Home
河川流量観測の新時代(全文一括DL)
Contents
1.
2. Xo uS RUE http www pu toyama ac jp EE tebak
3. HQ HQ
4. ADCP ADCP ADCP
5. Dcos 0 2 3 V
6. ADCP ADCP ADCP
7. BI
8. RD WinRiver Remo A
9. 3
10. I 3 1 3 1938 1 9
11. 2 3 RE BTE JueCeisu3 5 2 3 mU
12. 27 1952 6 2 28 19534E 7 18 29 1954 FE 10 9 GRE ACTA JV
13. DEO 2 CR
14. ADCP ADCP 1 10 3000m 1 5 1 119
15. 1 No 497 11 28 1994 2 2008 3 3 Costa J F etal Use of radars to monitor stream discharge by non contact methods WWR Vol 42 2006 4 2005 2005 8 2010 7 20 2010 9 FLOOD DISCHARGE OBSERVATION USING ROD FLOAT AND RIVER PLANNING ISSUES IN CLASS B URBAN RIVER BEST BARRE Fea FP EME Mamoru MIYAMOTO Kyohei MIYAMOTO and Shigeo IWAI
16. ERRE D RARE LES 2 3 4 9 9 10 11 12 13 14 15 16 17 18 19 20 21 22 pp 185 1999 VoLll No5 pp460471 1998 Lipscomb S W Quality assurance plan for discharge measurements using broadband acoustic Doppler current profilers U S Geological Survey Open File Report 95 701 1995 Mueller D S Field assessment of acoustic Doppler based disc
17. 1 UE 2 ENTRE CARROZA PC
18. 7 ZA 91 8 ME 9
19. 2 x 9 1 ME HQ 2001 pp 30 31 2001 2 No 12 2007 3 9 26 9 25 4 2003 pp 156 157 200
20. ADCP 94 ADCP
21. ADCP TH ADCP ADCP ADCP ADCP 9 3 ADCP 1
22. 4 Y MAI PC RS 232C
23. 30 ADCP P D ERITREA BOO TADC TRE
24. 4 9 3 ree aoe 1 0 3 RIMS DOOR CHS 1 TORCH ES
25. 2 AIMCO CBS FALLEARIC Ko CHL CWS AQC Automatic Quality Check MGQC Manual Quality Check AQC AQC
26. 3 tp 8 4 PC
27. VTG VTG ADCP GPS a VTG GPS b GPS quality indicator 1 l4 c GPS quality indicator VTG 8 b 10 PAAA A ee tn
28. 2 1 27 1km2 21 2 2km 7 1 2003 a LO sihi sere BEN a wz a EH ae 2000 0 500 1 000 1 20 15 30
29. ZO AD CP ADCP ADCP ADCP 9 Do ADCP
30. 11 12 5 1
31. 0 cm m ARA ABRO TILZR AO HQ 5 HQ
32. WMO Guide DELAS ISO H 12 2 a mo caco a COO SO TC 113
33. USGS ENE oU CHE PS o235 CD Ss
34. ze MANE Deviation Velocity USGS 5 ADCP 10 7 2000m s amp HE og HRIR RI 2 zR po fi WARIA AA fm Sm7ys
35. 600kHz S0cm 10cm 1 River Observer D EJES EXPE ael D gt 10m 80 cm 10cm 5 10m gt D gt 4m 40cm 10cm s 4m D 2m 20cm 10cm 2 2m gt D 10cm N A 0 0 45m gt D N A N A N A A B 3 River Observer600kHz 1 River Observer
36. Ln 250 300 4 H lt Vsi Mea a OS OS mane oh 36k 25k i rs HHIT7 6 H14 3 4 1 lt 2 4 2 H17 4 1 200 250m 1 4 EU IM
37. LES E C 2000 4 OL
38. 2 UTATIS SAUCES MASIA 1969 5 2m 4m
39. D 10 ADCP ADCP ADCP ORDERA ORIRE kU ADCP LUMITKH AG Q5mx 2SmxSm ADCP OMEMS SHE vt ri L CREA OAA CHR SAE ADCP 39 3 ADCP
40. 4 C 1 0 0 2 gt 5
41. ADCP 4 depth cm 50 100 150 200 250 300 velocity cm s 3 0 kmode oo 60 A 100 50 0 eq 10 50 Bu 40 Bw 5 30 o dw sc D 20 10 0 100 50 0 50 100 150 200 250 300 velocity cm s 4 10 kmode oo eq 10 2 log
42. 17 0 8m s 17 30 H 2009 3 16 17 7
43. ADCP ADCP ADCP ADCP 2 ADCP 1 ADCP RD mstruments Teledyne RD Imstruments 1982 Fran Row Kent Deines RDI NASA ADCP
44. ADCP USGS ADCP ADCP 8 00 12 35km dus s 9 5km 6 00 6 5km 4 1km 3 00 3 1km 4 00 E 3 00 o H 2 00 1 00 0 00 me 1 00 2 00 2007 8 2 2007 8 3 2007 8 4 2007 8 5 1
45. ADCP 2 WH ADCP 15 12 92 E 0 EN i 5 12 LT d We a adi se SM we po 2 oT ONU N P x3 RA ae ENS Lee Asie utn enn a e y 1 x lt ate 7 A PE S SERE p X A 3 Te a ehe 4 ee i rA A d wi M y E gt 2 gt gt n m xe e AN s E x EL EA i 1 te pion Aa mico ig oo
46. ADCP Teledyne RD Instruments ADCP ADCP 06 42 43
47. 1 2 0 ZA
48. XOT
49. HERRE 1 Michael R Simpson Discharge Measurements Using a Broad Band Acoustic Doppler Current Profiler United States Geological Survey Open File Report 01 1 2001 2 ROA 20 2009 3 3 ADCP 5505 20062 ADCP 1 2003 5
50. Lic 1 1998 3 H 1999 12 2006 3 Yangwen JIA Guangheng NI Yoshihisa KAWAHARA and Tadashi SUETSUGI Simulation of hydrological cycle in an urbanized watershed and effect evaluation of infiltration facilities with WEP model Journal of Hydroscience and Hydraulic Engineering Vol 19 No 1 pp 43 52 2001 1996 11 X5 2 xo 3 NY 4 5 2010 7 20 2010 9
51. HLADCP Teledyne RDI Aa 31 Left Right bank bank 10 Main channel Flood plane 100 20 0 20 b 9 HLADCP C 8 H ADCP Dynamic Interpolation and EXtrapolation method DIEX H ADCP600kHz 2005
52. A ADCP
53. 11 1 PIV lt 3 a b le OE ET a QE C Y Ow LE 1 E les mee Velocity Magnitude m s Ref Btm Bottom Top Q Bottom Q 166 Length m c 146 Length m d 1 Length m e 2
54. e 2m 4m 094 096 ADCP 2m 087 4m 090 30 3 im 30 20 10 5 0 900 800 Casel 700 Case2 600 400 400 500 600 700 800 ADCP m3 s 900 1000 7 Casel Case2 ADCP
55. S 2 2 ch 3 ch 4 Vsi ch ch 6 d HI6 4 2 2 3 4 3 b C m 3 4 ME m s H V ch 8 02 10 1 10 6 2 1 H Vss MLE M MAU 1 SM by We AMT 970507 370508 O 2 2 Vsi 6 70509 970510 a H9 5 co APm e 8 1 ch1 o 8 1 ch1 E e 8 31 ch1 16 9 P A o 8 31 ch1 4 9 30 ch1 9 30 ch1 m 10 203 7Kch1 FY 10 20 cn1 2 3 H Vsi
56. sinot H A 9 Q K H H A ot a ME TIN 7 CD coslo t a TAS 8 K FA o cv 18 p ad Ao K 8 TIHD IHP 8
57. Cv 0 AO 3 0 37 10 1 47 13 3 18 21 ADCP MEMS 20 KERR CHA D2 L e oO TR M ADCP
58. 7 1 No 2 81
59. UN 4 ih bon 4RInBRES D 7a E BE RE HD SSO jes BA TEA OLED ae PD Mio in 1 BAL uL m 1 Ee gar PSI uS Till ie Ire iu FT ji a i AW 1 f qo A A 0 45 90 135 180 225 275cms 4 300m y RARA AT Ty MENTE n Ee aa POSTA Ed 5 MUMENT ONREIN Telrdyne RDI ADCP WinADCP ADCP 5
60. 10 1 1m s 500m 8 1 5 Teledyne RD ADCP ADCP KR ADCP
61. ADCP a ADCP ADCP 2 5m s 1997 Oceanscience OS ADCP ADCP USGS
62. 1 2 2km 2009 10 8 3 20 10 50 7 30 1 6 10 2 30cm 2 C yc 30m 15m
63. b ADCP EL 24 8 9 99 10 iEONIX Power Combo PG 421
64. 7 1
65. WorkhorseADCP RTK GPS RemoADCP og d to n T a Se ee y X lt A 1 a gt HH 1 Al 9 i3 x m Ls See HA A e t es 2 E m APER 2 aa onem V x sie ae c LIT FU gt e 3 RTK GPS ADCP 207 ADCP
66. VR 4 ADCP 1 2 3 FEE 59H A ADCP ADCP ABT Acoustic Backscattering Turbidity HANA LD BARRETO Cv AR 3EE1 250088BH CREAR ARE OVD EF ADCP VD RTK GPS ADCP
67. Vs H Vs 73 20 20 HL Vs 2 3 H Vs 4 HLVs
68. 50 5 ADCP 0 77cm s 2 a e EC E T ESG 1 IAS E PARI 2 MUA COR AID 3 HA SEA SEP COH CODES AR 5 A AMABA GRAY II A AAA CRA TERTII 6 4 3 98
69. El 2
70. 1932 7 6 L 75 4m7s CD 85km 83 5 71km 14km 682km gt 97 1 2300mm 3500mm 4000mm
71. DGA DICO ADCP 1S5 Bottom Top Q Bottoma Ensemble Number Ensemble Number Pitch 0 S4 Wy rap ap 22 Pitch Roll Roll N cn o Y 25 12 0 R b a N co own R d mn N ceo on Pitch amp Roll q P Pitch amp Roll 63 83 21 61 81 41 42 Ensemble Number Ensemble Number A B 2 21 2
72. 6 ADCP T Good PG1 PG4 XIS correlation error velocity Good 1 ping pmg PG1 3beam PG4 4beam 96Good CO RME PG1 PG4 60 80 mu TIE Correlation X lping 2 100 25Scount Corelation 2
73. ADCP DF ADCP 2008 ADCP ADCP AF
74. CommonMP Fortran CommonMP CommonMP CommonMP CommonMP CommonMP http framework nilim go jp CommonMP CommonMP
75. 4 5ms 3 5ms LOL AEREO REE FBI 3S 0ms 60mls 3 ADCP 600kHz ADCP River Observer
76. PH ADCP 3 2 1 PC 1 4 Ch 57 Water Level m M S L e 2003 12 5 2005 12 4 2007 12 4 2002 4 1 2009 12 3 2 1 ADCP Workhorse ADCP 1200kHz 005m PME PRI
77. ADCP A HO HO N 26 TUE TT S tu OON FEN e 2 u ryti y AS a b ADCP ADCP ADCP
78. BSR 1951 1954 CHAI Te Francis 2 1 1
79. 3 AQC MQC 4
80. Cla GPS boat velocity cm s GPS quality indicator RIK iGPS GPS quality indicator E 5b ES w c e 2 V1G RIK 1iGPS b GPS quality indicator 9 b VTG 9 a b GPS quality indicator 8 RTK GPS
