Home

[U2.04.05] Notice d`utilisation du modèle THM

image

Contents

1. 2 7 Quelques cas tests A titre informatif on r capitule ici quelques cas tests disponibles dans la base de Code_Aster Cette liste n est absolument pas exhaustive mais permet d acc der directement un certain nombre d exemples repr sentatifs cas test mod lisation THM repr sent g om trique Wtna109a AXIS THVD D saturation par axisym trique LIQU VAPE chauffage d un milieu sans air Wtna110a AXIS HH2MS Mod lisation d un axisym trique _AD GAZ VAPI gonflement d une argile S S 2 satur THM wtna112 THM Pressurisation axisym trique 1 thermique d une prouvette drain e capillaire de mat riaux BO BG gravitaire d une Manuel d utilisation Fascicule u2 04 M canique non lin aire Copyright 2015 EDF R amp D Document diffus sous licence GNU FDL http www gnu org copyleft fal html Code Aster Cru Titre Notice d utilisation du mod le THM Date 07 07 2015 Page 45 55 Responsable Sylvie GRANET Cl U2 04 05 R vision 13204 Re Wtnp112a D E Resaturation d une Po LIQU GAZ ATM colonne hypoth se de Richards D PLA Mod lisation d un milieu satur en gaz i CE Wtnl100a D_ PLA Probl me de LIQU SATU D PLA consolidation Therzagi Wtnv123a 3D_HH Essai hydrostatique 3D LIQU GAZ puis triaxial succion fixe mod le de Barcelone GAZ alv ole par le massif Wtnv121a 3D_
2. Copyright 2015 EDF R amp D Document diffus sous licence GNU FDL http www gnu org copyleft fal html Code Aster a Titre Notice d utilisation du mod le THM Date 07 07 2015 Page 41 55 Responsable Sylvie GRANET Cl U2 04 05 R vision 13204 TOUT ORDRE OUI VART INTERNE VART ELNO RESULTAT UO Il faut toutefois rappeler que toutes les valeurs de d placements en sorties correspondent u ddl ref non y u u et Il est galement important de conna tre le nom des contraintes et les num ros des variables internes Tout cela est consign dans l annexe I Ainsi l exemple suivant permet d imprimer la masse d eau liquide sur le groupe de n uds HAUT tous les instants TAB1 POST RELEVE T ACTION F INTITULE CONT GROUP _NO RESULTAT UO NOM CHAM SIEF ELNO TOUT _ORDRE OUI NOM CMP M11 OPERATION EXTRACTION IMPR TABLE TABLE TABI FICHIER RESULTAT FORMAT AGRAF PAGINATION INST NOM PARA INST COOR X M11 L exemple suivant permet d imprimer les valeurs de porosit au n ud 1 et au premier instant TAB2 POST RELEVE T ACTION F INTITULE DEPL NOEUD NOl ESULTAT UO OM CHAM VARI ELNO UME ORDRE 1 OM CMP V2 PERATION EXTRACTION OZ2Z2ZX IMPR TABLE TABL
3. Ea Concernant les contraintes les champs renseigner sont les contraintes indiqu es en annexe suivant la mod lisation choisie Les valeurs initiales des enthalpies qui appartiennent aux contraintes g n ralis es sont d finies partir du mot cl SIGM du mot cl facteur ETAT_INIT de la commande STAT NON LINE L introduction des conditions initiales est tr s importante pour les enthalpies En pratique on peut raisonner en consid rant que l on a trois tats pour les fluides e tat courant e tat de r f rence c est celui des fluides l tat libre Dans cet tat de r f rence on peut consid rer que les enthalpies sont nulles e l tat initial il doit tre en quilibre thermodynamique Pour les enthalpies de l eau et de la vapeur on devra prendre Manuel d utilisation Fascicule u2 04 M canique non lin aire Copyright 2015 EDF R amp D Document diffus sous licence GNU FDL http www gnu org copylett fdl html Code Aster Version default Titre Notice d utilisation du mod le THM Responsable Sylvie GRANET init init h Pw Pi _ Pi mi p LT mm0 init ym o ad etavec L T 2500800 2443 T 273 15 Remarque ref Date 07 07 2015 Page 28 55 Cl U2 04 05 R vision 13204 init wW atm Py chaleur latente de vaporisation J kg La pression initiale de vapeur devra tre prise en coh rence avec ces
4. ATER CHMATO TOUT ORDRE OUI I_INTERNE VARI ELNO ULTAT UO La liste des diff rents noms symboliques des variables internes est MDPORO DPVP SATL EVP IND D IND DRHOL TOY ETA END TEMP MAX GAMP PCR SEUIL IND PCOH COMP SEUI ANG X11 x22 non x12 X13 X23 DIST DEV SUR CRIT DEV variation de la porosit du mat riau variation de la masse volumique du mat riau variation de la pression de vapeur saturation du liquide d formation plastique volumique cumul e Indicateur d tat m canique Valeur de l endommagement Indicateur d endommagement Temp rature maximale D formation d viatoire plastique cumul e Pression critique Seuil hydrique Indicateur d irr versibilit hydrique Pression de coh sion Comportement de la roche Seuil isotrope Angle du seuil d viatoire Composantes du tenseur d crouissage cin matique Composantes du tenseur d crouissage cin matique Composantes du tenseur d crouissage cin matique Composantes du tenseur d crouissage cin matique Composantes du tenseur d crouissage cin matique Composantes du tenseur d crouissage cin matique Distance normalis e au seuil d viatoire Rapport entre le seuil d viatoire et le seuil d viatorique critique M DIST 1SO Distance normalis
5. Num ro Nom de composante Aster Contenu 1 VI Pu p 2 2 p p Dans le cas avec m canique les premiers num ros seront ceux correspondant la m canique V7 dans le cas lastique V Z et suivantes pour des mod les plastiques Le num ro des variables internes ci dessus devra alors tre incr ment d autant Manuel d utilisation Fascicule u2 04 M canique non lin aire Copyright 2015 EDF R amp D Document diffus sous licence GNU FDL http www gnu org copyleft fdl html Code Aster on Titre Notice d utilisation du mod le THM Date 07 07 2015 Page 51 55 Responsable Sylvie GRANET Cl U2 04 05 R vision 13204 Annexe 2 l ments suppl mentaires sur les conditions aux limites en THM Dans ce qui suit on ne prend pas en compte l air dissous l indice q correspond alors celui de l eau w et on s attache au cas non satur Nous rappelons ici le choix des inconnues de pression Comportement LIQU GAZ et LIQU VAPE GAZ PREI Pression capillaire p Po P PRE2 Pression de gaz P a5 Py Pas A2 1 Formulation variationnelle des quations de conservation On se r f re ici R7 01 11 Ces quations sont m t Div M M 0 q A5 1 1 ni Div M 0 q A5 1 2 La formulation variationnelle d duite est donn e par f mtm d M M Vrd Q q A5 1 3 faolMu My mdr TEP fo mum d2 f Ms Vr dO q A5 1 4 50 Man Td TYm EP Les pressions capillaires et de gaz so
6. Pour les comportements de mat riaux non satur s LIQU VAPE GAZ LIQU AD GAZ LIQU AD GAZ VAPE LIQU GAZ LIQU GAZ ATM et dans le cas o la loi hydraulique est HYDR VGM ou HYDR VGC voir section 31 Au del de la saturation d finie par VG_ SMAX la saturation est multipli e par ce facteur correctif Cette Valeur doit tre tr s proche de 1 voir doc R7 01 11 FICKV T fonction Pour les comportements LIQU VAPE GAZ et LIQU AD GAZ VAPE partie multiplicative du coefficient de Fick fonction de la temp rature pour la diffusion de la vapeur dans le m lange gazeux Le coefficient de Fick pouvant tre fonction de la saturation la temp rature la pression de gaz et la pression de vapeur on le d finit comme un produit de 4 fonctions FICKV T FICKV_S FICKV_PG FICKV_VP Seul FICKV T est obligatoire pour les comportements LIQU VAPE GAZ et LIQU AD GAZ _ VAPE Voir remarque en section 23 T 0 FICKV S fonction Pour les comportements LIQU VAPE GAZ et LIQU AD GAZ VAPE partie multiplicative du coefficient de Fick fonction de la saturation pour la diffusion de la vapeur dans le m lange gazeux Dans le cas o on utilise cette fonction on recommande de prendre FICKV S 1 0 Voir remarque en section 23 0 FICKV PG fonction Pour les comportements LIQU VAPE GAZ et LIQU AD GAZ VAPE partie multiplicative du coefficient de Fick fonction de la pression de gaz pour la diffusion de la vapeur dans l
7. default Titre Notice d utilisation du mod le THM Date 07 07 2015 Page 6 55 Responsable Sylvie GRANET Cl U2 04 05 R vision 13204 MODELISATION Mod lisation Ph nom nes pris en compte g om trique s lective AXIS HH2MD axisym trique M canique hydraulique avec deux pressions inconnues et deux constituants dans la phase gazeuse lump AXIS HH2MS axisym trique M canique hydraulique avec deux pressions inconnues et deux constituants dans la phase gazeuse s lective AXIS THHD axisym trique Thermique hydraulique avec deux pressions inconnues lump AXIS THHS axisym trique Thermique hydraulique avec deux pressions inconnues s lective AXIS THH2D axisym trique Thermique hydraulique avec deux pressions inconnues et deux constituants dans la phase gazeuse lump AXIS THH2S axisym trique Thermique hydraulique avec deux pressions inconnues et deux constituants dans la phase gazeuse s lective AXIS THM axisym trique Thermique m canique hydraulique avec une pression inconnue AXIS THMD axisym trique Thermique m canique hydraulique avec une pression inconnue lump AXIS THMS axisym trique Thermique m canique hydraulique avec une pression inconnue s lective AXIS THVD axisym trique Thermique m canique hydraulique avec deux pressions inconnues 2 phases eau liquide et vapeur lump AXIS THEMD axisym trique Thermique m canique hydraulique avec deux pressions inconnues lump AXIS THHMS
8. MECANIQUE MODELISATION D PLAN DIL 3 3 D finition du mat riau Il faut en plus de la d finition des param tres mat riaux n cessaires pour le calcul THM d crit au chapitre pr c dent ajouter un param tre qui caract rise la longueur caract ristique de la mod lisation second gradient cf R5 04 03 Cette donn e caract rise en fait la dimension du voisinage qui contribue la description d un point mat riel Cette longueur est d finie partir des composantes mat riau J et 43 de la loi de comportement d lasticit lin aire second gradient inspir e des travaux de Mindlin dans le cas de la mod lisation second gradient de dilatation C est dans la d termination de ces param tres que r side la plus grande difficult II n existe pas aujourd hui de m thode analytique pour les identifier La pratique est de faire quelques essais pr alable Dans le cas des mod lisations second gradient cette longueur est fonction des 5 composantes 41 A2 A3 44 et AS renseigner sous le mot cl ELAS 2NDG de DEFI MATERIAU cf R5 04 03 On peut de plus ajouter un param tre num rique de p nalisation Il a t montr que le terme de p nalisation des mod lisations second gradient de dilatation am liore la convergence num rique sans perturber la qualit des r sultats Voici un exemple de d finition des param tres mat riau pour la partie second gradient SOL2 DEFI MATERIAU ELAS 2NDG F Al
9. Titre Notice d utilisation du mod le THM Date 07 07 2015 Page 49 55 Responsable Sylvie GRANET Cl U2 04 05 R vision 13204 Annexe 1Contraintes g n ralis es et variables internes Les contraintes Num ro Nom de composante Aster Contenu Mod lisations SIXX ES 1 rx Si m canique M SIYY ut 2 2 Try Si m canique M SIZZ ni 3 TZ Si m canique M SIXY Re 4 xy Si m canique M SIXZ PRE 9 VE Si m canique M SIYZ Lie O y Si m canique M SIPXX RE l To Si m canique M SIPYY er i Op Si m canique M SIPZZ poai 9 Tr Si m canique M SIPXY re 19 qe Si m canique M SIPXZ PRE 4 T pa Si m canique M SIPYZ STE 1 Op Si m canique M 13 M11 m k Dans tous les cas 14 FH11X M g Dans tous les cas 15 FH11Y M Dans tous les cas 16 FH11Z M Dans tous les cas 17 ENT11 h w Dans tous les cas avec thermique 12 1 M Si 2 pressions inconnues HH FH12X 1a M p Si 2 pressions inconnues HH FH12Y a My Si 2 pressions inconnues HH FH127Z el M p Si 2 pressions inconnues HH ENT12 m 7 hy Si 2 pressions inconnues et thermique THH a 21 ai m Si 2 pressions inconnues HH FH21X a Ms Si 2 pressions inconnues HH FH21Y 7 Ms Si 2 pressions inconnues HH FH21Z 3 f 26 M Si
10. MUM en TION E ST listinst k 1 ST UNPASSUB ENTE 10 GLOB MAXI 10 PS PCENT PIVOT 100 M a rr E INFO 1 CONCEPT _F NOM UNPAS UNPASSUB MATEHY Manuel d utilisation Fascicule u2 04 M canique non lin aire Copyright 2015 EDF R amp D Document diffus sous licence GNU FDL http www gnu org copyleft fdl html Code Aster Version default Titre Notice d utilisation du mod le THM Responsable Sylvie GRANET RI Date 07 07 2015 Page 35 55 Cl U2 04 05 R vision 13204 ELATION est renseign par des relations de types KIT XXXX qui permettent de r soudre simultan ment de deux quatre quations d quilibre Les quations consid r es d pendent du suffixe XXXX avec la r gle suivante M d signe l quation d quilibre m canique T d signe l quation d quilibre thermique H d signe une quation d quilibre hydraulique v d signe la pr sence d une phase sous forme vapeur en plus du liquide Une seule lettre H signifie que le milieu poreux est satur une seule variable de pression p par exemple soit de gaz soit de liquide soit dun m lange liquide gaz dont la pression du gaz est constante Deux lettres H signifient que le milieu poreux est non satur deux variables de pression p par exemple un m lange liquide vapeur gaz La pr sence des deux lettres HV signifie que le milieu po
11. fys 4 1 i D FV T A VE f 20 D FV PG dfvgp 0 A FICKA T fat FICKA PA fapv el 7 FICKA PL fapg fol 7 V NN DA D W D D D R fonction fonction fonction fonction fonction fonction kias Liit bai al at aa Hh H OH OH ea ti Es Hi rj rj D D D C C C H h Eal rj D H CO M D i ti mj D C fonction fonction fonction fonction fonction fonction Manuel d utilisation Fascicule u2 04 M canique non lin aire Copyright 2015 EDF R amp D Document diffus sous licence GNU FDL http www gnu org copyleft fal html Code Aster Fe Titre Notice d utilisation du mod le THM Date 07 07 2015 Page 18 55 Responsable Sylvie GRANET Cl U2 04 05 R vision 13204 0 FICKA S fas fonction 7 1 j DEFAUT 9 DFAT y dfat 3 fonction 1 0 DEFAUT LAMB T lambt fonction 0 DEFAUT LAMB TN lambtl fonction 0 DEFAUT AMB TL j gt lambtn fonction 0 DEFAUT ILAMB TT lambtl fonction 0 DEFAUT AMB TL j lambtn fonction A 20 DEFAUT 0 LAMB S lambs fonction 1 E i DEFAUT 0 LAMB PHI lambp fonction UT i DEFAUT 0 LAMB CT lambct fonction 0 DEFAUT ILAMB C N lambctl fonction 0 DEFAUT AM
