Home
TC LV User Instructions 101
Contents
1. TC LV Temperature Controller User Manual V1 01 5 7 3 Control Displays the condition of the output drive either On or Off 5 7 4 Output Displays the output value is set to Range 0 to 100 5 7 5 Alarms Displays whether an alarm is active 5 7 6 Faults Displays any fault codes 5 7 7 Temperature OK Displays if the temperature is in the ok range 5 7 8 Reading and Setting Parameters 5 7 9 Read Button The read button will load the respective GUI category with the current condition of the Temperature Controller 5 7 10 Write Button The write button will load the Temperature Controller with the current conditions entered in to the GUls category 5 8 C GUI There are minor differences with the Java GUI as below 5 8 1 Additional features The C GUI has features for test mode temperature cycling and temperature ramping also included is an auto tuning algorithm for setting up the PID terms automatically 5 8 2 Data Logging This function enables disables a continuous stream of temperature and output information from the TCM controller This is stored in a log file for compatible with excel for analysis This allows the user to measure response graphs for tuning and stability anaysis 5 8 3 C GUI Electron Dynamics Ltd page 13 TC LV Temperature Controller User Manual V1 01 Pot off off 3800 25 150 0 10000 100 2 0 o 0 5 22000 1 Cc 0 5 Off off Posi
2. TC LV Series Temperature Controllers V1 01 Electron Dynamics Ltd Kingsbury House Kingsbury Road Bevois Valley Southampton SO14 OJT Tel 44 0 2380 480 800 Fax 44 0 2380 480 801 e mail support electrondynamics co uk TC LV Temperature Controller User Manual V1 01 Index 1 A NS a a at a 1 2 ControllERFUNCION Sci id iii a A 2 2 1 Sensor Mens Miu a did 2 2 2 REO 2 2 3 OPUS a a 2 2 4 GOMMMUPICATIONS esas n ec ene beans e a a sbeduvavace ER 2 2 5 POW ME an Sect latched a a a a a a a 2 97 MCONNECION Sene rad asa 3 3 1 PC B CONNE CONS a tts 2 n at e tao 3 3 2 Power CONNECHONS AS 3 3 3 Senso S aa a a as Ab savediecs Sec a a eaa Aa 3 3 4 Peltier TEC COMMECUOM sinnn aaa a ten tetas 3 3 5 Fault OUIDUt ona AA A db 3 3 6 Temperature OK cecccceccsssseseescscscsssseseecsssscssssssssssesescessseseescsssusuessscesescassessessstseesecaneess 3 3 7 Communications adaptors iii a dd 4 SS A OR A SN 5 A Aci thes Ae cA Raia a ie it a es 5 5 1 Sensor eEG O teta as ese bl neo e tdo dos aL tas el cele 5 5 2 Thermal Assembly at dd 5 5 2 1 Det EAFA A A E A E E AEE 5 5 3 Thermal Conducto Naminiai r a a EN 5 5 4 PCIUER SIZE EAE A a le a E ae 6 5 5 Brive Eim eet acc a Re aN ae Re 6 5 6 Important stability ISSUES di 6 6 Temperature Controlar e cdi 6 6 1 91110 0110 ea a re a a adacet a a yas 6 6 2 PID CONTO Nene eR i lt A A 6 6 3 Tuning the PID parameters iones 7 6 4 Relay Feedback Autotuning sss
3. 5 3 6 Output The output edit box allows the a fixed output to be set To use this the control should be disabled otherwise any setting made will be over ridden by the control Range 0 to 100 5 4 Sensor 5 4 1 Type The supported sensor types are selectable from the list box refer to the specification section 7 6 in this manual for supported temperature sensors 5 4 2 X2 X C Coefficients These are quadratic coefficients than can be input to convert the sensor voltage measured into a temperature This can be used for other sensors so that these can be calibrated Where temperature v v X2 v X C v is measured sensor voltage and temperature is calculated temperature The C term allows the user to adjust shift the temperature to compensate for variations in sensor accuracy It can be seen that this value simply added to the temperature value So if your sensor was 1 degree out then make C 1 Also provided is buttons to decrease increase this value in 1degree steps For NTC thermistors different parameters are required 5 4 3 NTC thermistors For NTC thermistors different parameters are required Beta as specified for thermistor type Resistance at 25 deg C C coefficient degree offset Electron Dynamics Ltd page 11 TC LV Temperature Controller User Manual V1 01 RI drive resistance on TC M is 22k 22000 as standard 5 44 Units The temperature can be displayed in degrees Centigrade Kelvin or Fah