81. 13 3 Depth m Depth m Depth m 44 1 24 Q 48 00m3 s 2 04 a 004 1 044 0 84 124 1 64 M Q 749 85m s 2 04 b ADCP 0 04 y 0 44 0 84 124 164 I Q 49 91m9 s 2 04 HDN 3 1 MO 10 d00 dicas c MEMS 21 ADCP MEMS 4 ADCP ADCP
82. E 63 14 C C IE EA 2 e DADES 7348 L 2 11 A
83. EEI uc UE et ADCP 180 3 ADCP HLADCP 3 ADCP 9 1 21 Acou
84. ADCP c 10 Y 60 6 li i 4 b 6 a 9 iQ 11 2 W W M 165 136 d Ww AR m 8 ADCP 20m 3 5 2 4 1 1 3 FOIE A
85. ICommonMP CommonMP CommonMP 2 CommonMP 1
86. MQC AQC MQC RM 1 1 0
87. 3 14 ADCP WH ADCP WinRiver 14 A 14 B B WH ADCP
88. ADCP ADCP MEMS 1 FANTE SHA 10 1 2 4 2 15 1 4 1 MER ADCP 20 15 20 OEY ADCP MEMS 180 90 12 ADCP MEMS MEMS REY 140 20 ADCP 0 28 2
89. FE 9
90. H ADCP ADCP L FEY RIEL ADCP ABA AAD IICT 57 56 OT ADCP MEMS
91. 6 7 47 50 00 velocity cm s 100 00 4 6 2 sin 9 V V 7 2cos AUD 100 ADCP W Vea Vea Vr tV 2cos AW 8 2 2 ADCP 35m lm 500L s 1 1200 2 0m 5 Omm ADCP StreamProADCP UN point measurement
92. 66 4 2003 2008 WH 11 a 13 676 b 1 977
93. USGS 1 pp 33 59 1997 2 60 3 pp 79 85 2005 3 STTV 33 pp 1003 1008 2009 4 BB Vol 11 No 5 pp 460 471 1998 5
94. 2 ATR ADCP 9 25m 3 AJER RES TBURI CC e ZR2SOT 4
95. CommonMP ADCP
96. UA dus rase us 21 1965 International Hydrological Decade IHD 3
97. 2 CommonMP 1 CommonMP CommonMP f
98. m o EN S is 1 2 MA 9 10 M 7 mU vno 9 L EN3 NEU 21 O 500 1 000 2 000 3 000 4 988 2007 20 23 5 1988 2007 20 C 1966 20 23 A 3 20 10 1 4 1988 2007 20 23
99. ARDOI 4 ADCP RTK GPS MEMS ADCP zb cu 3 HADCP 2005 H ADCP HL ADCP ADCP
100. 19 RENDIDO 1937 1938 1951 1951 Do 2
101. ADCP C 2 ADCP 34 ADCP ADCP 3 ADCP
102. 3 X MP ORES 3 1
103. 2009 12 4 12 5 o a o P o w Water Level m M S L o N RAA o ok o 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 3 2009 12 4 5 Mort a loci jn s st Bernd Meri Velaciny jen n Ret Bind aos lap mam JJ A UTI ta d a med Emel Mutat I iri le TE Depts y QUEM ma Fme mbi mm mi i Pell a Noh Sin xi V SERE E ER 4 fa dae ee E leds pei E IET Homk r 5
104. 2010 9 iPS 1 3D PR EV
105. 20m 10m 3 4 5 AOC100V x 6
106. H 4 10 ADCP JE HLADCP
107. 15 pp 489 494 2009 19 MES ADCP 12 2006 20 BAZ ADCP 54 2010 21 ERBOL BER E Vol 52 No 3 pp 40 43 2010 2010 7 20 2010 9 PRESENT STATUS AND PROSPECTIVES OF HYDROMETRY 1 1 TH T 102 7484 1 3 The River Administrators i e Minister of Land Infrastructure Transport and Tourism and Prefecture Governors are running hydrological observation networks covering whole Japan Present status of the observation networks is reviewed here concerning the posting of stations data pr
108. GE 1m s 1 2m 1 2 WP BP 4 ping std 1200kHz Model WS25 WP20 600kHz WSS0 WP20 Mode12 WP WO WP lping ms DS 2 3
109. 2 1 G amp 2000 ROR oT ADCP Acoustic Doppler Current Profiler ADCP C 2003
110. 6 12 9 0 50 100 150 200 250 a River Boat 2007 8 3 11 00 b HH E db 5 i pco i gu 300m 118 XO 33 0 o ES 30 15e j E 2007 8 3 11 00 xn ADCP 2037 m As ESE FS _ NEU ii odd uu wi iB iH ba b 2007 8 3 11 00 J iM 4 859 E E pn b WH im no 350 230 a TK EE inl pe mod Boo ae ABERI 2007 8 3 11 00 4 46m Ys BRE AREREE RE EREAEE I D 3 i 5 EAR c 2007 8 3 11 00 J M de 59 1 E Ml Ww e im no 50 23 Du 1 I 1 1 I i LE e ph Ak BE lai EIBoe au DORA EBEC IAE AEE EER EE n E 4 5 L WM E d 2007 8 3 11 00 10 TES MEMS 11 ADCP
111. ADCP ADCP ADCP 2 ADCP ADCP Riveboat Teledyne RDI ADCP ADCP TAE ADCP 12mx08m 1
112. 64 Bad Error velocity 4 ADCP 20 4 ADCP LOAM ADCP Error velocity amp V 2 1 ul 2 u2 z2 zl 22 0
113. H ADCP 300m 340m 40m Sm BRL 5 Sm 1 10 ADCP WinRiver TRDI 6 2
114. 50m 14 AICHE PESEN AOZA E 50m 3 12 O 12 2m s 4m s
115. _ X am AENA 10 23 3 19 10 mE 06 6571 8156 nm TEL 03 5664 8156 FAX o 6571 8106 2 an FAX 03 5664 8106 Y we URL http www hydro Es 7 a a B I
116. 2 HQ HQ E EE oes oe eed nas es ee eae 1 0Q H a b a b JQ Va H b T PT EI 2 1 2 X 2 H JQ Vv El HV V
117. D Vol 11 No 5 pp 460 471 1998 2 EBORE MERA gt MEMES PERRA TRRURUE HE DADCPBH OE DOK AAA TRA SHER E 16 pp 59 64 2010 6 3 Michael S Rehmel James A Stewart and Scott E Morlock Tethered Acoustic Doppler Current Profiler Platforms for Measuring Streamflow USGS Open File Report 03 237 2003 4 ADCP 52 48 pp 931 936 2008 2 5 ADCP Vol 3 No 5 pp 399 372 1994 6 Michael R Simpson Discharge Measurements Using a Broad Band Acoustic Doppler Current Profiler USGS Open File Report 01 1 2001 7 6 1973 8 David S Mueller Jorge D Abad Carlos M Garc a Jeffery W Gartner Marcelo H Garc a and Kevin A Oberg Profiler Measurements Caused by Flow Disturbance J Hydr Engrg Volume 133 Issue 12 pp 1411 1420 December 2007
118. ADCP ADCP 4 1 ADCP ADCP ETA LUC 4 O D 2
119. 2 4 n 0025 0035m s AUTE 6 Aki s theory 0 0 2 0 2 2 0 1 2 0 3 ae General values Ay Logarithmic profile _N 0 015 n 0 035 n 0 025 n 0 045 General values 4 Obs a Raw E Ave E 0 75 20 30 40 50 6 0 7 0 8 0 9 0 him 0 75 20 30 40 5 0 60 70 8 0 9 0 h m 6 2m AICA EAS CM A
120. S0cm S0cm 600kHz ADCP 10 14 E 7 4 5 USGS
121. AO 2 O a H by 1 3 19m H Q HHQ a b 2 10 2m s
122. le vida HVsi 1 2 3 4 4 5 6 4 6 4 3 2 SP DEE gt DRED 25 4 6 21 23
123. EE ae ee SEIC 1 Fig NE eie YE ETOT REIO 10
124. ADCP 10 PC Lae 3 a 2009 12 4 5 3 4 9 5 0 8m s 260
125. Cu NCC 14 MEMS CH 2 cy 1 5 MEMS ADCP D ADCP Sm ADCP 4 3 e6m ADCP 2
126. 305 8516 1 6 2 7274 8501 7 24 1 ESA f T 274 8501 Jer STAGE AB 24 1 Most rivers located in urban areas are small and medium sized rivers In recent years flood disasters and accidents in such rivers are increasing To cope with those issues river administrators have addressed flood control measures such as river improvement construction of retarding basins and continuous observation of hydrological index However it is still nearly impossible to accurately estimate flood discharge and stage discharge relation in small and medium sized rivers Because of that it is difficult to carry out river planning based on past flood discharge records In this study high water discharge observation was carried out in the rapidly urbanized Ebi River The study also examined the accuracy of observation in details under different conditions and discussed river planning issues in small and medium sized urban rivers Key Words Flood discharge observation H Q curve rod float compound cross section class B river urban river river plan
127. 8 Mr 3 19m DEY 10 8 25km m O A H Q H Q DH Q 40 35 20 25 30 m3 s 2 0 5 10 15 11 3
128. ADCP ADCP 9 ADCP
129. ADCP 13 5 E TEE 15 4ms A iE
130. 3 600 18 00 12 8 0O H 3 89 m 13 00 H 3 88 m 3 90 m 4 8 32 m 7 15 3 00 5 00 m 2 1 1300 1 1400 EET gt A 35 2 ADCP 1 ADCP 12 iliis 025m THINK 1 ON ON IOping 4 31cm s ADCP 1
131. 2 Pam Cll H Vsi CN 20 HLVsi O 1 2 1 2 A COUN Ce WIS 80 2 3 1 23 2 3
132. 3 2009 8 9 EL a Eu MME EE 5 sisi 5 NR m L5 ex um m ss ian 28 a A 1 XE 5 1 Version 1 0 2 CommonMP
133. 53 978 10 31 2 400 1 1978 785 23 2 386 6 5 0 2 3
134. CommonMP 2 3 2009 8 9 241153250 mm 10
135. 600kHz 1200kHz ME Mode12 1 4 31cms 23cm 20 1200kHz 23cm 20 8 ADCP
136. HX EL Q m s 500 O Obs Price meter 400 O Obs ADCP 300 Cal Present method 200 100 0 Sep 5 Sep 15 Sep 25 Oct 5 Oct 15 Oct 25 Nov 4 Nov 14 Nov 24 Dec 4 10 DIEX method 2 Q qi m s A Simple method 300 10 0 10 DEX ADCP DE ADCP O 0 11 DEX