12. A2 A3 A4 AS r r NON LOCAL F PENA LAGR 1 0E12 0E4 0 lt O 0 0 OODOOR Puis affectation des param tres mat riaux suivant la m me proc dure que pour la d finition des mod lisations Manuel d utilisation Fascicule u2 04 M canique non lin aire Copyright 2015 EDF R amp D Document diffus sous licence GNU FDL http www gnu org copylett fdl html Code Aster Fe Titre Notice d utilisation du mod le THM Date 07 07 2015 Page 48 55 Responsable Sylvie GRANET Cl U2 04 05 R vision 13204 MATE AFFE MATERTAU MAILLAGE MAILLAGE AFFE _F TOUT ROCHE MATER SOL HM _F GROUP MA ROCHE REG MATER SOL2 3 4 Impact sur les conditions aux limites I n y a aucun impact apporter dans le fichier de commande Code Aster pour prendre en compte les conditions aux limites avec les mod lisations second gradient par rapport aux mod lisations classiques THM En revanche il est essentiel de noter que la signification physique des conditions aux limites de pression de contraintes normales est modifi e avec les mod lisations second gradient cf R5 04 03 3 5 R solution du probl me Le calcul est effectuer par la commande STAT NON LINE Il suffit d ajouter au calcul classique THM la relation de comportement d lasticit second gradient sur le maillage correspond au patch comme sur l exemple c
13. L _CHAM CART SIEF R Manuel d utilisation Fascicule u2 04 M canique non lin aire Copyright 2015 EDF R amp D Document diffus sous licence GNU FDL http www gnu org copyleft fal html Code Aster Version default Titre Notice d utilisation du mod le THM Responsable Sylvie GRANET AFFE F GROUP MA NOM CMP SIXX SIYY SIZZ SIXY SIXZ ISIYZ SIPXX SIPYY SIPZZ SI SIPXZ SIPYZ Mi1 FH11X FH11Y ENTIL M12 FH12X FH12Y ENTI2 QPRIM FHTX FHTY M21 FH21X FH21Y ENT21 M22 FH22X FH22Y ENT22 VALE 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2500000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 4 Chargements et conditions aux limites Date 07 07 2015 Page 29 55 Cl U2 04 05 R vision 13204 BO LA PXY Toutes les conditions aux limites ou chargement sont affect s via la commande AFFE CHAR MECA U4 44 011 Les chargements sont ensuite activ s par le mot cl facteur EXCIT de la commande STAT NON LINE De mani re classique deux types de conditions aux limites sont possibles e Des conditions de type Dirichlet qui consistent imposer sur une partie de fronti re des ie NL i ddl valeurs fix es pour des inconnues principales appartenant lul et non u u u init pour cela on utilise le mot cl
14. LAN THH2MS AXIS THH2MS 3D THH2MS LAN HHD AXIS HHD 3D HHD D PLAN HH2D AXIS HH2D HH2D PLAN HHS AXIS HHS 3D HHS D PLAN HH2S AXIS HH2S HH2S on doit pr ciser dans Le mod le de comportement m canique du squelette s il y a mod lisation m canique M Manuel d utilisation Fascicule u2 04 M canique non lin aire Copyright 2015 EDF R amp D Document diffus sous licence GNU FDL http www gnu org copyleft fdl html Code Aster ai Titre Notice d utilisation du mod le THM Date 07 07 2015 Page 36 55 Responsable Sylvie GRANET Cl U2 04 05 R vision 13204 _ MOHR COULOMB egs HUJEUX CAM CLAY BARCELONE LAIGLE LETK DRUCK_PRAGER DRUCK_PRAG N_A VISC_DRUCK_PRAG ELAS_GONF HOEK BROWN TOT HOEK BROWN EFF MAZARS ENDO_ ISOT BETON m D comportement des liquides gaz le m me que celui indiqu dans COMP _ THM sous DEFI MATERIAU cf 2 2 2 LIQU SATU LIQU GAZ GAZ LIQU GAZ ATM LIQU VAPE GAZ LIQU AD GAZ VAPI LIQU AD GAZ LIQU VAPE Ea M T M R R R a e __ Concernant le comportement hydraulique l utilisateur dispose actuellement de 4 choix HYDR_UTIL HYDR_ENDO HYDR_VGM HYDR VGC e Soit il choisit HYDR UTIL ce mot cl permet alors de renseigner la courbe de saturation et s
15. Mot cl facteur THM_INIT TEMP init agi PRE1 init P CO PRE2 init P PORO p F 0 PRES_VAP Po eMot cl facteur THM_DIFFU R GAZ R RHO Fo CP s C3 BIOT COEF b BIOT L b BIOT N by BIOT T b SATU PRES Sy P ON 0 D SATU PRES 2SulPel Pe PESA X m SA F PESA Y F P PESA Z m SA F PERM IN K pl PERMIN N p pl selon N 0 PERMIN T K selon T 2D PERM LIQU rel 110 ky Sy ok Sa 9 D PERM LIQU SATU 717 PEA PERM GAZ rel ko Sy Poz Manuel d utilisation Fascicule u2 04 M canique non lin aire Copyright 2015 EDF R amp D Document diffus sous licence GNU FDL http www gnu org copyleft fdl html Code Aster Version E default Titre Notice d utilisation du mod le THM Date 07 07 2015 Page 25 55 Responsable Sylvie GRANET Cl U2 04 05 R vision 13204 rel 0 D PERM SATU GAZ KE Su Pel rel D PERM PRES GAZ Pkg lSu Pel Poz 0 FICKV T pe T vp FICKV S FS S vp 0 FICKV PG E P wm g 0 FICKV PV fY P vp vp f T DFVT Fol DS oT o fE P D FV PG fl si DF P 0 FICKA T FOUT FICKA S foals FICKA PA fi LP a FICKA PL fe CP a q of Q D FAT Jail ZOE oT 0 LAMB T AT 0 LAMB TL AS T selon L 0 LAMB_TN A T selon N 0 LAMB_TT A T selon T 2D A T DLBT r T ao T A T 9 D LB TL r T selon L x OT AE 0 D LB TN CEE selon N OCT 9 D LB TT PAT selon T 2D es OT
16. PRE2 Nous noterons P27 P la condition impos e sur PRE2 Ceci correspond Phat D p imp Ps FP La d monstration est la m me qu au paragraphe pr c dent et aboutit M M N M SNQ lext A5 3 Cas de conditions aux limites faisant intervenir des relations lin aires entre inconnues principales Code_Aster permet d introduire comme conditions aux limites des relations entre degr s de libert port s par le m me n ud ou par des n uds diff rents Cette possibilit est atteinte via le mot cl LIAISON DDL de la commande AFFE CHAR MECA Soit p la valeur que l on veut imposer la pression de liquide sur 002 Compte tenu de q A5 1 5 et du choix des inconnues principales pour ce comportement on crit imp Pes De P27 PP q A5 3 1 lq Les relations lin aires sont trait es dans Aster par introduction de multiplicateurs de Lagrange Ceci correspond en lesp ce la formulation suivante Trouver p p 1 tels que f mtm mAdO f M M Vrm dQ f mm adNQ f M Vr dQ q A5 3 2 OT Vi thoas loro plar rem vi Manuel d utilisation Fascicule u2 04 M canique non lin aire Copyright 2015 EDF R amp D Document diffus sous licence GNU FDL http www gnu org copylett fdl html Code Aster nuk Titre Notice d utilisation du mod le THM Date 07 07 2015 Page 54 55 Responsable Sylvie GRANET Cl U2 04 05 R vision 13204 Pour faire la d monstration
17. T 0 LAMB PHI A p OX 0 D LB PHI sa pb 0p LAMB S AS S AAS 9 DIB S DN pe OS LAMB CT 1 LAMB C L T r selon L Manuel d utilisation Fascicule u2 04 M canique non lin aire Copyright 2015 EDF R amp D Document diffus sous licence GNU FDL http www gnu org copylett fdl html Code Aster oui Titre Notice d utilisation du mod le THM Date 07 07 2015 Page 26 55 Responsable Sylvie GRANET Cl U2 04 05 R vision 13204 7 T 0 AMB_C_N Acer selon N 7 T 0 LAMB CT Acr selon T 2D Remarque Dans le cas o il y a de la thermique A7 est fonction de la porosit de la saturation et de la temp rature et est donn e sous la forme du produit de trois fonctions T T T T T A lP Asl Sy A7 T A cte avec le tenseur 1 T obligatoire et les autres fonctions par d faut prises gales un sauf le tenseur fe 0 Pour le coefficient de Fick du m lange gazeux dans le cas LIQU VAPE GAZ et LIQU AD GAZ VAPE F PPT S SP SEP SET SSS avec vp g vp vp vp vp f T obligatoire les autres fonctions tant prises par d faut gales un et les d riv es gales z ro On n gligera les d riv es par rapport la pression de vapeur et la saturation Dans les cas LIQU AD GAZ VAPE et LIQU AD GAZ le coefficient de Fick du m lange liquide sera sous la forme F 4 PTS AP LR tr PAS avec f 7 4 T obligatoire les autres fonctions tant prise
18. calcul e Dirichlet sur PRE1 et Neuman sur PRE2 L utilisateur impose une valeur PRE1 et une valeur au flux associ PRE2 en ne disant rien sur PRE2 ou en donnant une valeur FLUN HYDR2 e Dirichlet sur PRE2 et Neuman sur PRE1 L utilisateur impose une valeur PRE2 et une valeur au flux associ PRE1 en ne disant rien sur PRE1 ou en donnant une valeur FLUN HYDRI1 Neuman sur PRE2 et Neuman sur PRE1 Les deux flux sont impos s soit en ne disant rien sur PRE1 et ou PRE2 flux nuls soit en donnant une valeur FLUN_HYDR1 et ou FLUN HYDR2 e Cas des conditions aux limites faisant intervenir une relation lin aire entre les inconnues principales PRE1 et PRE2 Il est galement possible de manier des combinaisons lin aires de PRE1 et PRE2 Il faut toutefois manier cela avec pr caution de mani re partir d un probl me correctement pos La syntaxe de cet op rateur est d taill e dans la documentation de AFFE CHAR MECA l exemple ci dessous illustre ce type de condition P_DDL AFFE CHAR MECA MODELE MODELE LIAISON GROUP _F GROUP N GROUP N DDL 1 F DDL 2 F COE COE COEF BORDS BORDS O HEN D HN H k x M MU I Il K DE E g OH H TD Il N Cette commande signifie que sur la fronti re d finie par le groupe de n uds BORDS les pressions P
19. e au seuil isotrope NB_ITER Nombre d it rations internes ARRET Valeur du test local d arr t du processus it ratif NB REDE Nombre de red coupage local du pas de temps SIGNE Signe du produit contract de la contrainte d viatorique par la d formation plastique d viatorique Remarque Lorsque la variable extraire ne fait pas partie des variables internes des lois concern es une alarme est mise mais le champ est tout de m me affect R8VIDE 2 6 3 Isovaleurs Attention distinction r solution lin aire et maillage quadratique Manuel d utilisation Fascicule u2 04 M canique non lin aire Copyright 2015 EDF R amp D Document diffus sous licence GNU FDL http www gnu org copyleft fal html Code Aster Titre Notice d utilisation du mod le THM Date 07 07 2015 Page 43 55 Responsable Sylvie GRANET Cl U2 04 05 R vision 13204 On rappelle que pour tout probl me THM et afin d viter toute ambigu t pour l utilisateur le maillage utilis est toujours quadratique En revanche la r solution du probl me hydraulique et thermique est lin aire les inconnues PREI PRE2 et TEMP n existent donc que sur les n uds sommets du maillage A l issue du calcul on obtient un r sultat sous cette forme Les pressions PREI PRE2 et les temp ratures TEMP sont sur les n uds sommets des l ments eLes variables internes les contraintes sont sur les points de gauss et ou les n uds du maillage quadra
20. facteur DDL_IMPO ou FACE_IMPO de AFFE CHAR MECA e Des conditions de type Neumann qui consistent imposer des valeurs aux quantit s duales soit en ne disant rien flux nuls en hydraulique et thermique soit en leur donnant une valeur via les mots cl s FLUN FLUN_HYDR1 et FLUN_HYDR2 du mot cl facteur FLUX THM REP de la commande AFFE CHAR M ECA Ce flux est ensuite multipli par une fonction du temps par d faut gale 1 appel e par FONC MULT dans le sous mot cl EXCIT de la commande STAT NON LINE FLUN FLUN HYDRI et FLUN HYDR2 repr sentent respectivement les flux thermiques les flux d eau paragraphe e Les conditions m caniques en contraintes totales et les flux de composant gazeux cf fin du o n sont elles donn es via PRES REP de la commande AFFE CHAR MECA On se r f rera la documentation de cette commande pour en conna tre les possibilit s D un point de vue syntaxique les conditions de Dirichlet s appliquent donc comme sur l exemple suivant DIRI AFFE CHAR MECA MODELE MODELE DDL IMPO _F GR mp E F TO PRI _F GR PRI F TO DX F TO DY _F TO DZ OUP_NO GAUCH P 0 0 UT 0UI E2 0 0 OUP_NO GAUCH El1 0 0 UT 0UI 0 0 UT 0UI 0 0 UT 0UI 0 0 pI Fa Manuel d utilisation Fascicule u2 04 M canique non lin aire Copyr
21. m f R CP Cp R VISC vi r fonction D VISC TEMP dvi fonction MASS MOL Masse molaire de la vapeur Mp Manuel d utilisation Fascicule u2 04 M canique non lin aire Copyright 2015 EDF R amp D Document diffus sous licence GNU FDL http www gnu org copylett fdl html Code Aster di Titre Notice d utilisation du mod le THM Date 07 07 2015 Page 16 55 Responsable Sylvie GRANET Cl U2 04 05 R vision 13204 CP Chaleur massique pression constante de la vapeur VISC fonction Viscosit de la vapeur Fonction de la temp rature D VISC TEMP fonction D riv e par rapport la temp rature de la viscosit de la vapeur Fonction de la temp rature L utilisateur doit assurer la coh rence avec la fonction associ e VISC 2 2 6 Mot cl facteur THM AIR DISS Ce mot cl facteur concerne le comportement THM THEM AIR DISS prenant en compte la dissolution de lair dans le liquide cf R7 01 11 Les coefficients renseign s ici concernent lair dissous La syntaxe est la suivante THM AIR DISS F CP cp r R COEF HENRY kh 7 fonction CP Chaleur massique pression constante de l air dissous COEF HENRY i pu l Constante de Henry Ky permettant de relier la concentration molaire d air dissous C moles m la pression d air sec ol Pas Caa K y Remarque La constante de Henry que nous
22. s THM_LIQU et THM GAZ Le tableau ci dessous r sume les mots cl s obligatoires pour les sous commandes explicit es dans les sections suivantes en fonction de la loi de couplage choisie L gendes O Mot cl Obligatoire T Mot cl obligatoire en Thermique Mot cl inutile pour ce type de loi de couplage F Utile pour la loi mais facultatif d fini par d faut LIQU_SAT LIQU_ GA GAZ LIQU GAZ A LIQU VAPE G LIQU AD G LIQU_AD LIQU_VAPE U Z TM AZ AZ_VAPE _GAZ THM_INIT o o o o o o o o PRE1 O O O O O O O O PRE2 O O O O PORO O O O O O O O O TEMP T T T T O O O O PRES_VAPE O O O O THM_DIFFU o o o o o o o o R_GAZ O O O O O O RHO O O O O O O O O BIOT_COEF O O O O O O O O PESA_X O O O O O O O O PESA_Y O O O O O O O O PESA _Z O O O O O O O O Si loi HYDR_UTIL cf chapitre 31 SATU_PRES O O O O O D_SATU_ PRES O O O O O PERM_LIQU O O O O D_PERM _LIQU_SA O O TU PERM_GAZ O O O O Manuel d utilisation Fascicule u2 04 M canique non lin aire Copyright 2015 EDF R amp D Document diffus sous licence GNU FDL http www gnu org copyleft fdl html Code Aster eul default Titre Notice d utilisation du mod le THM Date 07 07 2015 Page 11 55 Responsable Sylvie GRANET Cl U2 04 05 R vision 13204 D_PERM_SATU_G AZ D_PERM PR S _G AZ O O O Si loi HYDR_VGM ou HYDR_VGC cf chapitre 31 VG_N VG_PR VG_SR VG_SMAX VG_SATUR ol0 0 0 0 ol0 0 0 0 CKV T CKV PV CKV_PG CK
23. Coefficient de Biot utilis dans le cas isotrope BIOT L BIOT N Dans le cas isotrope transverse 3D seulement les coefficients de Biot pour les directions L et N du rep re local d orthotropie Dans ce cas les deux sont obligatoires BIOT L BIOT N BIOT T Dans le cas orthotrope en 2D seulement les coefficients de Biot pour les directions L et N T Dans ce cas les trois sont obligatoires PESA X PESA Y PESA Z Pesanteur selon x y et z Remarque La pesanteur d finie ici est celle utilis e dans quation de Darcy uniquement Quand il y a des calculs m caniques la pesanteur est galement d finie dans AFFE CHAR MECA Cette remarque s applique bien sur pour les trois composantes de la pesanteur PERM IN fonction Perm abilit intrins que fonction de la porosit dans le cas isotrope La perm abilit au sens classique dont la dimension est celle d une vitesse se calcule de la fa on suivante K aK K p g o K est la perm abilit intrins que K m viscosit p la masse volumique du liquide et g lacc l ration de la pesanteur Obligatoire dans le cas isotrope la perm abilit relative m la rel PERMIN L PERMIN N fonction Dans le cas isotrope transverse 3D la perm abilit intrins que pour les directions L et N du rep re local d orthotropie Dans ce cas les deux sont obligatoires PERMIN L PERMIN T fonction