4. 6 2 Maximum Alarm ies vcs cass asada chccaasvecut nan deaesntyancdssaSescenchch daiesdavesatuat nrnna nrnna reena 12 7 6 3 Minimum OK Temperature cccccccscsessesescsssesescescsesessscsssssscseesessscsesesceneeees 12 7 6 4 Maximum Temperature c ccccccccssscssssessessscsssssesccsssesessscssescsssessescsssnssssceneeees 12 7 6 5 Operational temperature max Only available on certain GU I 12 7 6 6 Maximum Temperature Only available on certain GU 12 7 7 Reportan deine el A iain eae tans 12 7 7 1 Ad a o ll a 12 7 1 2 Temporales 12 7 1 3 A O E A E eno 13 7 1 4 GUPUH E a dehe tenet uen 13 7 1 5 Ala Seana a R E 13 7 1 6 A aa II E A 13 7 7 7 Temperature Dni ie ead 13 7 7 8 Reading and Setting Parameters sscssssssssssssessessessessesssensensensenseseesesees 13 7 7 9 Read Bl toda 13 AR Write BUON s neie riei a e ine EEEE aN OREAREN 13 7 8 A E A A ee ee eee 13 7 8 1 Additional ica Sinai 13 7 8 2 Data Logia 13 7 8 3 CPU dr iia 13 8 Communication POCO ic eee aaa eed de 15 9 Specification TOLV SNCS Ais AO on 15 9 1 SA a a eel A n 15 9 2 A A O 2 SN lesen aes eM 15 9 3 Control caste a A A O eas a acti 15 9 4 SOL POM sx 4css esse fees e e do e e e EEA 15 9 5 A le Ore re ta a 15 9 6 A EE A T E E A E S AEST 15 9 7 Measurement ACCUFACCY r anti ders acatiel atten ntnenannnnn nrnna nrnna enen 15 9 8 MAUS Gal E A AT AERE E E ART TE 15 9 9 FOTIA cps AEE EE EEE A eam lls
5. Accuraccy Resolution Range PT100 RTD lt 0 1 deg lt 0 005 deg 260 to 850 deg C LM35 LM50 etc lt 2deg lt 0 005deg 40to 100 degC There are variations in size with some types so choose a suitable size for your application 4 2 Thermal Assembly This is a critical component in the system design typically there are 2 problems the heatsink is not large enough the thermal conduction between components is poor It is worth reading the extensive material available from the peltier TEC manufacturers to find out the requirements for this See www marlow com and www melcor com 4 3 Heat sink size The size of this should be chosen using the manufacturers calculations it will need to be large enough to radiate the heat required typically they have a large heat capacity but often are more limited in there capability to dissipate the heat This is often seen when operating under temperature control there is a continuous rise in heatsink temperature or rise in drive current It should be noted that there is a point in where the system can go into thermal runaway as the heatsink is unable to dissipate the heat properly and the temperature of the sample and heatsink will continuously climb So this should be chosen to be larger than necessary Also using a fan on the heatsink can improve the thermal resistance to air by as much as 3 times so this will give a significant improvement 4 4 Thermal Conduction It is important to ensure that ther
6. functional parts 1 2 Sensor measurement The input stage provides measurement for resitive and voltage output sensors These are measured by a sophisticated delta sigma ADC which gives excellent accuracy and noise suppression The PCB comes preconfigured for its sensor input Sensor versions available PT100 PT1000 LM35 voltage sensors resistance thermistor 1 3 CPU This provides all the intelligent control measuring the input values and calculating the output required for the control type It also provides storage for the configuration parameters 1 4 Output driver This provides a bi directional variable output drive to the TEC element s 1 5 Communications This is provided via a communications adaptor PCB this can provide options for USB RS232 RS485 and Ethernet communications 1 6 Power The PCB is powered from 12v or 15v from which is produces its 0 to 5v variable output Electron Dynamics Ltd page 2 TC LV Temperature Controller User Manual V1 01 2 Connections 2 1 PCB connections TC LV_PCB viewed from top J4 Power J1 Peltier output P o o Ov Pe o o 12v J7 Temperature I F Ov o E Temp ok To a o Fault Ti a J2 Sensor Ov o m Sp o oo Ip o of Ip a 5v a a Comms adaptor connections 2 2 Power connections The unit should be powered from 12v which should be applied to J4 2 3 Sensors The
