Home

格子電極構造の3次元配列イオントラップ

image

Contents

1. 444444 eR ee lt lt lt Ct lt lt 746 lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt 8 LS 162538 15 25353 gt gt gt gt 04 lt lt lt lt lt lt
2. 444644466 5 4 lt lt Cece 401235 2628 UCR EES OE ee ee p ucu Ce 4 gt 444 444444444444 4 44 lt 42 SIMION70HHHHHHHHHHHHHHHH 000000000000000000000000000000000000 92
3. X Z 4 7 SIMION7 0HHHHHHHHHHHHHHH 3 200000000000000000 18
4. X Z 46 0 31HHHHHHHHHHHHHHHHHH 000000000000000000000000000000000 0000000000000000000051 0 00000000000 000 00000000000000000000000 0000000000 00000000000000000000000000000 HHHHHHHHHHHHHHHHH 0000000000000 00000000000000000000 BHDUD Vac Q 17 0474800000000000000000000000000000000 HHHHHHHHHHHHHHHHHHHH LinearDamping HHHHHHHHHH 0000 90000000000000000000000000
5. 1 Plot Evaluate uz t solutionz solutionz uz t tstart tstart PlotLabel gt StyleForm z vs FontSize gt 13 1 7 rr Table Part Table ur t solutionr t tstart tend delta tend 1 1 1 0 1 1 t 1 numlis 13 22 Table Part Table uz t solutionz t tstart tend delta 0 tend 1 1 t 1 0 Dt 1 t 1 numlis 1 zzvsrr Table rr t zz t 45 1 num1is ListPlot zzvsrr PlotJoined gt True PlotLabel gt StyleForm z vs r FontSize gt 13 AspectRatio gt Automatic 1 48 9 00 SIMHONHHHHUHHHLH 00000000000 Program for Novel 3D Arrayed with Electrodes of Lattice Structure Yugo 2007 definition of user adjustable variables defa defa defa defa defa defa defa defa defa defa defa defa defa defa defa
6. 3 2 000000 00 000 00080 3 3 000000 00 000 00080 11 32 0000000 OOO 0000 00000000000000 34000 00000 000 00000000000000000000000000000000000 9290 HH UHHHHHHHHHHHHHHHHHH HHHHHHHHHHHHHHH HHHHHHHHHHHHHHHHHHHHHHHHHUHHHUHHHUHHHHHHH 00000000000000000000000000790 100 um 7 2 5 034 00000000000000000000000000000000 000000000000000000000000000000000 000000000 1 Electro Spray Ionaization EST 000000000000000 000 10 9000000000 0 0 HHHHHHHI 0 0 5mm 1mm 0000 00 00 ete D Ul 5000000000000
7. 12 040 slMHON7 0HHHHHHHL 000 41 00000 SIMION7 0 VHHHHHHHHHHHHHHHHHHHHHHHHHHH ITSM 50000005 000000000000000000000000 00004105 00000000000000 gt Colors Sounds Etc Double 1 gt Potential Array gt fdjust Potentials gt Potential firray gt Potential Array gt Current Pot Array gt Ion Optics Bench gt Load Potential Array gt Save Potential Array D 4 1 SIMION70HHHHHHHHHHHHHH HHHHHHHHHHHHHHHHH 410 99000 RewHHHHHHHHHH HHHHHHHHHHHHHHH 0 0 0 4 00000000 420000 HHHHHHHHHHHHHHHHHHHHHHHHHHHH DURL http www simion com 13 lt lt lt lt lt lt lt lt lt lt lt 6 gt 6 6 44 0 6 gt gt gt gt 4 vv vv mov gt gt
8. 26 62 000000000 6 2 1 0 53 HHH1DHHHHHHHHHHHHHHH 62000 O1kVpp 300Hz Offset0V 0000000000000 307HzHHHHHHHHHHHHHHHHHHHHHH HHHHHHHHHHHHHHHHHHHH HHHHHHHHHHHHHHH 06200010000000000000000 000000000000000000 IMAGE SENSOR 1 3 inch CCD Image Sensor CCD TOTAL PIXCELS 811 H x 508 V SCANNING SYSTEM 525lines 60fields sec 3 27 000 100000000000 0 0000000000000000000000000000 6 300004 00000000000000 30000000000000000000 00000000000000000000000000000 0 6 3 000 100000000000000000000000 000000000000 28 6 2 2 0 5400000000 2000000000000000 6 400000 6 4 00000000000 60000000000000000000000 00000770 6 4 00 200000000000000 2 00000000000 0000 5 000000000000000000000 an b 0000000000000