24. Dans le cas orthotrope en 2D la perm abilit intrins que pour les directions L et T du rep re local correspondant X Y sans rotation d angle Dans ce cas les deux sont obligatoires 0 SATU PRES fonction Pour les comportements de mat riaux non satur s LIQU VAPE GAZ LIQU GAZ LIQU GAZ ATM LIQU AD GAZ LIQU AD GAZ VAPE isotherme de saturation fonction de la pression capillaire Uniquement pour les lois de couplage HYDR UTIL ou HYDR ENDO voir section 31 Remarque Pour des raisons num riques il faut viter que la saturation atteigne la valeur 1 Aussi il est tr s fortement recommand de multiplier la fonction capillaire comprise g n ralement entre 0 et 1 par 0 999 D SATU PRES fonction Manuel d utilisation Fascicule u2 04 M canique non lin aire Copyright 2015 EDF R amp D Document diffus sous licence GNU FDL http www gnu org copyleft fdl html Code Aster ui Titre Notice d utilisation du mod le THM Date 07 07 2015 Page 20 55 Responsable Sylvie GRANET Cl U2 04 05 R vision 13204 Pour les comportements de mat riaux non satur s LIQU VAPE GAZ LIQU GAZ LIQU GAZ ATM d riv e de la saturation par rapport la pression Uniquement pour les lois de couplage HYDR UTIL OU HYDR ENDO voir section 31 0 PERM LIQ fonction Perm abilit relative au liquide fonction de la saturation Uniquement pour les lois de couplage HYDR UTIL OU HY
25. GAZ ATM et dans le cas o la loi hydraulique est HYDR VGM ou HYDR VGC voir section 31 d signe le param tre Pr de la loi de Mualem Van Genuchten servant d finir la pression capillaire et les perm abilit s relatives l eau et au gaz VG SR R Pour les comportements de mat riaux non satur s LIQU VAPE GAZ LIQU AD GAZ LIQU AD GAZ _ VAPE LIQU GAZ LIQU GAZ _ ATM et dans le cas o la loi hydraulique est HYDR_VGM ou HYDR VGC voir section 31 d signe le param tre Sr de saturation r siduelle de la loi de Mualem Van Genuchten servant d finir la pression capillaire et les perm abilit s relatives l eau et au gaz 0 VG SMAX R Pour les comportements de mat riaux non satur s LIQU VAPE GAZ LIQU AD GAZ LIQU AD GAZ VAPE LIQU GAZ LIQU GAZ ATM et dans le cas o la loi hydraulique est HYDR VGM ou HYDR VGC voir section 31 d signe la saturation maximum pour laquelle on applique la loi de Mualem Van Genuchten Au del de cette saturation les courbes de Mualem Van Genuchten sont interpol es Cette valeur doit tre tr s proche de 1 VG SATUR R Manuel d utilisation Fascicule u2 04 M canique non lin aire Copyright 2015 EDF R amp D Document diffus sous licence GNU FDL http www gnu org copyleft fdl html Code Aster ps Titre Notice d utilisation du mod le THM Date 07 07 2015 Page 21 55 Responsable Sylvie GRANET Cl U2 04 05 R vision 13204
26. Notice d utilisation du mod le THM Responsable Sylvie GRANET Date 07 07 2015 Page 17 55 Cl U2 04 05 R vision 13204 perd son sens et dans ce cas seulement on se place dans un cadre orthotrope Pour la partie m canique lastique on se r f rera R4 01 02 et les 3 directions seront prendre en compte Pour les termes conductifs hydrauliques et thermiques seules les directions L et T du plan seront cette fois renseigner correspondant au rep re X Y si le rep re global co ncide avec le rep re local Attention _l anisotropie en m canique n est valable que pour un comportement m canique_ lastique non programm pour les autres lois La syntaxe g n rale est la suivante THM DIFFU gt S F R GAZ Ygaz RHO rho CP cp BIOT_COEF bio IBIOT L biol IBIOT N bion IBIOT T biol IBIOT L bion IBIOT N bion PESA X px PESA Y py PESA Z pz PERM_IN perm PERMIN_N perml PERMIN L permn IPERMIN T perml PERMIN L permn SATU PRES sp 0 D SATU PRES dsp PERM_LIQU perml 0 D PERM LIQU SATU dperm 0 PERM GAZ permg O D PERM SATU GAZ dpsg 0 D PERM PRES GAZ dppg 1 VGN vgn 0 VG PR pr 0 VG SR 8P y 0 VG SMAX smax 0 VG SATUR STUE y FICKV_T fvt FICKV PV fvpv f 7 FICKV PG fvpg f q FICKV S
27. PLAN mams SD XX XX ER D o LAN Te ts Manuel d utilisation Fascicule u2 04 M canique non lin aire Copyright 2015 EDF R amp D Document diffus sous licence GNU FDL http www gnu org copylett fdl html Code Aster on default Titre Notice d utilisation du mod le THM Date 07 07 2015 Page 8 55 Responsable Sylvie GRANET Cl U2 04 05 R vision 13204 MODELISATION rs ddl oa PRE2 CO I I wj w w FREIE L l I D un T lt so 5 wj w Sel mll alal f I I Nja aju alaj Les contraintes g n ralis es et les variables internes sont toutes indiqu es en Annexe 1 Les notations utilis es sont celles d finies dans R7 01 11 2 2 D finition du mat riau Le mat riau est d fini par la commande DEFI MATERIAU comme dans l exemple ci dessous MATERBO DEFI MATERIAU ELAS F E 5 15000000E8 NU 0 20 RHO 2670 0 ALPHA 0 COMP THM LIQU AD GAZ VAPE THM LIQU F RHO 1000 0 UN_ SUR K 0 ALPHA 0 CP 0 0 VISC VISCOLIQ D VISC TEMP DVISCOL THM GAZ F MASS MOL 0 01 CP 0 0 VISC VISCOGAZ D VISC TEMP ZERO THM VAPE GAZ F MASS MOL 0 01 CP 0 0 VISC VISCOGAZ D VISC TEMP ZERO THM AIR DISS F F 0 _HENRY HENRY CP 0 COEF Manu
28. T HR p T En outre il ne faut jamais prendre une valeur de PRES _ VAPE gale z ro 2 2 3 Mot cl facteur THM_LIQU Ce mot cl concerne tous les comportements THM faisant intervenir un liquide confer R7 01 11 Sa syntaxe est la suivante THM LIQU F RHO rho R UN SUR K usk R VISC vi fonction D VISC TEMP dvi fonction ALPHA alp R 0 CP Cp r R RHO Masse volumique du liquide pour la pression d finie sous le mot cl PRE1 du mot cl facteur THM INIT UN SUR K Inverse de la compressibilit du liquide K VISC fonction Viscosit du liquide Fonction de la temp rature D VISC TEMP fonction D riv e de la viscosit du liquide par rapport la temp rature Fonction de la temp rature L utilisateur doit assurer la coh rence avec la fonction associ e VISC ALPHA Coefficient de dilatation lin ique du liquide x Manuel d utilisation Fascicule u2 04 M canique non lin aire Copyright 2015 EDF R amp D Document diffus sous licence GNU FDL http www gnu org copyleft fdl html Code Aster on Titre Notice d utilisation du mod le THM Date 07 07 2015 Page 15 55 Responsable Sylvie GRANET Cl U2 04 05 R vision 13204 Si p d signe la pression du liquide p sa masse volumique et 7 la temp rature le ne dp _ dp comportement du liquide est 3 amp dT Pr K CP Chaleur massique pressi
29. choix cf 14 Concernant les contraintes m caniques la partition des contraintes en contraintes totale et effective s crit o 0 0 o le tenseur g est la contrainte totale c a d celle qui v rifie Div lol r F 0 g est la contrainte effective Pour les lois de contraintes effectives d o f de amp dT o il j V u Vu et x repr sente les variables internes 2 Les composantes du tenseur T se calculent en fonction des pressions hydrauliques L criture adopt e est incr mentale et si l on veut que la valeur des composantes de T soient coh rentes avec la valeur p PRE1 d finie sous le mot cl THM_INIT il faut initialiser les composantes de o parle mot cl SIGM du mot cl facteur ETAT _ Exemple Les champs de d placements initialis s dans suivante CHAMNO CREA CHAMP MAILLAGE MA OPERATION TY HAM AFF res an D S lt 22 IZN IZN lt Z l Et les champs de contrainte de la mani re suivante SIGINIT CREA CHAMP MAILLAGE MA OP TY an DE CE O gt W gt O W gt O gt O RATION AFFE eai INIT de la commande STAT_NON_LINE ETAT_INIT peuvent tre d finis de la mani re IL AFF NO U C DE RFBO LT LA lt CH RFBG LA lt c H O LA E LA te TE
30. dans le cadre non homog ne il faudrait introduire un rel vement de la condition imp _ P P p 0 C est dire des champs particuliers v rifiant cette condition Cela alourdit les critures et mapporte rien on se place donc dans le cadre homog ne p 0 lq On commence alors prendre 7 0 et 7 0 sur tout le bord 0 Q eton obtient q A5 1 1 et q A5 1 2 au sens des distributions On multiplie alors q AS 1 1 par 77 quelconque on multiplie q AS 1 2 par Tr quelconque on int gre par partie on porte les r sultats trouv s dans q A5 3 2 et on obtient Le M tM mma fg Mannal Lou P p ar Sa ulrm m dr 0 VTi T H q A5 3 3 II est clair que q A5 3 3 redonne bien p p p 0 lq En prenant de plus r 7r 0 on trouve f M M M lnnmdr 0 YT 00 q vp as D o l on d duit M tM M n 0sur Q q A5 3 4 A5 4 Les cas non lin aires Nous ne faisons ici qu aborder des questions plus difficiles consistant imposer soit la pression de vapeur soit la pression d air sec Compte tenu des relations q A5 1 7 q A5 1 8 et q A5 1 9 imposer une valeur sur la pression de vapeur revient imposer une relation non lin aire sur la pression de liquide de m me qu imposer une pression d air sec sur la pression de gaz A titre d exemple nous abordons le cas d un pression d air sec impos e pour un comportement LIQU VAPE GAZ et nous supposon
31. donc les sols en particulier Manuel d utilisation Fascicule u2 04 M canique non lin aire Copyright 2015 EDF R amp D Document diffus sous licence GNU FDL http www gnu org copylett fdl html Code Aster k Titre Notice d utilisation du mod le THM Date 07 07 2015 Page 2 55 Responsable Sylvie GRANET Cl U2 04 05 R vision 13204 Table des Mati res 1 L s grandes gne S ccia 3 1 1 Contexte d s tudes TAM iiion aa aaa aariaa aeaa 3 IAEE E E E S EE E A A E EE EN 3 13 Etapes de calul ER RE A 4 2 Les diff rentes tapes d un calcul THM 0000nnnsssnnnnnnnnnnnnnnnnnnnnsnnnnnsnnnnnnnnnnnnnnnrnnnnnennennnnnnnnennnnnenennene 4 2 OHOR AU mMOdel Esiin iaaa aa aaa aana Eaa aa aaa eme bu 4 2 2 D finition gu MAt rIAU 2220 due nca on i ia iade 8 2 2 1 Motele simple COMP THM unca a 9 2 22 Mot cl facteur THM INIT asrianiasr aaa aa aa a an 11 2 2 3 M t cle tacte r TAM LIQU innad sisaniesissknnaaa naat aaa aa aad aaa 13 2 24 Motele fadeur TAM GAZi ireann desde te este aaa 14 2 2 5 Mot cl facteur THM _VAPE_ GAZ nine meenenniesiinemtennssenmennenoinentnentinnectititnnenennens 14 2 2 6 Mot cl facteur THM_AIR DISS in int One hhnemettsiatite 15 2 21 Motele facteur TAM DIE EU aivi 15 2 2 8 R capitulatif des fonctions de couplages et leur d pendance ss 22 Mot cl tacteur TAM DIF EU iriiritia aada naiai 23 PREE EE OIRE E eE TEETE AA
32. gaz parfait c est dire v rifiant la relation P p RT My o P est la pression p la masse volumique My la masse molaire la constante des gaz parfaits et T la temp rature confer R7 01 11 pour plus de d tails Pour un milieu satur uniquement Les donn es n cessaires du champ mat riau sont fournies dans l op rateur DEFI MATERIAU sous le mot cl THM GAZ LIQU SATU Loi de comportement pour un milieux poreux satur par un seul liquide Cf R7 01 11 pour plus de d tails Les donn es n cessaires du champ mat riau sont fournies dans l op rateur DEFI MATERIAU sous le mot cl THM LIQU LIQU GAZ ATM Loi de comportement pour un milieu poreux non satur avec un liquide et du gaz pression atmosph rique confer R7 01 11 pour plus de d tails Les donn es n cessaires du champ Manuel d utilisation Fascicule u2 04 M canique non lin aire Copyright 2015 EDF R amp D Document diffus sous licence GNU FDL http www gnu org copyleft fdl html Code Aster Ho Titre Notice d utilisation du mod le THM Date 07 07 2015 Page 10 55 Responsable Sylvie GRANET Cl U2 04 05 R vision 13204 mat riau sont fournies dans l op rateur D FI MATERIAU sous les mots cl s THM LIQU et THM GAZ LIQU VAPE GAZ E Loi de comportement pour un milieu poreux non satur eau vapeur air sec avec changement de phase confer R7 01 11 pour plus de d tails Les donn e
33. gularisant La particularit de ce second maillage est qu il doit n cessairement tre topologiquement identique au premier maillage m mes n uds et m mes l ments g om triques Pour des raisons de simplification num rique et pour des raisons de coh rence de mod les on conseille d utiliser la proc dure suivante 1 D finition d une discr tisation spatiale pour la structure et la mod lisation THM 2 Duplication du maillage pr c dent sur l ensemble de la structure par la commande CREA MAILLAGE pour d finir le patch 3 Modification ventuelle du type de mailles pour une tude avec multiplicateurs de Lagrange aux centres des l ments 3 1 1 tape 1 D finition du maillage de la structure Manuel d utilisation Fascicule u2 04 M canique non lin aire Copyright 2015 EDF R amp D Document diffus sous licence GNU FDL http www gnu org copylett fdl html Code Aster ui Titre Notice d utilisation du mod le THM Date 07 07 2015 Page 46 55 Responsable Sylvie GRANET Cl U2 04 05 R vision 13204 Cette premi re tape est produire par un mailleur pour discr tiser la structure On r cup re ensuite le maillage par la commande Code_Aster lecture du maillage quadratique MA LIRE MAILLAGE 3 1 2 tape 2 Duplication du maillage pour d finir le patch Il existe dans Code Aster une proc dure qui permet de dupliquer un maillage en conservant les m mes n uds que le
34. org copyleft fdl html Code Aster ps Titre Notice d utilisation du mod le THM Date 07 07 2015 Page 13 55 Responsable Sylvie GRANET Cl U2 04 05 R vision 13204 Tableau 2 2 3 1 contenu de PRE1 et PRE2 On d finit alors les pressions et la temp rature totales par p p p T T 4T Toutes les valeurs en entr e ou sortie conditions aux limites ou r sultat de IMPR RESU sont les ddl ddl inconnues nodales p et T Par contre ce sont les pressions et la temp rature totale qui sont utilis es dans les lois de R d d comportement P T pour les gaz parfaits Pi KAE amp dT pour le liquide et dans la p M Pi K relation saturation pression capillaire Notons que les valeurs nodales peuvent tre initialis es par le mot cl ETAT_INIT de la commande STAT NON LINE cf 2 3 L utilisateur doit tre tr s prudent dans la d finition des valeurs de THM INIT en effet la d finition de plusieurs mat riaux avec des valeurs diff rentes des quantit s d finies sous THM_INIT conduit des valeurs initiales discontinues de la pression et de la temp rature ce qui n est en fait pas compatible avec le traitement g n ral qui est fait de ces quantit s Nous conseillons donc l utilisateur la d marche suivante e si on a initialement un champ uniforme de pression ou de temp rature on le renseigne directement par le mot cl THM INIT e sion a un champ non uniforme on d finit par e
