Home
Liebert® XDH™ - Emerson Network Power
Contents
1. 36 Modules on a Single Chal EE 37 38 CANDU as e O Ad da os ea abia a 40 Be EE a 41 CAN isolator location in the Liebert XDP XDC 41 P2 and P4 locations on the CAN IsOlator kn 42 Liebert XDH CANbus port locations 43 Single circuited Liebert XDAS eee eee eee eens 43 Duakeretied Liebert KEE 44 Removing the remote sensor Cover 45 Liebert XD smart module R88 location 46 Fan switches Liebert XDH basic modules 49 iii Figure 50 Figure 51 Figure 52 Figure 53 Figure 54 Table 1 Table 2 Table 3 Table 4 Table 5 Table 6 Table 7 Table 8 Table 9 Table 10 Table 11 Table 12 Table 13 Fan switches Liebert XDH smart modules Removine the Tam hays EA wo ata bao EE Pe Een Remove Liebert XDH rear padel Open electric box on Liebert XDH basic modulb Open electric box on Liebert XDH smart module TABLES PND NCA DEEN Branch piping sizes for pumped refrigerant loop Torque and wrench size for connecting Liebert XDH with one shot couplings to Liebert XD Flex Pipe Torque and wrench sizes for connecting Liebert XD Flex Pipe to the
2. IEC Primary S and Secondary DPN001180 Power Inlets Pg 4 Rev 5 Figure 35 Smart Liebert XDH electrical connections Condensate Detection Remote Shutdown 37 38 and Alarm Relay Dry Contacts Low Voltage Connections 82 thru 87 Strain Relief Points Primary and for Power Cords Secondary IEC Primary Circuit Breaker and Secondary Power Inlets DPN001180 Bottom Half of the Liebert XDH S Pg 4 Rev 5 7 2 Electrical Connections Connecting Low Voltage Wiring Liebert XDH Smart Modules Low voltage connections are available only on the Liebert XD smart module The low voltage connections for Liebert XDH smart modules are in the rear of the modules There are two connection locations one for the lower bank of fans and one for the upper bank of fans The power connections are shown in Figure 36 the communication ports are on the rear left side of the Liebert XDH These dry contacts can to be connected to a monitoring unit such as Liebert SiteScan Make connections on these modules according to site specific drawings The module must be installed in accordance with national and local wiring regulations Terminal block connections 37 38 and 82 through 87 can be connected to a monitoring unit such as Liebert SiteScan The remote shutdown condensate detection alarm and fan failure alarms operate independently of each other e Contacts 37 and 38 are for remote shutdown e Contacts terminals 82 83 and 84 are activated by the
3. Forklift 3 2 2 Module Handling If possible transport the module using a forklift or pallet jack If using a forklift or pallet jack ensure that the fork tine length is suitable to safely move the packaged module e Emerson recommends keeping the module in the protective packaging until it has been moved to the installation site e When handling and unpacking the module exercise great care to prevent damage Do not lift the module any higher than 6 152mm while moving it If it must be lifted higher than 6 152mm exercise great care and keep all personnel who are not helping move the module at least 20 6m away from the module The Liebert XDH ships with four outrigger style wheels to permit rolling it into position Emerson recommends using a forklift or pallet jack to move the Liebert XDH as near as practical to its installation site before removing it from the shipping pallet General product information 3 2 3 Unpacking the Module Domestic Packaging 1 Remove the exterior stretch wrap packaging from around the module exposing the protective corner and side packaging planks 2 Remove the ramp corner and side packaging planks from the module exposing the bag over the module Remove the bag when ready to install the Liebert XDH Figure 5 Removing domestic shipping packaging Exterior stretch wrapping Planks at the corners and on surrounds other protec the sides protect the Liebert XDH during shipping
4. Liebert XDH Liebert XDH Liebert XDH Liebert Rack XDH Rack Remote Sensor B Liebert Liebert DS Liebert XDH XDH XDH 38 Remote WR Sensor A XDH D CANbus Liebert XDP Or Liebert XDC Interconnection With Smart Modules 8 1 2 CANbus maximum length The CANbus network the sum of the two CANbus chains has a maximum length limitation If the Liebert XDP or Liebert XDC with Liebert COM does not have a CAN isolator the maximum total network length is 150ft 45m without measuring the final device voltage The total network length must include the remote temperature and humidity sensor cable lengths If the Liebert XDP or Liebert XDC contains a CAN isolator the maximum network length is 300ft 91m To exceed this length the final device voltage must be measured Measuring Final Device Voltage Required tools e RJ11 6 way modular adapter shown Paladin Tools RJ11 6 way Modular Adapter Paladin part number 1908 or similar tool e Voltmeter Testing the voltage requires the Liebert XDP or Liebert XDC and all connected smart modules to be turned On 1 Start the Liebert XDP or Liebert XDC Refer to SL 16644 or SL 16674 2 Locate P67 on the final device 3 Plug the RJ11 Adapter into P67 4 Measure the DC voltage between Pins 1 and 2 The voltage should be between 8 and 17 5VDC 5 Measure the DC voltage between Pins 5 and 6 The voltage should be between 8 and 17 5VDC 6 R
5. Der Hersteller erkl rt hiermit dass das vorliegende Produkt sollte es die CE Kennzeichnung tragen den folgenden Richtlinien der Europ ischen Union entspricht Le fabricant d clare par la pr sente que ce produit portant la marque CE est conforme aux directives de l Union europ enne El fabricante declara por la presente que si este producto lleva el marcado CE es conforme con las directivas de la Uni n Europea O fabricante declara por este meio que este produto quando ostenta a marca CE est em conformidade com as directivas da Uni o Europeia Tillverkaren tillk nnager harmed att den har produkten nar den ar CE m rkt verensst mmer med EU s direktiv De fabrikant verklaart hierbij dat dit product indien het van de CE markering is voorzien conform de EU richtlijnen is Valmistaja vakuuttaa t ten ett mik li tuotteessa on CE merkint se t ytt seuraavien EU direktiivien vaatimukset Produsenten erkl rer herved at dette produktet n r det er CE merket er i samsvar med EU direktiver Producenten erkl rer hermed at dette produkt overholder EU s direktiver n r det b rer CE m rket O Kataorsvaotnc SnAWVEL OTL TO npoi v AUTO TO ortoto depe onuavon CE civar ouuuopbo UE TLC odnyiec tnc E E 2006 42 EC 2004 108 EC 2006 95 EC 97 23 EC Ensuring The High Availability Of Mission Critical Data And Applications Emerson Network Power a business of Emerson NYSE EMR is the global leader in enabling Bu
6. Risk of electric shock Can cause injury or death System contains hazardous electrical voltage Disconnect both power cords from the electrical supply outlets or from the receptacles on the back of the Liebert XDH before working within The electric box in the lower portion of the Liebert XDH can be opened for maintenance such as replacing a circuit breaker and checking wiring connections To open the box d 3 4 5 Disconnect both power cords from the electrical supply outlets or from the receptacles on the back of the Liebert XDH Remove the back from the Liebert XDH and lay it aside where it will not be damaged see Figure 52 Unplug the power cords from the primary and secondary input connections on the electric box Remove the two screws on the front of the electric box see Figure 53 Lift off the front of the electric box After performing the maintenance reverse the removal steps to reinstall the electric box s front cover Figure 53 Open electric box on Liebert XDH basic module ji j SS Gei EE Pa L Remove these two screws JR to open the electric box 55 Maintenance 11 6 Open Electric Box Liebert XDH Smart Modules WARNING 4 Risk of electric shock Can cause injury or death System contains hazardous electrical voltage Disconnect both power cords from the electrical supply outlets or from the receptacles on the back of the Liebert XDH before working within The
7. Field Installation of Liebert XD Flex Pipe Kit on Liebert XDH and see Figure 19 If the module does not include Liebert XD Flex Pipes refer to 6 5 Venting the Holding Charge for Hard Piped or Removable Liebert XD Flex Pipe Connections Figure 19 Piping location and connecting sizes for pre charged modules Top View EUo Du r XION 152mm 3 5 8 92mm 7 8 Return Upper Refrigeration Circuit 1 2 Supply Upper Refrigeration Circuit LN 4 3 8 34mm 51mm E 4 1 8 1 04mm 5 126mm Rear of Liebert XDH 7 8 Return Lower Refrigeration Circuit 1 2 Supply Lower Refrigeration Circuit L E Left Side 22 Piping 6 13 2 Connect a Liebert XDH with One Shot Couplings to Liebert XD Flex Pipe NOTICE Risk of improper reuse of Liebert XD Flex Pipes with one shot couplings Can cause refrigerant leaks Liebert XD Flex Pipes with one shot couplings must not be removed from the Liebert XDH unless they are being replaced with Liebert XD Flex Pipes with one shot couplings Do not reuse Liebert XD Flex Pipes with one shot couplings Reuse may result in refrigerant leaks Tools Required One adjustable wrench with a maximum adjustment size of 2 inches One torque wrench half inch drive see Table 3 for sizes This operation must be performed on each of the two circuits in the Liebert XDH l 2 Figure 20 Figure 21 Check the Liebert XD Flex Pipe for proper length Remove the protector
8. injury and death Read all of the following instructions before attempting to move lift remove packaging from the module or preparing module for installation Use extreme caution and care when moving and installing this unit Use lifting equipment that is rated for the weight of the unit by an OSHA certified rating organization See Tables 9 and 10 for unit welghts Personnel should be properly trained and qualified to move and rig equipment CAUTION A Risk of sharp edges splinters and exposed fasteners Can cause personal injury Only properly trained personnel wearing appropriate safety headgear gloves shoes and glasses should attempt to move lift remove packaging from or prepare module for installation NOTICE Risk of overhead interference Can cause module or structure damage The module may be too tall to fit through a doorway while on the skid Measure the module and doorway heights and refer to the installation plans before moving the module to verify clearances NOTICE Risk of improper storage Can cause module damage Keep the module indoors and protected from dampness freezing temperatures and contact damage General product information NOTICE Risk of damage from forklift Improper handling with the forklift can cause exterior and or underside damage Keep tines of the forklift level and at a height suitable to fit below the pallet Figure 4 Recommended module handling equipment Pallet Jack
9. A Drawing is not to scale Line sizes do NOT indicate piping sizes Equipment racks not shown for clarity See Figure 11 for room Return B layout with Liebert XDH Top and bottom refrigerant Return A ie So a GE REES Simes Supply B circuits are separately connected to the Liebert XDP Liebert XDC Liebert XDP and can be alternated Liebert XDC B 4 4 4 4 4 4 4 4 0 0 10 T B T B T B T B Liebert Liebert Liebert Liebert XDH XDH XDH XDH Module 5 Module 6 Module 7 Module 8 6 3 Connection Methods and Points Refer to site specific drawings for general locations of the piping connections For Liebert XDH connection locations refer also to Figure 15 The assembly and connection means used for piping in the Liebert XD system are the same as those used in conventional refrigeration systems Observe all standard practices during installation and startup to prevent damage and contamination All piping must be ASTM Type ACR copper The Liebert XDH has supply and return piping access on the top of each module Each Liebert XDH has two supply connections and two return connections one set for each refrigerant circuit Supply piping connection is 1 2 OD copper pipe and return piping connection is 7 8 OD copper The hard piped XDH will have copper caps soldered in place and a low pressure nitrogen holding charge Both supply and return fittings may be supplied with optional one shot couplings These couplings conta
