Home

Distribution Amplifiers - Stanford Research Systems

image

Contents

1. 1 With the instrument plugged into an ac power source and turned on apply a 1 kHz offset sine wave amplitude 1 Vpp offset 1 35V to the 1kQ input BNC 2 Triggering the oscilloscope on the sine wave input observe 1kHz square waves at each of the seven outputs The square waves should have about 50 duty cycle indicating that the input switching thresholds are nominally correct and very fast transition times typically 1 0ns rise and 0 6ns fall The phase may be shifted by 180 if an internal polarity control jumper is installed The outputs should switch between OV and 2 5V when driving 50Q loads The outputs should switch between OV and 5V when driving high impedance loads 3 Increase the sine wave frequency to 10MHZ and verify the square wave outputs remain about 50 duty cycle Calibration The CMOS distribution requires no calibration Stanford Research Systems CMOS Logic Distribution Amplifiers Circuit Description CMOS Distribution amplifier Refer to schematics FS3_1C This distribution amplifier is intended to distribute CMOS level logic pulses The amplifier has one input and seven outputs all on BNC connectors All inputs and outputs are logic levels Power The unit is powered from a universal input 24Vdc or 12Vdc power supply The power supply is regulated by a linear regulator U3 to provide a clean 5Vdc supply The current draw is normally very low except when operated at high input frequencies o
2. 50 ppm MELF Resistor Thin Film 1 50 ppm MELF Resistor Thin Film 1 50 ppm MELF Resistor Thin Film 1 50 ppm MELF Resistor Thin Film 1 50 ppm MELF Resistor Thin Film 1 50 ppm MELF Resistor Thin Film 1 50 ppm MELF Resistor Thin Film 1 50 ppm MELF Resistor Thin Film 1 50 ppm MELF Resistor Thick Film 5 300 ppm SMT Resistor Thin Film 1 50 ppm MELF Resistor Thin Film 1 50 ppm MELF Resistor Thick Film 5 300 ppm SMT Resistor Thin Film 1 50 ppm MELF Resistor Thin Film 1 50 ppm MELF Resistor Thick Film 5 300 ppm SMT Resistor Thin Film 1 50 ppm MELF Resistor Thin Film 1 50 ppm MELF Resistor Thick Film 5 300 ppm SMT Resistor Thin Film 1 50 ppm MELF Resistor Thin Film 1 50 ppm MELF Resistor Thick Film 5 300 ppm SMT Resistor Thin Film 1 50 ppm MELF Resistor Thin Film 1 50 ppm MELF Resistor Thick Film 5 300 ppm SMT Resistor Thin Film 1 50 ppm MELF Resistor Thin Film 1 50 ppm MELF Resistor Thick Film 5 300 ppm SMT Resistor Thin Film 1 50 ppm MELF Resistor Thin Film 1 50 ppm MELF Monostable Multivibrator CMOS Logic Distribution Amplifiers 3 01852 U 701 74LVC3G34DCTR 0 01259 Z 0 1 2 CUSTOM 7 02021 Z 0 BNC TOOL 7 01926 Z 1 FS730 735 OPT3 7 01929 Z 2 BNC BLOCK Stanford Research Systems CMOS Logic Distribution Amplifiers Stanford Research Systems Broadband 500 Dis
3. Broadband 50 Q Distribution Amplifiers Circuit Description Broadband Distribution amplifier Refer to schematics FS4_1B This distribution amplifier is intended to distribute broadband dc 100 MHz analog signals over 50Q or 75Q coax The amplifier has one input and seven outputs all on BNC connectors There are eight 150Q resistors that can be added in parallel with eight 75Q resistors to convert a unit from 75Q to 50Q R16 R103 R203 R303 R703 Power The unit operates from a floating 24Vdc power supply A virtual ground is created to split the supply into 12Vdc supplies The virtual ground is maintained by the op amp U1 which maintains the midpoint of the supplies at 0V by drawing current from either the 12V supply or the 12V supply to exactly balance the current drawn by the circuit The 12Vdc supplies are regulated to 10Vdc supplies by U2 and U3 The 10Vdc supplies provide power to the rest of the instrument The comparator U4 will turn the FAULT LED on if the 10Vdc supplies are not balanced Input The input is terminated by R15 for 75Q or R15 amp R16 for 50Q The input op amp US is protected by a series resistor R18 that is clamped to 3 5V by D1 D2 amp D3 Amplifier The input amplifier U5 is a high bandwidth current feedback op amp that operates off 10V power supplies The circuit operates with a nominal gain of x2 42 The output drives a PCB trace via a 14Q resistor R24 which is terminated in
4. Noise typ dBc Hz 125 135 146 155 158 158 Stanford Research Systems 10MHz Distribution Amplifiers Sy 10MHz Distribution amplifier limiter characteristic Output voltage Vpp 0 1 2 3 4 Input voltage Vpp Figure 6 The 10MHz Distribution amplifier input limiter characteristic 10MHz Distribution amplifier Output power vs frequency 15 0 E 100 O o n 50 E a B 00 w U 2 2 5 0 E lt q 5 amp 10 0 z oO 15 0 8 9 10 11 12 Frequency MHz Figure 7 The 10MHZ distribution amplifier output power vs frequency Stanford Research Systems 10 MHz Distribution Amplifiers T Sell Figure 8 The 10MHz Distribution amplifier sine wave output 10MHz Distribution amplifier additive phase noise 120 125 130 135 140 145 150 155 Single Sideband phase noise dBc Hz 160 1 10 100 1000 10000 100000 Frequency offset from carrier Hz Figure 9 The 10MHz Distribution amplifier additive phase noise vs offset frequency Stanford Research Systems 10MHz Distribution Amplifiers Test and calibration Check out With the instrument plugged into an ac power source and turned on apply a 10MHz 1kHz or
5. x 1 00 2 x 2 00 1 gt 100 MHz lt 15 nV VHz lt 1lmV gt 120 dB With 10 MHz 7 dBm input Offset Noise Hz dBc Hz 1 138 10 147 100 132 1k 153 10k 153 100k 153 Stanford Research Systems Broadband 50Q Distribution Amplifiers Eile Control Setup Measure Analyze Utilities Help 416 PM 4 00 GSa s Avgs 16 E IA 1 AEN mv div x 2 roi mv div t TEF Figure 14 Broadband distribution amplifer small signal response for 20MHz square wave from Channels 1 3 5 amp 7 File BE Mr Control Setup Measure Analyze Utilities Help 4 21 PM ee it o ela Hff O0 nav DD t foo lt o gt HF 7 Figure 15 Broadband distribution amplifer large signal response for 20MHz square wave from Channels 1 3 5 amp 7 Stanford Research Systems Broadband 50 Q Distribution Amplifiers Additive Phase Noise of Broadband Amplifier 140 00 N I N O D O Le 1 100 00 1000 00 10000 00 100000 00 Offset frequency Hz Figure 16 Broadband distribution amplifier additive phase noise vs offset frequency Stanford Research Systems Broadband 50 Distribution Amplifiers Test and calibration Broadband distribution amplifier Check out 1 With the instrument plugged into an ac power source and turned on but with no input applied measure the dc voltage at each ofthe seven outp
6. 1812 6 00236 L 4 FR47 Ferrite Bead SMD Type 43 44 1812 6 00236 L 5 FR47 Ferrite Bead SMD Type 43 44 1812 6 00236 L 6 FR47 Ferrite Bead SMD Type 43 44 1812 6 00236 L 100 FR47 Ferrite Bead SMD Type 43 44 1812 6 00236 L 101 FR47 Ferrite Bead SMD Type 43 44 1812 6 00236 L 200 FR47 Ferrite Bead SMD Type 43 44 1812 6 00236 L 201 FR47 Ferrite Bead SMD Type 43 44 1812 6 00236 L 300 FR47 Ferrite Bead SMD Type 43 44 1812 6 00236 L 301 FR47 Ferrite Bead SMD Type 43 44 1812 6 00236 L 400 FR47 Ferrite Bead SMD Type 43 44 1812 6 00236 L 401 FR47 Ferrite Bead SMD Type 43 44 1812 6 00236 L 500 FR47 Ferrite Bead SMD Type 43 44 1812 6 00236 L 501 FR47 Ferrite Bead SMD Type 43 44 1812 6 00236 L 600 FR47 Ferrite Bead SMD Type 43 44 1812 6 00236 L 601 FR47 Ferrite Bead SMD Type 43 44 1812 6 00236 L 700 FR47 Ferrite Bead SMD Type 43 44 1812 6 00236 L 701 FR47 Ferrite Bead SMD Type 43 44 1812 0 00241 M 1 4 40X3 16PP 0 00241 M 2 4 40X3 16PP 0 00241 M 3 4 40X3 16PP 0 00241 M 4 4 40X3 16PP 0 00241 M 5 4 40X3 16PP 0 00241 M 6 4 40X3 16PP 0 00241 M 7 4 40X3 16PP 0 00241 M 8 4 40X3 16PP 0 00241 M 9 4 40X3 16PP 0 00241 M 10 4 40X3 16PP 0 00241 M 11 4 40X3 16PP 4 00485 P 1 1K Pot Multi Turn Top Adjust 4 00013 P 2 50K Pot Multi Turn Top Adjust 4 00487 P 3 20 Pot Multi Turn Top Adjust 4 00013 P 100 50K Pot Multi Turn Top Adjust 4 00013 P 200 50K Pot Multi Turn Top Adjust 4 00013 P 300 50K Pot Mul
7. Mono 50V 10 X7R 1206 Mono 50V 10 X7R 1206 Mono 50V 10 X7R 1206 Mono 50V 10 X7R 1206 Mono 50V 10 X7R 1206 Mono 50V 10 X7R 1206 Mono 50V 10 X7R 1206 Mono 50V 10 X7R 1206 Mono 50V 10 X7R 1206 Mono 50V 10 X7R 1206 Mono 50V 10 X7R 1206 Mono 50V 10 X7R 1206 Mono 50V 10 X7R 1206 Mono 50V 10 X7R 1206 Mono 50V 10 X7R 1206 Mono 50V 10 X7R 1206 Mono 50V 10 X7R 1206 Mono 50V 10 X7R 1206 Mono 50V 10 X7R 1206 Mono 50V 10 X7R 1206 Mono 50V 10 X7R 1206 Mono 50V 10 X7R 1206 Mono 50V 10 X7R 1206 Mono 50V 10 X7R 1206 Mono 50V 10 X7R 1206 Mono 50V 10 X7R 1206 Mono 50V 10 X7R 1206 Mono 50V 10 X7R 1206 BAV99 DUAL SERIES DIODE 70V BREAKDOWN Broadband 750 Distribution Amplifiers 3 00783 D 2 MMBZ5226 MMBZ5226 3 3V ZENER 3 00783 D 3 MMBZ5226 MMBZ5226 3 3V ZENER 3 00538 D 4 MMBD352L ROHS MMBD352L DUAL SCHOTTKY DIODE 3 00538 D 5 MMBD352L ROHS MMBD352L DUAL SCHOTTKY DIODE 1 00469 J 1 2 PIN RT ANGLE Header SIM Right Angle Polarized 1 01158 J 2 73100 0195 1 01158 J 100 73100 0195 1 01158 J 200 73100 0195 1 01158 J 300 73100 0195 1 01158 J 400 73100 0195 1 01158 J 500 73100 0195 1 01158 J 600 73100 0195 1 01158 J 700 73100 0195 6 00174 L 1 6611 TYPE 43 Ferite Bead Thru hole Type 43 6 00174 L 2 6611 TYPE 43 Ferite Bead Thru hole Type 43 6 00236 L 3 FR47 Ferrite Bead SMD Type 43 44
8. Thin Film 1 50 ppm Resistor Thin Film 1 50 ppm Resistor Thin Film 1 50 ppm Resistor Thin Film 1 50 ppm Resistor Thin Film 1 50 ppm Resistor Thin Film 1 50 ppm Resistor Thin Film 1 50 ppm Resistor Thin Film 1 50 ppm Resistor Thin Film 1 50 ppm Resistor Thin Film 1 50 ppm Resistor Thin Film 1 50 ppm Resistor Thin Film 1 50 ppm Resistor Thin Film 1 50 ppm Resistor Thin Film 1 50 ppm LM393 Dual Comparator SO 8 LM393 Dual Comparator SO 8 LM393 Dual Comparator SO 8 MELF MELF MELF MELF MELF MELF MELF MELF MELF MELF MELF MELF MELF MELF MELF MELF MELF MELF MELF MELF MELF MELF MELF MELF MELF MELF 5MHz Distribution Amplifiers SMHz Distribution Amplifier Option 02 Stanford Research Systems 5MHz Distribution Amplifiers Stanford Research Systems 5MHz Distribution Amplifiers 5 MHz distribution amplifier Option 2 Figure 10 Single 5MHz Distribution amplifier FS730 2 The FS735 dual distribution amplifier is also available Overview This distribution amplifier is intended to distribute a low noise 5 MHz frequency reference The amplifier has one input and seven outputs all on BNC connectors The input is coupled through a series LC network allowing the use of inputs with a dc offset The input source impedance is 50 Q at 5 MHz The input is conditioned by a limiter The limiter provides several advantages in this a