35. param tres n Pr Swr Smax d finis dans DEFI MATERIAU n correspond au param tre VG_N Pr correspond au param tre VG_PR Swr correspond au param tre VG SR A cela doivent tre rajout s deux param tres suppl mentaires correspondant un traitement que l on effectue sur ces courbes Smax qui correspond au param tre VG _SMAX CSAT qui correspond au param tre VG_SATUR Nous allons maintenant expliciter ce qu est ce traitement et ce que sont CSAT et Smax Pour S gt Smax ces courbes sont interpol es par un polyn me de degr 2 CI en Smax de mani re viter d avoir traiter des d riv es de valeurs infinies En effet pour S I ak S _ s et dans le cas de HYDR _ VGM Ok S T Pour viter d avoir traiter ce probl me qui n a a priori pas de signification physique on remplace ces fonctions partir d une saturation Smax par un polyn me du second ordre C7 en ce point Ce qui donne pour la fonction k S Pour S Smax on d termine le polyn me PL S tel que PL Sna SK Sna ok et PL 1 0 Pour S gt Smax k S estremplac par PL S Et dans le cas de HYDR vGM pour k7 S Pour S Smax on d termine le polyn me PG S tel que LPL S PG S max k Di ak7 et PG 0 1 Sna as max Manuel d utilisation Fascicule u2 04 M canique non lin aire Copyright 2015 EDF R amp D Document diffus sous licence GNU FDL http www gnu org copyleft fdl
36. r solution par cha nage s applique actuellement aux probl mes Hydro M caniques satur s uniquement On rappelle d abord les quations de ce probl me V u bV p 0 le p V M 0 i nE TR 2 b o la porosit suit la loi de comportement d p bd Vu dp S Dans le cadre du cha nage on r sout s par ment les probl mes m canique et hydraulique La communication entre les deux calculs s effectue via des variables de commande PTOT et DIVU Pour le probl me m canique la variable de commande PTOT joue le r le de la donn e de pression Pour le probl me hydraulique la variable de commande DIVU joue le r le de la donn e de d formation volumique Ces variables de commande sont calcul es par la commande CHAINAGE THM Manuel d utilisation Fascicule u2 04 M canique non lin aire Copyright 2015 EDF R amp D Document diffus sous licence GNU FDL http www gnu org copyleft fal html Code Aster ps Titre Notice d utilisation du mod le THM Date 07 07 2015 Page 33 55 Responsable Sylvie GRANET Cl U2 04 05 R vision 13204 La m thode illustr e ci dessous est un algorithme basique de cha nage pur de calculs r solution hydraulique l instant 1 r solution m canique l instant 1 r solution hydraulique l instant 2 r solution m canique l instant 2 etc On pourrait envisager des algorithmes plus compliqu s de type point fixe ou gradient conjugu non lin aire mais cela co
37. 2 pressions inconnues HH EF m ar ue hs Si 2 pressions inconnues et thermique THH ga 28 22 y ne E Fe Si mod lisation de lair dissous HH2 29 FH22X Hany parut M a Si mod lisation de lair dissous HH2 30 FH22Y T SRA M u Si mod lisation de lair dissous HH2 31 FH222Z De 2 nor M a Si mod lisation de lair dissous HH2 Manuel d utilisation Fascicule u2 04 M canique non lin aire Copyright 2015 EDF R amp D Document diffus sous licence GNU FDL http www gnu org copylett fdl html Code Aster ouk Titre Notice d utilisation du mod le THM Date 07 07 2015 Page 50 55 Responsable Sylvie GRANET Cl U2 04 05 R vision 13204 Da hu Si mod lisation de l air dissous et thermique THH2 33 QPRIM Q Si thermique 34 PAIR dx Si thermique 35 EELE dy Si thermique 36 EELZ q Si thermique Dans le cas sans m canique et pour les lois de comportements LIQU VAPE GAZ LIQU VAPE LIQU AD GAZ VAPE LIQU AD GAZ les variables internes sont Num ro Nom de composante Aster Contenu 1 V1 p ap lq A 2 y2 p p 3 0 V3 P Pap 4 V4 S lq Dans le cas sans m canique et pour les lois de comportements LIQU GAZ LIQU GAZ ATM les variables internes sont Num ro Nom de composante Aster Contenu 0 1 V1 Pu P 2 V2 p p 3 V3 S lq Dans le cas sans m canique et pour les lois de comportements LIQU SATU les variables internes sont
38. AA AAEE 26 24 Chargements et conditions aux iMHOS 22220800 dune enou is aeerotbatantennan bris tienne lnteererereneeneennu 28 25 Lecalcul NON LEE Lei LA 2e ee 30 2 0 R SOIUIGN PAT COUPA GE kiisi zaai Area neue aaa aa thi am estiment 31 2 52 R SOTION par EhAMAQEzL nan seen murs a Leterme des a nie crite alain 31 2 5 3 Conseils g n raux d UTIISAUONE 44 1Bpehimuadhedhetidiidininnslndaslitenon emo dndd Tania sense 33 ZO L DOS MAMSINO MERS RAR Re a ada ete a tend rate Se 38 PEHEE E E sn sabot untn in ep tanne A n e S anstita ia 38 2 0 2 Variables IRT N S uen uUR as osent une danse Ronnie tete 39 2 0 3 CLEA L EAU aain PP Pt n 40 3 Les mod lisations THM par une approche second gradient 43 Sk DENNOM AU DAC De ee et ne 43 3 1 1 tape 1 D finition du maillage de la structure 43 3 1 2 tape 2 Duplication du maillage pour d finir le patch ss 43 3 1 3 tape 3 Modification ventuelle du maillage du patch 44 32 Cho duU mMmoJelE nisiseme oendna eaka aa aeaa adaa AA 44 SS DeMi dU Mateaki adea eaa tatae aate 45 3 4 Impact sur les conditions Aux Mmes niaaa eaaa aaria 45 3 5 R solution d probl mes sun iniaiaiai aiaia aA aa 46 Annexe 1 Contraintes g n ralis es et variables internes AT Annexe 2 l ments suppl mentaires sur les conditions aux limites en THM 49 Manuel d utilisation Fascicule u2 04 M canique non lin ai
39. B C L lambctn fonction 0 DEFAUT LAMB C T lambctl fonction 0 DEFAUT AMB C L A lambctn fonction 0 DEFAUT 0 DIBS dlambs fonction 0 DEFAUT 0 JD IB T dlambt fonction 0 F DEFAUT 1D LB TN dlambtl fonction J DEFAUT D LB_TL dlambtn fonction FR DEFAUT 1D LB TT dlambtl fonction 0 DEFAUT D LB_TL dlambtn fonction H AO DEFAUT D LB_ PHI dlambp fonction a 20 F DEFAUT 0 SIGMA T S fonction D SIGMA T dst fonction PERM G INTR pgi fonction 0 CHAL VAPO cv fonction EMMAG em R R GAZ Constante des gaz parfaits RHO Pour les comportements hydrauliques masse volumique homog n is e initiale R7 01 11 0 CP Pour les comportements thermiques chaleur massique contrainte constante du solide seul des grains Remarque Manuel d utilisation Fascicule u2 04 M canique non lin aire Copyright 2015 EDF R amp D Document diffus sous licence GNU FDL http www gnu org copyleft fal html Code Aster a Titre Notice d utilisation du mod le THM Date 07 07 2015 Page 19 55 Responsable Sylvie GRANET Cl U2 04 05 R vision 13204 Attention il s agit ici de la chaleur massique uniquement et non pas de p C p comme c est fait pour d autres commandes thermiques La masse volumique des grains est calcul e dans le code partir de la masse volumique homog n is e R7 01 11 BIOT COI jni F
40. BIOT N sont incompatibles pour une m me mod lisation L utilisateur doit renseigner le param tre BIOT COEF si il choisit de mener une tude dans le cas isotrope les param tres BIOT L BIOT N siil choisit de mener son tude en isotrope transverse ou BIOT L BIOT N et BIOT T dans le cas orthotrope 2D La m me r gle est applicable pour les param tres PERM IN LAMB T D LB T et LAMB CT Pour ces termes conductifs dans le cas 2D orthotrope seuls les composants L et T sont requis 2 2 8 R capitulatif des fonctions de couplages et leur d pendance Les tableaux ci dessous rappellent les diff rentes fonctions et leurs ventuelles d pendances et obligations Mot cl facteur THM LIQU RHO p q l UN SURK K lq ALPHA a q CP c VISC lT OUylT D VISC TEMP Mot cl facteur THM_GAZ MASS MOL M as CP cC Toa UalT OUT D VISC TEMP a Mot cl facteur THM VAPE GAZ MASS MOL M CP C vp Manuel d utilisation Fascicule u2 04 M canique non lin aire Copyright 2015 EDF R amp D Document diffus sous licence GNU FDL http www gnu org copylett fdl html Code Aster ut Titre Notice d utilisation du mod le THM Date 07 07 2015 Page 24 55 Responsable Sylvie GRANET Cl U2 04 05 R vision 13204 VISC Hyl T uplT D VISC TEMP OuglT E E OT Mot cl facteur THM_AIR_DISS CP p Cad COEF HENRY Ky
41. Code Aster UE Titre Notice d utilisation du mod le THM Date 07 07 2015 Page 1 55 Responsable Sylvie GRANET Cl U2 04 05 R vision 13204 Notice d utilisation du mod le THM R sum Les mod lisations THM traitent exclusivement de l volution des comportements Thermo Hydro M caniques des milieux poreux satur s ou non par un ou deux fluides La description num rique et physique des ces mod lisations dans Code _Aster est d taill e dans R7 01 10 et R7 01 11 On d taille dans cette documentation la proc dure suivre pour r aliser des simulations dans le contexte des mod lisations THM On d crit dans la premi re partie les diff rentes tapes de calculs dans le cadre g n ral des milieux continus dits g n ralis s cf R7 01 10 Dans cette partie on ne d taillera pas ce qui concerne les mod les m caniques d crits ailleurs On restreint dans la seconde partie l application de ces mod lisations pour traiter les milieux poreux qui subissent une d gradation de leur propri t s m caniques par endommagement du sol ou des roches par exemple Pour cela on tend les mod lisations THM aux milieux microstructure en prenant en compte les effets second gradient cf R5 04 03 L objectif est de corriger la d pendance la discr tisation spatiale des solutions lorsque la loi de comportement m canique consid r e est de type adoucissante ce qui est le cas pour tout mat riau fragile et
42. DR ENDO voir section 31 D PERM LIQ SATU fonction D riv e de la Perm abilit relative au liquide par rapport la saturation fonction de la saturation Uniquement pour les lois de couplage HYDR_UTIL ou HYDR_ENDO voir section 31 0 PERM GAZ fonction Perm abilit relative au gaz fonction de la saturation et de la pression de gaz Uniquement pour les lois de couplage HYDR UTIL ou HYDR ENDO voir section 31 D PERM SATU GAZ fonction D riv e de la perm abilit au gaz par rapport a la saturation fonction de la saturation et de la pression de gaz Uniquement pour les lois de couplage HYDR_UTIL ou HYDR ENDO voir section 31 D PERM PRES GAZ fonction D riv e de la perm abilit au gaz par rapport a la pression de gaz fonction de la saturation et de la pression de gaz Uniquement pour les lois de couplage HYDR UTIL ou HYDR ENDO voir section 31 0 VGN I Pour les comportements de mat riaux non satur s LIQU VAPE GAZ LIQU AD GAZ LIQU AD GAZ VAPE LIQU GAZ LIQU GAZ ATM et dans le cas o la loi hydraulique est HYDR_VGM ou HYDR_VGC voir section 31 d signe le param tre N de la loi de Mualem Van Genuchten servant d finir la pression capillaire et les perm abilit s relatives l eau et au gaz VG PR R Pour les comportements de mat riaux non satur s LIQU VAPE GAZ LIQU AD GAZ LIQU AD GAZ _ VAPE LIQU GAZ LIQU
43. E 07 2 50E 07 3 00E 07 6 Pe Figure 2 5 3 b Exemple de prolongement pour PC lt 0 S Pc est ensuite multipli e par un coefficient de s curit CSAT de mani re ce que la saturation n atteigne jamais 1 probl me que l on ne sait pas traiter Conseil on conseille une valeur de CSAT le plus proche possible de 1 0 99999 par exemple Attention Selon le KIT XXXX choisi tous les comportements ne sont pas licites par exemple si on choisit un milieux poreux non satur on ne peut pas affecter un comportement de type gaz parfait toutes les combinaisons possibles sont r sum es ci dessous Manuel d utilisation Fascicule u2 04 M canique non lin aire Copyright 2015 EDF R amp D Document diffus sous licence GNU FDL http www gnu org copyleft fdl html Code Aster Pe Titre Notice d utilisation du mod le THM Date 07 07 2015 Page 40 55 Responsable Sylvie GRANET Cl U2 04 05 R vision 13204 __ M canique Couplage hydraulique Loi hydraulique KIT HM ELAS MOHR COULOMB CJS GAZ LIQU SATU HYDR UTIL KIT_ THM HUJEUX LAIGLE CAM CLAY LIQU GAZ ATM DRUCK_PRAGER LEK DRUCK PRAG N A VISC DRUCK PRAG ELAS GONF YHOEK BROWN TOT HOEK BROWN EFF KIT HM MAZARS ENDO ISOT BETON GAZ LIQU SATU HYDR ENDO KIT THM LIQU GAZ ATM KIT HHM ELAS MOHR_COULOMB CJS
44. E TAB 2 FICHIER RESULTAT FORMAT AGRAF PAGINATION INST NOM PARA INST COOR X V2 2 6 2 Variables internes Outre les g n ralit s propos es ci dessus il existe d sormais un moyen plus convivial d extraire les variables internes cf doc U4 81 01 Pour cela des champs ont t cr s dont le principe est d extraire du champ VARI ELGA ou VARI ELNO pour les champs calcul s aux n uds la variable interne qui nous int resse via un mot cl plus parlant que V1 V2 En tant que post traitement ces champs sont calcul s par CALC CHAMP La syntaxe utiliser est la suivante e pour un champ aux l ments cham elem GAMP CALC CHAMP RESULTAT UO OPTION VAEX ELNO NOM VARI GAMP Manuel d utilisation Fascicule u2 04 M canique non lin aire Copyright 2015 EDF R amp D Document diffus sous licence GNU FDL http www gnu org copyleft fdl html Code Aster Version default Titre Notice d utilisation du mod le THM Responsable Sylvie GRANET Date 07 07 2015 Page 42 55 Cl U2 04 05 R vision 13204 e pour un champ aux n uds cham no GAMP CALC CHAMP reuse GAMP ESULTAT GAME VART INTERNE VAEX NOEU Puisqu il s agit juste d extraire une et une seule variable interne les cham elem correspondants doivent avoir t calcul s au pr alable U0O CALC CHAMP reuse U0 ELE MODELE
45. HHMD Mouillage du b ton 3D LIQU GAZ avec endommagement Wtnv130a 3D_THH2S Chauffage d un milieu 3D LIQU AD GAZ VAPE poreux avec air dissous z wtnv140 pi Essai triaxial drain 3D LIQU SATU anisotrope 3 Les mod lisations THM par une approche second gradient Les mod lisations de type second gradient et second gradient de dilatation sont d crites dans la documentation R5 04 03 dans le cadre des milieux poreux Leur utilisation est indispensable lorsque les lois de comportements m caniques mod lisent une d gradation du mat riau on parle de lois adoucissantes En effet dans ce cas les solutions d pendent du maillage y compris lorsque le milieu est coupl avec les quations de l hydraulique L int gration num rique de ces mod les a suivi un protocole atypique lors de sa mise en uvre pour faciliter son utilisation dans Code Aster Ainsi la partie r gularisante second gradient est d finie comme un patch qu il suffit de coller sur la structure mod liser On d crit ci dessous les tapes suivre pour produire une telle simulation D finition du patch Choix du mod le D finition du mat riau Conditions aux limites Calcul 3 1 D finition du patch O1 B N TT Pour la simulation d une tude THM par une approche de type second gradient il faut d finir un maillage quadratique pour la discr tisation de la structure puis un second maillage pour le patch r