10. Liebert XDPs or Liebert XDCs in an interlaced configuration see Figure 13 In an interlaced configuration half the cooling modules in an aisle are connected to one Liebert XDP or Liebert XDC and the other half in that aisle are connected to another Liebert XDP or Liebert XDC Interlacing the connection piping will keep one of the Liebert XDH s circuits operating and maintain even cooling should one of the Liebert XDP or Liebert XDC units fail However 1f this 1s not possible connect the Liebert XDH modules in a non interlaced configuration see Figure 14 Figure 13 Typical Liebert XDH piping interlaced connections T Top Circuit B Bottom Circuit Liebert XDP Liebert XDC A Liebert Liebert Liebert Liebert XDH XDH XDH XDH Module 1 Module 2 Module 3 Module 4 T B B B B e 0 e o e 7 Supply A Return A 4 DnS Drawing is not to scale Return B Line sizes do NOT indicate piping sizes Supply B Equipment racks not shown for clarity See Figure 11 for room Liebert XDP sda lan Liebert XDC B op and bottom refrigeran circuits are separately connected to the Liebert XDP Liebert XDC and can be alternated Module 5 Module 6 Module 7 Module 8 16 Piping Figure 14 Typical Liebert XDH piping non interlaced connection Liebert Liebert T Top Circuit XDH XDH B Bottom Circuit Module 1 Module 2 Module 4 T B Ir B T B Liebert XDP F e 10 H Liebert XDC A i Supply
11. Read all of the following instructions before attempting to move lift remove packaging from the module or preparing module for installation WARNING Risk of explosive discharge Can cause injury or death This module contains fluids and or gases under high pressure Relieve system pressure before cutting into or disconnecting piping or piping components WARNING Risk of high speed moving parts Can cause injury or death Disconnect all local and remote electric power supplies and verify that the fan blades have stopped rotating before working in the module WARNING Risk of electric shock Can cause injury or death Disconnect both power cords from the electrical supply outlets or from the receptacles on the back of the module before working within WARNING Risk of refrigerant system rupture or explosion from over pressurization Can cause equipment damage injury or death For systems requiring EU CE compliance 50Hz the system installer must provide and install a discharge pressure relief valve rated for a maximum of 105 PSI 7 2 bar in the refrigerant circuit Do not install a shutoff valve between the refrigerant pump and the field installed relief valve The pressure relief valve must be CE certified to the EU Pressure Equipment Directive by an EU Notified Body CAUTION Risk of sharp edges splinters and exposed fasteners Can cause personal injury Only properly trained personnel wearing appropriate safe
12. Site www liebert com Monitoring liebert monitoring emerson com 800 222 5877 Outside North America 00800 1155 4499 Single Phase UPS amp Server Cabinets liebert upstech emerson com 800 222 5877 Outside North America 00800 1155 4499 Three Phase UPS amp Power Systems 800 543 2378 Outside North America 614 841 6598 Environmental Systems 800 543 2778 Outside the United States 614 888 0246 Locations United States 1050 Dearborn Drive P O Box 29186 Columbus OH 43229 Europe Via Leonardo Da Vinci 8 Zona Industriale Tognana 35028 Piove Di Sacco PD Italy 39 049 9719111 Fax 39 049 5841 257 Asia 29 F The Orient Square Building F Ortigas Jr Road Ortigas Center Pasig City 1605 Philippines 63 26876615 Fax 63 2 730 9572 EmersonNetworkPower com IM Racks amp Integrated Cabinets Connectivity IM Embedded Power IM Power Switching Controls IM Services IX DC Power IM Infrastructure Management amp Monitoring M Precision Cooling Emerson Business Critical Continuity Emerson Network Power and the Emerson Network Power logo are trademarks of Emerson Electric Co or one of its affiliated companies 02008 Emerson Electric Co Surge Protection
13. cabinets in the data center in a hot aisle cold aisle arrangement to maximize the Liebert XDH s cooling The Liebert XDH a half rack in width is intended for use with a Liebert XD pumped refrigerant cooling system supplied by either a Liebert XDP or Liebert XDC The module takes in hot air through the rear from the hot aisle cools the air by air to fluid heat exchangers and discharges the air through the front of the module into the cold aisle in a diffuse pattern The cooling air is then drawn into the enclosures to cool the equipment Replaceable front panels on the Liebert XDH may be customized to match the appearance of various computer manufacturer s equipment allowing the Liebert XDH to blend in with adjacent server equipment and enclosures Unidirectional and bidirectional diffusers are available to direct cooling air for more efficient cooling depending on the Liebert XDH s positioning in a row or at the end of a row Chilled R 134a refrigerant is provided to the Liebert XDH by a Liebert XD Pumping unit Liebert XDP or by a Liebert XD Chiller Liebert XDC The Liebert XDH has dual refrigeration circuits one in the upper half of the module and the other in the lower half This permits increasing and decreasing cooling levels in response to server room conditions The dual refrigeration circuits permits interlaced connection of two Liebert XD refrigerant sources to enhance system reliability The Liebert XDH may be installed in a Lie
14. cap and plug from the couplings and carefully wipe the couplings and threaded surfaces clean Use a small applicator brush saturated with refrigerant oil to lubricate the entire surface of the diaphragm the O ring and the threaded area of male coupling assembly Refer to Figure 20 Male coupling on Liebert XD cooling module Oil Rubber Seal and Face of Diaphragm If refrigerant oil is not used an alternate lubricant for this application is a refrigerant compatible silicone grease product such as Dow Corning DC200 60 000 cst Thread the coupling halves together by hand to ensure that the threads mate properly Ensure that the Schrader valve is oriented so that it is accessible for service Female one shot coupling Liebert XD Flex Pipe Schrader valve location Coupling Size Marking on Lip of Coupling Schrader Valve 23 Piping Hex Body NOTICE Risk of improper tightening Can cause equipment damage It is imperative that the brass body on the Liebert XD Flex Pipe coupling does not rotate while the union nut is being tightened If the brass body rotates it may damage the Liebert XD Flex Pipe 5 Hold the brass body of the Liebert XD Flex Pipe with a wrench so that it does not rotate and use the torque wrench to tighten the union nut to the proper value shown in Table 3 Table 3 Torque and wrench size for connecting Liebert XDH with one shot couplings to Liebert XD Flex Pipe Coupling Torque Union Nut Only
15. electric box in the lower portion of the Liebert XDH can be opened for maintenance such as replacing a circuit breaker and checking wiring connections To open the box d 5 Disconnect both power cords from the electrical supply outlets or from the receptacles on the back of the Liebert XDH Remove the back from the Liebert XDH and lay it aside where it will not be damaged see Figure 52 Unplug the power cords from the primary and secondary input connections on the electric box Remove the four screws on the front of the electric box the lower two screws may be loosened and left in the box see Figure 58 Lift off the front of the electric box After performing the maintenance reverse the removal steps to reinstall the electric box s front cover Figure 54 Open electric box on Liebert XDH smart module Remove screws from these four SX Je holes bottom two screws may be loosened and the cover plate lifted off the slots 56 Specifications 12 0 SPECIFICATIONS Table 9 Liebert XDH32 specifications XDH32BK XDH32BS XDH32SK XDH32SS 60Hz 50 60Hz Models XDH32 60Hz Nominal 98 F 37 C EAT 30kW 8 5 Tons XDH32 60Hz Maximum 105 F 41 C EAT 34kW 9 7 Tons XDH32 50Hz Nominal 98 F 37 C EAT 30kW 8 5 Tons XDH32 50Hz Maximum 103 F 39 C EAT 34kW 9 7 Tons Cooling Capacity Capacity ratin
16. for the Liebert XDP or SL 16674 for the Liebert XDC to turn Off the system Locate P66 on the last control board of the first chain With the system NOT powered remove the cable from P66 Connect the cable from P66 to the RJ11 adapter tool Measure resistance across Pin 3 and Pin 4 a Ifthe resistance is between 100 and 200 ohms the chain is properly terminated b Ifthe resistance is less than 100 ohms the chain is not properly terminated More than one control board is terminated Each control board must be checked Remove the cable from the RJ11 adapter tool Connect the adapter into P66 using the cable provided with the RJ11 adapter tool Measure the resistance on the final control board a Ifthe resistance is between 110 and 140 ohms the control board is properly terminated b Ifthe resistance is greater than 200 the control board is not terminated See 8 4 1 Remote Temperature and Humidity Sensors Termination to terminate a remote temperature and humidity sensor and 8 4 2 Terminating a Smart Module to terminate a Liebert XD smart module Reconnect the CANbus cable to P66 10 Repeat for the second chain 46 CANbus Liebert XDP Or Liebert XDC Interconnection With Smart Modules Checking Individual Control Board Termination This procedure applies to the devices that are not at the end of the chains typically a Liebert XD Smart Module 1 Find P66 and P67 on the control board 2 Remove the cables from P66
17. not remove caps from the unused ports Remove the pipe plugs that are supplied on the Liebert XD Flex Pipe Inspect both halves of the couplings and remove any foreign contamination from the sealing surfaces and threads before connecting the couplings Determine the coupling size by locating the number scribed on the Liebert XD Flex Pipe coupling See Figure 25 Figure 25 Coupling size indicator Coupling se y indicator hah UN IN SM Ao i 4 WI My Sey fe i ke d Es SE Ze de Gr i oi Sr mi 1 May Wi Dei HUN All Ai Uu DH 27 Piping Figure 26 Liebert XD prefabricated piping assembly Return Main Service Valve typical all ports Threaded Cap Typical 7 Use mineral oil or polyol ester oil to lubricate the face of the poppet valve and the seal around the poppet valve on the female coupling on the Liebert XD Flex Pipe see Figure 27 8 Apply mineral ol or polyol ester oil to the stainless steel delta ring on the male coupling header port connector see Figure 27 Figure 27 Oil rings on header and Liebert XD Flex Pipe connectors Poppet Valve Face Oil Applicator Spout Rubber Ring Around Poppet Valve Face Stainless Steel Delta Ring on Header Port Connector 9 Thread the union nut of the Liebert XD Flex Pipe coupling onto the port coupling to ensure the threads mate properly 10 Using the wrench arrangement shown in Figure 28 torque the cou