7. sensor is connected to J2 where Ov provides Ov and ground connections for screen Ip sensor Ip sensor Provides power for sensor if required 2 4 Peltier TEC connection Connect to J2 noting polarity actual drive polarity can be configured by software 2 5 Fault output This output is shows any unit fault and is provided from J4 It is active low 2 6 Temperature ok This output shows if the temperature is within the specified limits and is provided from J4 It is active low Electron Dynamics Ltd page TC LV Temperature Controller User Manual V1 01 2 7 Communications adaptors This is plug into the main PCB into the 2 connectors provided ensure that the comms connectors on the comms adaptors face away from the main TC LV PCB Electron Dynamics Ltd page 4 TC LV Temperature Controller User Manual V1 01 3 LED Status The TC LV series temperature controller has two LEDs that show the status of the controller TEMP OK LED 1 ON Temperature ok in relation to set point and user defined settings TEMP OK LED 1 OFF Temperature out of range TEMP FAULT LED 2 ON Indicates an Alarm or Fault condition TEMP FAULT LED 2 OFF Temperature controller working correctly 4 Thermal Issues 4 1 Sensor Selection The TC LVseries of temperature has many options for different sensor types Each sensor type has different characteristics which will affect your choice Sensor type
8. 16 10 Sources of AA A AO 16 Electron Dynamics Ltd page 2 TC LV Temperature Controller User Manual V1 01 1 Introduction Our TC LV series of Temperature Controllers are designed for use with thermoelectric coolers also known as TEC s or Peltier devices These offer precise temperature control from 80 C to 100 C at up to 0 001 C stability Our controller can be setup or controlled remotely from a PC using various communications connections this allows access to output limits PID terms deviation alarms and operating modes A typical use for any precise temperature control system would be with laser diodes infrared detection high gain amplifiers and cold plate assemblies The TC LV series temperature controller is suitable for controlling single and multiple TEC arrays at low voltages from 0 to 5v lt provides a variable output continuously variable output for cooling and heating It is programmable from a PC using the respective communications adaptor allowing configuration and tuning to meet system requirements This configuration data is stored internally allowing standalone operation once programmed ts interface command set allow the unit to be controlled remotely in particular this allows changing of the set point and alarm temperature settings Electron Dynamics Ltd pagel 1 TC LV Temperature Controller User Manual V1 01 1 1 Controller Functions The controller has the following
9. C LV Temperature Controller User Manual V1 01 that in order to provide an output then there needs to be a temperature error Using an integral term overcomes the problem of steady state errors practically it acculmulates any error and applies this to the output drive to compensate Increasing or decreasing it accordingly Though there are direct benefits in temperature accuracy there is some sacrifice in system stability particularly as the integral effect is increased The derivative term provides an output proportion which varies with the rate of the input error or output This provides a faster response to temperature variations and also provides a stability balancing effect to the integral term Please note that for best setling time there must be a fixed ratio between the term and the D term normally 4 to 1 Due to the inherently large gain of the derivative at high frequencies at filter the derivative TC is provided to attenuated high frequency noise 4 11 Tuning the PID parameters The PID parameters can be tuned using various methods There are many methods of tuning the PID parameters required some of these also allow you to tailor the response in certain ways Three of the main ones are Relay feedback closed loop Ziegler Nichols open loop step response Ziegler Nichols closed loop ultimate gain method The basic methods are mentioned below however you should look at the articles available for detailed explan
