Home

Martin ME 401 - Service manual

image

Contents

1. z 19 93 1 084 SH 4824 44110415052 4 1458 g E Silay g 9 b T Y lt _ I T 8311081N02 3 815 a o 80 0 5 ki E 629 2 Adddns c 4 NOI123NN02 1458 9 Shay SNIUN Rn U 1n NV 00 87 211 AS QU azz r4 N3AINO 031 YIAIYO HZA 8 03433 1 es O us 1814510 4 012 98 Uh SIZ Il 834 8 L A lt iu ONHLS x TRL 34 amp 3110 1 02 M31SUN eo ee 0 0 B 801883839 a y 01 annos 1658 pza N 757 94 J Fr 2311 o 5 5 K ONINOLINON 4 ka 1383023904031 TIZ ZIZ j ez 917 96 012 K INIYOLINOW N 3 0 0 b INTYOLTNOW ua Wan P INTYOLINOW VER 26 ez LNIWNYLSNI N 1658 ang 11084 1658 du P 8810418 m 5 m 9 1658 211880108 3 fate tet CET al S SNINOLINOW 3N K Hh HZ oaa gt de N321031N02 8311031802 y dic Md ySCNUd XS 3283931NI 83804 Ce en 158 lt H211NS839NI4 N P 8H 00 g an Sz HIZ 812 N ee YAT N 5212 E 1458 sopund 8301610538 40187193 ES 15207 801830004 Jua
2. SH 01843839 ONNOS 6 MBITIXNB 1031 09 NUSNDOUIGOMOO S ezo L zza 120 020 210 es 930IAIQ a Ee lt S ZZ IX 8H es cz WH 9 Ces 4 610 810 LATO er LX Md NBdX3 Sn8 2II 0 0 20801 ng 8311031N02 3 815 2805 WOU 1X4 ZH oi six 135 NIN 20 0 m 6 pem OND exi Oo oe xem ZXY em 50 10 1NII join 8X GAL Srey z 900 70801 win H L M ONI e 3 TITS mie e ES DO emp Soin 27 e 0 S n 17121 p gx 1 195 20 olola SBUL esh 48 90 20 ados E gr ix 95 1 117 4552 aix 950 4311031N02 43158 coun NOM NST Dies an st 1x WSN 80 XB ooo 15 azz B8 Uph ME 401 Rev 2 1 Page 35 MARTIN Both of the controllers are connected to an RS 232 driver At present this interface is only for development purposes it is not fed out of the unit A big problem especially in case of electrosurgical units are electromagnetic disturbances as produced by the unit itself and which may result in transmission errors of digital signals This results mainly from the unavoidable RF leakage currents as well as from the powerelectronic stages Because of that all signals which leave or enter
3. Martin 401 by Martin Fur diese Dokumentation beansprucht die Firma Martin Medizin Technik Urheberrechts schutz Diese Dokumentation darf ohne vorherige schriftliche Zustimmung der Martin Medizin Technik weder abge ndert erweitert oder ver vielfaltigt oder an Dritte weitergegeben werden Martin Medizin Technik Ludwigstaler Str 132 78 532 Tuttlingen 0 74 61 70 60 0 74 61 70 61 93 Sollten Sie technische Fragen haben oder Er satzteile ben tigen so wenden Sie sich bitte an unsere Hotline Martin Medizin Technik Telefon Telefax Hotline Telefon 0 74 61 70 63 43 Telefax 0 74 61 70 61 90 Ersatzteile Telefon 0 74 61 70 61 99 Telefax 0 74 61 70 61 90 Die Hotline ist werktags von 8 00 17 00 Uhr besetzt Design und Gerateanderungen vorbehalten by Martin Medizin Technik This document is under copyright protection of Martin Medizin Technik This document may not be modified extended or reproduced or transmitted to a third party without prior written permission of Martin Medizin Technik Martin Medizin Technik Ludwigstaler Str 132 78 532 Tuttlingen 0 74 61 70 60 0 74 61 70 61 93 In case of technical questions or if replacement parts are required please contact our hotline service Martin Medizin Technik Telephone Telefax Hotline Telephone 0 74
4. quo WUE A Cv por Seo dig 50000138 M C8 B8 Uph ME 401 Rev 2 1 Page 92 MARTIN Bipolar RF leakage current check e Set power meter to 200 Ohms e Connect unit for RF leakage current measure e Check leakage current in the operation mode Bipolar Cutting 2 with bipolar test adapter at both cable terminals Compare the higher of both values with the record of the test report sheet Note With units of hardware state up to 07 the measured values of the RF leakage currents may differ from that registered in the test report sheet because this values still were gained by use of the coaxial test cable Also tests with self made cable adapters may result in values which are not in accordance with the values at the manufacturer s test report sheet For performing the measurement of output power and RF leakage currents associated with bipolar cutting as well as measurement of settings of the bipolar instrument identification a bipolar test adapter is requred which is available from the MARTIN Service Center 4 2 Voltage Selection in the Mains Circuit The ME 401 can be matched to a number of global common mains voltages Normally the unit will be set at the manufacturer s site to the voltage present at the destination site If there would occur the urge to change this setting then proceed as follows e Detach mains cord and open unit according to it
5. MOO 3209 Ae ds juo1mo oSexeo TY S6 D EBIX HOIX jndjno TEL WIM OI 010 0 71 uado ym VE A 0 E 89 WIM OI W A 001 d N womag 10381891 50 Qc WIM HN Je A 026 B8 Uph ME 401 Rev 2 1 Page 80 MARTIN V 82d LAdLNO SLNIOd LN3INN I IV ANY 1531 1e odouour M001 uone nSeoo 8 ye quanno oSexeo c6 zzrL 07 o indino WIM OI 18 OL A 041 S eUTULI9 uodo ym vg A 0 89 4 OI 18 A 001 lOjsIso1 SWYO 0 2 HN A OEC B8 Uph ME 401 Rev 2 1 Page 81 MARTIN e Functional check for activation Set all of the four potentiometers to the left Plug shorted coax plug or test cord to the NE socket and perform the following checks Perform functional check for activation of cutting and coagulation with MARTIN handpiece or test box at both monopolar terminals Perform functional check for activation of cutting and coagulation with US three pin handpiece or test box at both monopolar terminals Perform functional check for activation of cutting and coagulation with monopolar foot switch or test box Perform functional check for activation of bipolar cutting and bipolar coagulation with bipolar adapter or t
6. di 7418 z wa o z 7 OLINO u 80 20 mm 54 0 0 00 05 ed ES horn 2 85 ag INAWNYLSNI 3 305511 r e 2JjII 218 21 1 ge SL Lt Ez RII S 5 w 2 a d H 3 B e 2211 91 T T oe 2005 8 D I 0 I 36 T 5 05 2 gt zz 0 0 Iz 5 PS TINI Bu 5 2 en 3 a es 5 SZ zu 1805 n m lt m u a m e m m m m 2 e a ONS 5 2 7 arin ONI i MP SISSHHI z OND e OND m gt T IX cime T y 2 un 7 LES 3802 t m 2 2 YOLINOW YOLINO 20 LN333023 300312313 y 431 il 02 1 ING oo 398483 84131 IH 3284331NI 3x3 5 5 HILIMS BIO TN 38 E 4339NIJ TES O 9x 2011 Adds set odouop 8171 8 4H 9 0 em 328J331NI 2 HILINS 1 38 its YIONT 4 12x Z9 1 SX 9 9 B8 Uph ME 401 Rev 2 1 Page 26 MARTIN 68 83d 1 1 0 d bee NUNDUIOMJOS I eY gt d18 OF T Tn 870 0
7. WIN ja YOLYINDIY NOILUTnd0W3 YOLU NOON 10A 398110 Md ZIZ WSN 8N c Bih 87 OND ONS ANS ONS WII NOTLWINGOWSG 1N3M3f2 atx WSI 112 um Fn td oO T g h g e JII 211 Ws eux JII o IL EN 20 e v 20 o Tan hl so ILL 4 128 Ig ER 20 28 Ath 1 1 2 IN B8 Uph ME 401 Rev 2 1 Page 31 MARTIN A failure of the current probe circuit may lead to a not recognizable double fault Because of that the current probe circuit is double The probe values of both circuits will be compared Output power monitoring is performed by a comparator which compares the actual current value with a compare value which is generated by the A D D A converter Z13 as a square wave signal This square wave signal swings between a voltage near zero and the analogue value of the compare value from the ROM tables As long as the actual current value is smaller than the square wave amplitude a square wave signal is generated at the comparator output which will be amplified by the following driver and from which the following rectifier forms a voltage to energize the relay K1 This signal forms as output signal R1 also the auxiliar energy to energize the relays in the monopolar output circuit at the output PCB In case of a shorted DC power converter the current transducers will produce no output signal and the fault comparator will
8. e 12 oy Ea YOLINOW dddns 9 g ex dc 2 HOLTAS I o SI NBI TIXRU 50 9803 102 AGTE eme 818 7 L 4 ZN 20 aue gt ls Uu YOLINOW SOLINON i a gu ENT jONBG3dNWI e S E en INIWNYLSN INSET y S JII a gt gt 2 8 ee 11s mi T e a l 6 1 31 A n SS U NI E c a H 2211 S lt 2 dl E x 7 on gt 2 D D a onem LINT U p K 2 I exo m SE en 9 1 57 ee 1506 1 N 0 79 ZIX 3 2 a zo k i m 20 S c DNE nm gt m NI 9 IX OND gt em NE ec IX and IND DD eigen su 7 we nt NI a es H 3 2805 F DA 2 21 MOLINOM NOLINON ae sd INN 300312313 NS wer wi JN GER 4984831 ISN LNSN 9 0 ev TOI I e 1284 21 1 PNIS m HOLIMS 48 em 439NIJ z 5 S EX A lddflS i 8010 I0OdONON 44 IE m HILINS 1 v LAST I MIONI4 5112 Len 9 72 1 P To meet the limitations for RF leakage currents in compliance with the IEC 601 standard the ME 401 offers an active RF current limitation For this purpose the RF lea
9. Controller PCB 5 Version 01 Standby Version 00 MARTIN B8 Uph ME 401 Page 111 5 4 9 Configuration 0807 With respect to configuration 0706 this configuration contains an additional circuit at the RF output PCB for recognition of a faulty connection of an instrument connection cable at the monopolar output socket For support of this function by the controller a new software is installed Serial numbers Software Front PCB Al RF output PCB 7 Monopolar PCB 48 Bipolar PCB 4 Controller PCB Standby PCB ME 401 0807 96 0974 to ME 401 0807 97 1139 3 01M S4 04 Use version 3 01M S4 05 for update to configuration 0810 or as spare part Version 02 Three coag keys not compatible with version 00 Version 01 can also be used Version 03 As a spare part also version 04 can be used Not to be confused with RF output PCB A2 Version 05 Not to be confused with monopolar PCB A3 Version 04 Also version 05 may be used as spare part Version 01 Version 00 For update of the connection fault protection to former configurations from 0406 from serial end no 0385 the RF output PCB has to be changed to version 03 or 04 and the EPROMs 3 01M S4 05 have to be installed MARTIN B8 Uph ME 401 Page 112 5 4 10 Configuration 0810 This configuration is the same as 0807 with the correction of a software fault and the bipolar setpoint tables of the EPROMs matched to the new symmetric bipolar connectio
10. lt 0 2 CUT 320 8000 lt 3 0 A 7 HF Ableitstr me nach IEC 601 2 19 102 SK 100 200Q HF leakage currents according to IEC 601 2 19 102 SK 100 200Q Monopolar 1 lt 100mA mA Bipolar lt 80mA mA Monopolar 2 lt 100 mA BC2 80 200Q NE lt 100mA mA Prufergebnisse Pos 4 7 1 0 Datum Name Test results position 4 7 o k Date Name 8 Dauertest 360 Schalt 5 15Sek 2Std Name Burn in test 360 cycles 5 15 sec 2hrs Name Sample of a test report according to procedure 2 for units from HW 04 from serial end number 0385 MARTIN B8 Uph ME 401 Page 90 4 1 6 3 Alignment of Functions of the Bipolar Generator Board on Change e Adjustment of degree of modulation Connect voltmeter to test point M at the bipolar RF generator board vs ground Select Bipolar Cutting 2 and activate bipolar cutting by foot switch bipolar adapter or test box Adjust to 4 20V with trimmer M e Adjustment of and check for nominal RF output power Set power meter to 100 Ohms Connect unit to the power meter using the bipolar test adapter and the symmetric test cable grey for measurement of Bipolar Coagulation Set power for bipolar coagulation to 80 Activate bipolar coagulation with foot switch or bipolar adapter Adjust output power to 82 Watts with trimmer U Note that the red LED will light If the green LED lights then turn trimmer I until the red LED will light instead of the
11. LECA NS v 7 A co Pu AN AN J 2 BZ u por 2 VA 1 N gt J 5 Y g B8 Uph ME 401 Rev 2 1 Page 45 MARTIN 2 3 2 Replacement of Sockets and Associated Parts 32 38 1 Open unit according to 2 2 2 Release cable connections X8 X11 of setpoint potentiometers at the RF output PCB and bus connector X1 at the front PCB 3 Release bolts 67 on the left and the right of the front panel inner side 4 Release cable connections X4 of the neutral electrode socket 32 X5 and X6 of the active electrode sockets and X7 of the bipolar socket at the bottom side of the RF output PCB Remove front panel For removing of foot switch sockets 35 39 release cable connection from front PCB 1 5 Unscrew and replace faulty socket Take care of correct mounting position Do not grip the NE socket 32 at the contact spring but at the front at the flange With the foot switch sockets 35 38 rearrange cable connection at the front PCB 6 For reassembling rearrange cable connections X4 X5 X6 and X7 at the bottom side of the RF output PCB and hang front panel on the front edge of the case base 7 Place and tighten bolts 67 at the upper left and upper right 8 Plug cable connectors of the setpoint potentiometers into the sockets X8 X11 at the RF output PCB and rearrange bus cable connection X1 at the front PCB 9 Perform functional and safety
12. PSud TTa Gd Joywsoues Tq Jejodouow sjurod Juswus pe pue 1891 SWYO 0051 W 3809 10 Jamod Indyno MOOT 4395224 MS 3809 JORIUO A Q S YA posn jou q Cano o 3 Ass DD CIN 3E A TY ED 8 mo 18 WYO 005 3 M OT 4471 49918 WYO 005 007 EM STE po 3209 1091000 WYO 006528 MOOT B8 Uph ME 401 Rev 2 1 Page 84 MARTIN Select Spray Coagulation at the unit and set power to 100 e Activate monopolar coagulation and adjust output power to 100 Watts at 1500 Ohms with trimmer SK Turn clockwise for more power counterclockwise for less power Attention If the turning will be increased beyond a maximum power of approx 105 Watts the output power will decrease on further clockwise turn This means that there are two points of alignment for 100 Watts However at this second point of alignment the power consumption of the generator is higher which may result in a cutoff of activation by the safety circuit especially in case of small or medium power settings In doubt check output power after adjustment at several power settings e If the RF leakage monitor will become active turn trimmer IF until 100 W can be adjusted e Set unit to Monopolar Cutting 2a select key for Monopolar Cutting 2 and check the DIL switch 2 at the controller board for being set to off e Set power to 320
13. Page 7 MARTIN B8 Uph ME 401 Rev 2 1 Annex to 2 1 New Components for ME 401 Version 0908 Pos Designation Ordering No 51 RF output PCB 9 for hardware 09 08 014 00 23 22 generator A10 for hardware 09 08 014 00 22 Set of EPROMs with operation code 3 01M S5 00 SW 08 Set of EPROMs with operation code 3 01M S5 03 SW 09 08 008 00 17 For detailed information see item 5 MARTIN B8 Uph ME 401 Rev 2 1 Annex to 2 4 Disassembling and Reassembling of RF Output 9 51 for Hardware 09 1 Open unit according to 2 2 2 Release countersunk screws 71 and remove top board holder 8 3 Disconnect bus cable 40 from front PCB Al 50 and RF output PCB A9 51 Bend cable backwards 4 Disconnect grounding cable from the RF transformer at the monopolar generator PCB and take it off of the gap in the rim of the output PCB Release plug X2 of the monopolar output transformer at the left rear of the board To perform this lift plug off of the board surface by bending and pull simultaneous to the left 5 Unplug cable connections X8 to X11 of the setpoint potentiometers at the top side of the board 6 Unplug PE conductor cable 43a from the case terminal 64 at the front left and pull it out of the current transformer at the RF output board Unplug guarding conductor from terminal X16 7 Lift board and release cable connections of RF sockets X4 to X7 as well as bipolar output cable connection X
14. e Set each potentiometer at the left and the right end and observe the display Monopolar cutting Display from 8 to 320 e Contact coagulation 1 Display from 8 to 250 Contact coagulation 2 Display from 8 to 250 up to HW 03 up to end no 0384 e Contact coagulation 2 Display from 5 to 150 from HW 04 from end no 0385 e Spray coagulation Display from 5 to 100 e Bipolar cutting Display from 4 to 80 e Bipolar coagulation Display from 4 to 80 4 1 6 Alignment and Functional Checks 4 1 6 1 Alignment and Check of Functions of the RF Output Board on Change e Alignment of neutral electrode monitor e Plug 1 4 coax plug with 270 Ohms resistor into NE socket e Connect voltmeter to test point NE at the RF output board vs ground and adjust to 2 30V with trimmer left side Alignment of automatic bipolar coagulation e Connect voltmeter to test point BA at the RF output board vs ground and adjust to 3 00V with the trimmer BA on the right top MARTIN B8 Uph ME 401 Page 78 e Alignment of bipolar instrument identification Connect bipolar test adapter or test box to bipolar output and switch to resistor 1 68kOhms Connect voltmeter to test point IC at the RF output board vs ground and adjust to 1 00V with the trimmer IC top at the right of the middle On operating the automatic bipolar key 01 has to be displayed Switch off resistor The display must change to 00 Switch on resistor 5 3
15. the voltage regulator is valid in the range between this ranges the power regulator is valid The transition occurs at the kink points of the characteristic 1 5 5 Safety Functions Because a electrosurgery unit applies energy to a patient there is principially the possibility of hazard for the patient if this energy application occurs uncontrolled From this reason there is a demand to reduce this risk by appropriate design as far as this is possible from the unit side The unit has to recognize and to control the following fault conditions e Unintended activation of RF power e Higher output power than that of the set dose The ME 401 offers a number of design arrangments to meet both of this aspects An unintended activation may occur in three ways e Unintended operation of a finger or foot switch including the situation of jamming after intended operation because of a fault of the activation element MARTIN B8 Uph ME 401 Page 16 e Unintended activation as result of a fault in the control signal path of the accessory outside the unit e Unintended activation as a result of a fault in the signal path inside the unit The first item cannot be monitored reliable by functions implemented in the unit Any technical device is not in the position to argue whether an operation of a switch by external force was intended by the user or not Furthermore a technical device cannot differ between an intended activation of a switch and a
16. 002 0 0 esog soq r OS soq 00 y soq soq F 09 r 002 092 00 B8 Uph ME 401 Rev 2 1 Page 12 MARTIN SEM u nd nO 5213511 SWUO ui o2uejsise e N o 8 o 9 o e ARIUS K WL EB TW Page 13 2 1 B8 Uph ME 401 1 5 3 Principle of Setpoint Generation The principle is shown in the drawing next page Setting of the output power at the ME 401 is performed by a rotary potentiometer which signal will be fed to the controller via IC bus after A D conversion with 8 bits There the digital value forms a pointer to a single coloumn table index table with 256 rows which contents form a pointer to a set of four coloumn tables with 64 rows Which table of this set will be selected depends on the selected current mode The tables include the following values e USOLL Numeric values from which the master controller generates the voltage setpoint values USM and USB for the respective RF generator for voltage limitation e ISOLL Numeric values from which the master controller generates the current setpoint values ISM and ISB for the respective generator for power limitation e DISPLAY Numeric values from which the slave controller generates the value which will be displayed as the power setting in the front pa
17. 01 can be used Monopolar PCB A10 Version 00 Not to be confused with monopolar RF PCBs A3 or A8 As a spare part also versions 01 or 02 can be used Bipolar PCB A4 Version 04 As a spare part also version 05 can be used Controller PCB A5 Version 01 Standby PCB 6 Version 00 MARTIN B8 Uph ME 401 Rev 2 1 Annex Page 16 Medizin Technik Gebr der Martin GmbH amp Co KG Ludwigstaler Stra e 132 Postfach 60 D 78501 Tuttlingen Germany Telefon 0 74 61 706 0 Telex 762 696 gema d Telefax 0 74 61 70 61 93 Teletex 7 461 406 03 99 gt 90 538 62 22 Printed in Germany Technische Anderungen vorbehalten Alle Rechte vorbehalten insbesondere das Recht der Vervielfaltigung Copyright by Gebriider Martin GmbH amp CO KG We reserve the right to make alterations Verbreitung und Ubersetzung Kein Teil dieses Dokumentes darf in irgendeiner D 78501 Tuttlingen Cambios t cnicos reservados Form durch Fotokopie Mikrofilm oder ein anderes Verfahren ohne schriftliche Sous r serve de modifications techniques Genehmigung unseres Hauses reproduziert oder unter Verwendung Ci riserviamo il diritto di modifiche tecniche elektronischer Systeme verarbeitet vervielfaltigt oder verbreitet werden
18. 1 06M S3 03 Front PCB Al Version 00 Two coag keys not compatible to other versions RF output PCB A2 Version 01 additional protection circuitry for component D1 with zener diode from alteration kit U 51 1010 Because the version number 02 is just used for the layout review of version 01 the version number 01 is kept unchanged Use version 03 as spare part Monopolar PCB A3 Version 01 Use Version 02 as spare part Bipolar PCB A4 Version 01 Use version 04 or 05 as spare part Controller PCB A5 Version 00 01 Both are possible as spare part Standby PCB Version 00 Additional notes e An update to configuration 0304 is uneconomic e The mains transformer is a version with lower secondary voltage AC2 This transformers recognizable at the charge codes E15 and E25 with identical labeling else shall not be disassembled from old units and be used as a spare part In case of low mains voltage problems with the bipolar functions error 26 may occur associated with this transformer AS a spare part exclusively the new transformer is avaiable e The front panel has only two orifices for monopolar coagulation keys As a spare part the new front panel with three orifices may be used but the front layout is a spare part with its own ordering number according to 2 1 e Particular the top board holder 8 is fixed only with one fastening pin MARTIN B8 Uph ME 401 Page 105 5 4 3 Configuration 0204 This configuration is a des
19. 2 3 at 320W at 350 Ohms Monop Cutting 2b 2 5 at 320W at 800 Ohms Urolog Cutting 1 1 8 at 320W at 350 Ohms Urolog Cutting 2 2 6 at 320W at 800 Ohms Contact Coag 1 3 0 at 250W at 200 Ohms Contact 2 4 8 at 150W at 500 Ohms Spray Coagulation 4 4 at 100W at 1000 Ohms Bipolar Cutting 1 1 8 at 80W at 500 Ohms Bipolar Cutting 2 2 1 at 80W at 500 Ohms Bip Coagulation 1 8 at 80W at 100 Ohms Output voltages Monop Cutting 1 max 2100VPP open circuit Monop Cutting 2a max 2700VPP open circuit Monop Cutting 2b max 3300VPP open circuit Urolog Cutting 1 max 2100VPP open circuit Urolog Cutting 2 max 3800VPP open circuit Contact Coag 1 max 2000VPP open circuit Contact Coag 2 max 3100VPP open circuit Spray Coagulation max 4800VPP open circuit Bipolar Cutting 1 800VPP open circuit Bipolar Cutting 2 max 1100VPP open circuit Bip Coagulation max 420VPP open circuit Protection class I Patient circuit CF defibrillation proof monopolar and bipolar Operation mode INT 10s 30s Dimensions 405mm X 135mm X 380mm weight 13 6kg CE conform with 93 42 EEC MARTIN B8 Uph ME 401 Rev 2 1 Annex 1 5 6 Principle of Leakage Current Compensation The terminals for active electrode and neutral electrode of an electrosurgery unit with CF type applied part are considered to be insulated from ground potential Actually due to the always present parasitic capacitances between inner wirings of the unit
20. 301UJ3N39 33 8810418 18 PR eig u cg g SN iux _ 8 5 30 d n E lt m c 28 T 841 281 8 gt 2h n 0 614 ca w 141 8 96 5 812 578 3211 ASTE s E o 51 mn s r x 951 gt 2 u N SZ gan 8 xe Z SX gz x 1485 gin 4 9 338 ax sz ix 4485 401810933 NOIIH81n00430 YOLHINAON 393110 TT 12 gon 87 878 Ix OND ang ONS ang 401810544 811 LN33303 iE E UJ e O us u s 878 Hr EX cup Bi 211 99 etx JII gi 1 Pur 4H 20 9 2 30 IX 1 nl oan EE 20 20 28 a 12 2 1 B8 Uph ME 401 Rev 2 1 Page 33 MARTIN The monitoring circuit is identical to that of the monopolar generator It generates an output signal R2 which forms the auxiliar power for energizing the relays in the bipolar output circuit at the RF output PCB 1 6 6 Controller PCB At the controller PCB there are three functional sections e Microcontrollers e Sound generator Auxiliar power supplies The intrinsic contro