18. tive shipping features Leave the plastic bag on the module until it is off the pallet and ready to be installed Ramp secured to the Liebert XDH by a layer of shrink wrap NOTE One ramp will be shipped per order General product information 3 2 4 Taking the Module off the Pallet WARNING A Risk of unsecured module rolling off pallet Can cause equipment damage injury or death The Liebert XDH is on casters Ensure that the module skid is located on a flat surface before loosening the hardware securing the Liebert XDH to its shipping pallet The Liebert XDH ships with four outrigger style wheels to permit rolling it into position for installation Emerson recommends using a forklift or pallet jack to move the Liebert XDH as near as practical to its installation site before removing it from the shipping pallet 1 Locate the ramp that was shipped with the Liebert XDH see Figure 5 Loosen the hex screw on the ramp and remove the metal bracket see Figure 6 3 Rotate the metal bracket 180 degrees and insert the shortest slot of the metal bracket under the hex screw head and tighten the hex screw 4 Loosen the two hex screws on the skid 5 Align the ramp and the metal bracket with the skid Ensure that the ramp is in contact with the skid see Figure 7 6 Insert the opposite end of the metal bracket under the hex screws on the skid see Figure 7 7 Tighten the hex screws on the skid 8 Remove the six hex screw
19. 2 System Connection Conmeuratlony ds ts aa kee a da 16 6 3 Connection Methods and Points 17 6 4 ENS E e BEE 18 6 5 Venting the Holding Charge for Hard Piped or Removable Liebert XD Flex Pipe CONNEC a a a a aa a a R O ER aN A 18 6 6 Brazino TP repatatons dan aa AA AAA 18 6 7 Recommended Piping Size ee eee eee eee ee E eens 19 6 8 Hard Pipeda Connection EE 44 04 045 524 hee OE AN di 20 6 9 mebel XD Pipin Slope EE 20 6 10 Piping Details Shutoff Isolation Valves 20 6 11 Leak Checking and Evacuation 0220 4 008i A A ee See A a eh 21 612 Header 21 6 13 Field Installation of Liebert XD Flex Pipe Kit on Liebert XDH Al 6 13 1 Connecting Methods One Shot Couplings for Pre Charged Refrigerant Option 22 6 13 2 Connect a Liebert XDH with One Shot Couplings to Liebert XD Flex Pipe 23 6 13 3 Connection Methods Removable Couplings 25 6 13 4 Connect Liebert XD Flex Pipe with Removable Coupling to a Liebert XD Cooling e o Gee ate ese nk oe ee ta EE 26 6 13 5 Connect a Liebert XDH with Liebert XD Flex Pipe to a Liebert XD SysteM Da 6 13 6 Disconnect a Liebert XD Flex Pipe from a Liebert XD System 30 6 13 7 Disconnecting the Liebert XD Flex Pipe from the Liebert XDH 32 7 0 ELECTRICAL C
20. CAUSE INJURY OR EQUIPMENT DAMAGE DO NOT DISCONNECT COUPLERS AT THE UNIT CABINET END WITHOUT RELIEVING SYSTEM PRESSURE SEE LOCAL CODES FOR o REQUIREMENTS N Return Line Line Torque Values on label 8 Place the protective dust cap on the port 9 Place the protective plug back on the Liebert XD Flex Pipe 10 Repeat Steps 6 through 9 for the remaining Liebert XD Flex Pipe Figure 32 Piping mains without Liebert XDH and Liebert XD Flex Pipe attach here 31 Piping 6 13 7 Disconnecting the Liebert XD Flex Pipe from the Liebert XDH NOTICE Risk of improper reuse of Liebert XD Flex Pipes with one shot couplings Can cause refrigerant leaks Liebert XD Flex Pipes with one shot couplings must not be removed from the Liebert XDH unless they are being replaced with Liebert XD Flex Pipes with one shot couplings Do not reuse Liebert XD Flex Pipes with one shot couplings Reuse may result in refrigerant leaks Tools Required I Eh E a ee Two adjustable wrenches with a maximum adjustment size of 2 inches Reclaim the refrigerant in the Liebert XD Flex Pipe and in the module by attaching a refrigerant reclaim device to the Schrader valve For help finding the Schrader valve see Figures 19 and 23 Hold the Liebert XD Flex Pipe so it does not rotate For the Liebert XD Flex Pipe with one shot couplings additionally hold the brass body of the cou pling so 1t does not rotate whi
21. DC have two CANbus ports P2 and P4 each on the CAN isolator in the low voltage side of the electrical box see Figure 42 This allows creating two network chains to minimize the total network length 36 CANbus Liebert XDP Or Liebert XDC Interconnection With Smart Modules 8 1 1 Remote Sensor Temperature Humidity Sensor Placement and Connection to the CANbus The Liebert XDP and Liebert XDC are shipped with two remote temperature humidity sensors One sensor should be placed closer to the Liebert XDP or Liebert XDC the other should be placed in the warmest part of the cold aisle or in the return air stream of a computer room air conditioning unit such as the Liebert DS or Liebert CW The remote sensors can be placed at the end of a chain or in the middle of a daisy chain as shown Refer to Figures 38 and 39 for acceptable network layouts Figure 38 Modules on a single chain Liebert Remote XDP Remote Sensor B XDC Sensor A Liebert Remote XDP Remote Sensor B XDC Sensor A Liebert Liebert Liebert Liebert Rack Rack Rack XDH XDH XDH XDH E Q Rack Rack Rack Liebert XDP Remote XDC Sensor A Remote Sensor B Liebert XDH CANbus Liebert XDP Or Liebert XDC Interconnection With Smart Modules Figure 39 Modules on two chains Liebert Liebert Liebert Liebert Liebert Remote XDP Remote Sensor B XDC Sensor A Remote METI Sensor A XDH Remote Sensor A
22. E Precision Cooling For Business Critical Continuity Liebert XDH User Manual 50 amp 60Hz EMERSON TABLE OF CONTENTS GENERAL SAFETY GUIDELINES 00o ooo ooo es INSIDE FRONT COVER 1 0 LIEBERT XDH COMPONENT LOCATIONS AND MODEL NUMBER NOMENCLATURE 3 20 JINTRODUCTON 2 akan 4 2 1 ee 4 22 Pre Installation o kee hehe se dad ada 4 2 3 Packing E EE a A na Le nb EE 4 2 4 Installation Considerations EEN 4 ZAI Room e RE D e 4 3 0 GENERAL PRODUCT INFORMATION 0 coccocoorn anann 5 3 1 Product System Description 5 3 2 Cheekine and Unpack 2550 Gt Ghee isa ae o eee bee ed A tee Bers eh OM an na 6 ll ENTENTE 6 3 222 Module ia a oa ee ea a ae Od EE eee 7 Wnpackime the Module OA 8 3 2 4 Taking the Module off the Palle t 9 4 0 MECHANICAL CONSIDERATIONS 00 cee eee es 11 4 1 Inebert SDA Dimensions 11 4 2 Determining Placement in the Conditioned Space 11 3 0 JINSTALLING THE MODULE EE dio a e Hear ala 12 5 1 Installing the Liebert XDH Within the Enclosure Row 12 5 1 1 Install a Tie Down Bracket Optional 12 SLZ Arow o DEE ACs Be 14 00 IIe eee lidere ar area ae Ee 16 6 1 European Union Fluorinated Greenhouse Gas Requirements 16 6
23. Figure 42 CAN isolator location in the Liebert XDP XDC To Liebert XD Cooling Module s and Remote T H Sensor B To Remote T H Sensor A To Optional External Connections CAN Isolator o DPN001598 Pg 6 Rev 3 41 CANbus Liebert XDP Or Liebert XDC Interconnection With Smart Modules Figure 43 P2 and P4 locations on the CAN isolator 301275 Rev 2 8 3 2 Connecting to the Liebert XD Smart modules Liebert XDH CANbus Port Locations The Liebert XDH CANbus ports are located on the side of the electrical box Refer to 7 0 Electrical Connections for accessing the electrical box The cable from the Liebert XDP or Liebert XDC side will be connected to Port P66 The leaving cable will be connected to Port P67 See Figure 44 42 CANbus Liebert XDP Or Liebert XDC Interconnection With Smart Modules Figure 44 Liebert XDH CANbus port locations Top Electric Box cover gt removed NN Ea for clarity A AFA Bottom Electric Box Liebert XDH Front Of 5 P67 Liebert 7 XDH DETAILA Electric Box typical Middle and Bottom of Liebert XDH Cooling Module DPNO00785 REV 0 Liebert XDH Single Circuited CANbus Connections For Liebert XDHs with both top and bottom circuits tied to the same Liebert XDP or Liebert XDC the top and bottom control boards must be tied together using a CANbus cable with a length of 6 25ft 1 9m See Figure 45 Figure 45 Single ci
24. Full Port Ball Valve Field Supplied and Field Installed Maximum 9ft 2 75m actual height Refer to Table 2 Copper Tubing for details Total length of each line from Liebert XDH to Main Supply to Cooling Return from Module Cooling Module Top of Liebert XDH Rear of Liebert XDH Liebert XD Piping Slope The main supply and return lines to and from the Liebert XDP XDC must be sloped downward toward the Liebert XDP XDC at a rate of 1 2 per 20 feet 25 51mm per 6m of pipe run Horizontal connector lines should also be sloped downward from the cooling modules toward the main supply and return lines Piping Details Shutoff Isolation Valves To allow for fluid isolation of each Liebert XDH module install a full port isolation valve field supplied on each branch circuit see Figure 17 site specific documentation Liebert Xtreme Density System Design Manual SL 16655 and documentation for other parts of the system 20 Piping 6 11 Leak Checking and Evacuation Refer to the Liebert XDC or Liebert XDP user manual for procedures for evacuation leak check charging and startup 6 12 Header System The Liebert XDH module system with optional flexible piping requires use of the Liebert XD prefabricated piping assembly The prefabricated piping is compatible with the Liebert XD Flex Pipe required to attach to the Liebert XDH modules For the details on piping connection locations see Figure 19 For additional informatio
25. Liebert XDH with removable couplings Orne Parl Um 6 Torque for connecting Liebert XD Flex Pipe to prefabricated piping CANbus cable lengths and part numbers Key to AB Did iC at Ors EE EEER Liebert XDH32 specifications Liebert XDHZ0 specifications Liebert XD Flex Pipe one shot assemblies supply and return Liebert XD Flex Pipe removable assemblies supply and return CANbus cable lengths and part numbers GENERAL SAFETY GUIDELINES SAVE THESE INSTRUCTIONS This manual contains important safety instructions that should be followed during the installation and maintenance of the Liebert XDH Read this manual thoroughly before attempting to install or operate this unit Only qualified personnel should move install or service this equipment Adhere to all warnings cautions and notices and installation operating and safety instructions on the unit and in this manual Follow all operating and user instructions A WARNING Risk of top heavy module falling over Can cause injury or death Improper handling can cause equipment damage injury or death
26. Maximum 1059F 41 C EAT 25 3kW 7 2 Tons Cooling Capacity XDH20 50Hz Nominal 98 F 37 C EAT 21 6kW 6 1 Tons XDH20 50Hz Maximum 105 F 41 C EAT 25 3kW 7 2 Tons ana Capacity rating is 55 F 13 C Entering Fluid Temperature and 50 F 10 C or lower dew point Electrical Requirements 220 240V 1ph 50Hz CE DER EE 208 240V 1ph 60Hz CSA ett Two IEC320 C14 power inlets and two IEC Two IEC320 C14 power inlets and two IEC put p power cords with NEMA 5 15P plugs power cords with IEC320 C14 plugs Power consumption Dimensions inches mm Height module only 78 1981 Height including hard piped connections 80 2032 Width 12 305 Depth 42 1067 Weight Ib kg Module only 233 106 233 106 Shipping weight 317 144 317 144 Number of Fans Airflow Nominal ft min m hr 2500 4248 2428 4125 Audible Noise Pipe Connections 1 2 OD Cu 7 8 OD Cu Fans and electrical components Refrigerant supply Refrigerant return Serviceable Parts Cabinet Exterior Finish Black matte finish heat fused powder coat Smart Module control board factory installed Dry contact 24VAC 1A maximum Pre Charged Refrigerant Air Diffusers R 134a refrigerant one shot couplings Uni directional or bi directional Agency Approvals CSA 60Hz CE 50Hz CSA 50 60Hz Refer to Figure 2 for complete part number 58 Specifications Table 11 Liebert XD Flex Pipe one shot assemblie
27. ONNECTIONS E 33 7 1 Connecting High Voltage Wiring os 34 7 2 Connecting Low Voltage Wiring Liebert XDH Smart Modules 35 8 0 CANBUS LIEBERT XDP OR LIEBERT XDC INTERCONNECTION WITH SMART MODULES 36 8 1 Network Layout Options EEN 36 8 1 1 Remote Sensor Temperature Humidity Sensor Placement and Connection Tone NDS a a ds o o Alle CIs BL nd an o fo ee hte Be ge 37 Sled YOANDUS Ee E d EE 39 8 2 GANDUS Cables cre ke bk A Pe See ee ee ER 40 8 3 Connecting CANbus Network 41 8 3 1 Connection to the Liebert XDP or Liebert XDO 41 8 3 2 Connecting to the Liebert XD Smart modules 42 8 4 Bet KEE EE Te o EEN 44 8 4 1 Remote Temperature and Humidity Sensors Termination 44 8 4 2 Terminating a Smart Module 4 45 8 4 3 Testing Network Termination 46 9 0 INSTALLATION CHECKLIST AND SYSTEM FILL FOR STARTUP c c ccococc 48 9 1 Checklist for Proper Installations vis 8440662 G0 a Oe RS BEERS A 48 9 2 Charging with Refrigerant and Starting the Liebert XD System 48 10 0 OPERATION messages donan adidas a 49 10 1 Start the Liebert XDH Basic Module 49 10 2 Start th