10. ation 4 12 Relay Feedback Autotuning The TC LV features an auto tuning function as standard using the relay feedback method this makes this tuning very much easier The user is able to select the setpoint around which the auto tuning should occur and how long for the unit to make measurements The unit then sets up the relay feedback conditions under which oscillation occurs these peaks are analysed and from these the PID parameters are calculated The test aborts at the end and uses the new PID parameters for temperature control 4 13 Ziegler Nichols open loop step response This is open loop so there is no the control function is off it involves making a step change at the output The input thermal response should be noted then using graphical means should be analysed to give the initial process dead time and the process time constant From these the respective terms can be calculated Td is Process time constant tis pseudo dead time and Kp the process gain From this the PID terms are calculated Ptermis 1 2 t Td Kp Itermis Td 0 5 and D term is Td 0 5 4 14 Ziegler Nichols closed loop ultimate gain method This is a closed loop so the control function in on With the P term set low and the term and D term off Monitoring the temperature the gain or P term is increased until there is sustained and continuous oscillation Electron Dynamics Ltd page 7 TC LV Temperature Controller User Manual V1 01 o
11. e controller terms required The available options are 0 1 On Off 2 Proportional Electron Dynamics Ltd pagel 9 TC LV Temperature Controller User Manual V1 01 3 Proportional and Integral 4 Proportional Integral and Derivative User defined values can manually be entered here for the controller to operate from 5 2 2 None This is a default off mode for diagnostic or fail safe purposes 5 2 3 On Off With On off control the output drive is only fully On heating or cooling or off Its response is Temperature gt setpoint deadband Fully Cooling Temperature lt setpoint deadband Fully Heating Temperature lt setpoint deadband and gt setpoint deadband output off 5 2 4 Proportional With proportional action the controller output is proportional to the temperature error from the setpoint The proportional terms sets the gain for this where Output setpoint actual temperature proportional term 5 2 5 Integral With integral action the controller output is proportional to the amount of time the error is present Integral action eliminates offset The integral term is a time unit in seconds NB for larger effects of integration reduce the integral time also for operation without integral integral time can be set to a large number e g 1 000 000 5 2 6 Derivative With derivative action the controller output is proportional to the rate of change of the measurement or error The controll
12. e is a good thermal path between the Sample TEC and heatsink Not only does this provide good heat removal dissipation but will improve the temperature stability Also important is that the mating surfaces are reasonably flat and and that just enough heatsink compound is used to make the thermal connection A misconception is that more compound will be better but this reduces the thermal connection always dramatically compromising the temperature stability Electron Dynamics Ltd pagel 5 TC LV Temperature Controller User Manual V1 01 45 Peltier Size This should be calculated from the manufacturers selection It is important that the TEC is not driven beyond the maximum the device will certainly be damaged if the maximum current is exceeded Due to the nature of the peltier device as the drive is increased above between 60 and 75 of maximum it becomes progressively less efficient and in this situation will tend to just provide more local heating that heat pumping This can possibly lead to thermal runaway if the limit is not set We feel that there is little point in working the devices in their inefficient region and recommend that device are run at a maximum of 70 of maximum drive 4 6 Drive Limit On the TC LV series the TEC drive limits allow maximum cooling and heating rates Where the maximum drive is 100 4 7 Important stability issues Some important factors to remember Facilitate faster settling time and