9. 01172 R 109 3 74K Resistor Thin Film 1 50 ppm MELF 4 01050 R 110 200 Resistor Thin Film 1 50 ppm MELF 4 01163 R 111 3 01K Resistor Thin Film 1 50 ppm MELF 4 01146 R 112 2 00K Resistor Thin Film 1 50 ppm MELF 4 01050 R 113 200 Resistor Thin Film 1 50 ppm MELF 4 00963 R 114 24 9 Resistor Thin Film 1 50 ppm MELF 4 00963 R 115 24 9 Resistor Thin Film 1 50 ppm MELF 4 01407 R 116 1 Resistor Thick Film 5 300 ppm SMT 4 01407 R 117 1 Resistor Thick Film 5 300 ppm SMT 4 01213 R 118 10 0K Resistor Thin Film 1 50 ppm MELF 4 01059 R 119 249 Resistor Thin Film 1 50 ppm MELF 4 01117 R 120 1 00K Resistor Thin Film 1 50 ppm MELF 4 01103 R 121 715 Resistor Thin Film 1 50 ppm MELF 4 01059 R 122 249 Resistor Thin Film 1 50 ppm MELF 4 01117 R 123 1 00K Resistor Thin Film 1 50 ppm MELF 4 01309 R 124 100K Resistor Thin Film 1 50 ppm MELF 4 01271 R 125 40 2K Resistor Thin Film 1 50 ppm MELF 4 01213 R 126 10 0K Resistor Thin Film 1 50 ppm MELF Stanford Research Systems 10MHz Distribution Amplifiers 4 01184 R 127 4 99K Resistor Thin Film 1 50 ppm MELF 4 01184 R 128 4 99K Resistor Thin Film 1 50 ppm MELF 4 01184 R 129 4 99K Resistor Thin Film 1 50 ppm MELF 4 01184 R 130 4 99K Resistor Thin Film 1 50 ppm MELF 4 01117 R 131 1 00K Resistor Thin Film 1 50 ppm MELF 4 01175 R 132 4 02K Resistor Thin Film 1 50 ppm MELF 4 01117 R 133 1 00K Resistor Thin Fi
10. 241 L 250 L 251 L 260 L 261 L 270 L 271 270P 1U 1U 1U 1000P 270P 100P 270P 1U 1U 1U 1000P 270P 100P 270P 1U 1U 1U 1000P 270P 100P 270P 1U 1U MMBD352L ROHS MMBD352L ROHS 2 PIN RT ANGLE 73100 0195 73100 0195 73100 0195 73100 0195 73100 0195 73100 0195 73100 0195 73100 0195 47UH 47UH 56UH 22UH SMT FR47 100UH SMT 56UH 100UH SMT 56UH 100UH SMT 56UH 100UH SMT 56UH 100UH SMT 56UH 100UH SMT 56UH 100UH SMT 56UH 10MHz Distribution Amplifiers Capacitor Mono 50V 5 NPO 1206 Capacitor Mono 50V 10 X7R 1206 Capacitor Mono 50V 10 X7R 1206 Capacitor Mono 50V 10 X7R 1206 Capacitor Mono 50V 5 NPO 1206 Capacitor Mono 50V 5 NPO 1206 Capacitor Mono 50V 5 NPO 1206 Capacitor Mono 50V 5 NPO 1206 Capacitor Mono 50V 10 X7R 1206 Capacitor Mono 50V 10 X7R 1206 Capacitor Mono 50V 10 X7R 1206 Capacitor Mono 50V 5 NPO 1206 Capacitor Mono 50V 5 NPO 1206 Capacitor Mono 50V 5 NPO 1206 Capacitor Mono 50V 5 NPO 1206 Capacitor Mono 50V 10 X7R 1206 Capacitor Mono 50V 10 X7R 1206 Capacitor Mono 50V 10 X7R 1206 Capacitor Mono 50V 5 NPO 1206 Capacitor Mono 50V 5 NPO 1206 Capacitor Mono 50V 5 NPO 1206 Capacitor Mono 50V 5 NPO 1206 Capacitor Mono 50V 10 X7R 1206 Capacitor Mono 50V 10 X7R 1206 MMBD352L DUAL S
11. 4 00992 4 01405 4 01405 4 01071 4 01071 4 01038 4 01038 4 01117 4 01423 4 01213 4 00988 4 01423 4 01213 4 00988 4 01423 4 01213 4 00988 4 01423 4 01213 4 00988 4 01423 4 01213 4 00988 4 01423 4 01213 4 00988 4 01423 4 01213 4 00988 3 01791 3 01467 3 01101 3 01852 3 01854 3 01852 3 01854 3 01852 3 01854 3 01852 3 01854 3 01852 3 01854 3 01852 3 01854 3 01852 3 01854 Stanford Research Systems M 8 M 9 M 10 M 11 R 1 R 2 R 3 R 4 R 5 R 6 R 7 R 8 R 9 R 10 R 11 R 12 R 100 R 101 R 102 R 200 R 201 R 202 R 300 R 301 R 302 R 400 R 401 R 402 R 500 R 501 R 502 R 600 R 601 R 602 R 700 R 701 R 702 U 1 U 2 U 3 U 4 U 100 U 101 U 200 U 201 U 300 U 301 U 400 U 401 U 500 U 501 U 600 U 601 U 700 4 40X3 16PP 4 40X3 16PP 4 40X3 16PP 4 40X3 16PP 1 50K 4 99K 1 00M 1 00M 1 00K 10 0K 10 0K 10 0K 10 0K 10 0K 10 0K 10 0K TLV3501AID 74HC4538 MC7805ACD2T 74LVC3G34DCTR 74LVC1G86DBVR 74LVC3G34DCTR 74LVC1G86DBVR 74LVC3G34DCTR 74LVC1G86DBVR 74LVC3G34DCTR 74LVC1G86DBVR 74LVC3G34DCTR 74LVC1G86DBVR 74LVC3G34DCTR 74LVC1G86DBVR 74LVC3G34DCTR 74LVC1G86DBVR 499 49 9 49 9 332 332 150 150 4 7 45 3 4 7 4 7 45 3 4 7 4 7 45 3 4 7 4 7 45 3 Resistor Thin Film 1 50 ppm MELF Resistor Thin Film 1 50 ppm MELF Resistor Thin Film 1 50 ppm MELF Resistor Thin Film 1
12. 4 01113 R 501 909 Resistor Thin Film 1 50 ppm MELF 4 01009 R 502 75 Resistor Thin Film 1 50 ppm MELF 4 01038 R 503 omit Resistor Thin Film 1 50 ppm MELF 4 01376 R 505 499K Resistor Thin Film 1 50 ppm MELF 4 01067 R 600 301 Resistor Thin Film 1 50 ppm MELF 4 01113 R 601 909 Resistor Thin Film 1 50 ppm MELF 4 01009 R 602 75 Resistor Thin Film 1 50 ppm MELF 4 01038 R 603 omit Resistor Thin Film 1 50 ppm MELF 4 01376 R 605 499K Resistor Thin Film 1 50 ppm MELF 4 01067 R 700 301 Resistor Thin Film 1 50 ppm MELF 4 01113 R 701 909 Resistor Thin Film 1 50 ppm MELF 4 01009 R 702 75 Resistor Thin Film 1 50 ppm MELF 4 01038 R 703 omit Resistor Thin Film 1 50 ppm MELF 4 01376 R 705 499K Resistor Thin Film 1 50 ppm MELF 4 01003 R 800 64 9 Resistor Thin Film 1 50 ppm MELF 3 00729 U 1 LM741C LM741C general purpose op amp 3 01842 U 2 LM1086CS ADJ 3 01817 U 3 LM2991S 3 00728 U 4 LM393 LM393 Dual Comparator SO 8 3 01118 U 5 THS3001 3 01118 U 6 THS3001 3 00728 U 7 LM393 LM393 Dual Comparator SO 8 3 00728 U 8 LM393 LM393 Dual Comparator SO 8 3 00728 U 9 LM393 LM393 Dual Comparator SO 8 3 01118 U 100 THS3001 3 01118 U 200 THS3001 3 01118 U 300 THS3001 3 01118 U 400 THS3001 3 01118 U 500 THS3001 3 01118 U 600 THS3001 3 01118 U 700 THS3001 0 00772 2 0 1 5 WIRE 0 01259 2 0 1 2 CUSTOM 7 02021 2 0 BNC TOOL Stanford Research Systems Broadband 75 Q Distribution Amp
13. A small resistor is used in series with the output driver 5V supply to reduce ringing of the output on low to high transitions Status LEDs Only two status LEDs are active POWER and SIGNAL The POWER LED is on whenever AC power is present and the unit is turned on The SIGNAL LED will blink on with each rising and falling edge at the input Stanford Research Systems CMOS Logic Distribution Amplifiers Option 3 CMOS Logic Component parts list Part Number Reference Value Description lt TD lt tr gt 5 00319 C 1 10U T35 SMD TANTALUM D Case 5 00319 C 2 10U T35 SMD TANTALUM D Case 5 00611 C 5 4 7U 16V X5R 5 00299 C 7 IU Capacitor Mono 50V 10 X7R 1206 5 00299 C 8 AU Capacitor Mono 50V 10 X7R 1206 5 00299 C 9 AU Capacitor Mono 50V 10 X7R 1206 5 00299 C 10 AU Capacitor Mono 50V 10 X7R 1206 5 00299 C 100 AU Capacitor Mono 50V 10 X7R 1206 5 00611 C 101 4 7U 16V X5R 5 00299 C 200 1U Capacitor Mono 50V 10 X7R 1206 5 00611 C 201 4 7U 16V X5R 5 00299 C 300 1U Capacitor Mono 50V 10 X7R 1206 5 00611 C 301 4 7U 16V X5R 5 00299 C 400 AU Capacitor Mono 50V 10 X7R 1206 5 00611 C 401 4 7U 16V X5R 5 00299 C 500 AU Capacitor Mono 50V 10 X7R 1206 5 00611 C 501 4 7U 16V X5R 5 00299 C 600 AU Capacitor Mono 50V 10 X7R 1206 5 00611 C 601 4 7U 16V X5R 5 00299 C 700 AU Capacitor Mono 50V 10 X7R 1206 5 00611 C 701 4 7U 16V X
14. BNC output Apply 1 000Vdc to the input BNC Adjust the gain pot P3 for 2 000Vdc at the Channel 1 output BNC output is unterminated The Q output of a CG635 Stopped amp Toggled and with Q High adjusted to 1 000V works Apply a 10MHz 0 1 Vpp square wave to the 750 input BNC The source should have a rise time of lt Ins The Q output of a CG635 set to 7dBm with a 20dB attenuator followed by a resistive 50Q to 7502 match makes a good source Adjust the HF Comp pot P1 for a small overshoot 0 5 on the Channel 1 output when viewed on an oscilloscope with gt 300MHz bandwidth use a 25 Q series resistor to a 5002 input Stanford Research Systems Broadband 75 Q Distribution Amplifiers Option 05 Broadband 75 Q Component parts list Part Number 7 01929 5 00516 5 00516 5 00319 5 00319 5 00299 5 00299 5 00299 5 00299 5 00299 5 00299 5 00299 5 00299 5 00375 5 00375 5 00298 5 00375 5 00375 5 00298 5 00319 5 00299 5 00299 5 00299 5 00299 5 00299 5 00299 5 00299 5 00299 5 00299 5 00299 5 00299 5 00299 5 00299 5 00299 5 00299 5 00299 5 00299 5 00299 5 00299 5 00299 5 00299 5 00299 5 00299 5 00299 5 00299 5 00299 5 00299 5 00299 3 00896 Reference BL 1 C 1 C 2 C 3 C 4 C 5 C 6 C 7 C 8 C 9 C 10 C 11 C 12 C 13 C 14 C 15 C 16 C 17 C 18 C 21 C 100 C 101 C 102 C 103 C 200 C 201 C 202 C 203 C 300 C 301 C 302 C 303 C 400 C 401 C 402 C 403 C 500 C 50
15. Bead SMD Type 43 44 1812 6 00236 L 200 FR47 Ferrite Bead SMD Type 43 44 1812 6 00236 L 201 FR47 Ferrite Bead SMD Type 43 44 1812 6 00236 L 300 FR47 Ferrite Bead SMD Type 43 44 1812 6 00236 L 301 FR47 Ferrite Bead SMD Type 43 44 1812 6 00236 L 400 FR47 Ferrite Bead SMD Type 43 44 1812 6 00236 L 401 FR47 Ferrite Bead SMD Type 43 44 1812 6 00236 L 500 FR47 Ferrite Bead SMD Type 43 44 1812 6 00236 L 501 FR47 Ferrite Bead SMD Type 43 44 1812 6 00236 L 600 FR47 Ferrite Bead SMD Type 43 44 1812 6 00236 L 601 FR47 Ferrite Bead SMD Type 43 44 1812 6 00236 L 700 FR47 Ferrite Bead SMD Type 43 44 1812 6 00236 L 701 FR47 Ferrite Bead SMD Type 43 44 1812 0 00241 M 1 4 40X3 16PP 0 00241 M 2 4 40X3 16PP 0 00241 M 3 4 40X3 16PP 0 00241 M 4 4 40X3 16PP 0 00241 M 5 4 40X3 16PP 0 00241 M 6 4 40X3 16PP 0 00241 M 7 4 40X3 16PP 0 00241 M 8 4 40X3 16PP 0 00241 M 9 4 40X3 16PP 0 00241 M 10 4 40X3 16PP 0 00241 M 11 4 40X3 16PP 4 00485 P 1 1K Pot Multi Turn Top Adjust 4 00013 P 2 50K Pot Multi Turn Top Adjust 4 00487 P 3 20 Pot Multi Turn Top Adjust 4 00013 P 100 50K Pot Multi Turn Top Adjust 4 00013 P 200 50K Pot Multi Turn Top Adjust 4 00013 P 300 50K Pot Multi Turn Top Adjust 4 00013 P 400 50K Pot Multi Turn Top Adjust 4 00013 P 500 50K Pot Multi Turn Top Adjust 4 00013 P 600 50K Pot Multi Turn Top Adjust 4 00013 P 700 50K Pot Multi Turn Top Adjust Stanford Research Systems Broad
16. Option 0 Option 1 Option 2 Option 3 Option 4 Option 5 Option 6 Cover plate When there s only one distribution amp in the FS735 10 MHz Amplified and limited input seven 1 Vpms 50 Q outputs 5 MHz Amplified and limited input seven 1 Vrms 50 Q outputs CMOS Logic One 1 kQ input Seven 5 V 50 Q outputs Broadband 50 Q Analog DC to 350 MHz 3 V Seven 50 Q outputs Broadband 75 Q Analog DC to 350 MHz 3 V Seven 75 Q outputs SDI Recovered clock amp six equalized and re clocked SDI outputs Model Numbers FS730 x FS731 FS735 x 0 FS735 x y Half width single distribution amplifier with front panel outputs Rack mount to hold two FS730s in a 19 equipment rack Full width single distribution amplifier with rear panel outputs Full width dual distribution amplifier with rear panel outputs The suffixes x amp y denote the installed distribution amplifier s Examples an FS730 6 is a single half width SDI distribution amplifier an FS735 1 4 is a full width unit with one 10 MHz distribution amplifier and one broadband analog 50 Q distribution amplifier Stanford Research Systems MOM Distribution Amplifier Configurations FS730 Chassis components parts list Part Number Reference Value Description 0 00095 Z 0 4 FLAT 0 01068 Z 0 SR445A FOOT 6 00779 Z 0 PSA15LN3 240 R 7 01480 Z 0 SR445A RCK MT 7 01935 Z 0 FS730 1 LEXAN 7 01936 Z 0 FS730 2 LEXAN 7 01937 Z 0 FS730 3 LEXAN 7 01938 Z 0 FS730 4 LEXAN 7
17. R 267 4 01088 R 268 4 01045 R 269 4 01021 R 270 4 00992 R 271 4 00992 R 272 4 01146 R 273 4 01117 R 274 4 00992 R 275 4 00992 R 276 4 00992 R 277 4 01088 R 278 4 01045 R 279 4 01000 R 280 6 00767 T 100 6 00195 T 101 6 00767 T 210 6 00767 T 220 6 00767 T 230 6 00767 T 240 6 00767 T 250 6 00767 T 260 6 00767 T 270 3 01842 U 100 3 00728 U 101 3 01118 U 102 3 01186 U 103 3 00728 U 104 3 00728 U 105 0 01259 Z 0 7 02021 Z 0 7 01929 Z 2 0 00241 Z 3 0 00241 Z 4 0 00241 Z 5 0 00241 Z 6 0 00241 Z 7 0 00241 Z 8 0 00241 Z 9 0 00241 Z 10 0 00241 Z 11 Stanford Research Systems 49 9 49 9 49 9 499 178 100 49 9 49 9 2 00K 1 00K 49 9 49 9 49 9 499 178 100 49 9 49 9 2 00K 1 00K 49 9 49 9 49 9 499 178 60 4 TC4 1T 10 7 MHZ TC4 1T TC4 1T TC4 1T TC4 1T TC4 1T TC4 1T TC4 1T LM1086CS ADJ LM393 THS3001 MAX6241BCSA LM393 LM393 1 2 CUSTOM BNC TOOL BNC BLOCK 4 40X3 16PP 4 40X3 16PP 4 40X3 16PP 4 40X3 16PP 4 40X3 16PP 4 40X3 16PP 4 40X3 16PP 4 40X3 16PP 4 40X3 16PP Resistor Thin Film 1 50 ppm Resistor Thin Film 1 50 ppm Resistor Thin Film 1 50 ppm Resistor Thin Film 1 50 ppm Resistor Thin Film 1 50 ppm Resistor Thin Film 1 50 ppm Resistor Thin Film 1 50 ppm Resistor Thin Film 1 50 ppm Resistor Thin Film 1 50 ppm Resistor Thin Film 1 50 ppm Resistor Thin Film 1 50 ppm Resistor Thin Film 1 50 ppm Resistor