28. Risk of sudden discharge of pressurized refrigerant Can cause equipment damage or injury Do not disconnect threaded refrigerant couplings at the module end without relieving system pressure Reclaim any refrigerant during removal of module from system Tools Required Two adjustable wrenches with a maximum adjustment size of 2 inches This operation must be performed on each of the two circuits in the Liebert XDH 1 Ensure the Liebert XDH fan switches are both On and the fans are operational 2 Close the service valve in the supply line to the Liebert XDH 3 With the Liebert XDH fans running wait two minutes for the refrigerant to flow out of the module 4 Close the service valve in the return line to the Liebert XDH 5 Turn the fan power switches to the Off position Once the fan switches are turned Off unplug the power cords from their power source See 7 0 Electrical Connections for details 6 Loosen the Liebert XD Flex Pipe coupling from the header port coupling This requires an adjustable wrench Refer to Figure 28 see Figure 31 The Liebert XD Flex Pipe coupling must be held stationary while the union nut on the coupling is loosened 7 Disconnect the coupling 30 Piping Figure 31 Profile view of the Liebert XD system and Liebert XD Flex Pipe location Top of Liebert XDH Piping P4 _ Connections CAUTION Service RISK OF SUDDEN DISCHARGE OF PRESSURIZED REFRIGERANT CAN
29. Size Union Not Ke 10 1 5 16 34 35 45 13 5 16 2 1 3 8 35 50 60 67 8 88 1 If a torque wrench is not available continue with the steps below E 1 6 Tighten the union nut on the Liebert XD Flex Pipe to the coupling on the module with the proper sized wrench until a definite resistance is felt metal to metal contact 7 Use a marker or pen to draw a line lengthwise across the module coupling to the Liebert XD Flex Pipe The line should parallel the Liebert XD Flex Pipe 8 Tighten the nuts an additional one 1 wrench flat 60 judging the amount by the mark drawn in Step 7 24 Piping 6 13 3 Connection Methods Removable Couplings The assembly and connection means used for piping in the Liebert XD system are the same as those used in conventional refrigeration systems Observe all standard practices during installation and startup to prevent damage and contamination Both supply and return couplings may be supplied with optional removable couplings Figure 23 Piping location and connecting sizes for pre charged modules Top View Right Hand Side 3 5 8 92mm 1 2 Supply Upper Refrigeration Circuit 1 3 8 34mm 7 8 Return Upper Refrigeration Circuit Ve E 104mm 5 126mm i Rear of Liebert XDH 7 8 Return Lower Refrigeration Circuit 1 2 Supply Lower Refrigeration Circuit L T Left Side 25 Piping 6 13 4 Connect Liebert XD Flex Pipe with Rem
30. XD Cooling Module Cooling Module DPNO00780 21 Piping 6 13 1 Connecting Methods One Shot Couplings for Pre Charged Refrigerant Option CAUTION Risk of sudden refrigerant discharge Can cause loss of charge and minor injury If the optional pre charged option is chosen the Liebert XDH is shipped with a full charge of R 134a refrigerant under pressure Do not remove the pipe caps or plugs before the module is ready for connection to Liebert XD Piping Supply and return couplings on the pre charged Liebert XDH modules are one shot couplings Do not disconnect one shot couplings after they have been connected Disconnection will release pressurized R 134a refrigerant from the Liebert XDH Do not remove the pipe caps or plugs before the module is ready for connection to the Liebert XD Flex Pipe The Liebert XDHs with the pre charged option are equipped with one shot couplings The module and the Liebert XD Flex Pipe contain a charge of R 134a refrigerant under pressure This charge must not be vented Do not disconnect the one shot Liebert XD Flex Pipes after they have been connected to the module The assembly and connection means used for piping in the Liebert XD system are the same as those used in conventional refrigeration systems Observe all standard practices during installation and startup to prevent damage and contamination If the module includes the optional factory installed one shot style couplings proceed with 6 13
31. and P67 3 Plug the RJ11 adapter tool into P67 4 Measure the resistance between Pin 3 and Pin 4 a Ifthe resistance is between 110 and 140 ohms and it is not the last control board the device is not properly terminated See 8 4 1 Remote Temperature and Humidity Sensors Termination for unterminating a remote temperature and humidity sensor or 8 4 2 Terminating a Smart Module for unterminating a smart module b Ifthe resistance is greater than 200 ohms and it is not the last control board the device is unterminated Remove the RJ11 adapter tool Reconnect the CANbus cables into P66 and P67 Repeat for all devices until the final connected device is reached 0 AD Repeat for the second chain 47 9 0 9 1 9 2 Installation Checklist and System Fill for Startup INSTALLATION CHECKLIST AND SYSTEM FILL FOR STARTUP Checklist for Proper Installation __ 1 The Liebert XDH module is properly mounted using tie down brackets see 5 1 1 Install a Tie Down Bracket Optional Power cords connected to electrical supply CANbus cables connected to smart modules T H sensor and Liebert XDP Liebert XDC 4 Piping from the Liebert XDP Liebert XDC to the Liebert XD modules with isolation valves piped to each Liebert XD module Hard piped modules connected to overhead piping Liebert XD Flex Pipes connected to header assembly a b 5 Leak check 6 Start the Liebert XD module to ensure proper operation see 10 1 Sta
32. ans in the lower bank b Pressing either toggle switch a second time initiates an algorithm that turns the middle fans in the fan banks On and Off as needed for cooling Pressing each toggle switch a third time turns the middle fans on continuously Wait for the fans to start and then start the refrigerant supply unit either the Liebert XDP or Liebert XDC For that procedure refer to the unit s user manual available at Liebert s Web site www liebert com Fan switches Liebert XDH smart modules Red and Green LEDs A for Lower Bank of Fans ALARM FANS OFF ALARM FANS OFF _ BOT TOM Red and Green LEDs for Upper Bank of Fans Push Button Switches Push Button Switches for Upper Bank of Fans ETONE GLAD for Lower Bank of Fans 50 Operation 10 3 LED Indicators on Liebert XDH Smart Modules Liebert XDH smart modules have two LEDs on the front one red and one green see Table 8 Red LED indicates alarms e Green LED indicates the fans status Table 8 Key to LED indicators BLINKING On short lt 1 2 second Off long nearly 2 seconds The module has power but fans are Off User can turn fans On BLINKING No alarms On 1 second Fan 1 has not been started Off 1 second Fan 2 is On continuously BLINKING No alarms On long 1 1 2 seconds Fan 1 is cycling Off short 1 2 second Fan 2 is On continuously ON continuously No alarms Both fans are On continuously BLINKING Al
33. ant Figure 37 Liebert XD system with CANbus Remote Remote Temperature Temperature Humidity Humidity Sensor A Sensor B 8 1 NOTE Q Only six Liebert XDH20S are shown in Figure 37 A CANbus network can accommodate a maximum of eight single circuited Liebert XDH20S and five single circuited Liebert XDH32S A CANbus network can accommodate a maximum of dual circuited 16 XDH20S and 10 dual circuited Liebert XDH32S Plan wiring runs for Unit to Module communication when designing the layout of the conditioned space In addition to general good wiring practices for CANbus cables Keep control and communication cables away from power cables to prevent electromagnetic inter ference e Do not bend cables to less than four times the diameter of the cable Do not deform cables when securing them in bundles or when hanging them Keep cables away from devices that can introduce noise into them eg machines fluorescent lights and electronics e Avoid stretching cables tension when pulling cables should not exceed 25 pounds 11kg Do not secure cables with any method that might damage them use approved hangers such as telephone wire RG 6 coaxial wire hangers available at most hardware stores Do not run cables through conduit Cables should be treated as any other data cable Running CANbus cables through conduit will increase the total length required Network Layout Options The Liebert XDP and Liebert X
34. arm condition condensate detected or fan failure ON continuously On long 1 1 2 seconds Fan 1 is Off short 1 2 second Fan 2 is On continuously ON continuous ON continuous Alarm condition condensate detected or fan failure y y Both fans are On continuously BLINKING On long nearly 2 seconds Remote shutdown activated Off short lt 1 2 second 10 3 1 Activating Remote Shutdown Option The optional remote shutdown option can be made operational by removing the jumper on Terminal Blocks 37 and 38 If the jumper 1s not removed the module will stay active If the remote shutdown jumper is present then remote shutdown is not operational 51 Maintenance 11 0 MAINTENANCE Minimal maintenance is required to keep the Liebert XDH operating at optimal levels The module should be cleaned and checked for damage and worn parts Suggested maintenance includes e Cooling fins Clean any dust and debris from the cooling fins taking care not to bend them e Circulating fans Clean any dust from the fans Fluorinated Greenhouse Gas Requirements Stationary air conditioning refrigeration heat pump equipment and stationary fire protection systems in the European Community market and operating with fluorinated greenhouse gases f gas such as R407C R134a R410A must comply with the F Gas Regulation EC No 842 2006 F gas The regulation prohibits among other actions venting fluorinated greenhouse gase
35. bert XD piping system that includes other Liebert XD cooling modules Controls on the front of the Liebert XDH permit independent operation of the two banks of fans Dual power connections ensure continued fan operation if one of two electrical sources fails The Liebert XDH is not expected to produce any condensation because of its location usually in the data center A condensate pan is provided as a precaution It does not have a drain fitting or other means of being emptied Optional smart modules allow remote shutdown fan failure alarms condensate detection and switching fan per bank On and Off This saves energy by permitting the module to run with two fans per bank and switching on the middle when the temperature requires all fans for cooling The complete cooling system consists of Liebert XDH modules Liebert XDP or Liebert XDC pumped refrigerant distribution units power and signal cabling and interconnecting piping see Figure 3 below Figure 3 Generic piping layout XDC Supply Lines 2 per module or Liebert XDP Pumped Refrigerant Return Lines 2 per module XDC Liebert XDCF or Liebert XDH Liebert XDP i Pumped Liebert XDO Refrigerant Liebert XDR or Liebert XDV 3 2 3 2 1 General product information Checking and Unpacking Upon arrival of the module and before unpacking verify that the labeled equipment matches the bill of lading Carefully in
36. condensate detection alarm T82 is used for normally open contact closure requirements e T83 is common T84 is used when normally closed contact closure is required e Contacts terminals 85 86 and 87 are activated by the fan failure alarm e T85 is for normally open contact closure requirements e T86 is common T87 is used when normally closed contact closure is required The condensate detection alarm and the fan failure alarm operate independently of each other e P66 and P67 are CAN bus ports Figure 36 Low voltage connections Liebert XDH smart module Condensate Detection Remote Shutdown 37 38 and Alarm Relay Dry Contacts Low Voltage Connections 82 thru 87 DPN001180 Top Half of the XDH_S Bottom Half of the XDH_S Page 6 Rev 5 35 8 0 CANbus Liebert XDP Or Liebert XDC Interconnection With Smart Modules CANBUS LIEBERT XDP OR LIEBERT XDC INTERCONNECTION WITH SMART MODULES A Controller Area Network CAN is a specialized internal communication network It allows a Liebert XDP Liebert XDC and Liebert XD smart modules to communicate without a host computer Networking the Liebert XDP or Liebert XDC to smart modules enables the smart modules to be controlled and monitored from the Liebert XDP or Liebert XDC Figure 37 shows a typical Liebert XD system in a CANbus network Liebert XD smart modules should be connected to the Liebert XDP or Liebert XDC that supplies the modules with refriger