46. LIQ THV S D T S D U AD GAZ VAPE 2 2 2 Mot cl facteur THM INIT Pour tous les comportements Thermo Hydro M caniques il permet de d crire un tat de r f rence de la structure cf R7 01 10 et R7 01 11 Sa syntaxe est la suivante x THM INIT F TEMP temp R PRE1 prel R PRE2 pre2 R PORO poro R 0 PRES VAPE pvap R Pour bien comprendre ces donn es il faut distinguer les inconnues aux n uds que nous appelons N 5 ref ef lu et les valeurs d finies sous le mot cl THM_INIT que nous appelons P et T x z ddl u j PRE ddl PRE2 ddl T La signification des inconnues PRE1 et PRE2 varie suivant les mod les En notant P la pression d eau Paa la pression d air dissous Py la pression de liquide Py Pwt Paa Pas Pw la pression de vapeur Pas la pression d air sec et p Pat Py la pression totale de gaz et P Pe Pu la pression capillaire aussi appel e succion on a les significations suivantes des inconnues PRE1 et PRE2 Comportement LIQU SATU LIQU GAZ ATM GAZ LIQU VAPE GAZ KIT PREI Pu Pu Po PeT Po Pu PRE2 Pe Comportement LIQU GAZ LIQU VAPE LIQU AD GAZ _ VAPE KIT ou LIQU AD GAZ PREI PeT Pe Pu Pu PeT Pe Pu PRE2 Pe Pe Manuel d utilisation Fascicule u2 04 M canique non lin aire Copyright 2015 EDF R amp D Document diffus sous licence GNU FDL http www gnu
47. LIQU GAZ LIQU VAPE HYDR_ UTIL KIT_THHM HUJEUX LAIGLE GAZ HYDR VGM CAM CLAY DRUCK PRAGI LIQU AD VAPE HYDR VGC DRUCK_PRAG N A LIQU AD GAZ VISC DRUCK PRAG ELAS GONF LEK HOEK BROWN TOT HOEK BROWN EFF BARC _GAZ LIQU VAPI _AD VAPE GAZ AD GAZ _GAZ LIQU VAPE HYDR UTIL HYDR VGM _AD VAPI HYDR VGC HYDR UTIL Remarque En cas de probl me de convergence il peut tre tr s utile d activer la recherche lin aire La recherche lin aire n am liore cependant pas syst matiquement la convergence elle est donc manier avec pr caution 2 6 Le post traitement 2 6 1 G n ralit s Le post traitement des donn es en THM ne varie pas du post traitement Aster habituel On rappelle juste que pour toute impression des valeurs aux n uds qui ne sont pas les inconnues nodales il est n cessaire de calculer ces valeurs par la commande CALC CHAMP dont on donne un exemple ci apr s Pour les contraintes U0O CALC CHAMP reuse U0 MODELE MODELE CHAM MATER C HMATO TOUT _ORDRI CONTRAINTE SIGM ELNO gt RESULTAT UO Pour les variables internes U0O CALC CHAMP reuse U0 MODELE MODELE CHA ATER CHMATO Manuel d utilisation Fascicule u2 04 M canique non lin aire
48. MATER MATERIAU m AFF T E _VARC F TOUT OUI EVOL REPTOT AXI 50 KIT H LIQU SATU HYDR UTIL PASSUB E NOM VARC PTOT E MODM EPLA STAT_NON_LIN TD Z H Q MH O0 Z else EPLA STAT NON LIN F an MO CH AR CO ET IN N F an CO SO if k gt 1 DETRUIR DETRUIR E INFO 1 CONC 2 5 3 Conseils g n raux d utilisation reu EC ER MATEME HARGE C ENT F R AT F M F LIST_IN i F LIST_IN ATRICI REAC 11 E ER m T F ITER ETHOD se D EPLA D an LE MODMEC A EXCIT F C M AT H CR 17 2 NV V PORTE IN TON F ATER MATEME CHARGE C IVAGE IST IN ELA NO IT HARM ELATIO E TANG E MUM HARM EC ELAS UNPASSUB UNPAS ENTE 10 GLOB MAXI 10 PS PCENT PIVOT 100 Me S S F EC y ST UNPAS ELAS LI DEPLA IN T_IN on EMENT _F M TER a ERGENCE _ EUR F e EPT F NOM DEFVHY TANG ER E
49. PA fonction Pour les comportement LIQU AD GAZ VAPE et LIQU AD GAZ partie multiplicative du coefficient de Fick fonction de la pression d air dissous pour la diffusion de lair dissous dans le m lange liquide Voir remarque en section 23 Manuel d utilisation Fascicule u2 04 M canique non lin aire Copyright 2015 EDF R amp D Document diffus sous licence GNU FDL http www gnu org copylett fdl html Code Aster Fe Titre Notice d utilisation du mod le THM Date 07 07 2015 Page 22 55 Responsable Sylvie GRANET Cl U2 04 05 R vision 13204 FICKA PL fonction Pour les comportement LIQU AD GAZ VAPE et LIQU AD GAZ partie multiplicative du coefficient de Fick fonction de la pression de liquide pour la diffusion de lair dissous dans le m lange liquide Voir remarque en section 23 9 DFAT fonction Pour les comportement LIQU AD GAZ VAPE et LIQU AD GAZ d riv e du coefficient FICKA T par rapport la temp rature Voir remarque en section 23 LAMB T fonction Partie multiplicative de la conductivit thermique du m lange d pendant de la temp rature Voir remarque en section 23 Cette op rande est obligatoire dans le cas thermique et isotrope LAMB TL LAMB TN fonction Dans le cas isotrope transverse parties multiplicatives de la conductivit thermique du m lange d pendant de la temp rature pour les dir
50. RE1 et PRE2 sont reli es par la relation lin aire x PREI y PRE2 z Remarque Les flux impos s sont des quantit s scalaires qui peuvent s appliquer sur une ligne ou une surface interne au solide mod lis Dans ce cas ces conditions aux limites correspondent une source 2 5 Le calcul non lin aire La r solution peut tre effectu e de 2 mani res 1 1a m thode du couplage c est la plus fiable la plus robuste et la plus ancienne 2 1a m thode du cha nage c est une nouvelle strat gie adapt e pour les probl mes faiblement coupl s et pour les probl mes ne pouvant pas tre r solus actuellement par la m thode du couplage Ex ecalcul avec la loi de comportement m canique ENDO HETEROGENE qui n est pas disponible dans le kit THM ecalcul avec les mod lisations hydrauliques diphasiques en volumes finis qui ne sont pas disponibles dans le kit THM coupl es avec la m canique Manuel d utilisation Fascicule u2 04 M canique non lin aire Copyright 2015 EDF R amp D Document diffus sous licence GNU FDL http www gnu org copylett fdl html Code Aster s Titre Notice d utilisation du mod le THM Date 07 07 2015 Page 32 55 Responsable Sylvie GRANET Cl U2 04 05 R vision 13204 Le c ur de la r solution est la commande STAT NON LINE A cette commande on affecte le mod le mot cl MODELE les mat riaux mot cl CHAM MATER le les chargements mot cl E
51. REMENT F LIST INST UNPASSUB H else PRELIQ STAT_NON_LINE reuse PRELI Q MODELE MODHYD CHA ATER MATEHY Manuel d utilisation Fascicule u2 04 M canique non lin aire Copyright 2015 EDF R amp D Document diffus sous licence GNU FDL http www gnu org copyleft fdl html Code Aster Version default Titre Notice d utilisation du mod le THM Responsable Sylvie GRANET CONV COMPORTE INCR k gt 1 ETRUIR D E INFO 1 CONC Fr E l PTOT CHAINAG _THM RES MO n m EXCIT _F CHARG SOLV ARCHIVAG ETAT_INIT F PT TYE E CHARHYD HODE MUMPS IST _INST UN VOL NOLI EUR _F MET E F Ea PR Date 07 07 2015 Page 34 55 Cl U2 04 05 R vision 13204 PCENT_PIVOT 100 PAS ELIQ NST listins t k 1 I ERG OF F ENCE F ITER_GLOB F RELATION ELATION KIT ENT F LIST INST UN F F H N R EM EPTOT MATE _F NOM R TAT PR DEL D ELIQ E MODMEC CHAINAGE HYDR M m E r MAT EM E AFE E MAT AFF TYE INST listins ERIAU MAILLAG my E r D _RESU EVOL VARC tIk F E MAIL E F TOUT OUI
52. U VAPE LIQU GAZ ATM GAZ LIQU VAPE GAZ LIQU GAZ LIQU AD GAZ VA PE LIQU AD GAZ PREI Pu Pu Pu Pe Pe PT Pu PRE2 Pe E Les flux associ s sont Pour PRE1 FLUN_HYDR1 M M n M amp MY 2a ext ext n M at M Pour PRE2 FLUN_HYDR2 M t M Nous allons donc r sumer les diverses possibilit s en distinguant le cas o on impose des valeurs PRE1 et ou PRE2 et celui o on travaille sur des combinaisons des 2 On signale qu on peut bien s r avoir diff rents types de conditions aux limites suivant les morceaux de fronti re groupes de n uds ou de mailles que l on traite Pour un aper u plus complet et plus d taill de la mani re dont sont trait es les conditions aux limites dans le cas non satur on se reportera la note reproduite dans l annexe 2 e Cas des conditions aux limites faisant intervenir les inconnues principales PRE1 et PRE2 Manuel d utilisation Fascicule u2 04 M canique non lin aire Copyright 2015 EDF R amp D Document diffus sous licence GNU FDL http www gnu org copyleft fal html Code Aster a Titre Notice d utilisation du mod le THM Date 07 07 2015 Page 31 55 Responsable Sylvie GRANET Cl U2 04 05 R vision 13204 eal N On r sume ici le cas habituel o on impose des valeurs PRE1 et ou PRI e Dirichlet sur PRE1 et Dirichlet sur PRE2 L utilisateur impose une valeur PREI et PRE2 les flux sont des r sultats de
53. V_S FVT FV PG ICKA T CKA PA CKA PL CKA S DFAT CP T T T T T PERM_INPERM E O 0 ND PERM_L PERM N PERM T LAMB_T LAMB_IL T T T T T T T T LAMB_TN LAMB_TT LAMB_S LAMB_PHI LAMB_CT LAMB_C L LAMB_C_N L M CT annnm 0ol00 0 0 212121100222 En baa aa basi iaie a aa ma a a e R olee e e Ca aa aa a a e VISC D VISC_ TEMP ALPHA CP THM_GAZ MASS_MOL VISC D VISC_TEMP CP THM_VAPE_GAZ MASS MOL CP VISC D VISC TEMP TAM_AIR_DISS CP COEF_ HENRY 0 0 0 0 0 0 0 0 0 0 10 O0 0 1010 0 0 0 10 0 0l0 10100 010 10 0 0 0 1 010 0 010 10 0 0 0 O O O O 10 0 0 0 10 0 0 0 9 O O 1010 0 0 0 10 10 0 0 1 10 010 0 0 O O 0 0 e o O O Le tableau ci dessous r sume la compatibilit entre les lois de comportement et les mod lisations chosies h dalita autoris e _HM _ S D ST LIQU U GAZ HHM _ S D CAD GAZ AD GAZ VAP _SATU GAZ _GAZ ATM HH2M S D SI THH2 S D Manuel d utilisation Fascicule u2 04 M canique non lin aire Copyright 2015 EDF R amp D Document diffus sous licence GNU FDL http www gnu org copylett fdl html Code Aster o Titre Notice d utilisation du mod le THM Date 07 07 2015 Page 12 55 Responsable Sylvie GRANET Cl U2 04 05 R vision 13204 MODELISATION Loi de comportement hydraulique autoris e LTQU_VAPF HHM LIQU
54. XCIT et l tat initial mot cl ETAT INIT que l on a d finis par toutes les commandes d crites pr c demment T Pour les informations g n rales concernant cette commande et sa syntaxe on se reportera sa documentation On pr cise juste que la m thode de calcul est une m thode de Newton On ne parle donc ci dessous que de ce qui est sp cifique aux calculs THM savoir les mots cl s facteurs RELATION et RELATION KIT du mot cl COMPORTEMENT qui sont troitement li s Attention Sous le mot cl facteur NEWTON on doit mettre une matrice de type TANGENTE et non ELASTIQUE On pr sente d abord des exemples d utilisation pour les deux strat gies de r solution 2 5 1 R solution par couplage Dans ce cas la r solution est effectu e par une seule commande STAT_NON_LINE UO STAT NON LINE MODELE MODELE CHAM MATER CHMATO EXCIT _F CHARGE T IMP _F CHARGE CALINT FONC MULT FLUX COMPORTEMENT F RELATION KIT THHM RELATION KIT ELAS LIQU GAZ HYDR UTIL ETAT INIT F DEPL CHAMNO SIGM SIGINIT INCREMENT F LIST INST INSTI NEWTON F MATRICE TANGENTE REAC ITER 1 CONVERGENCE F RESI GLOB RELA 1 E 06 ITER GLOB MAXI 15 ITER INTE MAXI 5 ARCHIVAGE F PAS ARCH 1 2 5 2 R solution par cha nage La
55. a d riv e en fonction de la pression capillaire ainsi que la perm abilit relative et sa d riv e en fonction de la saturation L utilisateur rentre ces courbes via une s rie de formules ensuite appel e par DEFI MATERIAU cf 16 e Soit il choisit HYDR ENDO c est la m me chose mais permet l utilisation des lois avec endommagement MAZARS et ENDO ISOT BETON la perm abilit est alors coupl e l endommagement e Soit il choisit HYDR VGM ou HYDR VGC ce qui signifie que les lois de capillarit et perm abilit s ob iront au mod le de Mualem Van Genuchten pr d fini dans le code autrement dit la capillarit est donn e par une loi de Van Genuchten S S Swe wr 1 et m 1 n l S wr La perm abilit relative l eau s exprime alors en int grant le mod le de pr diction propos par Mualem 1976 dans le mod le de capillarit de Van Genuchten 2 su Manuel d utilisation Fascicule u2 04 M canique non lin aire Copyright 2015 EDF R amp D Document diffus sous licence GNU FDL http www gnu org copyleft fal html Code Aster un Titre Notice d utilisation du mod le THM Date 07 07 2015 Page 37 55 Responsable Sylvie GRANET Cl U2 04 05 R vision 13204 La perm abilit au gaz est formul e de fa on similaire par une loi de parker pour HYDR VGM m 2m kr y 1 S ye iga ou par une loi cubique pour HYDR_VGC k 1 S avec dans tous les cas les
56. artie de la conductivit thermique du m lange d pendant de la temp rature par rapport la temp rature dans le cas isotrope 9 D LB TL D LB TN fonction Dans le cas isotrope transverse d riv es des parties de la conductivit thermique du m lange d pendant de la temp rature par rapport la temp rature pour les directions L et N du rep re local d orthotropie 9 D LB TL D LB TT fonction Manuel d utilisation Fascicule u2 04 M canique non lin aire Copyright 2015 EDF R amp D Document diffus sous licence GNU FDL http www gnu org copyleft fal html Code Aster un Titre Notice d utilisation du mod le THM Date 07 07 2015 Page 23 55 Responsable Sylvie GRANET Cl U2 04 05 R vision 13204 Dans le cas orthotrope 2D d riv es des parties de la conductivit thermique du m lange d pendant de la temp rature par rapport la temp rature pour les directions L et TN du rep re local d orthotropie 9 DI 9 DI B S fonction D riv e de la partie de la conductivit thermique du m lange d pendant de la saturation B_PHI fonction D riv e de la partie de la conductivit thermique du m lange d pendant de la porosit 0 EMMAG fonction Coefficient d emmagasinement Ce coefficient n est pris en compte que dans les cas des mod lisations sans m canique Remarque Attention il est important de rappeler l utilisateur que les param tres BIOT COEF et BIOT L
57. ation dans le cadre non homog ne il faudrait introduire un rel vement de la condition pp c est dire un champ particulier v rifiant cette condition Cela alourdit les critures et n apporte rien on se place donc dans le cadre homog ne p 0 Manuel d utilisation Fascicule u2 04 M canique non lin aire Copyright 2015 EDF R amp D Document diffus sous licence GNU FDL http www gnu org copyleft fdl html Code Aster ou Titre Notice d utilisation du mod le THM Date 07 07 2015 Page 53 55 Responsable Sylvie GRANET Cl U2 04 05 R vision 13204 Dans q A5 1 3 et q A5 1 4 on peut donc prendre et mr quelconque et mr v rifiant m 0 sur 0 Q On commence alors prendre mr 0 et mr Q sur tout le bord 5Q et on obtient q A5 1 1 et q A5 1 2 au sens des distributions On multiplie alors q A5 1 1 par mr tel que rmr 0 sur 0Q2 on multiplie q A5 1 2 par mr quelconque on int gre par partie on tient compte de q A5 1 3 et q A5 1 4 et on obtient en d signant par n la normale au bord Lo ManmdT fia MramadT Yr On en d duit M n M su00 2ext e Dirichlet PRE2 Neuman PRE1 C est le cas o on impose une valeur PRE2 et une valeur au flux associ PRE en ne disant rien sur PRET ou en donnant une valeur FLUN_HYDR1 de FLUX THM REP dans AFFE CHAR MECA Appelons M imp cette quantit impos e qui vaudra 0 si rien n est dit relativement