137. ATTENTION POINTS FOR CARRYING OUT DISCHARGE OBSERVATION FOR THE FIRST TIME MEMORANDUM OF PERSONAL EXPERIENCE 1 Takuma KATO MESA fk 112 8551 1 18 27 The present paper was written for the person who carry out discharge observation for the first time have many distresses for thinking over observation methods and from lack of experience 1 describe the problems that have been encountered in trying to design observation carry out it purchase observation equipments and take safety measures from beginner s viewpoint Key Words Discharge Observation Method Observation Equipment Safety Measure 1 ADCP
138. 2009 KEKE 25mx2SmxSm ADCP MEMS ADCP RTK GPS ADCP MEMS 13 5 13
139. D VTG A VTG cm 10cm 1iGPS GPS quality indicator 5 Float RTK GPS 80 105 1 GPS RTK FE VTGC 1400cm s GPS quality indicator23 5 4 cm s RTK GPS VTG VTG GGA
140. 4m 15 20 64 3 1 1 3 TRDI V ADCP 2400kHz nme Ester
141. Di 10 a 0 10 3 ADCP E ZBIS d gZE 3m
142. Vr FABRE 3 7 figs 1 ADCP i 4
143. Vo1 50 pp 709 714 2006 5 FADCP B Vol 63 No 4 pp 295 310 2007 6 ADCP Vol 52 pp 919 924 2008 7 St 20 63 L 095 2008 8 http www river go jp 2010 7 20 DIRA ES EAST BAGUE ORK
144. 6 29 REMED 2 AIDA C do AL EH Cae
145. 10 20 X ADCP 35km 0310 2004 b ADCP ADCP ADCP ADCP
146. i Ci 3 i ii VYCHEA 1 CHS Bi ADCP AO AJB e A
147. 15 1 2 ADCP 1 1 2 ADCP 15 ADCP 4 2 5 MEMS ADCP 13 5 5 13
148. 450cmys WV 18 7 a b FEDS 180 HBA LGR AIT xu vA HOLD Ambuigity Velocity 4 0ms WV BABO i 6
149. 4m 8 89 2 a bE o A DH Q DH Q H Q H Q IEEE CD A aaa See eee eee eee m A AAA O ARA EO LLPLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLL LLPLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLL 10 15 m3 s 10 9 4 30 5
150. ADCP Vol 42 No 9 pp 22 27 2000 6 Michael S Rehmel James A Stewart and Scott E Morlock Tethered Acoustic Doppler Current Profiler Platforms for Measuring Streamflow USGS Open File Report 03 237 2003 7 Kevin A Oberg Scott E Morlock and William S Caldwell Quality Assurance Plan for Discharge Measurement Using Acoustic Doppler Current Profilers U S Geological Survey Scientific Investigation Report 2005 5183 8 THEMES ADCP E 52 2008 9 ADCP 4 2006 10 ADCP 62 IL106 2007 11 ADCP 61 IL 219 2006 12 FEMS W
151. WL D 2m s 3 2 3 4 87
152. 2 DIZ dE HOS CLS CHL 90 A um a ES 2 288 LOT STOO SAW LL CRD E
153. 134 7 A 6 H 5 HLADCP ci 1 ADCP HOKE 23
154. 2 2010 7 2 100 2 600 3 KC hes RSS eT Bey AMARE LOT
155. MCD Oz 2 0 85 QRO 0 85 ADCP
156. A 7 F L 1 4 14 9 A 2 1 15 3 H 93 3 E No 497 11 28 1994 4
157. ADCP 4 MEMS 14 16 ADCP 4 0O 88 2 0 78 1 0 72 1 0 47 1 ADCP 12 ADCP 20 4 20 ADCP AD
158. SR C H Vs Vs Vs a 1 000m3 3 4 5 6 H Vs AVs 15cms KAZ m 2 3 4 WX m s H V ch 8 01 9 9 9 16 2 3 AS m s H V ch 8 02 7 10 7 14 11 H Vs 2 40m 2 1 2
159. OCHS LAL 22 4 ADCP 1 WorkhorseADCP1200kHz 25Scm 14m 50cm 16m 20m 600kHz VV 600kHz WB1 20
160. TS IS ORKOJ 2000 1 2007 5 TS 2 7 1 http www river go jp 2 http www Lriver go jp 4 NY http law e gov go jp http www jma go jp jp bosaijoho radar html X MP http www river go jp xbandradar http www L river go jp http wwwS river go jp 8 DVD E 2007 9 PESE 2008 5 10 World Meteorolog
161. 2 1 MEN 2m s 9 17 2 ADCP 1 a
162. CFD 3 ADCP 2004 ADCP ADCP 2008 FRECHE ADCP ALO H Q 3 ADCP ADCP
163. 2 3 1 2 10 13 21 ADCP MEMS 20 43 6 E 0 5 1 15 20 000 000 000 000 000 100
164. 2002 2003 ADCP USGSOMichael 59 X 8 0 6 3 6m s ADCP HL_ ADCP ADCP
165. 9 Case1 Cas2 ADCP Casel 2 DIZ Casel Case2 ADCP 7 ADCP 5 10 20 30 Cael ADCP 10 30 Case2 Casel 10 I Data assimilation S is S S gt Spanwise direction I 8 Case1l 209 Case2 75
166. 25 UT ADCP
167. ADCP 4 8 ADCP ADCP ADCP 350 570m7s T ADCP 1 6 7 8 ADCP X 3m
168. 3 HQ HQ HQ HQ HQ HQ Q L n Ji AR pb 2 3 3 HQ Q a H b H Q EO a Q A 1 p B 4A H b 2R 1 p a b HQ Q n i A R A B B H 4 HQ HQ
169. FMP 3 1 4 4 A ES o A 1
170. 3 A RC ADCP 1 z a a u z Su of FUE 2 5 Yu U inf HE z z uy 2 3 9 4 oo
171. z A 3 8 ADCP ADCP 10 10 11 Y lale us JI gz up ADCP LW 8 ADCP X 10 10 1 S AW oo
172. 2 300 1 30018 r 2010 3 31 EA A om a EXT xem prim O amp oe eaf ea 1 0 9 240 117 1 1 0 2 1 2 9 0 1 8 2 5 0
173. 5 4 0 Im s 0 15m s 0 Im s 0 1m s b A A ser e prod epu 10 2010 6 28 6
174. ADCP 42 E RemaADEP zi HLE xe pii is FenmHhCP BE FE 16 5 ADCP mert m GSNHE 1 5 b pni Rd X XL 17 ADCP RTK GPS MEMSTUUSI RTK GPS 19 ADCP MEMS Teledyne RDI BERR YA 20 ADCP
175. ADCP EB fas 3 Sms 09 WWE Sd LIT lt lt V FE NIS ETE BEL K b ADCP USGS 1
176. MGquiE E 6 d 5 1 1980 83 diem I 5 gE wh e one AAA ID AR SRE Lies Rist mm m 0 500 1 000 2 000 3 000 4 000 830m 1986 1990 907m 1996 1997
177. 2 12 ADCP HRA NIKE ZR 13 12 LTL ok
178. MARET aw 211 Yn ly Le 9 1 7 n ig
179. 49 WinRiver 3 ADCP ADCP CGPS 2 3 1 GPS 7 ADCP ADCP V abs V non reference a V boat 11 11 7 ADCP 7 ADCP 7 ADCP 1
180. WS 13 20 4 18m s 4 ADCP ADCP LAL A
181. X GPS Tethered ADCP platform ADCP T Ey ADCP E ADORE 7 5 WH ADCP P1an ADCP 413 6 ADCP Work Horse WH ADCP ADCP
182. m a AR CUBE 2 C MRA es K Pe iai ue aimi it
183. 3 1 3 2 9 10
184. ADCP ADCP 1998 1500m7s 2001 ADCP
185. 2 3km 2 7km 1 90 L Lk 50m 3 11 3 4m s 1 2m s Xf
186. ADCP ADCP ADCP 29 ADCP Aquadopp Nortek AS 3500 5 uw u lt lu wu lt hi X 0 03 00325 ms 0015 0045 ms 0 01 0 1 02
187. HAAS ADCP AER 14 2008 6 6 WHER ADCP KI 52 2008 3 7 David Mueller Techniques for Measuring Stream flow with an ADCP in Moving Bed Conditions ADCPs in Action 2005 8 ARI FASS 2007 2 ERES ADCP 14 2008 5 ORREK MERS MEHEL ADCP 16 2010 6 11 SA ADCP T 41 2004 20
188. 200kHz ADCP RTK GPS RemoADCP A ADCP 2 ADCF 6 0m s 13 4 ADCP MEMS
189. 2m 10 7 34cms 17 ADCP RTK GPS MEMS 4m RTK GPS 18 ADCP RTK GPS ADCP i ee i di eiit ska curro er Mic eva ee ADCP D GPS
190. 55 CHS 3 ADCP 1 2 2 2km 0 Tkm a SBA O 77 _0 eal o 1 1 5km W 43
191. 1200kHz ADCP MEMS RTK GPS Remo ADCP 1 PC 16 5 ADCP 15 B Be align ae rial ca 1 26 38cmys NM Me 27m 3
192. 50cm 3cm s VRS RTK GPS HP reer a RTK GPS RTK GPS RTK RTK NMEA GPS quality indicator 4 GPS 8a b c ADCP VRS RTK GPS Teledyne RD Instr
193. 5 8 3 3 8 2 1 2 4 4 2 1 1 6 000m s 24 32 31 30 Beg APm Co 3 8o 27 o 8 1 ch5 26 Ba e 8 1 ch5 o 8 31 ch
194. 8a b c GPS 50 Stick Ship Track Ref GGA Ship Track Average 1 500 m s Distance North m 55 Distance East m a ADCP Velocity Magnitude m s Ref GGA Bottom Q 1300 Bottom Top Q 0 730 0 35 1 125 Depth m N e os o 4 0 240 220 200 180 160 140 120 100 80 60 40 20 0 Length m b Boat Speed 4 00 g3 do do M e 2200 3 E o 24 00 0 00 240 220 200 180 160 140 120 100 80 60 40 20 D Length m c 8 WinRiver 1 GPS 5 F1oat RTK GPS 1 GPS 4 RTK
195. al 2 I X 20 30cm 17300 4 H V 2 H Vs 3 1 H Vs 3
196. ADCP ADCP 65 O 9 o A 50 gt g 2 2 uaria 49 8 Fe BO 4 e 2695 5 on _ A pu E O x TS SEE eo O A S 30 20 o 10 A 1 1 1 1 1 1 1 8 24 9 36 10 48 12 00 13 12 14 24 15 36 16 48 18 00 13 KK EIR ADCP 1
197. Workhorse ADCP 600kHz E RENAN CES 13 62cm s 1 1 5 2 4 RTK GPS 1 ADCP IKE ADCP 11 ADCP MEMS Micro Electro Mechanical Systems Xbow NAV440 2 L ADCP 3 ADCP Teledyne RDI ADCP Workhorse600kHz L WM1 0 5m JE 30 5m 10
198. MERA OE 3 1 2 1 AN 1 o H ADCP5
