Home
AMRobot Platform - eng
Contents
1. red green and blue The following pictures show the AMRobot platform with three versions of drive system A ee SR gt E 1 p ef da 28 un i WE j um ol sa set mi moi ay i Sg TR 140 mm LN N a The platform construction enables an easy change of the chassis type by replacing the front drive wheels and assembling two additional rear wheels One can possibly add two silicone tracs In the two wheel robot version one has to additionally install a supporting ball in the rear lower part of the platform The possibility of changing the driving system has great educational advantages because of possible modification of software responsible for the motors control The type of the driving system has an influence on traction properties and mini robot movement dynamics The upper part of the platform includes mounting holes for the servomechanism of the scanning unit in the range of 180 degrees horizontally and vertically which can be used for example for ultrasonic distance meter color mini camera or miniature robot arm Two versions of the scanning module can be used horizontal only scanning 180 degrees or horizontal and vertical scanning 180 degrees in horizontal and vertical axis The additional holes placed in the upper part of the platform are intended to mount microcontroller module together with motors driver and an intelligent graphic display with touch pad The g
2. 1 ADAFRUIT controller module specification The Adafruit controller module is a new improved shield for motors control DC stepping motors and servos The shield includes 4 H bridges which enables to drive as many as 4 dc motors or 2 stepping motors For the needs of AMRobot platform only 2 bridges are used to power two Pololu HP motors The control is accomplished by I2C interface available in the Arduino Leonardo microcontroller module Unlike other solutions this controller does not use PWM signals from Arduino module but it has its own PWM driver type TB6612 MOSFET by Toshiba that delivers current of 1 2A per channel continuous and 3A pulse The controller has built in thermal and overvoltage protections internal diode Only two terminals SDA and SCL are required to control the motors The controller PCB includes two servos connectors and 18 26 AWG cable connectors For the needs of the AMRobot it is required to mount additional connectors in the place of free soldering pads in the field prepared for the user It facilitates connecting of line sensors and ultrasonic distance meter which have to connected to appropriate terminals of Arduino Leonardo microcontroller module The driver board is fixed to appropriate Arduino Leonardo board PCB connectors The Arduino library contains commands to drive motors Software examples with comments are given in the AMRobot user s manual NOTE The AMRobot kit requires to be assembled
3. Research Development of Electronics Prototyping Microcontroller education systems AMRobot Educational mini robot platform Producer AMEX Research Corporation Technologies Modlinska Str 1 PL 15 066 Bialystok Poland Tel 48 602723295 Fax 48 856530703 e mail amexinfo amex pl www amex pl Educational mini robot platform Platform construction The AMRobot is intended to build an educational mobile mini robot with the capability to choose one of the three types of drive chassis system two wheeled with a support ball four wheeled or tracked drive system with two silicone tracks The AMRobot platform is designed for users who are going to learn how to program a mobile mini robot without the necessity of making the whole mechanical construction of the mini robot from scratch The only thing the user has to do is to use screws nuts mechanical and electric components and connect them with cables to a microcontroller board and power supply All components are included in the kit The platform is an ideal solution for individual users beginners and more advanced hobbyists students and pupils as well as for users working in teams for example in secondary schools on innovative technical classes in the range of electronics and robotics The platform construction offers a broad range of solutions in mechanical and electrical parts The platform is made of laser cut anodized and colored aluminum components Such a
4. ar 210 1 ratio ensures higher torque at lower rotating speed The electronic part of the platform microcontroller module driver sensors etc can be offered as a separate product in order for the user to individually configure the robot Each version of the platform has the possibility to mount Arduino Uno Leonardo modules and also motors drivers or a complete Dagu controller compatible with Arduino with integrated motors controller and additional sensors Mechanical part Version 1 Two wheeled platform with supporting ball caster and two motors 1 150 or 1 210 gear Version 2 Four wheeled platform 2 active front wheels and 2 passive rear wheels 1 150 or 1 210 gear Version 3 Platform with tracked drive system two silicone tracks and two motors 1 150 or 1 210 gear Each drive system type version 1 2 or 3 can be additionally purchased for the platform already used in the robot without the need of replacing the motors Motors specification Pololu Small light and robust Pololu motors with metal gear are used in the AMRobot mini robot platform as drive units The motors can be powered from voltage in 3 to 9V range The optimal voltage at which power to durability ratio is most favorable is 6V In the AMRobot platform nominal battery voltage is 7 2V 6 x 1 2V Pololu HP motor 150 1 Power supply voltage 3V 9V Gear 150 1 Rotating speed without load 6V 200 RPM Idle current at 6V 70 mA Current consu
5. by the user We can deliver fully assembled and configured AMRobot platform electronic and mechanical part for special order with additional cost Battery and charger is not included we suggest purchasing combination The AMEX company is going to prepare and public on its website free demonstration software and articles in the field of electronics and robotics intended for beginners and more advanced users of the AMRobot educational platform 12 ANNEX AMRobot platform components Mounting plates components for the scanning device power supply connector switch and NiMH 6 x AA battery container Power supply connector and switch servos for scanning device scanning device eae i I Jul 85 Ol t A lt p vi si upper part y A is ETT Battery container Supporting ball caster for 2 wheeled version 13 Motors fasteners and front wheels 42 mm x 19 mm for 2 and 4 wheel drive system Rear wheels 42 mm x 19 mm for 4 wheeled drive system Track set with 2 front and rear drive wheels 14 Mini robot platform inside view lower mounting plate with assembled components The assembly principle of motor to lower mounting plate Line sensors 15 The platform is available in different colors 16 Graphic display module An important feature of the AMRobot educational mini robot is the possiblility to install on the upper mou
