Home

Operation - FC Connect

image

Contents

1. OO LA 09 NO OO X po OO OO NO 09 LA O gt O NO J p p CO gt iN NO p OQO ON p NO be N CO WN WN NO NO o J WN NO No Ln No No Co QU amp GN U J N NO No O lt 7 NO D U OO 105 157 37 162 35 167 32 110 137 63 142 08 146 52 115 120 68 124 66 128 63 120 106 09 109 65 113 21 125 93 48 96 68 99 88 The engine coolant temperature sensor is fitted on the thermostatic oil cup and uses a double NTC thermistor with negative resistance coefficient to determine the temperature of the liquid One NTC thermistor sends a signal to the injection control unit whilst the other sends a signal to the temperature gauge and the warning light in the instrument panel http aftersales fiat com elearn frmMainPage aspx nodeID 250011755 amp languageID 5 01 2012 Contents Page 11 of 11 The sensor 1s designed using semiconductor technology In other words the resistance level decreases if sensor element temperature increases with the coolant temperature The non linear change in resistance is greater for changes at low temperatures and lesser for changes at high temperatures http aftersales fiat com elearn frmMainPage aspx nodeID 250011755 amp languageID 5 01 2012 Contents Page of 8 250 DUCATO 3 0 JTD EURO V EUROS General information The EDC17CP52 Common Rail is a high pressure electronic injection system for fast direct inject
2. Various models All types Diesel with DPF Nuova 500 Panda Grande Punto Idea Stilo Nuova Bravo Multipla Sedici Croma Doblo Fiorino Qubo Ducato 250 Ulysse 179 Scudo 272 1080 B 810 AA DPF PARTICULATE FILTER Information to the network Supersedes the following SN 10 31 07 dated 16 11 2007 CD 06 2007 TYPES OF PARTICULATE FILTERS The particulate filter inserted in the exhaust system and integrated with the catalytic converter consists of a monolithic porous silicone carbide based support It allows to reduce the amount of emitted particulate to less than one thousandth including the smallest sized particles lt 20nm It is a mechanical filter provided with a series of channels in which the particulate is trapped while the exhaust gases cross the porous walls Fig 1 Fig 1 i a GLOW wea a Ay G AA x A Input exhaust gases B Output filtered exhaust gases Because these filters are mechanical traps they need to be regularly cleaned out The cleaning procedure is called regeneration During the regeneration process the particulate contained inside the filter is burnt thus clear the pores in which the powder is collected This process is run in average every 800 1000 km but may be needed more frequently less than 400 km if the vehicle is used in particularly demanding conditions the distance travelled between one regeneration and the next depends on the operating conditions an
3. 8 Fuel pump check valve 9 High pressure pump http aftersales fiat com elearn frmMainPage aspx nodeID 250006610 amp languageID 5 01 2012 Contents Page 3 of 4 10 Pressure relief valve 11 High pressure supply pipe 12 Common Rail return pipe 13 Injectors 14 Pressure regulator valve on rail Circuit pressures e a 4 4 bar lt p lt 5 8 bar e b 4 4 bar lt p lt 6 0 bar e c p lt 2 bar e d p lt 10 bar Relative pressure Absolute pressure Pressure regulator The fuel pressure regulator is fitted to the low pressure circuit of pump CP4 1 The pressure regulator modulates the amount of fuel sent to the high pressure circuit on the basis of commands received directly from the engine management control unit The pressure regulator consists mainly of the following components e connector 6 Case e solenoid e preload spring e plunger cylinder In the absence of a signal the pressure regulator is normally open 1 e with the pump in maximum output condition The engine control unit modulates fuel flow in the high pressure circuit via a PWM Pulse Width Modulation signal This is achieved by partly closing or opening fuel passage cross sections 1n the low pressure circuit at 1 Connector 2 Fuel outlet ports http aftersales fiat com elearn frmMainPage aspx nodeID 250006610 amp languageID 5 01 2012 Contents Page 4 of 4 3 Fuel in
4. Contents Page 6 of 8 control unit controls the regulator to produce optimum line pressure Fuel metering The fuel metering is calculated on the basis of e accelerator pedal position e engine rpm e quantity of air drawn in The result can be corrected according to water temperature and the percentage of NOx nitrogen oxide in the exhaust gases or to prevent noise fumes overloading overheating turbine overrevs The supply can be changed in case of e intervention of external devices ABS ABD EBD etc e serious problems that cause a load reduction or the engine stop After determining the mass of air drawn m by measuring its volume and temperature the control unit calculates the corresponding mass of fuel to be injected m the cylinder concerned mg for each supply also taking the diesel fuel temperature into account The fuel mass thus calculated 1s first converted into volume mm3 for each supply and then into crank degrees that is duration of injection Flow correction according to water temperature The operation resistance is higher when the engine is cold the mechanical friction is high the oil is still very viscous and the various clearances are not yet optimised In addition the injected fuel tends to condensate on the metal surfaces which are still cold When the engine 1s cold the fuel metering is therefore higher Flow correction to prevent noise fumes or overloading The behaviours which could cause th
5. The accumulation of particulate whilst the engine is running gradually causes the filter to become clogged Catalytic converter The catalytic converter reduces the carbon monoxide CO and unburnt hydrocarbons HC transforming them into carbon dioxice CO2 and water vapour The catalytic converter consists of e a stainless steel outer casing e thermal insulation e ahoneycomb ceramic structure impregnated with precious metals l stainless steel outer casing 2 thermal insulation 3 ceramic structure The chemical transformation inside the catalytic converter increases during the post injection stage with the combustion of unburnt hydrocarbons HC This post combustion which increases the temperature of the exhaust gases catalytic combustion 1s controlled by the temperature sensors upstream and downstream of the catalytic converter An initial series of post injections gradually increases the catalyzation process until the maximum http aftersales fiat com elearn frmMainPage aspx nodeID 250005171 amp languageID 5 01 2012 Contents Page 4 of 10 conversion level is reached around 98 starting at 200 C Beyond this level a further increase in the temperature of the exhaust gases almost totally destroys the hydrocarbons it is possible that non harmful white fumes may be produced during acceleration following the prolonged use of the vehicle at low speeds these fumes are produced inside the catalytic converter wh
6. Fig 1 Front view Van version http aftersales fiat com elearn frmMainPage aspx nodeID 250925902 amp languageID 5 01 2012 Contents Page 2 of 11 The identification data of the new versions and data related to the new engines are given here below along with the main technical data and specifications for new MY 2011 versions DIMENSIONS Dimensions are expressed in mm and refer to the vehicle fitted with standard tyres Height is measured with vehicle unladen Fig 2 Van version Medium wheelbase Long wheelbase Extra long wheelbase Short wheelbase http aftersales fiat com elearn frmMainPage aspx nodeID 250925902 amp languageID 5 01 2012 Contents Page 3 of 11 I 1790 1790 1790 1790 1790 1790 1790 1790 The sizes vary according to the versions within the limits indicated above Fig 3 Truck version A 3000 3450 4035 4035 3000 a 4035 4035 e e R 9 eim fue ua que bo po eo Jess us use usa fonsa use usa ua e imo imo fimo Quo imo fimo mo mo efe ow fw e te fe fe The sizes vary according to the versions within the limits indicated above http aftersales fiat com elearn frmMainPage aspx nodeID 250925902 amp languageID 5 01 2012 Contents Chassis cowl Short Medium Long 6 860 5 8 A 1790 1790 1790 1790 1980 1980 1980 1980 Extra long Short Medium Long wheelbase wheelbase wheelbase wheelbase wheelbase wheelbase wheelbase wheelbase Low roof Lo
7. earth 45 Fuel pressure control solenoid valve on rail 46 Injector 1 negative control 47 Injector 4 negative control 48 Turbine vane position sensor positive 49 NC 50 EGR solenoid valve control 51 Oil level sensor signal 52 Engine oil pressure switch 53 Timing sensor signal 54 Fuel temperature sensor negative 55 Engine coolant temperature sensor signal 56 NC 57 Fuel temperature sensor signal 58 NC 59 NC 60 Fuel pressure regulator on pump Rpm sensor Characteristics The rpm sensor is mounted on the engine block and faces the phonic wheel on the crankshaft it is a inductive sensor and therefore works by calculating variations in the magnetic field generated by the passage of the teeth on the phonic wheel 60 2 teeth The injection control unit uses the RPM signal to e determine the rotation speed e determining the angular position of the crankshaft http aftersales fiat com elearn frmMainPage aspx nodeID 250011755 amp languageID 5 01 2012 Contents Page 5 of 11 Operation The changeover from full to empty determined by the presence or absence of a tooth brings about a change in the magnetic flux sufficient to generate an induced alternating voltage proportional to the number of teeth on the ring or phonic wheel The frequency and amplitude of the voltage sent to the electronic control unit provides it with details of crankshaft angular speed 1
8. 0 1 Rated resistance at 0 C 200 Ohm Operating range from 40 C to 1000 C The electrical opration of the sensors is always monitored diagnosed whilst a diagnostic check on the consistency of the value measured compared with the other temperature sensors in the engine management system is only carried out during starting The table below contains the resistance values for the sensor with a casing at a 90 angle depending on the exhaust gas temperature C a 5 O e Do o mo 20 5 239 0 276 4 313 2 http aftersales fiat com elearn frmMaimPage aspx nodeID 250005171 amp languagelID 5 01 2012 5 U U 5 U 5 U U U U U Contents Page 6 of 10 400 488 6 Differential pressure sensor The sensor comprises e an electronic circuit for amplifying the signal e a sensitive diaphragm The diaphragm is subjected on one side to the catalytic converter inlet pressure upstream and on the other side to the filter oulet pressure downstream The sensor provides a voltage proportional to the differential pressure measured by the diaphragm AP upstream pressure downstream pressure never mix up the inlet and outlet pipes because the management of the particle filter depends on the information produced by this sensor l s 1 HI entry of information upstream of the filter 2 REF entry of information downstream of the filter 3 connector 4 differential pressure sensor http aftersales
9. 2012 Contents Page 5 of 11 The main features and specifications of the different engines are provided below MAIN SPECIFICATIONS 2 0 MultiJet 115 Engine marking 250A1000 Total displacement 1956 cm3 EEC max power 84 6 kW 115 HP 3750 rpm EEC max torque 280 Nm 1500 rpm DOHC Timing system gt gt ct ct DU DU UT UT U U D D D D Q Q O O Power supply Common Rail MultiJet direct injection 2 3 MultiJet 130 Engine marking F1AE3481D Total displacement 2287 cm3 EEC max power 96 kW 130 HP 3600 rpm EEC max torque 320 Nm 1800 rpm Timing system DOHC gt gt CT CT Ia Ia UT UT U D D D D Q Q O O Power supply Common Rail MultiJet direct injection 2 3 MultiJet 150 Engine marking FIAE3481E Total displacement 2287 cm3 EEC max power 109 kW 148 HP 3600 rpm EEC max torque 350 Nm 1500 rpm gt gt ct ct DU DU UT UT U U D D D D Q Q O O Timing system DOHC http aftersales fiat com elearn frmMainPage aspx nodeID 250925902 amp languageID 5 01 2012 Contents Page 6 of 11 Power supply Common Rail MultiJet direct injection 2 0 MultiJet 115 ENGINE This engine is featured by low consumption and high flexibility and is the ideal solution for being used especially on short medium journeys Fig 4 When compared with the previous 2 2 JTD 100 HP Euro 4 engine the new 2 0 MultiJet 115 HP engine has increased pow
10. Brass bush 2 Permanent magnet 3 Plastic sensor casing 4 Coil winding 5 Core 6 Ring gear or phonic wheel 7 Coaxial paired cable or electrical connection The recommended distance gap between the end of the sensor and flywheel to produce correct signals should be between 0 8 and 1 5 mm This distance is not adjustable Therefore if the gap is found to be outside the tolerance limits check the condition of the sensor and phonic wheel http aftersales fiat com elearn frmMainPage aspx nodeID 250011755 amp languageID 5 01 2012 Contents Page 6 of 11 ALLAN VAAL RIA H Mi i Iu iV Tt i timing sensor Characteristics The timing sensor is a Hall effect sensor It is located on the engine oil filler cap on the upper cylinder head The timing sensor detects the engine operating phase by reading the position of the inlet shaft drive gear The injection control unit uses the timing sensor signal to identify T D C at the end of compression 1 Timing sensor Operation A current carrying semiconductor layer immersed in a normal magnetic field force lines at right angles to current direction generates a potential difference known as a Hall voltage at its terminals http aftersales fiat com elearn frmMainPage aspx nodeID 250011755 amp languageID 5 01 2012 Contents Page 7 of 11 If current intensity remains constant the generated voltage depends on magnetic field intensity alone Periodi
11. DPF must be replaced if the regeneration attempt fails E A major fuel flow limitation strategy is activated to protect the engine The vehicle performance will be reduced as a consequence Perforated filter zone a the differential pressure is lower than a given threshold which depends on flow rate In this condition the engine ECU indicates perforated filter state by lighting up the diagnostic warning light E5 applications only DPF FILTER REGENERATION TYPES The DPF is a mechanical filter in which particulate is trapped Periodical cleaning called regeneration RGN is required The regeneration process consists in burning the particulate matter collected inside the filter and clear the pore This process is carried out in average every 800 1000 km the distance travelled between one regeneration and the next depends on the vehicle use and the driving profile example sporty urban highway etc There are three types of DPF regeneration spontaneous controlled Service Spontaneous regeneration The particulate matter collected in the filter burns spontaneously No intervention by the engine ECU is required in this case Driving conditions directly effect exhaust gas temperature and consequently the temperature inside the filter The intervention thresholds are exhaust gas temperature 280 C lt T gt 500 C NO2 PM ratio much higher than 10 The thresholds for spontaneously activating are difficult to reach dur