21. 60601 Saftey inspection according to EN 60601 Ausdruck des Pr fger tes Printout of the testing unit Space for IEC 601 safety tester printout Me ergebnisse Position 3 i O Name Measuring results position 3 o k Name 4 Funktionspr fungen Functional tests 5 Ausgangsleistungen Power outputs KK1 250 250 50W 5000 W KK2 250 200 300W 5000 W CUT1 320 320 64W W SK 100 100 20W 1500Q W CUT1 320 150 200W 1500Q W 1 160 128 192W 500Q W CUT2a 320 256 384W 5000 W BK 80 80 16W 1000 W CUTU1 320 256 384W 7000 W 80 80 16W 6000 W CUTU2 320 256 384W 8000 W BC2 80 64 96W 6000 W 6 Netzstromaufnahme 230V AV Mains current consumption standby 230V lt 0 2 A A CUT F 320 8000 lt 3 0 A A 7 HF Ableitstr me nach IEC 601 2 19 102 SK 100 2000 HF leakage currents according to IEC 601 2 19 102 SK 100 2000 Monopolar 1 lt 100mA mA Bipolar 1 lt 80mA mA Monopolar 2 lt 100mA mA NE lt 100mA mA Pr fergebnisse Pos 4 7 1 0 Datum Name Test results position 4 7 o k Date Name 8 Dauertest 360 Schalt 5 15Sek 2Std Name Burn in test 360 cycles 5 15 sec 2hrs Name Sample of a test report according to procedure 1 for units up to HW 3 up to serial end number 0384 MARTIN B8 Uph ME 401 Page 86 4 1 6 2 2 Monopolar Generator Board 8 Adjustment of Nomonal Output Power This item is valid for the adjustment of
22. 61 70 63 43 Telefax 0 74 61 70 61 90 Replacement parts 0 74 61 70 61 99 0 74 61 70 61 90 Hotline service is available on workdays from 8 00 a m to 5 00 p m Telephone Telefax We reserve the right to make changes in de signs and devices SERVICE MANUAL 401 2 1 Technical Description of the ME 401 1 1 General 1 2 Technical Data 1 2 1 Configurations 0103 0303 0204 0304 1 2 2 Configurations 0406 0506 0606 0706 0807 0810 1 3 Features and Operation 1 4 Mechanical Design 1 5 Principle of Function 1 5 1 Microcontroller 1 5 2 Principle of Control of Field of Characteristics 1 5 3 Principle of Setpoint Generation 1 5 4 Principle of RF Generation 1 5 5 Safety Functions 1 6 Circuit Description 1 6 1 Signal Bus 1 62 Front PCB 1 6 3 Radio Frequency Output 1 6 4 Monopolar RF Generator PCB 1 6 5 Bipolar RF Generator PCB 1 6 6 Controller PCB 1 6 7 Standby PCB 11 14 16 16 19 23 25 29 32 34 37 Disassembling Reassembling of Components 2 1 252 2 3 2 4 2 5 2 6 2 7 2 8 2 9 Components and mechanical Parts ME 401 Opening and Closing of Case Front Panel Sockets Potentiometer 2 3 1 Exchange of Setpoint Potentiometer 2 3 2 Replacement of Sockets and Associated Parts 2 3 3 Disassembling and Reassembling of Front PCB Disassembling and Reassembling of RF Output PCB Disassembling and Reassembling of Monopolar RF Generator PC
23. 76 77 77 78 82 83 87 91 93 96 99 102 102 103 104 105 106 107 108 109 110 111 112 113 Annex to Revision 2 1 for Version 0908 1 2 3 Configuration 0908 serial end numbers 1051 to 1063 1 5 6 Principle of Leakage Current Compensation to 1 6 1 Block Diagram ME 401 Version 0908 to 1 6 1 Wiring Diagram ME 401 Version 0908 to 1 6 3 Block Diagram RF Output A9 to 1 6 4 Block Diagram Monopolar RF Generator A10 to2 1 New Components for ME 401 Version 0908 to 2 4 Disassembling and Reassembling of RF Output A9 51 for Hardware 09 to 2 5 Disassembling and Reassembling of Monopolar RF Generator 10 52 for Hardware 09 4 1 6 2 3 Monopolar RF Generator A10 Adjustment of Nominal Output Power 5 4 10 Configuration 0908 gt 10 12 16 SERVICE MANUAL 401 a lt This documentation is made to give to the service people all information to enable them to detect and remove disturbances and defects at the electrosurgery unit ME 401 and to verify the operating data and the functional safety Herein included is a technical description of the unit an assembling instruction for the exchange of modules an instruction for finding out certain faults by a formal procedure alignment instructions and presentation of the design revisions established in the course of time The knowledge of the user s instruction manual will be presupposed In the foot
24. Input Power Approx IVA in the switch off state 42VA without RF activation 880VA at maximum output power of both generators Output power Monop Cutting 1 max 320W at 350 Ohms Monop Cutting 2 max 320W at 350 Ohms Monop Cutting 2b max 320W at 800 Ohms Urolog Cutting 1 320W at 350 Ohms Urolog Cutting 2 max 320W at 800 Ohms Contact Coag 1 max 250W at 100 Ohms Contact Coag 2 max 150W at 500 Ohms Spray Coagulation max 100W at 1000 Ohms Bipolar Cutting 1 80W at 500 Ohms Bipolar Cutting 2 80W at 500 Ohms Bip Coagulation 80W at 100 Ohms Crest factors Output voltages Protection class Patient circuit Operation mode Dimensions weight MARTIN B8 Uph ME 401 Monop Cutting 1 Monop Cutting 2a Monop Cutting 2b Urolog Cutting 1 Urolog Cutting 2 Contact Coag 1 Contact Coag 2 Spray Coagulation Bipolar Cutting 1 Bipolar Cutting 2 Bip Coagulation Monop Cutting 1 Monop Cutting 2a Monop Cutting 2b Urolog Cutting 1 Urolog Cutting 2 Contact Coag 1 Contact Coag 2 Spray Coagulation Bipolar Cutting 1 Bipolar Cutting 2 Bip Coagulation I 1 8 at 320W at 350 Ohms 2 2 at 320W at 350 Ohms 2 3 at 320W at 800 Ohms 1 8 at 320W at 350 Ohms 2 3 at 320W at 800 Ohms 1 8 at 250W at 100 Ohms 2 4 at 150W at 500 Ohms 5 1 at 100W at 1000 Ohms 1 8 at 80W at 500 Ohms 2 1 at 80W at 500 Ohms 1 8 at 80W at 100 Ohms max ma
25. Ohms Bipolar Cutting 2 80W at 600 Ohms Bip Coagulation max 80W at 100 Ohms Crest factors Monop Cutting 1 1 8 at 320W at 500 Ohms Monop Cutting 2 2 2 at 320W at 500 Ohms Monop Cutting 2b 2 3 at 320W at 600 Ohms Urolog Cutting 1 1 8 at 320W at 700 Ohms Urolog Cutting 2 2 3 at 320W at 800 Ohms Contact Coag 1 1 8 at 250W at 500 Ohms Contact Coag 2 2 4 at 250W at 500 Ohms Spray Coagulation 5 1 at 100W at 1500 Ohms Bipolar Cutting 1 1 8 at 80W at 600 Ohms Bipolar Cutting 2 2 1 at 80W at 600 Ohms Bip Coagulation 1 8 at 80W at 100 Ohms Output voltages Monop Cutting 1 2000VPP open circuit Monop Cutting 2a max 2600VPP open circuit Monop Cutting 2b max 3200VPP open circuit Urolog Cutting 1 max 2200VPP open circuit Urolog Cutting 2 max 4000VPP open circuit Contact Coag 1 max 1800VPP open circuit Contact 2 max 2700VPP open circuit Spray Coagulation max 6500VPP open circuit Bipolar Cutting 1 1200VPP open circuit Bipolar Cutting 2 max 1400VPP open circuit Bip Coagulation max 450VPP open circuit Protection class I Patient circuit CF defibrillation proof monopolar and bipolar Operation mode INT 10s 30s Dimensions 405mm X 135mm X 380mm weight 13 6kg MARTIN B8 Uph ME 401 1 2 2 Versions 0406 0506 0606 0706 0807 0810 from serial end number 0385 Mains voltage 100V 115V 127V 130V 240V 50 60Hz to be set by change of soldered jumpers
26. RF Output 2 HW State 03 or A7 from HW State 04 51 1 Open unit according to 2 2 2 Release countersunk screws 71 and remove top board holder 8 3 Disconnect bus cable 40 from front PCB A1 50 and RF output PCB 2 or A7 51 Bend cable backwards 4 Release plug X2 of the monopolar output transformer at the left rear of the board To perform this lift plug off of the board surface by bending and pull simultaneous to the left 5 Unplug cable connections X8 to X11 of the setpoint potentiometers at the top side of the board 6 Unplug PE conductor cable 43a from the case terminal 64 at the front left and pull it out of the current transformer at the RF output board Unplug guarding conductor from terminal X16 7 Lift board and release cable connections of RF sockets X4 to X7 as well as bipolar output cable connection X3 at the lower edge of the board Remove board 8 For reassembling place board into the guiding slots up to HW state or the between the guiding pins from HW state 04 at the side parts of the case base bus connector at the left top and rearrange cable connections X3 to X7 at the lower edge of the board Then press board into the groove of the fixing bar Take care of correct feedthrough of the bipolar output cable and the PE conductor cable 43a Attention Use only RF output PCB A2 C 40 1295 ordering code 08 014 00 18 for hardware states up to 03 up to serial end number 0
27. Radio Frequency Output The output PCB can be classified in three sections Monopolar output circuit with periphery e Bipolar output circuit with periphery Control interface with setpoint value input The monopolar output circuit consists of the functional sections as follows e Energy flow path with matching capacitors and relays e Finger switch interface for output 1 e Finger switch interface for output 2 Monopolar auxiliar supply e Neutral electrode monitor e Leakage current monitor Via the high voltage relays K3 or K4 the energy flow will be fed to one of both outputs AE1 and AE2 With the recent RF output PCB A7 from hardware state 04 the relays K8 and K9 select one of the output matchings of the generator For activation of RF power by finger switches at the handpiece two interface circuits are installed which transfer the control signals by means of special optocouplers over the 32 millimeter insulation barrier in compliance with the IEC 601 recommendations For transferring two control signals over a two wire cable a current direction encoding in the handpiece is done which must be decoded in the interface circuit by two signal pathes with contrary current conduction direction To gain compatibility with the three pin connectors which are common in the US market this encoding must be performed supplementary by means of two diodes A small converter supplies this circuits its output voltage is transferred o
28. accessory or is plugged into the ring gap of the coax connector Repair Correct plugging of the instrument connection cable plug into the center conductor of the coax socket at the right side of the oval recess MARTIN B8 Uph ME 401 Page 72 4 Service Adjustments 4 1 Checks and Alignment This section is an excerpt of the test procedures which are valid for all versions of the ME 401 at the manufacturer s site Before alignments are performed it is essential to identify the version of the unit see section 5 and to apply the version of the test and alignment procedure valid for this unit From serial end number 0385 the matching of some current modes is varied Additional with the contact coagulation 2 the output power is varied with the basic mode of current genera tion Because of this there are two different test and alignment procedures which are differed by the designations procedure 1 and procedure 2 in the following e Procedure 1 Versions 0103 0303 0204 0304 up to serial end no 0384 e Procedure 2 Versions 0406 0506 0606 0706 0807 and 0810 from serial end no 0385 Both of the test and alignment procedures are unified in this section Differences or amend ments are pointed out where they are valid 4 1 1 Test Means e Visual check Mirror e Safety test Bender Safety Tester uP 601 or similar unit e Functional test e Alignment and RF power measurement MARTIN RF power meter EPM2 or FM2907 or sim
29. and which compatibilities are valid will be explained in the items corresponding to the different configurations On release of a new revision a description of the new configuration will be created and distributed by the Martin Service Center by the same way as this service documentation 5 3 Software State The operation codes and the tables for both microcontrollers are stored in two EPROMs which are labeled as follows X XX M S State of Program Master Slave State of Tables The program state designates the version of the operation code The last two of three digits form a continuing number which designate a stepdown compatible revision while the first digit is associated to the hardware configuration On an EPROM exchange absolute care must be taken that this first digit is identical to that of the replaced one If this digit would be incremented then both of the following ones will be reset to zero The EPROM belonging to the master controller see 2 7 and 4 3 has a letter M between the groups of numbers that one belonging to the slave controller has a letter S between the numbers which are identical at both EPROMs In case of mistaking both EPROMs the unit won t operate at all The state of table designates the version of memory stored parameters as tables of power characteristics monitor threshold values and instrument identification Especially the memory controlled instrument identification requires an appropriate
30. can be distinguished from the other one This is important for the right trouble shooting In the alarm state the monopolar RF current activation is disabled The bipolar current activation is not concerned with this The option of connecting a single pad neutral electrode can be disabled by a switch inside the unit Then connecting of a single pad electrode results in impedance alarm Where exclusively electrodes with splitted pads are used this property can be used to monitor the correct short free link of the cable clip to the single use electrode In the delivery state the unit is set to acceptance of single pad electrodes MARTIN B8 Uph ME 401 The ME 401 offers two identical monopolar active electrode sockets where handpiece either with MARTIN coax plug or a three pin plug as is common in the US market can be connected to Both outputs can be activated by finger switches the right output additional by foot switch The activation functions are mutual locked in a manner that simultaneous operation of both finger switches or both foot switches or one finger switch and one foot switch related to the same output results in activation of none of both operation modes A switch inside the unit determines whether the attempt of activation of both outputs simultaneously results in serving that output that tried activation first paritetic control or prefering the right output hierarchical control The last mentioned is the delivery state of the u
31. e Set power meter to 500 Ohms e On activation of monopolar cutting compare the value displayed by the power meter with the test report sheet and check for compliance with the tolerances e Set unit to Urologic Cutting 1 e Set power to 320 e Set power meter to 700 Ohms and activate monopolar cutting e Compare displayed value with test report sheet and check for compliance with tolerances e Set unit to Urologic Cutting 2 e Set power to 320 e Set power meter to 800 Ohms and activate monopolar cutting e Compare displayed value with test report sheet and check for compliance with tolerances e Set unit to Contact Coagulation 2 e Set power to 250 e Set power meter to 500 Ohms e Activate monopolar coagulation e Compare displayed value with test report sheet and check for compliance with tolerances e Check monopolar RF leakage currents according to 4 1 6 1 and adjust if required MARTIN B8 Uph ME 401 Page 85 PRUFPROTOKOLL TEST REPORT ME 401 Muster eines Pr fprotokolls entsprechend Abgleich 1 f r Ger te bis HW 3 bis Serienendnummer 0384 OS 10 094 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 Serien Nr Netzspannung 230 V Series No Mains voltage 1 Sichtkontrollen durchgef hrt Name Visual inspections performed Name 2 Hochspannungspr fung Funktionspr fung Name High voltage test Functional test Name 3 Sicherheitspr fung nach
32. each repair it must be clarified which version is present Prior to any manipulation of the unit it is necessary to know the state of the version At the ME 401 this is now indicated in the serial number M ME 401 XX XX XX XXXX Type of Unit Hardware State Software State Year of Production Serial No in P 5 2 Hardware State The hardware state is defined by e Revision state of boards e Revision state of mechanical construction e Revision state of alignment The boards are equipped with two labels One of the labels contains the manufacturer s identity number 40 and a continuing testing number with sign or identity number of the tester The second label indicates the state of revision If such a revision is present in the market it will be concern of the following items If such a board will be repaired at the manufacturer s site it will get a third repair label If possible such boards will be updated to the actual state of revision and after complete test procedure will be used for repairs as exchange boards If it has the same MARTIN ordering number as the old part according to 2 1 not to be confused with the manufacturer s identity code a board with a higher state of revision may replace a board of lower state of revision stepdown compatibility Vice versa this is generally not valid MARTIN B8 Uph ME 401 Page 102 What makes the difference of new revisions with respect to their predecessors
33. generator PCB 10 C40 1513 with modified RF output transformer which is not compatible to the RF generator PCBs 40 1296 and 8 40 1428 e New controller software 3 01 M S 5 00 Due to this modification the procedure of alignment of the monopolar output power is changed In case of new alignment of a unit note specific deviations in item 4 1 6 This annex consists of items which are to be considered as a complement to the items with same designation of the main part If required this annex can be splitted and linked to the corresponding items in the main part MARTIN B8 Uph ME 401 Rev 2 1 Annex 1 2 3 Configuration 0908 serial end numbers 1051 to 1063 Mains voltage 100V 115V 127V 130V 240V 50 60Hz to be set by change of soldered jumpers Input Power Approx IVA in the switch off state 42VA without RF activation 880VA at maximum output power of both generators Output power Monop Cutting 1 max 320W at 350 Ohms Monop Cutting 2 max 320W at 350 Ohms Monop Cutting 2b 320W at 800 Ohms Urolog Cutting 1 320W at 350 Ohms Urolog Cutting 2 320W at 800 Ohms Contact Coag 1 max 250W at 200 Ohms Contact 2 max 150W at 500 Ohms Spray Coagulation max 100W at 1000 Ohms Bipolar Cutting 1 80W at 500 Ohms Bipolar Cutting 2 80W at 500 Ohms Bip Coagulation 80 at 100 Ohms Crest factors Monop Cutting 1 1 8 at 320W at 350 Ohms Monop Cutting 2a
34. line of this document is indicated e Author Martin Medizin Technik responsible for contence e Editor e Validity for electrosurgical unit ME 401 e State of revision e Page number The state of revision is indicated in the form X Y In case of editorial corrections or supplements the digit Y will be advanced for 1 In the case of general alterations or novelties with the unit the digit X will be advanced for 1 and the digit will be reset to zero Thus the former release of the service manual looses validity for all new releases of the unit Alterations and supplements with respect to version 2 0 are in italic letters 1 Technical Description of the 401 1 1 General The MARTIN ME 401 was designed as an universal electrosurgical unit for clinical use and incorporates in relation to its predecessors the following alterations improvements and supplements Internal control by microcontroller Setpoint indication corresponding to estimated electrical output power Bipolar cutting RF output power control by characteristic field control Redesigned more ergonomic layout of the front panel New output sockets with stepdown compatibility for former accessories Omission of the MICRO Key but now progressive setting of RF power Omission of the selection keys for finger foot switch control Selection key for automatic stop of bipolar coagulation optional automatic start of bipolar coagulation from hardware version 04 upwards A
35. not used here drive the indicator lamps for cutting activation and neutral electrode alarm in the cutting circuit and the indicator lamp for coagulation activation in the coagulation circuit This is outside the multiplexer mode 1 e the brightness can be set to zero half and full by setting the corresponding registers In case of the NE lamp this feature is used The bipolar display circuit has the same structure Both of the two digit LED displays are driven from a common segment driver Z10 which also drives the activation indication lamps The keys used in the ME 401 have an illuminated keying pad the lighting of which indicates the set operation mode Request of a key and drive of its illumimation via the same line is performed by the bidirectional PC bus expanders Z6 and Z7 To enable a key to be requested the expander port connected to it must be set on high level Then the associated key pad illumination is dark On keying the port will be pulled down to low level the key will light up By repetitive request of the expander port state the controller recognizes this change in state and sets the output register associated with this port line to low level so that this state remains after releasing the key additional the other port lines belonging to the same block of current modes will be set back to high level The key S10 for setting on off of the automatical bipolar coagulation is operated in the toggle mode and has separated li
36. paths Once the four channel A D converter Z1 converts and transmits the values via bus 1 to the master controller twice Z2 converts and transmits the values via bus 2 to the slave controller The inputs of both converters are discoupled by resistors At the ends of the potentiometers small resistors are placed which effect that the digital values 01H 02H as well as FDH FEH and FFH cannot occur in normal condition Their occurence announces an interruption of a potentiometer line On rupture of the low side potentiometer line the slider potential will be full positive potential FFH On rupture of the high side line the slider potential will be ground potential 00H On interruption of the slider line pulldown resistors at the converter inputs set them to ground potential 00H This enables the controller to recognize a potentiometer circuit fault 1 6 4 Monopolar RF Generator PCB The monopolar RF generator PCB is a complete unit for controlled generation of RF power from an AC power supply It consists of the following functional sections e Rectifier and voltage pre regulation e DC power converter PWM demodulators e Power oscillator changeable to flyback converter Modulator e Controller interface for activation and settings e Fault monitor MARTIN B8 Uph ME 401 Page 29 pre regulation is performed by stepdown DC converter controlled by a regulator to produce a voltage of 44V The DC po
37. setpoint generation MARTIN B8 Uph ME 401 Page 15 1 5 4 Principle of Generation The ME 401 offers two separated RF generators for monopolar and bipolar application which are identical from the basic circuit design The monopolar generator is designed for an output power of 320 Watts the bipolar for an output power of 80 Watts The actual RF generator is a harmonic power oscillator free running oscillator in both cases At the monopolar generator this circuit will be changed to a flyback converter for spray coagulation from HW 04 upwards also for monopolar coagulation 2 ambivalent generator Controlling of the RF power is performed by a stepdown converter which is placed before the oscillator and controlled by two regulators in parallel The one of the regulators controls the output voltage like in a switch mode power supply the other one controls the output power by controlling the current which flows into the converter If the converter is fed from a constant voltage and a sufficient constant degree of effectivity of the combination of converter and oscillator can be assumed then the RF output power must be constant if the DC input power is controlled to be constant The two regulators are connected in a manner that each of them can reduce the converter setpoint but cannot increase it against the action of the other one The regulation loop is always closed only for one of the regulators At very high and very low output resistances