58. axisym trique Thermique m canique hydraulique avec deux pressions inconnues s lective AXIS THH2MD axisym trique Thermique m canique hydraulique avec deux pressions inconnues et deux constituants dans la phase gazeuse lump AXIS THH2MS axisym trique Thermique m canique hydraulique avec deux pressions inconnues et deux constituants dans la phase gazeuse s lective AXIS HHD axisym trique hydraulique avec deux pressions inconnues lump AXIS HHS axisym trique hydraulique avec deux pressions inconnues s lective AXIS HH2D axisym trique hydraulique avec deux pressions inconnues et deux constituants dans la phase gazeuse lump AXIS HH2S axisym trique hydraulique avec deux pressions inconnues et deux constituants dans la phase gazeuse s lective 3D HM 3D M canique hydraulique avec une pression inconnue 3D HMD 3D M canique hydraulique avec une pression inconnue lump 3D HMS 3D M canique hydraulique avec une pression inconnue s lective 3D HM SI 3D M canique hydraulique avec une pression inconnue sous int gr e 3D HHM 3D M canique hydraulique avec deux pressions inconnues 3D HHMD 3D M canique hydraulique avec deux pressions inconnues lump 3D HHMS 3D M canique hydraulique avec deux pressions inconnues s lective 3D HH2MD 3D M canique hydraulique avec deux pressions inconnues et deux constituants dans la phase gazeuse lump 3D HH2MS 3D M canique hydraulique avec deux pressions inconnues et d
59. e 47 55 Responsable Sylvie GRANET Cl U2 04 05 R vision 13204 Les inconnues nodales des mod lisations THM sont alors enrichies apr s ajout du patch second gradient Le nombre d inconnues varie selon le patch consid r et le type de mailles caract risant la discr tisation spatiale du patch Pour la mod lisation second gradient de dilatation c est donc par le choix de la topologie de la maille que l interpolation des multiplicateurs de Lagrange sera d termin e voir le tableau ci dessous On r sume dans le tableau ci dessous les diff rentes possibilit s o l on note en accord avec R5 04 03 fs les composantes du tenseur des d formations microscopiques X la d formation volumique microscopique et le multiplicateur de Lagrange Mod lisation Type de mailles Degr s de libert Position du degr de libert D_ PLAN 2DG TRIA7 QUADI i Aux sommets de chaque l ment Au centre de chaque l ment D PLAN DIL TRIA7 QUAD9 x Aux sommets de chaque l ment Au centre de chaque l ment TRIA6 QUADB X Aux sommets de chaque l ment 3D_DIL TETRA10 HEXA20 Y Aux sommets de chaque l ment PENTA15 On proc de alors de la fa on suivante MODELE AFFE MODELE MAILLAGE MAILLAGE AFFE _F GROUP MA ROCHE PHENOMENE MECANIQUE MODELISATION D PLAN HMS _F GROUP MA ROCHE REG PHENOMENE
60. e m lange gazeux Voir remarque en section 23 FICKV PV fonction Pour les comportements LIQU VAPE GAZ et LIQU AD GAZ VAPE partie multiplicative du coefficient de Fick fonction de la pression de vapeur pour la diffusion de la vapeur dans le m lange gazeux Voir remarque en section 23 9 DEVT fonction Pour les comportements LIQU VAPE GAZ et LIQU AD GAZ VAPE d riv e du coefficient FICKV_T par rapport la temp rature Voir remarque en section 23 0 D FV PG fonction Pour les comportements LIQU VAPE GAZ et LIQU AD GAZ VAPE d riv e du coefficient FICKV_PG par rapport la pression de gaz Voir remarque en section 23 0 FICKA T fonction Pour les comportement LIQU AD GAZ VAPE et LIQU AD GAZ partie multiplicative du coefficient de Fick fonction de la temp rature pour la diffusion de lair dissous dans le m lange liquide Le coefficient de Fick pouvant tre fonction de la saturation la temp rature la pression d air dissous et la pression de liquide on le d finit comme un produit de 4 fonctions FICKA T FICKA S FICKV PA FICKV PL Dans le cas de LIQU AD GAZ VAPE seul FICKA T est obligatoire Voir remarque en section 23 0 FICKA S fonction Pour les comportement LIQU AD GAZ VAPE et LIQU AD GAZ partie multiplicative du coefficient de Fick fonction de la saturation pour la diffusion de l air dissous dans le m lange liquide Voir remarque en section 23 0 FICKA
61. e m thode alternative qui peut s av rer plus rapide pour les grosses tudes industrielles Cette m thode utilise MACR ADAP MAIL On suppose que resu est compos de nbinst instants stock s dans la liste linst Le post traitement pr c dent peut galement se faire de la mani re suivante Manuel d utilisation Fascicule u2 04 M canique non lin aire Copyright 2015 EDF R amp D Document diffus sous licence GNU FDL http www gnu org copyleft fdl html Code Aster s Titre Notice d utilisation du mod le THM Date 07 07 2015 Page 44 55 Responsable Sylvie GRANET Cl U2 04 05 R vision 13204 PR None nbinst CO D PREB None nbinst for k in range nbinst PRI ea k CREA_CHAMP TYPE CHAM NOEU DEPL R OPERATION EXTR RESULTAT resu NOM CHAM DEPL INST linst k a gal motclel motcle2 motclel MAJ CHAM motcle2 AFFE for k in range nbinst PREB k CO PREB d k motcle1 MAJ CHAM append F TYPE CHAM NOEU DEPL R CHAM GD PRE Kk CHAM MAJ PREBIk motcle2 AFFE append _F CHAM GD PREB k INST linstI k MACR ADAP MAIL ADAPTATION MODIFICATION DEGRE OUI MATLLAGE N MAILOB MATLLAGE NP1 CO MAILQ4 x motclel RESULINB CREA RESU OPERATION AFFE TYPE RESU EVOL NOLI ap NOM CHAM DEPL motcle2
62. ections L et N du rep re local d orthotropie Ces op randes sont obligatoires dans le cas o on a de la thermique en isotropie transverse LAMB TL LAMB TT fonction Dans le cas orthotrope 2D parties multiplicatives de la conductivit thermique du m lange d pendant de la temp rature pour les directions L et T Ces op randes sont obligatoires dans le cas o on a de la thermique en orthotropie 0 LAMB S fonction Partie multiplicative gale 1 par d faut de la conductivit thermique du m lange d pendant de la saturation Voir remarque en section 23 0 LAMB PHI fonction Partie multiplicative gale 1 par d faut de la conductivit thermique du m lange d pendant de la porosit cf 2 2 9 LAMB CT fonction Partie de la conductivit thermique du m lange constante et additive dans le cas isotrope cf 2 2 9 Cette constante est gale z ro par d faut 0 LAMB C L LAMB C N fonction Dans le cas isotrope transverse parties de la conductivit thermique du m lange constantes et additives cf 2 2 9 pour les directions L et N du rep re local d orthotropie Ces constantes sont gales z ro par d faut 0 LAMB C L LAMB C T fonction Dans le cas orthotrope 2D parties de la conductivit thermique du m lange constantes et additives cf 2 2 9 pour les directions L et T du rep re local Ces constantes sont gales z ro par d faut 9 DIRT fonction D riv e de la p
63. el d utilisation Fascicule u2 04 M canique non lin aire Copyright 2015 EDF R amp D Document diffus sous licence GNU FDL http www gnu org copyleft fdl html Code Aster enu Titre Notice d utilisation du mod le THM Date 07 07 2015 Page 9 55 Responsable Sylvie GRANET Cl U2 04 05 R vision 13204 THM_INIT F TEMP 300 0 PREI1 0 0 PRE2 1 E5 PORO 1 PRES VAPE 1000 0 Fa THM DIFFU F R GAZ 8 32 RHO 2200 0 CP 1000 0 BIOT COEF 1 0 SATU PRES SATUBO D SATU PRES DSATBO PESA X 0 0 ESA Y 0 0 ESA Z 0 0 RM IN KINTBO RM LIQU UNDEMI _PERM LIQU SATU ZERO ERM GAZ UNDEMI PERM SATU GAZ ZERO PERM PRES GAZ ZERO FICKV T ZERO FICKA T FICK AMB T ZERO E an E pa P P P P D P D D Nous allons maintenant d tailler chacun des mots cl s Nous ne nous attacherons pas ici la partie m canique si m canique il y a qui d pend de la loi de comportement choisie On se reportera pour cela la documentation de DEFI MATERIAU U4 43 01 2 2 1 Mot cl simple COMP_THM Permet de s lectionner d s la d finition du mat riau la loi de couplage THM Les lois possibles sont COMP THM YLIQU SATU i YLIQU GAZ i GAZ YLIQU GAZ ATM YLIQU AD GAZ YLIQU VAPE GAZ YLIQU AD GAZ VAPE YLIQU VAPE GAZ Loi de comportement d un
64. essaire pour prendre en compte les interpolations des multiplicateurs de Lagrange MAILLAGE CREA MAILLAGE MAILLAGE MAIL MODI MAILLE F GROUP MA ROCHE REG OPTION QUAD8 9 _F GROUP MA ROCHE REG OPTION TRIAG 7 Cette tape n est possible qu en 2D lorsque l interpolation l ment fini consid re des multiplicateurs de Lagrange constant par l ment 3 2 Choix du mod le Les patchs r gularisants second gradient ou second gradient de dilatation sont combiner avec n importe quel type de mod lisation THM Ils n ont d int r t bien entendu qu en pr sence d une composante m canique adoucissante Les mod lisations disponibles sont Mod lisation Mod lisation g om trique Ph nom ne pris en compte D PLAN 2DG Plane Second gradient D PLAN DIL Plane Second gradient de dilatation 3D DIL 3D Second gradient de dilatation Remarque A noter qu il est fortement conseill d utiliser les mod lisations second gradient de dilatation pour traiter les comportements des sols et des roches ou plus particuli rement tout type de mat riau pr sentant une variation volumique lors de sa d gradation Manuel d utilisation Fascicule u2 04 M canique non lin aire Copyright 2015 EDF R amp D Document diffus sous licence GNU FDL http www gnu org copyleft fdl html Code Aster a Titre Notice d utilisation du mod le THM Date 07 07 2015 Pag
65. eux constituants dans la phase gazeuse s lective 3D HH2M SI 3D M canique hydraulique avec deux pressions inconnues et deux constituants dans la phase gazeuse sous int gr e Seule mod lisation valide en dynamique 3D THHD 3D Thermique hydraulique avec deux pressions inconnues lump 3D THH2D 3D Thermique hydraulique avec deux pressions inconnues et Manuel d utilisation Fascicule u2 04 M canique non lin aire Copyright 2015 EDF R amp D Document diffus sous licence GNU FDL http www gnu org copyleft fal html Code Aster Version default Titre Notice d utilisation du mod le THM Responsable Sylvie GRANET Date 07 07 2015 Page 7 55 Cl U2 04 05 R vision 13204 MODELISATION Mod lisation Ph nom nes pris en compte g om trique deux constituants dans la phase gazeuse lump 3D THH2S 3D Thermique hydraulique avec deux pressions inconnues et deux constituants dans la phase gazeuse s lective 3D TH 3D Thermique m canique hydraulique avec une pression inconnue 3D THMD 3D Thermique m canique hydraulique avec une pression inconnue lump 3D THMS 3D Thermique m canique hydraulique avec une pression inconnue s lective 3D THVD 3D Thermique m canique hydraulique avec deux pressions inconnues 2 phases eau liquide et vapeur lump 3D THH 3D Thermique m canique hydraulique avec deux
66. html Code Aster ut Titre Notice d utilisation du mod le THM Date 07 07 2015 Page 38 55 Responsable Sylvie GRANET Cl U2 04 05 R vision 13204 Pour S gt Smax k S est remplac par PG S comme l exemple Figure 2 5 3 a r Dans le cas d une loi cubique aucun traitement sp cial n est n cessaire Manuel d utilisation Fascicule u2 04 M canique non lin aire Copyright 2015 EDF R amp D Document diffus sous licence GNU FDL http www gnu org copyleft fdl html Code Aster a Titre Notice d utilisation du mod le THM Date 07 07 2015 Page 39 55 Responsable Sylvie GRANET Cl U2 04 05 R vision 13204 Perm abilit relative au gaz x Van Genuchten e Van Genuchten ProlongementC1 5 00E 03 0 00E 00 i 0 985 Smax 0 99 0 995 1 Figure 2 5 3 a Exemple de prolongement d une perm abilit relative Pour la succion S Pc et pour Pc lt Pcmin avec S Pcmin Smax on prolonge la courbe S Pc par une hyperbole telle que la courbe soit CZ en ce point Pour S gt Smax S Pc 1 B P Avec et B tels que la courbe soit C en Smax On a donc bien une courbe d croissante qui tend vers 1 quand Pc tend vers o Ce traitement nous permet de g rer des pressions capillaires n gatives dans Code_Aster voir l exemple Figure 2 5 3 b S Pe p4 5 00E 0 0 00E 00 5 00E 06 1 00E 07 1 50E 07 2 00
67. i dessous mot cl ELAS Il ny a aucune incompatibilit avec les lois de comportement A noter tout de m me qu une simulation THM par une approche second gradient n a d int r t qu en pr sence d une composante m canique dans le calcul coupl Il est important de noter que lorsque la mod lisation prend en compte une interpolation des multiplicateurs de Lagrange constants par l ments il est n cessaire d utiliser le solveur Mumps pour la r solution D finition du calcul statique non lin aire avec une loi de comportement associ chacune des mod lisation comportement de type Drucker Prager pour le premier gradient et lasticit lin aire pour le second gradient U1 STAT NON LINE MODELE MODELE CHAM MATER MATE EXCIT _F CHARGE CHCI SOLVEUR _F METHODE MUMPS COMPORTEMENT F GROUP MA ROCHE RELATION DRUCK PRAGER _F GROUP MA ROCHE REG RELATION ELAS NEWTON F MATRICE TANGENTE REAC ITER 1 INCREMENT F LIST INST TEMPS On trouvera un exemple de mod lisation par second gradient par exemple dans le cas test s511117 Manuel d utilisation Fascicule u2 04 M canique non lin aire Copyright 2015 EDF R amp D Document diffus sous licence GNU FDL http www gnu org copyleft fal html Code Aster on
68. ight 2015 EDF R amp D Document diffus sous licence GNU FDL http www gnu org copylett fdl html Code Aster do Titre Notice d utilisation du mod le THM Date 07 07 2015 Page 30 55 Responsable Sylvie GRANET Cl U2 04 05 R vision 13204 Pour les conditions de Neuman la syntaxe sera alors comme sur l exemple suivant NEUI AFFE CHAR MECA MODELE MODELE FLUX THM REP F GROUP MA DROIT FLUN 200 FLUN HYDR1 0 0 FLUN HYDR2 0 0 NEU2 AFFE CHAR MECA MODELE MODELE PRES REP F GROUP MA DROIT PRES 2 T On d finit ensuite la fonction multiplicative que l on veut appliquer par exemple NEUI FLUX DEFI FONCTION NOM_PARA INST VALE 0 0 386 0 315360000 0 312 0 9460800000 0 12 6 Les chargements sont ensuite activ s dans STAT NON LINE via le mot cl EXCIT de la mani re suivante EXCIT CHARGE DIRI CHARGE NEU 2 CHARGE NEUL FONC MULT FLUX F F F 7 FLUN correspond la valeur du flux de chaleur FLUN HYDR1 et FLUN HYDR2 correspondent aux valeurs des flux hydrauliques associ s aux pressions PREI et PRE2 S il ny a pas d ambigu t pour la thermique ou la m canique en revanche les inconnues principales hydrauliques PRE1 et PRE2 changent suivant le couplage choisi Comme on le rappelle ci dessous e Comportement LIQU_ SATU LIQ