12. accelerator pedal is ignored The start up flow is set exclusively according to the water temperature by means of a suitable map When the control unit detects a speed and flywheel acceleration high enough to establish that the engine start up has been successful and that the engine is no longer driven by the starter it re enables the accelerator pedal Cut off It interrupts the fuel supply during vehicle deceleration accelerator pedal released Cylinder balancing Balancing of the single cylinders increases comfort and driveability This function allows an individual and personalised control of the fuel flow and the supply start for each cylinder even varying from one cylinder to the next to compensate for the injector hydraulic tolerances The flushing differences flow properties between the injectors cannot be directly evaluated by the control unit This information is supplied by reading the bar code of each injector during fitting Synchronisation search The control unit is able to recognise the cylinders in which to inject the fuel even if the camshaft sensor signal is lost If this happens when the engine is already running the combustion sequence 1s already acquired therefore the control unit continues with the sequence already synchronised If this happens when the engine is stopped the control unit energises a single solenoid valve At the most within 2 crankshaft rotations an injection will take place in that cylinde
13. are maintained in order to keep the exhaust gas temperature high EGR slightly open in this case the recycled gases make the air fuel mixture richer as a consequence the exhaust gases are hotter than there are fewer post injections Motorized throttle During particulate filter regeneration in case of cut off the post injection only is maintained to keep the exhaust gases at approximately 600 C in the oxidising catalyser In these conditions the engine ECU reduces the motorised throttle opening to decrease the fresh air flow taken in by the engine This strategy prevents excessive exhaust gas cooling to prevent compromising the DPF regeneration process Service regeneration Service regeneration is managed by the ECU and only activated by a diagnostic operator using the diagnostic tool EXAMINER Regeneration must be carried out after the engine ECU lights up MIL and in presence of error code P1206 The engine must be warm to activate Service regeneration D If the claimed fault is present check the parameters in Table 1 Examiner parameters shown in the Diagnostic section before running a Service regeneration D Take note if the data determined by Examiner before the Service because the data must be submitted to TE SE O or other departments if the fault is not solved Drive a complete cycle to regenerate the filter completely after the regeneration procedure For DPF system diagnostics DIAGNOSTICS EDC16 C39 F4 Par
14. modified engine control oxygen sensor injection control unit etc power supply cooling exhaust exhaust manifold turbine exhaust sleeve pre catalytic converter etc steering braking system electrical GEARBOX The new 3 0 Multijet Euro V engine has a 3 shaft gearbox M40CV6 type with 6 synchronised forward ranges plus reverse http aftersales fiat com elearn frmMainPage aspx nodeID 250925480 amp languageID 6 01 2012 Contents Page 3 of 3 Gearbox ratios 1 4 167 1 2 350 1 1 462 1 0 955 1 0 695 1 0 552 1 4 083 1 4 562 OPERATIONS IN NETWORK For the routine P D I operations refer to Service News 00 24 09 For the Scheduled Servicing Programme refer to Service News 00 23 09 For general information technical data descriptions and operation fault diagnosis tests repair procedures and wiring diagrams refer to the Service Manual For the diagnosis of electronic systems equipped with self diagnosis use the Examiner updated with programme release 7 80 and higher http aftersales fiat com elearn frmMainPage aspx nodeID 250925480 amp languageID 6 01 2012 Contents 250 DUCATO 3 0 JTD EURO V EUROS Introduction ENGINE 5 VALID FOR VERSIONS WITH Euro 5 General information The main specifications of the 3 0 JTD Euro 5 engine are as follows supercharged MultiJet Diesel engine with variable geometry turbocharger emission level conforms with Euro 5 standards developed power 180 HP four cyli
15. most severe conditions may cause severe engine damage 5 QUESTION Does the oil warning light indicate low engine oil level ANSWER No the indication is not linked to engine oil level Adding oil when the warning light comes on could be very dangerous for the engine The warning light indicates that the oil has lost its lubricating features 6 QUESTION What happens if I repeatedly ignore the DPF warning light and stop the engine before finishing the regeneration procedure ANSWER Nothing will happen if the DPF warning light is ignored The CCM will start the regeneration process again when the engine is started again Repeatedly ignoring the warning light however may increase the DPF regeneration frequency and consequently cause DPF obstruction and early oil degrading It is always advisable to wait for the DPF warning light to go out before stopping the engine 7 QUESTION What are optimal DPF regeneration conditions ANSWER The optimal conditions for DPF regeneration are reached when the car is travelling at a speed of 60 km h with engine at approximately 1800 rpm Always respect the highway code and drive compatibly with traffic and weather conditions 8 QUESTION How long does the regeneration process take ANSWER The regeneration process lasts for approximately 8 minutes in addition to the time needed for the engine to warm up which according to driving conditions may last from 2 to 6 minutes The regeneration process lasts for
16. of Ducato MY 2011 were renewed with the colours matching the plastic parts of the dashboard and new fabrics for the seats INSTRUMENT PANEL The presence and position of the controls instruments and indicators on the dashboard Fig 8 may vary depending on the version Fig 8 Dashboard Key Fixed side air vents Adjustable side air vents Left stalk external light control Instrument panel and warning lights Right stalk windscreen wiper rear window wiper trip computer controls Adjustable centre air vents Sound system for versions markets where provided Front air bag on passenger side glove compartment for versions markets where provided 9 Glove compartment 10 Cigar lighter 12 V socket 11 Heating ventilation climate control system controls 12 Controls in the dashboard 13 Gear lever 14 Ignition switch 15 Steering wheel adjustment lever 16 Driver s front airbag Horn 17 Control plate for lamp headlamp alignment adjustment digital display multifunction display CON AU BRWDN BE TELEMATIC SYSTEM Different systems or preparations are available on the Ducato MY 2011 fitted as standard or available on request for certain versions markets designed to meet all requirements namely Radio preparation Radio with CD player or radio with CD player and Mp3 Blue amp Me system Steering wheel controls Preparation to install a portable navigation system BLUE amp METM SYSTEM Upon demand t
17. rapid pilot injection Very rapid pilot injection More recirculation gas Less particulate Nox PM reduction flexibility EGR Fig 3C AFTER injection AFTER injection Oxidation of particulate More recirculation gas Nox PM reduction Fig 3D AFTER injection POST for post treatment inn RMA PS Lower exhaust gas AFTER injection POST for temperature and Higher post treatment Filter regeneration http aftersales fiat com elearn frmMaimPage aspx nodeID 250925583 amp languagelID 5 01 2012 Contents Page 4 of 19 post treatment hydrocarbon injection HC system inlet temperature P Pilot injection M Main injection R Pre injection A Next injection PS Post injection Fig 4 Particulate filter inlet temperature C 42 12 1 a da W w 6 4 4 2 2 0 g u e 1000 2000 2000 4000 rpm A Base B With regeneration strategies C Vehicle operating curve MAIN DIFFERENCES BETWEEN FAP AND DPF APPLICATIONS The main difference between FAP and DPF depends on the use of additive or not which as mentioned is used to lower the regeneration temperature to approximately 450 C The difference regeneration strategy causes a partial diversification of the filter itself the FAP has a mechanical filtering structure for burning the particulate by means of the additive in the DPF the filtering structure is coated by noble metals as classical catalysers which increase the temp
18. regulator and the injector opening time Heater plug control unit control During the starting post starting stage the injection control unit times the spark plug operation according to the engine temperature Air conditioning system start up check The control unit operates the air conditioning compressor e switching it on off when the switch 1s pressed e switching it off temporarily about 6 sec if the engine coolant reaches the prescribed temperature Fuel pump control Irrespective of the rpm the control unit e supplies the auxiliary fuel pump with the ignition ON e cuts off the auxiliary pump supply if the engine is not started within a few seconds Diesel preheating control It times the diesel preheating operation on the basis of the ambient temperature Cylinder position check During each engine revolution the control unit detects which cylinder is in the combustion phase and controls the injection sequence to the relevant cylinder Main and pilot injection advance check According to the signals from the various sensors including the absolute pressure sensor built into the control unit itself the control unit determines the optimum injection point according to an internal map Injection pressure closed loop check On the basis of the engine load determined by processing the signals from the various sensors the http aftersales fiat com elearn frmMainPage aspx nodeID 250006609 amp languageID 5 01 2012
19. the diesel fuel circulating inside it via special ports There is a low pressure regulator solenoid on the pump to adjust the supply pressure at the pump intake in order to compress only the amount of diesel fuel needed to reach the pressure mapped in the control unit http aftersales fiat com elearn frmMainPage aspx nodeID 250006610 amp languageID 5 01 2012 Contents Page 2 of 4 The main specifications of the Radial jet pump are described below type radialjet with radial pumping elements number of pumping elements 3 maximum operating pressure 1800 bar supply diesel at a pressure of 3 5 5 0 bar lubrication carried out by the same diesel fuel supply cooling carried out by the same diesel fuel supply The high pressure pump cannot be serviced and therefore must not be removed The retaining bolts must not be tampered with either FUNCTION The pump is driven by the engine at a rotational speed equal to that of the engine itself through a double chain The timing and injection duration are in this injection system tasks of the electronic control system this pump only carries out the task of permanently maintaining the fuel contained in the manifold at the requested pressure level The pump supply circuit hydraulic system is illustrated in the diagram below 1 Common Rail 2 Fuel pressure sensor 3 Injector return pipe 4 Filter with water separator 5 Tank 6 Fuel pump 7 Fuel pump inlet filter
20. the turbocharger vanes improved supercharging stability during transition rapid transition with improved acceleration performance Position sensor It has the task of measuring the movement of the pneumatic actuator stem in relation to the vane minimum opening position http aftersales fiat com elearn frmMainPage aspx nodeID 250006612 amp languageID 5 01 2012 Contents Page 2 of 2 The sensor fitted on this device is the type without contacts where the sensitive element is a Hall effect sensor This involves improved precision and reliability as there are no mechanical components inside the sensor Pin out 3 E 1 lt ELI Py qa d Be ps P a 1 Earth 2 Output signal 3 Power supply 5 V http aftersales fiat com elearn frmMainPage aspx nodeID 250006612 amp languageID 5 01 2012 Contents Page 1 of 10 250 DUCATO 3 0 JTD EURO V EUROS 2 3 JTD 3 0JTD DPF DPF VALID FOR VERSIONS WITH DPF Introduction The DPF system Diesel Particulate Filter is fitted on vehicles equipped with Diesel engines in order to reduce the particles present in the exhaust gases by more than 95 in line with Euro 4 and 5 standards Particles consist of carbon compound microspheres resulting from the imperfect combusion of diesel fuel in the combustion chambers Particles cannot be eliminated through the use of normal catalyzers but require the use of special filters known precisely as anti pa
21. the weight of the last RGN is 70 Average time of last five regenerations This indicates the average time required for the last five particulate filter regenerations Average temperature of last five regenerations This indicates the average temperature of the last five particulate filter regenerations Odometer last regeneration km This parameter indicates the distance travelled since the last regeneration force and or spontaneous The value is set to 0 at the end of the successful regeneration spontaneous and or automatic using instrument or when the particulate filter is replaced If the engine ECU is replaced the parameter must be updated with the same odometer reading in the CCM Odometer last DPF replacement km http aftersales fiat com elearn frmMainPage aspx nodeID 250925583 amp languageID 5 01 2012 Contents Page 17 of 19 This indicates the kilometres driven since the last particulate filter replacement This parameter is set to O km by the particulate filter replacement procedure If the engine ECU is replaced the parameter must be updated with the same odometer reading in the CCM Configurations Procedures The following items specific for DPF versions are listed in the configuration environment Engine oil change Particulate filter replacement Particulate filter regeneration Engine oil change DPF versions only The engine oil change frequency is no longer determined by the service schedule of the car
22. value to the engine ECU CCM to manage the following operating strategies Exhaust gas temperature gt 600 C at DPF inlet Ensure complete PM combustion Safety limits Fig 13 End protection Protective pipe Flange Thermocouple Rigid cable Securing ring nut Flexible cable Teflon pipe Exhaust gas temperature sensor pinout Fig 14 K188 DPF temperature sensor ON AU b W N KH Sensor http aftersales fiat com elearn frmMainPage aspx nodeID 250925583 amp languageID 5 01 2012 Contents Page 10 of 19 Signal 2 34 A Fig 15 K189 Pre cat temperature sensor Sensor Location of exhaust gas temperature sensor electric connectors There are two exhaust gas temperature sensors Fig 16 arranged as follows one at pre cat outlet A Euro 4 only one straddling the central filter and the DPF filter B for Euro 4 and Euro 5 systems The temperature sensor electric connectors are arranged in the position shown in Fig 16 Fig 16 A K189 Pre cat temperature sensor connector engine compartment B K188 DPF temperature sensor connector underbody DIFFERENTIAL PRESSURE SENSOR Figure 17 shows a single tube pressure sensor Fig 17 A Additional hole for atmospheric pressure B Atmospheric pressure C Exhaust gas pressure inlet D Atmospheric pressure E Exhaust gas pressure measured upstream of DPF The sensor appropriately calibrated provides a voltage proportional t
23. versions without automatic tensioner 115 MultiJet versions A o E A When the engine oil is changed for the first time check the tension of the accessories drive belt Versions for specific markets Thousands of miles 30 60 90 120 150 Thousands of kilometres 48 96 144 192 240 Months 24 48 72 96 120 Check condition of toothed timing drive belt 110 a 130 150 Multijet versions a PE P T iii rite fier ts Check handbrake lever travel and adjust if required e 6 amp amp Check exhaust gas emissions smokiness a a LS L 6 Check cleanliness of sliding side door lower guides for versions with S S D or every 6 months e 6 E 6 Replace fuel filer ia R E z E E PORNOS ssssesee ssessssss sennnenen seesesese seesssess sesesssee sesssess RELUNNLOS CONILENAS SEESHEEES SERRESEEE FEOEGEOES SHOEEGS SEEESEHOE SEGGHESSS saseeasee HESHHRESS sesessens HOGEHEES sessseess seseseses SUREESHEE sessseses GEHEEEEEE HOGEEHOE SESHESGS SEREGHHEE ssesssess saseesees PT T T T T Replace toothed timing drive belt 110 a 130 150 MultiJet versions amp Replace toothed timing drive belt 115 MultiJet versions A 6 Replace engine oil and oil filter versions with DPF 4 Change brake fluid or every 24 months 2 2 Regardless of mileage the timing belt must be replaced every 3 years for Australian Conditions The actual interval for changing the oil and replacing the engine oil filter depends on the vehic