38. software updating if a user wants to have a new bipolar instrument with identification Such a new version results in an incrementation of the counter formed by the last two digits of the three digit table version number The first digit will be incremented if there is either a basic change in the structure of tables or an interrupt in continuity of function This means that all table versions with the same first digit are compatible while only the most recent one features all functions established hitherto On incrementing the first digit both of the others are reset to zero On exchange of EPROMs for table updating care must be taken that the first digit of the program version will be kept and that the number formed by the following two digits will not be less than that at the former EPROM On demand pairs of EPROMs with special opcode table combination have to be set up by the manufacturer from this reason tell actual hardware and software states of the unit when ordering An EPROM exchange always requires the change of both EPROMs MARTIN B8 Uph ME 401 Page 103 5 4 Configurations 5 4 1 Configuration 0103 Serial numbers ME 401 0103 94 0010 to ME 401 0103 94 0059 Software 1 06M S3 03 Front PCB Al Version 00 Two coag keys not compatible to other versions RF output PCB A2 Version 01 Use version 03 as spare part Monopolar PCB A3 Version 01 Use Version 02 as spare part Bipolar PCB A4 Version 01 Use Version 04 or 05 as spare
39. standby PCB with plug connectors There where a bus line has connection to the inner circuit of the board this is marked with a filled circle The function of the signals at the bus cable are denoted as follows e GND pins 1 7 10 and 16 Signal ground and negative pole of auxiliar power supply e E pin 24 Guarding for leakage currents not used as a bus line e pins 9 and 12 5V suppy of inter IC bus interface components generated at the controller PCB e 5D pin 8 5V supply of the LED displays for power settings at the front panel Is connected to at the controller PCB and guided separate from IIC for discoupling because of high power consumption e 15M pin 15 15V supply of the monopolar RF generator PCB is generated at the controller PCB together with 15B and 15H but guided separate for discoupling 15B pin 19 15 supply of the bipolar RF generator PCB is generated at the controller PCB together with 15M and 15H but guided separate for discoupling MARTIN B8 Uph ME 401 Page 19 e 15H 11 15V supply of the RF output and the front PCBs is generated at the controller PCB together with 15M and 15B but guided separate for discoupling e SDAI pin 2 Serial data line of the bus 1 of the master controller at the controller PCB e SCLI pin 3 Synchronous clock line of the PC bus 1 of the master controller at the controller PCB INTI pin 4 Interrupt request line of the
40. the capacitor C 107 at the RF output board In areas where operation is performed preferential with such instruments e g urology we advise to close those control sockets with dummy plugs and to inform the users about this possibility of mishandling Err 43 Err 44 Meaning On the power on self test the unit recognizes an operation of the yellow or the blue finger switch of a handpiece connected to the left monopolar output Cause Operation of a finger switch before end of power on self test short circuit at the handpiece or its connection cable or fault of the unit Repair If not caused by switch operation disconnect handpiece and switch off unit and switch on again If the error message is still present there is a fault at the RF output board A2 A7 51 MARTIN B8 Uph ME 401 Page 70 Err 45 Err 46 Meaning On the power on self test the unit recognizes an operation of the finger switch for bipolar cutting or bipolar coagulation of an instrument connected to the bipolar output Cause Operation of a finger switch before end of power on self test short circuit at the instrument or its connection cable or fault of the unit Repair If not caused by switch operation disconnect instrument and switch off unit and switch on again If the error message is still present there is a fault at the RF output board A2 A7 51 Err 47 Err 48 Meaning On the power on self test the unit recognizes an operation of the yellow or the blu
41. the output power of the monopolar RF generator board A8 which is assembled in the units with hardware state from 04 from serial end number 0385 and corresponds to procedure 2 Set RF power meter to a load resistance of 100 Ohms Set unit to Contact Coagulation 1 Power setting to 250 On activation of monopolar coagulation adjust to an output power of 250 Watts with the trimmer U at the left side of the monopolar board access through an orifice at the left side of the case Note that the red LED at the monopolar board will light If the green LED would light turn trimmer I so far that the green LED turns to dark and the red LED will light Set unit to Monopolar Cutting 1 and power setting to 320 Set power meter to a resistance of 350 Ohms On activation of monopolar cutting adjust output power to 320 Watts access through an orifice at the left side of the case Note that the green LED at the monopolar board will light This previous check adjustment is to repeat alternately until both adjustments are correct Setting for Monopolar Cutting to 10 short before left end On activation of monopolar cutting adjust output power to 10 Watts 170 mA with the trimmer Min access through an orifice at the left side of the case 10 Watts correspond to 170 mA at 350 Ohms Set power to 160 and activate monopolar cutting Compare actual value displayed by the power meter with test report sheet and check for compliance w
42. to outdoor service the following substitute test may be performed if required e Switch on unit and set to spray coagulation at 100 Watts e Connect foot switch and connect the monopolar output 1 right socket to the equipotential terminal Plug shorted coax test plug into NE socket Activate monopolar coagulation for 30 Seconds Connect neutral electrode terminal to equipotential terminal Monopolar sockets remain free Activate monopolar coagulation for 30 Seconds e Setunit to bipolar cutting 2 at 80 Watts and connect bipolar foot switch e Connect successively both of the bipolar cutting terminals to the equipotential terminal and activate bipolar cutting for 30 Seconds MARTIN B8 Uph ME 401 Page 76 4 1 4 601 Safety Test e Connect unit to safety tester e Settings at the unit monopolar and bipolar cutting 2 contact coagulation 1 All rotary knobs at left end mains power switched on e Setting up the safety tester and performing the safety test Switch on mains power for tester Eventually follow order turn mains plug symmetric mains plug only Enter key Enter date in case of error enter C key Test according to IEC 601 enter lower key next to display or Operation mode Classification Protection class I Mains cord Detachable Classification CF Patient circuit terminals Enter 4 and Patient leakage current with voltage no Test classification Complete test Test
43. unit s accompanying documents 4 3 Settings of the Functional Options at the Controller Board At the controller board there is an eightfold miniature switch DIL switch which enables the change of a number of functions of the unit The switches are of the meaning as follows S1 on RF output power setting is changeable during RF activation S1 off RF output power cannot be changed during RF activation S2 on On selecting Monopolar Cutting 2 the submode Monopolar Cutting 2b will be valid S2 off On selecting Monopolar Cutting 2 the submode Monopolar Cutting 2a will be valid S3 on Activity of the monopolar RF leakage current limitation will be indicated as a jitter imposed to the acoustic activation signal 93 off Activity of the monopolar RF leakage current limitation will not be indicated S4 on The monopolar output 1 right is preferred to the monopolar output 2 left S4 off Both monopolar outputs are equal That which will be activated first will have preference MARTIN B8 Uph ME 401 Page 96 AAHU T THSHUI all UH MER HA XXXSXXX INOdHd3 XXXINXXX XXXINXXX TRE 80 B8 Uph ME 401 Rev 2 1 Page 97 MARTIN S5 Impedance alarm on A single sectioned neutral electrode monitored only by a cord loop will be considered to be faulty S5 off Impedance alarm off The unit will also accept single sectioned neutral electrodes S
44. 250 On activation of monopolar coagulation adjust to an output power of 260 Watts with the trimmer U at the left side of the monopolar board access through an orifice at the left side of the case Note that the red LED at the monopolar board will light If the green LED would light turn trimmer I so far that the green LED turns to dark and the red LED will light Set unit to Monopolar Cutting 1 and power setting to 320 Set power meter to the resistance recorded in the test report sheet On activation of monopolar cutting adjust output power to 325 Watts access through an orifice at the left side of the case Note that the green LED at the monopolar board will light This previous check adjustment is to repeat alternately until both adjustments are correct Setting for Monopolar Cutting to 10 short before left end Set power meter to 500 Ohms On activation of monopolar cutting adjust output power to 10 Watts 141 mA with the trimmer Min access through an orifice at the left side of the case 10 Watts correspond to 141 mA at 500 Ohms Set power to 160 and activate monopolar cutting Compare actual value displayed by the power meter with test report sheet and check for compliance with tolerances Set power meter to 1500 Ohms Set power of the unit to 320 Activate monopolar cutting compare displayed value with test report sheet and check for compliance with tolerances MARTIN B8 Uph ME 401 Page 83 Mud
45. 3 at the lower edge of the board Remove board 8 For reassembling place board between the guiding pins at the side parts of the case base bus connector at the left top and rearrange cable connections X3 to X7 at the lower edge of the board Then press board into the groove of the fixing bar Take care of correct feed through of the bipolar output cable and the PE conductor cable 43a Attention Use only RF output PCB A9 C 40 1512 for version 0908 differable at the gap in the edge at the upper left for cable feedthrough of the grounding conductor of the RF output transformer 9 Feed PE conductor cable 43a through the hole of the current transformer and connect it to the terminal 64 at the front left inside of the case Connect guarding line to terminal X16 10 Rearrange connection to the monopolar RF output transformer at the rear left of the board Replace grounding conductor into the gap in the board edge and reconnect to terminal X3 at the RF output transformer at the monopolar RF generator PCB A10 11 Rearrange bus cable connection at the RF output and front PCBs 12 Rearrange cable connections X8 to X1 lof the setpoint potentiometers at the top side of the board 13 Place top board holder 8 in handle cover 7 and tighten 14 Perform alignments according to section 4 1 6 1 15 Perform functional and safety check according to 4 1 2 to 4 1 5 16 Close case according to 2 2 MARTIN B8 Uph ME 401 Rev 2 1 Annex to 2 5
46. 384 EPROM Set with Opcode Version 2 01M S3 04 SW 04 08 008 00 12 For units from Serial End No 401 04 06 95 0385 EPROM Set with Opcode Version 3 01M S4 03 SW 06 EPROM Set with Opcode Version 3 01M S4 04 SW 07 EPROM Set with Opcode Version 3 01M S5 00 SW 08 EPROM Set with Opcode Version 3 01M S4 05 SW 10 08 008 00 13 08 008 00 16 For units with Serial No 401 09 08 97 1051 up to 401 09 08 97 1063 EPROM Set with Opcode Version 3 01M S5 00 SW 08 EPROM Set with Opcode Version 3 01M S5 03 SW 09 RF Output PCB A9 for HW 09 RF Generator PCB Monopolar A10 for HW 09 08 008 00 17 08 014 00 23 08 014 00 22 MARTIN B8 Uph ME 401 Page 40 For detailed information see item 5 J N Wi M Wi P J JE TI SN N 7 ff f m 777 N N N V J N N N if y Uf 7 61 62 76 75 80 File 401BAUU DRW ME401 ASSEMBLY OF BOTTOM CASE B8 Uph ME 401 Rev 2 1 Page 41 MARTIN 78 43 78 73 File 401MNTU DRW ME 401 BOARD ASSEMBLY MARTIN B8 Uph ME 401 Page 42 2 2 Opening and Closing of Case 1 Unplug mains cord 2 Release the four self tapping screws 69 at the rim at the rear side of the top cover 1 3 Draw top cover 1 off of the groove in the front panel 3 and take it off over the backside of the unit 4 For reassembling push top cover 1 from the backside
47. 384 use only RF output PCB A7 C 40 1427 ordering code 08 014 00 19 for for hardware states from 04 from serial end number 0385 9 Feed PE conductor cable 43a through the hole of the current transformer and connect it to the terminal 64 at the front left inside of the case Connect guarding line to terminal X16 10 Rearrange connection to the monopolar RF output transformer at the rear left of the board 11 Rearrange bus cable connection at the RF output and front PCBs 12 Rearrange cable connections X8 to X1 lof the setpoint potentiometers at the top side of the board 13 Place top board holder 8 in handle cover 7 and tighten 14 Perform alignments according to section 4 1 6 1 15 Perform functional and safety check according to 4 1 2 to 4 1 5 16 Close case according to 2 2 MARTIN B8 Uph ME 401 Page 49 wc 4 uonoeuuo 205 yndyno I nd no douour HN 1e odououir pod riod Ted sig dd B8 Uph ME 401 Rev 2 1 Page 50 MARTIN ZV 82d LAdLNO AO NOILOANNOO yoos mdyno 804 sa c yndjno 1e odiq J douou HN 1801 Jejodouow ecvi or o 4 1904 B8 Uph ME 401 Rev 2 1 Page 51 MARTIN 2 5 Disassembling Reassembling of M
48. 3kOhms The voltmeter at test point IC has to display 1 70V 0 10V e Alignment of monopolar RF leakage current limitation Set unit to spray coagulation at 100 Watts Set RF power meter to 200 Ohms Connect monopolar output 1 right socket for leakage current measure use shorted NE coax plug Activate monopolar coagulation and adjust leakage current to 95 mA with the trimmer IF down in the middle of the RF output board The begin of limitation is audible by a jitter of the acoustic signal Connect RF power meter to output 2 left socket and activate output 2 for coagulation by means of a short banana plug cable If the leakage current is less or equal to 95 mA then keep this adjustment If the leakage current is greater than 95mA then adjust to 95 mA with trimmer IF at the middle of the RF output board Connect RF power meter to NE terminal and activate monopolar coagulation Compare displayed RF leakage current with that from the manufacturer s test report Repeat the last five steps with the unit set to Urologic Cutting 2 maximum power If one of the measurements shows a RF leakage current greater than 100mA then set current below 100mA with trimmer IF Attention Use cords as short as possible for this test Testing with long cords e g with the active electrode handle leads to faulty results MARTIN B8 Uph ME 401 Page 79 god 44 sjuiod pue 159
49. 500 W Bc symmetr 8000 coaxial 5000 CUTU1 320 256 384W 350Q W 1 80 80 16W W CUTU2 320 256 384W 800Q W BC2 80 64 96W W 6 Netzstromaufnahme 230V AV Mains current consumption standby 230V lt 0 2 CUT 320 8000 lt 3 0 A 7 HF Ableitstr me nach IEC 601 2 19 102 SK 100 200Q HF leakage currents according to IEC 601 2 19 102 SK 100 200Q Monopolar 1 lt 100mA mA Bipolar lt 80mA mA Monopolar 2 lt 100 mA BC2 80 200Q NE lt 100mA mA Prufergebnisse Pos 4 7 1 0 Datum Name Test results position 4 7 o k Date Name 8 Dauertest 360 Schalt 5 15Sek 2Std Name Burn in test 360 cycles 5 15 sec 2hrs Name Sample of a test report sheet for units with hardware software state 0908 serial end no 1051 to 1063 MARTIN B8 Uph ME 401 Rev 2 1 Annex Page 15 5 4 10 Configuration 0908 This configuration differs from the configuration in new not downwards compatible RF output PCB and a new not downwards compatible RF generator PCB The new and altered properties are supported by a new not downwards compatible software Serial numbers ME 401 0908 97 1051 to ME 401 0908 97 1063 Software 3 01M S5 00 SW 08 Front PCB A1 Version 02 Three monopolar coagulation keys not interchangeable with version 00 As a spare part also version 01 can be used RF output PCB 9 Version 00 Not to be confused with RF output PCBs 2 or A7 Asa spare part also version
50. 6 on After 15 Seconds of activation the loudness of the acoustic activation signal will increase S6 off The loudness of the activation signal remains unchanged S7 on Not in use with units of hardware state up to 03 with serial end numbers up to 0384 With the units of hardware state from 04 with serial end number from 0385 the acoustic neutral electrode alarm occurs always in association with the optical alarm S7 off The acoustic neutral electrode alarm occurs in association with the optical alarm on attempt of monopolar current activation S8 on Not in use with units of hardware state up to 03 with serial end numbers up to 0384 With the units of hardware state from 04 with serial end number from 0385 the activation of the bipolar automatic function enables the bipolar coagulation current to be activated automatically on tissue contact of the instrument and to be automatically de activated on reaching of a certain degree of coagulation S8 off On activation of the bipolar automatic function the coagulation current is only enabled to be de activated automatically on reaching of a certain degree of coagulation Activa tion is only possible via finger switch or foot switch Note With service manual rev 2 0 the explanation of the functions of the switches S7 and S8 was interchanged This fault should be corrected if rev 2 0 is still in use The unit leaves the manufacturer s site with the following settings S1 On rig
51. 72 73 74 75 76 77 78 79 80 Designation Ordering No Set of Mechanical Parts ME 401 08 018 00 23 Case Stand Adhesive up to HW State 03 up to End No 0384 Case Stand Hole Mounted from HW 04 from End No 0385 Insulation Bushing for Equipotential Pin up to HW State 03 Insulation Washer for Eqipotential Pin up to HW State 03 Insulation Feedthrough for Bottom Receptacles up to HW State 03 Insulated Clamp for Bottom Receptacles from HW State 04 Flat Connector PE Terminal 4 8 X 0 8mm Adhesive Cable Clip for Bipolar Output Spacer 6 3 5 X 10mm Plastic Threaded Bolt M4 X 15mm Tallow Drop Self Tapping Screw 3 5 X 9 5mm Self Tapping Screw 2 9 X 9 5mm Philips Tallow Drop Screw M3 X 6mm Countersunk Screw M4 X 16mm Hexagonal Nut M3 Hexagonal Nut M4 Hexagonal Nut M5 Hexagonal Nut M6 Washer 6 4 12mm Lock Washer S3 Lock Washer S4 Lock Washer S5 Lock Washer S6 Set of Adhesive Labels for ME Units Incandescant Bulb for Front PCB Fuse T4A Slow Blow 230V Fuse T8A Slow Blow 115V Fuse M1 6A Medium Blow Controller PCB Fuse M3 15A Medium Blow Bipolar PCB Fuse M10A Medium Blow Monopolar PCB 08 018 00 02 08 012 00 03 08 034 00 15 08 034 00 14 08 034 00 28 08 034 00 29 08 034 00 16 For units with Serial End No up to 401 01 03 94 0059 EPROM Set with Opcode Version 1 06M S3 03 SW 03 08 008 00 15 For units with Serial End No from 401 02 04 94 0060 up to 401 02 04 95 0
52. ANO 834 r 401844549 44 e e 6 e IX 481040 0 PE 80 58 824 40184145349 E 9 9 9 4810418 zes HH zy m 138 228 238 5 SBS Ba m 2 Sa ea m x x c o o o o o o 5 PN 5 IE 5 Ja 6 Je 5 5 IS S S 5 Da n Ze 1 IOYLNOD 824 X 00 6 o 6 o o ox SH 92 SZ hz 52 72 12 22 61 81 CI 91 SI tl SI Zi tl a 6 8 lt 9 S h Zt A8UNUILS Ix 9 9 sx 9 9a gt J gA A A L7 5 Z AZA ThA N 15 1 1 6 2 Front The front PCB contains the display elements and operation keys and forms the interface to the controller for this elements as well as for the foot switches There are the following components e Display circuit for monopolar cutting e Display circuit for monopolar coagulation e Display circuit for bipolar operation modes e Keys and foot switches for monopolar operation modes e Keys and foot switches for bipolar operation modes e Standby key The monopolar display circuits consist of three digit green seven segment LED displays which will be driven by a segment driver with interface in a two rows two lines multiplex mode for each circuit Z8 and Z9 The segment outputs which else would drive the decimal points
53. B Disassembling and Reassembling of Bipolar RF Generator PCB Disassembling and Reassembling of Controller PCB Disassembling and Reassembling of Standby PCB Disassembling and Reassembling of Mains Transformer 2 10 Exchange of Mains Terminal Block 2 11Disassembling and Reassembling of Sound Transducer Set Fault Diagnosis 3 1 Error Codes and Their Meaning 39 43 44 46 48 49 52 54 56 58 60 61 62 63 4 Service Adjustments 5 4 1 Checks and Alignment 4 1 1 4 1 2 4 1 3 4 1 4 4 1 5 4 1 6 Test Means Visual Checks High Voltage Test 3 601 Safety Test Check of Functions of the Front Panel Alignment and Functional Checks 4 1 6 1 Alignment and Check of Functions of RF Output PCB 4 1 6 2 Alignment of Functions of the Monopolar PCB 4 1 6 2 1 Monopolar RF Generator PCB A3 4 1 6 2 2 Monopolar RF Generator PCB A8 4 1 6 3 Alignment of Functions of the Bipolar PCB 4 2 Voltage Selection in the Mains Circuit 4 3 Settings ofthe Functional Options at the Controller Board 4 4 Safety Checks to be Repeated Yearly Alterations 5 1 Procedure 5 2 Hardware State 5 3 Software State 5 4 Configurations 5 4 1 5 42 5 4 3 5 4 4 5 4 5 5 4 6 5 4 7 5 4 8 5 4 9 5 4 10 Configuration 0103 Configuration 0303 Configuration 0204 Configuration 0304 Configuration 0406 Configuration 0506 Configuration 0606 Configuration 0706 Configuration 0807 Configuration 0810 73 74
54. C bus 1 not used at the ME 401 e SDA2 pin 5 Serial data line of the IC bus 2 of the slave controller at the controller d 6 Synchronous clock line of the bus of the slave controller at the controller e USM 13 Pulse width modulated square wave signal of the timer 1 of the master controller for generation of the monopolar voltage setpoint value e ISM pin 14 Pulse width modulated square wave signal of the timer 2 of the master controller for generation of the monopolar current setpoint value for power regulation e USB pin 17 Pulse width modulated square wave signal of the timer 3 of the master controller for generation of the bipolar voltage setpoint value e ISB pin 18 Pulse width modulated square wave signal of the timer 4 of the master controller for generation of the bipolar current setpoint value for power regulation e pin 20 Output signal of the monopolar power fault monitor establishes the auxiliar energy for energizing the relays in the monopolar output circuit is a square wave signal in normal condition and a DC voltage of 0V or 15V in fault condition R2 pin 21 Output signal of the bipolar power fault monitor establishes the auxiliar energy for energizing the relays in the bipolar output circuit is a square wave signal in normal condition and a DC voltage of 0V or 15V in fault condition HM 23 Will be generated in the monopolar RF generator and indicat
55. Disassembling Reassembling of Monopolar RF Generator 10 52 for Hardware 09 1 Open unit according to 2 2 2 Release countersunk screws 71 and remove top board holder 8 3 Disconnect bus cable from controller board A5 54 bipolar RF generator board A4 53 and monopolar RF generator board A10 52 Bend cable to the front side 4 Release grounding cable from terminal X3 at the RF output transformer Release connector X2 of the output transformer at the left rear of the RF output board A9 51 To perform this bend connector slightly off of the board surface and pull to the left simultaneous 5 Release connector X2 from the mains transformer 23 and get connection cable out of the gap in the board 6 Remove board unit topwards 7 For reassembling place board unit between the guiding pins at the case walls with basic and reinforcement board and press into the groove of the fixing bar at the bottom Take care of proper position of the PE line cable and the bipolar output cable in the gaps in the lower board edge Attention For version 0908 use only monopolar RF generator PCB A10 C 40 1513 differable at the RF output transformer with terminal X3 8 Rearrange connection of the RF output transformer to the left rear of the RF output board A9 and grounding cable to terminal X3 at the RF output transformer 9 Place the mains transformer cable in the keyhole shaped gap right in the upper edge and rearrange cabl