18. SRS distribution amplifiers are available in two chassis form factors The FS730 is a half width 1U high chassis that holds one distribution amplifier with BNC connectors and indicator LEDs on the front panel The power cord is on the back panel Two FS730s may be mounted side by side in a 19 rack using the optional rack mount accessory Figure 1 Front panel of FS730 10MHz distribution amplifier shown here Figure 2 Rear panel of FS730 Distribution amplifier Stanford Research Systems Distribution Amplifiers The FS735 is a full width 1U high chassis that can hold two distribution amplifiers The BNCs and power cord are on the rear of the instrument The indicator LEDs are on the front panel of the instrument Figure 3 Front panel of FS735 dual rack mounted distribution amplifiers Figure 4 Rear panel of FS735 dual rack mounted distribution amplifiers Stanford Research Systems Distribution Amplifiers Distribution amplifier options 10 MHz and 5 MHz distribution amplifiers It is common to distribute a 10 MHz or 5 MHz frequency reference from a rubidium or cesium oscillator for example throughout a facility This frequency reference is used as the timebase for instruments in test amp measurement broadcast telecommunication or basic research applications A distribution amplifier used in this application should provide sine wave outputs amplitude leveling low additive phase noise low spur
19. Thin Film 1 50 ppm MELF 4 01113 R 601 909 Resistor Thin Film 1 50 ppm MELF 4 01009 R 602 75 Resistor Thin Film 1 50 ppm MELF 4 01038 R 603 150 Resistor Thin Film 1 50 ppm MELF 4 01376 R 605 499K Resistor Thin Film 1 50 ppm MELF 4 01067 R 700 301 Resistor Thin Film 1 50 ppm MELF 4 01113 R 701 909 Resistor Thin Film 1 50 ppm MELF 4 01009 R 702 75 Resistor Thin Film 1 50 ppm MELF 4 01038 R 703 150 Resistor Thin Film 1 50 ppm MELF 4 01376 R 705 499K Resistor Thin Film 1 50 ppm MELF 4 01003 R 800 64 9 Resistor Thin Film 1 50 ppm MELF 3 00729 U 1 LM741C LM741C general purpose op amp 3 01842 U 2 LM1086CS ADJ 3 01817 U 3 LM2991S 3 00728 U 4 LM393 LM393 Dual Comparator SO 8 3 01118 U 5 THS3001 3 01118 U 6 THS3001 3 00728 U 7 LM393 LM393 Dual Comparator SO 8 3 00728 U 8 LM393 LM393 Dual Comparator SO 8 3 00728 U 9 LM393 LM393 Dual Comparator SO 8 3 01118 U 100 THS3001 3 01118 U 200 THS3001 3 01118 U 300 THS3001 3 01118 U 400 THS3001 3 01118 U 500 THS3001 3 01118 U 600 THS3001 3 01118 U 700 THS3001 0 00772 2 0 1 5 WIRE 0 01259 2 0 1 2 CUSTOM 7 02021 2 0 BNC TOOL Stanford Research Systems Broadband 50 Q Distribution Amplifiers Stanford Research Systems Broadband 750 Distribution Amplifiers Broadband 750 Distribution Amplifier Option 05 Stanford Research Systems Broadband 75 Q Distribution Amplifiers Stanford Research Systems Broadband 750 Distr
20. div 4 ET mV div x TNS Sal dE dif 2 Figure 18 Broadband distribution amplifer small signal response for 20MHz square wave from Channels 1 3 5 amp 7 For circuit description and additional performance characteristic see Option 04 Broadband 50Q Distribution Amplifier Stanford Research Systems Broadband 750 Distribution Amplifiers Test and calibration Broadband 75 Q distribution amplifier Check out 1 With the instrument plugged into an ac power source and turned on but with no input applied measure the dc voltage at each of the seven outputs and confirm that the output voltage is less than 1mV Apply a 10MHz 0 1Vpp square wave to the 750 input BNC The source should have a rise time of lt Ins The Q output of a CG635 set to 7dBm with a 20dB attenuator makes a good source Verify that the seven outputs have the same amplitude as the input when viewed on an oscilloscope with gt 300MHz bandwidth use a 25 Q series resistor to a 50Q input The output transition times should be about 3ns and the overshoot should be lt 2 Calibration 1 With the instrument plugged into an ac power source and turned on but with no input applied adjust P2 to null the output offset of the preamp U5 at the location indicated by the PCB silkscreen For each of the seven output buffer amplifiers adjust the offset pot P100 P200 P700 to null the output voltage at the corresponding
21. levels narrow bandwidth high channel to channel isolation small phase variation with temperature and high return loss on all 50Q inputs and outputs CMOS Logic distribution amplifier A CMOS Logic distribution amplifier has one logic level input and several outputs A typical application is the distribution of a 1 pulse per second timing mark from a GPS receiver or an 8kHz frame clock for telecommunications There are no established standards for sending 5 V logic pulses over 50Q coax Standard logic ICs are not designed to drive 50 Q loads To avoid problems a logic distribution amplifier should have the following characteristics high input impedance with hysteresis high current outputs with 50 Q source impedance fast transition times small overshoot small ground bounce small insertion delay and low channel to channel timing skew Broadband 50 Q and 75 distribution amplifiers Broadband distribution amplifiers have one analog input and several analog outputs A wide bandwidth allows these distribution amplifiers to be used in many applications including the distribution of frequency references IRIG timing signals composite video audio etc Typically test amp measurement and research applications will use 50 Q inputs and outputs while video and broadcast applications will use the 75 version Important characteristics of broadband amplifiers include input protection wide bandwidth including dc flat frequency response la
22. 01939 Z 0 FS730 5 LEXAN 7 01940 Z 0 FS730 6 LEXAN 7 01930 Z 1 FS715 CHASSIS 7 01931 Z 2 FS715 COVER 7 01932 Z 3 FS730 POWER SHD 0 00197 Z 4 3ED8 7 01622 Z 5 SR445A MYLAR 0 00536 Z 6 31894 0 00517 Z 7 BINDING POST 0 01213 Z 8 2 520182 2 0 01213 Z 9 2 520182 2 0 01213 Z 10 2 520182 2 0 01213 Z 11 2 520182 2 2 00060 Z 12 RC1083BBLKBLKFF 1 00033 Z 13 5 PIN 18AWG OR Non board mount Female Seperate wire 18 AWG 0 01005 Z 14 6 BLACK 0 01008 Z 15 6 WHITE 1 00254 Z 16 2 PIN 22AWG RD Non board mount Female Seperate wire 22 AWG 1 00254 Z 17 2 PIN 22AWG RD Non board mount Female Seperate wire 22 AWG 0 00143 Z 18 5 5 22 RED 0 00145 Z 19 5 5 22 BLACK 0 01212 Z 20 6 32X1 4 BLACK 0 01212 Z 21 6 32X1 4 BLACK 0 01212 Z 22 6 32X1 4 BLACK 0 01212 Z 23 6 32X1 4 BLACK 0 01212 Z 24 6 32X1 4 BLACK 0 01212 Z 25 6 32X1 4 BLACK 0 01212 Z 26 6 32X1 4 BLACK 0 01212 Z 27 6 32X1 4 BLACK 0 01212 Z 28 6 32X1 4 BLACK 0 01212 Z 29 6 32X1 4 BLACK 0 00240 Z 30 4 40X3 8PF 0 00240 Z 31 4 40X3 8PF 0 00240 Z 32 4 40X3 8PF 0 00240 Z 33 4 40X3 8PF 0 00187 Z 34 4 40X1 4PP 0 00043 Z 35 4 40 KEP 0 00043 Z 36 4 40 KEP 0 00096 Z 37 4 SPLIT 0 00096 Z 38 4 SPLIT 0 00096 Z 39 4 SPLIT 0 00096 Z 40 4 SPLIT 0 00096 Z 41 4 SPLIT 1 01043 Z 42 5POS 100 JMPR 7 01993 Z 43 FS735 730 3 00010 Z 44 GREEN LED T1 Package 3mm diameter 3 00010 Z 45 GREEN LED T1 Package 3mm diameter 3 00011 Z 46 RED LED T1 Package 3mm diamet
23. 0V 10 X7R 1206 Mono 50V 10 X7R 1206 Mono 50V 10 X7R 1206 Mono 50V 10 X7R 1206 Mono 50V 10 X7R 1206 Mono 50V 10 X7R 1206 Mono 50V 10 X7R 1206 Mono 50V 10 X7R 1206 Mono 50V 10 X7R 1206 Mono 50V 10 X7R 1206 Mono 50V 10 X7R 1206 Mono 50V 10 X7R 1206 Mono 50V 10 X7R 1206 Mono 50V 10 X7R 1206 Mono 50V 10 X7R 1206 Mono 50V 10 X7R 1206 Mono 50V 10 X7R 1206 Mono 50V 10 X7R 1206 Mono 50V 10 X7R 1206 BAV99 DUAL SERIES DIODE 70V BREAKDOWN Broadband 50Q Distribution Amplifiers 3 00783 D 2 MMBZ5226 MMBZ5226 3 3V ZENER 3 00783 D 3 MMBZ5226 MMBZ5226 3 3V ZENER 3 00538 D 4 MMBD352L ROHS MMBD352L DUAL SCHOTTKY DIODE 3 00538 D 5 MMBD352L ROHS MMBD352L DUAL SCHOTTKY DIODE 1 00469 J 1 2 PIN RT ANGLE Header SIM Right Angle Polarized 1 01158 J 2 73100 0195 1 01158 J 100 73100 0195 1 01158 J 200 73100 0195 1 01158 J 300 73100 0195 1 01158 J 400 73100 0195 1 01158 J 500 73100 0195 1 01158 J 600 73100 0195 1 01158 J 700 73100 0195 6 00174 L 1 6611 TYPE 43 Ferite Bead Thru hole Type 43 6 00174 L 2 6611 TYPE 43 Ferite Bead Thru hole Type 43 6 00236 L 3 FR47 Ferrite Bead SMD Type 43 44 1812 6 00236 L 4 FR47 Ferrite Bead SMD Type 43 44 1812 6 00236 L 5 FR47 Ferrite Bead SMD Type 43 44 1812 6 00236 L 6 FR47 Ferrite Bead SMD Type 43 44 1812 6 00236 L 100 FR47 Ferrite Bead SMD Type 43 44 1812 6 00236 L 101 FR47 Ferrite
24. 1 C 502 C 503 C 600 C 601 C 602 C 603 C 700 C 701 C 702 C 703 D 1 Value BNC BLOCK 330U HIGH RIPPL 330U HIGH RIPPL 10U T35 10U T35 1U AU AU AU AU AU AU AU 100P 100P O1U 100P 100P O1U 10U T35 AU AU AU AU AU AU AU AU AU AU AU AU AU AU AU AU AU AU AU AU AU AU AU AU AU AU AU AU BAV99 Stanford Research Systems Description Capacitor Electrolytic High Ripple High Temp 55 105 DEG C Capacitor Electrolytic High Ripple High Temp 55 105 DEG C SMD TANTALUM D Case SMD TANTALUM D Case Capacitor Capacitor Capacitor Capacitor Capacitor Capacitor Capacitor Capacitor Capacitor Capacitor Capacitor Capacitor Capacitor Capacitor Mono 50V 10 X7R 1206 Mono 50V 10 X7R 1206 Mono 50V 10 X7R 1206 Mono 50V 10 X7R 1206 Mono 50V 10 X7R 1206 Mono 50V 10 X7R 1206 Mono 50V 10 X7R 1206 Mono 50V 10 X7R 1206 Mono 50V 5 NPO 1206 Mono 50V 5 NPO 1206 Mono 50V 10 X7R 1206 Mono 50V 5 NPO 1206 Mono 50V 5 NPO 1206 Mono 50V 10 X7R 1206 SMD TANTALUM D Case Capacitor Capacitor Capacitor Capacitor Capacitor Capacitor Capacitor Capacitor Capacitor Capacitor Capacitor Capacitor Capacitor Capacitor Capacitor Capacitor Capacitor Capacitor Capacitor Capacitor Capacitor Capacitor Capacitor Capacitor Capacitor Capacitor Capacitor Capacitor
25. 100ppm 1 41 Vpp 7dBm or 0 5 Vrms sine wave to the 50Q input Verify that each of the seven outputs provides a clean sine wave output of 2 82Vpp on an oscilloscope when driving a 50Q load The output amplitude should decrease by a few percent when the input is changed to 9 9MHz or 10 1MHz The SIGNAL LED should go off if the amplitude is reduced below 0 4Vpp The OVERLOAD LED should go on when the input is increased above 5 2 Vpp but do not exceed 6 Vpp while testing Calibration With the instrument plugged into an ac power source and turned on apply a 10MHz 1kHz or 100ppm 1 41 Vpp 7dBm or 0 5 Vrms sine wave to the 50Q input 1 Adjust the core of the tuned transformer T101 to maximize the amplitude of the Channel 1 output when driving a 50Q load 2 Adjust the amplitude control pot P100 for 2 82Vpp 13dBm or 1 00 Vrms sine wave amplitude on the Channel 1 output when driving a 50Q load 3 Verify that 1OMHz is present at each of the seven outputs Stanford Research Systems 10 MHz Distribution Amplifiers Circuit Description 10MHz distribution amplifier Refer to schematics FS1_1B and FS1_2B This distribution amplifier is intended to distribute a low noise 10 MHz frequency reference The amplifier has one input and seven outputs all on BNC connectors Power The unit is powered from a universal input 24Vdc power supply Passive L C filters L100 L101 C100 C101 are used to remove switc