24. 4 1 0 05 3000 GVW with oversized tyres except PANORAMA 215 70 R15 4 1 0 05 4 5 0 05 4 5 0 05 225 70 R15 4 0 0 05 4 0 0 05 3300 GVW 3500 GVW with oversized tyres 4 1 0 05 225 70 R15 4 5 0 05 Winter tyres M S class C on 225 70 R15 C Camping vehicle 4 3 0 05 4 75 0 05 PANORAMA with oversized 225 70 R15 tyres 4 1 0 05 4 5 0 05 215 70 R15 CP Range with camping tyres 5 0 0 05 5 5 0 05 215 75 R16 Maxi range with basic tyres 4 5 0 05 5 0 0 05 Maxi range with oversized 225 75 R16 tyres 4 5 0 05 5 0 0 05 Winter tyres M S class C on 225 75 R16 C Camping vehicle 5 2 0 05 5 2 0 05 Maxi range with Camping tyres GVW Gross Vehicle Weight When the tyres are warm the inflation pressure should be 0 3 bar compared with the prescribed figure However recheck that the value is correct with the tyre cold With snow tyres add 0 2 bar to the inflation pressure value prescribed for standard tyres FRONT WHEEL TOE IN The figure given refers to checking the toe in with vehicle unladen and in running conditions i e with a spare wheel tools accessories sup s full fuel tank and tyres inflated to the prescribed pressure 225 75 R16 CP 5 5 0 05 5 5 0 05 gt O H O O 0 T http aftersales fiat com elearn frmMainPage aspx nodeID 250925902 amp languageID 5 01 2012 Contents Page 10 of 11 am INTERIORS The interiors
25. ENANCE PLAN Nhousands of miles 9 30 g 60 5 90 5 120 p 150 Thousands of kilometres 48 E l 144 f 192 240 Months 24 48 72 96 120 Check battery charge status and possibly recharge R e e O 6 Check tyre condition wear and adjust pressure if necessary 6 E amp 6 Check operation of lighting system headlamps direction indicators hazard warning lights luggage compartment passenger compartment glove compartment instrument panel warning lights etc e e E E ER a da h p E xT age eee Ga a a oa window wiper blades I men aes aa ae a Gn C G e A H Ne E A E AA and lubrication of linkages 6 e B P P TT T H H BEEERGSES sessessse Ressenanee seses Visually inspect condition of exterior bodywork underbody protection pipes and hoses exhaust fuel system brakes rubber elements boots sleeves bushesetc ER ol eo fj ole Check condition and wear of front disc brake pads and operation of pad wear mear fl colo lo Check condition and wear of rear disc brake pads and operation of pad wear indicator for versions markets where provided ol eo fj jf Check and if necessary top up fluid levels engine cooling hydraulic clutch brakes windscreen washer battery etc ol e L L Visual check of accessory drive belt s versions without automatic tensioner ee ec D 42 Check tension of accessory drive belt versions without automatic tensioner A E ENE Check tension of accessory drive belt
26. FIAT PSA joint venture Ulysse Phedra From a technical point of view FAP belongs to the type of filters which require the use of additives cerium oxides iron oxide etc Eolys is the brand name of an additive The FAP filters were the first filters to be installed on cars and therefore are also the one which are best known in terms of problems servicing methods and repair procedures FAP filters thus require an additive for active regeneration As previously mentioned the filter regeneration process consists of burning the particulate collected by the trap The particulate is burnt at a temperature of approximately 600 650 C In order to reach such temperatures modern diesel engines carry out post injections after TDC which burn on the oxidising catalyser arranged in front of the filter The purpose is to increase the temperature of the exhaust gases Additive is appropriately added to the fuel to lower the regeneration threshold by reducing the particulate combustion temperature to approximately 450 C The gas temperature reaches 450 C with the post injections to that the particulate inside the filter is burnt and the filter is regenerated Fig 2 System diagram with FAP filter Engine Common rail High pressure pump Engine ECU Fuel pump Level indicator Injector and adjuster Fuel tank Additive Muffler Sensor Z Z PZ Gm Om E http aftersales fiat com elearn frmMainPage aspx nodeID 250925583 amp l
27. OXES The following types of gearbox are fitted depending on the various engine types http aftersales fiat com elearn frmMainPage aspx nodeID 250925902 amp languageID 5 01 2012 Contents Page 8 of 11 2 0 MultiJet 115 M38 gearbox with 5 synchronised forward gears plus reverse 2 3 MultiJet 130 M38 gearbox with 6 synchronised forward gears plus reverse 2 3 MultiJet 150 M38 gearbox with 6 synchronised forward gears plus reverse 3 0 MultiJet 180 M40 gearbox with 6 synchronised forward gears plus reverse BRAKES The vehicle is standard fitted with the ABS system formed by a hydraulic control unit with 8 solenoid valves 4 active sensors and 4 channels with Electronic Brake force Distribution EBD dividing the braking action over all four wheels to prevent wheel locking and guarantee full control of the vehicle The ESP Electronic Stability Program is available upon demand which intervenes in emergency conditions to control the vehicle dynamic manoeuvres Basing on the vehicle rotation data around its vertical axis yaw speed on lateral acceleration and on steering wheel angle set by the driver the system calculates whether the vehicle is driving round a bend within the limits of its grip and in case of need brakes the wheel concerned or reduces the quantity of fuel sent to the engine to reduce engine power The ESP is integrated by the following systems LAC Load Adaptive Control which identifies the load and the positi
28. RELATED TOPICS See SN 10 17 09 all types JTD DPF Particulate Filter for more information on the operation of the particulate filter See the diagnostic checklist shown in SN 10 16 09 for full DPF diagnostics in case of system faults Refer to specific SN where provided for each model for upgrading the CCM software http aftersales fiat com elearn frmMainPage aspx nodeID 250925582 amp languageID 6 01 2012 Contents Page 1 of 2 250 DUCATO 3 0 JTD EURO V EUROS PRODUCTS 5 SPECIFICATIONS AND RECOMMENDED PRODUCTS Fluid and lubricant properties for correct vehicle operation Genuine fluids and lubricants Application SAE 5W 30 grade synthetic base lubricants FIAT Classification 9 55535 SI SELENIA WR P E Second planned Contractual Technical maintenance Reference No 510 D07 programme Diesel engine lubricants SAE 5W 40 ACEA C3 grade synthetic base lubricant FIAT Lubricants for methane 9 55535 S2 engines certification Contractual Technical Reference No F603 C07 Second planned SELENIA KP E maintenance programme TUTELA CAR EXPERYA Contractual Technical Reference No F178 B06 SAE 75W 80 grade synthetic lubricant Exceeds API GL 4 specifications Manual gearbox and differential SAE 75W 85 grade synthetic lubricant Exceeds API GL 4 specifications TUTELA CAR MATRYX Contractual Technical Reference No F108 F02 Manual gearbox and differential Lubricant
29. SIONAL SC 35 Contractual Technical Reference No F201 D02 TUTELA DIESEL ART Contractual Technical Reference No F601 L06 Page 2 of 2 constant velocity joints Hydraulic power steering Hydraulic brakes and hydraulic clutch controls Cooling circuit usage percentage 50 water 50 PARAFLU To be used diluted or undiluted in windscreen rear window washer wiper systems To be mixed with the diesel fuel 25cc per 10 1 For diesel engines in the event of an emergency in which the original products are not available lubricants with at least ACEA C2 performance are acceptable however in this case optimum engine performance is not guaranteed and the lubricants should be replaced with recommended products as soon as possible at a Fiat Dealership The use of products with lower specifications than ACEA C2 could cause damage to the engine not covered by the warranty For particularly harsh climate conditions ask a Fiat Dealership for the appropriate product from PETRONAS LUBRICANTS Do not top up or mix with other fluids which have different specifications from the ones described http aftersales fiat com elearn frmMainPage aspx nodeID 250000033 amp languageID 5 01 2012 Contents Page 1 of3 Service News Copyright By Fiat Group Automobiles S p A Printed 09 10 2009 Ducato 250 00 53 09 All 3 0 models Euro V 0000 0 000 AA NEW VERSION 3 0 EURO V Main technical specification
30. TEACHING GUIDE e Ducato 250 NEW VERSIONS MY 2011 Main technical specifications L 1 1 O 2007 Fiat Group S p A All rights reserved Contents Page 1 of 11 Service News Copyright By Fiat Group Automobiles S p A Printed 08 06 2011 Fiat Group Automobiles p A_ Ducato 250 00 09 11 Versions all models MY 2011 0000 0 000 AA NEW VERSIONS MY 2011 Main technical specifications The new MY 2011 versions are being introduced with the name Fiat Ducato Fig 1 unchanged For these new versions various technical and functional innovations were introduced including the new range of engines all Euro 5 with increased power and higher differentiation the Traction Plus the innovation traction control system that improves the vehicle traction on the most challenging surfaces with poor grip The myport for the Blue amp Me TomTom navigator the integrated Blue amp Me system that manages many functions through voice controls along with the controls on the steering wheel Finally it offers a new more articulated and diversified range with the matching of body engine mechanic components you can have 2000 articulated versions for goods transport people transport and basic versions for conversions and different trims in particular the van range has 8 different load volumes from 8 to 17 ms At the beginning the MY 2011 range offers the following engines 115 MultiJet 130 MultiJet 150 MultiJet 180 MultiJet
31. a fault but indicates that the oil needs to be changed as a consequence of normal use Supplementary amounts of fuel which are not burnt during combustion are injected during the DPF filter regeneration process a small amount of fuel may leak through the piston rings and dilute the engine oil which increases its level The engine ECU stores this data to calculate the engine oil degrading state and informs the driver when the oil needs to be changed Remember that engine oil degrading is accelerated by prevalent use in cities which makes the DPF regeneration process more frequent use for short distances in which the engine does not reach running temperature repeated regeneration interruptions indicated by means of the DPF warning light see paragraph 2 AS A CONSEQUENCE THE DEGRADED ENGINE OIL MUST BE ALWAYS CHANGED WHEN THE WARNING LIGHT STARTS BLINKING A FIG 1 If the engine oil warning light lights up after travelling a short distance e g 3000 4000km check whether the fault http aftersales fiat com elearn frmMainPage aspx nodeID 250925582 amp languageID 6 01 2012 Contents Page 2 of 4 is caused by the incorrect operation of teh DPF catalyser systems which continuously control regeneration attempts ge After the first indication whenever the engine is started the warning light will blink in the previously illustrated method see introduction until the oil is changed A message will appear on the display where prov
32. ameters The following items specific for DPF versions are listed in the parameter environment Differential sensor pressure Particulate filter obstruction Pre cat temperature Particulate filter temperature Particulate filter state Average distance of last five regenerations Average time of last five regenerations Average temperature of last five regenerations Odometer last regeneration km Odometer last DPF replacement km Differential sensor pressure This indicates the back pressure value upstream of the particulate filter Particulate filter obstruction This indicates the value expressed in percentage of the estimated particulate matter by the CCM Ei The Particulate filter obstruction parameter is calculated by the CCM on statistic basis and only meaningful when B error P1206 is not present Pre cat temperature This indicates the exhaust gas temperature measured by the sensor located at the pre cat outlet Particulate filter temperature this indicates the exhaust gas temperature measured by the sensor located at the particulate filter inlet Particulate filter state This indicates the level of obstruction of the particulate filter in all conditions by the CCM Average distance of last five regenerations This indicates the distance travelled between one DPF regeneration and the other The engine ECU calculates the weighed average of the sum of the last five distances km travelled between one regeneration and the next
33. anguageID 5 01 2012 Contents Page 3 of 19 P Particulate filter R Pre catalyst DPF This particulate filter does not use additives because the exhaust gas temperature is increased to 600 650 C The temperature is increased by means of a series of post injections and post combustions partially in the exhaust manifold and in the oxidising catalysers The resulting temperatures are widely sufficient to fully burn the particulate collected in the filter Noble metals which act as catalysers are inserted in the walls of the filter to facilitate the collected particulate combustion process The system without additive has the advantage of not requiring additive top ups The additive is rather expensive in addition to being dangerous for human health On the other hand the filter without additive requires higher regeneration triggering temperatures Furthermore the filter without additive causes a certain contamination dilution of the engine oil due to the increased post injection The engine oil may therefore be degraded more rapidly than normal because it is diluted by fuel according to the number of regenerations and thus the adopted driving style The DPF generation method is based on the common rail multiple injection system MultiJet Fig 3A Cold combustion check flexibility n San P PRM Cold combustion check l l Better performance flexibility Less noise Lower compression ratio Nox PM reduction Fig 3B Very
34. approximately 15 minutes 9 QUESTION Can the DPF be regenerated when the engine is running and the car is standing ANSWER With the engine running and the car standing the CCM will need to increase the amount of fuel injected in the DPF to keep the regeneration temperatures high and this will increase the risk of fuel diluting the engine oil The CCM will interrupted the process after 3 5 minutes of regeneration in all cases Although some of the particulate will be destroyed in this way it is advisable to avoid DPF regeneration in these conditions to avoid early degrading of the oil http aftersales fiat com elearn frmMainPage aspx nodeID 250925582 amp languageID 6 01 2012 Contents Page 4 of 4 10 QUESTION Why is a DPF fitted on this cars What does it do ANSWER In order to comply with the increasingly more stringent environment protection standards Fiat has invested in high engine technology and alternative fuels Fiat is today European leader offering a product range with the lowest average CO2 emission level Specifically Fiat 500 is the first car on the market to comply with the most stringent environmental protection standard Euro 5 In perspective this will increase the residual commercial value of the car with respect to restrictions which are enforced in some cities Specifically Euro 5 level for diesel engines is reached by using a sophisticated Particulate Filter DPF capable of trapping and then eliminated particles