69. maillage original il est indispensable que les n uds du premier maillage soient inclus dans le patch cf R5 04 03 II est n cessaire de d finir ce second maillage pour permettre de d finir la mod lisation second gradient au patch r gularisant Duplication du maillage quadratique Seules les mailles sont dupliqu es les n uds restent communs Le but est d associer chacun de ces maillages une mod lisation diff rente MATL CREA MAILLAGE MATLLAGE MA CREA GROUP MA _F NOM ROCHE REG GROUP MA ROCHE 3 1 3 tape 3 Modification ventuelle du maillage du patch Il existe diff rentes discr tisations l ments finis pour interpoler les mod lisations second gradient avec ou sans multiplicateurs de Lagrange multiplicateurs de Lagrange au centre des l ments ou aux n uds sommets Par cons quent il faut adapter le maillage du patch l espace de discr tisation de la mod lisation second gradient Par exemple pour prendre en compte une interpolation avec des multiplicateurs de Lagrange aux centres des l ments il faut d finir les n uds aux centres des l ments car ceux ci ne sont pas pr vus en g n ral dans les discr tisations spatiales propos es par la plupart des mailleurs Ainsi dans ce cas on peut utiliser la commande Code Aster suivante Introduction de n uds centraux aux l ments finis du nouveau maillage pour une interpolation P2 P1 P0 Proc dure n c
70. mplexifie d autant la mise en donn es dans le fichier de commandes La question de la convergence de tels algorithmes n est pas non plus du tout acquise La solution m canique finale est DEPLA et la solution hydraulique est PRELIQ boucle sur les pas de temps for k in range 1 lenlinst UNPAS DEFI LIST REEL DEBUT listinst k 1 INTERVALLE F JUSQU A listinst k NOMBRE 1 UNPASSUB DEFI LIST INST DEFI LIST F LIST INST UNPAS ECHEC F __ SUBD METHODE MANU SUBD PAS 4 SUBD NIVEAU 5 mal FA if k gt 1 DEFVHY CHAINAGE THM RESULTAT DEPLA INFO 1 MODELE MODHYD MATR PROJECTION MATPROY TYPE CHAINAGE MECA HYDR INST listinst k MATEHY AFFE MATERIAU MAILLAGE MAIL AFFE F TOUT 0UI MATER MATERIAU AFFE VARC F NOM VARC DIVU EVOL DEFVHY f else MATEHY AFFE_MATERIAU MAILLAGE MAIL AFFE F TOUT 0UI MATER MATERIAU PRELIQO STAT NON LINE MODELE MODEYD CHAM MATER MATEHY EXCIT F CHARGE CHARHYD SOLVEUR F METHODE MUMPS PCENT PIVOT 100 CONVERGENCE F ITER GLOB MAXI 50 ARCHIVAGE F LIST INST UNPAS COMPORTEMENT R _F RELATION KIT_H ELATION KIT LIQU SATU HYDR UTIL INC
71. n maillage quadratique puisque les l ments sont de type P2 en d placement et PJ en pression et temp rature afin d viter des probl mes d oscillations Le choix se fait par l utilisation de la commande AFFE MODELE comme dans l exemple ci dessous MODELE AFFE MODELE MATLLAGE MATL AFFE F TOUT OUI PHENOMENE MECANIQUE MODELISATION AXIS THH2MD Dans tous les cas le ph nom ne est MECANIQUE m me si la mod lisation ne contient pas la m canique L utilisateur doit renseigner ensuite de mani re obligatoire le mot cl MODELISATION Ce mot cl permet de d finir le type d l ment affect un type de maille Les mod lisations disponibles en THM sont indiqu s dans le tableau 2 1 1 Remarque concernant le traitement num rique mot cl se terminant par D ou S Les mod lisations se terminant par la lettre D indiquent que l on fait un traitement permettant de diagonaliser lumper la matrice afin d viter les oscillations pour les probl mes hydrauliques Pour cela les points d int gration sont pris aux sommets des l ments Ce traitement tant peu adapt la m canique on dispose galement d une mod lisation dite s lective Dans ce cas les termes capacitifs sont int gr s aux sommets alors que les termes diffusifs sont int gr s aux points de Gauss Ces mod lisations se terminent par un S Les autres m
72. nt li es aux pression d eau de vapeur et d air sec par les relations P Pa Pu q A5 1 5 Pa Pyt Py q A5 1 6 La pression de vapeur n est pas une variable ind pendante Elle est reli e la pression de liquide P par les relations dp d POER e q A5 1 7 Pap Pu d dh C dT 1 3 amp T Pu q A5 1 8 q q q lq dh Cp dT q A5 1 9 Ces relations montrent que la pression de vapeur est d termin e compl tement pas la connaissance de Pu 0 F E Pi Pi R Pvp et de son volution Souvent ces relations servent tablir la loi de Kelvin 1 I a TIn a Pu Mp P T mais cette loi n est pas utilis e directement dans Aster Manuel d utilisation Fascicule u2 04 M canique non lin aire Copyright 2015 EDF R amp D Document diffus sous licence GNU FDL http www gnu org copylett fdl html Code Aster onul _ default Titre Notice d utilisation du mod le THM Date 07 07 2015 Page 52 55 Responsable Sylvie GRANET Cl U2 04 05 R vision 13204 Les documents de r f rence Aster ne disent rien sur ce que sont les variables et T Mais deux l ments peuvent nous mettre sur la piste e D une part TEP et TE P3 alors que Pi et P3 sont les espaces d appartenance de PREI et PRE2 incluant donc leurs conditions aux limites RATE part au chapitre 7 de R7 01 10 on voit que la d formation virtuelle E l v elv m Vrm Vr T Vr est li e au vecteur de d
73. od lisations int grent tout aux point de Gauss On conseille vivement l utilisateur d utiliser les mod lisations D ou S dans les cas sans m canique et d utiliser la mod lisation S et pour les mod lisations avec m canique Les mod lisations classiques sans D ni S sont amen s tre r sorb es et sont d conseill es Manuel d utilisation Fascicule u2 04 M canique non lin aire Copyright 2015 EDF R amp D Document diffus sous licence GNU FDL http www gnu org copyleft fal html Code Aster Version default Titre Notice d utilisation du mo Responsable Sylvie GRANET d le THM Date 07 07 2015 Page 5 55 Cl U2 04 05 R vision 13204 MODELISATION Mod lisation Ph nom nes pris en compte g om trique D PLAN H plane M canique hydraulique avec une pression inconnue D PLAN HMD plane M canique hydraulique avec une pression inconnue lump D PLAN HMS plane M canique hydraulique avec une pression inconnue s lective D PLAN HM SI plane M canique hydraulique avec une pression inconnue sous int gr e D PLAN HHM plane M canique hydraulique avec deux pressions inconnues D PLAN HHMD plane M canique hydraulique avec deux pressions inconnues lump D PLAN HHMS
74. ollection tr s exhaustive de ph nom nes physiques touchant aux solides et aux fluides Elle fait l hypoth se d un couplage entre les volutions m caniques des solides et des fluides vus comme des milieux continus avec les volutions hydrauliques qui r glent les probl mes de diffusion de fluides au sein de parois ou de volumes et les volutions thermiques La formulation de la mod lisation Thermo hydro m canique THM en milieu poreux telle qu elle est faite dans Code Aster est d taill e dans R7 01 11 et R7 01 10 Toutes les notations employ es ici s y r f rent donc On rappelle cependant quelques notations indispensables par la suite Concernant les fluides on consid re cas le plus complet deux phases liquide et gaz et deux constituants appel s par commodit eau et air On utilise alors les indices suivants w pour l eau liquide ad pour l air dissous as pour lair sec vp pour la vapeur d eau Les variables thermodynamiques sont e les pressions des constituants p x t Pal X t Pyl Xot gt Pal Xt e la temp rature du milieu T x t Ces diff rentes variables ne sont pas totalement ind pendantes En effet si Pon consid re un seul constituant l quilibre thermodynamique entre ses phases impose une relation entre la pression de la vapeur et la pression du liquide de ce constituant Finalement il ny a qu une seule pression ind pendante par constituant de m me qu il n y a qu une seule qua
75. on constante du liquide 2 2 4 Mot cl facteur THM_GAZ Ce mot cl facteur concerne tous les comportements THM faisant intervenir un gaz cf R7 01 11 Pour les comportements faisant intervenir la fois un liquide et un gaz et quand on prend en compte vaporation du liquide les coefficients renseign s ici concernent le gaz sec Les propri t s de la vapeur seront renseign es sous le mot cl THM VAPE GAZ Sa syntaxe est la suivante THM GAZ F MASS MOL Mgs R CP Cp R VISC vi y fonction D VISC TEMP dvi fonction MASS MOL Masse molaire du gaz sec M Si Pg d signe la pression du gaz sec p sa masse volumique R la constante des gaz A Pgs _ RT parfaits et T la temp rature le comportement du gaz sec est gt Pgs M ss CP Chaleur massique pression constante du gaz sec VISC fonction Viscosit du gaz sec Fonction de la temp rature D VISC TEMP fonction D riv e par rapport la temp rature de la viscosit du gaz sec Fonction de la temp rature L utilisateur doit assurer la coh rence avec la fonction associ e VISC 2 25 Mot cl facteur THM VAPE GAZ Ce mot cl facteur concerne tous les comportements THM faisant intervenir la fois un liquide et un gaz et prenant en compte l vaporation du liquide cf R7 01 11 Les coefficients renseign s ici concernent la vapeur La syntaxe est la suivante THM VAPE GAZ F MASS MOL
76. ons inconnues lump D PLAN HHS plane hydraulique avec deux pressions inconnues s lective D PLAN HH2D plane hydraulique avec deux pressions inconnues et deux constituants dans la phase gazeuse lump D PLAN HH2S plane hydraulique avec deux pressions inconnues et deux constituants dans la phase gazeuse s lective D PLAN THH2MD plan Thermique m canique hydraulique avec deux pressions inconnues et deux constituants dans la phase gazeuse lump D PLAN THH2MS plane Thermique m canique hydraulique avec deux pressions inconnues et deux constituants dans la phase gazeuse s lective AXIS H axisym trique M canique hydraulique avec une pression inconnue AXIS HMD axisym trique M canique hydraulique avec une pression inconnue lump AXIS HMS axisym trique M canique hydraulique avec une pression inconnue s lective AXIS HHM axisym trique M canique hydraulique avec deux pressions inconnues AXIS HHMD axisym trique M canique hydraulique avec deux pressions inconnues lump AXIS HHMS axisym trique M canique hydraulique avec deux pressions inconnues Manuel d utilisation Fascicule u2 04 M canique non lin aire Copyright 2015 EDF R amp D Document diffus sous licence GNU FDL http www gnu org copylett fdl html Code Aster Version
77. placement nodaux virtuel y E o par le m me op rateur o que celui qui relie entre eux la d formation p pa u pp VPP VPAT VT et le d placement nodal U u p p T el el rr el LE o E Q U Il est alors clair que mr et mr sont des variations virtuelles de p et p D o le tableau P pamp P1 Py Ti Py Pu Pie Din P o5 P oz A2 2 Cas de conditions aux limites faisant intervenir les inconnues principales Ce que nous disons dans ce paragraphe et les suivants est relatif une partie de la fronti re 0 Qg sur laquelle des conditions sont prescrites rien n emp che bien s r que ces conditions ne soient pas les m mes sur des parties de fronti res diff rentes Nous traitons dans ce chapitre le cas habituel o on impose des conditions sur PRE et ou PRE2 par opposition au chapitre suivant o nous parlerons de relations lin aires entre inconnues imp DD bib Pan Pat D Les flux sont alors des r sultats de calculs par q A5 1 3 et q A5 1 4 e Dirichlet PRE Neuman PRE2 C est le cas o on impose une valeur PRE et une valeur au flux associ PRE2 en ne disant rien sur PRE2 ou en donnant une valeur FLUN HYDR2 de FLUX THM REP dans AFFE CHAR MECA Appelons imp M cette quantit impos e qui vaudra 0 si rien n est dit relativement PRE2 Nous noterons p p la condition impos e sur PRE1 Ceci correspond PeT Pg Py P p p Pour faire la d monstr
78. plane M canique hydraulique avec deux pressions inconnues s lective D PLAN HH2MD plane M canique hydraulique avec deux pressions inconnues et deux constituants dans la phase gazeuse lump D PLAN HH2MS plane M canique hydraulique avec deux pressions inconnues et deux constituants dans la phase gazeuse s lective D PLAN HH2M ST plane M canique hydraulique avec deux pressions inconnues et deux constituants dans la phase gazeuse sous int gr e Seule mod lisation valide en dynamique D PLAN THHD plane Thermique hydraulique avec deux pressions inconnues lump D PLAN THH2D plane Thermique hydraulique avec deux pressions inconnues et deux constituants dans la phase gazeuse lump D PLAN THH2S plane Thermique hydraulique avec deux pressions inconnues et deux constituants dans la phase gazeuse s lective D PLAN TH plane Thermique m canique hydraulique avec une pression inconnue D PLAN THVD plane Thermique m canique hydraulique avec deux pressions inconnues 2 phases eau liquide et vapeur Iump D PLAN THMD plane Thermique m canique hydraulique avec une pression inconnue lump D PLAN THMS plane Thermique m canique hydraulique avec une pression inconnue s lective D PLAN THHMD plane Thermique m canique hydraulique avec deux pressions inconnues lump D PLAN THHMS plane Thermique m canique hydraulique avec deux pressions inconnues s lective D PLAN HHD plane hydraulique avec deux pressi
79. pressions inconnues 3D THHMD 3D Thermique m canique hydraulique avec deux pressions inconnues lump 3D THHMS 3D Thermique m canique hydraulique avec deux pressions inconnues s lective 3D THH2MD 3D Thermique m canique hydraulique avec deux pressions inconnues et deux constituants dans la phase gazeuse lump 3D THH2MS 3D Thermique m canique hydraulique avec deux pressions inconnues et deux constituants dans la phase gazeuse s lective 3D HHD 3D hydraulique avec deux pressions inconnues lump 3D HHS 3D hydraulique avec deux pressions inconnues s lective 3D HH2D 3D hydraulique avec deux pressions inconnues et deux constituants dans la phase gazeuse lump 3D HH2S 3D hydraulique avec deux pressions inconnues et deux constituants dans la phase gazeuse s lective Tableau 2 1 1 Mod lisations THM Les inconnues principales qui sont aussi les valeurs des degr s de libert sont not es dans le cas de la mod lisation la plus compl te 3D thermique m canique hydraulique avec deux pressions inconnues ddl u uj 3 u X u PRE1 PRE po Le contenu de PREI et PRE2 d pend du couplage choisi et sera explicit dans la section 12 Suivant la mod lisation choisie seuls certains de ces degr s de libert existent Le tableau ci dessus r sume les degr s de libert utilis s pour chaque mod lisation moneursarron ie u x A pR PRE T9 en eana OR PO DS