199. Vol 51 pp 1057 1062 2007 HADCP ME 33 Vol52 pp943 048 2008 2010 7 20 2010 9 ADCP E f amp amp k L T 38 E PR EREI d D DEVELOPMENT OF FLOOD FLOW OBSERVATION TECHNOLOGIES USING TETHERED BOAT EQUIPPED WITH ADCP Shoji OKADA 1 7783 8508 200 1 To have a better understanding of ADCP instruments and develop a system for the highly accurate measurement related to water discharge velocity profiles and bathymetries authors focus attention on a build in inclination sensor in ADCP which is a liquid surface detection type The field measurement with a floating vessel in Japan involves high velocity and vibration of water surface which might induce the major sources of error related to a vessel fluctuation Therefore in this paper authors quantitatively evaluate the influence of vessel fluctuation on ADCP measurement with 1 developing a measurement system with employing an MEMS inclinati
200. H ADCP 2 ADCP 9 ADCP
201. 1 4 HQ 1 HQ HQ Bibs 29 10 9 10 100 36 2
202. 11 2m 4m 2 2 POT 5 Sel eI CV ees A WMO Guide to Hydrological Practice TEO PPV O08 8
203. error velocity DS error velocity 6 ADCP HQ HLADCP ADCP 24 ADCP L
204. 2 ADCP 1 ADCP ADCP 2 1 ADCP profiler ADCP 9 FA 1 ADCP 4 1 2
205. 4 AD CP 4 ADCP MEMS FED DADCP ZMEMS 12 89 14 71 0 88 ome jm 1639 os 0 47 4sec lsec 6 30 13 56 ADCP ADCP MH MEMS MEMS PSA E SA E E ES O A A E es 1 O S 1 IO O IA in 1 1 1 Ll AA IA AI A RI ILIA ALP E a LA CaL LU LE oed PERS CEU S ep PI F a 7 AA A Lf A A A Y Y MINVI MM Y Y CC LT 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 a 4sec sec O O O O E L qp ee eee ee ir in IIN IT Td Mu d dl t AA A IN UT TER IA NANA PRA AAA RP A EE EAP L4 Y IFA EAPN A 10ed EA AI UA A LAE WM NW X VI ud VLL W ee ee ee el 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 b 2sec sec 2 n LL sie io L4 MM WIAM MAII hk AL Ie N sa A E HS Mala n 2 I Lutte Bil Lf deg 5 rer B AH NLE 18 20 22 24 26 28 30 sec 0 2 4 6 8 10 12 14 16 c 1 5sec IPP ELE LL ama Na Nada EAN IA kT AA ULT AUT ELT Ds RYAN T TR IRSE TT HE TESTER TEL VEL AI e Lak NM O A P LLL IL FI 1 FT 1 1 FT A OO 1 Il 1 ll l 1l 1l ll l 1 O
206. ADCP WH ADCP RTK GPS RTK GPS GPS T ADCP VRS RTK GPS RTK GPS RTK
207. 1 3 H_ ADCP 36 NIE 3l E E MEZZO T bs A io Ax ier um ar b ai 6 2 m7s 1922 1915 2029 2037 1906 1900 WinRiver TRDI 1942 2006 1956 3 ADCP 7 ADCP
208. 2 4 50cm 5C10m ADCP 2 9 10 d0 XO ADCP
209. power method Constant method 3points method power method constant method non slip power method Z MHT A Z L KRH WH ADCP im
210. 2 3 HQ HQ HQ G HQ HQ 100 1 100 1 HQ CARN
211. DEY CommonMP CommonMP CommonMP O O E Common MP i gt x x OO mel y S Jie x x E 1 CommonMP 3
212. RTK GPS 45 ADCP 1 Kevin A Oberg Scott E Morlock and William S Caldwell Quality Assurance Plan for Discharge Measurements Using Broadband Acoustic Doppler Current Profilers U S G S Scientific Investigation Report 2005 5183 David Mueller Techniques for Measuring Stream flow with an ADCP in Moving Bed Conditions ADCPs in Action 2005 ADCP 4 2006 ADCP 62 TL106 2007 HERRE ADCP 61 IL 219 2006 TELEDYNE RD INSTRUMENTS ADCP Coodmate 1rans formation Formulas and Calculations
213. 0 10 DIEX 10 DIEX 10 DIEX RMS 4 6 ADCP
214. 70 2 4 JOE 2 1996 2 AMeDAS Thiessen EE 3 30 CH i FNAC L TIF 2 1 20mm hour 4 82 S NERD
215. 1 1ping 4 a WinRiver II WinRiver TRDI RiverObserver b SxS Pro section by section method ADCP RTK GPS
216. ADCP 0 ADCP 2 1 ADCP RMS EMO E DAD Lm ADCP O cp HOLE YHE Q yo 007800 RMS AQ ns 3 RMS AO KIO Oo 20m AQ mms TIA
217. ADP HADCP 32 10 200 100 Dobs m s 300 0 100 11 0 200 0 10 ADCP LORO TOR ADCP
218. 1991 ONR Office Naval Research US Navy L ADCP 1995 Workhorse m 2 ADCP TRDI 10 ZedHead Modell Mode12 Stream Pro ADCP 600kHz LAL
219. 5 6 a 6 6 JUPE H Vs 73 Wome E ite BUH CPST EORR ct et ts 8 1 BAST 88 2010 9 CommonMP DEVELOPMENT OF CommonMP PROJECT AND IMPORTANCE OF RIVER DISCHARGE OBSERVATION 1E Tadashi YAMADA 1 CE CT112 8551 1 4 1 The author first introduces the CommonMP Common Modeling Platform for water material circulation analysis which can run several element models simultaneously to find out the water and material circulation phenomena and show the importance of advancement of river flow observation technology which depends on analysis precision In addition author review recent studies on river discharge observation technology and offer a future direction toward the advancement of river d
220. 10 0 25 m 60 ON 4 31 cms ADCP ADCP 80 m 10 m 50 m 1 300 m 1 13 2 1 UT 1 1 Remo ADCP 2
221. 2 1 10 5132 132 5 1 30 1 KES 3
222. 240 17 5 220 200 15 5 180 E 160 135 A E 140 Tig m B Eds 120 115 8 ig A El 100 80 95 s 60 hi 40 J 75 E 20 99 oo Se 4 0 5 5 0 50 100 150 200 250 300 350 400 450 500 550 600 m e ADCP TE x4 ADCP 14 3 WH ADCP HAF 1 2 WH ADCP GPS 3 ADCP F
223. 2935 m 1983 1993 2274 m 1984 1988 2780 m 1 447 ha 2006 7 Jia Jia WEP Water and Energy transfer Process 4 3 10 m mz 6
224. 5 RLV A b OF EADS ADCP 13 FID ADCP 0 Renniec ADCP
225. NOE BI ME EE y a ma w TIEREN Se di I SH 4 3 2 ch4 H16 9 2 H1S 9 BA AI A 71 m 4 5 H16 12 4 Nd 2 No 3 No4 No 5 10m 0 100 200 79494991 400 500 600 700 800 900 Ed 4 3 3 100m EE Im LT HH Vs4a 4 1 lt 5 4 1 lt 3 ch 4
226. 2 2 WMO WMO 0 7 0 5m 4m 4 1954 50
227. ECHA ADCP 5 2 ADCP 5 2 7 ADCP E David et al ADCP X 5 CS DD ADCP
228. 2 4 4 9 4 5 4 WILT CUJ 15m 4 4 3 ch 4 HL Vs 4 4 1 4 W RED OR E UE H Vs 1 MED ch 4 8 NM 23 10m 1000 78 20 19 18 17 E Aa A 16 se Le e 8 1 ch4 29 In wee o 8 1 cnh4 8 31 ch4 o 8 31 ch4 4 a 9 30 ch4 D de 9 30 7Kch4 EU a 10 20 ch4 n 10 20 ch4 V 0 1 2 3 4 5 6 4 4 1 HVs4 H16 20 19 18 17
229. ADCP Y ADCP H ADCP ADCP IX ADCP HL ADCP ADCP ADCP 1 400m ADCP
230. c VisualADCPtools ADCP TRDY THE d ADCP ADCP a Fa FJ ABT Acoustic Backscattering Turbidity OP ADCP 1 D 2 Thorme
231. 2 7 8 AMeDAS 0 85 0 88 9 2 5 3 0 2 4 6 E x 10 G 12 E 14 YE 16 18 20 0 00 2 00 4 00 6 00 8 00 10 00 7 A FER IZ 7K 2 5 0 il 2 2 1 eee Rm FRA 4 1 9 X TT 6 e 17 AA A 8 E m E 91 5 aa 10 fs a 3 12 E 1 1 Ti Tr 14 NE 0 9 A A t 16 v M a 18 0 5 20 0 00 2 00 4 00 6 00 8 00 10 00 8 mm 10min 0 00 2 00 4 00 9 6 00 8 00 10 00 6 10 Im 2m AMET Lak WOKE LOG
232. IAKA lt 3mys 1 5m s 3m s 9 wA m 2007 8 3 10 00 Q 1915m s 180 270 Hims 180 30 0 90 o 2 60 B0 1 120 140 160 180 200 220 240 2860 50200 ER im 0 120 140 160 180 200 2230 240 260 250 300m Q 2 24 060 O8 100 IM 140 WO 180 200 220 240 280 280 300m A u A a i 2007 8 3 11 00 Q 2037m s 180 270 360emys 180 90 50 0 20 40 60 30 100 1720 140 160 180 200 220 240 60 250 00m 1 Lol E as t ME E U 10 51 i ES 2007 8 3 13 00 s 2007 8 3 14 00 ii Q 1900m s as Q 1926m3s ret I 16 51 6 5 gt 180 0 0 90 180 270 Jim s 80 40 0 180 270 do s ADCP 9 1200kHz 45 8 40 7 z 35 Bg _ PB og 2 NS 3
233. 64 10 11 1 2131415 1617 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 4 0 3 O70 WS 14 175 218cm s 7 H J id 11 12 13 14 15 16 17 18 19 0 15 150 225 7 B 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 236 27 28 ol 41 82 13 164 206 2B50cm s 12 12 ADCP ON OFF 4 ADCP HAL cick
234. JYE section by section method TRDI RTK GPS ADCP c ADCP 20 1 3 ADCP 2 3 ADCP
235. _ 0 100 200 4 5 300 400 500 600 25 700 800 900 m 21 100 0 100 200 300 400 500 600 4 6 79 23 700 800 900 1000 m 20 D H Vsi QA 1 3