26. 4 7U 16V X5R 5 00299 C 30 AU Capacitor Mono 50V 10 X7R 1206 5 00299 C 31 1U Capacitor Mono 50V 10 X7R 1206 5 00611 C 32 4 7U 16V X5R 5 00611 C 33 4 7U 16V X5R 5 00299 C 40 1U Capacitor Mono 50V 10 X7R 1206 5 00299 C 41 1U Capacitor Mono 50V 10 X7R 1206 5 00611 C 42 4 7U 16V X5R 5 00611 C 43 4 7U 16V X5R 1 01158 J 1 73100 0195 1 01158 J 2 73100 0195 1 01158 J 3 73100 0195 1 01158 J 4 73100 0195 1 01158 J 5 73100 0195 1 01158 J 6 73100 0195 1 01158 J 7 73100 0195 1 01158 J 8 73100 0195 1 01043 J 9 5POS 100 JMPR 1 01043 J 10 5POS 100 JMPR 1 00250 J 11 2 PIN WHITE Header SIM Polarized 1 00250 J 12 2 PIN WHITE Header SIM Polarized 6 00771 L 1 5 6NH 6 00236 L 2 FR47 Ferrite Bead SMD Type 43 44 1812 6 00236 L 3 FR47 Ferrite Bead SMD Type 43 44 1812 6 00236 L 4 FR47 Ferrite Bead SMD Type 43 44 1812 6 00236 L 5 FR47 Ferrite Bead SMD Type 43 44 1812 6 00647 L 6 47UH 6 00647 L 7 47UH 6 00236 L 20 FR47 Ferrite Bead SMD Type 43 44 1812 6 00771 L 21 5 6NH Stanford Research Systems 6 00771 6 00236 6 00771 6 00771 6 00236 6 00771 6 00771 4 01009 4 01009 4 00980 4 01021 4 00992 4 01050 4 01050 4 01050 4 00992 4 00992 4 01105 4 01009 4 01009 4 01009 4 01009 4 00992 4 00992 4 01105 4 01009 4 01009 4 01009 4 01009 4 00992 4 00992 4 01105 4 01009 4 01009 4 01009 4 01009 3 01831 3 01832 3 01833 3 01790 3 01830 3 01830 3 01830 6 00770 0 0125
27. 5R 3 00649 D 1 BAW56LT1G ROHS BAWS56LT1 Dual Switching Diode BAV99 DUAL SERIES DIODE 70V 3 00896 D 2 BAV99 BREAKDOWN 1 01158 J 1 73100 0195 1 00469 J 2 2 PIN RT ANGLE Header SIM Right Angle Polarized 1 01158 J 100 73100 0195 1 00006 J 101 2 PIN DI Header SIM 1 01158 J 200 73100 0195 1 00006 J 201 2 PIN DI Header SIM 1 01158 J 300 73100 0195 1 00006 J 301 2 PIN DI Header SIM 1 01158 J 400 73100 0195 1 00006 J 401 2 PIN DI Header SIM 1 01158 J 500 73100 0195 1 00006 J 501 2 PIN DI Header SIM 1 01158 J 600 73100 0195 1 00006 J 601 2 PIN DI Header SIM 1 01158 J 700 73100 0195 1 00006 J 701 2 PIN DI Header SIM 6 00236 L 3 FR47 Ferrite Bead SMD Type 43 44 1812 6 00236 L 4 FR47 Ferrite Bead SMD Type 43 44 1812 6 00236 L 100 FR47 Ferrite Bead SMD Type 43 44 1812 6 00236 L 200 FR47 Ferrite Bead SMD Type 43 44 1812 6 00236 L 300 FR47 Ferrite Bead SMD Type 43 44 1812 6 00236 L 400 FR47 Ferrite Bead SMD Type 43 44 1812 6 00236 L 500 FR47 Ferrite Bead SMD Type 43 44 1812 6 00236 L 600 FR47 Ferrite Bead SMD Type 43 44 1812 6 00236 L 700 FR47 Ferrite Bead SMD Type 43 44 1812 0 00241 M 1 4 40X3 16PP 0 00241 M 2 4 40X3 16PP 0 00241 M 3 4 40X3 16PP 0 00241 M 4 4 40X3 16PP 0 00241 M 5 4 40X3 16PP 0 00241 M 6 4 40X3 16PP 0 00241 M 7 4 40X3 16PP Stanford Research Systems CMOS Logic Distribution Amplifiers 0 00241 0 00241 0 00241 0 00241 4 01134 4 01088 4 01184 4 00992
28. 6LT1 MMBT3906LT1 3906 PNP 3 00601 Q 212 MMBT3904LT1 MMBT3904LT1 3904 NPN 3 00601 Q 220 MMBT3904LT1 MMBT3904LT1 3904 NPN 3 00580 Q 221 MMBT3906LT1 MMBT3906LT1 3906 PNP 3 00601 Q 222 MMBT3904LT1 MMBT3904LT1 3904 NPN 3 00601 Q 230 MMBT3904LT1 MMBT3904LT1 3904 NPN 3 00580 Q 231 MMBT3906LT1 MMBT3906LT1 3906 PNP 3 00601 Q 232 MMBT3904LT1 MMBT3904LT1 3904 NPN 3 00601 Q 240 MMBT3904LT1 MMBT3904LT1 3904 NPN 3 00580 Q 241 MMBT3906LT1 MMBT3906LT1 3906 PNP 3 00601 Q 242 MMBT3904LT1 MMBT3904LT1 3904 NPN 3 00601 Q 250 MMBT3904LT1 MMBT3904LT1 3904 NPN 3 00580 Q 251 MMBT3906LT1 MMBT3906LT1 3906 PNP 3 00601 Q 252 MMBT3904LT1 MMBT3904LT1 3904 NPN 3 00601 Q 260 MMBT3904LT1 MMBT3904LT1 3904 NPN 3 00580 Q 261 MMBT3906LT1 MMBT3906LT1 3906 PNP 3 00601 Q 262 MMBT3904LT1 MMBT3904LT1 3904 NPN 3 00601 Q 270 MMBT3904LT1 MMBT3904LT1 3904 NPN 3 00580 Q 271 MMBT3906LT1 MMBT3906LT1 3906 PNP 3 00601 Q 272 MMBT3904LT1 MMBT3904LT1 3904 NPN 4 01146 R 100 2 00K Resistor Thin Film 1 50 ppm MELF 4 01029 R 101 121 Resistor Thin Film 1 50 ppm MELF 4 01059 R 102 249 Resistor Thin Film 1 50 ppm MELF 4 01213 R 103 10 0K Resistor Thin Film 1 50 ppm MELF 4 01117 R 104 1 00K Resistor Thin Film 1 50 ppm MELF 4 01021 R 105 100 Resistor Thin Film 1 50 ppm MELF 4 01059 R 106 249 Resistor Thin Film 1 50 ppm MELF 4 01309 R 107 100K Resistor Thin Film 1 50 ppm MELF 4 01050 R 108 200 Resistor Thin Film 1 50 ppm MELF 4
29. 9 7 02021 7 01929 7 01928 SDI Distribution Amplifiers L 22 L 30 L 31 L 32 L 40 L 41 L 42 R 1 R 2 R 3 R 4 R 5 R 6 R 7 R 8 R 20 R 21 R 22 R 23 R 24 R 25 R 26 R 30 R 31 R 32 R 33 R 34 R 35 R 36 R 40 R 41 R 42 R 43 R 44 R 45 R 46 U 1 U 2 U 3 U 6 U 20 U 30 U 40 Y 1 Z 0 Z 0 Z 1 Z 2 5 6NH FR47 5 6NH 5 6NH FR47 5 6NH 5 6NH 75 75 37 4 100 49 9 200 200 200 49 9 49 9 750 75 75 75 75 49 9 49 9 750 75 75 75 75 49 9 49 9 750 LMH0344SQ LMH0346MH NB7L14MMNG LM1086CT 3 3 LMH0302SQ LMH0302SQ LMH0302SQ 27MHZ 1 2 CUSTOM BNC TOOL BNC BLOCK FS715 720 OPT Stanford Research Systems Ferrite Bead SMD Type 43 44 1812 Ferrite Bead SMD Type 43 44 1812 Resistor Thin Film 1 50 ppm Resistor Thin Film 1 50 ppm Resistor Thin Film 1 50 ppm Resistor Thin Film 1 50 ppm Resistor Thin Film 1 50 ppm Resistor Thin Film 1 50 ppm Resistor Thin Film 1 50 ppm Resistor Thin Film 1 50 ppm Resistor Thin Film 1 50 ppm Resistor Thin Film 1 50 ppm Resistor Thin Film 1 50 ppm Resistor Thin Film 1 50 ppm Resistor Thin Film 1 50 ppm Resistor Thin Film 1 50 ppm Resistor Thin Film 1 50 ppm Resistor Thin Film 1 50 ppm Resistor Thin Film 1 50 ppm Resistor Thin Film 1 50 ppm Resistor Thin Film 1 50 ppm Resistor Thin Film 1 50 ppm Resistor Thin Film 1 50 ppm Resistor Thin Fi
30. CHOTTKY DIODE MMBD352L DUAL SCHOTTKY DIODE Header SIM Right Angle Polarized Inductor SMD Iron Core 200MHz 620mA 10 Shielded 1206 Inductor SMD Iron Core 300MHz 875mA 10 Shielded 1210 Ferrite Bead SMD Type 43 44 1812 Inductor SMD Type S Q 40 at 1 5MHz 5mA 10 Shielded 1210 Inductor SMD Iron Core 200MHz 620mA 10 Shielded 1206 Inductor SMD Type S Q 40 at 1 5MHz 5mA 10 Shielded 1210 Inductor SMD Iron Core 200MHz 620mA 10 Shielded 1206 Inductor SMD Type S Q 40 at 1 5MHz 5mA 10 Shielded 1210 Inductor SMD Iron Core 200MHz 620mA 10 Shielded 1206 Inductor SMD Type S Q 40 at 1 5MHz 5mA 10 Shielded 1210 Inductor SMD Iron Core 200MHz 620mA 10 Shielded 1206 Inductor SMD Type S Q 40 at 1 5MHz 5mA 10 Shielded 1210 Inductor SMD Iron Core 200MHz 620mA 10 Shielded 1206 Inductor SMD Type S Q 40 at 1 5MHz 5mA 10 Shielded 1210 Inductor SMD Iron Core 200MHz 620mA 10 Shielded 1206 Inductor SMD Type S Q 40 at 1 5MHz 5mA 10 Shielded 1210 Inductor SMD Iron Core 200MHz 620mA 10 Shielded 1206 Stanford Research Systems 10 MHz Distribution Amplifiers 4 00326 P 100 200 Pot Multi Turn Top Adjust 7 01925 PC 1 FS715 720 OPT 3 01815 Q 100 MMBT5089LT1 3 01815 Q 101 MMBT5089LT1 3 01815 Q 102 MMBT5089LT1 3 01815 Q 103 MMBT5089LT1 3 00601 Q 210 MMBT3904LT1 MMBT3904LT1 3904 NPN 3 00580 Q 211 MMBT390
31. CK 6 32X1 4 BLACK 6 32X1 4 BLACK 6 32X1 4 BLACK 4 40X1 4PP 4 40X1 4PP 4 40X1 4PP 4 40X1 4PP 4 40X1 4PP 4 40X1 4PP 6 32 KEP 6 32 KEP 6 32 KEP 6 32 KEP 4 40X3 8PP 4 40X3 8PP 4 40X3 8PP 4 40X3 8PP 4 40X3 8PP 4 40X3 8PP 4 40X3 8PP 4 40X3 8PP 4 40 KEP 4 40 KEP 4 SPLIT 4 SPLIT 4 SPLIT 4 SPLIT 4 SPLIT 4 SPLIT 4 SPLIT 4 SPLIT 4 SPLIT 4 SPLIT 5 COND 5 COND GREEN GREEN RED RED FS735 730 4 40X3 8PF 4 40X3 8PF 6 32X1 4PP 6 32X1 4PP 6 32X1 4PP 6 32X1 4PP Distribution Amplifier Configurations LED T1 Package 3mm diameter LED T1 Package 3mm diameter LED T1 Package 3mm diameter LED T1 Package 3mm diameter Stanford Research Systems Distribution Amplifier Configurations Stanford Research Systems Distribution Amplifier Schematics List of Schematics 1 FSI_IB 2 FS1_2B 3 FS3_1C 4 FS4_1B Opt 1 amp 2 5 10MHz Distribution Amplifier Sheet 1 of 2 Rev B Opt 1 amp 2 5 10MHz Distribution Amplifier Sheet 2 of 2 Rev B Opt 3 CMOS Logic Distribution Amplifier Sheet 1 of 1 Rev C Opt 4 amp 5 Broadband Distribution Amplifier Sheet 1 of 1 Rev B Stanford Research Systems
32. LF MELF MELF MELF MELF MELF MELF MELF MELF MELF MELF MELF MELF MELF MELF MELF MELF MELF MELF MELF MELF MELF MELF MELF MELF MELF MELF MELF MELF MELF MELF MELF MELF MELF MELF MELF MELF Broadband 50Q Distribution Amplifiers 4 01376 R 105 499K Resistor Thin Film 1 50 ppm MELF 4 01067 R 200 301 Resistor Thin Film 1 50 ppm MELF 4 01113 R 201 909 Resistor Thin Film 1 50 ppm MELF 4 01009 R 202 75 Resistor Thin Film 1 50 ppm MELF 4 01038 R 203 150 Resistor Thin Film 1 50 ppm MELF 4 01376 R 205 499K Resistor Thin Film 1 50 ppm MELF 4 01067 R 300 301 Resistor Thin Film 1 50 ppm MELF 4 01113 R 301 909 Resistor Thin Film 1 50 ppm MELF 4 01009 R 302 75 Resistor Thin Film 1 50 ppm MELF 4 01038 R 303 150 Resistor Thin Film 1 50 ppm MELF 4 01376 R 305 499K Resistor Thin Film 1 50 ppm MELF 4 01067 R 400 301 Resistor Thin Film 1 50 ppm MELF 4 01113 R 401 909 Resistor Thin Film 1 50 ppm MELF 4 01009 R 402 75 Resistor Thin Film 1 50 ppm MELF 4 01038 R 403 150 Resistor Thin Film 1 50 ppm MELF 4 01376 R 405 499K Resistor Thin Film 1 50 ppm MELF 4 01067 R 500 301 Resistor Thin Film 1 50 ppm MELF 4 01113 R 501 909 Resistor Thin Film 1 50 ppm MELF 4 01009 R 502 75 Resistor Thin Film 1 50 ppm MELF 4 01038 R 503 150 Resistor Thin Film 1 50 ppm MELF 4 01376 R 505 499K Resistor Thin Film 1 50 ppm MELF 4 01067 R 600 301 Resistor
33. MMET 1 00254 Z 25 2 PIN 22AWG RD Non board mount Female Separate wire 22 AWG 1 00254 Z 26 2 PIN 22AWG RD Non board mount Female Separate wire 22 AWG 1 00254 Z 27 2 PIN 22AWG RD Non board mount Female Separate wire 22 AWG 1 00254 Z 28 2 PIN 22AWG RD Non board mount Female Separate wire 22 AWG 0 00154 Z 33 A 7 5 22 RED 0 00154 Z 33 B 7 5 22 RED 0 00161 Z 34 A 7 5 22 BLACK 0 00161 Z 34 B 7 5 22 BLACK 0 01212 2 35 6 32X1 4 BLACK 0 01212 2 36 6 32X1 4 BLACK 0 01212 2 37 6 32X1 4 BLACK Stanford Research Systems 0 01212 0 01212 0 01212 0 01212 0 01212 0 01212 0 01212 0 01212 0 01212 0 01212 0 01212 0 00187 0 00187 0 00187 0 00187 0 00187 0 00187 0 00048 0 00048 0 00048 0 00048 0 00209 0 00209 0 00209 0 00209 0 00209 0 00209 0 00209 0 00209 0 00043 0 00043 0 00096 0 00096 0 00096 0 00096 0 00096 0 00096 0 00096 0 00096 0 00096 0 00096 1 01196 1 01196 3 00010 3 00010 3 00011 3 00011 7 01993 0 00240 0 00240 0 00222 0 00222 0 00222 0 00222 2 38 2 39 Z 40 Z 41 Z 42 Z 43 Z 44 Z 45 Z 46 Z 47 Z 48 Z 49 Z 50 Z 51 Z 52 Z 53 Z 54 Z 55 Z 56 Z 57 Z 58 Z 59 Z 60 Z 61 Z 62 Z 63 Z 64 Z 65 Z 66 Z 67 Z 68 Z 69 Z 70 Z 71 Z 72 Z 73 Z 74 Z 75 Z 76 Z 77 Z 78 2 79 2 80 2 81 2 82 2 83 2 84 2 85 2 86 2 87 2 88 2 89 2 90 2 91 6 32X1 4 BLACK 6 32X1 4 BLACK 6 32X1 4 BLACK 6 32X1 4 BLACK 6 32X1 4 BLACK 6 32X1 4 BLACK 6 32X1 4 BLACK 6 32X1 4 BLA