37. e Liebert XDH Smart Module 50 10 3 LED Indicators on Liebert XDH Smart Modules 51 10 3 1 Activating Remote Shutdown Option 51 TLO MAINTENANCE i e AA A E 52 11 1 Fluorinated Greenhouse Gas Requirements 52 A o A EE 52 LS Remove ds A AAA A A aa da 52 11 4 Accessing Internal Components in the Rear of the Liebert XDH 54 11 5 Open Electric Box Liebert XDH Basic Modules 55 11 6 Open Electric Box Liebert XDH Smart Modules 56 12 0 SPECIFICATIONS eier ge et iaa Ka eaaik 57 COMPLIANCE WITH EUROPEAN UNION DIRECTIVES ca INSIDE BACK COVER Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 Figure 6 Figure 7 Figure 8 Figure 9 Figure 10 Figure 11 Figure 12 Figure 13 Figure 14 Figure 15 Figure 16 Figure 17 Figure 18 Figure 19 Figure 20 Figure 21 Figure 22 Figure 23 Figure 24 Figure 25 Figure 26 Figure 27 Figure 28 Figure 29 Figure 30 Figure 31 Figure 32 Figure 33 Figure 34 Figure 35 Figure 36 Figure 37 Figure 38 Figure 39 Figure 40 Figure 41 Figure 42 Figure 43 Figure 44 Figure 45 Figure 46 Figure 47 Figure 48 Figure 49 FIGURES Liebert XDH component locations 3 Liebert XDH model number
38. e direction 4 Repeat Steps 1 through 3 to install the bottom diffuser Part 186459G2 on the upper half of the snaps into the fittings see F Liebert XDH Figure 12 Change airflow direction Top Diffuser Part 186458G2 may be rotated 180 degrees and installed on the lower half of the Liebert XDH 15 6 0 6 1 6 2 Piping PIPING Refer to site specific drawings for general locations of the piping connections These drawings should specify where the piping connects to the Liebert XDH European Union Fluorinated Greenhouse Gas Requirements Stationary air conditioning refrigeration heat pump equipment and stationary fire protection systems in the European Community market and operating with fluorinated greenhouse gases f gas such as R407C R134a R410A must comply with the F Gas Regulation EC No 842 2006 F gas The regulation prohibits among other actions venting fluorinated greenhouse gases to the atmosphere The F Gas Regulation requires operators to use all measures that are technically feasible and do not entail disproportionate cost to prevent leakage of these gases to test for leakage regularly and to recover f gas before disposing of equipment as well as during service and maintenance Refer to the full regulation for additional details System Connection Configuration If possible connect the Liebert XDH s upper and lower refrigeration circuits to
39. e not terminated at the factory Improper termination will cause communication errors Remote Temperature and Humidity Sensors Termination The control board is terminated at the factory If a remote sensor is the last device in the CANbus chain no changes are necessary The termination jumper must be removed if a remote sensor is not the last device in the CANbus chain To remove the termination jumper 1 Remove the sensor cover 2 Place a jumper on Pins land 2 on P3 see Figure 47 3 Replace the sensor cover 44 CANbus Liebert XDP Or Liebert XDC Interconnection With Smart Modules Figure 47 Removing the remote sensor cover Remote Sensor DIPswitch and Jumper Locations 192738 Rev 4 Sensor DIPswitch and Jumper Locations To terminate a temperature and humidity sensor 1 Remove the sensor cover SC O de Rotated 180 12345678 A On ON Switches On 1 5 Jumper On 2 3 EN O lt 3 2 6 7 8 Detail Area 2 Place a jumper on pins 2 and 3 on P3 see Figure 47 3 Replace the sensor cover 8 4 2 Terminating a Smart Module Liebert XD smart modules must be properly terminated or communication errors will result Smart modules are shipped from the factory unterminated If the smart module is the last device in the chain in other words the last module is not connected to a remote sensor the smart m
40. e shot coupling Liebert XD Flex Pipe Schrader valve location 23 Hex body union nut on one shot coupling 24 Piping location and connecting sizes for pre charged modules 25 Removable coupl nho 7 26 COM in SIze d EEN 27 Liebert XD prefabricated piping assembly 28 Oil rings on header and Liebert XD Flex Pipe connectors 28 Wrench arrangement for tightening couplings 29 Detail view of Liebert XD Flex Pipe and prefabricated piping port 29 Liebert XD system with prefabricated piping assembly and Liebert XD Flex Pipe 30 Profile view of the Liebert XD system and Liebert XD Flex Pipe location 31 Piping mains without Liebert XDH and Liebert XD Flex Pipe 31 Electrical wiring entry points high voltage and low voltage 33 Basic Liebert XDH electrical connections 34 Smart Liebert XDH electrical connections 34 Low voltage connections Liebert XDH smart module 35 Liebert XD system with CANbus
41. emove the RJ11 adapter 7 Repeat for second chain if the smart modules are separated into two chains within the network 39 CANbus Liebert XDP Or Liebert XDC Interconnection With Smart Modules 8 2 CANbus Cables The Liebert XDP may be connected to the smart modules with a CANbus cable The shielded cable consists of three pairs of twisted wires with a 6 pin RJ12 connector NOTICE Risk of improper cable construction Can cause equipment damage Mismatching wire pins at the RJ12 connection will damage the CAN device Extreme caution should be taken when making cables Figure 40 CANbus cable Insulated Ground Wire DPNO00786 Typical both ends of cable Pg 1 Rev 1 Table 7 CANbus cable lengths and part numbers Dimension A Liebert Part ft gt 300157G4 30 Sen 300157G5 60 18 3 300157613 gt 300157G18 110 Se 40 CANbus Liebert XDP Or Liebert XDC Interconnection With Smart Modules Figure 41 CANbus cable plug Wire Connections Black Brown Blue Violet Yellow Green OO Om P WN 1 D ke 1 3 l 4 air32 Pin 1 5 D o ke A DPN000786 Pg 2 Rev 1 8 3 Connecting CANbus Network 8 3 1 Connection to the Liebert XDP or Liebert XDC The Liebert XDP and Liebert XDC have two CANbus ports P2 and P4 each located on the CAN isolator in the low voltage side of the electrical box see Figure 42 This allows creating two network chains to minimize the total network length
42. erences This document must be used together with site specific documentation and documentation for other parts of the system Pre Installation Checks Verify that the Liebert XDH voltage matches the available utility power The serial tag with this information is accessible by removing the Liebert XDH s rear panel The tag is on a shelf near the Liebert XDH s midline e Check the received materials to be sure all required assemblies and parts have been received If you discover any external damage report it to the shipping company and your local Emerson Net work Power representative Packing List e User manual this document Liebert XDH module e Power cords e Shipping floor mounting brackets Tie down bracket assembly Diffusers top and bottom Installation Considerations The Liebert XDH is designed for placement within a row of computer cabinets in the data center in a hot aisle cold aisle arrangement The Liebert XDH is 12 305mm wide so it takes up little space For installation arrangement see 5 1 Installing the Liebert XDH Within the Enclosure Row Be sure to follow all applicable codes Determine whether the Liebert XDH includes the condensate detection option factory installed discontinued April 2009 or the smart module control board factory installed Each of these options requires separate low voltage connections to a monitoring unit To minimize the possibility of condensation insulate all pipi
43. g is 55 F 13 C Entering Fluid Temperature Conditions and 50 F 10 C or lower dew point Electrical Requirements 220 240V 1ph 50Hz CE WER EE 208 240V 1ph 60Hz CSA A beta Two IEC320 C14 power inlets and two IEC Two IEC320 C14 power inlets and two IEC RER power cords with NEMA 5 15P plugs power cords with IEC320 C14 plugs Power consumption 1200 1150 nominal Watts Dimensions inches mm Height module only 78 1981 Height including hard piped connections 80 2032 Width 12 305 Depth 42 1067 Weight Ib kg Module only 246 112 246 112 Shipping weight 330 150 330 150 Number of Fans Airflow Nominal ft min m hr Audible Noise Sound Power bh 4000 6796 3850 6541 86 dBa 86 dBa Pipe Connections 1 2 OD Cu 7 8 OD Cu Fans and electrical components Refrigerant supply Refrigerant return Serviceable Parts Cabinet Exterior Finish Black matte finish heat fused powder coat Smart Module control board factory installed Dry contact 24VAC 1A maximum Pre Charged Refrigerant Air Diffusers R 134a refrigerant one shot couplings Uni directional or bi directional Agency CSA 60Hz CE 50Hz CSA 50 60Hz Approvals Refer to Figure 2 for complete part number 57 Specifications Table 10 Liebert XDH20 specifications XDH20BK XDH20BS XDH20SK XDH20SS Models 60Hz 50 60Hz XDH20 60Hz Nominal 98 F 37 C EAT 22kW 6 3 Tons XDH20 60Hz
44. in pressurized R 134a refrigerant inside the Liebert XDH The Liebert XD Flex Pipe with one shot couplings also contains pressurized R 134a refrigerant For Liebert XDHs with removable connections the supply piping coupling is 1 2 OD and the return piping connection is 7 8 OD Both the Liebert XDH and the Liebert XD Flex Pipe with removable couplings will have copper caps soldered in place and a low pressure nitrogen holding charge 17 Piping Figure 15 Supply and return hard piping connections 6 4 6 5 6 6 Top View Right Hand Side 3 5 8 92mm 1 2 Supply Upper Refrigeration Circuit 1 3 8 34mm 7 8 Return Upper Refrigeration Circuit 51 4 1 8 1 04mm 5 126mm Rear of Liebert XDH 7 8 Return Lower Refrigeration Circuit 1 2 Supply Lower Detail A Refrigeration Circuit Left Hand Side Insulation To minimize the possibility of condensation insulate all piping between the Liebert XDH and the Liebert XDP or Liebert XDC Venting the Holding Charge for Hard Piped or Removable Liebert XD Flex Pipe Connections The Liebert XDH in either hard piped configuration or with removable couplings 1s shipped with a low pressure holding charge about 30 psi of nitrogen to prevent oxidation and moisture This must be vented from the upper and lower refrigeration circuits before removing the copper caps NOTE This procedure is for modules with hard piped or rem
45. ing Ports N 33 Electrical Connections 7 1 Connecting High Voltage Wiring The Liebert XDH requires single phase power for normal operation The module ships with two power cords each 10 feet 8m long with NEMA 5 15 plugs which connect to common three prong outlets see Figures 34 and 35 The XDH will function properly with only one power cord The second power cord permits connection to a separate power source to increase reliability If one power source fails the cord connected to the remaining live power source will power both banks of fans If only one power source is available then only the power connection labeled SECONDARY should be connected to the power source To attach the power cords clip the plastic hangers attaching the cords to the Liebert XDH Press the appropriate end of each cord onto the electrical inlet Attach the strain relievers onto the power cords and press the assemblies into the cable exit slots Figure 34 Basic Liebert XDH electrical connections 60Hz MODELS ONLY FP Field wiring connections e at terminal strip to be NEC Class 2 Use switch contacts OS O with 75VA minimum rating N m e PS WW CH Ee gt 50Hz MODELS ONLY Field wiring connections at terminal strip for safety extra low voltage circuits only Use switch contacts rated 75VA minimum 24VAC maximum Rear Door and Side Panel not shown for clarity S S Ss Strain relief points for power cords