236. 2004 23 ADCP LSPIV Laree Scale Particle Image Velocimetry STIV Space Time Particle Image Velocimetry 3 ADCP Acoustic Doppler Current Profiler ADCP ADCP 2 ADCP ADCP 1981 1993 1
237. H16 4 d HIF 4 Q 8 000 12 000 9 000 16 000m7s 36km ch H Vs 2 4 MH 1 3 2 4 2 4 3 ch 2 3 Q 10 000m7s 2 3m RAL H 30m 2ms 4ms nm Vs WEDS Loa re
238. MEMS 50cm Distance East m Distance East m Distance East m ADCP RIK GPS 11 Distance East m 19 27 18 ADCP RTK GPS 20deg RDI ADCP ty ADCP Vi V beam ay 1 V2 V2x Vz2z 2 Vix Xsin V17 Zcos O Voy Xsin 0 t V gt 7 Zcos 1 1 2 1 Xsin ty V Zcos 0 1 2 Zcos 0 1 V5 Zcos 0 1 X Z 19 ADCP MEMS E vti FT UO D RICO MEUSE EST 3m
239. ADCP ADCP WH_ADCP BL WH ADCP lt WH ADCP ADCP RD WinRiver User Guide Compass Correction W
240. GE c 8 2010 1 22 8 13 11 8 15 26 2 13 7 62 E ES 7 6k 9 9k NEC 12 6k gt iE 11 0 375m s 9 3 UT
241. Q RMS EH AQ wns ADCP APEZEK Z AQ pns 6m AO 10 Quo lt 100ms 5 Quo gt 100m 5 AQ ins 86mfs TH 59 E 100m ADCP 100m 28 RMS RMS Root Mean Square n Velocity m s Depth m Lateral 0256 0 950 o position m Discharge 3 2 18 4 48 3 m s AQ sans m s J 9 OApcp 1 R MS 0 024 0 036 4 0 031 0 114 14 5 112 10 7 0 50 100 150 200 Quo m
242. 1 1 7 6 7 6 O A A 1 5 z i SES ABR A a d X X A
243. 1976 2 1991 3 1996 4 25 pp 87 94 1994 5 UR TC 2009 6 78 pp 11 20 1965 2010 7 20 HHHHHHHHHHUH2010H 91 HHHHHHHHHHHHHHHHHL HUHHUHHHHHHH AUTOMATIC MEASUREMENTS OF STREAM FLOW USING FLUVIAL ACOUSTIC TOMOGRAPHY SYSTEM Bp A a NE NINE ON NON NO NN Kiyosi KAWANISI Arata KANEKO Noriaki GOHDA and Shinya NIGO 739 8527 O 739 8527 723 0047 730 8530 1 4 1H 1 4 10 HHHHHUHHHHHHUHL HHHHHHHHHHHHUL HHHHHHHUHHHHL 12 21 HHHHHHHUHHHHLH aa u HH HUUUU 00000 00000 Discharges of a tidal river and a gravel bed river were measured using an innovative technology called Fluvial Acoustic Tomography FAT Reciprocal sound transmission was performed between two acoustic stations located on both sides of rivers The FAT system makes a
244. 7 1 300 800 4 1 375 5 2 6 C 2001 2010 7 X
245. ICHARM ICHARM 6m s C D GPS RTK GPS i b AEREA TA 600kHz 40cm 40m lt TP P E rz ln c ADCP GPS
246. 15 2010 9 5 Do 1873 24 1891 27 1894 8 5 12 1937 13 1938 37 111 2
247. BX dm s 1200kHz WM1 W V175 Farol C 1 BI20em 08 T 2Scm 0 6 ep sccm UA O De Oe La m 0 2 0 0 1 2 3 4 5 6 7 8 9 10 1 Ping 600kHz WM11 WZ5 Hson 10cm 20cm 25cm 0 10 20 30 40 50 60 70 80 90100 1 Ping 600kHz WM1 WV175 A 0 0 12 3 4 5 6 7 8 9 10 1 Ping 0 10 20 30 40 50 60 70 80 90100 1 Ping 4 png std 4 Ambuigity 23 Velocity WV WV170 175 42ms Ambuigity Velocity WV Ambuigity Velocity WV xsm 20deg x1 2
248. RGB 92 5 KH Avv AD Ea SR T SHA PC HEA AC
249. UE 2001 1200kHz Zedhead Mode11 Mode12 2 ADCP Model Mode5 8 11 Mode12 Fi pmg pings pms
250. MEMS ADCP PAG AOR VAT BS O Os 2 4 20 10 0cm HEADS RD EV 1S 3 ADCP 4 5 25cm ADCP MEMS 15 41 Tb ADCP 20 1s ADCP
251. 1
252. U W i 1 2 DET V W cos U sin O 1 V W cos0 U sin 2 WMAWMCHAD Wie ADCP Ai Z Vo Vp U 3 2 sin wan 4 2cos 1 2 Bee Ons fq Control Section CS 5 bU 0 02 6 CS 2H tan
253. GUI 25 D 2000 QTY ERI ERO i5 x
254. 2004 23 ADCP 2 30 3 300m 100m 1499m7 s 1510m7s ADCP USGS OSW Office of Surface Water ADCP 9 4 2 4 5 4 8
255. Ed 12 DC 12 LOIN edi rt tc a P TE pearl pen cies MARRON C Ru ta ee adie oe ate el ADCP L a ues HF 260
256. std Mode1l 2 ModeS 1 0mys Model1 1 0m7s 4 0m 0 25Sms 2 x lt 1 0m7s Mode8 2 0ms 3 5m Mode12 3 ADCP BE WS WN Ping WP BP WP BX Ambuigity Velocity WV pmng ADCP ping pms 1
257. 2010 9 EXAMPLE OF FLOW REGIME AND DISCHARGE OBSERVATION USING THE ADCP IN THE UCHIKAWA AND THE KUROBEGAWA Taichi TEBAKARI 939 0398 5180 This paper reports the example of the flow regime and discharges observation in the Uchikawa and the Kurobe River using the ADCP Acoustic Doppler Current Profiler The Uchikawa had been rich and varied river until 42 years ago Water environment in the Uchikawa has been deteriorated caused by new port construction and well drained paddy field development Sanitization program for the Uchikawa has been carried out by national and local government However water environment in the Uchikawa did not reach to drastic improvement In this study flow regime in the Uchikawa was observed using the ADCP As a result the Uchikawa was effected by seawater regularly In order to estimated exchange between river discharge and groundwater simultaneous measurement of river discharge was carried out using the ADCP in the Kurobe River In this paper observation method was reported in detail Key Words ADCP flow regime observation discharge observation Uchikawa Kurobegawa 1 ADCP
258. 8 ADCP ADCP 31 x 350 570m7s ADCP 1 6 7 8 ADCP 8 1200kHz 600kHz ADCP WMI1 lping 1200kHz 2Scm 13 6cmys 600kHz 28cms ADCP
259. 16 2 2 20m 20 100m 100 200m 200m 2 6 2 8 2 20cm 3
260. AB C D A C B D LA Lat REK ADCP 2 ADCP 4
261. AC FEOS 200m 50m 4 5
262. H Vs7 H18 H19 2 50 LEVEL2 H i e aff Bo Nes eov o hel Ji e 2007 09 4 o 2007 09 4 e 2006 7 19 o 2006 7 19 0 00 0 02 0 00 3 2 0 02 0 14 0 16 0 18 He4 I H18 H19 0 04 0 06 0 08 0 10 0 12 H ht2 si T HCVi HI 3 13 h z HI Vsi JT Vsi AT 2 0 85 Jr H 6m 76 LEVEL2 H e 2007 09 04 2007 09 04 e 2006 07 19 2006 07 19 150 200 V Y 1 3 3 H lt Vs7 Y 1 H18 H19 Oy A1 Q h h H z
263. 1 11 OG 11 430m 10 510m 2m 520m 570m 4m 430m 510m 60cm s 40cm s CHS 450 E A E A
264. 13 96 70 e REN AN N d E 48 00m7s ADCP 49 85Sm7 MEMS 49 91m7s 2 ADCP MEMSO 2 deg a deg 20 40 60 80 pr ul a wl P E Xa ROD m ADCP roll MEMS roll al p AA q M q Ue fep e in n OM RR Qr AE G IN ee eee RATA T ja n Tg S1 JAS Y 8 O e B 0 20 40 60 80 1 c e 0 m ADCP velocity MEMS velocity 40 60 80 100 120 140 160 Data Number sampling time 1sec 4 20 ADCP MEMS 30cm 6
265. 17 1965 3 ADCP Acoustic Doppler Current Profiler ORT 4 20 2
266. 20090 20 THU 28000000000 0000 HHHHH 8HHHHH 8 b HHHHHHHHH HHHHHHHHHU1OHHHHUHHHHHHUHHUH HHHHUHHHUHHHHHHHUHHUHHHHHHHHH HHHHHHMedwinH Y HHHHHHHHHHH IIHHHHHHHHHHHHHHH 8 cHHHHHH 8 dHHHHHHHHHHFATHHHHHHH HHHUHHHHHHHHHHHHUHHHHHHHUH b c d 10 February 2009 0 80000 40000 0000000 000 0 400000 140 em i E 1201 e m 110 100 12 13 14 15 16 17 18 19 Time h 9 20 0 19 8 A A je 196 o 19 4 e 19 2 12 13 14 15 16 17 18 19 Time h 0 100 0000000 0000000 HHHHHHUHHHHHHHL 2 HHHHH 5HHHHHHHHHUHHHHUHHHHHHHL 2010 7 2 13 00 18 00 U HHHHHHHHHHHHHHHHHHH 9 FAT 71 HHHHHHHHHHHHHHHHHHHH EQ HHHHHHHHHHHUHHHHHHHHHHHHH HHHHHHEATHHHHHHHHHHHHHHH HHHHHHHHHHHUHHHHHUHHHHHHH HUHHHUHHHHHHHHHHHHHHHHHH HHHHoSNHHHHHHHHI EATHHHHHHHHHHHHHHHHH10HH 0000 HHHHHHHHHHHHHHHHHHHHHH 1 HHHH HHHH HHHHHHHH ADCPHHH AAN ANA ANOS AE os HHHHHHHHHHHHHHHHHHHHHHL e a ae EJ EXPE EL ERSTE ES ET ER EE o aep B EIE EP HHADCPHHHHHHHH 5990000 Vol 11 pp 243 248 2005 PUENTE CERE FERE TER TEAR Panopnppmnnnppnnonpp BOBWBHBBUUBBBBUBUUHUUH 1000 Vol 50 pp 709 714 2006 0257HHIHHHHEATHHHHHHHHHHHH 4 HHHHHHHH H ADCPHHHHHHHHHHH HHHHHHHHHHHHHHHHHHHHH18H ear s 16HHHHHHHHHHHHHHHHHHH pee Mo c E E DR UEM
267. 3 15x LOL 11 5