34. Operation and Service Manual FS730 Single amp FS735 Dual Distribution Amplifiers A RS Stanford Research Systems 1290 D Reamwood Avenue Sunnyvale California 94089 Phone 408 744 9040 e Fax 408 744 9049 email info thinkSRS com www thinkSRS com Copyright 2008 2012 by SRS Inc All Rights Reserved Version 1 2 11 2012 Distribution Amplifiers Certification Stanford Research Systems certifies that this product met its published specifications at the time of shipment Warranty This Stanford Research Systems product is warranted against defects in materials and workmanship for a period of one 1 year from the date of shipment Service For warranty service or repair this product must be returned to a Stanford Research Systems authorized service facility Contact Stanford Research Systems or an authorized representative before returning this product for repair Information in this document is subject to change without notice Copyright Stanford Research Systems Inc 2005 All rights reserved Stanford Research Systems Inc 1290 C Reamwood Avenue Sunnyvale California 94089 Phone 408 744 9040 Fax 408 744 9049 www thinkSRS com Printed in U S A Stanford Research Systems Distribution Amplifiers HM Table of Contents Introduction 1 Overview 3 Amplifier options 10MHz Distribution Amplifier Opt 1 7 Overview 8 Specifications 11 Checkout 11 Calibration 12 Circui
35. PPL 330U HIGH RIPPL 10U T35 10U T35 1U 1U 01U 01U 01U 180P 270P 1U 15P 15P 1U 1U 1U 330U HIGH RIPPL 1U 1U 01U 01U 1U 1U 1000P 270P 100P 270P 1U 1U 1U 1000P 270P 100P 270P 1U 1U 1U 1000P 270P 100P 270P 1U 1U 1U 1000P 270P 100P Description Capacitor Electrolytic High Ripple High Temp 55 105 DEG C Capacitor Electrolytic High Ripple High Temp 55 105 DEG C SMD TANTALUM D Case SMD TANTALUM D Case Capacitor Mono 50V 10 X7R 1206 Capacitor Mono 50V 10 X7R 1206 Capacitor Mono 50V 5 X7R 1206 Capacitor Mono 50V 5 X7R 1206 Capacitor Mono 50V 5 X7R 1206 Capacitor Mono 50V 5 NPO 1206 Capacitor Mono 50V 5 NPO 1206 Capacitor Mono 50V 10 X7R 1206 Capacitor Mono 50V 5 NPO 1206 Capacitor Mono 50V 5 NPO 1206 Capacitor Mono 50V 10 X7R 1206 Capacitor Mono 50V 10 X7R 1206 Capacitor Mono 50V 10 X7R 1206 Capacitor Electrolytic High Ripple High Temp 55 105 DEG C Capacitor Mono 50V 10 X7R 1206 Capacitor Mono 50V 10 X7R 1206 Capacitor Mono 50V 5 X7R 1206 Capacitor Mono 50V 5 X7R 1206 Capacitor Mono 50V 10 X7R 1206 Capacitor Mono 50V 10 X7R 1206 Capacitor Mono 50V 5 NPO 1206 Capacitor Mono 50V 5 NPO 1206 Capacitor Mono 50V 5 NPO 1206 Capacitor Mono 50V 5 NPO 1206 Capacitor Mono 50V 10 X7R 1206 Capacitor Mono 50V 10 X7R 1206 Capac
36. U AU AU AU AU AU AU AU AU AU AU AU AU AU AU AU AU AU AU AU AU AU AU BAV99 Stanford Research Systems Description Capacitor Electrolytic High Ripple High Temp 55 105 DEG C Capacitor Electrolytic High Ripple High Temp 55 105 DEG C SMD TANTALUM D Case SMD TANTALUM D Case Capacitor Capacitor Capacitor Capacitor Capacitor Capacitor Capacitor Capacitor Capacitor Capacitor Capacitor Capacitor Capacitor Capacitor Mono 50V 10 X7R 1206 Mono 50V 10 X7R 1206 Mono 50V 10 X7R 1206 Mono 50V 10 X7R 1206 Mono 50V 10 X7R 1206 Mono 50V 10 X7R 1206 Mono 50V 10 X7R 1206 Mono 50V 10 X7R 1206 Mono 50V 5 NPO 1206 Mono 50V 5 NPO 1206 Mono 50V 10 X7R 1206 Mono 50V 5 NPO 1206 Mono 50V 5 NPO 1206 Mono 50V 10 X7R 1206 SMD TANTALUM D Case Capacitor Capacitor Capacitor Capacitor Capacitor Capacitor Capacitor Capacitor Capacitor Capacitor Capacitor Capacitor Capacitor Capacitor Capacitor Capacitor Capacitor Capacitor Capacitor Capacitor Capacitor Capacitor Capacitor Capacitor Capacitor Capacitor Capacitor Capacitor Mono 50V 10 X7R 1206 Mono 50V 10 X7R 1206 Mono 50V 10 X7R 1206 Mono 50V 10 X7R 1206 Mono 50V 10 X7R 1206 Mono 50V 10 X7R 1206 Mono 50V 10 X7R 1206 Mono 50V 10 X7R 1206 Mono 50V 10 X7R 1206 Mono 5
37. ata rates 270 1483 5 1485 2967 and 2970 Mb s More in development Other distribution amplifiers which are compatible with the FS730 amp FS735 systems are currently in development Check the SRS web site www thinkSRS com for current information Stanford Research Systems 10MHz Distribution Amplifiers 10MHz Distribution Amplifier Option 01 Stanford Research Systems 10 MHz Distribution Amplifiers Stanford Research Systems 10MHz Distribution Amplifiers 10 MHz distribution amplifier Option 1 Figure 5 Single 10MHZ Distribution amplifier FS730 1 The FS735 dual distribution amplifier is also available Overview This distribution amplifier is intended to distribute a low noise 10 MHz frequency reference The amplifier has one input and seven outputs all on BNC connectors The input is coupled through a series LC network allowing the use of inputs with a dc offset The input source impedance is 50 Q at 10 MHz The input is conditioned by a limiter The limiter provides several advantages in this application amplitude modulation is removed from the input signal outputs have fixed amplitude input noise that occurs more than 50 mV away from the zero crossing is blocked and virtually any waveform with a duty cycle near 50 may be used as an input The input limiter is followed by a bandpass filter and a fixed gain amplifier This signal is passed to seven output amplifiers each of which is followed b
38. atio of T101 is 7 1 and so the input impedance is about 7 x249 12 2kQ The output from T101 has an amplitude of about 5 4V pp The output is a relatively low distortion sine wave owing to the high Q of the IFT Amplifier The output of T101 is amplified by U102 which has a nominal gain of 2 4 to provide an output of about 13V This output drives the seven buffer amplifiers which provide the seven output channels of the distribution amplifier It also drives the output amplitude peak detector D101 amp C121 Buffer Amplifiers There are seven identical output amplifiers This description will refer to the reference designators for the channel 1 output The buffer amplifier consists of three emitter followers Q210 Q211 and Q212 The emitter followers are connected in series to Cantar E peter of Stanford Research Systems 10MHz Distribution Amplifiers provide very large channel to channel isolation The emitter of the third follower drives a 2 1 output transformer via a series R C R219 amp C212 to reduce the output impedance by 4 1 in order to drive a 50Q load The 50Q user load is driven via a low pass filter The filter has a pass band to 11 5MHz and a notch at 20MHz in order to eliminate harmonic distortion at the output Status LEDs The input level detector is used to detect signal levels which are too small or too large The detector D100 is a dual Schottky diode that is biased on by R104 R105 and R107 Biasing the
39. band 50 Q Distribution Amplifiers 7 01927 3 01091 3 01100 4 01213 4 01117 4 01213 4 01309 4 01021 4 00320 4 00320 4 01110 4 01029 4 01142 4 01059 4 01213 4 01088 4 01213 4 01009 4 01038 4 00992 4 01117 4 01117 4 01376 4 01103 4 01088 4 00939 4 01146 4 01146 4 01146 4 01146 4 01067 4 01113 4 01309 4 01117 4 01021 4 01309 4 01309 4 01021 4 01309 4 01117 4 01405 4 01309 4 01021 4 01175 4 01192 4 01192 4 01175 4 01309 4 01021 4 01405 4 01067 4 01113 4 01009 4 01038 PC 1 Q 1 Q 2 R 1 R 2 R 3 R 4 R 5 R 6 R 7 R 8 R 9 R 10 R 11 R 12 R 13 R 14 R 15 R 16 R 18 R 19 R 20 R 21 R 22 R 23 R 24 R 25 R 26 R 27 R 28 R 29 R 30 R 31 R 32 R 33 R 34 R 35 R 36 R 37 R 38 R 39 R 40 R 41 R 42 R 43 R 44 R 45 R 46 R 47 R 48 R 100 R 101 R 102 R 103 FS715 720 OPT MJD44H11 MJD45H11 10 0K 1 00K 10 0K 100K 100 18 18 845 121 1 82K 249 10 0K 499 10 0K 75 150 49 9 1 00K 1 00K 499K 715 499 14 2 00K 2 00K 2 00K 2 00K 301 909 100K 1 00K 100 100K 100K 100 100K 1 00K 1 00M 100K 100 4 02K 6 04K 6 04K 4 02K 100K 100 1 00M 301 909 75 150 Stanford Research Systems Resistor Thin Film 1 50 ppm Resistor Thin Film 1 50 ppm Resistor Thin Film 1 50 ppm Resistor Thin Film 1 50 ppm Resistor Thin Film 1 50 ppm Resistor Wire wound Resistor Wire wound Resistor Thin Film 1 50 ppm Resistor Thin Film 1 50 ppm Resist
40. detector on improves its ability to detect low signal levels The output of the level detector is compared with fixed thresholds by two comparators U101 The SIGNAL LED will be on for inputs greater than about 500mV and the OVERLOAD LED will be on if the input signal exceeds about 5V The user supplied 10MHz input should be somewhere between these two levels The FAULT LED is controlled by U104 amp U105 which turns the LED on if any of the following conditions exist no signal at the input overload at the input 22V supply is below 20 5V Stanford Research Systems 10 MHz Distribution Amplifiers Option 01 10MHz Component parts list Part Number Reference 5 00516 C 100 5 00516 C 101 5 00319 C 102 5 00319 C 103 5 00299 C 104 5 00299 C 105 5 00399 C 106 5 00399 C 107 5 00399 C 108 5 00378 C 109 5 00380 C 110 5 00299 C 111 5 00365 C 112 5 00365 C 113 5 00299 C 114 5 00299 C 115 5 00299 C 116 5 00516 C 117 5 00299 C 118 5 00299 C 119 5 00399 C 120 5 00399 C 121 5 00299 C 210 5 00299 C 211 5 00387 C 212 5 00380 C 214 5 00375 C 215 5 00380 C 216 5 00299 C 218 5 00299 C 220 5 00299 C 221 5 00387 C 222 5 00380 C 224 5 00375 C 225 5 00380 C 226 5 00299 C 228 5 00299 C 230 5 00299 C 231 5 00387 C 232 5 00380 C 234 5 00375 C 235 5 00380 C 236 5 00299 C 238 5 00299 C 240 5 00299 C 241 5 00387 C 242 5 00380 C 244 5 00375 C 245 Stanford Research Systems Value 330U HIGH RI
41. er Stanford Research Systems 3 00011 0 00240 0 00240 0 00252 0 00222 0 00222 0 00222 0 00222 Z 47 2 48 2 49 2 50 2 51 2 52 2 53 2 54 RED 4 40X3 8PF 4 40X3 8PF GROMMET 6 32X1 4PP 6 32X1 4PP 6 32X1 4PP 6 32X1 4PP Distribution Amplifier Configurations EC LED T1 Package 3mm diameter Stanford Research Systems Distribution Amplifier Configurations FS735 Chassis components parts list Part Number Reference Value Description 0 00095 Z 0 4 FLAT 0 00221 Z 0 SR440FOOT 0 01008 Z 0 6 WHITE 0 01014 Z 0 4 GREEN W YELL 6 00779 Z 0 PSA15LN3 240 R 7 01945 Z 0 FS735 LEXAN 7 01946 Z 0 FS735 0 LEXAN 7 01947 Z 0 FS735 1 LEXAN 7 01948 Z 0 FS735 2 LEXAN 7 01949 Z 0 FS735 3 LEXAN 7 01950 Z 0 FS735 4 LEXAN 7 01951 Z 0 FS735 5 LEXAN 7 01952 Z 0 FS735 6 LEXAN 7 01970 Z 0 FS735 RKMNT BKT 7 01941 Z 1 FS735 CHASSIS 7 01942 Z 2 FS735 COVER 7 01943 Z 3 FS735 LINE CVR 7 01944 Z 4 FS735 P S COVER 7 01945 2 5 FS735 LEXAN 0 01045 2 6 3EEA1 0 00634 2 7 2 520184 2 0 00634 2 8 2 520184 2 0 00634 2 9 2 520184 2 0 01213 2 10 2 520182 2 0 01213 2 11 2 520182 2 0 01213 2 12 2 520182 2 0 01213 2 13 2 520182 2 0 00084 2 14 36154 2 00060 2 15 RC1083BBLKBLKFF 1 00033 Z 16 5 PIN 18AWG OR Non board mount Female Separate wire 18 AWG 1 01195 2 17 5 PIN 18GA 0 00329 2 18 8 18 BLACK 0 00327 2 19 8 18 WHITE 0 01005 2 20 6 BLACK 0 00252 2 22 GROMMET 0 00252 2 23 GROMMET 0 00252 2 24 GRO
42. ffer amplifier U6 is rectified and compared to fixed thresholds to detect the presence of a signal or an overload The SIGNAL LED will go Ca maak m D GOT 1 Oy oF m Stanford Research Systems Broadband 5042 Distribution Amplifiers on if the input exceeds 175mV and the OVERLOAD LED will go on if the input signal exceeds 2 2V The linear range of operation is 2 5V Stanford Research Systems Broadband 50 Q Distribution Amplifiers Option 04 Broadband Amplifier Component parts list Part Number 7 01929 5 00516 5 00516 5 00319 5 00319 5 00299 5 00299 5 00299 5 00299 5 00299 5 00299 5 00299 5 00299 5 00375 5 00375 5 00298 5 00375 5 00375 5 00298 5 00319 5 00299 5 00299 5 00299 5 00299 5 00299 5 00299 5 00299 5 00299 5 00299 5 00299 5 00299 5 00299 5 00299 5 00299 5 00299 5 00299 5 00299 5 00299 5 00299 5 00299 5 00299 5 00299 5 00299 5 00299 5 00299 5 00299 5 00299 5 00299 3 00896 Reference BL 1 C 1 C 2 C 3 C 4 C 5 C 6 C 7 C 8 C 9 C 10 C 11 C 12 C 13 C 14 C 15 C 16 C 17 C 18 C 21 C 100 C 101 C 102 C 103 C 200 C 201 C 202 C 203 C 300 C 301 C 302 C 303 C 400 C 401 C 402 C 403 C 500 C 501 C 502 C 503 C 600 C 601 C 602 C 603 C 700 C 701 C 702 C 703 D 1 Value BNC BLOCK 330U HIGH RIPPL 330U HIGH RIPPL 10U T35 10U T35 1U AU AU AU AU AU AU AU 100P 100P O1U 100P 100P O1U 10U T35 AU AU AU AU AU A