35. ate filter differential sensor signal 55 NC 56 Oxygen sensor reference current 57 Accelerator pedal potentiometer 1 signal 58 NC 59 NC 60 Exhaust gas temperature sensor 1 earth 61 NC 62 NC 63 Exhaust gas temperature sensor 2 earth 64 Signal D from alternator 65 NC 66 NC 67 NC 68 NC 69 NC 70 Climate control compressor relay switch coil control 71 NC 72 Main relay switch coil control 73 NC 74 NC 75 Clutch pedal pressed positive signal NC http aftersales fiat com elearn frmMainPage aspx nodeID 250011755 amp languageID 5 01 2012 Contents Page 3 of 11 76 Oxygen sensor pumping current 77 NC 78 Oxygen sensor Nerst cell reference voltage signal 79 NC 80 NC 81 Water in diesel filter sensor signal 82 Ignition operated power supply from ignition switch 83 CAN line coming from NBC CAN low 84 CAN line coming from NBC CAN high 85 NC 86 Earth for Lambda sensor signal 87 Cruise control activation deactivation control lever positive 88 Climate control linear pressure sensor positive 89 NC 90 Oil vapour recirculation heater blow by heater 91 Fuel pump relay switch coil control 92 NC 93 Spark plug preheating control signal 94 Engine cooling fan 3rd speed engagement relay feed Connector M010B 1 Injector no 3 negative control 2 Injector no 2 negative control 3 NC 4 NC 5 NC 6 Intake air temper
36. ature and pressure sensor negative 7 Rpm sensor negative 8 Fuel pressure sensor on rail negative 9 NC 10 NC 11 Turbine vane position sensor signal 12 Intake air temperature and pressure sensor temperature signal 13 Intake air temperature and pressure sensor pressure signal 14 Timing sensor power supply 15 Fuel pressure control solenoid valve on rail 16 Injector no 3 positive control 17 Injector no 2 positive control 18 Turbine vane position sensor negative 19 Turbine vane position actuator control 20 Throttle body solenoid valve control 21 Oil level sensor earth 22 Rpm sensor signal 23 Engine coolant temperature sensor negative 24 NC 25 Intake air temperature and pressure sensor positive 26 NC 27 EGR solenoid valve position sensor signal 28 NC 29 EGR solenoid valve position sensor positive 30 Fuel pressure regulator on pump 31 Injector 1 positive control http aftersales fiat com elearn frmMainPage aspx nodeID 250011755 amp languageID 5 01 2012 Contents Page 4 of 11 32 Injector 4 positive control 33 EGR solenoid valve position sensor negative 34 NC 35 EGR solenoid valve control 36 Timing sensor negative 37 NC 38 Flow meter air rate signal 39 Fuel pressure sensor on rail positive 40 NC 41 NC 42 Air flow meter temperature signal 43 Fuel pressure sensor on rail signal 44 Flow meter
37. but is not based on the number of DPF regeneration cycles Regeneration causes a higher increase of dilution of fuel in the oil sump The engine ECU calculates engine oil degrading and informs the driver when the oil needs to be changed Particulate filter DPF replacement Reset the DPF parameters with the Examiner procedure Particulate filter DPF regeneration The particulate filter regeneration must must run in the following cases Engine warning light MIL on and present of P1206 Level 1 in the engine ECU memory This informs the driver that the system is requiring Service generation carried out a diagnostic operator at a service centre because the DPF is obstructed In these conditions the engine ECU actuates a recovery procedure and slightly limits the engine performance Engine warning light MIL on and present of P2002 Level 2 in the engine ECU memory This informs the driver that the system is requiring Service generation carried out a diagnostic operator at a service centre because the DPF is excessively obstructed and probably needs to be replaced In these conditions the engine ECU actuates a recovery procedure and slightly limits the engine performance Error P1206 may be caused by failure or incorrect operation of some engineering parameters Read the following chapter carefully CAUSES amp TROUBLESHOOTING below MAIN FAULTS As previously mentioned the engine produces particulate matter which is trapped in the filt
38. c changes in magnetic field intensity are sufficient to generate a modulated electrical signal with frequency proportional to the speed of magnetic field change This change is achieved by making a magnetic ring with an opening the internal part of the pulley pass the sensor As it moves the metal part of the ring covers the sensor to block the magnetic field and thus generate a low ouput signal Conversely the sensor generates a high signal when the opening 1s over the sensor and a magnetic field is present Together with the rpm and TDC signal this signal allows the control unit to identify the cylinders and determine the injection point a gt R ay P d de 1 Inlet control shaft gear 2 Magnetic material Excess pressure and air intake temperature sensor Characteristics The excess pressure and intake air temperature sensor 1s an Integral component designed to measure the pressure and the temperature of the air inside the intake manifold The sensor 1s fitted on the intake manifold the signal sent to the engine management control unit is used to e modulate the turbocharger pressure e protect the engine from overheating e diagnose the operation of the air flow meter Sensor pin out l Earth 2 Air temperature signal 3 5 Volt power supply from the engine management control unit 4 Turbocharging pressure output signal Pressure sensor transfer function http aftersales fiat com elearn frmMa
39. cement frequency therefore differs from that show on the service schedule and becomes flexible 15000 km 50000 km The driver is informed of the need to change the oil and given a 1000 km notice The parameters must be reset with Examiner after changing the engine oil DRIVING PROFILES http aftersales fiat com elearn frmMainPage aspx nodeID 250925583 amp languageID 5 01 2012 Contents Page 14 of 19 The zones related to the driving profiles stored in the engine ECU are shown in the following chart Fig 29 The engine ECU to determine the driving profile is based on Vehicle speed Engine rpm Accelerator pedal Coolant temperature Air temperature Fuel amount Exhaust gas temperature Fig 26 Driving profiles 4000 2000 3000 4000 B A Torque B Engine rpm Possible driving profiles defined in Euro 4 applications Fig 26 1 Fast Highway 2 Slow Highway 3 Fast Acceleration Uphill 4 Extra Urban Driving 5 Urban Driving 6 Downhill 7 Slow Urban Driving Other profiles are stored in the ECU and not shown namely Warm up Cold start Determining the filter blockage level The filter regeneration levels burnt PM amount depend on the engine operating condition driving profile The engine ECU CCM to determine the PM accumulation level in the filter is based on the following parameters Odometer Driving profiles a sportier driving style generates more frequent regeneration frequency Dif
40. d by the engine management node in this area distance travelled differential pressure value exhaust gas temperature downstream of the catalytic converter exhaust gas temperature upstream of the catalytic converter intake air flow rate Determining the filter blockage level The filter blockage level is monitored by the system by means of a physical model based on actual engine emissions at the various operating points This model continues to increase decrease the soot level particulate in grams inside the DPF A decrease takes place when temperatures and or quantities of oxygen are present in the DPF which cause spontaneous regeneration Particulate filter regeneration assistance function The soot level in the DPF is continuously updated with the value expressed in grams The DPF blockage level is evaluated by a machine where the exceeding of certain accumulation levels causes the change from one status to another http aftersales fiat com elearn frmMainPage aspx nodeID 250005171 amp languageID 5 01 2012 Contents Page 9 of 10 52 58 5 OF ERA 20 42 6 5 g l S2 Bgl 58 5 9 gil 65 When 52g or 42g 1s exceeded if the vehicle is travelling above 85 Km h the control unit launches the regeneration procedure Controlled regeneration Controlled regeneration is managed by the engine management control unit by means of commands designed to increase the temperature of the exhaust gases until the particulate c
41. d the use of the vehicle engine There are essentially two types of particular filter systems used by engineers http aftersales fiat com elearn frmMainPage aspx nodeID 250925583 amp languageID 5 01 2012 Contents Page 2 of 19 FAP OR DPF These two types of filtering system have different names and different features and operation The greatest difference essentially concerns the regeneration strategy of the ceramic filters FAP FAP is the brand name of the particulate filters fitting in cars made by Peugeot Citroen PSA This type of filter was the first to be installed on standard production cars the 2 2 HDI Peugeot 607 engine Use was later extended to 2 0 HDI and gradually installed on an increasing number of cars including those of the FIAT PSA joint venture Ulysse Phedra From a technical point of view FAP belongs to the type of filters which require the use of additives cerium oxides iron oxide etc Eolys is the brand name of an additive These were the first filters to be installed on cars and therefore are also the one which are best known in terms of problems servicing methods and repair procedures FAP is the brand name of the particulate filters fitting in cars made by Peugeot Citroen PSA This type of filter was the first to be installed on standard production cars the 2 2 HDI Peugeot 607 engine Use was later extended to 2 0 HDI and gradually installed on an increasing number of cars including those of the
42. e above mentioned problems are known To prevent them the engineers have included suitable instructions in the control unit De rating In the event of engine overheating the injection is changed by reducing the flow proportionally to the coolant temperature Electronic control of injection advance The advance supply start expressed in degrees can vary from one injection to the next and also http aftersales fiat com elearn frmMainPage aspx nodeID 250006609 amp languageID 5 01 2012 Contents Page 7 of 8 from one cylinder to another Like the flow it 1s calculated on the basis of the engine load accelerator position engine rpm and air drawn in The advance 1s suitably corrected during acceleration phases according to the water temperature to reduce emissions noise and overloading and to improve the vehicle acceleration At start up the advance is very high according to the water temperature The supply start feedback is obtained from the variation in injector solenoid valve impedance Speed regulator The electronic speed regulator has the characteristics of a regulator of idle speed maximum speed and all engine speeds It remains stable within ranges where traditional mechanical regulators become inaccurate Starting the engine During the first engine drive rotations the phase signals and the cylinder no recognition signals flywheel sensor and camshaft sensor are synchronised At start up the signal from the
43. e from the intermediate zone c to zone d occurs more or less rapidly according to the driving profile and the engine ECU runs a controlled regeneration procedure to bring the the differential pressure values back into zone b or zone c according to the driving profile Critical operating zone e Excessive filter obstruction may occur in case of lack of coherence between estimated particulate collection model in CCM and the actual particulate production and the pressure difference at the filter ends may vary more rapidly The engine ECU will detect the overload conditions and the engine warning light MIL will light up on the instrument panel In these conditions the engine ECU requires Service regeneration for bringing the differential pressure values back to zone b or zone c E A limited fuel flow strategy is activated to protect the engine The vehicle performance will be reduced as a consequence Abnormal operating zones a and f Zones a and f represent the conditions in which the differential pressure is anomalous Fully obstructed filter zone f the differential pressure is constantly higher than a threshold which varies according to the exhaust gas flow rate In this condition the engine ECU indicates filter overload by lighting up the instrument panel warning light MIL In these conditions the engine ECU requests Service regeneration attempt to bring the differential pressure values back to zone b or zone c The
44. e of error P2002 Level 2 in the engine ECU memory indicates that the system needs to be carefully checked see SN 10 16 09 followed by Service regeneration carried out by a diagnostic operator at the service centre because the DPF filter is excessively obstructed and probably needs to be replaced In these conditions the engine ECU actuates a recovery procedure and slightly http aftersales fiat com elearn frmMainPage aspx nodeID 250925582 amp languageID 6 01 2012 Contents Page 3 of 4 limits the engine performance Replace the DPF if the service regeneration is interrupted by excessively high back pressure Description of warning light operation The DPF Diesel Particulate Filter is a mechanical filter integral with the exhaust system that physically traps particulates present in the exhaust gases of Diesel engines The diesel particular filter has been adopted to eliminate almost totally particulates in compliance with current future law regulations During normal use of the vehicle the engine control unit records a set of data e g travel time type of route temperatures etc and it will then calculate how much particulates has been trapped by the filter Since this filter physically traps particulate it should be regenerated cleaned at regular intervals by burning carbon particles In normal conditions the warning lights come on and go out after a few seconds at key on A Fig 1 B Fig 2 and C Fig 3 Regene
45. en the temperature of the latter goes from being cold to being very hot through the chemical of the hydrocarbons water vapour and nitrogen oxide te 100 200 300 sa conversion Exhaust gas temperature sensors The PTC type temperature sensors with the body bent at 90 have the task of sending the temperature values for the exhaust gases entering and leaving the catalytic converter to the control unit which needs them to activate a post fuel injection in order to maintain the temperature of the filter above 350 C The upstream sensor performs the function of temperature protection whilst the downstream one checks that the regeneration temperature 19 within the safety limits thereby guaranteeing the complete combustion of the particulate The upstream sensor carries out the temperature protection function whilst the downstream one checks that the regeneration temperature of the filter 1s within the safety limits and at a value that guarantees the complete combustion of the particulate 1 Terminal protection http aftersales fiat com elearn frmMainPage aspx nodeID 250005171 amp languageID 5 01 2012 Contents Page 5 of 10 2 Protective pipe 3 Flange 4 Thermocouple 5 Rigid cable 6 Securing ring nut 7 Flexible cable 8 Teflon pipe Specifications and operation The table below contains the specifications of the temperature sensors Pull up power supply 5 V 0 1 Pull up resistance 1000 Ohm