268. Mu o n DODODOODFAPO DO ODOD 0000000000 streams based on the probability concept Hydrolog IA AAA ANNAN ical Processes Vol 19 pp 3935 3946 2005 6 DOOUU 0000 0000 00000 0000 HOO ADCPHHHHHHHHHHH HHHHH 0006 O Vol 52 pp 931 936 2008 EA EAS TUTO tac Edo TAROT Aaa ET AE 88 0 80 070000 00 0 00 80 HH GPSHHHHHHHHHHHHHHHHHHH ae ee ee d HHHHUHUHHHHHHHHHHHHUHHHL FAT 8 Sloat J V and Gain W S Application of acous HUUUUUUUUUUUUUUUUUUpUuULUU tic velocity meters for gaging discharge of three low Coo eT Ea eee ee ae TE HD velocity tidal streams in the St John River Basin Northeast Florida U S Geological Survey Water HUFA4TUUHHHHHHHUUHHHHHHUHUL Resources Investigations Report Vol 95 4230 26 pp AR E E eN A A E 1995 HHHHHHHHHHHHHHHHHHHHHHH 9 HHHH HHHH HHHHHHHHH H ADCPH HIHHHHUHHHHUHUHHHUHUHUHHHUHUHLUL 000000000000000000000000 FATHHHHHHHHHHHHHHHHHHHH A DA ISI NEUE 0000000008809 0 000000008 19 0000000 000000000000000 0 0000000 000000000000 62pp 2001 HHHHHHHHHHHHHHHHHHHHHH 19 00 O RAZAZ M 000 00 0 000000 HHHHHHHHHHHHHHHHHHHHH HH ooo FATDHHHHHHHHHHHHHHHHHH old HHHHHHHHHHHHHHHHHHHHHHLH 12 Kawanisi K Razaz M Kaneko A and Watanabe HA EA RR RR ER S Long term measurement of stream flow and salin DDDDDDODDDDDODODDDODDDD etel rer by the ase ofthe Suva arc DOB00D00000fFT1000000000060 pp 74 81 2010 doi 10 1016 j jhydrol 2009 10 024 HHHHHHHHHHEATHHHHHHHHHHHH 13 000 Rezas M g00 000 00000000 RANA
269. VolL15 No6 pp625 635 2002 FOS Vol 45 No 2 pp2229 2003 Vol17 No 2 ppll7 2004 B Vol64 No 2 pp99 114 2008 FORE Vol48 Nol pp 66 71 2006 ADCP VolS1 pp733 738 2007 ASE B Vol66 No2 pp 104 118 2010 Vol51 pp 1081 1086 2007 TA AAC UC OTRO LEAR VoL18 Nol pp 105 129 1932 ADCP DIEX
270. s E 3 RMS AO 10 M i L7 EDS un ma ADCP D ADCP UT ADCP Obs Chikugogawa Riv O Shirakawa Riv A Edogawa Riv B Arakawa Riv 0 Tamagawa Riv 0 2 03 0 4 0 5 0 6 zl h a 00325 0 8 1 0 Theory n 0 015 n 0 025 n 0 035 n 0 045 0 2 03 0 4 0 5 0 6 zl h b 0 8 1 0 5 ms
271. 8516 1 6 7305 8516 1 6 305 8516 1 6 Acoustic Current Profilers ADCP are the only device that can measure three dimensional velocity profiles and river bed conditions even during flooding To fully exert ADCP it is extremely important to understand their limitations and employ peripheral devices PDs effectively The limitations of ADCP originate from an assumption commonly seen in similar devices This paper presents flow types which can be measured by ADCP with the limitations the appropriate usage of PDs combined with ADCP as well as few technical aspects related to obtaining water discharge values Key Words Acoustic Doppler Current Profiler water discharge measurement limitation peripheral devices 1 p O a HMM MEE 6m s 1
272. 9 Hendrik Tennekes John Leask Lumley A First Course Errors in Acoustic Doppler Velocity in Turbulence massachusetts institute of technology 1972 10 Atsuhiro Yorozuya Sachio Shintaku Keizo Ejima Kazuhiko Development of a sediment discharge measurement system with ADCP 10th international conference on Fluid and visualization FLUCOME 2009 August 17 21 2009 Moscow Russia full paper in CD ROM 11 BASS PEP ADCP E 54 pp1093 1098 2010 2 12 ADCP 62 2 104 pp 207 208 2007 13 ADCP 52 2008 14 HERA FORE MWEE ADCP FEA RIA E OUR RAM E 54 pp 1087 1092 2010 2 15 Shoji Okada Atsuhiro Yorozuya and Takashi Kitsuda Fukam and Hirokatsu Kanazawa control measurements Ei ZHIS PE 99 Effect of Fluctuation of a Moving Boat Equipped with ADCP Velocity Profiles Water Dept
273. ADCP TRDI WinRiver WinRiverID A JA ARE HSE HL WinRiver
274. D QS Eom pia DRE A a 1 2 3 4 5 6 7 8 9 10 0 5 10 15 20 25 30 ping ping 8 ADCP pns ADCP Los RATE OX 4 ADCP ADCP ADCP E ADCP 4
275. E a lt Y 16 15 e 8 1 ch5 o 8 1 ch5 e 8 31 ch5 BA AA o 8 31 ch5 14 p a 930 ch5 AS 9 30 cnh5 10 20 ch5 o 10 20 ch5 LI 5 V6 0 2 3 4 4 4 2 H Vss H16 1 H Vs ch 3 BEC ch ch 5 H Vss 4 4 2 4 ch 4 1 2 983 4 2 H 15 17m 1 3 Rb 4 H 17m ch 4 ch 3 ch DLE ch4
276. E E AAA AS A HHHHHHUHHHHUHHHHHHHHHHHHHLH dDOd000000 000 000 Vol 540 pp 1081 Aaa EEN EET EVE EF EIS EEG ao 14 us Speed of sound in water simple equa 0000 C000 O 320000000000 0 tion for realistic parameters J Acoust Soc Am HH H HHHHHHHHHHHHHH HH Vol 58 p 1318 1975 HOOOO 4400000000000 0000 AAA NAAA NAAA ANA 2010 7 200 00 72 2010 9 H Vs ANALYSES BETWEEN H Vs SURFACE VELOCITY RELATION CHANGE AND FLOW CONDITION CHANGE IN THE RIVER CROSS SECTION Takayuki YAMAGUCHI Yoichi NAKAJIMA TEAR T 170 0005 3 10 10 2 151 0051 23 13 Since the first flood discharge observatory station using Radio current meters was installed in one of the river in Japan in 1990 20years has passed comparison between flood discharges by floats and Radio current meters have long been done In parallel with the works analyses between change of H water level Vs point surface velocity by Radio current meter relation and change of flow condition e g bed level change and or bed roughness change during flood have been studied Several examples analysed are introduced for the cases of bed roughness decrease
277. GPS cm A shee O VIG Vector track an Speed over the Ground GPS GPS GPS Navcom SF 2110M R StarFire VRS RTK GPS 50cm VTG 3cm s Navcom SF 3050 10cm VTG 1cm s GPS ffl SF 2110M 50cm 3cm s 1km
278. Ga aad 2m 4m 26 52m 52 10m 2m 4m 00325 ms a 0 03 0015 0045 ms 02 05m 4 096 4m 087 092 4 004 0 10 3
279. P N 951 6079 00 2008 BABE MELA ADCP 16 2010 Rennie and et al Measurement of bed load velocity using an Acoustic Doppler Current Profiler J Hyd Eng Vol 128 No 5 2002 WAAR ADCP 14 2008 BRS ADCP 54 2010 2 3 4 5 6 1 8 9 10 2010 7 203243 2010 9 ADCP slit fi Fd Key points for developing water discharge measurement techniques using ADCP from field engineers perspective ARBURI 2 3 Atsuhiro YOROZUYA Yuya KANNO and Kazuhiko FUKAMI 305
280. TOS ED VO 6 1 42
281. 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 d 1sec did ADCP MEBMS deg 12 40 E 525 arana aniei aaa RE X IT 1 2 500 4 deg 13 1 ADCP 4 0 ADCP H X MEMS AURA LI Lit dictar ALA 18 20 22 24 26 28 30 sec 0 2 4 6 8 10 12 14 16 a 4sec Pp la apo lo ARA Red AMARI y CFT A a I E LLL LL LLL E LLL 18 20 22 24 26 28 30 sec 0 2 4 86 8 10 12 14 16 b 2sec AE UM RAL Ad A ta Nae M Hab i lc UU LTLLLLLLLLL 0 2 12 1 18 20 22 24 26 28 30 e pa 5sec sec 18 20 22 24 26 28 30 Sec 0 2 4 6 8 10 12 14 16 d 1sec 14 ADCP 4 ADCP MEMS
282. 00000000000000 9km L HUHHHHHHHHHHHHHHHHUHHHHUHH HHHHHHUHHHHHUHHHHHHHUHHHHHH HHHHHHHHHHHHUHHHHHUHHHHHHHL HUHHUHHHHHUHHHHHHHH3HHHHH HHHHHHHHUHHHHHHO3mHHHHHHH HHHHHHHUHUHHHUHHHHH19HHHHH HHHUHHHHHHHHHHUHHHHHHHUHH HUHHHHUHHHHHHHHHHHUHHHHHUHH HUHHUHHHHHHHHHUHHHHHHUHHHH HHHHHUHHHHHHHHHHHHUHHHHL HHHUHHHHUHHHHHHUHHHHHUHHHH HHHHHHHHHHHHHHUHHHHUH 120m HHHHHHHUHHHUHHHHHHHUHHHHHHHH UU 3mp y yd o00 00 0000 3000 000050 HHHHUHHHHHUHHHHHHUHHHHHUHHHHHH HHHHHHUHHHHHHHHHHUHHHHHHHUH HHHHHHHHHHHHHHHHHHHHHHH HHHHHHHHHHHHH TTC3422 HHHHHHHUHHHUHHHHHHHHHHH 4000000000000 00 FATE DU LU UL HHHHUHHUHHHUHUHHHHHHHHHHUHH 0000000 T2270 0000000000000 UU 2 HHHHH EATHHHHHHHHHHHHHHHHHHHI HHHHHHHHUHHHHHHUHHHHHHHHH HHHHHHUHHHHUHHHHHHHHHHHHHHH HUHHHUHHHUHUHHHUHHHHHHHHHHHH HHHHHHHHUHHHHHUHHUHHUHHHHHHL HHHUHHHHUHHHUHHHHHHHHUHHHHHHH EATHHHUHHHHHHHHHHH 5HHHHUHHHHHHHUHHHHUHHHHUHHL HHHUHHHHHHUHHUHH346mHHUHHHHH HHHHHHHHHHHH QHHHHHHHHH HHHUHHHHUHHHHHHUHHHHUHHHHHHHUH 40mm 0 000 1500000003000 U HHHHHUHHHHHHHHHH 127000000 0000000000000 Hyperion G3 4000mAh 14 8V D 0000D HHHHHHLH GQ OOO000000 0040000000000 FATU 000002008 6 2010 7HHHHHHHHHHHHHHUH HHHHHHHU2008HHHHHHHHHHHHUH m 2000 1500 Qy m s 1000 500 0 3 5 7 9 11 13 15 17 19 21 23 25 2729 3231 z 9 TI 13 15 17 1921 232527 2931 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 3 5 7 9 11 13 15 17 192123252729 1 35791113151