43. hin Film 1 50 ppm MELF 4 01117 R 234 1 00K Resistor Thin Film 1 50 ppm MELF 4 00992 R 235 49 9 Resistor Thin Film 1 50 ppm MELF 4 00992 R 236 49 9 Resistor Thin Film 1 50 ppm MELF 4 00992 R 237 49 9 Resistor Thin Film 1 50 ppm MELF 4 01088 R 238 499 Resistor Thin Film 1 50 ppm MELF 4 01045 R 239 178 Resistor Thin Film 1 50 ppm MELF 4 01021 R 240 100 Resistor Thin Film 1 50 ppm MELF 4 00992 R 241 49 9 Resistor Thin Film 1 50 ppm MELF 4 00992 R 242 49 9 Resistor Thin Film 1 50 ppm MELF 4 01146 R 243 2 00K Resistor Thin Film 1 50 ppm MELF 4 01117 R 244 1 00K Resistor Thin Film 1 50 ppm MELF 4 00992 R 245 49 9 Resistor Thin Film 1 50 ppm MELF 4 00992 R 246 49 9 Resistor Thin Film 1 50 ppm MELF 4 00992 R 247 49 9 Resistor Thin Film 1 50 ppm MELF 4 01088 R 248 499 Resistor Thin Film 1 50 ppm MELF 4 01045 R 249 178 Resistor Thin Film 1 50 ppm MELF 4 01021 R 250 100 Resistor Thin Film 1 50 ppm MELF 4 00992 R 251 49 9 Resistor Thin Film 1 50 ppm MELF 4 00992 R 252 49 9 Resistor Thin Film 1 50 ppm MELF 4 01146 R 253 2 00K Resistor Thin Film 1 50 ppm MELF 4 01117 R 254 1 00K Resistor Thin Film 1 50 ppm MELF Stanford Research Systems 10 MHz Distribution Amplifiers 4 00992 R 255 4 00992 R 256 4 00992 R 257 4 01088 R 258 4 01045 R 259 4 01021 R 260 4 00992 R 261 4 00992 R 262 4 01146 R 263 4 01117 R 264 4 00992 R 265 4 00992 R 266 4 00992
44. hing noise from the 24V The power supply is regulated by a low drop out regulator U100 to provide a clean 22 Vdc supply Input The user supplied 1OMHz is applied at J102 A low Q series resonant L C circuit C109 C110 L102 is used to ac couple and band pass the input signal and drive the primary of the transformer T100 The transformer doubles the amplitude of the input signal to improve the input noise figure The transformer input impedance is about 50Q R113 divided by the square of the turns ratio of T100 The inductor L103 compensates for the input capacitance of the transistor pair Q100 amp Q101 Limiter The balanced output from T100 drives the input to the differential pair limiter Q100 amp Q101 The limiter amplitude is set by the constant current source Q102 which has 4 096 V across its 1 24kQ emitter resistor to provide 3 3mA of collector current Q103 is used to temperature compensate the base emitter voltage 0 65V across Q102 The R C filter R133 amp C117 has a 0 5Hz cutoff frequency to filter residual voltage reference noise The output from the limiter is a differential square wave of 3 3mA The limiter has relatively high gain the output will reach about 90 of full scale for inputs greater than 200m V y This signal is applied to the primary of the tuned transformer T101 This transformer is a 10 7MHz intermediate frequency transformer IFT that has been tuned down to 10MHz by C112 and C113 The turns r
45. ibution Amplifiers Broadband 75 Q distribution amplifier Option 5 4 0009090909099 Figure 17 Single Broadband 75 Q distribution amplifier FS730 5 The FS735 dual distribution amplifier is also available Overview This distribution amplifier is intended to distribute broadband dc 100 MHz analog signals over 75 Q coax The amplifier has one input and seven outputs all on BNC connectors The input and outputs are dc coupled with a 75 Q impedance Applications include the distribution of frequency references IRIG timing signals composite video audio etc There are four indicator LEDs The power LED indicates that the unit has ac power The signal LED indicates that an input signal greater that 300 mV is present The overload LED indicates that the input signal has exceeded 2 2 V The fault LED indicates a problem with the unit s internal dc power supply Stanford Research Systems Broadband 75 Q Distribution Amplifiers Specifications Input Impedance 75 Q 41 Linear range 2 V Damage dc 5V Damage lus 100 V Outputs Impedance 75 Q 41 Nom load 75 Q Performance 75 Q loads Gain 75 Q load x 1 00 2 Gain high Z load X 2 00 1 Bandwidth 3 dB gt 100 MHz Noise at 1 kHz lt 15 nV VHz Offset lt lmV Isolation 10 MHz gt 120 dB Utilities Help 4 16 PM Eile Control Setup Measure Analyze EE Nad al RI 1 ci mV div 4 2 rch mv div 3 ro mv
46. igh isolation The outputs have fast transition times and very low overshoot The polarity of each output may be configured with a jumper inside the unit installing the polarity jumper inverts the corresponding output As shipped the outputs are non inverting The unit has two indicator LEDs The power LED indicates that the unit has ac power The signal LED will flash for 100ms on each rising or falling edge seen at the input Stanford Research Systems Specifications Input Impedance Threshold L H Threshold H L Transition time Frequency Pulse width Outputs Impedance Levels high Z load Levels 50 Q load Rise time Fall time Jitter Delay Delay skew Overshoot Undershoot Polarity control CMOS Logic Distribution Amplifiers 1kQ 1 50 Vdc 1 15 Vde no restriction dc 50 MHz gt 5ns 500 5 OV amp 5V 0 V amp 2 5 V lt 1 5 ns lt 1 0 ns lt 10 ps rms 9 ns typ 1 ns typ lt 5 lt 5 internal jumper Stanford Research Systems CMOS Logic Distribution Amplifiers Eile Control Setup Measure Analyze Utilities Help 8 43 AM s EELEEEEEE ELLA it o elalg Hff20 ns div BER 00s lt o gt hui da ait Figure 12 CMOS Distribution amplifier Offset 10 MHz sine input 500mV div logic output 2V div into 50Q and logic output 2V div unterminated amp showing small reflection artifacts with Im cable between output and oscilloscope Check out
47. ing lt 1 ps TC of phase 5 ps C 3 Measured with 1 Vrms at 10 001 MHz from a 50 Q source applied to an adjacent output The isolation increases at frequencies far away from 5 MHz 4 The pulling is comparable to that caused by a reflected wave from an unterminated cable on an adjacent output Additive phase noise with 7 dBm input Offset Noise typ Hz dBc Hz 1 125 10 135 100 146 Ik 155 10k 158 100k 158 For circuit description and other performance characteristics see Option 01 10MHz distribution amplifier Stanford Research Systems 5MHz Distribution Amplifiers Test and calibration Check out With the instrument plugged into an ac power source and turned on apply a 5MHz 1kHz or 100ppm 1 41 Vpp 7dBm or 0 5 Vrms sine wave to the 50Q input Verify that each of the seven outputs provides a clean sine wave output of 2 82Vpp on an oscilloscope when driving a 50Q load The output amplitude should decrease by a few percent when the input is changed to 4 9MHz or 5 1MHz The SIGNAL LED should go off if the amplitude is reduced below 0 4Vpp The OVERLOAD LED should go on when the input is increased above 5 2 Vpp but do not exceed 6 Vpp while testing Calibration With the instrument plugged into an ac power source and turned on apply a 5MHz 1kHz or 100ppm 1 41 Vpp 7dBm or 0 5 Vrms sine wave to the 50Q input 1 Adjust the core of the tuned transf
48. itor Mono 50V 10 X7R 1206 Capacitor Mono 50V 5 NPO 1206 Capacitor Mono 50V 5 NPO 1206 Capacitor Mono 50V 5 NPO 1206 Capacitor Mono 50V 5 NPO 1206 Capacitor Mono 50V 10 X7R 1206 Capacitor Mono 50V 10 X7R 1206 Capacitor Mono 50V 10 X7R 1206 Capacitor Mono 50V 5 NPO 1206 Capacitor Mono 50V 5 NPO 1206 Capacitor Mono 50V 5 NPO 1206 Capacitor Mono 50V 5 NPO 1206 Capacitor Mono 50V 10 X7R 1206 Capacitor Mono 50V 10 X7R 1206 Capacitor Mono 50V 10 X7R 1206 Capacitor Mono 50V 5 NPO 1206 Capacitor Mono 50V 5 NPO 1206 Capacitor Mono 50V 5 NPO 1206 5 00380 5 00299 5 00299 5 00299 5 00387 5 00380 5 00375 5 00380 5 00299 5 00299 5 00299 5 00387 5 00380 5 00375 5 00380 5 00299 5 00299 5 00299 5 00387 5 00380 5 00375 5 00380 5 00299 5 00299 3 00538 3 00538 1 00469 1 01158 1 01158 1 01158 1 01158 1 01158 1 01158 1 01158 1 01158 6 00647 6 00647 6 00595 6 00649 6 00236 6 00264 6 00595 6 00264 6 00595 6 00264 6 00595 6 00264 6 00595 6 00264 6 00595 6 00264 6 00595 6 00264 6 00595 C 246 C 248 C 250 C 251 C 252 C 254 C 255 C 256 C 258 C 260 C 261 C 262 C 264 C 265 C 266 C 268 C 270 C 271 C 272 C 274 C 275 C 276 C 278 C 280 D 100 D 101 J 100 J 102 J 210 J 220 J 230 J 240 J 250 J 260 J 270 L 100 L 101 L 102 L 103 L 104 L 210 L 211 L 220 L 221 L 230 L 231 L 240 L
49. lifiers Stanford Research Systems SDI Distribution Amplifiers SDI Distribution Amplifier Option 06 Stanford Research Systems 60 SDI Distribution Amplifiers Stanford Research Systems SDI Distribution Amplifiers SDI distribution amplifier Option 6 Figure 18 Single SDI distribution amplifier FS730 6 The FS735 dual distribution amplifier is also available Overview This distribution amplifier is intended to distribute SDI Serial Digital Interface video data SDI data is received on the 75 Q input Data is equalized reclocked and output to six SDI outputs The recovered clock is also available as an output allowing the system integrator to observe the eye pattern of the recovered data The recovered clock is a half the bit rate for 2 97Gb s data rates The input equalization can compensate for the losses and dispersion in 120 meters of Belden 1694A cable at 2 97 Gb s Reclocking circuits operate at the standard rates of 270 1483 5 1485 2967 and 2970 Mb s The unit will pass outputs at other data rates without reclocking There are three indicator LEDs The power LED indicates that the unit has ac power The signal LED indicates that an input SDI signal is present The fault LED indicates that the reclocking oscillator has not locked to one of the supported data rates Stanford Research Systems Specifications Input Impedance VSWR Equalization range Belden 1694A Outp
50. lm 1 50 ppm Resistor Thin Film 1 50 ppm Resistor Thin Film 1 50 ppm Resistor Thin Film 1 50 ppm Resistor Thin Film 1 50 ppm Resistor Thin Film 1 50 ppm Resistor Thin Film 1 50 ppm Resistor Thin Film 1 50 ppm MELF MELF MELF MELF MELF MELF MELF MELF MELF MELF MELF MELF MELF MELF MELF MELF MELF MELF MELF MELF MELF MELF MELF MELF MELF MELF MELF MELF MELF Distribution Amplifier Configurations Distribution amplifier configurations Stanford Research Systems MMA Distribution Amplifier Configurations Stanford Research Systems Distribution Amplifier Configurations Model numbers and chassis configurations SRS distribution amplifiers are available in two form factors The FS730 is a half width 1U chassis which accommodates one distribution amplifier The BNCs and indicator LEDs are on the front of the unit The AC power entry is on the rear panel Two units can fit side by side in the O730RMD rack mount designed for a 19 rack The FS735 is a full width 1U chassis which accommodates one or two distribution amplifiers The BNCs and ac power entry are on the rear of the unit Indicator LEDs are on the front of the unit Both designs have universal power supplies operate without cooling fans and have rubber feet but may be mounted in a 19 equipment rack One of the following may be installed in an FS730 Any two of the following may be installed in an FS735