46. ith Step a b or c below depending on your installation a Fora non operational Liebert XD system and Liebert XDHs NOT pre charged 1 Open the return service valve first then open the supply service valve 2 Refer to the Liebert XDC or Liebert XDP user manual for procedures for evacuation leak check charging and startup 3 With the Liebert XDH fans operating cool air is discharged from the Liebert XDH b For a non operational Liebert XD system and Liebert XDHs pre charged 1 Refer to the Liebert XDC or Liebert XDP user manual for procedures for evacuation leak check charging and startup 2 With the Liebert XDH fans operating open the return service valve first then open the supply service valve Cool air is discharged from the Liebert XDH 29 Piping c For an operational Liebert XD system and Liebert XDHs pre charged 1 Open the return service valve 2 Open the supply service valve 3 With the Liebert XDH fans operating cool air is discharged from the Liebert XDH Figure 30 Liebert XD system with prefabricated piping assembly and Liebert XD Flex Pipe Return Service Valve Make sure valve is open after system leak check Supply Service Valve Make sure valve is open after system leak check Return Main Supply Main Return Liebert XD Flex Pipe from Liebert XDH module Supply Liebert XD Flex Pipe to Liebert XDH module 6 13 6 Disconnect a Liebert XD Flex Pipe from a Liebert XD System CAUTION
47. le loosening the couplings Failing to do so may cause damage Loosen the Liebert XD Flex Pipe coupling from the module with a wrench Replace the dust plug on the Liebert XD Flex Pipe Replace the dust cap on the Liebert XD module Lay the Liebert XD Flex Pipe with removable couplings aside where it will not be damaged Discard or recycle the one shot Liebert XD Flex Pipes NOTICE Risk of kinked Liebert XD Flex Pipes Can cause permanent damage and leaks in the Liebert XD Flex Pipes Do not fold or bend pipe tightly 32 Electrical Connections 7 0 ELECTRICAL CONNECTIONS The module must be installed in accordance with national wiring regulations Refer to the module s serial tag for electrical requirements Refer to Table 9 for details Replacement of any wiring or supply cord must be performed only by the manufacturer the manufacturer s service agent or a similarly qualified person WARNING A Risk of electric shock Can cause injury or death Disconnect both electric power cords before working within the module Figure 33 Electrical wiring entry points high voltage and low voltage Liebert XDH i S KE H d Y S A ee Rear of Liebert XDH RISK OF SUDDEN DISCHARGE OF P REFRIGERANT CAN CAUSE INJURY OR EQUIPMENT DAMAGE DO NOT DISCONNECT PLERS AT THE IREADED COU UNIT CABINET END WITHOUT RELIEVING PRESSURE SEE LOCAL CODES FOR SYSTEM REQUIREMENTS Low Voltage Wir
48. n refer to the Liebert Xtreme Density System Design Manual SL 16655 available at the Liebert Web site www liebert com 6 13 Field Installation of Liebert XD Flex Pipe Kit on Liebert XDH If you are not performing a service installation or a field retrofit skip this section and proceed with the instructions in 6 13 5 Connect a Liebert XDH with Liebert XD Flex Pipe to a Liebert XD System Liebert XD Flex Pipe kits are available in lengths of 4 6 8 and 10 feet 1 2 1 8 2 4 and 3 meters Connection style to the module end may be straight or 90 degrees with one shot or removable couplings Connection to the prefab piping assembly is a threaded coupling For data on acquiring the correct kit for your installation see Table 11 The Liebert XD Flex Pipe should be connected to the Liebert XD module then to the header system to ease installation and prevent twisting the Liebert XD Flex Pipe NOTICE Risk of kinked Liebert XDV Flex Pipes Can cause permanent damage and leaks in the Liebert XDV Flex Pipes Do not fold or bend pipe tightly Figure 18 Liebert XD Flex Pipe dimensions straight and 90 degree connections nN Connection Se to Prefabricated Piping assembly Connection to Prefabricated Piping assembly 90 Degree Connection 4 6 8 or 10 feet 4 6 8 or 10 feet 1 2 1 8 2 4 or 3 meters 1 2 1 8 2 4 or 3 meters Straight Connection 90 Connection to Liebert XD Connection to Liebert
49. n the back of the Liebert XDH before working within Turn off the two fan switches on the front of the Liebert XDH see Figure 49 WARNING A Risk of contact with high speed moving parts Can cause injury or death Disconnect all local and remote electric power supplies and verify that all fan blades have stopped rotating before working in the unit 1 Ensure that all electrical power to the Liebert XDH has been shut off before beginning to remove the fan tray 2 Remove four bolts on the Liebert XDH fan tray see Figure 51 3 Lift the tray out of the module to install the new tray Reverse the steps above to install a new fan tray Be certain to align the connectors including the electricity connector when installing the new fan tray 52 Maintenance Figure 51 Removing the fan tray Remove four bolts the fan tray securing 53 Maintenance 11 4 Accessing Internal Components in the Rear of the Liebert XDH The Liebert XDH rear panel can be removed to gain access to internal components such as the electronic boards and related items The panel of the basic or smart Liebert XDH is removed the same way by removing the bolts on the rear panel see Figure 52 Figure 52 Remove Liebert XDH rear panel Rear Panel of Liebert XDH Rear View 54 Maintenance 11 5 Open Electric Box Liebert XDH Basic Modules WARNING A
50. n to draw a line lengthwise across the module coupling to the Liebert XD Flex Pipe The line should parallel the Liebert XD Flex Pipe 11 Tighten the nuts an additional quarter turn judging the amount by the mark drawn in Step 10 Figure 24 Removable couplings Flange On the Liebert On the Liebert XD Flex Pipe ee XD Module Removable Female Coupling on the end of Liebert XD Flex Pipe O Ring Table 5 O ring part number Liebert Part Coupling 192917P1 FD57 1224 08 10 192917P2 FD57 1224 10 11 192917P3 FD57 1224 14 12 26 Piping 6 13 5 Connect a Liebert XDH with Liebert XD Flex Pipe to a Liebert XD System NOTICE Risk of refrigerant loss Can cause environmental pollution and equipment malfunction Before connecting the Liebert XDH with Liebert XD Flex Pipe to the prefabricated piping mains check the whole system for leaks Check the Liebert XDH to ensure that the module has no refrigerant leaks Read all instructions before beginning installation Tools Required e One adjustable wrench with a maximum adjustment size of 2 inches One torque wrench half inch drive e Crowsfoot supplied with Liebert XDP and Liebert XDC Liebert XDP or Liebert XDC user manual NOTE This operation requires two or more people SP a Ee Ss Determine the port location of the supply and return piping overhead Make sure the service valve for each port is closed Remove caps from only the required ports Do
51. nd over the top of the adjacent enclosure as shown in Figure 10 4 Mark the places where two self tapping screws will attach the tie down bracket to the adjacent cabinet 5 Taking proper precautions to collect the metal shavings and protect equipment drill holes in the adjacent cabinet for the two screws Use a vacuum cleaner or other method to remove all metal particles Position the bracket over the holes in the Liebert XDH and the adjacent cabinet Insert and tighten the four screws Tighten the M6 nut securely eo aS Figure 10 Install tie down bracket Self Tapping Screws Bracket Assembly TAKE CARE TO AVOID WIRING AND EQUIPMENT WHEN DRILLING COLLECT AND DISPOSE OF ALL METAL PARTICLES oles for screws p of adjacent sure Washer Screws Install screws into holes e factory fabricated in top of Liebert XDH module 13 9 1 2 Installing the Module Airflow Direction If the Liebert XDH is installed at the end of a row Emerson recommends using uni directional air diffusers The uni directional diffusers are designed to blow cooling air to the left the diffusers can be used for right air discharge by removing them from the Liebert XDH turning them 180 degrees then reattaching them to the Liebert XDH If the Liebert XDH is installed between racks Emerson recommends using bi directional air diffusers These diffusers blow air right and left as well as
52. ng between the Liebert XDH and the Liebert XDP or Liebert XDC If the Liebert XDH is installed at the end of a row Emerson recommends using uni directional air diffusers to direct cooling air into the cold aisle toward the equipment racks If the Liebert XDH is installed between racks within a row Emerson recommends using bi directional air diffusers directing the cooling air toward the equipment racks on either side of the Liebert XDH Table 1 Application limits Input Voltage Range of Return Air Conditions to Module Minimum Maximum Dry Bulb Temperature Relative Humidity 60 to 100 F 16 to 38 C 20 to 80 Room Preparation The room should be well insulated and must have a sealed vapor barrier The vapor barrier in the ceiling and walls can be a polyethylene film Paint on concrete walls and floors should contain either rubber or plastic NOTE The vapor barrier is the single most important requirement for maintaining environmental control in the conditioned space Outside or fresh air should be kept to a minimum when temperature and humidity must be tightly controlled Outside air adds to the cooling heating dehumidifying and humidifying loads of the site Doors should be properly sealed to minimize leaks and should not contain ventilation grilles 3 0 3 1 General product information GENERAL PRODUCT INFORMATION Product System Description The Liebert XDH is designed for placement within a row of computer
53. nomenclature 3 Genere pp ER 5 Recommended module handling equipment 7 Removing domestic shipping packaging 8 Prepare ramp to remove the Liebert XDH from shipping pallet 9 Attaching ramp removing the Liebert XDH from pallet 10 Liebert XDH dimensions 11 Caster and stabilizer location 12 AS ReaD Ree ated Bk es 13 Liebert XDH placement in enclosure row 14 Change airlow Lec Mistral daa yaaa 15 Typical Liebert XDH piping interlaced connections 16 Typical Liebert XDH piping non interlaced connection 17 Supply and return hard piping connections 18 Cenenepipine layouts A A A E A ta 19 Hard piped Connection MASA a Saw KA oe PE ds ae ad 20 Liebert XD Flex Pipe dimensions straight and 90 degree connections 21 Piping location and connecting sizes for pre charged modules 22 Male coupling on Liebert XD cooling module 23 Female on
54. odule control board must be terminated Refer to 11 2 Internal Access for instructions to access the module control board To terminate a smart module 1 Locate the smart module control board 2 Locate P78 on the control board see Figure 48 3 Place a jumper on P78 see Figure 48 To unterminate a smart module Refer to the appropriate Liebert XD smart module for instructions to access the control board 1 Locate the smart module control board 2 Locate P78 on the control board see Figure 48 3 Remove the jumper from P78 see Figure 48 45 Switches Off 2 3 4 CANbus Liebert XDP Or Liebert XDC Interconnection With Smart Modules Figure 48 Liebert XD smart module R38 location P78 Terminated With Jumper no pins showing P78 Not Terminated one pin showing e Control Board Jumper removed to show pins e P78 Location on 8 4 3 Testing Network Termination Required Tools RJ11 6 way Modular Adapter use Paladin Tools RJ11 6 way modular adapter Paladin part num ber 1908 or similar tool Ohmmeter Checking the Chain Termination This procedure applies to the last device connected to each end of the chains either a Liebert XD smart module or a remote temperature and humidity sensor This procedure requires the Liebert XDP or Liebert XDC and the connected modules to be Off l eS ZS Ss 9 Turn Off the Liebert XDP or Liebert XDC If needed refer to SL 16644