9. 29 63 0 0 00000000000000000 2 24 2 25 HHHHHHHHHHHHHHHHHH 230000000000 HHHHHHHHHHHHH65HHHHHHHH 2 24 2 25 zo D 00 HHHHHHHHH 0 6 1 620000 00000 4000000000000 00000000000000000000000000 000000000 000000000000070 2 6 1 V qz 2 6 2 00000000 29000000000 6500 90000000000 0000000 5 5 02Vpp 2 52Vpp 0V 30 0 5 0 2 0 4 0 6 0 8 1 0 1 2 1 4 q 065 00020000000000000000000000000000000 4000000000 000000000000000000064 400 0000000000 0000 00000000000000000 00 0000000 31 6 4 00000000000000 0660000200000000000000000000000000000 00000000000000000000000000000000000 00000000100000000000000000000 0000000000000000000000000000000000 000000000000000000000000000000000 LEE LEE 6 6 00 20000000000000000 1000000 00000000000 5 2000 0000000000000000000000000000000000000 00000000000000000000
10. Z X 4 8 SIMION70HHHHHHHHHHHHHHHH 33000000000000000000 19 43 1 0 0 00000000000000 SIMIONTOD 00000090000000000000000000000 3 2 47HHHHHHHHHHHHHHHHHHHHHH49HHHHHHHHH 400 HHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHH 0000 lon s Mass 2 x 10 amu Ion s Charge 1 Units Linear Damping 0 e AMU Mass Charge 2 10 Ion s KE 0 1eV Azimuth 0 Deg Elevation 0 Deg 20 a 0 4 9 0 3 2 47000000000000000 SIMION7 0HHHHHHHH O00 OLinearDamping0 0000 00000 0000 0000 000 0 3 0 2 0 1 0 x XXXXX eeeeeeeeeeeeeee e Xo eo 0 0 60 0 0 0 0 6 0 0 0 0 x x xxxx05x 6 6 e 0 0 0 0 0000 0 0 0 0 0 25 3 3 XXXX XO 0 0 0 0 0 0 06 Xx XXeeeeeeee e e XXXO000000 XX xe ee x XX XX X a CC q SIMIONS 0 2006 120 260 SIMION8 0 1 21 050 000000000 000000000 0000000000000000 30000000000000000 0 0000007000000000000000 00000000000 0 0000000 00000 5 30000000000000 1emx1emx1emHH
11. 22 5 2 0000000000000 GyHH HHHHHH 000000000000000 300000000000000000000 0000000000000000000540000000000000 23 TO 5 3 0000000000000000 3000000000 5 4 000000000000000000 3000000000 24 a 100 E EX QU 100 O oO t x z 3 O Ho aeons UMS TENE as I 50 50 55 HHHHHHHHHHHMSHHHHHHHHHHHHHHHHHHH 00000 3 1 4 6 5 1 5 20000 25 060 HL 61 HHHHHHHH HHHHHHHHHH61HHHHHHHH25kVHHHHHHHHHHHHHHH HHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHH 1kVpp 300Hz HHHHHHHHHHHHHHHHHHHH 000 10 000000 000000000000000000000000 ee tO 6 1 000000000 0000000000000 HP 331204 Agilent Technologies 0 1000M POWER SUPPLY Inc QO MINTRON MTV 6368N 1 500 2 10 20Vpp
12. 0 HHHHHHHHHHHHHHHHHHHHHHH 0 41 0000 OU OU 0 0 0 0 0 0 0 0 0000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Mathieu 00000000 HOU
13. Off General spe11 ar 0 qr 0 06 az 0 qz 0 07 tstart O tend 1000 delta 1 1 1 num is tend tstart delta 1 solutionr NDSolve 1 ur t ar 2 qr Cos 2 t ur t ur 0 O 1 tstart ur 0 tstart tur 15 tstart tend 300000 MaxSteps gt 10000 1 Plot solutionr ur Eva1uate ur so1utionr t tstart tend tstart PlotLabel gt StyleForm r vs FontSize gt 13 1 z solutionz NDSolve 1 uz t az 2 gz Cos 2 t uz t uz 0 0 1 tstart uz 0 tstart 02 t tstart tend 300000 2 amp MaxSteps 10000 42