56. ED at the monopolar board will light e Ifthe green LED would light turn trimmer I so far that the green LED turns to dark and the red LED will light e Set power meter to a resistance of 350 Ohms e On activation of monopolar cutting adjust output power to 320 Watts access through an orifice at the left side of the case with the trimmer I Note that the green LED at the monopolar board will light e This previous check adjustment is to repeat alternately until both adjustments are correct e Setting for Monopolar Cutting to 10 short before left end e On activation of monopolar cutting adjust output power to 10 Watts 170 mA with the trimmer Min access through an orifice at the left side of the case 10 Watts correspond to 170 mA at 350 Ohms e Set power to 160 and activate monopolar cutting e Compare actual value displayed by the power meter with test report sheet and check for compliance with tolerances e Set power meter to 1500 Ohms e Set power of the unit to 320 e Activate monopolar cutting compare displayed value with test report sheet and check for compliance with tolerances e Set unit to Monopolar Cutting 2a select key for Monopolar Cutting 2 and check the DIL switch 2 at the controller board for being set to off e Set power to 320 e Set power meter to 350 Ohms e On activation of monopolar cutting compare the value displayed by the power meter with the test report sheet and check for comp
57. F leakage monitor will become active turn trimmer IF until 100 W can be adjusted e Set unit to Monopolar Cutting 2a select key for Monopolar Cutting 2 and check the DIL switch 2 at the controller board for being set to off e Set power to 320 e Set power meter to 350 Ohms e On activation of monopolar cutting compare the value displayed by the power meter with the test report sheet and check for compliance with the tolerances e Set unit to Urologic Cutting 1 e Set power to 320 e Set power meter to 350 Ohms and activate monopolar cutting e Compare displayed value with test report sheet and check for compliance with tolerances e Set unit to Urologic Cutting 2 e Set power to 320 e Set power meter to 800 Ohms and activate monopolar cutting e Compare displayed value with test report sheet and check for compliance with tolerances e Set unit to Contact Coagulation 2 e Set power to 150 e Set power meter to 500 Ohms e Activate monopolar coagulation e Adjust output power to 150 Watts at 500 Ohms with trimmer FK Turn clockwise for more power counterclockwise for less power Attention If the turning will be increased beyond a certain maximum power the output power will decrease on further clockwise turn This means that there are two points of alignment for 150 Watts However at this second point of alignment the power consumption of the generator is higher which may result in a cutoff of activation by th
58. ICRO function known from the predecessing units is obsolete The set power is displayed with a green LED display as a prospective electric output power for each mode of operation Starting from 8 Watts at the monopolar cutting current modes 5 Watts at the spray coagulation 8 Watts at the monopolar contact coagulations and 4 Watts at the bipolar operation modes the power increases first in steps of 1 Watt which increase with increasing angle of turn The range of turn which appears to be continuous is divided in 64 fixed steps The selection of a current mode of an operation mode is performed by mutual releasing lighted keys The selection of one current will be acknowledged by illumination of the pushed key The ME 401 offers five monopolar cutting current modes three monopolar coagulation current modes two bipolar cutting current modes and one bipolar coagulation current mode The first monopolar cutting current mode Monopolar Cutting 1 is provided for smooth 1 e as few as possible eschar forming cutting and will be selected by the first key The second or third current mode Monopolar Cutting 2 for eschar forming i e hemostatic cutting will be selected by the second key An internal switch enables the selection between two degrees of eschar formation Cutting 2a and Cutting 2b The first two keys are equipped with the standard symbols for pure and eschar forming cutting The fourth monopolar cutting current mode Urologic Cutting 1
59. N H LZ 9802 1 T wo t YOLINOW MOLINO 1N438983032 300812313 3N az INNLNAN 2 on T 1284 31 1 6119 Dur EST ee HOLIMS 8IQ TN t 7 t 39 A wu39N13 m amp 19915 ENDS 5 9 2010 ub 10d40NON I em x 328 Sy 1 6558 au 0 0 e gt K 81 2 7 175 ey g zx exo lt 575 4 S ZX Page 6 MARTIN B8 Uph ME 401 Rev 2 1 Annex to 1 6 4 Block Diagram Generator 10 018 wOlUN3NSD SUJO4DNOM 1 ET aa WESIHIUMDIO 18 m ex WH 8 UIN van 18 24 dow q ii lt gt Lee T i 4 1 ZW b gt ze A 5 8h BONS AN A ie sa za 8 gt 6 g ix 4 135 a B ZIZ NB84X3 Sn8 2 0 Y ASI O VN s r x 851 Wan m t in Al 2 4380 El N01U1093M NOILU 1100 30 HOLD IndON II LION 7 STIX Sf 8N lt B h Bir Ta ang e 9 9 69 ix OND L xd 401010933 WII ax WSI z IR 8 d 9 g s 6559 JII n 4 eux 2II i 9999 jM 20 YY 20 TX hl 21 rs 20 E 30 28 Pcr Ath ET Z
60. NOLH7n00N 26 68 dod 104100 L Bic S OTU 824 MU IOdONOMN 18 4824 4810418 5 ngino v 128 228 o did IN ZONON LONDON Page 4 MART B8 Uph ME 401 Rev 2 1 Annex 0908 lon ME 401 Vers iagram D iring to 1 6 1 W Tz JW WIYNIBIU 210414 54 54 d T rX H 1 XN bod Y God LNOM3 e e e o 19 Ex ex 993 2 2 i i ite God ex Oxy D e INdlNO 48 2x 53 eeee P 9 dod YOLYUYSNSD d IX 019 dod JOLBMJN39 dM 6 7 g yo aoe 67x 2 128 e m z z z J Je Je Je le lz 15 ja ja je ja j S S 43 110 1 02 eee ces se 6 4 n g 4 5 h ABUND1S HEUS IE E
61. No 0384 08 027 00 13 Equipot Connector Socket from HW 04 from End 0385 08 027 00 14 21 Mains Terminal Bank 08 024 00 06 22 Drawer for Fuses 08 024 00 18 23 Mains Transformer PM 114 08 024 00 27 30 Sound Transducer Set cpl 08 020 00 15 31 Setpoint Potentiometer cpl 08 032 00 11 32 Socket Neutral Electrode cpl with Insulation Cup 08 024 00 34 34 Socket Active Electrode cpl 08 022 00 14 35 Socket for Foot Swtch Monopolar cpl 08 010 00 27 36 Mounting Plate for Foot Switch Socket 08 001 00 16 37 Socket for Bipolar Output cpl 08 003 00 06 38 Socket for Foot Switch Bipolar cpl 08 010 00 28 40 Cable for Bus 26 Lines 08 003 00 07 41 Cable Set Mains Circuit 08 018 00 21 42 Cable Set Standby Circuit 08 018 00 20 43 Cable Set PE Equipotential Lines 08 018 00 22 50 Front PCB Al HW State 01 up to Serial End No 0059 08 010 00 31 Front PCB Al from HW State 02 from Serial End No 0060 08 010 00 29 51 RF Output A2 up to HW State 03 up to End No 0384 08 014 00 18 RF Output PCB A7 from HW State 04 from End No 0385 08 014 00 19 52 RF Generator PCB Monopolar A3 up to HW 03 End No 0384 08 014 00 17 RF Generator PCB Monopolar A8 from HW 04 End No 0385 08 014 00 20 53 RF Generator PCB Bipolar 4 08 014 00 16 54 Controller PCB A5 08 022 00 15 5D Standby 6 08 032 00 12 For detailed information see item 5 MARTIN B8 Uph ME 401 Page 39 Pos 60 61 62 63 64 65 66 67 68 69 70 71
62. OlU7n00N NO1U T0004 4 768 L JL 88 20 824 Yb IOdONOW 824 410418 Nen 128 228 4H 18 dod LNOMJ Zh 1 418 54 o a lt gt 1258 8434 gh T 54 1092 5 Y E re u30NUdX3 2 458 8434 004 87 r3 N3AINO 033 1901886 gt Z4 6 1814610 017 V 2 iz 0 8 1658 lt eN k INIYOLTNOW lt N3YYNI3944H37 N INIYOLINON lt 26 Z N3WNYLSN 0 8 9409 10418 K 1658 211940106 M ONIMOLINOW 3N 3284831 1458 lt HOLINSN3ONIJ K gn 5 ra rc 1 0 q n 49 29 83d 4 0 S1In3812 1 1 0 JW 419 AN ZONOW 401 2 1 Page 21 B8 Uph mt T n SW NB8MOSICO SNIMIM e uUT0dI8 64 64 e 13U 3N 50 1 1 1 1 y k S 9 LNOYS e e e e e e 0 o o o o o o ol zx j inj 173 y N S 1 1 e N u 4 sf of gt ddd 8X 5X 01X 6 e e 9 6 6 2 104100 44 2x si u z 9 0x0 e u I 8 48
63. Pzx SK Sx I c A rZ 27 hZA 148 N 1 Page 5 MARTIN B8 Uph ME 401 68 82d 1 41 0 5 to 1 6 3 Block Diagram RF Output 9 ee n amp Qt JW WUSOUIOM2O TE eX T 71 p y am amp ZEX zex e In BIO i 8454 vu 38 2 exo xo d S ZX 71211 994 i SEX 2 k 144 5 gt 5802 103 m 4 2 2 I I I AS tup HS Ce ri H I I I Is 1 N zd 7 ul YOLINON A YOLINO N 7 sa INAWAYLSNI Sa Pod 13056511 i i J zu C eme eo 711 211 9 u 1 2 gt a 7125 H OTT SEX P 29 15 gt H D e gt x c amp dx a 55 21 HS INI 0 9 D 5 D t TR e 725 gt c 6 2 2 LM x paze ai Ly 9 271 0 i 9 gt 29 9 1 5 5 5 5 15 85 2 J cuc d I 9 8 8 i 8 8 5 re T gt gt 9 e ee E
64. ROM locations Repair Change of other EPROM too Err 59 Meaning The actual values IM1 and IM2 of both of the current transducers at the monopolar RF generator board are not identical Cause Failure of one of the current transducers or of the bus port for this signals at the monopolar board Repair Change monopolar RF generator board A3 A8 52 Err 60 Meaning The actual values IB1 and IB2 of both of the current transducers at the monopolar RF generator board are not identical Cause Failure of one of the current transducers or of the bus port for this signals at the monopolar board Repair Change bipolar RF generator board A4 53 from state 0807 from serial end number 0974 Meaning Due to wrong placing of a 4 Millimeters plug of an instrument connection cable at the monopolar output 1 RF output current flows a wrong path which results in poor clinical performance of the current and may result in damage of components The unit protects itself against this by cutting off the RF current and displaying the message in the display for monopolar coagulation power setting as long as the foot switch is operated Because this is not a failure of the unit or accessories but an operation fault this message is not displayed as Err Cause The plug of an instrument connection cable is plugged in one of the control sockets which are receptacles for the pins of three pin connectors as usual with single use
65. This is recommended in such cases when a unit is placed in a ward where the use of RF surgical instruments which are connected to the generator with a cable with 4 Millimeter plug is common MARTIN B8 Uph ME 401 Page 107 5 4 5 Configuration 0406 This configuration is design review of the configuration 0204 reason was to improve the clinical properties of the contact coagulation 2 which demands an extension of the monopolar RF output circuit In detail this are the following alterations and extensions e New RF output PCB A7 which is not compatible with the output PCB A2 of former configurations e New monopolar RF generator PCB A8 which is not compatible with the RF generator PCB A3 of former configurations e Mechanical design review of the base casing which is not compatible to those of former configurations The most noticable alterations are an equipotential connector pin recessed in a socket instead of the outstanding pin riveted instead of adhesive case stands addition of clamp springs to the insulated fixing bolt receptacles in the case bottom and an improvement in board fixing Serial numbers From ME 401 0406 95 0385 to ME 401 0406 95 0487 Software 3 00M S4 03 For updating or replace use EPROM set 3 01M S4 05 Front PCB 1 Version 01 Three coag keys not compatible with version 00 Version 02 can also be used RF output PCB A7 Version 01 Not to be confused with RF output PCB A2 Use versions 03 or 04 as spar
66. ar Cutting 2 at 600 Ohms Watts Bipolar Coagulation at 100 Ohms Watts Electrical Measurements According to IEC 601 14 Insulation Resistance Mains versus Case 15 Insulation Resistance Applied Part 16 Measurement of Protective Earth Conductor Resistance 17 Low Frrequency Leakage Current Normal Condition 18 Low Frequency Leakage Current Single Fault Condition 19 Enclosure Leakage Current Normal Condition 20 Enclosure Leakage Current Single Fault Condition PE Conductor 2 Enclosure Leakage Current Single Fault Condition Mains 22 Patient Leakage Current Normal Condition 23 Patient Leakage Current Single Fault Condition PE Conductor 24 Patient Leakage Current Single Fault Condition Mains 25 Patient Auxiliary Current Normal Condition 26 Patient Auxiliary Current Single Fault Condition PE Conductor 27 Patient Auxiliary Current Single Fault Condition Mains 28 Patient Leakage Current with Voltage in Parallel to Applied Part 29 dto Interchanged Phases Unit Checked at inneres ee Test Report Sheet for Repetitive Safety Checks Reverse MARTIN B8 Uph ME 401 Page 101 5 Alterations 5 1 Procedure As experience shows during their sales lifetime technical products undergo repeated technical alterations due to steady product improvements To the service this imposes the problem of having several versions of the same type of unit and prior to
67. as well as electrode connection cables and ground there is a weak electric connection where current can flow This currents are designated as leakage currents If an amperemeter is connected between one of the open terminals and ground then this currents are measurable While the leakage currents caused by the mains voltage are in the range of a few Microamps the leakage currents caused by the internal RF high voltage source may be in the range beyond 100 Milliamps From this reason there are upper limits for leakage currents which are measurable from one of the electrode terminals to ground which shall not be exceeded To keep it within this limit the RF leakage current of the ME 401 is monitored On reaching the maximum permissible value the output voltage of the generator will be diminished until the leakage current is within the permitted range again In surgical operation the active electrode has no contact to ground and no considerable leakage current can be established from this terminal of the unit The neutral electrode is in direct contact to the patient but the patient is normally insulated from the grounded operating table by a cloth layer Only the capactiance between patient and table permits a current flow In case of wetting of the cloth layer which is not unusual in some procedures especially in urology an unimpeded leakage current can form which activates the limiter function of the leakage current monitor The reduction of outpu
68. ation modes e Check acoustic and optical signals at power activation e Measure resistance of PE circuit according to IEC 601 1 Maximum value 0 2 Ohms Do not measure versus equipotential terminal but versus bare parts of the case e g screws Units of hardware state from 04 from serial end number 0385 have two threaded borings at the rear side where contact could be made using a M4 screw e Measure leakage current of the unit according to IEC 601 1 Maximum value 500 Microamps e Measure patient leakage current according to IEC 601 1 Maximum value 10 Microamps The leakage currents may override the first measured values for 50 Percent and additionally shall not override the maximum values mentioned above The first measured values can be seen from the attached test reports at the first setup of the unit The safety check is to enter in the unit s booklet and test results are to be recorded If the unit is out of function and or unsafe it is to be repaired or the user must be informed about the hazard associated with it MARTIN B8 Uph ME 401 Page 99 march Medizin Technik Test Report Serial No ME 401 Manufacturer Martin Medizin Technik Kind of Unit Electrosurgery Unit Type ME 401 Year of Production Test Standard EN 60601 Test Result 1 Measurements see Reverse of this Test Report 3 No Faults or Faults which do not concern Safety The uni
69. ator its output signal will be transferred over the insulation barrier by an optocoupler Mean value formation from this square wave signal generates a DC signal which corresponds to the resistor value and will be fed to the controller A small converter supplies the finger switch control circuit and the instrument identification monitor its output voltage will be transferred over the insulation barrier by a transformer To stop coagulation automatically the tissue impedance between the bipolar electrodes will be monitored the signal is fed to the controller For impedance monitoring the same circuit as for NE monitoring is used but the interpretation of the signals by the controller is different MARTIN B8 Uph ME 401 Page 28 The controller interface consists of the functional sections as follows e Control of the relays in the energy flow paths e Finger switch signal request e Request of analogue signals from NE monitor tissue impedance monitor RF leakage current and instrument identification e Request of setpoint potentiometer analogue values The output relays are controlled by C bus expander Z5 The finger switch signals will be requested by the bus expander Z4 The analogue values of the monitors will be converted by a four channel eight bit A D converter with interface 23 and transmitted to the controller For safety reasons the analogue values of the setpoint potentiometers are transmitted on two separated
70. ay of voltage due to shorted circuit Repair If the unit won t operate normally after power off and power on change controller PCB 5 54 and observe the unit if operating again over a longer period of time under power load conditions If the fault occurs again then there may be a feedback effect on the auxiliar power supply caused by an other board Observe 15V and find out faulty board by successively disconnecting of bus connectors If the message Err 31 or Err 32 occurs instead of Err 40 then one of the EPROMs has changed its contence In this case both of the EPROMs have to be replaced Err 41 Err 42 Meaning On the power on self test the unit recognizes an operation of the yellow or the blue finger switch of a handpiece connected to the right monopolar output Cause Operation of a finger switch before end of power on self test short circuit at the handpiece or its connection cable or fault of the unit Repair If not caused by switch operation disconnect handpiece and switch off unit and switch on again If the error message is still present there is a fault at the RF output board A2 A7 51 Probable cause at Err 41 There was an attempt to draw RF power from one of the control sockets for the three pin US handpiece connectors with a 4 millimeters plug as is common with resectoscopes or the plug was pressed into the ring shaped gap between inner and outer conductor of the coax socket This may result in destroying of
71. changing of the bus cable connection X1 a replacement board can be connected provisional prior to disassembling of the front part If the fault is still there try provisional change of controller board 5 54 or bus cable 40 Err 13 Meaning The A D D A converter Z13 D4 PCF 8591 at the monopolar RF generator board which transfers the analogue operation data to the slave controller and receives the compare setpoint value for the fault monitoring circuit cannot be initialized Cause Fault at or around this component Because this component is the first to be initialized by the slave bus at this board total failure of the board may be cause for this Repair First check bus cable connection X1 at the monopolar RF generator board A3 A8 and at the controller board 5 If no fault can be found change monopolar RF generator A3 A8 52 If the fault is still there try provisional change of controller board A5 54 or bus cable 40 Err 14 Meaning The PC bus expander Z14 D2 PCF 8574 at the monopolar RF generator board by which the slave controller controls the setting of the modulator the operation mode and the activation of the RF generator cannot be initialized Cause Fault at or around this component Repair Change of monopolar RF generator board A3 A8 52 If the fault is still there try provisional change of controller board A5 54 or bus cable 40 Err 15 Meaning The bus expander 215 D18 PCF 8574 a
72. check according to 4 1 2 to 4 1 5 10 Close unit according to 2 2 MARTIN B8 Uph ME 401 Page 46 14 94 Sjueuoduuoo pue TANVdLNOUS Jejodig 4 O000000000 rihu IX Wo FR B p WA EM os douow jes 196 uod HH urod 000 0005 000 8X V 6x ev OLX ev LIX eY B8 Uph ME 401 Rev 2 1 Page 47 MARTIN 2 3 3 Disassembling Reassembling of Front 1 50 1 Remove front panel accoding to 2 3 2 items 1 to 4 2 Release cable connections X2 and X3 of the foot switch sockets at the rear of the board 3 Carefully bend away the snap in tongues of the front panel and lift board Bend board off of front panel until it can be pulled out of the clamps at the lower edge 4 For reassembling push lower edge of the board under the clamps at the rear of the front panel and latch it by slightly bending away the snap in tongues 5 Rearrange cable connections X2 and X3 of foot switch sockets 6 Reassamble front panel according to 2 3 2 items 6 to 8 7 Perform functional and safety check according to 4 1 2 to 4 1 5 8 Close unit according to 2 2 MARTIN B8 Uph ME 401 Page 48 2 4 Disassembling Reassembling of
73. ck 15 Volts of auxiliar supply If this is correct change monopolar RF generator board A3 A8 52 Err 28 Meaning The ratio between the 15 Volts auxiliar supply and the reference voltage at the bipolar RF generator board is faulty Cause Either the voltage of the auxiliar supply has changed or the reference voltage is increased Repair Check 15 Volts of auxiliar supply If this is correct change bipolar RF generator board A4 53 MARTIN B8 Uph ME 401 Page 68 Err 31 Meaning The slave controller EPROM has changed its contence or cannot be read correct anymore Cause Aging or spontaneous failure probably caused by x rays Fault of the microcontroller bus system Repair Change of both EPROMs If the fault is still there then change controller board 5 54 Err 32 Meaning The master controller EPROM has changed its contence or cannot be read correct anymore Cause Aging or spontaneous failure probably caused by x rays Fault of the microcontroller bus system Repair Change of both EPROMs If the fault is still there then change controller board 5 54 Err 37 Meaning The SDA line of PC bus 1 is blocked Cause Fault of an interface component at the bus 1 If the fault occured during RF activation at high power setting this may be a synchronisation fault caused by self induced electromagnetic interference Then the error message vanishes after power off and power on again Repair If the fau
74. cording to 4 1 2 to 4 1 5 15 Close case according to 2 2 MARTIN B8 Uph ME 401 Page 60 2 10 Exchange of Mains Terminal Block 21 1 Release self tapping screws 69 at the terminal block and pull it off carefully Eventually open case according to 2 2 2 Release connectors from mains and PE terminals and plug to the new part 3 Push new terminal block into the rear of the case and tighten with self tapping screws 69 4 Eventually place fuse drawer 22 with fuses from the old to the new part Take care of correct fuse values 5 Perform safety check according to 4 1 4 6 Eventually close case according to 2 2 MARTIN B8 Uph ME 401 Page 61 Disassembling and Reassembling of Sound Transducer Set 30 1 Open case according to 2 2 2 Release cable connection 5 at the controller board 5 and take cable out of the keyhole shaped gap at left of the board 3 Release nuts 72 and remove set 4 For reassembling place transducer set 30 into the groove of the fixing bar 11 at the bottom and swing it onto the stud bolts Take care of the presence of the spacers 66 Tighten with lock washers 77 and nuts 72 5 Place cable into the keyhole shaped gap at the left of the controller board A5 guide it under the bus cable 40 and rearrange cable connection X5 at the controller board 6 Perform functional check according to 4 1 5 7 Close case according to 2 2 MARTIN B8 Uph ME 401 Page 62 3 Fault Diagno