55. ovable Coupling to a Liebert XD Cooling Module Tools Required e One adjustable wrench with a maximum adjustment size of 2 inches One torque wrench half inch drive see Table 4 for sizes Check the Liebert XD Flex Pipe for proper length Remove the protector plugs from the Liebert XD Flex Pipe Remove the protector cap from the couplings on the module Wipe the couplings and threaded surfaces clean of particles and other foreign substances of fe ee ee Verify the O ring is in place on the module coupling Should additional O rings be required refer to Table 5 6 Place the Liebert XD Flex Pipe assembly so that the flat face of the flange on the Liebert XD Flex Pipe coupling comes into contact with the O ring on the module coupling 7 Thread the coupling halves together by hand to ensure that the threads mate properly Table 4 Torque and wrench sizes for connecting Liebert XD Flex Pipe to the Liebert XDH with removable couplings Coupling em Torque Union Nut Size Only ft lb Nm 15 16 24 40 55 1 1 8 29 60 80 1 5 8 41 110 150 If a torque wrench is not available continue with the steps below 8 Hold the Liebert XD Flex Pipe so that it does not rotate and use the torque wrench to tighten the union nut to the proper value shown in Table 4 9 Tighten the union nut on the Liebert XD Flex Pipe to the coupling on the module with the adjustable wrench until a definite resistance is felt 10 Use a marker or pe
56. ovable couplings ONLY Do not vent a pre charged Liebert XDH or pre charged Liebert XD Flex Piping To vent the holding charge 1 Find the four Schrader valves that retain the nitrogen holding charge in the Liebert XDH Three are near the top of the Liebert XDH one Schrader valve is in the bottom half of the Liebert XDH 2 Vent the holding charge in the circuits by depressing the pin in a Schrader valves on either the supply or return line for each circuit see Detail Ain Figure 15 3 Replace and secure the cap on the Schrader valve that was opened Brazing Preparations The assembly and connection means used for piping in the Liebert XD system are similar to those used for conventional refrigeration systems All piping should be installed with high temperature brazed joints Soft soldering 1s not recommended After the holding charge has been vented and before brazing wrap a wet rag around the copper couplings before removing the caps to prevent internal component damage A torch can be used to remove the caps over the ends of the supply and return lines During brazing the lines must be filled with flowing dry nitrogen to prevent excessive oxidation and scale formation inside the piping Prevailing good refrigeration practices must be employed for piping supports leak testing dehydration and charging Failure to use good system practices may result in damage to the system Refer to the ASHRAE refrigeration handbook for general good prac
57. plings to the values in Table 6 NOTICE Risk of twisted or kinked piping Can cause flow restriction or leaks It is imperative that the brass body on the Liebert XD Flex Pipe coupling does not rotate while the union nut is being tightened If the brass body rotates it may damage the Liebert XD Flex Pipe Table 6 Torque for connecting Liebert XD Flex Pipe to prefabricated piping Coupling Size Crowsfoot Size in mm Torque ft lb Nm 1 3 16 30 25 8 30 35 1 5 8 41 48 0 60 65 1 31 32 50 62 7 80 85 28 Piping Figure 28 Wrench arrangement for tightening couplings Crowsfoot Wrench holding brass body of female coupling stationary to prevent it from turning Torque Wrench e AA y Figure 29 Detail view of Liebert XD Flex T and prefabricated piping port Service Valve Note Make sure the valve is closed before attaching Tighten with Liebert XD Flex Pipe to the system torgue wrench DO NOT OVERTIGHTEN Hold threaded coupling here with a wrench to keep P4 the brass body on the female coupling KEES from rotating while tightening collar with a torque wrench 11 Repeat Steps 3 through 10 for the remaining Liebert XD Flex Pipe 12 Once the supply and return connections are completed check to make sure the Liebert XDH fan power switches are Off then connect the power cords to their power sources 13 Turn the fan switches On Ensure that the fans operate 14 Proceed w
58. ply line from Liebert XDP supply to farthest Liebert XD cooling module Liebert XDP return line from farthest Liebert XD cooling module to Liebert XDP return NOTE To minimize the amount of pumped refrigerant required do NOT oversize the piping See Figure 17 for piping recommendations for hard piping between the Liebert XDH and the header system Figure 16 Generic piping layout To Chiller _ Lieber XDC wen Condenser or e gf ga Ae or Drycooler Liebert XDP Pumped pony module A Ines Refrigerant R134a Return Lie Lines Cooling Wess E Cooling g l Liebert XDCF Liebert XDH Liebert XDO l ebert EXD Liebert XDR Cooling Module J or Liebert XDV To Chiller Condenser or Drycooler or Liebert XDP Pumped Refrigerant R134a 19 6 8 Piping Hard Piped Connection Sizes The supply piping for each refrigeration circuit is 1 2 OD copper pipe The return piping for each circuit is 7 8 OD copper Liebert XDHs that are intended for hard piped connections will have copper caps soldered in place and a holding charge of nitrogen Figure 17 Hard piped connection diagram 6 9 6 10 Return Main seen from end 2 1 8 O D Recommended Arc or 2 5 8 O D Acceptable Arc Supply Main seen from end 1 1 8 O D or 1 3 8 O D 7 8 Refrigerant Grade Full Port Ball Valve Field Supplied and Field Installed 1 2 Refrigerant Grade
59. rcuited Liebert XDHs To Liebert XDP or Liebert XDC unit Electric Box in Middle of Cooling Module typical Electric Box on Bottom of Cooling Module XDH20 32 First typical GE Cooling Module XDH20 32 Next Cooling Module To next Liebert XDH Cooling Module or DPNO00785 Remote T H Sensor B Pg 2 Rev 0 43 CANbus Liebert XDP Or Liebert XDC Interconnection With Smart Modules Liebert XDH Dual Circuited CANbus Connections The Liebert XD smart modules are to be tied only to the Liebert XDP or Liebert XDC that they are mechanically connected to For Liebert XDHs with the top and bottom circuits tied to different Liebert XDPs or Liebert XDCs the control boards must be connected in the same manner See Figure 46 Figure 46 Dual circuited Liebert XDHs 8 4 8 4 1 To next Liebert XDH To Liebert XDP 2 or or Remote T H Sensor B Liebert XDC 2 To Liebert XDP 1 connected to Liebert XDP 1 or Liebert XDC 1 or Liebert XDC 1 Electric Box in Middle of Cooling Module typical Electric Box on Bottom of Cooling Module typical XDH20 32 First XDH20 32 Next Cooling Module Cooling Module To next Liebert XDH Cooling Module or Remote T H Sensor B to Liebert DPNO000785 XDP 2 or Liebert XDC 2 Pg 2 Rev 0 CANbus Termination The last device in the chain must be terminated e The remote temperature and humidity sensors are terminated at the factory The Liebert XD smart modules ar
60. rotating may cause a system malfunction 10 1 Start the Liebert XDH Basic Module At least one bank of the Liebert XDH s fans must be On before starting the Liebert XDP or Liebert XDC that will supply refrigerant to the Liebert XDH modules To start the Liebert XDH 1 Press either of the rocker switches to turn On one or both of the Liebert XDH s banks of fans see Figure 49 Pressing the left switch starts the fans in the upper half of the Liebert XDH the right switch the lower fans 2 Wait for the fans to start and then start the refrigerant supply unit either the Liebert XDP or Liebert XDC For that procedure refer to the unit s user manual available at Liebert s Web site www liebert com Figure 49 Fan switches Liebert XDH basic modules Secondary Circuit Breaker Switch for Upper Bank of Fans Switch for Lower Bank of Fans Primary Circuit Breaker Front of XDH 49 Operation 10 2 Start the Liebert XDH Smart Module When the Liebert XDP XDC with Liebert 1COM is turned On the Liebert XDH s fans will turn On automatically To start the Liebert XDH l Figure 50 Turn On one or both of the Liebert XDH s banks of fans by pressing either of the push button switches on the front of the module see Figure 50 a Pressing the left push button toggle switch starts the top and bottom fans in the upper half of the Liebert XDH the right toggle switch starts the top and bottom f
61. rt the Liebert XDH Basic Module or 10 2 Start the Liebert XDH Smart Module 7 Shut down the Liebert XD module __ 8 Piping insulated Charging with Refrigerant and Starting the Liebert XD System The Liebert XD System must be completely installed before it 1s charged with refrigerant After installation is complete refer to the Liebert XDP or Liebert XDC user manual for instructions on charging the Liebert XD modules with refrigerant and starting the system The complete Liebert XD system includes all Liebert XD cooling modules a Liebert XDC or Liebert XDP unit and any other connected equipment 48 Operation 10 0 OPERATION The Liebert XDH s controls are on the front of the module at the Liebert XDH s midline for easy access Each switch controls the operation of one bank of three fans see Figure 49 for basic module Figure 50 for smart module The separate switches permit the use of only one bank of fans at a time reducing the airflow if the Liebert XDH s full cooling capacity is not needed NOTICE Risk of improper operation Can cause equipment damage At least one of the Liebert XDH s banks of fans must be turned on before either the Liebert XDP or Liebert XDC is switched On At least one of the Liebert XDH s banks of fans must be operating at all times that the Liebert XDP or Liebert XDC is operating Operating either the Liebert XDP or the Liebert XDC without at least one of the Liebert XDH s banks of fans
62. s supply and return Liebert P N Liebert P N ee Length Straight Connection 90 Degree Connection ft m Assembly Assembly Supply Return 10 3 0 186566G2 186565G2 7 178 9 229 Description Liebert XD 8 2 5 186566G3 186565G3 Flex Pipe Kit 6 1 8 186566G1 186565G1 4 1 2 186566G4 186565G4 Table 12 Liebert XD Flex Pipe removable assemblies supply and return Liebert P N Liebert P N ee PA Length Straight Connection 90 Degree Connection ft m Assembly Assembly Supply Return 10 3 0 187865G2 187864G2 7 178 Description Liebert XD 8 2 5 187865G3 187864G3 Flex Pipe Kit 6 1 8 187865G1 187864G1 4 1 2 187865G4 187864G4 Table 13 CANbus cable lengths and part numbers MET Liebert Part ft m 300157G14 50 15 2 300157G15 70 21 3 300157G16 80 24 4 300157G17 100 30 5 300157618 110 33 5 59 60 Specifications COMPLIANCE WITH EUROPEAN UNION DIRECTIVES 4 Fabbricante Manufacturer Hersteller Fabricant Fabricante d Fabricante Tillverkare Fabrikant Valmistaja Produsent E M E RS ON Fabrikant Kataoxevaomt Producent Liebert Corporation 1050 Dearborn Drive P O Box 29186 Columbus OH 43229 USA Il Produttore dichiara che se munito di marchio CE il prodotto conforme alle direttive dell Unione europea The Manufacturer hereby declares that this product when bearing the CE mark conforms to the European Union directives
63. s from each of the two tie down brackets one located on either end of the Liebert XDH see Figure 7 9 Remove the two tie down brackets 10 At least two properly trained personnel may roll the Liebert XDH down the ramp and off the pallet onto a flat surface Figure 6 Prepare ramp to remove the Liebert XDH from shipping pallet AS eon V Mh Ar Lag screw to secure bracket to ramp General product information Attaching ramp removing the Liebert XDH from pallet Figure 7 A U Grp Vi T Sex E SN Tie Down Bracket removed from pallet ZA screw 1 of 6 Bracket installed securing ramp to shipping pallet 10 Mechanical Considerations 4 0 MECHANICAL CONSIDERATIONS 4 1 Liebert XDH Dimensions Figure 8 Liebert XDH dimensions 12 80 2032mm 78 1981mm FRONT 4 2 Determining Placement in the Conditioned Space Refer to site specific drawings for exact spacing The Liebert XDH should be placed among the cabinets that generate the greatest amount of heat If heat loads are dispersed evenly throughout the room the Liebert XDH modules may be spread out accordingly The Liebert XDH is engineered to fit among computer enclosure cabinets Figure 8 above illustrates the dimensions 11 9 0 INSTALLING THE MODULE Installing the Module 5 1 Installing the Liebert XDH Within the Enclosure Row Built in casters allow rolling the Lieber