14. j gt 3d convert polar 3d to rect 3d NOD ea el rotate back to starting elevation rcl el angle gt elr az rotate back to starting azimuth rcl az angle gt azr update ion s velocity components with new values sto ion vx mm return vx rlup sto ion vy mm return vy rlup sto ion vz mm return VZ randomize ion s position components rcl Random Offset mm 2 sto half pos save half max shift rcl ion px mm get nominal x start rcl Random Offset mm rand add random shift rcl half pos subtract half shift sto ion px mm store random x start rcl ion py mm get nominal y start rcl Random Offset mm rand add random shift rcl half pos subtract half shift 46 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 168 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 198 seg Fast rcl x 0 rcl rcl rcl sto rcl rcl rcl 2 sto 3 rcl E sto rcl sto rcl E sto rcl rcl rcl sin rcl rcl chs chs chs rcl rcl rcl sin sto ion_py_mm rcl ion pz mm rcl Random Offset mm rand 1 rcl half pos Sto ion pz mm randomize ion s time of rcl Random TOB abs r
15. Do 2 01 reduction 0 01 grp Table Log 10 resu1ty 11 resultx i 41 1 nang PolarListPlot grp PlotJoined True True Falsex Automatic PlotRange gt 5 87 4 477 ImageSize gt 680 72 1 PlotLabel gt StyleForm 0 6328 x 2 Tt H m FontSize gt 14 TextStyle gt FontSize gt 20 1 2 reduction 101 1 57 Mie 10m 1 47 632 8nm Su O C1 00000000001 0000000000000000 0000000000000000000000 90000 58 000 000000000000 URB 0000000000000000000000000000000000 00000000000000000000000000000000 SHORT NOTES 0 0 Journal of the Physical Society of Japan 75 110 0 0000000000000000 00000000000000000000000000000000 00000000000000000000000000000000 9 0000000000000000000000000000000000 0 0000000200000000000000 000000000 0000000000000000000000000000000000 00000000000000 0000000 NeHHHHHHHHH HHHHHHHHHHHHHHH 00000 OO 2p4 3s2 D 0 HHHHHHHHHHH 00000000242 0000000000 HHHHHHHHHHHHHHHHHHHHHH NeH LDHHHHHHH HHHHHHHHHHHHH 200000 Blue Shift 00000000 0 LDHHHHHHHHHHHHHHHHHHHHHHHH 20 Red Shift HHHHHHHHH
16. 0 Pp 2 V Ax 2 0 2 3 0000 2 000 6 8 LM BD 2AAL 2 4 26000000000 2 ACA 24 0 2 5 0000 7 0 2 6 HHHHH 69 70000000 0 1 y 0 2 7 000 0 1 2 2 8 HHHHH 2 7 0000 000 000000 0000000 220000000 2 8 00 2100000000000 6 210 0000000000 is A x y es 227 6 2 9 00000000000 2 10 000000000000 0 290000000 00000000 2 200000 2 9 0 Prz A r 22 C 2 10 HHHHAHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHH 00000 Pring Penacaps BENE BE Tp l oo D D D LH Oring 2 11 HHHHHHHHHHHHHHHH 2 00 0 000 210000000 bring 2 12 00000000000000000000000 7 00 2000 A 225 2 13 2 12 0 213 00000000000000 21 000000 2 222 2 14 3 HHHHH 0 lt 2 15 HHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHH 0000000000000 00 22 Qendcaps 6 22 C 0 2 16 000 CH in 020 222 2 17 2 15 2170 0 10 00000 polr 222 2022 One r2 222 2 222 218 U VcosQOt 2 19 HHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHzHHHHHH 0000 0 NEU dz 222 2 20 0000 2 20 00 2 21 00000 _ 4 0 VeosMt z m
17. 1 n z 1 amat n n z 1 Sin x x 1 Cos x x 2 by 1 x a For n 3 lt rn Re n 2 by n 2 rn 1 by n 1 by n 2 1 55 nst TntegerPart 5 101 x 3 0 2 107 35 For i nst 1 i gt nci 1 i 1 t 1 2xi 1 t 2 x 1 t 3 t 215 t 2 J 1 1 bj 1 For 1 nci 2 gt 1 bj i 2 1 bj i 1 x bjli 21 J alpha a bj 1 For k 1 k lt nci k hanke bj k alpha ImaginaryI by 1 bji 111 For n 1 n gt gt 1 rf 2 n n 1 2 bji Re hankel n 11 b cm amat n n x f n ImaginaryI n rf b b 1 bjm b hankel n 1 hanke1 n b amat n cm n x g n MImaginaryI n 1 rf b bji bjm b hankel n 1 hanke1 n 2 f n f n gln gin 1 cnrm n 2 n 1 rf n n 10 7 Ts sphere nc 1 For i 1