6. en the mini robot and an obstacle The platform can be controlled by any microcontroller module with a motor driver for example the Arduino module there are additional appropriate mounting holes prepared for Arduino module Power supply system The assembled AMRobot platform is powered from 6 cell AA size high quality NiMH battery packet Eneloop type by Sanyo The nominal battery voltage is 7 2V and capacity of 2000 mAh The battery is placed in a container located between two angles placed in the lower part of the platform The battery is charged with the use of external charger connected to a socket placed at the lower part of the platform There is no need to open robot enclosure to charge the battery The manufacturer of Eneloop type battery declares its endurance as 1800 charge cycles The user can also employ other types of battery NiMH battery with nominal voltage of 7 2V that is 1 2V per single cell after disassembling the battery container The battery capacity should be in 1800 2500 mAh range It is not recommended to use alkaline R6 batteries the maximum power supply voltage should not exceed 8V Besides the cost of using rechargeable batteries is much lower than alkaline ones Specification The AMRobot platform is offered in three mechanical versions which only differ in drive type with the use of the same Pololu motors with 1 150 or 1 210 gear When choosing the version one has to specify the motors gear Higher ge
7. mption at locked shaft condition 6V 1600 mA Note when Adafruit or Dagu drivers are used automatic current limit is activated in case of locked motor shaft Torque 2 9 kG cm 0 284 Nm Motor body dimensions 24 x 10 x 12 mm Pololu HP 210 1 motor Power supply voltage 3V 9V Gear 210 1 Rotating speed without load 6V 140 RPM Idle current at 6V 70 mA Current consumption at locked shaft condition 6V 1600 mA Note when Adafruit or Dagu drivers are used automatic current limit is activated in case of locked motor shaft Torque 3 6 kG cm 0 353 Nm Motor body dimensions 24 x 10 x 12 mm Electronic part Microcontroller module The AMRobot platform can be equipped with a microcontroller module such as Arduino Uno Arduino Leonardo with additional Adafruit motor driver or Micro Magician Robot Controller V2 by Dagu which is a perfect combination on single small PCB of fully Arduino compatible microcontroller module with a motor driver This PCB is also equipped with 3 axis accelerometer and infrared receiver for wireless communication by the means of compatible remote controller The alternative solution is to employ other controller also from Dagu such as Dagu Arduino Mini Driver Board which is an ideal solution for beginners The following description depicts specification of two types of microcontrollers modules with integrated Dagu Arduino motor driver and also Adafruit module which works with Arduino Leonardo mic
8. nting plate an intelligent graphic display by 4D Systems which can work without any master microcontroller Gear Pos N The graphic display installed in the mini robot can be very useful when the user needs to change software configuration or motor control parameters settings of PID regulator etc A display with touch panel eliminates use of mechanical push buttons Besides it enables the monitoring of robot status in the form of graphic messages that is valuable supplement of functions performed by software Additionally the display includes memory for storing graphic files animations and audio and video files built in USD connector Digital Gauge Speed Kmh For the needs of the AMRobot platform it is possibile to use any display available however it is recommended to use an intelligent graphic display by 4D Systems that can be quickly configured by external master microcontroller Arduino for instance through serial interface UART It can also work as a standalone device The choice of work mode is accomplished by a public configuration file available on 4D Systems website An external control mode with the use of serial interface is a convenient solution in case of using any external microcontrollers The use of above intelligent graphic display virtually eliminates the risk of failure when designing graphic interfaces even by less experienced users 4D Systems also offers free 4D Workshops IDE programming environmen
9. raphic display is not required but it can be very useful in more advanced versions of software for example for adjusting rotating speed of motors power supply voltage monitoring changing software configuration without the need of the use of external computer This expands educational and operating values of the mini robot for more advanced users The lower part of the platform is equipped with holes to mount drive motors two additional rear wheels and supporting ball There is also a rectangular slot to mount 3 line sensors It is also possible to mount a servomechanism driven grasper or a bumper in the form of a plow in the mini sumo competition ring To drive the mini robot two Pololu HP micro motors with a metal 150 1 or 210 1 gear are used The change of chassis configuration does not require to replace drive motors but only change the wheels in the chassis Despite of small dimensions of the motors they have high torque ensuring good movement dynamics The user can experimentally change movement parameters in software obtaining optimal traction properties for this type of mini robot The motors can work with encoders placed under each of them The use of encoders is recommended for more advanced users who can use PID type control that enables to achieve optimal movement parameters during turning depending on for example current speed of the mini robot and information gathered from the line sensors or ultrasonic sensor of distance betwe