283. 1 0 0 1 NEO 2 96 3 600 1 1 0 4 2 1
284. 10 7 20 2010 9 ADCP H ADCP RIVER DISCHARGE MEASUREMENTS WITH ADCP AND H ADCP Y asuo NIHEI TESS T T278 8510 2641 Although an ADCP Acoustic Doppler Current Profiler has been widely used in flow monitorting in coatasl oceans there were few applications of ADCP into measuring flow and discharge in rivers several years ago This paper introduces our attempts to apply an ADCP into discharge measurements in rivers Discharge measured with the ADCP are used to examine the measuring accuracy for river discharge with floats showing that the measured discharges obtained with floats have some measuring errors mainly due to treat the velocity profiles in vertical and lateral directions We also presented a new discharge monitoring system with H ADCP measurements and numerical simulations Key Words discharge measurement ADCP H ADCP float flood flow 1 2003
285. 2007 2007 1 86 M es 3 2007 2 ADCP 1 ADCP 2007 20074E0 ABS 5 EESEIFELCADCPTA AR _E 1 1 22 m 0 81 m 6 kg USGS Michael USGS E 21 20074F 8 HU 5 3 3 9 Skm 8 2 20 00
286. 3 5 6 No 2 AWA 2005 DAT 8 13 10 8 Kinosita Takeo Improvement of ultrasonic flowmeter in IAHS Pub revers in Japan Adcvanced in Hydrometry No 134 1982 2010 7 205243 2010 9 ADCP AN ADVANCED ADCP TECHNOLOGY FOR FLOOD OBSERVATION AND FUNDAMENTAL TECHNIQUES fis AMES EL PEZJ EHE Hening Huang Takashi KITSUDA Chikara SHIMODA Makoto HIKIDA and Hening Huang NN i gt gt x sb m w NL NL TH THT Im Mm Wm 574 0016 5 10 23 132 0015 3 19 10 132 0015 3 19 10 Ph D Teledyne RD Instruments 14020 Stowe Drive Poway CA U S A This report discusses about the advanced technology of measuring flood flows u
287. 5 e 8 31 cn5 A 9 30 cn5 25 E a 9 30 ch5 o 10 20 cnh5 m 10 20t7kch5 FY 24 4 5 V H16 agar 2 4 H Vss 3 CRIT SRA NAAA SIUC ERROR O AE H17 HI18 000m s H19 10 000m 0 E Ax 200m E 0 85Vsi V i 1 Vi i TZV ZADIRE TCO Vi I nhi 12 2 Vist i m 1 0 85n hi 3 H LEVEL 2 e 07 09 ch 07 o 07 09 ch 07 e 06 07 ch 07 o 06 07 ch 07 0 00 3 00 3 50 4 00 3 1 0 50 1 50 2 00 V
288. 6 1951 9 25 121 500 837
289. 7 1921 23 25 27 29 31 2 4 6 8 1012 14 16 18 20 22 24 26 28 30 4 6 8 10 12 14 16 18 20 22 24 26 28 30 3 2 8 5 T 1 0 PSU WE LAL SS Lt ds 28 E 1 5 ADCP Floats gt 10 0 5 0 0 13579111315171921232527291 3 5 7 9 11 1315 17 192123252729 31 1200 lt 1000 E 800 ADCP Floats a 600 400 200 9 11131517192123252729 1 3 5 7 Junc UI L3 3 HHHHHHHHHHUHHHUHHHHHHHH HL 2009 00 640040 78d 0000000000000 HHHHHHHHHUHHHLH 6HHHHHHHHUHHH 20099 60 1000 S 030000000 000 Q00 0000000 HHHHHHHHHUHHHHHHHUHHUHHUHL FATHHHHHHHHHH ADCPULU ULULUULULU IlHHH 7HHHHH 6 b OHHHHHHHHH HHHHUHUHHHHHHHUHHH3HUHHHHHHH HHHHH30emlHH2HHHHHHHHHHHHL HHHHHHHHUHHHHHHHHUHHHHHHHUHH HHHHHUHHHHH 6HHUHHHHHUHHHH HHHHHHH3HHHHHHHUHHHHHHHH 6 c OHHHHHHHHHHHHHHHHHH ADCPHHHHHHHHHHHHHHH EATHHHHHHHHHHHHHHHHHHHHI HHHHHHHHADCPHHHHHHHHHHHH HHHHHHHHHUHHHHHHHHHHHHHH HHHHHHHHHHHHHHEATHHHHHHIH HUHHHHHHHHHHHHHHUHHHHHHUHH HHHHHHHHUHHHHHHHHHUHUHHH7H 21 HHUHHUHHHHHUHHHHHHHHHHHHHH HHHHUHHHHHHHHHUHHHHUHHHIHHH HHHHHHHHHHHHHHH 9g A A Y 9 11131517 19 21 23 2527 July 2009 70 2931 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 August p 8300 00 HHHHH bHHHHHHH oHHH HHHHHHHHH ADCPHHHHHHHHHHH Float observations O ina m Is i ADCP observations 600 800 3 Quer Loa 4S 200 400 0 7 EATHHHHHHHHHH ADCPD HHHHHHHHUL
290. 91 0 g S 2 11450 11500 11550 location m vot O a 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 10 200 0 16 5 180 0 15 5 160 0 14 5 140 0 t 1o 1 13 5 S 1200 i 12 5 T 100 0 11 5 E J 800 10 5 di 60 0 9 5 is 40 0 8 5 20 0 75 0 0 6 5 430 450 470 490 510 530 550 570 590 m aoni 11 GGA GPS quality indicator 14 cm VTG GGA VTG VTG
291. AAR ADCP 14 2008 13 BARUA HERE ADCP 54 2010 14 BABS MERA ADCP 16 2010 15 H ADCP 11 pp 243 248 2005 16 HHADCP B Vol 64 No 4 pp 295 310 2007 17 S0 pp 709 714 2006 18 JUEZ
292. CP 1 ELT ADCP 4 13 0 1 5 1 009 10 1 035 15 1 082 20 1 153 10 15 1 15 4 ADCP MEMS 14 S00cm ADCP 4 12 ADCP MEMS
293. DCP 4 93 1 2 ADCP ADCP WinRiverUser s guide constant method power method 3points method 1 2
294. HHHHHHHH 7HHHHHHHH H ADCPHHHHHHHHHHHHHHHHHHH HHHHHHHHHHH 000000 HADCP IAN e A AA HUHHHHHHUHHHHHHHHHHHHHHH HHHHHHHHHHHHH 000000000 HUHHHHHHHHHUHHHHHHHHHHHH HBE a a a BAH 0 E aa EL HUHUHHHHHHHHHHHHHHHHHHHHH HHHHHHHHHHHHHHHHHHHHH 9g BE tt 4100010 da HUHUHHHHHHHHHHHUUHHHHHHHH HHHHHH FATIHHHHHHHHHHHHT Oo HHHHHHHHHHHHEATHHHHHHHHIH e E E e 00 00 40 i 000 0 00 Broadband Transducer 30 kHz PIO Parallel VO SCI Serial Communication Interface ITU Integrated Timer Unit LPF Low Pass Filter BPF Band Pass Filter IMD Internet Mobile Device GPS Antenna sindOkHz cos30kHz Serial Terminal Er Bluetooth Serial data USB wireless Main Board 01000000 0000000000000 132 41 i Gion gates A p E LS i Measured Wi PL cross section A IM wi 34 41 HH 132 43 a 132 45 132 47 132 49 Yag uchi gauging station my 1 d ua ed T MT UM bh k VEM c VANS EC S Fr e y 5 z ae a I ips Ohshiba gates od 3 z ys F ks i ae 2008 D 2HUHHHHHHHHHHHUL HHHUHHHHHHHUHHHHUHHHL UU HHHHHHHH ATDHHHH LE LI LI WOU HHHUHHHHUHHHHHHUHHHHHUHHL HHHHHHHHHHEATHHHHHHHHHHH HUHHHHHHHHHHHHUHHHHUHHHHH HUHHHHHHHHHHUHHHUHHHHHHHHUHH HUHHHHHHHMHHUHHHUHHHUHUHHHHHHH HUHHHHHHHHHHHHHHHUHHHHHHHH HHHHHHHHHHHHHHHHHHGPSHHH HHHHHHUHHHHHHUH HHHHUHHHHHUHHHHHHHHHUHHL HUHHHHHHHH 1HHHH2H1HHHHHH 67 HHHHHHHHHHHHGPSHHHHHHHHH HHHHHHHHHHHHHHHHHHHHUHHHH HUHHHHHHHUHHHHHHHHHHHHH
295. HHUH HHHHHHHHHHHHHHHHHHHHHUHH HUHHHUHHHHHUHHHHHHHHHHHHHHH HHHHHUHHHUHHHHUHHHHHHHHHUHH HHHHHHHHUHHHHHHHHUHHHUHHHH HUHHHHUHHHHHHH1OHHMHHHUHH HHHHHHHHHHHHHHSNHHHHHHHIH HHHHHHHHHHHGPSHHHHHHHHHIH HHHHHHHUHHHUHHHHHHHHHHUHHH DO HHHHHHHHUHHHHHHHHHHHUHHL HHHHHHHHHHHUHHUHHHHHUHH2HHH HHHHHHHHHHHHHTITCHHHHHHHI TERES bd ig v x x Central LA macie LEE Th processing unit E who cs Gion sluice Central processing QUIS F Altitude m 100 200 30 400 500 Distance between a couple of transducers m a NAT ae a e We Transducers SS ii E ea SS EN E oU fe oam ks Y Ua wig L i EE SS in pa L PLN a as a al m E die b E 3 EA a katy re Ta Fema dn N LINDE E AL Joyas fo a eae S 200 m la m d H2 q Y n m H A u EIL EE BLELEE HL EE EAE EE EI EL EE HE TH 68 E T Er La i 5 rs Su E uo EE De linee ost m i Mi a E a m 5HHHHHHUHHHHHUHUHHHUHHHHHHHHHHUHL HHHHHHHTTC342 30kHzHH D DO pod Dd 00D 0 00D 0000000071227 00000 3kAp000000000000000 HHHHHHHHHHHHHHHHHHHHHUHH IIHHHHHHHHHHHHHHHHH 20 O DOBODO DO DO DO uu utut pp000012pp000000 25kHz 0 0000 30kHz p UU 00000000000 2km D D E HHHHHHHHHHHHHHHHUHHHHHHHH HHHHUHHHHHHHHHH 30kHzHHHHHHI HHHHHHHHHHHHHHHHHHHUHHHHH HHHHHHUHHHHHHUH HHHHHL Q OO000000 U 200
296. ari newQobs journal htm FEAS CommonMP 1 Fi 3 ADCP 19 AG AMEE EAS Hening Huang ADCP H ADCP 25 HARE ADCP 3 4 ADCP 4 6 BRAGEUH EPO ADCP
297. bed level degradation and dune movement down stream in this paper Key Words Radio current meter surface velocity Vs H Vs relation 1 5 20 20 LT f 15 10 C 15