46. er 15 of power and 12 of max torque while ensuring more acceleration and setting off capacity uphills and dramatically reducing consumption and emission at the same time The 2 0 MultiJet 115 HP engine is featured by a low weight about 180 kg Fig 4 2 0 MultiJet engine 115 2 3 MultiJet 150 ENGINE Ducato MY 2011 has a 148 HP engine with variable geometry high efficiency turbocharger Fig 5 This engine has a prompt reply and brilliant performance thanks to its remarkable power and torque increase with emission and consumption values similar to the previous 2 3 JTD 130 HP engine Fig 5 2 3 MultiJet 150 engine http aftersales fiat com elearn frmMainPage aspx nodeID 250925902 amp languageID 5 01 2012 Contents Page 7 of 11 3 0 MultiJet 180 ENGINE It is the most powerful engine of the new Ducato Compared with the previous 3 0 157 HP Euro 4 engine this power unit achieves a 13 power increase with consumption and CO2 emission reduction The 3 0 MultiJet 180 engine Fig 6 uses a variable geometry turbocharger with glow plugs directly located in the combustion chamber controlled by the engine management control unit The power unit has a cast iron lower crankcase with integrated bearings and double mass flywheel to dampen vibrations generated by the engine with a remarkable noise reduction The timing is the chain driven type with twin overhead camshaft Fig 6 3 0 MultiJet 180 engine GEARB
47. er during normal use The collection of particulate matter increases the pressure at turbocharger outlet and decreases vehicle performance This fault is indicated by the ECU by means of an error code which indicates non coherence between pressure read by the differential pressure sensor and the particulate calculated by the CCM Most typical faults Engine warning light fault P1206 Poor engine efficiency During Service regeneration it is advisable to apply a series of loads lights windscreen wiper A C system etc to increase the possibility of success There could be two causes if the Service regeneration is not successful excessively obstructed filter in this case the DPF must be replaced injection system problems see injector paragraph below CAUSES amp TROUBLESHOOTING The particulate filter obstruction parameter is a statistic calculation run by the engine ECU If the engine ECU finds an errors in this calculation DPF system faults are caused the MIL is lit up and error P1206 is generated The differential pressure sensor and its signal helps the engine ECU to verify calculated value plausibility In case of normal use there may be various causes of incorrect system operation 1 Incorrect thermostat operation 2 Incorrect flow meter reading 3 Incorrect injection operation 4 Presence of oil in intake circuit 5 Turbo compressor problems 6 EGR value problems 7 Condensation 8 Oil leakage f
48. erature and promote the regeneration process For these reasons these two filter types have advantages and disadvantages Low regeneration temperature Simple system Low back pressure No additives Complex system High regeneration temperature Short life Oil dilution Ulysse and Phedra The other FIAT LANCIA and ALFA ROMEO vehicles DPF SYSTEM CONSTRUCTION The DPF Diesel Particulate Filter consists of the following parts DPF Euro 4 Double oxidising catalyser DPF 2 exhaust gas temperature sensors 1 differential pressure sensor Engine ECU with specific strategies DPF warning light message on instrument panel Fig 5 DPF Euro 4 system diagram http aftersales fiat com elearn frmMainPage aspx nodeID 250925583 amp languageID 5 01 2012 Contents Page 5 of 19 L i i a i i i i i i i i i i S rss m m m m m m m m m m m O q m Key Engine ECU Air flow meter Motorized throttle EGR Injections Turbine Pre catalyser Exhaust gas temperature sensor pre cat Engine 10 Exhaust gas differential pressure sensor 11 Central catalyser 12 Exhaust gas temperature sensor DPF 13 DPF filter 14 Intercooler 15 EGR heat exchanger 16 Exhaust gas temperature sensor DPF DPF Euro 5 One oxidising catalyser DPF 1 exhaust gas temperature sensor 1 differential pressure sensor with two measuring points 1 Lambda sensor Engine ECU with specific strategies DPF wa
49. f key OFF the control unit 1s still supplied for a few seconds by the main relay In this way the microprocessor can transfer data from the main volatile memory to a non volatile erasable and re writable memory EEprom so that it is available at the next start up see Run up This data is various settings engine idle speed etc calibration of some components fault memory The process takes a few seconds usually from 2 to 7 according to the quantity of data to be saved Then the ECU sends a command to the main relay and disconnects it from the battery It is very important that this process 1s not interrupted for example by turning the engine off by disconnecting the battery or by disconnecting the battery disconnector before at least 10 seconds have elapsed from the engine switching off It this is the case system functionality is guaranteed but repeated interruptions can damage the control unit Self diagnosis Full injection system electronic diagnosis 1s carried out by connecting an appropriate tester EXAMINER or SDC station to the tester input located in the engine bay The system also comes with a self diagnostic function that detects stores and indicates faults If a fault is detected in a sensor or actuator signal reconstruction strategies recovery are immediately activated to ensure the engine operates at an acceptable level without impairing service The vehicle can therefore be driven to a service wor
50. factors must be carefully evaluated exhaust back pressure particulate withholding property regeneration ease duration of performance in time and finally costs Silica carbide is the material normally used for making DPF filters This material ensures high filtering efficiency low load loss good resistance to heat mechanical and chemical stress good storage capacity of the particulate to limit regeneration frequency Silica carbide features Melting point 1723 C Working temperature 900 C Thermal expansion coefficient 5 10 6 C The average temperature of the DPF during regeneration is 700 800 C The DPF could be damaged by thermal shock at temperatures higher than 1000 C Breakage by vibrations may be caused in incorrect assembly of the filter in the container The structure of the DPF Fig 8 consists of alternatively blocked channels for obtaining a filtering surface of several square metres The object of the filter is to force the motion of exhaust gases through the porous holes of the filtering element thus allowing the mechanical removal of the particles of particulate matter PM Fig 8 A Filtering wall B Particulate matter PM The particulate which is collected in the DPF Fig 9 and when a predetermined threshold stored in the system during design and calibration is reached the engine ECU starts a regeneration procedure to burn the PM Fig 9 Fig 10 DPF filter example http after
51. ferential pressure sensor see note G The engine ECU uses the signal from the differential pressure sensor for the following strategies A Euro 4 models This is used to check the coherence of the particulate filter obstruction parameter calculation The engine ECU warning light MIL will light up if a discrepancy of the calculation made by the ECU and that made by the differential pressure B Euro 5 models This is used to check the coherence of the particulate filter obstruction parameter calculation The engine ECU warning light MIL will light up if a discrepancy of the calculation made by the ECU and that made by the differential pressure Regeneration is operated if the differential pressure exceeds certain values A maximum of 6 regenerations are attempted After this if the result is negative the engine ECU lights up the MIL warning light s the system advises to go to the nearest service centre to have a service regeneration procedure run due to excessive DPF obstruction The following chart Fig 27 shows the size DPF filter operating areas Fig 27 http aftersales fiat com elearn frmMainPage aspx nodeID 250925583 amp languagelD 5 01 2012 Contents Page 15 of 19 DP Differential pressure I h Exhaust gas flow rate a Perforated filter b Regenerated filter c Intermediate zone d Partially obstructed filter e Obstructed filter f Fully obstructed filter Normal operating zone b c d In the passag
52. fiat com elearn frmMainPage aspx nodeID 250005171 amp languageID 5 01 2012 Contents Page 7 of 10 Connector pin out e Pin Signal e Pin 2 Earth e Pin 3 Power supply Operation The differential pressure sensor constantly measures the difference m pressure Ap between the inlet and outlet of the catalytic converter particulate filter assembly This measurement makes it possible to determine the filter blockage level The value Ap shown in the graph below is converted into a voltage Vo which is sent to the engine management control unit 0 0 5 bar 1 bar Vo Output voltage Ap Difference between catalyzer outlet and inlet pressure Specifications Sensor breaking pressure on high pressure side Sensor breaking pressure on low pressure side Sensor maximum energizing current 20 m Sensor output impedance Sensor operating temperature interval 40 145 C The graph below illustrates the error percentage variation depending on the variation in temperature C within the sensor operating range http aftersales fiat com elearn frmMainPage aspx nodeID 250005171 amp languageID 5 01 2012 Contents Page 8 of 10 Particulate filter control function The role of the control function 1s to e determine the state of the filter blockage level e determine whether the activation of the regeneration 19 necessary e check the efficiency of the regeneration The following information is use
53. filter Fuel return manifold Pressure pump Pressure regulator on pump Turbocharging sensor Injection control unit Pressure sensor Rail 10 Throttle body 11 EGR solenoid valve 12 Oil level sensor 13 EGR control actuator 14 Heater plugs 15 Heater plugs control unit 16 Flow meter 17 Rpm sensor 18 Timing sensor 19 Minimum oil pressure switch 20 Lambda sensor on pre catalyzer 21 Main catalytic converter 22 Engine wiring 23 Pedal unit 24 Vehicle wiring 25 Water temperature sensor 26 Pressure regulator on rail OPERATION COND Ln BW NO d NO http aftersales fiat com elearn frmMainPage aspx nodeID 250006609 amp languagelD 5 01 2012 Contents Page 3 of 8 Operating strategies In this Common Rail injection system with CP4 1 pump the pressure regulator located upstream of the high pressure pump modulates the fuel flow to the level required by the low pressure system The high pressure pump then supplies the Rail correctly Because this solution only pressurises the required amount of fuel energy efficiency is improved and system fuel heating is limited The CP4 1 pump continuously maintains the fuel at high pressure regardless of the timing and the cylinder receiving the injection Pressure thus accumulates in a duct shared by all injectors rail Fuel at an injection pressure calculated by the ECU 1s therefore always available at the injector input When the solenoid of one inject
54. fting drive to the wheel on the surface offering better grip This makes the vehicle easy to drive maintains directional stability and control and ensures the best possible traction even over the roughest and most slippery surfaces The system is operated by the button T on the dashboard Fig 7 and can function at speeds of up to 30 km h once this speed is exceeded the system is automatically deactivated Fig 7 RIMS TYRES http aftersales fiat com elearn frmMainPage aspx nodeID 250925902 amp languageID 5 01 2012 Contents Page 9 of 11 215 70 R15C 109 107S 225 70 R15C 112 110S Ducato recreational 6J x 15 215 70 R15CP 109 107Q Ducato except recreational 6J x 15 215 75 R16C 116 114R 225 75 R16C Ducato Maxi except recreational 6J x 16 118 116R Ducato Maxi recreational 6J x 16 225 75 R16CP 116 1140 Spare wheel 125 80R15 95H space saver wheel on 5 seater people transport versions standard wheel on other versions Ea Only use the tyres indicated on the vehicle registration document If using class C tyres on a Camping vehicle always use wheels with a metal inflation valve When replacing it is always advisable to use Camping tyres Tyre we 3000 GVW with basic tyres except PANORAMA O O Q j lt A m Z Tl gt O Z 0 A m v U C A m o Q Rear 215 70 R15 4 0 0 05 3300 GVW 3500 GVW with basic tyres 215 70 R15 PANORAMA with basic tyres
55. h at J approximately 1800 rpm respecting the highway code and the traffic and weather conditions in all cases DPF regeneration will last for approximately 15 minutes in average in these conditions 3 Obstructed particular trap and engine control system fault The amber warning light comes on C Fig 3 in some cases with warning light B Fig 2 and a specific message is shown on the display where provided Examiner finds presence of error P1206 Level 1 or P2002 Level 2 Fig 3 Operation of this warning light indicated faulty operation of the engine system DPF could not dispose of the accumulated particulate and the CCM indicates that the car must be taken to a workshop to have the system seen to If the car reaches the workshop in these conditions seek the causes which led to DPF obstruction by applying the checklist shown in SN 10 16 09 After having identified and eliminated the fault carry out a forced DPF regeneration to eliminate accumulated particulate The engine control system warning light and the presence of error P1206 Level 1 in the engine ECU memory indicates that the system needs to be carefully checked see SN 10 16 09 followed by Service regeneration carried out by a diagnostic operator at the service centre because the DPF filter is obstructed In these conditions the engine ECU actuates a recovery procedure and slightly limits the engine performance The engine control system warning light and the presenc
56. he vehicle can be fitted with the Blue amp MeTM telematic system Thanks to its complete integration with the voice commands the steering wheel controls the car radio controls the USB port and the information on the instrument panel multifunction display it performs all the handsfree SMS reader and Media Player functions Fig 9 Display controls on the steering wheel and USB port http aftersales fiat com elearn frmMainPage aspx nodeID 250925902 amp languageID 5 01 2012 Contents Page 11 of 11 RUERICH CHO E a T cot B40 PREPARATION TO INSTALL A PORTABLE NAVIGATION SYSTEM for versions markets where provided On car equipped with the Blue amp Me system there may be the possibility to install the Blue amp Me TomTom portable satellite navigation system which is available from Lineaccessori Install the portable navigation system by fitting the relevant mounting bracket in the housing shown myport in Fig 10 Fig 10 Myport NETWORK INTERVENTIONS For general information technical specifications descriptions and operation diagnosis tests repair procedures wiring diagrams scheduled servicing and PDI operations refer to the Service Manual For the diagnosis of the electronic systems equipped with self diagnosis use the Examiner updated with the new release programme 8 20 or later http aftersales fiat com elearn frmMainPage aspx nodeID 250925902 amp languageID 5 01 2012 SCHEDULED MAINT