75. ctrode are recessed into the surface for improved safety against touchability of live parts The ME 401 offers an improved neutral electrode monitoring system which enables monitoring of single pad neutral electrodes for connection and cable damage as well as dual pad neutral electrodes additional for correct application The monitoring of correct application is adaptive 1 e the unit will tune automatically to the individual differences of electrodes of different manufacturers or patients The effect that in one case the alarm will not disappear or only after long warmup time in an other case alarm will not happen even though the electrode is half peeled off of the skin will not occur anymore The unit recognizes a sectioned single use electrode folded on itself or sticked to a metal surface as faulty impedance alarm In the case of alarm due to not connected or insufficient applied neutral electrode the red lamp above the neutral electrode connector socket will blink with half brightness By the attempt of monopolar activation the lamp will blink with full brightness and an intermitting acoustic signal appears From version 0406 from serial end number 0385 the setting of a switch at the controller PCB makes the acoustic alarm appear not first on an attempt of activation but immediately On delivery this switch is reset In the case of impedance alarm this red lamp will blink with full brightness and half frequency so that this alarm state
76. d A4 in the grooves between vertical board fixing 14 and left case wall and press it into the groove of the fixing bar at the bottom Place output cable into the cable clips 65 at the bottom Guide cable with connector under the RF output board and rearrange connection X3 Press RF output board back into the fixing bar at the bottom Take care that the bipolar output cable is placed correct in the gap in the lower edge of the board and will not be jammed 8 Rearrange connections X2 of the mains transformer cable and X5 of the standby PCB connection cable 42 Take care that the connection cable 42 is plugged tight at both ends 9 Reassemble monopolar board A3 52 according to 2 5 Rearrange bus cable connection 10 Place top board holder 8 and screw on 11 Perform alignments according to 4 1 6 3 12 Perform functional and safety checks according to 4 1 3 and 4 1 4 13 Close case according to 2 2 MARTIN B8 Uph ME 401 Page 54 dod 10 0 4 god 1oleil u B 4H JO UOND9UUON 1e X 0 Mua NSS H TTA Jndino JY 10 ZUY J1odsuen ZV AC xui o quo JOULJOJSUEI SULU B8 Uph ME 401 Rev 2 1 Page 55 MARTIN 2 7 Disassembling Reassembling of Controller 5 54 1 Open unit acco
77. daptive neutral electrode monitoring with circuit fault detection Improved spray coagulation by enhanced output voltage Power on self test and detailed error messages Monitoring and active limitation of RF leakage currents More easy manufacture and more easy service by screwless board assembly Two special monopolar cutting current modes for cutting under liquid Ability of bipolar instrument identification Maintained is the concept of two separated generators for monopolar and bipolar RF with the ability of simultaneous activation the access to all connectors and setting means except the mains connection at the front the power setting with rotary knobs for each operation mode and the current and operating mode selection by lighted keys MARTIN B8 Uph ME 401 1 2 Technical Data 1 2 1 Versions 0103 0303 0204 0304 serial end numbers 0010 to 0384 Mains voltage 100V 115V 127V 130V 240V 50 60Hz to be set by change of soldered jumpers Input Power Approx IVA in the switch off state 42VA without RF activation 880VA at maximum output power of both generators Output power Monop Cutting 1 max 320W at 500 Ohms Monop Cutting 2 max 320W at 500 Ohms Monop Cutting 2b max 320W at 600 Ohms Urolog Cutting 1 320W at 700 Ohms Urolog Cutting 2 max 320W at 800 Ohms Contact Coag 1 max 250W at 500 Ohms Contact Coag 2 max 250W at 500 Ohms Spray Coagulation max 100W at 1500 Ohms Bipolar Cutting 1 80W at 600
78. e pedal of the monopolar foot switch Cause Operation of the foot switch before end of power on self test short circuit at the foot switch or its connection cable or fault of the unit Repair If not caused by switch operation disconnect foot switch and switch off unit and switch on again If the error message is still present there is a fault at the front board 1 50 Err 49 Err 50 Meaning On the power on self test the unit recognizes an activation of bipolar cutting or bipolar coagulation by the bipolar foot switch Cause Operation of the foot switch before end of power on self test short circuit at the foot switch or its connection cable or fault of the unit Repair If not caused by switch operation disconnect foot switch and switch off unit and switch on again If the error message is still present there is a fault at the front board 1 50 Err 51 Meaning On the power on self test the unit recognizes an operation of one of the front panel keys Cause Attempt of selecting a current mode before end of power on self test jamming of a key or fault of a interface component at the front board Repair If not caused by operation there is a fault at the front board A1 50 MARTIN B8 Uph ME 401 Page 71 Err 58 from software state 05 Meaning the numbers of version of master EPROM and slave EPROM are not identical Cause On software exchange only one of both EPROMs has been exchanged see item 4 3 for EP
79. e connection X4 10 Rearrange bus cable connection to monopolar RF generator PCB A10 bipolar RF generator PCB 4 and controller PCB 5 11 Place top board holder 8 and screw on 12 Perform alignments according to 4 1 6 2 Deviating from this the adjustment of the degree of modulation for Cut 2b is to 4 5 Volts 13 Perform functional and safety checks according to 4 1 3 and 4 1 4 14 Close case according to 2 2 MARTIN B8 Uph ME 401 Rev 2 1 Annex Page 10 YHOLVYANAD 44 YVIOdONOW dO NOILOANNOO god mdno Ay JO m we 1 TOV JOWLIOFSUL N Page 11 MARTIN B8 Uph ME 401 Rev 2 1 Annex 4 1 6 2 3 Generator 10 Adjustment of Nominal Output Power This item is valid for the adjustment of the output power of the monopolar RF generator board A10 which is assembled in the units with hardware state 09 For this a new test procedure is valid For setting of the degrees of modulation item 4 1 6 2 is valid with the exception that Cut 2b is to be set to 4 5 Volts instead of 4 1 Volts as before e Set RF power meter to a load resistance of 100 Ohms e Set unit to Cut 1 power setting to 320 e On activation of monopolar cutting adjust to an output power of 320 Watts with the trimmer U at the left side of the monopolar board access through an orifice at the left side of the case Note that the red L
80. e new front layout is identical to that of all former configurations having three monopolar coagulation keys from hardware state 02 from serial end number 0060 and so can be used as spare part for this configurations if the former layout is no more available MARTIN B8 Uph ME 401 Page 110 5 4 8 Configuration 0706 This configuration differs from configuration 0606 especially an improved version the monopolar RF generator PCB with enhanced control range of the DC voltage controller and a change in wiring of the bipolar generator PCB which avoids the random occurence of Err 26 messages with the consequence of improved management of mains undervoltage conditions This is advantegeous for units which are fed from 100 Volts or 115 Volts mains supply Serial numbers ME 401 0706 96 0851 to ME 401 0706 96 0882 ME 401 0706 96 0895 to ME 401 0706 96 0973 Software 3 00M S4 03 For updating or replace use EPROM set 3 01M S4 05 Front Al Version 01 02 Three coag keys not compatible with version 00 RF output PCB 7 Version 01 Not to be confused with RF output PCB A2 Use versions 03 or 04 as spare part To take advantage of the instrument cable connection fault protection circuit inherent with this versions it is necessary to install the EPROM set 3 01M S4 05 additionally Monopolar A8 Version 04 or 05 Not to be confused with monopolar PCB A3 Bipolar PCB A4 Version 04 Also version 05 may be used as spare part
81. e part To take advantage of the instrument cable connection fault protection circuit inherent with this versions it is necessary to install the EPROM set 3 01M S4 05 additionally Monopolar PCB A8 Version 01 Not to be confused with monopolar PCB A3 Use version 05 as spare part Bipolar PCB A4 Version 03 Also versions 04 or 05 may be used as spare part Controller PCB Version 01 Standby PCB Version 00 MARTIN B8 Uph ME 401 Page 108 5 4 6 Configuration 0506 This configuration is derived from the configuration 0406 The reason was a quality problem with the neutral electrode sockets as used for the units of configuration 0406 The new hardware state shows the assembling of a new neutral electrode socket of better quality This socket was also exchanged in units which are manufactured in configuration 0406 the hardware state became altered Serial numbers From ME 401 0506 95 0488 to ME 401 0506 96 0632 new units From ME 401 0406 95 0385 to ME 401 0406 95 0487 partially altered Software 3 00M S4 03 For updating or replace use EPROM set 3 01M S4 05 Front PCB 1 Version 01 Three coag keys not compatible with version 00 Version 02 can also be used RF output PCB A7 Version 00 Not to be confused with RF output PCB A2 Use versions 03 or 04 as spare part To take advantage of the instrument cable connection fault protection circuit inherent with this versions it is necessary to install the EPROM set 3 01M S4 05 additiona
82. e regulation e Fault in the DC power converter MARTIN B8 Uph ME 401 Page 17 The most weighty fault to be assumed is longitudinal short circuit of the DC power converter with the consequence of unlimited maximum output power with values beyond the nominal maximum power From this reason this fault should not only be recognized by the unit but controlled In the ME 401 this is performed by a relay placed in the energy flow path of the RF generators and additional by the high voltage relays in the RF output circuits A problem herein is the safety of keeping the monitoring circuit available for the case of fault that it would not become inactive by an undetected fault So for the ME 401 the following safety philosophy is valid e If there is a single fault resulting in an uncontrolled increase of output power the unit must be in the position to recognize and control this condition e A single fault which results in a failure of the monitoring system must be recognized during the next power on self test It is supposed that maximal one fault will occur during one operation period of the unit The safety arrangements installed at the ME 401 can be classified in three sections e Monitoring of the setpoint value generation e Monitoring of the control e Monitoring of the power stages The setpoint value generation will be monitored by double transmission of the analogue values with consecuting comparision the potentiometers wil
83. e safety circuit especially in case of small or medium power settings In doubt check output power after adjustment of trimmer FK at several power settings e Check monopolar FR leakage currents according to 4 1 6 1 and adjust if required MARTIN B8 Uph ME 401 Page 89 PR FPROTOKOLL REPORT ME 401 OS 08 05 Wk kk kk k 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 Serien Nr Netzspannung 230 V V Series No Mains voltage 1 Sichtkontrollen durchgef hrt Name Visual inspections performed Name 2 Hochspannungspr fung Funktionspr fung Name High voltage test Functional test Name 3 Sicherheitspr fung nach VDE 0750 bzw 601 Saftey inspection according to VDE 0750 and or IFC 601 Ausdruck des Prufgerates Printout of the testing unit Space for IEC 601 safety tester printout Me ergebnisse Position 3 i O Name Measuring results position 3 o k Name 4 Funktionspr fungen Functional tests 5 Ausgangsleistungen Power outputs KK1 250 250 50W 100Q W KK2 150 150 30W 500Q W CUT1 320 320 64W 350Q W SK 100 100 20W 1000Q W CUT1 320 150 200W 1500Q W CUT1 160 128 192W 350Q W CUT2a 320 256 384W 350Q W 80 80 16W 100Q W CUTU1 320 256 384W 350Q W BC1 80 80 16W 5000 W CUTU2 320 256 384W 800Q W BC2 80 64 96W 500Q W 6 Netzstromaufnahme 230V AV Mains current consumption standby 230V
84. e spray coagulation With respect to the predecessors this function is new With the units of status 0103 00303 0204 and 0304 serial end numbers from 0010 to 0384 the power setting ranges from 8 Watts to 250 Watts with the units of hardware status from 04 from serial end number 0385 it ranges from 6 Watts to 150 Watts Bipolar cutting is also a new established operation mode which enables cutting with local restricted current especially in the field of endoscopic surgery in two current modes Bipolar Cutting 1 for smooth cut and Bipolar Cutting 2 for eschar forming cut Power setting ranges from 4 Watts to 80 Watts For bipolar coagulation no current mode is to be selected because there is only this one The illuminated key in this block is for activation and de activation of the automatic bipolar stop function by repetitive keying toggle mode Operating a switch inside the unit from hardware status 04 upwards see item 4 3 enables additional automatic activation of bipolar coagulation Lighting indicates the automatic mode to be active Power setting ranges from 4 Watts to 80 Watts Activation of an operation mode will be indicated by a lamp in the corresponding front panel section and by an acoustic signal After 15 seconds the loudness of this signal raises This time function can be disabled by a switch inside the unit In the delivery state this function is valid The monopolar sockets for the handpieces and the neutral ele
85. ed to PE terminal and fed through current transformer Check single cable sets for correct guidance and connection All connectors plugged tight Flat connectors plugged deep until stop Soldering tags and components not bended hazard of shorting Placing of correct fuses Correct labeling of fuses Mains voltage Check settings at the standby board and the mains transformer in accordance with item 4 3 potentiometer terminals not bended e Check settings of the DIL switches at the controller board in accordance with 4 4 MARTIN B8 Uph ME 401 Page 74 Label Protection Earth beneath the PE terminal at the front left top Label High Voltage at the case bottom in front of the RF output board Label Equipotential under the equipotential terminal CE label at the rear e Type label Up to serial end number 0384 Procedure 1 From serial end number 0385 Procedure 2 Gebr Martin Gebr Martin martin Ludwigstaler Stra e 132 martin Ludwigstaler Stra e 132 Medizin Technik D 78532 Tuttlingen Medizin Technik D 78532 Tuttlingen 100 115 127 230 240 50 60 Hz 880VA 100 115 127 230 240 50 60 Hz 880VA Class I Class I Monop 320W 700 1200 Ohm int 10s 30s 320W 350 800 Ohm int 10s 30s 80W 100 400 Ohm i 80W 100 500 Ohm Bauartzul Kennz 01 M 328 94 Bauartzul Kennz 01 M 328 94 Serial No MME4010304950384 Serial No ME4010406950385 Made in Germany Made in Germany e Designation of fuses Designati
86. egulated DC voltage the supply voltages 15 V and IIC are gained by means of two monolithic integrated switch mode voltage regulators The 15 V is splitted into the voltages 15M for auxiliar supply of the monopolar RF generator PCB 15B for auxiliar supply of the bipolar RF generator PCB and 15H for supply of the RF output and the front PCBs Additional the extra supply voltage 5 V for the controller core is gained from 15 V by means of a linear voltage regulator The voltage IIC supplies the interface components of both buses additional the voltage 5D for supplying the LED displays at the front PCB is derived from this 1 6 7 Standby PCB The interface to the mains power supply consists of the functional sections as follows e Mains relay with standby interface e Voltage selection e RFI filter The mains relay is controlled by a bistable relay which is pulse controlled as a toggle mode switch This circuit is supplied from a small auxiliar transformer Voltage interchange 115 Volts 230 Volts is performed by jumper soldering which simultaneous changes the auxiliar transformer For matching to extraordinary voltages as 100 Volts Japan 127 Volts Mexico or 240 Volts United Kingdom an auxiliar winding on the primary of the main transformer has to be wired in serial or counterserial to the main winding The RFI filter consists of a X type capacitor and a current compensated choke MARTIN B8 Uph ME 401 Page 37
87. eld by a screwless snap in fixing At the front the top cover will be held in a groove in the front panel at the rear with four screws at the rim MARTIN B8 Uph ME 401 The unit consists of the following components in which it can be dismantled for service demonstration purposes e Case bottom with board holders stands and type plate e Top cover e Mains terminal unit with mains fuses and circuit braker e Top holder for PCBs e Handle with reversal cover e Equipotential connection pin with insulation e Subassembly with sound transducer and setting for loudness e Grounding cables for PE potential equalization and ground potential e Bus cable e Standby circuit cable e Mains transformer e Standby PCB e Controller with auxiliar supply and sound generator e Bipolar RF generator PCB Monopolar RF generator e RFoutput PCB with setpoint generation and monitoring MARTIN B8 Uph ME 401 Front panel consisting of sub components as follows e Plastic mould with receptacles e Two parted front layout e Front PCB with displays keys and foot switch interface e Four setpoint potentiometers with turn knobs e Neutral electrode socket with insulation cup e Two monopolar combination output sockets e Monopolar foot switch socket with fixing plate e Bipolar output socket with fixing plate e Bipolar foot switch socket 1 5 Principle of Function 1 5 1 Microcontroller The ME 401 offers two independent RF ge
88. em 2 2 Disconnect cable connection X3 at the standby board e Eventually remove carefully cover at the primary side of the mains transformer Setting to 230 Volts Link soldering tags and X7 at the standby board with a soldered jumper e Mains fuses 4 Amps slow blow two pcs 5 X 20 Millimeters e Eventually change cable line no 6 of the primary connector to soldering terminal 6 of the transformer MARTIN B8 Uph ME 401 Page 93 MAINS TRANSFORMER STANDBY PCB JUMPER primary side 230V z 5 X3 8 12 34 5 6 123 4 5 6 7 8 9 N FUSES 4A slow blow uw 240V x3 1 2 3 4 5 6 a 8 Owl we J OOO GO Gs OO OO 123 45 6 7 8 9 FUSES 4A slow blow uw 100V gt s 5 24 40 1347 o o BER 123 4 5 6 7 8 9 FUSES slow blow up 115V e X3 SS 12 3 4 5 6 9 123 45 6 7 8 9 FUSES slow blow 127V 12345 JL FUSES 8A slow blow MARTIN B8 Uph ME 401 Page 94 OLTAGE SELECTION IN THE MAINS CIRCUIT Setting to 240 Volts e Link soldering tags X6 and X7 at the standby board with a soldered jumper e Mains fuses 4 Amps slow blow two pcs 5 X 20 Millimeters e Change cable line no 6 of the primary connector to soldering terminal 7 of the transformer Connect terminal 6 and termi
89. es the presence of monopolar RF voltage activates directly the sound generator at the controller PCB HB pin 22 Will be generated in the bipolar RF generator and indicates the presence of bipolar RF voltage activates directly the sound generator at the controller PCB e SBYI SBY2 pins 25 and 26 Current loop of the standby circuit to the Standby key at the front PCB is guided from the front PCB via bipolar RF generator PCB with a twin line cable to the standby PCB MARTIN B8 Uph ME 401 Page 20 h NUYIBIUNIO 18 810 108 3187 3713 18 01 B 3110 41 02 JAHIS 255 28 NOI123NN02 SNIUN QU 022 N3AINO hiZA 8 HONd33 ess 98 un siz 924 458 222 BIS un N WM 43 110 1 4311 SUN v 801883839 annos L 6311 691 5 2 6 SIZ z 412 LIZ 912 96 812 8 0 0 8 ONIYOL INOW JNIYOL INOW 8 4 0 LINYA 2d ve 24 Hu nga Kana 1658 5 ZWI INI 281 181 44 NOIUNJN39 JH N ae __ NOIUN3N39 dig d mle ZN NV dx a o ZS ys 1 00 WH 2 00 89 112 21 617 3 301010238 N01U 10938 u30NudX3 __ in wee N
90. ess power e Select Spray Coagulation at the unit and set power to 100 e Set power meter to 1000 Ohms e Activate monopolar coagulation and adjust output power to 100 Watts Turn clockwise for more power counterclockwise for less power e If the RF leakage monitor will become active turn trimmer IF until 100 W can be adjusted e Check monopolar FR leakage currents according to 4 1 6 1 and adjust if required MARTIN B8 Uph ME 401 Rev 2 1 Annex Page 14 PRUFPROTOKOLL TEST REPORT ME 401 OS 02 9 kk kk 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 Serien Nr MEA01 0908 97 Netzspannung 230 V Series No Mains voltage 1 Sichtkontrollen durchgef hrt Name Visual inspections performed Name 2 Hochspannungspr fung Funktionspr fung Name High voltage test Functional test Name 3 Sicherheitspr fung nach EN 60601 Saftey inspection according to EN 60601 Ausdruck des Pr fger tes Printout of the testing unit Space for IEC 601 safety tester printout Me ergebnisse Position 3 i O Name Measuring results position 3 o k Name 4 Funktionspr fungen Functional tests 5 Ausgangsleistungen Power outputs KK1 250 250 50W 200Q W KK2 150 150 30W 5000 W CUT1 320 320 64W 350Q W SK 100 100 20W 1000Q W CUT1 320 190 270W 1500Q W CUT1 160 128 192W 350Q W BK 80 80 16W 1000 W CUT2a 320 256 384W 3
91. est box Perform functional check for activation of bipolar cutting and bipolar coagulation with bipolar foot switch or test box 4 1 6 2 Alignment of Functions of the Monopolar RF Generator Board on Change e Adjustment of degrees of modulation e Set all of four potentiometers to left end e Plug shorted coax plug or measure cord into NE socket e Connect voltmeter to test point M at the monopolar generator board vs ground and perform the adjustments as follows Select Monopolar Cutting 2 and activate with foot switch or test box e Adjust to 4 10V with trimmer CII Take care that the DIL switch at the controller board is set to off position e Select Urologic Cutting 2 and activate this function e Adjust to 5 50V with trimmer CE e Select Contact Coagulation 2 medium coagulation key and activate monopolar coagulation Adjust to 5 80V with trimmer FK e Select Spray Coagulation and activate monopolar coagulation Pre adjust to 4 1V with the trimmer SK MARTIN B8 Uph ME 401 Page 82 4 1 6 2 1 Monopolar Generator Board A3 Adjustment of Nominal Output Power This item is valid for the adjustment of the output power of the monopolar RF generator board which 18 assembled in the configurations 0103 0303 0204 and 0304 up to serial end number 0384 and corresponds to procedure 1 Set RF power meter to a load resistance of 500 Ohms Set unit to Contact Coagulation 1 Power setting to
92. forming the signals R2 also for the relays in the RF output circuits MARTIN B8 Uph ME 401 Page 18 In a fault condition the current value is higher than the compare setpoint value Instead of a square wave signal the comparator produces a DC signal which the following rectifier cannot use and releases the relays In case of a longitudinal short circuit of the DC power converter the inductive current transducers will produce no output signal and so will not monitor this fault condition In this case the no more controllable voltage UIM or UIB at the output of the DC power converter will increase above the setpoint which makes the voltage regulator run to its lower boundary The fault monitoring comparator is an open collector type component which gets its pullup voltage required to feed the following driver from the output of this regulator If the output voltage of that will decrease to zero there is no more feeding of the following driver and the relay K1 will be released At the ME 401 a fault occuring in a RF generator or its RF output circuit cannot result in a power increase because there is no appreciable additional power input to this stages 1 6 Circuit Description The basic mode of operation and wiring of the ME 401 is visible from the block circuit diagram and the wiring diagram on the next pages 1 6 1 Signal Bus The control signal lines are confined to a bus cable with 26 lines which connects all boards except the