298. breakthrough with the following aspects a accurate time with GPS clock signals b high signal to noise ratio with 10th order M sequence modulation c deducing cross sectional average velocity from multi paths that cover the cross section d low power consumption small and lightweight Even for a tidal river with periodic intrusion of salt wedge the river discharges of the FAT system were in good agreement with the discharges observed by an array of ADCPs The discharge measurement by the FAT system was carried out successfully even in flood events with high suspended sediment concentration and large ambient noise levels of sound The discharge of the FAT system also UU 6 300 agreed well with the results of the ADCPs and the float observations during the flood events Key Words estuary gravel bed river HHHHUHL AAA AA AAA UA AAA HHHHHHUHHUHHHHHUHHHHHHHHHHHH HUHUHHHHHHHHHHHHHHHHHHHHH Ara an i rastrea a aaa EL BEEEDEEDL 0100 0000 0 000 NOON SS LET BEE ECCE EEE EE BE EL EDI EE EST BI EA DO BOB BUD DO UU BBB DO OD DDD eE A AAA A HHHHHHHADCPHHHHHHH HH H ADCP HHHHH Y HHHHHHHHHHHHHHHH HUHHHHHHHHHUHHHHHHHHHHHHHH HHUHHHHHHHHHHHUUHHHHHHHH BEE EE ada E E 040010000 HHHHHHHHHHHHHHH 9 000000 HHHHHHHHHHHH HHHHHHHHHH HUHHHHHHHHHHHHHHHHHHHHHH HUHHHHHHHHHHHHUUHHHHHHHH acoustic velocitimeter acoustic tomography discharge saltwater intrusion tidal 00 100 ADCPOO00 00000000000 HHHHHHH 9g HHHHHHHHADCPHHHHHHHHHH PIV HHHHHH
299. e m 0 500 1 000 2 000 3 000 4 000 2 600 500 400 L X 300 L AM mx 200 100 eo N 2003 2004 2005 2006 2007 y y rr 2
300. h Measurements 33rd of Hydraulic Engineering Research IAHR congress on and International Association August 9 14 2009 Vancouver Canada full paper in CD ROM 16 RD instruments WinRiver User Guide www adcp com 17 http www gnss co jp 18 JAHRES WAAR ADCP 14 pp 295 300 2008 6 19 Yorozuya A Fukami K Shibata N Kanno Y and Imamura H Flow characteristics in actual river based on field observations using ADCP The Second International Symposium on Shallow Flows ISSF2008 Hong Kong 10 12 December 2008 Abstract on p49 full paper in CD ROM 20 HABI ERA PRATS 16 pp 53 58 2010 6 21 Rennie C D Millar R G and Church M A Measurement of bedload velocity using an acoustic Doppler current profiler J Hydraulic Engineering 128 5 473 483 2002 22 Atsuhiro Yorozuya Shoji Okada Yuya Kanno and Kazuhiko Fukami Bed load discharge measurement by ADCP in actual rivers River flow 2010 9 Accepted 2010 7 20 ADCP
301. harge measurements Proc Hydraulic Measurements and Experimental Methods ASCE 2002 CD ROM Oberg K In search of easy to use methods for calibrating ADCP s for velocity and discharge measurements Proc Hydraulic Measurements and Experimental Methods ASCE 2002 CD ROM ERREEN RISE AKI BRE PARTI Vol48 No 1 pp 763 768 2004 ATI VoL803 11 73 pp 155 160 2005 Yasuo Nihei and Akira Kimizu Evaluation of River Velocity and Discharge with A New Assimilated Method Joumal of River Basin Management Vol4 No 1 pp 27 30 2006 HERE ZKZIUEE HADCP B Vol64 No4 pp 295 310 2007 Nihei Y and Kimizu A A new monitoring system for river discharge with H ADCP measurements and river flow simulation Water Resources Research Vol 44 WOOD20 doi 10 1029 2008WR006970 2008 ADCP 2t Vol3 No5 pp359 372 1994 1
302. ical Organization Guide to Hydrological Practices ver 5 1994 11 W Boiten Hydrometry 2000 12 14 2002 13 ADCP 2007 10 14 2010 15 International Standard Organization ISO TS 24155 Hydrometry hydrometric data transmission NY D NY 6 1 Ner NY systems Specification of system requirement 2007 2010 7 20 2010 9 PAST PROGRESS AND FUTURE DEVELOPMENT OF DISCHARGE OBSERVATION KINOSITA TAKEO CT 103 0005 Member of JSCE Dr of Science 10 6 JSCE Corp Hydrological observation has been intensively carried out for water resources management system in Japan since the modernization era the late 19 Century surveys especially discharge observation The technical standards were formally promulgated in 1954 for water Hydrometry engineers still stick to the standards for half a century But many p
303. ischarge observation technology Key Words CommonMP Project River discharge observation technology 1 CommonMP Common Modeling Platform for water material circulation analysis CommonMP
304. m ADCP ADCP 2 ADCP MIA E GPS ADCP 46 coe ae ADCP ADCP
305. m 61 cm T P ADCP W E 7 a 19 1 EI SNNENECO E DORE m3 s l e 0 3 35 5 5 1 2 3 4 U 1 O LJ 11 01 8 24 1 10 1 9 2 50cm 0 2m s 0 1nm s
306. ning 1 81 lt
307. ocessing and dissemination to the public The author proposes future development of the system in view of water resources management in the age of climate change Key Words Hydrometry Hydrology Discharge Precipitation Water stage Database Internet Climate change 1 panista 2 E HE ELIANE 1 CAN ok ci Mi Aa mh EE IO CECE 1 1 1
308. on sensor 2 conducting experiments in an experimental pool with the system and 3 conducting the field measurement The authors find out characteristics of the build in inclination sensor of ADCP apply the knowledge to actual discharge measurements evaluate the systematical measurement error and introduce the possible solution for eliminating missing values Key Words Acoustic Doppler Current Profiler Evaluation index of river flow measurement Vessel fluctuation Inclination sensor 1 ADCP Acoustic Doppler Current Profilers 3 USGS ADCP 2
309. roblems were found when the author recently investigated field works and data processing of discharge It is advised that advanced technology should be introduced to discharge observation to solve the problems such as a radio velocimetory an ultrasonic flowmeter ADCP and of course computers for future development Key Words Observation Discharge Drift Rod Stage Discharge Relation Advanced Technology Ultrasonic Flowmeter 1 OO X XX
310. sing ADCP made by Teledyne RD Instruments Specifically this report focuses on the tethered boat ADCP observation method for a flood with high speed current It describes the appropriate equipment composition measurement method and data processing procedures based on the writers own experience as well as the information exchanged with ADCP users experts Two kinds of tethered boats were developed and examined One is the for high speed current and the other is for low speed current discharge in a flood flow as high as 4 5m s The high speed boat demonstrated its safety and stability was successfully used to measure Key Words ADCP flood observation AA it E i ALA F 1 ADCP Acoustic Doppler Current Profilers Bi ADCP Teledyne RDInstrument TRDI ADCP 10 U S Geographical Survey LA USGS
311. stic beam b GL 2 ADCP m 1 km ADCP m ADCP ADCP ADCP
312. uments WinRiver 8a ADCP A 4 8b 0 1 5m s 20 40m 60m 2 100m 8c RTK GPS 0 5m s 2m s 5 8b 8a
Download Pdf Manuals
Related Search
Related Contents
SUZO casino Hopper Guide de l`utilisateur FR-42421K ご連絡先 121-0824 東京都足立区西伊興1-1-9 株式会社イーエス AutoPlay Media Studio 7.0 User's Guide - la démission de Madame Manon FAWER, Conseillère municipale, ` Philips Power Alkaline LR03P1BK EEGS - HKFEMC VerifyNow! User Manual - Roth Staffing Companies, LP Copyright © All rights reserved.
Failed to retrieve file