57. ided in addition to the warning light For vehicles equipped with DPF the engine oil change frequency is based on actual degrading and not on the Service Schedule The warning light will come on when the engine oil has lost its lubricating properties It is not related to the engine oil level and thus topping up when the oil when the warning light comes on is to recommended The engine may be seriously damaged due to the increased engine oil level and the blow up operation if the mall indication is reset by means of Examiner but the degraded oil is not changed 2 Particulate trap during regeneration The amber warning light comes on B Fig 2 and a specific message is shown on the display where provided Fig 2 Operation of this warning lightdoes not indicate faulty operation of the vehicle The warning light comes on to indicate that the DPF needs to be regenerated It is advisable to keep the engine running until the warning light goes out to indicate that the procedure is over The warning light will be turned on by the engine ECU after the engine has been repeated stopped during the DPF regeneration Ignoring the warning light will cause High risk of DPF obstruction and consequent lighting of the MIL warning light see paragraph 3 Continuous DPF regeneration attempts will consequent early oil decay see paragraph 1 In optimal conditions for regenerating the DPF the car must travel at a speed higher than 60 km
58. il life ANSWER Some fuel crosses the piston rings and ends up in the engine oil whenever the DPF is regenerated The consequent reduction of engine oil causes a partial reduction of the lubricant features of the oil and increases the engine oil level Driving missions which cause frequent regeneration will inevitably cause early engine oil degrading 3 QUESTION What can L do to increase engine oil life ANSWER Engine oil degrading depends on the conditions of use of the vehicle Engine oil is degraded in the following conditions When the car is driven for short distances and the engine does not warm up prevalent use during engine warm up will imply more frequent DPF regeneration consequent engine oil and repeated interruption of the regeneration process controlled by the CCM Prevalent use in cities use on motorways will allow to partially evaporate some of the fuel contained in the oil The CCM will take partial oil condition recovery in consideration Ignoring DPF warning light see par 2 if the engine is stopped when the DPF light is on the regeneration process will not be completed and therefore the CCM will start a new regeneration when the engine is started again 4 QUESTION What happens if I ignore the oil degraded warning light ANSWER Ignoring the oil degrading warning light will imply Early engine wear caused by engine operation with oil excessively diluted by fuel Increase of engine oil level in sump which in the
59. inPage aspx nodeID 250011755 amp languageID 5 01 2012 Contents Page 8 of 11 The voltage of the output signal from the sensor varies according to the absolute pressure in accordance with this rule Ua cl pabs c0 Us where e Ua voltage of output signal in V Us supply voltage in V pabs absolute pressure in kPa c0 5 4 280 cl 0 85 280 kPa 1 P ans KPa U 5V Tolerance of output signal pressure The graph below illustrates the progress of the tolerance of the output signal depending on the pressure 7 dz TOLLERANZA IN kPa P In kPa The table below show the resistance values of the temperature sensor according to the air temperature http aftersales fiat com elearn frmMainPage aspx nodeID 250011755 amp languageID 5 01 2012 Contents Temperature C Resistance in Ohms W D GN OO NO pa pa pa pa NO NO 09 gt N Co No oe aN lt NO pa ON pa U N O E O GN GN o NO aN O N Fe WG NO NO Ln D OD U CO OD N N EAN NO Te q U ho a ww N A A Nn QO OO WT WG N OO ON N o e G x aN NO J OO Ko N q LAA Nn L D UO E N Ln E gt U oe N XO on l l l http aftersales fiat com elearn frmMainPage aspx nodeID 250011755 amp languageID ae O UG CD NO om be be 5 01 2012 Contents Page 10 of 11 WN WN LAA ON 7 NO ay O WN K o No NO OO Q ON ON WG So LA 09 QO o ON
60. ined in the DPF Oil leakage from valve guides Oil leakage from one or more valves generates a percentage of PM which is not included in calculation Solution Check for oil scaling in the combustion chamber piston top and injectors and not intake RELATED TOPICS See SN 00 10 09 more information on instrument panel indications related to degraded engine oil and the obstructed particulate filter See the following for diagnosing engine operation faults caused by particulate filter obstruction SN 10 16 09 for 1 3 Multijet SN 10 11 09 for 1 9 JTD 8 16v and 2 4 JTD 20v Refer to specific SN where provided for each model for upgrading the CCM software http aftersales fiat com elearn frmMaimPage aspx nodeID 250925583 amp languagelID 5 01 2012 Contents Page of 3 250 DUCATO 2 3 JTD E4 E5 General information Euro 5 Euro 5 VALID FOR VERSIONS WITH Euro 5 General information The main specifications of the 2 3 JTD Euro 5 engines are as follows Supercharged MultiJet diesel engine with fixed geometry turbocharger and wastegate valve and a power of 130 HP Supercharged MultiJet diesel engine with variable geometry turbocharger and a power of 150 HP emission level conforms with Euro 5 standards four cylinder in line arrangement displacement 2287 cc bore 88 mm stroke 94 mm compression ratio 16 2 1 dual overhead camshaft with 16 valve timing system aluminium alloy head camshaft housing contain
61. ing normal driving profiles Controlled regeneration Controlled regeneration is automatically managed by the engine ECU when travelling on the road by means of controls for increasing the exhaust gas temperature to reach the particulate matter combustion threshold During the regeneration process the engine ECU interrupts exhaust gas recirculation EGR operates the turbine in order to maintain the engine torque constant http aftersales fiat com elearn frmMainPage aspx nodeID 250925583 amp languageID 5 01 2012 Contents Page 16 of 19 activates post injections which heat up the exhaust gases directly The effects of controlled regeneration During regeneration the engine ECU corrects some operating strategies Engine torque At constant engine rpm and load post injection increases an engine torque increase In order to maintain the same driving conditions and avoid engine torque variations the engine ECU reduces fuel flow during main injection adjusts supercharging pressure Supercharger pressure adjustment To maintain the engine torque unchanged during regeneration the engine ECU reduces supercharger pressure to improve handling This is because the exhaust gases during regeneration are hotter and tend to increase turbine rotation Exhaust gas recirculation adjustment EGR At each regeneration the engine ECU may actuate two EGR solenoid valve strategies EGR closed in the case several post injections
62. ing the accumulation of particulate and for DPF filter regeneration strategies Fig 22 Engine ECU ENGINE ECU STRATEGIES DPF filter regeneration The particulate accumulate in the DPF is burnt by means of the regeneration process When the regeneration process is started the engine ECU will implement the following strategies PILOT PRE MAIN injection times Injection pressure EGR closes Throttle opens Turbo pressure AFTER injection activation increases the exhaust gas temperature to Ti 450 C with combustion in the combustion chamber POST injection activation increase the exhaust gas temperature to T2 600 C with combustion inside the exhaust pipe pre cat and catalyser Conditions Regeneration time approximately 12 min Fig 23 Injection process http aftersales fiat com elearn frmMainPage aspx nodeID 250925583 amp languageID 5 01 2012 Contents Page 13 of 19 PMS 3 TD Ti T2 Engine oil dilution Pilot Pre Main After are activate with piston in top position A Fig 27 while post injection occurs when the position is in bottom position B Fig 27 this causes atomisation of fuel on the cylinder walls causing increase of fuel leakage into the oil sump Fig 24 In order to prevent risks for the engine the engine ECU calculates engine oil degrading and lights up the engine oil warning light when the safety threshold is reached Fig 28 Fig 25 Engine oil warning light The oil repla
63. ing the camshaft supports timing system with drive belt on the control shaft for the inlet valves and chain driven idler for the exhaust valve control shaft rocker arms with hydraulic tappets centrifugal type water pump incorporated in the crankcase engine management control unit MJD 8F3 high pressure pump Bosch CP 1h mono bloc made from spheroidal cast iron steel oil sump VALID FOR VERSIONS WITH 130 CV Euro 5 View of engine exhaust side http aftersales fiat com elearn frmMainPage aspx nodeID 250011726 amp languageID 6 01 2012 Contents Page 2 of 3 View of engine inlet side VALID FOR VERSIONS WITH Euro 5 150 CV View of engine exhaust side http aftersales fiat com elearn frmMainPage aspx nodeID 250011726 amp languageID 6 01 2012 Contents Page 3 of 3 View of engine inlet side http aftersales fiat com elearmn frmMainPage aspx nodeID 250011726 amp languagelD 6 01 2012 Contents Page 1 of 2 250 DUCATO 2 3 JTD E4 E5 Introduction Introduction The main specifications of the 2 3 JTD engine are as follows supercharged Diesel engine with fixed geometry turbocharger emission level conforms with Euro 4 standards power developed 120 CV and 130 CV four cylinder in line arrangement cylinder capacity 2287 cc bore 88 mm stroke 94 mm compression ratio 19 0 5 1 dual overhead camshaft with 16 valve timing system aluminium alloy head camshaft housing c
64. ion diesel engines Its main features are e the availability of high injection pressure 1800 bar possibility of modulating pressures from 150 bar up to a maximum operating pressure of 1800 bar regardless of engine rpm and load ability to work at high engine rpm up to 6000 rpm in full load conditions high pressure pump with three pumping elements precision injection control injection advance and duration reduced fuel consumption reduced emissions The main functions of the system are basically as follows fuel temperature control engine coolant temperature control control of amount of fuel injected idle speed control fuel cut off during over run cylinder balance check when idling control of anti judder function control of exhaust fumes during acceleration exhaust gas recirculation control E G R maximum torque limit control maximum speed limit control heater plug control control of climate control system activation where fitted fuel pump control cylinder position control main and pilot injection advance check closed cycle injection pressure control electrical balance control supercharging control self diagnosis connection with the Fiat CODE control unit Immobilizer http aftersales fiat com elearn frmMainPage aspx nodeID 250006609 amp languageID 5 01 2012 Contents Page 2 of 8 acetals 74 MA ts G o C l Auxiliary fuel pump Fuel
65. kshop for the necessary repairs http aftersales fiat com elearn frmMainPage aspx nodeID 250006609 amp languageID 5 01 2012 Contents Page 1 of 4 250 DUCATO 3 0 JTD EURO V EUROS Introduction DIESEL PRESSURE PUMP AND CONTROL The CP4 1 supply pump for the Common Rail system 1s called Radialjet because the pumping action is obtained through three pumping elements pistons arranged radially relative to the pump shaft s rotational axis The angle between one pumping element and the other is 120 The quantity of fuel sent to the pumping pistons is regulated by a flow rate regulator operated by the engine management control unit 1 Pressure regulator 2 Fuel inlet from filter 3 Fuel return to the tank 4 High pressure fuel supply to the rail Radial jet pump specifications The movement of the pistons is determined by the rotation of a triangular shaped cam integrated with the pump shaft This cam causes the movement of the three pistons in succession through the movement of a mechanical interface tappet between the cam and the foot of the piston The contact between the cam and each individual tappet is ensured by means of a spring Each pumping unit 1s equipped with an intake valve and a supply ball valve All three delivery valves of the pumping elements are united inside the pump and send the fuel to the common manifold via a single duct A feature of this pump 1s that it is lubricated and cooled at the same time by
66. le usage conditions and is signalled by the warning light or message if present in the instrument panel Warning lights and messages or every 12 months Change engine oil and filter every 12 months Contents Page 1 of 4 Service News Copyright By Fiat Group Automobiles S p A Printed 09 04 2009 Various models 00 10 09 All types Diesel with DPF 500 Panda 169 Grande Punto Idea Stilo Bravo Multipla Sedici Croma Dobl Ulysse 179 Fiorino Qubo Scudo 272 Ducato 250 0000 O 000 AA DEGRADED OIL INDICATION Warning light operation and oil change Information to the network Supersedes Service News 00 20 08 dated 31 07 2008 for more information on the engine control system warning light On vehicles with diesel engines provided with DPF system particulate trap operating conditions may occur which cause the following indications 1 Degraded engine oil indication the red minimum engine oil pressure warning light A Fig 1 will blink and a specific message may appear on the display where provided The warning light may blink as follows according to the versions for one minute every two hours for three minute cycles with the light off for 5 seconds until the oil is changed The warning light will come on steady to indicate insufficient engine oil pressure at the specific message will appear on the display where provided Fig 1 The blinking of the warning light is not
67. let port 4 Solenoid 5 Magnetic core 6 Plunger cylinder 7 Preload spring Operation When the engine management control unit governs the pressure regulator via a PWM signal the solenoid 4 is energised which in turn generates the movement of magnetic core 5 Core movement causes the plunger cylinder 6 to move sideways and choke the fuel flow When the solenoid 4 is not energised the magnetic core is pushed into rest position by the preload spring 7 Under these conditions the plunger cylinder 6 is in a position that offers the fuel the maximum cross section http aftersales fiat com elearn frmMainPage aspx nodeID 250006610 amp languageID 5 01 2012 Contents Page 1 of 2 250 DUCATO 3 0 JTD EURO V EUROS INTRODUCTION ENGINE TURBOCHARGING SYSTEM TURBOCHARGER Variable geometry turbocharger VGT managed by the engine management node through the vacuum solenoid and turbine vane direction actuator position sensor 1 Variable geometry turbocharger 2 Turbine vane control rod 3 Turbine vane direction actuator position sensor 4 Pneumatic actuator The position sensor 3 allows the engine management control unit to check the pressure and the actuator directly in parallel This strategy extends the range 20 90 of the duty cycle that the engine management control unit controls the vacuum modulating valve with resulting in the following advantages improved system reaction speed in operating
