplies the AC line to the drive to start and stop the motor can cause drive hardware damage The drive is designed to use control input signals that will start and stop the motor If an input device is used operation must not exceed one cycle per minute or drive damage will occur q ATTENTION A contactor or other device that routinely disconnects ATTENTION The drive start stop enable control circuitry includes solid state components If hazards due to accidental contact with moving machinery or unintentional flow of liquid gas or solids exist an additional hardwired stop circuit may be required to remove the AC line to the drive An auxiliary braking method may be required Output Contactor Precaution contactors the following information must be read and understood One or more output contactors may be installed between the drive and motor s for the purpose of disconnecting or isolating certain motors loads If a contactor is opened while the drive is operating power will be removed from the respective motor but the drive will continue to produce voltage a
226. p Dimensions Frame ND Voltage Rating Enclosure Frequency Derate 400V 18 5kW e Open 6 10 kHz e NEMA Type p 95 e P20 E A 6 kHz gt 30 5 20 8 kHz 3 10 g 10 kHz 0 40 50 60 70 80 90 100 of Output FLA 400V 22 kW e Open 2 10 kHz None e NEMA Type e P20 30kW e Open 6 10 kHz e NEMA Type1 o 50 e IP20 Ei Dis z S 30 8 kHz 5 20 10 kHz 10 40 50 60 70 80 90 100 of Output FLA 37 kW e Open 4 10 kHz e NEMA Type 2 5 e P20 A ekiz 30 5 6 kH