64. s to the atmosphere The F Gas Regulation requires operators to use all measures that are technically feasible and do not entail disproportionate cost to prevent leakage of these gases to test for leakage regularly and to recover f gas during equipment service and maintenance and before disposing of equipment Refer to the full regulation for additional details Internal Access WARNING A Risk of electric shock Can cause injury or death System contains hazardous electrical voltage Disconnect both power cords from the electrical supply outlets or from the receptacles on the back of the Liebert XDH before working within Turn off the two fan switches on the front of the Liebert XDH see Figure 49 The conditions required for sensitive electronic equipment should preclude the accumulation of appreciable amounts of dust in the Liebert XDH Most of that small amount should be found on the coils which are accessible by opening the rear door of the module The fans on the front may be cleaned by removing the front grilles which are secured with snap on connections The rear door and the fan tray on the front of the Liebert XDH are easily removed for maintenance A wiring diagram is provided on the center shelf Remove the Fan Tray WARNING 4 Risk of electric shock Can cause injury or death System contains hazardous electrical voltage Disconnect both power cords from the electrical supply outlets or from the receptacles o
65. siness Critical Continuity from grid to chip for telecommunication networks data centers health care and industrial facilities Emerson Network Power provides innovative solutions and expertise in areas including AC and DC power and precision cooling systems embedded computing and power integrated racks and enclosures power switching and controls infrastructure management and connectivity All solutions are supported globally by local Emerson Network Power service technicians Liebert AC power precision cooling and monitoring products and services from Emerson Network Power deliver Efficiency Without Compromise by helping customers optimize their data center infrastructure to reduce costs and deliver high availability While every precaution has been taken to ensure the accuracy and completeness of this literature Liebert Corporation assumes no responsibility and disclaims all liability for damages resulting from use of this information or for any errors or omissions 2008 Liebert Corporation All rights reserved throughout the world Specifications subject to change without notice Liebert is a registered trademark of Liebert Corporation All names referred to are trademarks or registered trademarks of their respective owners SL17210_REV13_06 11 Emerson Network Power The global leader in enabling Business Critical Continuity IM AC Power E Embedded Computing E Outside Plant Technical Support Service Web
66. spect all items for either visible or concealed damage Damage should be immediately reported to the carrier and a damage claim filed with a copy sent to Emerson or to your sales representative If you later find any concealed damage report it to both the shipping company and your local Emerson representative Check to be sure all required assemblies and parts have been received The Liebert XDH is shipped in protective packaging and secured to a pallet see Figure 5 Do not remove these protective items from the Liebert XDH before it is at the installation location When unpacking and handling the Liebert XDH exercise extra care to prevent damage CAUTION Risk of sudden refrigerant discharge Can cause loss of charge and minor injury If the optional pre charged option is chosen the Liebert XDH module is shipped with a full charge of R 134a refrigerant under pressure Do not remove the pipe caps or plugs before the module is ready for connection to Liebert XD Piping Supply and return fittings on the pre charged Liebert XDH modules are one shot couplings Do not disconnect one shot couplings after they have been connected Disconnection will release pressurized R 134a refrigerant from the Liebert XDH Recyclable Packaging AY All material used to package this module 1s recyclable Please save for future use or dispose of the material appropriately R C A WARNING XA Risk of top heavy module falling over Can cause equipment damage
67. t XDH into position for installation Stabilizers reduce the likelihood of the module tipping over These stabilizers must be removed before the module is positioned in the row Adjustable leveling feet prevent it from moving after positioning Once positioned the Liebert XDH must be secured either to the floor with the included shipping brackets or to an adjacent cabinet An adjustable bracket Liebert P N 187642G1 for attaching the Liebert XDH to an adjacent cabinet is included with each module Figure 9 Caster and stabilizer location FRONT Bottom View Casters one at each corner Stabilizers one at each corner A l Adjustable Foot one at each corner 5 1 1 Install a Tie Down Bracket Optional An optional tie down bracket may be installed on the Liebert XDH to secure it in the row The bracket keeps space between the Liebert XDH and adjacent equipment constant preventing vibration What s Included e Bracket two piece assembly e M6 Bolt 1 e M6 Nut 1 e Washer 1 Self tapping screws 4 Tools Required e Screwdriver Phillips 2 Bit Drill Drill Bit 1 8 diameter e Adjustable wrench 12 Installing the Module To install the tie down bracket 1 Insert the M6 bolt through the longest slot in the tie down bracket as shown in Figure 10 2 Secure the tie down bracket loosely with the washer and M6 nut 3 Position the tie down bracket on top of the Liebert XDH over the factory fabricated holes a
68. tice refrigeration 18 Piping 6 7 Recommended Piping Size NOTICE Risk of oversized piping Can require the use of excess refrigerant To minimize the amount of refrigerant required do NOT oversize the piping Connect the main pipes between the Liebert XDH branch piping and the Liebert XDP or Liebert XDC according to Table 2 Elbows and restrictions must be minimized to ensure good fluid flow See Table 2 below for recommended pipe sizes and Figure 3 for piping segment locations Table 2 Branch piping sizes for pumped refrigerant loop Key to Piping Pipe Function in Figure 16 Size Equivalent Pipe Length 1 1 8 OD for lengths up to 60 feet 18 3m OD for lengths up to 60 feet 1 1 8 OD for lengths up to 60 feet 18 3m 1 3 8 OD for lengths more than 60ft 18 3m but less than 175ft 53m 2 2 1 8 OD for lengths up to 60 feet OD for 2 1 8 OD for lengths up to 60 feet up to 60 feet 2 5 8 OD for lengths more than 60ft 18 3m but less than 175ft 53m Supply Line Drop from the Supply Main 1 2 OD 0 430 ID for lengths up to 10 feet 3m to the Liebert XDH 1 2 OD 0 430 ID for lengths up to 10 feet 3m l 7 8 OD 0 545 ID for lengths up to 10 feet 3m OD 0 545 ID for 7 8 OD 0 545 ID for lengths up to 10 feet 3m up to 10 feet 3m Return Line Drop from the Liebert XDH to the Return Main 1 1 8 OD 1 025 ID for lengths more than 10 but less than 25ft 3 7 6m Liebert XDP sup
69. tion for additional details Liebert XDH Component Locations and Model Number Nomenclature 1 0 LIEBERT XDH COMPONENT LOCATIONS AND MODEL NUMBER NOMENCLATURE Figure 1 Liebert XDH component locations Removable Fan Tray Evaporator Fans Switch Cover On Off Switch Liebert XDH Basic Circuit Breaker Liebert XDH Basic Return Line Bottom Circuit Return Line Top Circuit Supply Line Bottom Circuit Supply Line Top Circuit Evaporator Coils Serial Tag Quarter Turn Fasteners Rear Panel IEC Primary and Secondary Power Inlets Liebert XDH Basic Low Voltage Terminal Block Liebert XDH Smart Module e Condensate Detection e Remote Shutdown e Fan Failure Alarm IEC Primary and Secondary Power Inlets Liebert XDH Smart Module Circuit Breakers Liebert XDH Smart Modules On Off Push Button Switch Liebert XDH Smart Modules LEDs Liebert XDH Smart Modules Figure 2 Liebert XDH model number nomenclature Example XDH32BK XD H 32 B K Liebert 20 Model Size K 120V 1ph 60Hz Domestic Packaging X treme Heat 32 Model Size S 208 240 1ph 60Hz E Export Packaging Density System 220 240 1ph 50Hz Horizontal Row Cooler B Basic Module Hard Piped AO S Smart Module P Pre Charged One Shot Coupling R Removable Coupling 2 0 2 1 2 2 2 3 2 4 2 4 1 Introduction INTRODUCTION Ref
70. to the front Two diffusers were shipped with the Liebert XDH If uni directional diffusers were ordered the diffuser with the part number 186458G2 is designed for installation on the upper half of the Liebert XDH The other diffuser for use on the lower half of the Liebert XDH has the part number 186459G2 When installed in these positions the diffusers will direct the airflow to the left If directing the airflow in the opposite direction would improve cooling the diffusers may be switched See Install Air Diffusers for Best Airflow Direction on page 15 Figure 11 Liebert XDH placement in enclosure row Hot HaX vega Hax 319q917 Hax 319q917 HAX 319q917 Hax ETEL Elg Hax weqer Hax ETEL Elg Hax Hago HAX 319q917 Hax 319q917 HAX 319q917 Hax 319q917 14 Installing the Module Install Air Diffusers for Best Airflow Direction Remove the top diffuser Part 186458G2 from its packaging 1 Check the top diffuser s fittings and insertion holes on the Liebert XDH to determine how the diffuser should be installed the diffuser may be attached only one way on the top half of the Liebert XDH 3 Rotate the diffuser 180 degrees and press it against the lower half of the Liebert XDH until it 2 igure 12 The vanes in the diffuser now point in the opposit
71. ty headgear gloves shoes and glasses should attempt to move lift remove packaging from or prepare module for installation CAUTION Risk of improper operation and overpressurization Can cause equipment damage or personal injury Only qualified personnel trained in HVAC installation or service should install or service this equipment Read all installation operating and safety instructions before proceeding NOTICE Risk of overhead interference Can damage module or structure The module may be too tall to fit through a doorway while on the skid Measure the module and doorway heights and refer to the installation plans before moving the module to verify clearances Fluorinated Greenhouse Gas Requirements European Union Stationary air conditioning refrigeration heat pump equipments and stationary fire protection sys tems in the European Community market and operating with fluorinated greenhouse gases f gas such as R407C R134a R410A must comply with the F Gas Regulation EC No 842 2006 F gas The regulation prohibits among other actions venting fluorinated greenhouse gases to the atmo sphere The F Gas Regulation also requires operators to use use all measures that are technically feasible and do not entail disproportionate cost to prevent leakage of these gases to test for leakage regularly and to recover f gas during equipment service and maintenance and before disposing of equipment Refer to the full regula
Download Pdf Manuals
Related Search
Related Contents
1107 Manual Revolution.indt asw-8 asw-10 powered subwoofer Manual técnico de venta 2014 CombiBloc - Johnson Pump ダウンロード Manual de instrucciones Sennheiser BTD 300 Audio Copyright © All rights reserved.
Failed to retrieve file