93. green one Set power meter to 800 Ohms With units of hardware state up to 3 serial end no up to 0384 the nominal impedance matching in the test sheet is 600 Ohms with units of hardware state 04 to 07 serial end no 0385 to 0973 it is 500 Ohms This was not a change in impedance matching of the bipolar generator but results from an altered test procedure and the change to the symmetric connection cable Connect unit to the power meter for bipolar cutting measure with the symmetric bipolar test cable and bipolar adapter Select Bipolar cutting 1 and set power setting of bipolar cutting to 80 Activate bipolar cutting by foot switch or bipolar adapter Adjust to an output power of 80 Watts with trimmer I Note that the green LED will light Select the Bipolar Cutting 2 key Activate bipolar cutting compare displayed value with test report sheet and check for compliance with tolerances Note Due to the change from the coaxial connection cable to the symmetrical a change in impedance matching occured With units of hardware state up to 07 which are stil matched to the coaxial cable black the use of the symmetric cable grey may cause problems So all of this units should be matched to the new cable See item 4 1 1 MARTIN B8 Uph ME 401 Page 91 95 pV gqOd 101219098 Jy 1e odiq syutod 159
94. he mains transformer and X5 of the standby circuit cable connector 42 Draw bipolar board upwards out of the fixings and lay board to the left side with the component side downwards 5 Release cable connections of the mains transformer X4 at the monopolar board A3 52 and X3 at the standby board A6 55 6 Remove mains circuit connection cable 41 between the mains connection set 21 and the standby board A6 55 7 Release nuts 74 at the case bottom and remove mains transformer 8 For reassembling place transformer from above Note that the six polar primary connector is directed to the backside and that the PE line cable at the right edge of the case bottom will not be jammed Mount transformer with washers 76 lock washers 79 and nuts 74 Prior to that the transformer is probably to be matched to a different mains voltage according to item 4 2 9 Reassemble bipolar board A4 53 according to 2 6 10 Reassemble controller board A5 54 according to 2 7 11 Rearrange cable connection X4 from the transformer at the monopolar board A3 52 and place cable into the keyhole shaped gap right in the board s edge Rearrange cable connection X3 from the mains transformer at the standby board A6 55 12 Reassemble mains circuit connection cable 41 from mains connection set 21 to X1 of the standby board A6 55 13 Place top board holder 8 and mount with countersunk screws 71 14 Perform functional and safety checks ac
95. ht shift S2 Off left shift 3 On right shift 4 On right shift S5 Off left shift S6 On right shift S7 Off left shift S8 Off left shift MARTIN B8 Uph ME 401 Page 98 4 4 Safety Checks to be Repeated Yearly At this unit the following checks are to be performed at least each twelfe months by persons who are in the position to perform such safety checks in an ordinary manner because of their training their knowledge and their experience gained by practice and who are not subject to orders concerning this checking activities e Check visual unit and accessories for function impairing mecanical damages e Check safety relevant labels for readability e Check fuse cartridges for nominal current value and blow characteristic e On power on self test check visual the display digits for completeness of all segments as well as operation of key illumination and RF activation indication lamps for all of the four operation modes Check sound generator signal for rising sequence e Perform functional check according to the user s instruction manual e Check for continuous change of output power corresponding to the sense of turn of the power setting potentiometers e Check for acoustc and optical alarms and cutoff of RF power activation on interruption of the neutral electrode e Compare setpoint and actual values of maximum output power fed to the nominal resistors according to item 1 2 at all outputs in the available oper
96. ign refinement of configuration 0103 essentially mechanical improvements are performed The switching between both of the contact coagulation modes by changing the cutting mode is replaced by installation of a third coagulation select key between soft contact coagulation and spray coagulation This reqired a new front PCB which is not compatible with the front PCB of configuration 0103 For increasing the operation stability in the case of mains undervoltage the mains transformer was modified Serial numbers From ME 401 0204 94 0060 to ME 401 0204 95 0384 Software 2 01M S3 04 2 01M S3 05 supports the instrument code Front PCB 1 Version 01 Three coag keys not compatible with version 00 As spare part also version 02 can be used RF output PCB A2 Version 02 Use version 03 as spare part Monopolar PCB A3 Version 02 Bipolar PCB A4 Version 02 03 Both versions as well as versions 04 and 05 are possible as spare part Controller PCB Version 01 Standby PCB Version 00 If desired the units of configuration 0204 can be updated to configuration 0304 using the alteration kit U 51 1010 MARTIN ordering code 08 040 00 12 This is recommended in such cases when a unit is placed in a ward where the use of RF surgical instruments which are connected to the generator with a cable with 4 Millimeter plug is common MARTIN B8 Uph ME 401 Page 106 5 4 4 Configuration 0304 Particular this configuration is an update of units of the co
97. ilar unit Digital multimeter class 1 5 e Aux Test Means Coax plug 1 4 with resistor 270 Ohms Coax plug 1 4 shorted Monopolar MARTIN handpiece or Monopolar handpiece US three pin Set of monopolar measure cords Bipolar test adapter 08 022 00 19 with symmetric measuring cable BI COAG 08 008 00 14 substitutional symmetrical Martin bipolar connection cable 5 Meters long Monopolar and bipolar foot switch Screw driver for alignment MARTIN B8 Uph ME 401 Page 73 Attention For measurement of monopolar RF power a normal handpiece shall be used where the connection cable to the RF power meter is plugged in instead of the electrode This cable shall not be rolled up because the coil which will be established in this way may change the impedance matching which results in faulty measurements The neutral electrode output may be conneted to the power meter with a short connection cable For measurements of bipolar output power and RF leakage current only the specified test adapter with symmetrical test cable substitutional a symmetrical MARTIN bipolar forceps connection cable grey with 5 Meters length shall be used The former coaxial bipolar forceps connection cable black shall no longer be used for alignments Explanation as follows From now MARTIN only supplies the symmetric cable like all competitors do because it offers some advantages in application This cable has a lower consumption of reactive power Because of that a generator which
98. iometer lines or a fault at one of the A D converters at the RF output board Repair Connect spare part potentiometer 31 to the cable connection X9 at the RF output board 2 7 If the fault is vanished change potentiometer If the fault is still there change RF output board A2 A7 51 Err 23 Meaning Fault in the circuit of the setpoint potentiometer 31 for power setting for bipolar cutting Cause There is an interruption in the potentiometer lines or a fault at one of the A D converters at the RF output board Repair Connect spare part potentiometer 31 to the cable connection X10 at the RF output board A2 A7 If the fault is vanished change potentiometer If the fault is still there change RF output board A2 A7 51 Err 24 Meaning Fault in the circuit of the setpoint potentiometer 31 for power setting for bipolar coagulation Cause There is an interruption in the potentiometer lines or a fault at one of the A D converters at the RF output board Repair Connect spare part potentiometer 31 to the cable connection X11 at the RF output board A2 A7 If the fault is vanished change potentiometer If the fault is still there change RF output board A2 A7 51 MARTIN B8 Uph ME 401 Page 67 Err 25 Meaning Faulty pre regulated DC voltage of the monopolar RF generator A3 A8 Cause The pre regulated voltage of the monopolar RF generator is either too high or too low A voltage too high is caused by a serious fa
99. irst to be initialized at this board a fault of the port units Z1 Z3 or Z5 may also be cause for this Repair Change RF output board A2 A7 51 If the fault is still there try provisional change of controller board A5 54 or bus cable 40 Err 05 Meaning The bus expander Z5 D7 PCF 8574 at the output board A2 A7 by which the master controller controls the output relays cannot be initialized Cause Fault at or around this component Repair Change RF output board A2 A7 51 If the fault is still there try provisional change of controller board A5 54 or bus cable 40 Err 06 Meaning The bus expander Z6 D4 PCF 8574 at the front board Al which transmits the front key and foot switch signals of the monopolar operation section to the master controller cannot be initialized Cause Fault at or around this component Repair Change of front board A1 50 by changing of the bus cable connection a replacement board can be connected provisional prior to disassembling of the front part If the fault is still there try provisional change of controller board 5 54 or bus cable 40 MARTIN B8 Uph ME 401 Page 64 Err 07 Meaning The I2C bus expander Z7 D5 PCF 8574 at the front board 1 which transfers the front key and foot switch signals of the bipolar operation section to the master controller cannot be initialized Cause Fault at or around this component Repair Change of front board Al 50 by
100. is matched to the former cable supplies a higher output voltage which results in a higher output power in case of a matched load Then the overdose protection circuit of the ME 401 will become active Because of that the bipolar RF generator has to be set anew according to item 4 1 6 3 if a change to the symmetric cable will be done From version 0807 from serial end no 0974 this setting is just done at the manufacturer s site It is highly recommended to change the setting of units of former version to the new cable if there is the opportunity during safety checks or repairs The former caxial cables may also be used with this new setting the maximum output power with bipolar coagulation will be for 10 Percent less than nominal This does not affect the bipolar cutting modes but the nominal impedance matching will be shifted from 5000 to 8000 4 1 2 Visual Checks Check hardware state and compare with datas at the test record sheet and the rear side e Front Panel Correct placing of board in front panel Correct placing and stick on of front layout Front panel correct assembled and tightened Switchover point of keys crispy Correct placing and correct position of turn of sockets Check NE socket for correct latching with test plug Check RF output sockets for safe hold with test plugs Rotary knobs No jamming on turn correct height not easy to detach turning range 1 to 10 symmetric mark clear visible e Wiring PE conductor connect
101. is provided for smooth the fifth Urologic Cutting 2 for eschar forming cutting under liquid e g transurethral resection They are signed with modified symbols which correspond to them mentioned above The first and the fourth as well as the third and the fifth current mode do not differ in electrical RF power or course but only in their properties imposed by the control of field of characteristics which is new implemented in the ME 401 The power setting ranges from 8 Watts to 320 Watts for all five cutting current modes The Contact Coagulation 1 will be selected by pushing the left key in the field of the operation mode monopolar coagulation Power setting ranges from 8 Watts to 250 Watts The Spray Coagulation will be selected by pushing the right key with the standard symbol for this current mode Due to an other process of RF current generation the RF output voltage in this current mode is particulary high which enables a coagulation more confined to the tissue surface clearly different from the contact coagulation which acts more in the depth Power setting ranges from 5 Watts to 100 Watts MARTIN B8 Uph ME 401 The middle key with the units of status 0103 0303 serial end numbers form 0010 to 0060 the left key in combination with one of the urologic cutting selection keys blinking on selection selects Contact Coagulation 2 This coagulation current is in its properties between that of the contact coagulation 1 and th
102. ith tolerances Set power meter to 1500 Ohms Set power of the unit to 320 Activate monopolar cutting compare displayed value with test report sheet and check for compliance with tolerances Select Spray Coagulation at the unit and set power to 100 Activate monopolar coagulation and adjust output power to 100 Watts at 1000 Ohms with trimmer SK Turn clockwise for more power counterclockwise for less power Attention If the turning will be increased beyond a maximum power of approx 105 Watts the output power will decrease on further clockwise turn This means that there are two points of alignment for 100 Watts However at this second point of alignment the power consumption of the generator is higher which may result in a cutoff MARTIN B8 Uph ME 401 Page 87 89d 3U YVIOdONOW SLNIOd 1591 V IND N P CJ swyg 0001 128602 mod M 001 25224 Alp YS 7 8600 720000 Je suuu QUS Te M OSL YA p sn jou C ND JOIN Je 247 CIS EA LP 8C 119 swyg ICE 1E OL CH 1 u3348 mo Je SWY OSE IE M STE QH D34 13800 158100 Je Stuu 001 M 09T B8 Uph ME 401 Rev 2 1 Page 88 MARTIN of activation by the safety circuit especially in case of small or medium power settings In doubt check output power after adjustment at several power settings e If the R
103. kage current returning to the unit via PE or PA conductor will be monitored by a current transducer the output signal of it is fed to the controller This demands the case to be grounded only by the protection earth conductor else the leakage current monitor would be shunted From this reason the eqipotentiol connector and the receptacles for underground fixing are insulated If the unit is proposed to be fixed with its case by screws or else please contact the MARTIN Service Center or sales office The bipolar output circuit and its periphery consists of functional sections as follows e Energy flow path with matching capacitors and relays e Finger switch interface e Bipolar instrument identification e Bipolar auxiliar supply e Tissue impedance monitor Because of the strong different matching the energ flow path for bipolar coagulation and bipolar cutting is splitted At coagulation K5 is closed the coagulation voltage is present between pins 1 and 2 of the output connector X7 At cutting K6 and K7 are closed the cutting voltage is present between pin 4 and the pins 1 and 2 which RF connected The bipolar finger switch control acts exactly like the monopolar ones with current direction encoding The circuit is identical to that of the monopolar section For identification of a bipolar instrument connected to the unit a resistor may be connected between pin 6 and pin 7 of X7 This resistor controls the frequency of a multivibr
104. l t JAW 94 Wd ASUNUIS 8 0780 5 3113 11 2 ET 3J3 U3331N1 8UNGLS Page 38 Rev 2 1 ME 401 EX 8X ASII ABST B8 Uph EX SX de MARTIN 2 Disassembling and Reassembling of Components 2 1 Components and Mechanical Parts ME 401 Pos Designation Ordering No 1 08 012 00 25 3 Front Panel 08 010 00 25 4 Front Layout Set HW State 01 to Serial End No 0059 08 010 00 30 Front Layout Set HW State 02 to 05 End No 0060 to 0592 08 010 00 26 Front Layout Set from HW State 06 from Serial End No 0593 08 010 00 34 5 Rotary Knob D30 08 006 00 01 6 Plastic Handle 08 032 00 02 7 Cover for Handle 08 001 00 15 8 Top Board Holder 08 014 00 15 9 Fastening Pin for Board Holder 08 032 00 10 10 Adhesive Base Insulation 08 003 00 08 11 Adhesive Board Fixing Bar 90 Millimeters 08 018 00 24 12 Adhesive Board Fixing Bar 225 Millimeters 08 018 00 18 13 Adhesive Board Fixing Bar 370 Millimeters 08 018 00 19 Ground Fixing Bar for Monopolar PCB A8 from End No 0385 08 003 00 11 14 Vertical Board Fixing 08 020 00 14 Base Casing Pre Assembled up to HW 03 up to End No 0384 08 012 00 27 Base Casing Pre Assembled from HW 04 from End No 0385 08 012 00 29 20 Equipotential Connector Pin up to HW 03 up to End
105. l be monitored for interruptions in their circuits The setpoint tables will be checked for alterations during the power on selftest The control consists of two microcontrollers which share their tasks The correct execution of the operation code will be monitored by a watchdog circuit The correct communication of both of the microcontrollers will also be monitored An additional monitoring happens implicit by the compare signals MCP and BCP which have to vary their values periodically between zero and their nominal values else RF generation cannot occur Monitoring of the power stages is performed by monitoring the level of the pre regulated voltages UFM and UFB Current will be monitored by inductive current transducers which are double for separate current measure for power regulator feedback and for power monitoring else its failure would not be recognizable Monitoring of the output power is performed by a comparator by means of the current values IFM or IFB and the compare setpoint values MCP or BCP The compare setpoint value is a square wave signal with a frequency of approx 33 Hz with the lower level near zero and the upper level always somewhat higher than the maximum current value in the fault free condition So a square wave signal occurs at the output of the comparator which is fed to a driver circuit The output signal of this driver will be rectified and forms the energy required to energize the relay K1 in the energy flow path and by
106. liance with the tolerances MARTIN B8 Uph ME 401 Rev 2 1 Annex Page 12 OLV 82d HOLVHJN3O YVIOdONOW SLNIOd LN3WNDI IY ANY 1531 swyo 0001 1 3809 Ae ds 3e 19mod mdyo AA 001 495224 A p JS j mo T 8209 1261002 sutuO 00628 M OST JA 3e09 1oupluoo Je WYO 00238 M OST A jno Je ye 19928 suo OSE 38 M STE CAT P21 mo suo 0001 18 M OTE 13 401 2 1 MARTIN B8 Uph e Set unit to Urologic Cutting 1 e Set power to 320 e Set power meter to 350 Ohms and activate monopolar cutting Compare displayed value with test report sheet and check for compliance with tolerances e Set unit to Urologic Cutting 2 e Set power to 320 e Set power meter to 800 Ohms and activate monopolar cutting e Compare displayed value with test report sheet and check for compliance with tolerances e Set unit to Contact Coagulation 1 with power setting to 250 set power meter to 200 Ohms e On activation of monopolar coagulation adjust output power to 250 Watts with trimmer R e Set unit to Contact Coagulation 2 e Set power to 150 e Set power meter to 500 Ohms e Activate monopolar coagulation e Adjust output power to 150 Watts at 500 Ohms with trimmer FK Turn clockwise for more power counterclockwise for l
107. like one without identification The ME 401 offers an automatic mode for bipolar coagulation which can be activated and disabled in toggle mode by the key with the Automatic symbol On activation the key is illuminated Otherwise than with the predecessors in the setting as lelivered by the manufacturer the coagulation current will not be activated automatically on contact with tissue but current stops when a certain degree of coagulation is gained It must be activated by finger or foot switch The ME 401 monitors the electric resistance between the coagulation electrodes At the beginning of the coagulation process this resistance decreases continuously and increases again in further course As soon as the unit recognizes this coagulation current will be disabled In contrast to a monitoring of a fix value of resistance this relative resistance monitoring offers the advantage of a coagulation result which is independent of electrode size and kind of tissue in a wide range In the delivery state the ME 401 renounces an automatical activation of coagulation current on tissue contact of the electrodes because in endoscopic surgery unintended tissue contact especially when the instrument is fed in or off the trocar cannot be excluded and an unintended activation by the automatic mode may result in undesired current activation with the possibility of uncontrolled necrosis If automatic activation is explicite desired the operation of an internal s
108. ller consists of the functional sections as follows e Master controller e Slave controller e Watchdog e Twin RS 232 interface not used e Setpoint interface bus interface 1 bus interface 2 e EEPROM The master controller with program and tables memory generates the setpoints for the RF generators by means of its four programmable timers and drives bus 1 One of its parallel ports is connected to an eightfold DIL switch for special changes in operation mode Optional an additional external RAM can be installed a feature which is not used at present The slave controller drives the bus 2 Master and slave controllers communicate via one of their parallel ports The watchdog is basically a monostable multivibrator which has to be retriggered by the master controller within a determined time else it releases a reset of both microcontrollers This shall ensure that the master controller will not be caught in an endless program loop due to any disturbance For the slave controller the master controller acts as a watchdog MARTIN B8 Uph ME 401 Page 34 810734 5 10 OND ang N OND ONS TX 951 er ASI NSI eco 211 RENE JII AS 05 eg 13114 lot 1e 0211u053 AS 20
109. lly Monopolar PCB 8 Version 01 Not to be confused with monopolar PCB Use version 05 as spare part Bipolar PCB A4 Version 03 Also versions 04 or 05 may be used as spare part Controller PCB Version 01 Standby PCB Version 00 For updating the configuration 0406 to 0506 the neutral electrode socket in the unit of configuration 0406 has to be replaced by the new neutral electrode socket with the Martin ordering code 08 024 00 34 MARTIN B8 Uph ME 401 Page 109 5 4 7 Configuration 0606 This configuration is derived from the configuration 0506 The reason was the introduction of the new layout of the front with micro polka dot pattern Serial numbers ME 401 0606 96 0633 to ME 401 0606 96 0797 Software 3 00M S4 03 For updating or replace use EPROM set 3 01M S4 05 Front PCB Al Version 01 Three coag keys not compatible with version 00 Version 02 can also be used RF output PCB A7 Version 00 Not to be confused with RF output PCB A2 Use versions 03 or 04 as spare part To take advantage of the instrument cable connection fault protection circuit inherent with this versions it is necessary to install the EPROM set 3 01M S4 05 additionally Monopolar PCB A8 Version 01 Not to be confused with monopolar PCB A3 Use version 05 as spare part Bipolar PCB A4 Version 03 Also versions 04 or 05 may be used as spare part Controller PCB A5 Version 01 Standby PCB Version 00 With the mechanical dimensions th