13. er output is calculated by the rate of change of the measurement with time in seconds To increase the derivative action increase the derivative value See also Derivative Filter 5 2 7 Derivative Filter The derivative filter is a low pass filter function on the derivative value This allows the filtration of noise components which are a problem with a pure derivative function The filter value should be set to between 0 and 1 5 2 8 Dead band For use with On Off control the dead band specifies the temperature range around the set point where the output is zero 5 2 9 Power Up State This sets the temperature control state from power up where this can be set as On or Off or where Last is selected it sets its last setting prior to power off Electron Dynamics Ltd page 10 TC LV Temperature Controller User Manual V1 01 5 3 Set point 5 3 1 Method The temperature set point can be set via the PC or by altering the pot on the TC LV series Temperature controller hardware if fitted For setting via the PC select the PC radio button and enter the set point value into the edit box directly following the radio button 5 3 2 Pot Range This sets the temperature range that the pot gives values for 5 3 3 Pot Offset This sets the minimum temperature point on the pot 5 3 4 PC Set Point This allows the set point to be fixed via the GUI 5 3 5 Control The control radio button if checked inhibits the temperature control
14. f the temperature The Gain P term required and the period of the oscillation should be noted From these the PID terms can be calculated Where Gu is the gain and Tu is the period From this the PID terms can be calculated Where P term 0 6 Gu term 0 5 Tu D term 0 125 Tu Electron Dynamics Ltd page 8 TC LV Temperature Controller User Manual V1 01 5 Graphical User Interface The TC LV series Temperature Controller can be operated via the Graphical User Interfaces one written in Java and the other in C They are very similar with minor differences The GUI will be broken down into seven functional categories each will be explained in the remainder of this section of the manual Pull Down Menus Il Control lll Set Point IV Sensor V Output VI Alarms VII Report VIII Test functions 5 1 Pull Down Menus 5 1 1 File Menu Save as defaults allows the user to save a copy of the current GUI set up which can be loaded using the load defaults command The exit command closes the GUI 5 1 2 Port The desired communication port can be chosen and the TC LV Series Temperature Controller can be connected or disconnected Please note port needs to be selected and opened at the outset in order to communicate with the controller 5 2 Control 5 2 1 Type The control algorithm can be single or a combination of Proportional Integral Derivative terms The list box allows the user to define th
15. r info com TEC information site http www melcor com TEC manufacturer http www marlow com TEC manufacturer http www jashaw com pid Control E book http www jashaw com pid tutorial pid6 html PID tuning lecture notes http www brewerscience com cee otherprods cee_pid html PID notes http lorien ncl ac uk ming pid PID pdf PID notes Electron Dynamics Ltd page
16. renheit 5 5 Output 5 5 1 Polarity This sets the polarity of the output drive 5 5 2 Minimum Sets the minimum value limit of the output Range 0 to 100 5 5 3 Maximum Sets the maximum value limit of the output Range 0 to 100 5 5 4 Frequency Sets the PWM repetition frequency of the output drive Range 20 to 1000 Hz 5 6 Alarms 5 6 1 Minimum Alarm Sets the temperature below which the alarm is activated Select via check box to enable 5 6 2 Maximum Alarm Sets the temperature above which the alarm is activated Select via check box to enable 5 6 3 Minimum OK Temperature Sets the lower temperature difference point from the set point for temperature OK 5 6 4 Maximum Temperature Sets the higher temperature difference point from the set point for temperature OK 5 6 5 Operational temperature max Only available on certain GUI Sets the temperature maximum above which the drive output is disabled 5 6 6 Maximum Temperature Only available on certain GUI Sets the temperature minimum below which the drive output is disabled 5 7 Report 5 7 1 Set point Displays the set point can be used to ensure the controller has accepted the set point entered in the control category refer to section 5 3 5 7 2 Temperature Displays the measured temperature the measured temperature units can be Celsius Fahrenheit or Kelvin and can be selected in the sensors category refer to section 5 4 3 Electron Dynamics Ltd page 12