51. lm 1 50 ppm MELF 4 01021 R 134 100 Resistor Thin Film 1 50 ppm MELF 4 01126 R 135 1 24K Resistor Thin Film 1 50 ppm MELF 4 01021 R 210 100 Resistor Thin Film 1 50 ppm MELF 4 00992 R 211 49 9 Resistor Thin Film 1 50 ppm MELF 4 00992 R 212 49 9 Resistor Thin Film 1 50 ppm MELF 4 01146 R 213 2 00K Resistor Thin Film 1 50 ppm MELF 4 01117 R 214 1 00K Resistor Thin Film 1 50 ppm MELF 4 00992 R 215 49 9 Resistor Thin Film 1 50 ppm MELF 4 00992 R 216 49 9 Resistor Thin Film 1 50 ppm MELF 4 00992 R 217 49 9 Resistor Thin Film 1 50 ppm MELF 4 01088 R 218 499 Resistor Thin Film 1 50 ppm MELF 4 01045 R 219 178 Resistor Thin Film 1 50 ppm MELF 4 01021 R 220 100 Resistor Thin Film 1 50 ppm MELF 4 00992 R 221 49 9 Resistor Thin Film 1 50 ppm MELF 4 00992 R 222 49 9 Resistor Thin Film 1 50 ppm MELF 4 01146 R 223 2 00K Resistor Thin Film 1 50 ppm MELF 4 01117 R 224 1 00K Resistor Thin Film 1 50 ppm MELF 4 00992 R 225 49 9 Resistor Thin Film 1 50 ppm MELF 4 00992 R 226 49 9 Resistor Thin Film 1 50 ppm MELF 4 00992 R 227 49 9 Resistor Thin Film 1 50 ppm MELF 4 01088 R 228 499 Resistor Thin Film 1 50 ppm MELF 4 01045 R 229 178 Resistor Thin Film 1 50 ppm MELF 4 01021 R 230 100 Resistor Thin Film 1 50 ppm MELF 4 00992 R 231 49 9 Resistor Thin Film 1 50 ppm MELF 4 00992 R 232 49 9 Resistor Thin Film 1 50 ppm MELF 4 01146 R 233 2 00K Resistor T
52. or Thin Film 1 50 ppm Resistor Thin Film 1 50 ppm Resistor Thin Film 1 50 ppm Resistor Thin Film 1 50 ppm Resistor Thin Film 1 50 ppm Resistor Thin Film 1 50 ppm Resistor Thin Film 1 50 ppm Resistor Thin Film 1 50 ppm Resistor Thin Film 1 50 ppm Resistor Thin Film 1 50 ppm Resistor Thin Film 1 50 ppm Resistor Thin Film 1 50 ppm Resistor Thin Film 1 50 ppm Resistor Thin Film 1 50 ppm Resistor Thin Film 1 50 ppm Resistor Thin Film 1 50 ppm Resistor Thin Film 1 50 ppm Resistor Thin Film 1 50 ppm Resistor Thin Film 1 50 ppm Resistor Thin Film 1 50 ppm Resistor Thin Film 1 50 ppm Resistor Thin Film 1 50 ppm Resistor Thin Film 1 50 ppm Resistor Thin Film 1 50 ppm Resistor Thin Film 1 50 ppm Resistor Thin Film 1 50 ppm Resistor Thin Film 1 50 ppm Resistor Thin Film 1 50 ppm Resistor Thin Film 1 50 ppm Resistor Thin Film 1 50 ppm Resistor Thin Film 1 50 ppm Resistor Thin Film 1 50 ppm Resistor Thin Film 1 50 ppm Resistor Thin Film 1 50 ppm Resistor Thin Film 1 50 ppm Resistor Thin Film 1 50 ppm Resistor Thin Film 1 50 ppm Resistor Thin Film 1 50 ppm Resistor Thin Film 1 50 ppm Resistor Thin Film 1 50 ppm Resistor Thin Film 1 50 ppm Resistor Thin Film 1 50 ppm MELF MELF MELF MELF MELF MELF MELF MELF MELF MELF MELF MELF ME
53. ormer T101 to maximize the amplitude of the Channel 1 output when driving a 50Q load 2 Adjust the amplitude control pot P100 for 2 82Vpp 13dBm or 1 00 Vrms sine wave amplitude on the Channel 1 output when driving a 50Q load 3 Verify that 5MHz is present at each of the seven outputs Stanford Research Systems 5MHz Distribution Amplifiers Stanford Research Systems CMOS Logic Distribution Amplifiers CMOS Logic Distribution Amplifier Option 03 Stanford Research Systems CMOS Logic Distribution Amplifiers Stanford Research Systems CMOS Logic Distribution Amplifiers CMOS logic distribution amplifier Option 3 Figure 11 Single CMOS Logic level distribution amplifier FS730 3 The FS735 dual distribution amplifier is also available Overview This distribution amplifier is intended to distribute CMOS level logic pulses The amplifier has one input and seven outputs all on BNC connectors All inputs and outputs are logic levels The Schmitt trigger input has a switching threshold of 1 3 Vdc with 350 mV of hysteresis The input impedance is 1 kQ and so does not terminate a 50 Q line Each output has a 50 Q source impedance with logic levels of OV and 5 0 V The 50 Q source impedance will reverse terminate reflected pulses when driving unterminated lines High impedance loads will be driven to 5 V and 50 Q loads will be driven to 2 5 V All of the outputs are driven by separate drivers to provide h
54. pplication amplitude modulation is removed from the input signal outputs have fixed amplitude input noise that occurs more than 50 mV away from the zero crossing is blocked and virtually any waveform with a duty cycle near 50 may be used as an input The input limiter is followed by a bandpass filter and a fixed gain amplifier This signal is passed to seven output amplifiers each of which is followed by a low pass filter and an output transformer All of the outputs have 50 Q source impedance and provide a 1Vrms 13 dBm sine wave into a 50 Q load There are four indicator LEDs The power LED indicates that the unit has ac power The signal LED indicates that an input signal is present The overload LED indicates that the input signal has excessive amplitude The fault LED indicates one or more of these conditions no input signal excessive input signal or low internal dc power supply Stanford Research Systems 5MHz Distribution Amplifiers Specifications Input Frequency 5 MHz 1 Level 0 dBm to 16 dBm 0 6 Vpp to 4 Vpy Waveform Any with 50 duty Impedance 50 Q 5 at 5 MHz Coupling Series LC Open at dc Outputs Waveform Sine THD lt 1 Level 50 Q load 13 1 dBm 1 Vrms 2 82 Vpp Level high Z load 2 Vrms 5 6 Vpp Impedance 50 Q 5 at 5 MHz Coupling Transformer Short at dc Bandwidth 100 kHz 3 dB Spurious lt 120 dBc within 100kHz Isolation gt 100 dB Pull
55. ppm Resistor Thin Film 1 50 ppm Resistor Thin Film 1 50 ppm Resistor Thin Film 1 50 ppm Resistor Thin Film 1 50 ppm Resistor Thin Film 1 50 ppm MELF MELF MELF MELF MELF MELF MELF MELF MELF MELF MELF MELF MELF MELF MELF MELF MELF MELF MELF MELF MELF MELF MELF MELF MELF MELF MELF MELF MELF MELF MELF MELF MELF MELF MELF MELF MELF MELF MELF MELF MELF MELF MELF MELF MELF MELF MELF MELF MELF Broadband 750 Distribution Amplifiers 4 01376 R 105 499K Resistor Thin Film 1 50 ppm MELF 4 01067 R 200 301 Resistor Thin Film 1 50 ppm MELF 4 01113 R 201 909 Resistor Thin Film 1 50 ppm MELF 4 01009 R 202 75 Resistor Thin Film 1 50 ppm MELF 4 01038 R 203 omit Resistor Thin Film 1 50 ppm MELF 4 01376 R 205 499K Resistor Thin Film 1 50 ppm MELF 4 01067 R 300 301 Resistor Thin Film 1 50 ppm MELF 4 01113 R 301 909 Resistor Thin Film 1 50 ppm MELF 4 01009 R 302 75 Resistor Thin Film 1 50 ppm MELF 4 01038 R 303 150 Resistor Thin Film 1 50 ppm MELF 4 01376 R 305 499K Resistor Thin Film 1 50 ppm MELF 4 01067 R 400 301 Resistor Thin Film 1 50 ppm MELF 4 01113 R 401 909 Resistor Thin Film 1 50 ppm MELF 4 01009 R 402 75 Resistor Thin Film 1 50 ppm MELF 4 01038 R 403 omit Resistor Thin Film 1 50 ppm MELF 4 01376 R 405 499K Resistor Thin Film 1 50 ppm MELF 4 01067 R 500 301 Resistor Thin Film 1 50 ppm MELF
56. r when driving 50Q loads with high duty cycle Input The input BNC is connected to ground via a 1kQ resistor R12 The input is protected by a series input resistor R4 and clamping diodes D2 which limit the input excursions to 0 7V and 5 7V Comparator The input signal is conditioned by a fast Schmitt trigger comparator U1 with logic thresholds of 1 5V rising and 1 15V falling The comparator inverts the input signal Its output is buffered by a triple gate line driver U4 which drives a 75Q line to distribute the input signal to the seven output channel drivers The buffered line is terminated by RIO amp R11 Polarity control The buffered and inverted signal is received by an XOR gate The second input to the XOR gate is pulled high by a resistor so that it also operates as an inverter with respect to the other input to restore the signal to non inverted polarity Installing a jumper will pull the second input low so that the signal remains inverted allowing that channel to operate with an inverted output if desired Output driver The output of the XOR gate drives a triple gate line driver U101 for Channel 1 The inputs and outputs of the triple gate line driver are ganged together to reduce the output impedance to a few Ohms A resistor in series with this output R102 for Channel 1 provides a driver impedance of very nearly 50Q to reverse terminate reflected pulses in cases where a 50Q load is not provided by the user
57. rge dynamic range low offset voltage low noise high slew rate and low distortion Outputs should have high current compliance and accurate 50 Q or 75 Q output impedance for high return loss Composite video applications require low differential gain and low differential phase errors to prevent color shifts or color saturation changes verses luminance levels Stanford Research Systems Distribution Amplifiers SDI distribution amplifier SDI serial digital interface is a physical interface used to transmit uncompressed component digital video in a variety of formats There are several standards defined by the Society of Motion Picture and Television Engineers SMPTE which transmit 800 mV logic over 75 Q coax at rates up to 2 97Gb s Cable attenuation and dispersion degrade SDI signals Two techniques are used to restore signals equalization and reclocking Equalization circuits modify the frequency response of the input amplifier to compensate for the cable losses at high frequencies Reclocking circuits recover the data clock by phase locking a local oscillator to transitions in the data stream and resynchronize the output data to this recovered clock Important characteristics of an SDI distribution amplifier include input cable equalization agile clock recovery and resynchronization good matching of the 75 Q cable impedance to both inputs and outputs fast output transition times small overshoot and compliance with common d
58. sistor Thin Film 1 50 ppm Resistor Thin Film 1 50 ppm Resistor Thin Film 1 50 ppm Resistor Thin Film 1 50 ppm Resistor Wire wound Resistor Wire wound Resistor Thin Film 1 50 ppm Resistor Thin Film 1 50 ppm Resistor Thin Film 1 50 ppm Resistor Thin Film 1 50 ppm Resistor Thin Film 1 50 ppm Resistor Thin Film 1 50 ppm Resistor Thin Film 1 50 ppm Resistor Thin Film 1 50 ppm Resistor Thin Film 1 50 ppm Resistor Thin Film 1 50 ppm Resistor Thin Film 1 50 ppm Resistor Thin Film 1 50 ppm Resistor Thin Film 1 50 ppm Resistor Thin Film 1 50 ppm Resistor Thin Film 1 50 ppm Resistor Thin Film 1 50 ppm Resistor Thin Film 1 50 ppm Resistor Thin Film 1 50 ppm Resistor Thin Film 1 50 ppm Resistor Thin Film 1 50 ppm Resistor Thin Film 1 50 ppm Resistor Thin Film 1 50 ppm Resistor Thin Film 1 50 ppm Resistor Thin Film 1 50 ppm Resistor Thin Film 1 50 ppm Resistor Thin Film 1 50 ppm Resistor Thin Film 1 50 ppm Resistor Thin Film 1 50 ppm Resistor Thin Film 1 50 ppm Resistor Thin Film 1 50 ppm Resistor Thin Film 1 50 ppm Resistor Thin Film 1 50 ppm Resistor Thin Film 1 50 ppm Resistor Thin Film 1 50 ppm Resistor Thin Film 1 50 ppm Resistor Thin Film 1 50 ppm Resistor Thin Film 1 50 ppm Resistor Thin Film 1 50 ppm Resistor Thin Film 1 50