110. lt is still there after power off and power on then the board with the faulty component must be localised by disconnecting the bus cable from the RF output board A2 A7 51 If there is an other error message after power off and power on then change RF output board A2 A7 51 If it is unchanged then the fault must be localised either at the front board 1 50 or the controller board 5 54 Err 38 Meaning The SDA line of PC bus 2 is blocked Cause Fault of an interface component at the bus 2 If the fault occured during RF activation at high power setting this may be a synchronisation fault caused by self induced electromagnetic interference Then the error message vanishes after power off and power on Repair If the fault is still there after power off and power on then the board with the faulty component must be localised by disconnecting the bus cable successively from the RF generator boards A3 A8 52 and A4 53 and the RF output board A2 A7 51 If there is an other error message after power off and power on then change the board which was disconnected at last If it is unchanged then the fault must be localised at the controller board 5 54 MARTIN B8 Uph ME 401 Page 69 Err 40 Meaning Triggering of the microcontroller watchdog Cause Fault in the microcontroller system or synchronisation failure short interruption of microcontroller power supply caused by a short interruption of the mains voltage or a dec
111. n cable Serial numbers From ME 401 0810 97 1140 Software 3 01M S4 05 Front PCB 1 Version 02 Three coag keys not compatible with version 00 Version 01 can also be used RF output PCB A7 Version 03 or 04 Not to be confused with RF output PCB A2 Monopolar PCB A8 Version 05 Not to be confused with monopolar PCB Bipolar PCB A4 Version 05 Controller PCB Version 01 Standby PCB Version 00 MARTIN B8 Uph ME 401 Page 113 Annex to Revision 2 1 for Version 0908 This annex describes the peculiarities of the units with hardware software state 0908 which are manufactured in a limited edition With respect to the former versions this unit have gained the improvements and additions as follows e Improved hemostasis of Contact Coagulation 1 e Reduction of components of lower frequencies in the output current of Contact Coagula tion 2 and Spray Coagulation which may be cause for faradisation effects e Compensation of leakage currents from the neutral electrode side To perform this modifications of the monopolar section of the unit were required which result in the use of new PCBs So the unit is not downwards compatible to the former versions an update of former versions to 0908 is uneconomic This modifications are as follows e New RF output PCB A9 C40 1512 with modified impedance matching of the monopolar output which is not compatible to RF output PCBs 2 40 1295 and 7 40 1427 New monopolar RF
112. nal 8 with a soldered wire under the cover Setting to 100 Volts e Link soldering tags X5 and X6 as well as X7 and X8 at the standby board with soldered jumpers e Mains fuses 8 Amps slow blow two pcs 5 X 20 Millimeters e Change cable line no 6 of the primary connector to soldering terminal 8 at the transformer Connect terminal 6 and terminal 7 with a soldered wire under the cover Setting to 115 Volts e Link soldering tags X5 and X6 as well as X7 and X8 at the standby board with soldered jumpers e Mains fuses 8 Amps slow blow two pcs 5 X 20 Millimeters e Eventually change cable line no 6 of the primary connector to soldering terminal 6 of the transformer Setting to 127 Volts e Link soldering tags X5 and X6 as well as X7 and X8 at the standby board with soldered jumpers e Mains fuses 8 Amps slow blow two pcs 5 X 20 Millimeters e Change cable line no 6 of the primary connector to soldering terminal 7 of the transformer Connect terminal 6 and terminal 8 with a soldered wire under the cover MARTIN B8 Uph ME 401 Page 95 After new setting perform the following steps e Rearrange cable connection X3 at the standby board and eventually place back primary terminal cover of mains transformer e Perform safety check according to 4 1 4 e Close case according to 2 2 e Replace label which indicates set mains voltage and mains fuses beneath the mains terminal block by an actual one e Record alterations to the
113. nel e COMPARE Numeric values from which the slave controller generates the compare setpoint values MCP and BCP for the power fault monitoring circuits This procedure enables a very flexible matching of the setpoint values to the different current modes Additional to this table there are the following single parameter e Degree of modulation crest factor of the selected current mode e Threshold value for activation of RF leakage current limitation The setpoint values are transferred to the RF generators not as analogue values but as pulse width modulated square wave signals USM and ISM or USB and ISB Pulse width modulation is performed by the timers of the master controller which operate in the compare mode This system has a product of resolution and pulse frequency of 1 MHz Here a resolution of 1000 increments at a pulse frequency of 1 kHz is performed The advantage of this procedure is the noise immunity Because a PWM signal can be fed via an optocoupler a high immunity of the microcontroller system against fed back intrusions can be gained MARTIN B8 Uph ME 401 Page 14 OPERATION MODE MONOPOLAR CUTTING INDEX Potentiometer 253 254 255 USOLL ISOLL DISPLAY COMPARE USOLL ISOLL DISPLAY COMPARE USOLL ISOLL DISPLAY COMPARE USOLL ISOLL DISPLAY COMPARE USOLL ISOLL DISPLAY COMPARE Principle of
114. nerators for monopolar and bipolar operation modes which are controlled central by a microcontroller system The block diagram visualizes this This central control also handles the front panel and the monitoring and control functions at the RF output PCB The control performs the following functions e Self test of program memory and peripherals e Self check with coded error messages e Input of setting of the four setpoint potentiometers e Output of set values to the LED displays e Generation of the setpoint values for the RF generators e Generation of compare setpoint values for the safety circuits MARTIN B8 Uph ME 401 Monitoring of the DC circuit parameters of the generators e Input of front keying e Lasting storage of front keying e Input of finger and foot switch keying Coordination of control signals e Activation of RF generators e Setting of modulators e Selection of operation mode of the ambivalent monopolar generator e Activation of RF output relays e Setting of frequency of the acoustic activation signal e Change of loudness of the acoustic activation signal e Activation of sound generator at NE alarm and power on self test e Setting of indicator lamps for RF activation and NE alarm e Self matching neutral electrode monitoring e Optional automatc bipolar coagulation stop e Monitoring and limitation of RF leakage currents e Bipolar instrument identification The control operates with two microcontrollers
115. nes for key request and key pad illumination The foot switch signals are also requested by the C bus expanders MARTIN B8 Uph ME 401 Page 23 107 JW 824 1 044 1P 3E SNTOh 3713 19 HILIMSLOOS 9602 Shay HILIMSLOOS Shay 43M 4810418 JILYWOLNY 10414 A80NDIS 98 d0NO0N ae K gt 7 gS LT 015 a za 48 28 I I SZ2 15 BZ rZ sZ 5 REN uit ES ms mt ett tme c E ee s 28 oe heat era 21 Q Q luus 2 2 9 52 Z TA NZ WA S30NH4X3 91 S30NH4X3 I11 ZH oh 1135 42 97 1805 77126 nd Z 04 2311 91x 012 67 87 s S IX M43AIMO 8145610 031 AH14S10 031 YJAIY0 87 510 037 u IT IX HST t 2 HI 2 HI ONS e c z e e zn n OND HC One EL ILI S ll XNW M XAN M 311 B8 Uph ME 401 Rev 2 1 Page 24 MARTIN 1 6 3
116. nfiguration 0204 using the alteration kit U 51 1010 The reason was the necessity to protect the units against destroying of the finger switch circuit by faulty plugging of an instrument connection cable into the 4 Millimeter control sockets With respect to the configuration 0204 the following alterations are performed e Addition of a protection diode at the RF output PCB to give protection against mishandling e Closing of the 4 Millimeter control sockets of the monopolar outputs with plastic plugs to give protection against mishandling e Exchange of the neutral electrode socket with insulation cup for quality reasons Serial numbers ME 401 0304 94 0060 to ME 401 0304 95 0384 partially 0204 update ME 401 0304 96 0798 to ME 401 0304 96 0850 100 Volt units ME 401 0304 96 0883 to ME 401 0304 96 0894 100 Volt units Software 2 01M S3 04 Front PCB AI Version 01 Three coag keys not compatible with version 00 Version 02 is also possible as spare part RF output PCB A2 Version 03 This version is gained by extension of version 02 using the alteration kit U 51 1010 protection diode at D1 Monopolar PCB A3 Version 02 Bipolar PCB A4 Version 02 03 Both versions as well as versions 04 and 05 are possible as spare part Controller PCB Version 01 Standby PCB Version 00 If desired the units of configuration 0204 can be updated to configuration 0304 using the alteration kit U 51 1010 MARTIN ordering code 08 040 00 12
117. ning The A D converter Z2 D5 PCF 8591 at the RF output board A2 A7 which transfers the analogue values of the setpoint potentiometers to the slave controller cannot be initialized Or communication at the slave bus is blocked Cause Fault at or around this component Because this component will be initialized for first the cause may also be a general failure at the RF output board A2 A7 or a incidental blocking of the slave bus caused by an other component at an other board Repair First check cable connections X1 of the bus cable at the controller board A5 and the RF output board A2 A7 If this does not result in fault recognition change RF output board A2 A7 51 If the fault is still present then try change of controller board A5 54 or bus cable 40 MARTIN B8 Uph ME 401 Page 63 Err 03 Meaning A D converter 73 D6 PCF 8591 at the RF output board A2 A7 which transfers the analogue values of the monitoring functions to the master controller cannot be initialized Cause Fault at or around this component Repair Change RF output board A2 A7 51 if the fault is still there try provisional change of controller board 5 54 or bus cable 40 Err 04 Meaning The expander 74 D3 PCF 8574 at the output board A2 A7 51 which transfers the finger switch signals of the handpieces to the master controller cannot be initialized Cause Fault at or around this component Because this component is the f
118. nit The monopolar foot switch socket is maintained unaltered For connection of bipolar accessories a new socket was designed which enables connection of the yet existing accessories for bipolar coagulation with the hitherto cable plug stepdown compatibility as well as of the futural instruments with the ability of bipolar cutting Additional this socket enables the connection of bipolar accessories with finger switches for activation of both bipolar operation modes Furthermore a recognition of connected accessory is provided This offers for the first time the ability to give message about attributes like maximum permissible RF power suggested activation time suggested current mode etc to the unit for optimum matching between generator and connected instrument The unit identifies the instrument by a resistor inside the connector and can perform individual matching with the help of the EPROM tables On introduction of new instruments an EPROM update is to be installed at the ME 401 to update the unit On pushing the key for automatic bipolar coagulation an identification number appears in the bipolar coagulation power display In case of an insrument with identification number which is installed at the unit the identification number will be displayed If the instrument has no identification 00 will be displayed In case of an identification which is not installed at the unit EE will be displayed Such an instrument will be treated
119. not recognize this severe fault In this case the voltage regulator of the DC power converter will run to its lower boundary because it recognizes a too high actual output voltage The missing IFM signal voltage disables the driver to be fed 1 6 5 Bipolar RF Generator PCB The structure of the bipolar RF generator is identical to that of the monopolar generator except the ability of being switched to a flyback converter Because of the lower power level the energy flow path is performed by other means There are the functional blocks as follows e Rectifier and voltage pre regulation e DC power converter PWM demodulators e Power oscillator Modulator e Interface for activation and setting e Fault control monitoring circuit The voltage pre regulation is performed here with a monolithic integrated switch mode power controller as well as the consecutive DC power converter Regulation the mode of actual value registration and demodulation of the setpoint signals is identical to that of the monopolar generator The RF generator is a harmonic power oscillator which feeds to a tank circuit The modulator is basically the same as with the monopolar generator but only with one settable degree of modulation Activation of the modulator is performed by the bus expander Z19 which also activates the oscillator by means of the signal B MARTIN B8 Uph ME 401 Page 32 91 5 1 3714 3A H SNIYOLINOW ONY
120. o perform the complete control wiring by a single flat cable which connects all boards which are part of the control periphery 1 5 2 Principle of Control of Field of Characteristics Basically a RF surgery unit is a settable RF voltage source which is connected in serial with a matching resistor This matching resistor is usual a reactive resistance performed by a capacitor By this the characteristic of the output power versus the output resistance shows the shape shown in the figure next page There is a defined maximum of power in the area of the nominal matching resistance By cutting the almost kinds of tissue the generator acts on an output resistance of 1000 to 1500 Ohms This high value of resistance is a consequence of the steam leaving the tissue which acts like an insulation between cutting electrode and tissue If the nominal matching resistance would be set in this range this would cause problems to the start of the cutting process The cutting process will be initiated by contact of the tissue with the electrode Because of this direct contact the output resistance is very low and is in the range of 100 to 200 Ohms A sufficient high RF power must now establish steam formation and by this the change to high output resistance but as is visible from the output characteristic at this output resistance the generator is only able to deliver a fraction of its nominal output power i e the generator is extremely mismatched The cutting
121. of the base casing 2 Take care of guiding the top cover correct into the groove in the front panel 3 especially at the sides 5 Push top cover complete onto the rear side of base casing 2 and fix with self tapping screws 69 Don t pull cover forward with the screws else the rim may be bended Check the unit for standing on all four stands without distorsion on a smooth surface else remove distorsion by releasing and retightening the screws MARTIN B8 Uph ME 401 Page 43 2 3 Front Panel Sockets Potentiometer 2 3 1 Exchange of Setpoint Potentiometer 31 1 Open unit according to 2 2 2 Pull off rotary knob in axial direction use pliers with cloth 3 Release cable connection from RF output PCB 4 Remove nut with socket wrench or pliers and remove potentiometer from the rear 5 Insert replacement from the rear with the cable terminals to the right On tightening the nut keep the potentiometer held counterwise else the settings may get a clockwise offset 6 Replace rotary knob If the knob cannot be turned free the potentiometer is not centered well Release nut for better centering 7 Rearrange cable connection to RF output PCB 8 Perform functional check according to 4 1 5 9 Close case according to 2 2 MARTIN B8 Uph ME 401 Page 44 8t Lt se ve lt lt X e TAS
122. onopolar RF Generator up to HW State 03 or A8 from HW State 04 52 1 Open unit according to 2 2 2 Release countersunk screws 71 and remove top board holder 8 3 Disconnect bus cable from controller board 5 54 bipolar RF generator board A4 53 and monopolar RF generator board A3 or A8 52 Bend cable to the front side 4 Release connector X2 of the output transformer at the left rear of the RF output board A2 or A7 51 To perform this bend connector slightly off of the board surface and pull to the left simultaneous 5 Release connector X2 from the mains transformer 23 and get connection cable out of the gap in the board 6 Remove board unit topwards 7 For reassembling place board unit in the grooves up to hareware state 03 or between the guiding pins from hardware state 04 at the case walls with basic and reinforcement board and press into the groove of the fixing bar at the bottom Take care of proper position of the PE line cable and the bipolar output cable in the gaps in the lower board edge Attention For HW states up to 03 up to serial end number 0384 use only monopolar RF generator PCB A3 C 40 1296 ordering code 08 014 00 17 for HW states from 04 from serial number 0385 use only monopolar RF generator PCB 8 40 1428 ordering code 08 014 00 20 8 Rearrange connection of the RF output transformer to the left rear of the RF output board A2 or A7 9 Place the mains tran
123. ons in accordance with the manufacturer s voltage settings beneath the mains terminal block On change of mains voltage setting this label is to be replaced correspon ding to the new mains voltage 100V T8A 115 127V T8A 230V T4A 240V T4A POWER POWER POWER POWER POWER e Assembling PE terminal undermost and tightened with lock washer All screws tightened Stands and fixing bolts receptacles at the bottom side mounted correct All screws locked with lock washers Boards not distorted and placed correct in holders Correct position of turn of the sockets No slack parts or turnings in the unit turn unit around with top downwards and shake MARTIN B8 Uph ME 401 Page 75 4 1 3 High Voltage Test At the manufacturer s site this test is performed to verify that the safety relevant insuation barriers will have the insulation strengh required for safety operation Usually there is no need for this test in service If it will be performed a consecutive test of all functions shall be performed For this test a HV generator is required The following insulation barriers have to be tested with voltages as follows e Case PE vs mains terminals LN 1 5 e Case PE vs bipolar output 1 5 e Case PE vs monopolar output 1 5 e Case PE vs monopolar output 2 5 kV e Case PE vs neutral electrode 5 sure that the mains switch at the rear is set to Because normally no HV test generator is taken with
124. ormer 23 and X1 of the mains circuit cable 41 3 Release cable connection X4 of standby circuit cable 42 from the bipolar board 4 Release nuts 72 and remove board 5 In case of assembling a new board check for proper mains voltage setting of the jumpers at 5 to X8 according to 4 2 6 For reassembling place board into the groove of the fixing bar at the bottom and swing it onto the stud bolts Take care of presence of spacers 66 on both sides Tighten with nuts 72 and lock washers 77 7 Plug in the connector of the standby circuit connection cable 42 from the bipolar board Take care for the other end to be plugged properly at the bipolar board A4 93 8 Plug in cable connector X3 of the mains transformer and cable connector X1 of the mains circuit connector 41 9 Perform functional and safety checks according to 4 1 3 and 4 1 4 10 Close case according to 2 2 MARTIN B8 Uph ME 401 Page 58 cable link 42 mains transformer cable link 41 from bipolar PCB primary from mains socket Connection of standby PCB A6 MARTIN B8 Uph ME 401 Page 59 2 9 Disassembling and Reassembling of Mains Transformer 23 1 Open unit according to 2 2 2 Release countersunk screws 71 and remove top board holder 8 3 Disassemble controller board according to 2 7 4 At the bipolar board A4 53 release cable connections X1 of the bus cable X2 of t
125. part Controller PCB A5 Version 01 or 02 both are possible Standby PCB Version 00 Additional notes e An update to configuration 0304 is uneconomic e The mains transformer is a version with lower secondary voltage AC2 This transformers recognizable at the charge codes E15 and E25 with identical labeling else shall not be disassembled from old units and be used as a spare part In case of low mains voltage problems with the bipolar functions error 26 may occur associated with this transformer As a spare part exclusively the new transformer is avaiable e The front panel has only two orifices for monopolar coagulation keys As a spare part the new front panel with three orifices may be used but the front layout is a spare part with its own ordering number according to 2 1 e Particular the top board holder 8 is fixed only with one fastening pin MARTIN B8 Uph ME 401 Page 104 5 4 2 Configuration 0303 This version is state of manufacture but an update of units of version 0103 using the alteration kit U 51 1010 The alterations contain e Addition of a protection diode at the RF output PCB to give protection against mishandling e Closing of the 4 Millimeter control sockets of the monopolar outputs with plastic plugs to give protection against mishandling e Exchange of the neutral electrode socket with insulation cup for quality reasons Serial numbers ME 401 0103 94 0010 to ME 401 0103 94 0059 Software
126. process will not progress From this reason a nominal matching somewhere between the extremes will be chosen almost of 400 to 500 Ohms A probably way out of this dilemma may be a generator with controlled constant output power Such a generator would have a constant output power over a wide range of output resistance there would be no nominal matching resistance A generator performed like this would show indeed a better performance when cutting would start but the spark formation at the end of a cut is not acceptable in most cases From this reason a combined voltage and power control is installed at the ME 401 which keeps the power constant for a mean range of output resistance In the case of low and high output resistance the output power characteristic is voltage controlled A generator like this is equipped with two regulators which must be supplied with two setpoint values Here it is advantageous not to keep the relation of both of the setpoints constant over the whole area of power settings but to have a matched relation relative to the set power By this the geometry of course of the power characteristic will change with power setting So to describe the output characteristic of the ME 401 a three dimensional array of characteristics as scematically shown two pages further will be required MARTIN B8 Uph ME 401 Page 11 onsuojoeJeuo 104 0002 0081 0091 00v 001 000 008 009 00
127. rding to 2 2 2 Release countersunk screws 71 and remove top board holder 8 3 Release cable connections X1 of bus cable 40 and X7 of mains transformer 23 Release cable connection of sound transducer and take cable out of the keyhole shaped gap at the left of the board Remove board 4 In case of assembling a new board check for correct software installation according to 5 4 and correct DIL switch settings according to 4 3 5 For reassembling place board into the grooves of the vertical board fixing 14 and the case wall and press into the groove in the fixing bar at the ground 6 Place cable of the sound transducer set 30 into the keyhole shaped gap at the left of the board and rearrange connection X5 7 Connect bus cable 40 to X1 and mains transformer cable to X7 8 Perform functional and safety checks according to 4 1 4 and 4 1 5 9 Close case according to 2 2 MARTIN B8 Uph ME 401 Page 56 eri GV Jo uonoeuuo JOU SARIS JOU Jo onuoo pZ A XXXSXXX INO3IdH lt XXXWXXX WONdA 1 15 4 0 PONpsuen punos COV JOUlIOJSUUI SUU B8 Uph ME 401 Rev 2 1 Page 57 MARTIN 2 8 Disassembling Reassembling of Standby 6 59 1 Open case according to 2 2 2 Release cable connections X3 from the mains transf