80. re Copyright 2015 EDF R amp D Document diffus sous licence GNU FDL http www gnu org copyleft fdl html Code Aster en Titre Notice d utilisation du mod le THM Date 07 07 2015 Page 3 55 Responsable Sylvie GRANET Cl U2 04 05 R vision 13204 Les grandes lignes 1 1 1 2 Contexte des tudes THM Avant toute chose il convient de d finir le cadre bien pr cis des calculs Thermo Hydro M caniques Ceux ci ont pour application exclusive l tude des milieux poreux Sachant cela la mod lisation THM couvre l volution m canique de ces milieux et les coulements en leur sein Ces derniers concernent un ou deux fluides et sont r gis par les lois de Darcy fluides darc ens Le probl me de THM complet traite donc de l coulement des ou du fluide s de la m canique du squelette ainsi que de la thermique la r solution est tr s souvent enti rement coupl e Elle peut galement tre cha n e dans les cas o les ph nom nes hydraulique et m canique sont faiblement coupl s Remarque Dans l expression des lois de Darcy qui est ici retenue on n glige l acc l ration diff rentielle de l eau Dans le cas de de milieux tr s perm ables et tr s poreux soumis un chargement sismique cela peut constituer une limite G n ralit s Les calculs s appuient sur des familles de lois de comportement THM pour les milieux poreux satur s et non satur s La m canique des milieux poreux rassemble une c
81. reux est satur par un composant en pratique de l eau mais que ce composant peut tre sous forme liquide ou vapeur Il n y a alors qu une quation de conservation de ce composant donc un seul degr de libert pression mais il y a un flux liquide et un flux vapeur Les relations possibles sont alors les suivantes KIT KIT KIT KIT KIT KIT KIT FRS SSSR CS M M H HV HM Le tableau ci dessous r sume quel kit correspond chaque mod lisation KIT HM KIT THM KIT HHM KIT THH KIT KIT HV HHM KIT Pour RI ELATION KIT OI D OI D w wgl uw gjd OI ELAS chaque ph nom ne mod lis hydraulique et ou m canique LAN HM D PLAN HMD D PLAN HMS D PLAN HM SI AXIS HM S_HMD AXIS HMS 3D HM 3D HMD 3D HMS 3D HM SI LAN THM D PLAN THMD D PLAN THMS AXIS _ THM AXIS THMD S_ THMS 3D THM 3D THMD 3D THMS LAN HHM D PLAN HHMD D PLAN HHMS AXIS HHM AXIS HHMD S HHMS 3D HHM 3D HHMD 3D HHMS D PLAN HH2MD S HH2MD 3D HH2MD D PLAN HH2MS AXIS HH2MS 3D HH2MS LAN HH2M SI 3D HH2M SI LAN THHD D PLAN THHS AXIS THHD AXIS THHS 3D THHD THHS D PLAN THH2D AXIS THH2D 3D THH2D D PLAN THH2S S_THH2S 3D THH2S LAN THVD AXIS_THVD 3D THVD LAN THHMD D PLAN THHMS AXIS THHMD AXIS THHMS 3D THHM THHMD 3D THHMS D PLAN THH2MD AXIS THH2MD 3D THH2MD
82. right 2015 EDF R amp D Document diffus sous licence GNU FDL http www gnu org copylett fdl html Code Aster ouk Titre Notice d utilisation du mod le THM Date 07 07 2015 Page 14 55 Responsable Sylvie GRANET Cl U2 04 05 R vision 13204 Pression de vapeur de r f rence pour les comportements LIQU VAPE GAZ LIQU AD GAZ VAPE et LIQU VAPE Remarques La pression initiale de vapeur doit tre prise en coh rence avec les autres donn es Bien souvent on part de la connaissance d un tat initial d hygrom trie Le degr hygrom trique est le rapport entre la pression de vapeur et la pression de vapeur saturante la temp rature consid r e On utilise alors la loi de Kelvin qui donne la pression du liquide en fonction de la pression de vapeur de la temp rature et de la Pw Pw R Pvp pression de vapeur saturante Th P w M vp p vp T valable que pour des volutions isothermes On souligne que p correspond un tat Cette relation n est 332 ra sat A 2i ja d quilibre auquel correspond Pw cet tat d quilibre correspond en fait 0 0 r r Sar r r P P7 latm Pour des volutions avec variation de temp rature connaissant une loi donnant la pression de vapeur saturante la temp rature T par exemple T 273 5 584 4 Atri 5 i ii re AETA et un degr d hygrom trie HR on en d duit Pr To T la pression de vapeur gr ce p
83. s n cessaires du champ mat riau sont fournies dans l op rateur DEFI MATERIAU sous les mots cl s THM LIQU THM VAPE et THM GAZ LIQU AD GAZ VAPE Loi de comportement pour un milieu poreux non satur eau vapeur air sec air dissous avec changement de phase confer R7 01 11 pour plus de d tails Les donn es n cessaires du champ mat riau sont fournies dans l op rateur DEFI MATERIAU sous les mots cl s THM LIQU THM VAPE THM GAZ et THM AIR DISS LIQU AD GAZ Loi de comportement pour un milieu poreux non satur eau air sec air dissous avec changement de phase confer R7 01 11 pour plus de d tails Les donn es n cessaires du champ mat riau sont fournies dans l op rateur DEFI MATERIAU sous les mots cl s THM LIQU THM GAZ et THM AIR DISS LIQU VAPE Loi de comportement pour un milieux poreux satur par un composant pr sent sous forme liquide ou vapeur avec changement de phase confer R7 01 11 pour plus de d tails Les donn es n cessaires du champ mat riau sont fournies dans l op rateur DEFI MATERIAU sous les mots cl s THM_LIQU et THM_VAPE Cette loi nest valable que pour les mod lisations de type THVD LIQU GAZ Loi de comportement pour un milieu poreux non satur liquide gaz sans changement de phase confer R7 01 11 pour plus de d tails Les donn es n cessaires du champ mat riau sont fournies dans l op rateur DEFI MATERIAU sous les mots cl
84. s par d faut gales un et la d riv e gale z ro On ne consid re que la d riv e par rapport la temp rature les autres sont de toutes fa ons prises gales z ro Manuel d utilisation Fascicule u2 04 M canique non lin aire Copyright 2015 EDF R amp D Document diffus sous licence GNU FDL http www gnu org copyleft fal html Code Aster defaut Titre Notice d utilisation du mod le THM Date 07 07 2015 Page 27 55 Responsable Sylvie GRANET Cl U2 04 05 R vision 13204 2 3 initialisation du calcul Pour d finir un tat initial il faut d finir un tat de contraintes g n ralis es aux l ments des inconnues nodales et des variables internes e Dans le mot cl THM INIT de DEFI MATERIAU on d finit des valeurs de r f rence pour les inconnues nodales e Par le mot cl DEPL du mot cl facteur ETAT _INIT de la commande STAT NON LINE on affecte le champ d initialisation des inconnues nodales e Par le mot cl SIGM du mot cl facteur ETAT _INIT de la commande STAT NON LINE on affecte le champs d initialisation des contraintes e Par le mot cl VARI du mot cl facteur ETAT _INIT on affecte ventuellement le champs d initialisation des variables internes Afin de pr ciser les choses on rappelle quelle cat gorie de variables appartient chaque grandeur physique ces grandeurs physiques existant ou non suivant la mod lisation choisie Inconnues Ps Pg P
85. s que nous savons crire la relation non lin aire reliant la pression de vapeur et la pression de liquide La relation imposer est donc PaT Pg Py De D q A5 4 1 En diff renciant cette relation on trouvera une condition sur les variations virtuelles de pressions Op Op Das de dpy dpe dp dp s Pu S Py s Soit encore p p Op dp dp dp dp dp 1 dp P as AP TA p il n 1 Pu 2 La formulation variationnelle serait alors da M M V T da f maom dA f M Vm dQ imp Pvp Po f ou Bepe dr H it me LE ar VTT H reng Pu Pu Manuel d utilisation Fascicule u2 04 M canique non lin aire Copyright 2015 EDF R amp D Document diffus sous licence GNU FDL http www gnu org copyleft fdl html Version Code Aster default Titre Notice d utilisation du mod le THM Date 07 07 2015 Page 55 55 Responsable Sylvie GRANET Cl U2 04 05 R vision 13204 Et on trouverait Op p Lo Mut Mp m adr f p Man maAdr f 4 T ee mdr 0 Vr rn q En prenant re TT jt T 0 on trouverait lq Pu 1 22 M M n 2e M n 0 q A5 4 2 Pu Pu Manuel d utilisation Fascicule u2 04 M canique non lin aire Copyright 2015 EDF R amp D Document diffus sous licence GNU FDL http www gnu org copylett fdl html
86. tion de conservation de la masse Le nombre de pressions ind pendantes est donc gal au nombre de constituants ind pendants Le choix de ces pressions varie selon les lois de comportements Pour le cas dit satur un seul constituant air ou eau nous avons choisi la pression de cet unique constituant Pour le cas dit non satur pr sence dair et d eau nous avons choisi comme variables ind pendantes e la pression totale du gaz pa x t Pyt Pas e la pression capillaire ARE pe Py Pe Pw Pad Nous verrons par la suite la terminologie Aster pour ces variables Manuel d utilisation Fascicule u2 04 M canique non lin aire Copyright 2015 EDF R amp D Document diffus sous licence GNU FDL http www gnu org copylett fdl html Code Aster ou Titre Notice d utilisation du mod le THM Date 07 07 2015 Page 4 55 Responsable Sylvie GRANET Cl U2 04 05 R vision 13204 1 3 tapes de calculs Pour les tapes n cessaires la mise en uvre d un calcul Aster ind pendamment des aspects purement THM on se r f rera la documentation de chaque commande utilis e Dans tout calcul Aster plusieurs tapes cl s doivent tre effectu es e Choix de la mod lisation Donn es mat riaux initialisation e Calcul Post traitement Ces points sont d taill s dans le chapitre suivant Les diff rentes tapes d un calcul THM Choix du mod le Le traitement num rique en THM n cessite u
87. tique suivant que l on soit en s lectif ou en lump et les d placements m caniques sont sur les sommets et les n uds milieux Il y a donc un conflit entre les maillages quadratiques et les calculs lin aires ce qui va poser un probl me par exemple pour tracer des isovaleurs Il existe alors une mani re simple de s affranchir de ce probl me en projetant l ensemble des r sultats sur le maillage lin aire issu du maillage quadratique Ainsi tous les r sultats seront d finis au m me endroit sur les sommets Pour TEMP PREI et PRE2 il suffit de projeter comme sur l exemple suivant projection du maillage quadratique sur le maillage lin aire MAILQ4 CREA MAILLAG CI T MAILLAGE MAIL QUAD LINE _F TOUT OUI ti affectation du mod le correspondant MODELQA4 AFFE MODELE MATILLAGE MATLOA4 AFFE F TOUT OUI PHENOMENE MECANIQUE MODELISATION D PLAN projection du r sultat sur ce nouveau mod le RESULIN PROJ CHAMP METHODE ELEM RESULTAT resu MODELE 1 MODELQ8 MODELE 2 MODELQ4 NOM CHAM DEPL TOUT ORDRE OUT post traitement habituel mais sur le maillage lin aire IMPR RESU FORMAT MED RESU F RESULTAT RESULIN NUME ORDRE 1 10 20 NOM CMP PREl PRE2 MAILLAGE MAILO4 Il existe un
88. utilisons ici s exprime en Pa m mol Dans la litt rature il existe diff rentes mani res d crire la loi de Henry Par exemple dans les Benchmarks de ol as as H M Pw l eau que lon peut ramener une masse volumique telle que w p H est un M w P w avec la concentration d air dans l Andra la loi de Henry est donn e par w coefficient qui s exprime en Pa Il faudra dans ces cas crire l quivalence K H 2 2 7 Mot cl facteur THM DIFFU Obligatoire pour tous les comportements THM cf R7 01 11 L utilisateur doit s assurer de la coh rence des fonctions et de leur d riv e La syntaxe est la suivante Obligatoire pour tous les comportements THM cf R7 01 11 L utilisateur doit s assurer de la coh rence des fonctions et de leur d riv e Remarque importante concernant l orthotropie L utilisateur a plusieurs possibilit s se placer dans un cadre isotrope classique ou se placer dans un cas d isotropie transverse en 3D Dans ce cas il devra renseigner un certain nombre de donn es mat riaux cf ci dessous dans les directions L et N du rep re d orthotropie le rep re L T tant le rep re d isotropie cf R4 01 02 Dans le cas 2D la notion d isotropie transverse Manuel d utilisation Fascicule u2 04 M canique non lin aire Copyright 2015 EDF R amp D Document diffus sous licence GNU FDL http www gnu org copyleft fdl html Code Aster Version default Titre
89. xemple une r f rence par le mot cl THM INIT de la commande DEFI MATERIAU et les valeurs initiales par rapport cette r f rence par le mot cl ETAT _INIT de la commande STAT NON LINE cf 2 3 TEMP Temp rature de r f rence Les Elle est n cessaire pour les mod lisations thermiques ainsi que pour toutes les lois de comportement avec gaz Pour les mod lisations avec vapeur elle correspond la temp rature laquelle est calcul e la pression de vapeur saturante Cette valeur est exprim e en Kelvin et doit toujours tre strictement positive La valeur de la temp rature de r f rence entr e derri re le mot cl TEMP REF de la commande AFFE _MATERIAU est ignor e PREL Comme vu dans le tableau 1 Pour les comportements LIQU SATU et LIQU VAPE pression de liquide de r f rence Pour le comportement GAZ pression de gaz de r f rence Dans ce cas elle doit tre non nulle Pour le comportement LIQU GAZ ATM pression de liquide de r f rence chang e de signe Pour les comportements LIQU VAPE GAZ LIQU AD GAZ LIQU AD GAZ VAPI LIQU GAZ pression capillaire de r f rence et El 0 PRE2 Pour les comportements LIQU VAPE GAZ LIQU AD GAZ LIQU AD GAZ VAPE et LIQU GAZ pression de gaz de r f rence Cette valeur doit tre non nulle PORO Porosit initiale PRES VAPE Manuel d utilisation Fascicule u2 04 M canique non lin aire Copy
90. yp To Uy Up U nodales Contraintes DA R A E E E E aux points hn AN i A zz xy xz yz D D Py de Gauss M M M m MM MMM Mas M os w w w vp vp vP vp as as m m m Mad Ma Ma Ma h hs Aa f 0 x qy qz Variables P Pu Pos Su internes La correspondance entre nom de composante Aster et grandeur physique est explicit e en SAnnexe 1 initialisation des inconnues nodales ainsi que la diff rence entre tat initial et tat de r f rence ont t d crites et d taill es dans la section 12 On rappelle n anmoins que p p p pour les ddl pressions PRE1 et PRE2 et T T ET pour les temp ratures o p et T sont d finis sous le mot cl THM_INIT de la commande DEFI MATERIAU Le mot cl DEPL du mot cl facteur ETAT _INIT de la commande STAT NON _LINE d finit les valeurs Sue ddl ARE x ee initiales de u Les valeurs initiales des masses volumiques de la vapeur et de lair sec sont d finies partir des valeurs initiales des pressions de gaz et de vapeur valeurs lues sous le mot cl THM_INIT de la commande DEFI MATERIAU On remarque que pour les d placements la d composition y y u n est pas faite le mot cl THM INIT de la commande DEFI MATERIAU ne permet donc pas de d finir des d placements initiaux La seule fa on d initialiser les d placements est donc de leur donner une valeur initiale par le mot cl facteur ETAT_INIT de la commande STAT_NON_LINI

Download Pdf Manuals

image

Related Search

Related Contents

SYSTEME ELECTRIQUE SECTION EL TABLE DES MATIERES  Harbor Freight Tools 36572 User's Manual  Manual profoto D1  ImageIngester/ImageVerifier User`s Manual  ENSINO INCLUSIVO - Universidade do Minho  TLN-100 Rotor - American Instrument Exchange, Inc.  Philips Micro Hi-Fi System MC108C    Whirlpool MS1600XW User's Manual  

Copyright © All rights reserved.
Failed to retrieve file