10. rocontroller It is worth noticing that AMRobot platform can be equipped with virtually any types of microcontroller modules and motor drives To install them it requires to drill additional holes in the upper board of the platform The existing holes are prepared to install Arduino and Dagu modules mentioned above Apart from using typical Arduino modules it is also possible to install a connector board instead of common Arduino modules The connector board can work as an mechanical interface between other types of microcontroller modules and motor drives such as Pololu 9 type A Star 32U4 Micro based on Leonardo module and two channel dc current motor driver type TB6612FNG by Toshiba The following pictures show some of microcontroler modules and their specifications They are recommended to use in the AMRobot platform You can also find example software with comments in the AMRobot user s manual DAGU microcontroller module and drivers pcb boards dimensions 30 mm x 60 mm DAGU Arduino Micro Magician DAGU Arduino Mini Driver Board robot controller V2 38KHZ Miniature IR USB IR receiver socket receiver Battery LED j Battery Power o i OUT A3 t 9 ower A4 03 switch A5 ae Battery A6 on IN A7 A Power F5 Da 3 axis t gt D3 LED Accelerometer 2 D4 V a 2 D5 a D6 D3 M D13 LED ae no Ce m D12 540 u issit ISP socket D13 D11 wi a gt edi GND RST Ar ik MOSI SCK Flags as Motor A Dual FET Mo
11. sensor commands direction detection and acceleration magnitude measurement during collision with obstacle Infrared receiver IR with LED status e R receiver signal fed to digital input D4 enables remote control of the mini robot by the means of remote TV transmitter e Arduino library contains a decoder of received commands from TV remote transmiter compatible with Sony standard SIRC offering 128 virtual buttons e Additional IR receivers can be connected to other ports for reading signals from receivers with the help of software decoder Servomechanisms control up to 8 servomechanisms e Upto 8 miniature servos can be driven by the controller servos are powered from the main battery e Servos are protected with a diode against reverse polarity DAGU Arduino Mini Driver Board controller specifiaction The DAGU Arduino Mini Driver Board controller is a simplified version of the previous one This controller also includes two H bridges for dc motors and is compatible with Arduino IDE The maximum current is 2A Up to 8 servos can be connected Bluetooth and Xbee modules can also be connected to the port available on the controller PCB Programming of the module is accomplished by USB interface The module is capable of reading signals from different types of sensors handled by analog and digital inputs More detailed information concerning both DAGU modules can be found in the AMRobot platfrom user s manual and in software examples 1
12. t and powerful 4D ViSi Genie graphic editor for simple and intuitive positioning of graphic components used for example for measurement and control devices used in robotics and automatics These include for example push buttons measurement instruments sliders knobs switches etc No programming language command is needed because the code for the display is created automatically when the user positions graphic components in the editor 17
13. technology ensures high rigidity endurance and aesthetics appearance All mechanical components are very well matched to one another which makes the assembly easy The mini robot platform itself without additional enclosure is composed of only two parts panels which are joined together by the means of four spacer sleeves and M3 screws An additional advantage of the platform are small dimensions 140 mm x 125 mm reliability and construction endurance These advantages simplify conducting technical classes in the range of robotics in schools and a variety of trainings that require educational equipment mobility for persons conducting the classes The platform is adapted to install a microcontroller module with motors driver and different sensors such as three line sensors ultrasonic distance sensor with scanning circuitry controlled by two miniature servomechanisms three axis accelerometer infrared receiver for wireless communication with microcontroller by the means of compatible remote transmitter The user can use libraries available in the internet and software facilitating the use of the AMRobot The kit includes a CD with assembly instructions of the AMRobot platform and example software to demonstrate among others the control of the motors and software controlled servomechanisms graphic display and a variety of sensors The platform is available in three colors silver golden and black Other colors are available for special orders
14. tor B Output 1A H bridge Output Motor Driver 10 Daqu Arduino Micro Magician robot controller module specification The Dagu Arduino Micro Magician robot controller is a perfect controller intended for small robots Despite its small PCB dimensions 30 mm x 60 mm it is fully equipped with features that do not exist in other controllers It includes all important functions needed to control mini robots The V2 version of the controller is fully compatible with Arduino IDE programming environment Double H bridge FET e Works in 2 5 9V power supply voltage range e Low turn on bridge resistance 1 10 e Automatic electronic brake function this function is ideal for small robot in case when fast stopping the robot is required e Current limit set to 910 mA protection against high current caused by locked motor shaft or short circuit e motor stall information signal FA and FB pins status change e Sleep function in order to limit Power consumption when motors are not in use e Arduino library containing commands for simple use of DC and stepping motors 3 axis accelerometer e measurement range 1 5G default setting It can be set to 6 G e 0G acceleration detection 0G det signal for use with an external interrupt to turn off the servo or drive motor in case of crash collision to protect the gear e angle of depression measurement robot to base as protection against fall e Arduino library includes acceleration
Download Pdf Manuals
Related Search
Related Contents
Boletín de servicio Supermicro Superserver 6016XT-TF Philips VR610 User's Manual Copyright © All rights reserved.
Failed to retrieve file