68. monitors the regularity of the torque at idle speed and varies the amount of fuel injected in the single injectors injection time Control of engine rotation regularity anti judder It ensures the engine rotation regularity at constant speed during the rpm increase According to the signals received from the sensors the control unit determines the amount of fuel to be injected through the pressure regulator and the injector opening time Exhaust fumes control during acceleration With high acceleration according to the signals received from the flow meter and the engine rpm sensor the control unit determines the optimum amount of fuel to inject e controls the pressure regulator e alters the injector injection times Control of exhaust gas recirculation e g r On the basis of the engine load and the signal from the accelerator pedal sensor the control unit limits the quantity of intake air implementing the partial intake of exhaust gases http aftersales fiat com elearn frmMainPage aspx nodeID 250006609 amp languageID 5 01 2012 Contents Page 5 of 8 Maximum speed limit control According to the rpm the control unit implements two intervention strategies at 4250 rpm the control unit limits the fuel flow by reducing the injector opening time Above 5000 rpm it deactivates the injectors Control of rotation regularity during acceleration Regular progression is guaranteed in every condition by controlling the pressure
69. nder in line arrangement cylinder capacity 2999 cc bore 95 8 mm stroke 104 mm compression ratio 17 5 1 injection order 1 3 4 2 dual overhead camshaft with 16 valve timing system aluminium alloy head camshaft housing containing the camshaft supports chain driven timing rocker arms with hydraulic tappets centrifugal type water pump incorporated in the crankcase engine management control unit Bosch EDC17CP52 high pressure pump Bosch CP4 1 without geared transfer pump mono bloc made from spheroidal cast iron pressed steel oil sump View of engine exhaust side Page 1 of 2 Euro 5 Euro http aftersales fiat com elearn frmMainPage aspx nodeID 250011727 amp languageID 6 01 2012 Contents Page 2 of 2 View of engine inlet side http aftersales fiat com elearn frmMainPage aspx nodeID 250011727 amp languageID 6 01 2012 Contents Page of 11 250 DUCATO 3 0 JTD EURO V EUROS Introduction DIESEL INJECTION PRESSURE PUMP ELECTRONIC CONTROL Euro 5 Euro 5 VALID FOR VERSIONS WITH Euro 5 Injection control unit This is fitted in the engine compartment on the right side The control unit is the flash EPROM type 1 e 1t can be reprogrammed from the outside without operations to the hardware The injection control unit incorporates the absolute pressure sensor The following diagram shows the control unit W o D hoo ooo ooo se as G at G n Lee El Connector M010A 1 Ig
70. ngine management system uses its internal strategy to determine whether the catalytic converter has reached its maximum conversion level when this level 1s reached it activates the second artificial regeneration stage Second stage regeneration At the end of the first artificial regeneration stage the engine management system implements strategies that allow a further increase in the temperature of the exhaust gases second stage 1 Pilot injection 2 Main injection 3 After injection depending on the engine point 4 First post injection period 5 Post injection The period that separates the main injection from the post injection is longer than for the first stage the post injection period is longer and is divided into two parts This is split in two three injections are carried out to reduce the oil dilution Artificial regeneration activation conditions Before activating the artificial regeneration strategies the engine management system checks that e the temperature of the engine coolant 1s 50 C e the engine speed is equal to a pre set level regeneration is inhibited during idling Differential pressure sensor signal Op The signal 1s used to advance the regeneration normally operated by the status machine http aftersales fiat com elearn frmMainPage aspx nodeID 250005171 amp languagelD 5 01 2012 Contents Page 1 of 19 Service News Copyright By Fiat Group Automobiles S p A Printed 14 04 2009
71. nition controlled power supply from main relay 2 Earth 1 control unit 3 Ignition controlled power supply from main relay switch 4 Earth 2 control unit 5 Ignition controlled power supply from main relay 6 Earth 3 control unit 7 NC 8 Potentiometer earth 2 accelerator pedal 9 NC 10 NC 11 Exhaust gas temperature sensor signal 1 12 Exhaust gas temperature sensor signal 2 13 NC 14 NC 15 NC 16 NC 17 Brake pedal switch signal 18 Particulate filter differential sensor negative 19 NC 20 Diagnosis K line 21 NC 22 Particulate filter differential sensor supply 23 NC 24 NC http aftersales fiat com elearn frmMainPage aspx nodeID 250011755 amp languageID 5 01 2012 Contents Page 2 of 11 25 NC 26 Radiator solenoid valve Ist relay switch coil control 27 NC 28 NC 29 NC 30 Potentiometer earth 1 accelerator pedal 31 NC 32 NC 33 NC 34 NC 35 Accelerator pedal potentiometer 2 signal 36 Climate control linear sensor signal 37 NC 38 NC 39 Climate control linear pressure sensor earth 40 NC 41 NC 42 NC 43 NC 44 NC 45 Potentiometer power supply 1 accelerator pedal 46 Potentiometer power supply 2 accelerator pedal 47 Radiator solenoid valve 2nd relay switch coil control 48 NC 49 NC 50 NC 51 Lambda sensor heating negative 52 Feedback input for heater plugs preheataing time fault detection 53 NC 54 Particul
72. o the differential pressure measured by the sensor Differential pressure pressure upstream of DPF atmospheric pressure This signal is used by the engine ECU CCM to check the DPF obstruction level and to actuate regeneration strategies http aftersales fiat com elearn frmMainPage aspx nodeID 250925583 amp languageID 5 01 2012 Contents Page 11 of 19 Differential pressure sensor location The differential pressure sensor Fig 18 is generally arranged on the engine compartment wall in the central area next to the coolant expansion vessel Fig 18 Differential pressure sensor pinout Fig 19 K187 differential pressure sensor Power 5 Volt 44 A Ground GND 37 A Signal 0 4 65 Volt 36 A Differential pressure sensor electric signal The following chart Fig 20 shows the pattern of the electric signal generated by the pressure sensor the table in Fig 21 shows the transcoding of the pressure value and the electric signal mbar volt Fig 20 Vs 4 55 0 4 0 E nn 40 0 kPa 125 140 A possible back pressure value is shown in the following chart Fig 21 according to the amount of particulate matter collected in the DPF Fig 21 http aftersales fiat com elearn frmMainPage aspx nodeID 250925583 amp languageID 5 01 2012 Contents Page 12 of 19 A Flow B Back pressure C PM weight g ENGINE ECU CCM In versions with DPF the engine ECU implemented specific functions for controll
73. ombustion level is reached The regeneration involves two stages e stage 1 increase in the temperature of the catalytic converter e stage 2 increase in the DPF temperature The engine management system oversees the shift from the first stage to the second stage according to the temperature of the temperature sensors located before the catalytic converter and before the DPF Each time the regeneration 1s activated the engine management system e interrupts the exhaust gas recirculation EGR e activates the after and post injection which heats the catalytic converter and the DPF First stage regeneration When first stage regeneration 1s required the engine management system adapts the after injection strategies to increase the temperature of the catalytic converter PA 1 Pilot injection PILOT 2 Main injection MAIN 3 Interval before injection AFTER 4 Injection AFTER http aftersales fiat com elearn frmMainPage aspx nodeID 250005171 amp languageID 5 01 2012 Contents Page 10 of 10 After injection takes place immediately after the main injection which makes it possible to increase the temperature of the exhaust gases through combustion in the cylinder after top dead centre This stage ensures an increase in the temperature of the catalytic converter until the maximum efficiency level is reached By comparing the temperature of the exhaust gases upstream and downstream of the catalytic converter the e
74. on of the vehicle centre of gravity Hill Holder which extends the pressure on the brake calipers when the driver s foot is lifted from the brake pedal for making departures uphills easier HBA Hydraulic Brake Assistance which automatically increases the pressure in the braking circuit during emergency braking ASR Anti Slip Regulation the traction control function preventing the slipping effects of one or both driving wheels acting on the individual brakes and or temporarily reducing the engine power MSR Motor Schleppmoment Regelung which intervenes in the event of a sudden change of gear whilst downshifting thereby avoiding excessive drag of the driving wheels All vehicles come with front and rear disc brakes with the following features 17 qt Light 17 qt Heavy Self ventilated disc Self ventilated disc Self ventilated disc Self ventilated disc FRONT BRAKES eae 380 x 24 300 x 24 300 x 31 Solid disc Solid disc Solid disc Solid disc REAR BRAKES S gt 80 x 16 280 x 16 300 x 16 TRACTION PLUS SYSTEM Upon demand MY 2011 vehicles with ESP can be equipped with Traction Plus traction control system with increases the vehicle driving capacity on rough grounds with poor grip by locally engaging the braking system acting like a limited slip differential When a driving wheel is in poor grip conditions the system control unit detects the slip and commands the hydraulic circuit to apply braking force to the slipping wheel thus shi
75. ontaining the camshaft supports timing system with drive belt on the control shaft for the inlet valves and chain driven idler for the exhaust valve control shaft rocker arms with hydraulic tappets centrifugal type water pump incorporated in the crankcase engine management control unit Bosch EDC16C39 high pressure pump Bosch CPlh mono bloc made from spheriodal cast iron steel oil sump View of engine exhaust side http aftersales fiat com elearn frmMainPage aspx nodeID 250001575 amp languageID 6 01 2012 Contents Page 2 of 2 View of engine inlet side http aftersales fiat com elearn frmMainPage aspx nodeID 250001575 amp languageID 6 01 2012
76. or inlet to intake manifold inlet As known the presence of a small coat of oil in diesel pipes is normal Check for puddles in the air intake which are not normal The presence of oil in intake may depend on several causes excessive oil level high engine blow by turbocharger problem Solution Regardless of the cause of the presence of oil the first operation consists in washing out the intake circuit air path Analysing the single causes excessive oil level The oil level must always be between the min and the max level When topping up engine oil never excess the maximum level preferably 2 mm under the max line restore correct level if required high engine blow by Run a diagnostic test on the engine compression test Turbocharger problem In many cases the presence of a turbocharger fault is indicated by the presence of CCM errors In this case follow the procedures indicated for the specific procedure see applicable Service News Diagnosing this component with regards to DPF problems is more difficult Possible faults include presence of oil at compressor outlet turbocharger replacement and intake circuit washing pipes and intercooler max supercharging pressure not reached Check conditions of pipes and intercooler checking for leakage of oil Replace the turbocharger if leakage of air is found The difference between target pressure and measured pressure is 100 200 mbar Run the turbo pre
77. or is excited by the electronic control unit fuel taken directly from the Rail is injected into the relevant cylinder The hydraulic system comprises one low pressure circuit and one high pressure circuit The high pressure circuit consists of the following pipes e pipe connecting the high pressure pump outlet to the Rail e Common Rail e pipes that supply the injectors from the Rail The low pressure circuit consists of the following pipes fuel inlet pipe from the tank to the prefilter pipes supplying the mechanical supply pump and the prefilter pipes supplying the high pressure pump via the fuel filter return pipe from high pressure pump return pipe from injectors return pipe to tank For safety reasons due to the high pressures in this hydraulic system it is absolutely necessary to e avoid tightening the high pressure pipe fittings to an approximate torque e avoid disconnecting the high pressure pipes with the engine running do NOT attempt to bleed because this is absolutely pointless and dangerous Because the low pressure circuit must also be undamaged for the system to operate efficiently avoid handling or modification and take action immediately to rectify leaks Fuel temperature control When the fuel temperature measured by the sensor on the fuel filter is greater than 75 C the control unit operates the pressure regulator to reduce the line pressure it does not alter the injection times If the temperatu
78. r therefore the control unit only has to synchronise on the combustion order and start the engine Cold starting Even if only one of the three temperature sensors water air or diesel measures a temperature lower than 10 C the preheating postheating is activated http aftersales fiat com elearn frmMainPage aspx nodeID 250006609 amp languageID 5 01 2012 Contents Page 8 of 8 At the key on the preheating warning light comes on and remains on for a period which varies according to the temperature while the spark plugs on the cylinder head heat the air then it flashes At this point the engine can be started When the engine 19 running the warning light switches off but the spark plugs are still supplied for a certain variable period and perform the postheating If the engine 1s not started within 20 25 seconds oversight period when the warning light flashes the operation is cancelled to prevent a useless drain on the battery The preheating curve also varies according to the battery voltage Warm starting If all reference temperatures exceed 10 C at the key on the warning light switches on for about 2 sec for a short test then switches off At this point the engine can be started Run up When the key is inserted the control unit transmits the information stored during the previous engine cut out to the main memory see After run and performs a system diagnosis After run Each time the engine is turned of
79. ration occurs in average every 800 1000 km the distance travelled between two regeneration procedures depends on vehicle use In particularly demanding conditions mainly in cities and short distances the frequency between regeneration processes may be reduced to a few hundreds of kilometres 250 300 When the engine control system cannot regenerate the DPF filter due to the driving profile the DPF warning light B Fig 2 will come on if the temperature is higher than 80 C a future development will consist in lower the threshold to 70 C The following conditions may occur during regeneration limited increase of idling ratio operation of the fan slight increase of smokiness high temperatures in exhaust therefore these situations which do not effect handling or the environment are not faults FAQ Some questions that the customer may ask and the answers are listed below 1 QUESTION Does the degraded oil warning light Fig 1 indicate an engine fault ANSWER The degraded oil warning light does not indicate a fault but simply indicates that it is time to change the oil Cars with DPF particulate filter have a different engine oil change management strategy the oil change frequency no longer depends on the distance driven but is indicated by the warning light Fig 1 on the instrument panel The engine ECU records the vehicle use conditions and indicates when the engine oil needs to be changes 2 QUESTION What effects the o