17. response by reducing thermal mass of sample reduce distance between TEC and item being cooled Improve accuracy by locating sensor near to cooled device as possible Reduce thermal load by reducing thermal feedback from heatsink to sample by using thermal insulation 4 8 Temperature Controlling 4 9 On Off control This mode of temperature control is the most basic it benefits from being relatively easy to set up Simply specify the setpoint and dead band However there are some problems with this approach due to full on full off nature of the output the temperature stability is relatively poor Though will be sufficient for some applications The other problem is that TEC is cycled fully heating and the fully cooling this may cause reliability issues with the TEC itself 4 10 PID Control PID control comprises of 3 elements Proportional Integral and Derivative These can be operated separately or together the selection can made through the modes or by the PID values themselves The Proportional term provides a variable output which as the temperature deviates further from the set point then the output drive increases until the maximum is reached The response of this is defined by the value of the P term Where Output setpoint actual temperature proportional term The main problem with Proportional only control is there is always a temperature error this is due to the fact Electron Dynamics Ltd pagel 6 T
18. sssssssssrsreessssrrrsessssrrresessnrressnssntessnnrntensnnrrreeessnrrreens 7 6 5 Ziegler Nichols Open loop step response c ccsecsecsesessessesesteseeseetssesnesneeteteeeees 7 6 6 Ziegler Nichols closed loop ultimate gain MmethOd ooncoicniciciciniciniinnmmm 7 T Graphical User Interface 0 00 a aaa 9 7 1 Pull DOWN MS ac as 9 7 1 1 FIG Men aia laa 9 7 1 2 A O Me 9 7 2 Cool a E O T eS 9 7 2 1 A ead iets a ete ee eatin 9 7 2 2 A AE A EEE 10 7 2 3 OOM aian adas tit 10 7 2 4 A E R E A E dea es 10 7 2 5 A A eT 10 7 2 6 Derivat n eas aa a a a a aAa 10 7 2 1 Derivative cd eee een rc PO EA 10 7 2 8 Dead band iki eatin Awan aati hi ee ele 10 7 2 9 Power Up State oo ccccscsssscsccsssssesessscsnssescssssesesscscscsnsssscasssssssnesesssnsnesesceneeees 10 7 3 Set DO Md ES AE a Se ie 11 7 3 1 Met a ties 11 7 3 2 A a a a aa ce 11 7 3 3 A A EEE T E E E EE 11 7 3 4 A aar a a aA habe a a 11 7 3 5 A AA NS RE ERONI IRINAN AAN WI ME NEA E aS NANE ENS 11 Electron Dynamics Ltd page 1 TC LV Temperature Controller User Manual V1 01 7 3 6 O tPU T easan r a a a a a Menacdes 11 7 4 SENSON naana O 11 7 4 1 Typa a a a e i 11 7 4 2 X2 MASA A 11 7 4 3 NTE thermistorS Saro a a ia 11 7 4 4 A A eo ee CAE 12 7 5 OU ls 12 7 5 1 A a a a A 12 7 5 2 MINIMUM che eile a Sah EAR ER e 12 7 5 3 A A A A E E N PRO 12 7 5 4 Fregen A N aa ao al Ge te 12 7 6 SPAMMING est teen chk OO 12 7 6 1 MOUNT al aed nasa a 12 7
19. tive of 5 so foff 100 0 0 0 100 0 0 5 0 5 70 o 70 Select log dat File not open Electron Dynamics Ltd page 14 TC LV Temperature Controller User Manual V1 01 5 9 Communication Protocol Please see the RS232 commands file on the resources CD ROM 5 10 5 11 5 12 5 13 5 14 5 15 5 16 5 17 5 18 Specification TC LV Series Supply 5v to 28v DC Output 0 to Sv 5A max Bi directional heating and cooling Variable output 0 to 100 Control From PC remote options RS232 RS422 USB Ethernet Programmable PID terms Will operate as P PI PID or On Off with Hysterysis Resolution 0 001 deg C Max stability 0 001 deg C depending on thermodynamics setup etc Set point Set either by pot or by PC Fault PC configurable TTL output active low High temp Low temp or out of band Sensor Voltage PT100 LM35 LM50 LM60 LM61 NTC Thermistor Other Other versions can be calibrated using the quadratic coefficients Measurement Accuraccy PT100 0 001 deg C or better LM35 etc 0 001 deg C or better User Windows control software allows access to all parameters Can be controlled within a process environment Electron Dynamics Ltd pagel 15 TC LV Temperature Controller User Manual V1 01 5 19 Format PCB assembly 6 Sources of Information There is a lot of information on the internet with some of it relevant have a look at these http www peltie
Download Pdf Manuals
Related Search
Related Contents
VAG KM+IMMO Tool User Manual Bedienungsanleitung Vario III - carl TEFAL BH7300J0 Instruction Manual TrapPro User Manual Samsung SGH-X810 Vartotojo vadovas Copyright © All rights reserved.
Failed to retrieve file