59. t description 14 Component parts list 5MHz Distribution Amplifier Opt 2 21 Overview 22 Specifications 23 Checkout 23 Calibration CMOS Logic Distribution Amplifier Opt 3 21 Overview 28 Specifications 29 Checkout 29 Calibration 30 Circuit description 31 Component parts list Stanford Research Systems Distribution Amplifiers Table of contents continued Broadband 500 Distribution Amplifier Opt 4 37 Overview 38 Specifications 41 Checkout 41 Calibration 42 Circuit description 44 Component parts list Broadband 75Q Distribution Amplifier Opt 5 51 Overview 52 Specifications 53 Checkout 53 Calibration 54 Component parts list SDI Serial Digital Interface Distribution Amplifier Opt 6 61 Overview 62 Specifications 63 Component parts list Model numbers and chassis configurations FS730 amp FS735 67 Overview 68 FS730 Component parts list 70 FS735 Component parts list Schematic Diagrams 73 Option 1 5 Stanford Research Systems Distribution Amplifiers Safety and Preparation for Use Line Voltage The FS730 amp FS735 operate from a 90 to 132 VAC or 175 to 264 VAC power source having a line frequency between 47 and 63 Hz Power Entry Module A power entry module on the back panel of the instruments provides connection to the power source and to a protective ground Power Cord A detachable three wire power cord for connection to the power source and protective gro
60. ti Turn Top Adjust 4 00013 P 400 50K Pot Multi Turn Top Adjust 4 00013 P 500 50K Pot Multi Turn Top Adjust 4 00013 P 600 50K Pot Multi Turn Top Adjust 4 00013 P 700 50K Pot Multi Turn Top Adjust Stanford Research Systems Broadband 75 Q Distribution Amplifiers 7 01927 3 01091 3 01100 4 01213 4 01117 4 01213 4 01309 4 01021 4 00320 4 00320 4 01110 4 01029 4 01142 4 01059 4 01213 4 01088 4 01213 4 01009 4 01038 4 00992 4 01117 4 01117 4 01376 4 01103 4 01088 4 00939 4 01146 4 01146 4 01146 4 01146 4 01067 4 01113 4 01309 4 01117 4 01021 4 01309 4 01309 4 01021 4 01309 4 01117 4 01405 4 01309 4 01021 4 01175 4 01192 4 01192 4 01175 4 01309 4 01021 4 01405 4 01067 4 01113 4 01009 4 01038 PC 1 Q 1 Q 2 R 1 R 2 R 3 R 4 R 5 R 6 R 7 R 8 R 9 R 10 R 11 R 12 R 13 R 14 R 15 R 16 R 18 R 19 R 20 R 21 R 22 R 23 R 24 R 25 R 26 R 27 R 28 R 29 R 30 R 31 R 32 R 33 R 34 R 35 R 36 R 37 R 38 R 39 R 40 R 41 R 42 R 43 R 44 R 45 R 46 R 47 R 48 R 100 R 101 R 102 R 103 FS715 720 OPT MJD44H11 MJD45H11 10 0K 1 00K 10 0K 100K 100 18 18 845 121 1 82K 249 10 0K 499 10 0K 75 omit 49 9 1 00K 1 00K 499K 715 499 14 2 00K 2 00K 2 00K 2 00K 301 909 100K 1 00K 100 100K 100K 100 100K 1 00K 1 00M 100K 100 4 02K 6 04K 6 04K 4 02K 100K 100 1 00M 301 909 75 omit Stanford Research Systems Resistor Thin Film 1 50 ppm Re
61. to its characteristic impedance by R800 64 9Q This combination attenuates the op amp output by x0 822 to provide an overall gain of 2 000 for the signal which is distributed to the seven output drivers There are three potentiometers which calibrate the front end amplifier s gain offset and high frequency compensation The non inverting gain is adjusted by P3 which changes the magnitude of the negative feedback The offset is adjusted by P2 which injects a small current via R21 499kQ to null the op amp s small input offset The high frequency compensation is adjusted by P1 which sets the Thevenin resistance for the current feedback path which controls the high frequency response of the current feedback amplifier Output buffers The amplified input signal is distributed to seven output buffers which are operated as nearly unity gain amplifiers The signal is applied to the non inverting input via a 301Q resistor which de couples the distributed signal from each amplifier Each amplifier is operated near unity gain actually gain is about 1 0018 due to the offset control The 909Q feedback resistor between the op amp output and its inverting input controls the high frequency response of the current feedback amplifier A multi turn pot is used to null the offset voltage for each channel individually These offset controls are adjusted after the front end amplifier input offset control is adjusted Status LEDs The output of an eighth bu
62. tribution Amplifiers Broadband 500 Distribution Amplifier Option 04 Stanford Research Systems Broadband 50 Q Distribution Amplifiers Stanford Research Systems Broadband 50Q Distribution Amplifiers Broadband 50 Q distribution amplifier Option 4 Figure 13 Single broadband 50Q distribution amplifer FS730 4 The FS735 dual distribution amplifier is also available Overview This distribution amplifier is intended to distribute broadband dc 100 MHz analog signals over 50 Q coax The amplifier has one input and seven outputs all on BNC connectors The input and outputs are dc coupled with a 50 Q impedance Applications include the distribution of frequency references IRIG timing signals composite video audio etc There are four indicator LEDs The power LED indicates that the unit has ac power The signal LED indicates that an input signal greater that 300 mV is present The overload LED indicates that the input signal has exceeded 2 2 V The fault LED indicates a problem with the unit s internal dc power supply Stanford Research Systems Specifications Input Impedance Linear range Damage dc Damage lus Outputs Impedance Nominal load Broadband 50 Q Distribution Amplifiers 50 Q 1 2V 5V 100 V 50 Q 1 500 Performance 50 Q loads Gain 50 Q load Gain high Z load Bandwidth 3 dB Noise at I kHz Offset Isolation 10 MHz Additive phase noise
63. und is provided The exposed metal parts of the box are connected to the power ground to protect against electrical shock Always use an outlet which has a properly connected protective ground Consult with an electrician if necessary Grounding BNC shields are connected to the chassis ground and the AC power source ground via the power cord Do not apply any voltage to the shield Line Fuse The line fuse is internal to the instrument and may not be serviced by the user Operate Only with Covers in Place To avoid personal injury do not remove the product covers or panels Do not operate the product without all covers and panels in place Serviceable Parts The FS730 amp FS735 do not have any user serviceable parts inside Refer service to a qualified technician Stanford Research Systems Distribution Amplifiers Symbols you may Find on SRS Products Description EE Alternating current Caution risk of electric shock rum Frame or chassis terminal Aa Caution refer to accompanying documents Earth ground terminal Battery Sem SES Distribution Amplifiers Introduction Distribution amplifiers are used to create several copies of a signal There are many application areas and each requires different amplifier characteristics In each application the amplifier is selected to preserve improve or minimally degrade the input signal s bandwidth amplitude pulse shape phase noise and jitter characteristics
64. uts Impedance VSWR Amplitude Outputs SMPTE Reclocking Pass through SDI Distribution Amplifiers 75 Q 5 gt 15 dB 120 m at 2 97 Gb s 140 mat 1 48 Gb s 350 m at 270 Mb s 75 Q 5 gt 15 dB 800 mV 10 6 SDI 3 ASI amp 1 clock 259M 292M amp 424M 270 1483 5 1485 2967 amp 2970 Mb s 143 177 360 amp 540 Mb s Stanford Research Systems SDI Distribution Amplifiers Option 06 SDI Components parts list Part Number Reference Value Description 5 00525 C 1 1U CAP 1UF 25V CERAMIC Y5V 1206 80 20 5 00525 C 2 1U CAP 1UF 25V CERAMIC Y5V 1206 80 20 5 00299 C 3 AU Capacitor Mono 50V 10 X7R 1206 5 00525 C 4 1U CAP 1UF 25V CERAMIC Y5V 1206 80 20 5 00299 C 5 AU Capacitor Mono 50V 10 X7R 1206 5 00299 C 6 AU Capacitor Mono 50V 10 X7R 1206 5 00408 C 7 056U Capacitor Mono 50V 5 NPO 1206 5 00370 C 8 39P Capacitor Mono 50V 5 NPO 1206 5 00370 C 9 39P Capacitor Mono 50V 5 NPO 1206 5 00299 C 10 1U Capacitor Mono 50V 10 X7R 1206 5 00299 C 11 AU Capacitor Mono 50V 10 X7R 1206 5 00299 C 12 AU Capacitor Mono 50V 10 X7R 1206 5 00299 C 13 AU Capacitor Mono 50V 10 X7R 1206 5 00319 C 14 10U T35 SMD TANTALUM D Case 5 00319 C 15 10U T35 SMD TANTALUM D Case 5 00319 C 16 10U T35 SMD TANTALUM D Case 5 00299 C 20 AU Capacitor Mono 50V 10 X7R 1206 5 00299 C 21 AU Capacitor Mono 50V 10 X7R 1206 5 00611 C 22 4 7U 16V X5R 5 00611 C 23
65. uts and confirm that the output voltage is less than 1mV 2 Apply a 1OMHz 0 1Vpp square wave to the 500 input BNC The source should have a rise time of lt Ins The Q output of a CG635 set to 7dBm with a 20dB attenuator makes a good source Verify that the seven outputs have the same amplitude as the input when viewed on an oscilloscope with gt 300MHz bandwidth and a 500 input impedance The output transition times should be about 3ns and the overshoot should be lt 2 Calibration 1 With the instrument plugged into an ac power source and turned on but with no input applied adjust P2 to null the output offset of the preamp US at the location indicated by the PCB silkscreen 2 For each of the seven output buffer amplifiers adjust the offset pot P100 P200 P700 to null the output voltage at the corresponding BNC output 3 Apply 1 000Vde to the input BNC Adjust the gain pot P3 for 2 000Vdc at the Channel 1 output BNC output is unterminated The Q output of a CG635 Stopped amp Toggled and with Q High adjusted to 1 000V works 4 Apply a 1OMHz 0 1 Vpp square wave to the 500 input BNC The source should have a rise time of lt Ins The Q output of a CG635 set to 7dBm with a 20dB attenuator makes a good source Adjust the HF Comp pot P1 for a small overshoot 0 5 on the Channel 1 output when viewed on an oscilloscope with gt 300MHz bandwidth and a 500 input impedance Stanford Research Systems
66. y a low pass filter and an output transformer All of the outputs have 50 Q source impedance and provide a 1Vrms 13 dBm sine wave into a 50 load There are four indicator LEDs The power LED indicates that the unit has ac power The signal LED indicates that an input signal is present The overload LED indicates that the input signal has excessive amplitude The fault LED indicates one or more of these conditions no input signal excessive input signal or low internal dc power supply Stanford Research Systems DED 10 MHz Distribution Amplifiers Specifications Input Frequency 10 MHz 1 Level 0 dBm to 16 dBm 0 6V pp to 4Vpp Waveform Any with 50 duty Impedance 50 Q 5 at 10 MHz Coupling Series LC Open at dc Outputs Waveform Sine THD lt 1 Level 50 Q load 13 1 dBm 1 Vrms 2 82 Vpp Level high Z load 2 Vrms 5 6 Vpp Impedance 50 Q 5 at 10 MHz Coupling Transformer Short at dc Bandwidth 200 kHz 3 dB Spurious lt 120 dBc within 100 kHz Isolation gt 100 dB Pulling lt 1ps TC of phase 5 ps C 1 Measured with 1Vrms at 10 001 MHz from a 50 Q source applied to an adjacent output The isolation increases at frequencies far away from 10 MHz 2 The pulling is comparable to that caused by a reflected wave from an unterminated cable on an adjacent output Additive phase noise with 7 dBm input Offset Hz 1 10 100 1k 10k 100k

Download Pdf Manuals

image

Related Search

Related Contents

Samsung HT-TX205 User Manual  ND2725 Manual - nexto di usa  

Copyright © All rights reserved.
Failed to retrieve file