128. red by the controller via the four channel A D converter Z13 e Pre regulated voltage UFM e Reference voltage UREF e Actual current value IM1 e Actual compare current value IM2 Because the power fault comparator circuit monitors only the current value it is possible that output power increases as a result of increase of the pre regulated voltage because of a fault From this reason this voltage has to be monitored additionally An increase of output power caused by an increase of the reference voltage UREF would not be recognized by the power fault monitor because it uses this voltage as reference for own So it will be monitored in an indirect manner by monitoring the ratio between UREF and the 15V auxiliar supply If the monitored 15V would decrease the controller would interprete this as an increase of UREF MARTIN B8 Uph ME 401 Page 30 80 86 YOLU 33 WOON E AW WOSS98IGM23O 19 8770 0IN u 20 4 0 v 38 N 0 Wal ZWI gt si 8h q Ki S IX HIZ 0 70 IWI 8 H6 9 x 4125 4 Jetz 5718 21 61 9 5 a AST O u ES 6r ix 951 29 r 8 m
129. run Automatic Printout of limits No Confirmation with Start test run enter In case of request mains switch on switch and enter Unit will be switched on during test run the lamps will light and a short sound signal will occur After test run enter serial number and confirm with The test report will be printed Check test results for plausibility and keeping the limits Attention After any manipulation at the electric circuits of the unit this safety test has to be performed anew 4 1 5 Check of Functions of the Front Panel e Switch on unit and check sequence of power on self test Version numbers of operation code ROM tables and software state segments of the numeric dislay Key illumination Lamps for RF indication and NE alarm Correct displayed bipolar instrument code Correct loudness and melodic intervals of acoustic signals MARTIN B8 Uph ME 401 Page 77 e Functional test of keys Mutual release of monopolar cutting selection keys Mutual release of monopolar coagulation selection keys Mutual release of bipolar cutting selection keys Toggle mode function of the automatic bipolar coagulation key Function of the standby key e Note In case of virginal EEPROM at the controller board no key will light after power on self test the unit cannot be activated In this case one key from each selection group must be selected e Functional check of setpoint potentiometers
130. sformer cable in the keyhole shaped gap right in the upper edge and rearrange cable connection X4 10 Rearrange bus cable connection to monopolar RF generator PCB A3 or A8 bipolar RF generator PCB A4 and controller PCB AS 11 Place top board holder 8 and screw on 12 Perform alignments according to 4 1 6 2 13 Perform functional and safety checks according to 4 1 3 and 4 1 4 14 Close case according to 2 2 MARTIN B8 Uph ME 401 Page 52 Mad 8v e V HOLVYANAD HV IOdONOM dO NOILOANNOO Ud mdino JO 18231 Sy 1g TX 0 OV JOULIOJSUPJ B8 Uph ME 401 Rev 2 1 Page 53 MARTIN 2 6 Disassembling Reassembling of Bipolar Generator 4 53 1 Open unit according to 2 2 2 Release countersunk screw 71 and remove top board holder 8 3 Disconnect bus cable 40 from controller board A5 bipolar board A4 monopolar board A3 and RF output board A2 4 Disassemble monopolar board A3 52 according to 2 5 5 Release the cable connection X3 of the bipolar output cable from the right front of the lower edge of the RF output board A2 Lift output board slightly and pull cable from under the board and take it out of the cable clamps 65 at the bottom 6 Release cable connections X2 from the mains transformer 23 and X5 of the standby PCB connection cable 42 Remove bipolar board 7 For reassembling place bipolar boar
131. short circuit in the cable or a rupture of a reset spring in the switch mechanism From this reason the user has to be involved into the decision of having a fault condition or not Usual RF units are equipped with an acoustic indication of activation which enables the user to recognize activation even when unintended So the safety problem is transferred to the reliability of the acoustic indication At the ME 401 the acoustic signal is generated by a sound generator programmable by the controller Activation of this sound generator may occur either by the control or directly by the signals HM and HB of the RF generators A fault in the course of the controller s program cannot prevent activation of sound caused by HM or HB but the frequency in the possible range may be undefined The function of the control signals HM and HB will be checked during the power on selftest by activating both of the RF generators while the output relays remain opened Occurence of an overranged output power may be caused by the following fault conditions e Damage at one of the setpoint potentiometers or at its connection cable e Disturbance in the analogue value transmission to the controller e Fault in one of the setpoint tables e Fault in one of the controllers or their operation codes e Fault in the RF generator setpoint transmission e Fault in the power controller e Fault in the feedback value monitoring of the regulators e Fault in the pre voltag
132. sis For changing a faulty component this has to be identified at first There are faults which can be recognized by the unit itself and such which require an external investigation The ME 401 supports a fault diagnosis by means of its microcontrollers At that the controller checks itself and its periphery for operation and the input data for correctness of values In case of disagreement if the controller is able to perform a coded error message will be displayed at the front panel by which the letters Err will be displayed in the monopolar cut section and an error code number will be displayed in the monopolar coagulation section In most cases the error code number enables a direct conclusion for the faulty component Such errors which cannot be recognized by the unit itself can be associated with a certain component by a troubleshooting table in most cases In cases where the features offered here will not result in an undoubtly fault diagnosis with trouble shooting please contact the MARTIN Service Center 3 1 Error Codes and Their Meaning Err 01 Meaning The A D converter 71 D6 PCF 8591 at the RF output PCB A2 A7 which transfers the analogue values of the setpoint potentiometers to the master controller cannot be initialized via IC bus Cause Fault at or around this component Repair Change of RF output board A2 A7 51 If the fault is still there try change of controller PCB 5 54 or bus cable 40 Err 02 Mea
133. t may be operated for further Use 4 The Unit may be operated for further Use if the Faults mentioned above are removed 5 Errors which require Maintenence or repair of the Unit before next Operation else Patients Users or Third Persons may be Object of Hazard Signature Next Date of Check Test Report Sheet for Repetitive Safety Checks Front Face MARTIN B8 Uph ME 401 Page 100 m eriam Tester Current No Medizin Technik Test Report Type ME 401 Serial No Correct Comm Type label User s Instruction Manual Labeling Operation Elements Equipotential Connector Genuine Accessories Else Designation of Manufacturer Visual Check of RF Connection Cords Foot Switch at OP Waterproof and AP Proof No Output Power on Missing Neutral Electrode Monitoring Circuit of Neutral Electrode Acoustic Signal Check for Operation of Hand and Foot Switch Control Check for Optical and Acoustig Signal on RF Activation 13 RF Power Measurement Maximum at Nominal Resistance Cutting 1 at 500 Ohms Watts Cutting 2a at 500 Ohms Watts Urologic Cutting 1 at 700 Ohms Watts Urologic Cutting 2 at 800 Ohms Watts Contact Coagulation 1 at 500 Ohms Watts Contact Coagulation 2 at 500 Ohms Watts Spray Coagulation at 1500 Ohms Watts Bipolar Cutting 1 at 600 Ohms Watts Bipol
134. t the controller board by which the slave controller sets the activation and frequency of the sound generator cannot be initialized Cause Fault at or around this component Repair Change controller board 5 54 MARTIN B8 Uph ME 401 Page 65 Err 18 Meaning The A D D A converter Z18 D1 PCF 8591 at the bipolar RF generator board which transfers the analogue operation data to the slave controller and receives the compare setpoint value for the fault monitoring circuit cannot be initialized Cause Fault at or around this component Because this component is the first to be initialized by the slave bus at this board total failure of the board may be cause for this Repair First check bus cable connection X1 at the bipolar RF generator board A4 and at the controller board 5 If no fault can be found change bipolar RF generator 4 53 If the fault is still there try provisional change of controller board 5 54 or bus cable 40 Err 19 Meaning The bus expander Z19 D2 PCF 8574 at the bipolar RF generator board by which the slave controller controls the setting of the modulator and the activation of the RF generator cannot be initialized Cause Fault at or around this component Repair Change of bipolar RF generator board A4 53 If the fault is still there try provisional change of controller board A5 54 or bus cable 40 Err 20 Meaning The EEPROM Z20 D10 PCF 8582 at the controller board
135. t voltage associated with that may be negative for the surgical properties of the unit especially in urology where operation with relative high RF power is usual The ME 401 in the version 0908 generates an additional RF leakage current at the neutral electrode side which is directed counterwise to that parasitic current and results in an extinction of the major part of it So the limiter function of the leakage current monitor becomes no more active if the patient gets contact to ground because the resulting leakage current is always within the maximum permissible value Due to conditions of physics the reduction of the leakage current which is measurable at the NE terminal results in an increase of the leakage current measurable at the active electrode terminal But in surgical practice this is no problem since leakage currents from the active electrode side can only form poor The fact that in case of direct ground contact of the active electrode the limiter function becomes active even at low power setting may give rise to wonder But this is not a problem for surgical use By the way this reduction of leakage currents from the neutral electrode side results in a decrease of noise generated by the electrosurgery unit and disturbing patient monitoring and video systems MARTIN B8 Uph ME 401 Rev 2 1 Annex to 1 6 1 Block Diagram 401 Version 0908
136. teel with no venting slots It stands on four pads For fixing to an underground the unit has receptacles for pinning it up on ball bolts 1 4 Mechanical Design Guideline for the mechanical design was an almost simple and clear construction to make manufacture and service as easy as possible The case bottom serves as a chassis to pick up the printed circuit boards the mains transformer the mains terminal unit and the front panel with handling elements and sockets The boards except the standby PCB are fixed in adhesive plastic bars at the bottom and in embossed beads units of states 0103 0303 0204 and 0304 serial end numbers from 0010 to 0384 or between guiding pins from hardware state 04 upwards from serial end numbers 0385 at the sides without screws From above a comb shaped holder keeps the boards pressed down Only the mains transformer because of its big mass and the standby PCB for safety reasons are mounted with screws which have to be loosened as usual The cable connections are radically simplified by confining all control lines to one bus cable only the energy flow paths and the PE cables are performed as single lines the most of them connected fix at one end This is visible from the wiring diagram The front part is placed in guiding grooves at the bottom and only fixed and arrested in its position by two threaded bolts At this front part the sockets are mounted directly or by means of plates the front PCB will be h
137. the controller have a galvanic separation by optocouplers Into the controller core there are only fed the lines of an extra discoupled 5 Volts supply The buses and their periphery components have an own 5 Volts supply Outside the controller core there is an EEPROM of 256 byte at the bus 1 which stores the front panel key settings The sound generator consists of the following functional sections Quartz oscillator e Programmable counter e Activation switch e Amplifier with level setting e Controller interface An oscillator with a consecutive programmable counter generates a sound frequency which can be set within an interval of two octaves corresponding to a section of a harmonic series Setting is performed by the bus expander Z15 with a resolution of 7 bits i e 128 different tones can be generated The sound generator can be activated direct by the control signals HM and HB or by the controller via the bus expander On activation by the controller the loudness will be set to maximum simultaneous A driver matches the output signal of the frequency counter to the connected sound transducer and enables variation of the output level The auxiliar power supply consists of the functional sections as follows e Rectifier e Generation of 15 Volts e Generation of 5 Volts for the controller core Generation of 5 Volts for the buses and the LED displays MARTIN B8 Uph ME 401 Page 36 From an unr
138. ult of the powerelectronic stage of the monopolar RF generator or of its control A voltage too low may be caused by the same circumstances in the simplest case the fuse 1 10A is blown In case of sporadic appearence a mains voltage too low or with a short interruption may be the cause Repair First the fuse Fl at the monopolar RF generator board should be checked for being blown If it is not or it blows again immediately after power on then change monopolar RF generator board A3 A8 52 Err 26 Meaning Faulty pre regulated DC voltage of the bipolar RF generator A4 Cause The pre regulated voltage of the bipolar RF generator is either too high or too low A voltage too high is caused by a serious fault of the powerelectronic stage of the bipolar RF generator or of its control A voltage too low may be caused by the same circumstances in the simplest case the fuse F1 3 15A is blown In case of sporadic appearence a mains voltage too low or with a short interruption may be the cause Repair First the fuse F1 at the bipolar RF generator board should be checked for being blown If it is not or it blows again immediately after power on then change bipolar RF generator board A4 53 Err 27 Meaning The ratio between the 15 Volts auxiliar supply and the reference voltage at the monopolar RF generator board is faulty Cause Either the voltage of the auxiliar supply has changed or the reference voltage is increased Repair Che
139. ver the insulation barrier by a transformer Monitoring of the neutral electrode for correct application is performed by monitoring the impedance between the both of the cord lines For this purpose a small harmonic oscillator with high source resistance generates an AC voltage which is applied to the electrode cord lines by a transformer Besides this AC voltage will be rectified and fed to the controller Corresponding to the shunt formed by the applied electrode this oscillator will be more or less damped what has an effect on the level of the rectified voltage MARTIN B8 Uph ME 401 Page 25 810734 5 010 pee cx Tan 3113 g3d LNdLNO g89D10330 18 X 27 lt Ue a aldee z 7X S 2557 ox 712 Hr r I EE JOLING ATddNS bo HILIMS KT 35 m SEND 2 2
140. wer converter is identical to the pre regulator with respect to the energy flow path and the kind of control It will be controlled by a combined voltage current regulator The voltage regulator limits the output voltage of the DC power converter When it is operative a red LED will light The current regulator limits the current flowing into the DC power converter and so the DC power When it is operative a green LED will light The current value is monitored by a current transducer The regulators get their setpoint values from the demodulators Z11 and Z12 which transform the PWM square wave signals USM and ISM into analogue voltages The RF generator is a free running power oscillator which feeds to a tank circuit By the square wave signal MOD the feedback paths can be made and broken periodically which makes the oscillator being keyed on and off In this way the modulation of RF voltage for eschar forming cutting is performed Activation of the signal SK energizes a relay which switches the oscillator to a flyback converter By this way high voltages at low mean power high crest factor is easier to be gained The generator will then be controlled by the modulator The modulator is a pulse width modulator which can be activated by the controller via expander Z14 in alignable fix degrees of modulation Via the expander the signal T activates the generator For protection against overrated output power some of the parameters are monito
141. where the master controller stores the current mode settings nonvolative cannot be initialized Cause Fault at or around this component Because the master controller checks this component at first at the power on self test the cause for this may also be a total failure of the master bus or a blocking of the master PC bus by an other faulty port unit placed at any other board Repair Change controller board A5 54 If the fault 18 still there switch off the unit and disconnect successively the monopolar RF generator board A3 A8 the bipolar RF generator board A4 and the RF output board A2 A7 from the bus If there will be displayed an other message than 20 after power on then change this board disconnected at last If this procedure makes the fault not vanish then change bus cable 40 MARTIN B8 Uph ME 401 Page 66 Err 21 Meaning Fault in the circuit of the setpoint potentiometer 31 for power setting for monopolar cutting Cause There is an interruption in the potentiometer lines or a fault at one of the A D converters at the RF output board Repair Connect spare part potentiometer 31 to the cable connection X8 at the RF output board A2 A7 If the fault is vanished change potentiometer If the fault is still there change RF output board A2 A7 51 Err 22 Meaning Fault in the circuit of the setpoint potentiometer 31 for power setting for monopolar coagulation Cause There is an interruption in the potent
142. which have mutual communication exchange and share the tasks This principle was preferred mainly because in this way a simpler and easier to overview concept of safety can be performed Hereby the one controller master controller is superior to the other slave controller Each of both controllers communicates with its peripherals via an own serial interface corresponding to the inter IC bus standard bus This bus consists of a synchronous clock line SCL and a bidirectional serial data line SDA All interface components are linked to this two lines The clock generating component in this case exclusively the actual microcontroller is called to be the master and determines the data transfer at the bus Data transfer is performed in eight bit long sequences bytes it will be initiated by the master by setting the lines to a certain condition start condition S followed by an address byte device address which selects a certain component and determines it to be data transmitter or data receiver The receiving of a complete byte will be acknowledged by the receiver by setting both of the lines to a certain condition acknowledge bit ACK By setting of a further line condition stop condition P the data transfer will be closed MARTIN B8 Uph ME 401 Page 10 Via both of this bus systems all input output and monitoring will be performed Only the setpoint values for the RF generators are transferred by own lines So it is possible t
143. witch with units from hardware state 04 upwards see item 4 3 enables automatic bipolar activation in the automatic mode From this reason the automatic function is always set to off state when when mains power will be switched on MARTIN B8 Uph ME 401 The bipolar foot switch socket of the 401 is performed in manner that the foot switch used for bipolar coagulation hitherto can be connected further but only for activation of coagulation like before Bipolar cutting needs a new double foot switch The mains connection with detachable cord together with the mains fuses and the circuit breaker is placed at the rear of the unit on the right side Normally the circuit breaker is switched on the unit will be set in the switched on or in the standby mode by the key at the left side of the front panel This is a real standby mode in which the mains power consumption is less than 1 Watt The mains voltage is already matched in manufacture the setting is noted on the rear A later change is possible by simple changing of soldered jumpers inside the unit By change of mains transformer taps by soldering the unit can be matched to the extraordinary voltages 100V Japan 127V Mexico and 240V still in some areas of Great Britain On the rear there are in addition the equipotential connector the outlet for the acoustic activation and alarm signal and a service alignment position for setting the required loudness The case is made from sheet s
144. x max max max max max max max max 2100VPP open circuit 2700VPP open circuit 3300VPP open circuit 2100VPP open circuit 4100VPP open circuit 1300VPP open circuit 3600VPP open circuit 6500VPP open circuit 800VPP open circuit 1100VPP open circuit max 420VPP open circuit CF defibrillation proof monopolar and bipolar INT 10s 30s 405mm X 135mm X 380mm 13 6kg conform with 93 42 EEC 1 3 Features and Operation The front panel of the ME 401 is designed in a manner that the relationship to the predecessing units is clearly visible but the layout is impoved with respect to clearness and self explanation of functions Coherent functions are arranged in separated blocks some functions which were isolated at the predecessing units are now combined The ME 401 has two monopolar and two bipolar operating modes whereat one monopolar and one bipolar operation mode can be activated simultaneous There is an own power setting for each operation mode Power setting is performed by rotary knobs The set power rises not linear with the angle of turn but approximately exponential This makes that a change in setting for one unit does not mean a change in output power of 30 Watts but a change of 10 percent of the actual value progressive setting characteristic This is an ergonomic more meaningful way of power setting characteristic Because this enables the power to be set precisely even in the lower range the M

Download Pdf Manuals

image

Related Search

Related Contents

Hall A Tech Notes JLAB-TN-02-012  TruVision TVC-6110-1 / TVC-6120-1 Camera User Manual  CMX PDT 4740  CAT LAXATIVE - Henry Schein Brand  Nokia 6760 slide Bedienungsanleitung  株 主 各 位 第61期 定時株主総会招集ご通知  vdpdp152 – dimmer pack dmx de 4 canales  LED LIGHT ENGINE INSTRUCTION MANUAL 10W  

Copyright © All rights reserved.
Failed to retrieve file