80. re exceeds 90 C power is decreased to 60 Engine coolant temperature control Depending on the temperature of the engine coolant the supercharging air and the fuel the control unit controls the radiator fan and switches on the coolant temperature warning light Control of injected fuel quantity http aftersales fiat com elearn frmMainPage aspx nodeID 250006609 amp languageID 5 01 2012 Contents Page 4 of 8 The control unit uses the signals coming from the sensors and the stored values to e controls the pressure regulator e alters the pilot injection time up to 2200 rpm e alters the main injection time Idling speed control The control unit processes the signals from the various sensors and regulates the amount of fuel injected it controls the pressure regulator and varies the injection times Within certain thresholds the speed takes battery voltage into account e controls the pressure regulator e modulates the injector injection times Within certain thresholds the speed takes battery voltage into account Fuel cut off during pedal release cut off When the accelerator pedal is released the control unit implements the following strategies e cuts off the supply to the injectors e partly reactivates the supply to the injectors before idle speed is reached e controls the fuel pressure regulator Control of cylinder balancing when idling According to the signals received by the sensors the control unit
81. rning light message on instrument panel Fig 6 DPF Euro 5 system diagram G v Gu b WN http aftersales fiat com elearn frmMaimPage aspx nodeID 250925583 amp languagelID 5 01 2012 Contents Page 6 of 19 Engine ECU Exhaust gas differential pressure sensor Lambda sensor VGT turbine Air flow meter Front catalyser Exhaust gas temperature sensor DPF DPF filter Injectors 10 EGR heat exchanger 11 EGR 12 Motorized throttle 13 Intercooler DPF Diesel Particulate Filter Introduction The system consists of two main components Oxidising catalyser Particulate filter The filter is generally located under the body Euro 4 versions but in the future Euro 5 the units will be fitted in the engine compartment instead of the pre cat which will be eliminated E It will not always be possible to move the unit into the engine compartment it will depend on engine version and sel the available space in the engine compartment Fig 7 DPF filter OANA UW Z W N ka 1 Pressure vent upstream of the DPF filter 2 Oxidising catalyser 3 DPF temperature sensor housing http aftersales fiat com elearn frmMainPage aspx nodeID 250925583 amp languageID 5 01 2012 Contents Page 7 of 19 4 Particulate filter DPF Materials used and geometric configurations The materials with which the filter is made and its geometric configuration are key elements in the DPF system Various
82. rom valve guides Thermostat Incorrect operation of the thermostat including excessive opening and closing tolerances causes a high production of smokiness causes a different calibration of the reference threshold in the engine ECU approximately 88 C this causes incorrect calculation rounded down of the amount of PM collected in the DPF This amount of particulate in excess not calculated by the ECU causes incoherence between the percentage calculated by CCM and the back pressure in exhaust This causes the engine warning light MIL to light up Solution this problem is diagnosed by running a test drive with engine warm at a speed from 70 to 90 km h in 4 5 gear With EXAMINER on board check that the engine coolant temperature is always gt 85 C If the temperature is lower than 85 C replace the thermostat and check that with the new component the engine coolant temperature is higher than the reference value Sd The tolerance of the mechanical thermostat generate lower engine operation temperature causing an incorrect EGR management causing more generation of PM than that estimated by the engine ECU For EURO 5 the threshold is 70 C Air flow meter http aftersales fiat com elearn frmMainPage aspx nodeID 250925583 amp languageID 5 01 2012 Contents Page 18 of 19 Incorrect operation of the air flow meter including excessive reading tolerances causes high smoke production In this case the high produc
83. rticle The latter regenerate more effectively is used in extra urban cycles The DPF system allows the automatic regeneration of the particulate filter whilst the vehicle is working thereby keeping it at a constant level of efficiency in all usage conditions for the life of the vehicle Bo in aim E E a m Composition The operation of the DPF system is managed by the engine injection control unit by means of suitable strategies In addition to the actual filter the DPF system comprises an exhaust gas temperature sensor and a differential pressure sensor The differential pressure sensor measures the pressure of the exhaust gases upstream and downstream of the filter by means of special pipes signalling the gradual accumulation of particulate to the control unit http aftersales fiat com elearn frmMainPage aspx nodeID 250005171 amp languageID 5 01 2012 Contents Page 2 of 10 The particulate accumulation process and the relative increase in the pressure of the exhaust gases inside the filter depends on the engine load the style of driving and the route the weight of the vehicle and the engine capacity and power Therefore the particulate needs to be removed on a regular basis regenerating the filter following a procedure that makes use of multiple injections to increase the temperature of the exhaust gases about 650 C and burn the particulate The regeneration procedure 1s controlled by the injection control unit
84. s The model range in question has been extended through the launch of the new 3 0 Euro V fifth version initially available for M2 models only The engines are the following 100 Multijet Euro 4 120 Multijet Euro 4 130 Multijet Euro 4 160 Multijet Euro 4 160 Multijet new Euro V engine Listed below are the main technical specifications and identification data of the new Euro V version and a short description of the main components of the new engine IDENTIFICATION DATA Engine codes and bodywork versions VERSIONS ENGINE CODES BODYWORK VERSIONS 3 0 Multijet 160 SOFIM FICE3481M For the bodywork version initials see Service News 00 18 06 of 26 05 2006 SPECIFICATIONS 3 0 MULTIJET ENGINE http aftersales fiat com elearn frmMainPage aspx nodeID 250925480 amp languageID 6 01 2012 Contents Page 2 of 3 The new Euro V engine has a capacity of 2999 cc a maximum power output of 115 kW at 3500 rpm and a maximum torque of 400 Nm at 1700 rpm with a practically constant rate between 1700 and 2500 rpm The flexibility of the new engine result in greater driving comfort and remarkable noise reduction The main differences compared to the current Euro 4 engine are new intake unit 1 Fig 1 new thermostat unit 2 Fig 1 Fig 1 new EGR unit 1 Fig 2 new turbocharger unit 2 Fig 2 new exhaust unit 3 Fig 2 new engine mountings Fig 2 The lay out of the following systems has also been
85. s for motion transmission Lithium based grease with molybdenum bisulphate NL GI 2 consistency Wheel side constant TUTELA STAR 500 eee velocity joints Differential side constant velocity joints Lithium based grease NI GI 0 consistency TUTELA MRM ZERO Poly urea synthetic TUTELA STAR 325 based grease suitable Contractual Technical Differential side http aftersales fiat com elearn frmMainPage aspx nodeID 250000033 amp languageID 5 01 2012 Contents Brake fluid Protective agent for radiators Windscreen rear window washer fluid Diesel additive for high temperatures NL GI 2 consistency Lubricant for power steering and automatic transmissions Exceeds ATF DEXRON III specifications Synthetic fluid NHTSA no 116 DOT 4 ISO 4925 SAE J 1704 CUNA NC 956 01 FIAT Classification 9 55597 Red protective with antifreeze action based on inhibited monoethyl glycol with organic formula Exceeds CUNA NC 956 16 ASTM D 3306 specifications FIAT Classification 9 555323 Mixture of spirits and surfactants Exceeds CUNA NC 956 11 specifications FIAT Classification 9 55522 Additive for diesel antifreeze protecting diesel engines Reference No F301 D03 TUTELA CAR GI E Contractual Technical Reference No F001 C94 TUTELA TOP 4 Contractual Technical Reference No F001 a93 PARAFLU UP Contractual Technical Reference N F101 M01 TUTELA PROFES
86. sales fiat com elearn frmMainPage aspx nodeID 250925583 amp languageID 5 01 2012 Contents Page 8 of 19 Exhaust gas inlet DPF filter Filtered exhaust gas outlet Differential pressure sensor measuring point downstream of the filter Exhaust gas temperature sensor Remember that the particulate filter must never be washed using water jets or other devices In case of excessive obstruction which cannot be solved by means of a forced regeneration procedure the filter must be replaced uh WN ka After reach regeneration process an amount of unburnt solid residues ashes will remain This determines the lifespan of a DPF filter The normal lifespan of a DPF is 250 000 km but this distance may be reduced according to driving style engine oil consumption and number of regeneration Central catalyser and DPF location Figure 11 shows the location of the central catalyser and the particulate filter The unit is normally fitted under the middle part under the body in Euro 4 systems Fig 11 DPF setup G Figure 12 shows the arrangement with single tube differential pressure sensor Fig 12 http aftersales fiat com elearmn frmMainPage aspx nodeID 250925583 amp languagelD 5 01 2012 Contents Page 9 of 19 A Pressure measuring tube upstream of DPF B Exhaust gas temperature upstream of DPF EXHAUST GAS TEMPERATURE SENSOR The temperature sensor Fig 13 of the PTC type is used to send the exhaust gas temperature
87. ssure test when the DPF is not obstructed excessive acceleration response delay Replace turbocharger EGR valve The EGR value problems are the most difficult to diagnose Faults of this component will cause high smokiness and as in the other cases incoherent CCM data and consequent lighting of the engine warning light MIL and the generation of fault code P1206 In the most severe cases the ECU has an internal diagnostic procedure with the generation of a specific error code The faults of this component are not easy to diagnose in the least severe cases Replacement is therefore recommended Solution As previously mentioned the component should be replaced if faults caused by this component are found In many cases cleaning this component may be useful This solution may apply in cases of vehicles with high odometer reading It is advisable to replace the component on new vehicles Condensation Water may be accumulated in the DPF condensation This occurs on new cars with low odometer reading on which no regeneration has yet been carried out This causes a fault reading by the differential pressure sensor high pressure obstructed filter error P1206 The engine ECU light up the MIL warning light Solution http aftersales fiat com elearn frmMainPage aspx nodeID 250925583 amp languageID 5 01 2012 Contents Page 19 of 19 Disconnect the central unit under the body catalyser DPF and eliminate the water conta
88. tion of smoke is caused by a greater opening of the EGR with consequent exhaust gas recirculation inside the engine Solution Diagnosing this fault is not simple This is because flow meter problems may occur also with incorrect air flow readings when engine is idling The solution in this case is to replace the air flow meter The air mass measured with the engine idling for at least 2 minutes to close the EGR and ensure intake air Es temperature measured by air flow meter lower than 35 C for 1 9 and 2 4 JTD engines 480 mg iniet for 1 3 JTD engines from 280 to 310 mg iniet Injectors The incorrect FBC value Fuel Borne Catalyst or injection time correction factor is analysed by means of EXAMINER checking that the FBC of the single injector is comprised between 2 and 2 mm3 injet with the engine idling and warm The incorrect FBC value generates the following problems high particulate production regeneration cannot be run Solution This problems may be solved in principle as follows check correspondence between IMA injector codes and injector codes written in ECU try to reset self learnt injection amount replace the injectors Check number of washers present in injector seat and thickness Only one washer must be present The thickness must be 2mm for 1 6 JTD 1 9 JTD and 2 4 JTDM 1 5mm for 1 3 JTDM Presence of oil in intake circuit Check for presence of oil in intake circuit check all pipes from compress
89. w roof Low roof Low roof a le be 3450 3450 3000 S 4035 4035 3000 o 0 w a 1225 a o 5235 5278 8 Pear 5820 6125 4828 Boe 5863 6228 2254 2254 2254 2254 1810 1810 1810 1810 1810 1810 1810 1810 1790 E 1980 2050 2050 2050 2050 2050 2050 2050 2050 The sizes vary according to the versions within the limits indicated above Page 4 of 11 Special chassis cab Extra long Low roof Low roof Low roof Low roof a ae 4035 4035 1790 1790 1980 1980 Special chassis cowl Short wheelbase Low roof Low roof 3000 3450 3800 80 The sizes vary according to the versions within the limits indicated above ENGINES Medium wheelbase Long wheelbase Extra long wheelbase Low roof Low roof All Ducatos feature four cylinder in line engines with four valves per cylinder and a twin overhead camshaft 2 0 and 2 3 130 HP engines have a fixed geometry turbocharger with intercooler while the two more performing engines 2 3 148 HP and 3 0 177 HP have a variable geometry turbocharger The engine head is made from aluminium alloy whilst the crankcase is cast iron The pistons have cooling ducts the geometry of the inlet and exhaust manifolds has been improved All engines are equipped with an EGR system with exhaust gas recirculation cooling managed directly by the engine management control unit http aftersales fiat com elearn frmMainPage aspx nodeID 250925902 amp languageID 5 01
90. which acts on fuel metering up to five fuel injections in the same engine cycle per cylinder and on air control E G R and turbo pressure The regeneration phase takes place over a few minutes and does not affect the continuity of the torque supplied by the engine in terms of normal operation 1 Pressure intake upstream of the filter 2 Pressure intake downstream of the filter 3 Temperature sensor housing upstream of the catalytic converter UFC 4 Temperature sensor housing downstream of the catalytic converter UFC 5 Filter 6 Front Catalyst Particle filter The anti particulate filter is made from silicon carbide with a porous structure with channels that force the flow of exhaust gases through the walls It is incorporated 1n the exhaust pipe fastened to the catalyzer The special structure of the filter allows large filter capacity up to 0 1 micron loss of reduced load good resistance to thermal mechanical and chemical stresses large storage capacity for particles which limits the regeneration frequency The following elements are trapped by the filter e particulate burnt both during the natural regeneration and during the artificial regeneration e solid residues from engine wear and combustion of oils http aftersales fiat com elearn frmMainPage aspx nodeID 250005171 amp languagelD 5 01 2012 Contents Page 3 of 10 A particulate B ceramic material walls C filtered exhaust gases

Download Pdf Manuals

image

Related Search

Related Contents

  SMMS - Toshiba  取扱説明書/112KB  Model 1200 Syringe Filling System User Guide  Descargar    Rival 3752 5-Quart  PRANA SPRAY - E. HENROTTE Distribution  

Copyright © All rights reserved.
Failed to retrieve file