18. 222 ee DUOO0OO0OO0O00D00 422 4e 4eV cosQt d 222 2 2 22 000000 Mathieu 00000000000000 2 a 2q cos u 0 2 23 2a TERR 92202 2 24 Qz 2q 2 25 3 228 02 0000 22300000000000000 0 04 00000000000 000000 22 0000 000 0000000 000000000000022000000400000000000000 0000000000000 2 2 000 0000000 00000000000000 HHHHHH 2 7 000000000000 2 9 0000000000 boyz A z C 2 26 211 HHHHHHHHHH Px pair Py pair 2 27 Paul Trapp 0 0000000000000 Dy gui A r2 C Pypair C 2 28 2 27 00000 24 ro 24 2 29 2 274 C 2 30 HHHHHHHHHHHHHHHHC OHHHHHHHHHHH 2260 _ bey 2 31 0000 0000000000000000 00000 _ zo 275 2 32 HHHHUHHHHHHHHHHHHHHHHH _ 2 4 0 000 0 FEL 2 34 d E 2 35 uut 2 U 2 36 000 D 26 5 2 37 de HHHg HHHHHHHHHHHHHHH Mathieu 0 0 0O 2 23 00000 OU 2 2 ay mre 4eV 0 2 38 4 mre 000000 23 00000000000 2 24 2 25 HHHHHHHHHHHHHHHHHHHHHHHHHHHHHH 2300000 2300000000 a 00 2220 2 25 000000000
19. lt nang 1 56 Reli 1 dltr sang rtd pnmllg 1 0 pnm11g 2 1 For s 3 s lt rn 1 pnmllg s N 1 rn 1 2 rn 1 008 0 pnmllg s 1 rn pnmllg s 1 0 For n 1 n lt 1 9 pnmllg n 1 n 1 pnm11g n p2 pnmllg n 1 1 amp amp I n 1 p2 f n N Imaginaryl l pi g n cnrm n l 2 amp amp I n i pi f n N Imaginary1 p2 g cnrm n 1 tp Abs amp 2 O 20 rtd 0 LogListPlot resulty i tp resultx i 0 1 points Table resulty i 11 1 nang
20. 0 EE E E ee HHHHHHHHHHHHHHHHHHHHHHHHHHHH HHHHHHHHHHHHHHHHHHHHHHHHHGPSH HHHHHHHHHHHHHHHHHHHHHHHHHHHH es E ET Re 0000000000000 HHHHHHHHHHHHH 00000000000000000000000 30000 0 00000000000000000000000000 0 0 0 0 0000000000000000000000000000 0 0 0 0 0 0000000000000000000000000000000 0000000000000000000000000000000000 000000000000000000000000000000000 000000000000000000000000000000 00000000000000000000 020 0000000000 2 1 Paul Trap I Paul 0 21000000 30000000000000000000000 000000000 0000000000000000000000000 W Pau 0 000000000000000000000000000 1989010000000 0000000 Pn l 2 1 Paul Trap 000000 0 oy 2 1 HHHHHHHHHH 2 2 2 3 000000000000 Vi 2 2 2
21. 000000 hili hiii Novel 3D Arrayed Trap with Electrodes of Lattice Structure OOOH oD 000 1095304 190 20 190 00000000000000000000 000000000000 0 0 10 00 20 0000000000 21 Paul D 22 0000 O000 0000000 23 000000000600 24 Mathieu OO 30 000000000000 31 000000 32 0000000 40 SIMION7 00 0000000000 41 00000 42 HHHHHHHHHHHHHHHH 43 00000000000 4 3 1 a EP BP RU PTT 50 000000000 0000000000 60 00 61 00000000 62 000000000 000000000 gt 6 2 1 6 2 2 63 0000000000000000000 64 00000000000000 6 4 1 70 00 0000000000000000 10 10 12 13 13 16 17 20 22 26 26 27 24 29 30 32 35 41 0 Mathieu 00000000000 SIMIONHHHHHHHHHH PPR AP B2 000000000000000000 U 0 C 000000 HDHHHUHHHHHHHHHHH OU 0000 42 44 44 50 55 59 62 63 OO L3 L3 L3 L3 L3 000 000 000 000 000 20000000000000000000000000000000 1994 ShorHHHHHHHHHHHHHHHHHHHHHHHH Cirac Zoller0 HHHHHHHHHHHH 10000000000 3HHHHHHHHHHHHHHHHHH 00000000000000 00000000000000 HHHHrHHHHHHH 000000 0 0 HHIHHHHHHHHHHHHHHH 00000000 0 EarnshowO 0 0 0 0 0
22. 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 RLUP initialize trace ion if ion initialized 0 RCL ion initialized X Y GTO 1abe119__ RLUP RLUP ion px mm ion x min RCL ion min STO ion px mm RLUP ion py mm ion min RCL ion y min STO ion py mm RLUP ion pz mm ion z min RCL ion z min STO ion pz mm RLUP ion charge 0 make unaffected by fields 0 STO ion charge RLUP ion vx mm 0 0 STO ion vx mm RLUP ion vy mm 0 0 STO ion vy mm RLUP ion vz mm 0 0 STO ion vz mm RLUP ion initialized 1 1 STO ion initialized RLUP ion jumped 1 1 STO ion jumped RLUP exit EXIT begin else GTO 1abe120__ LBL 1abe119__ RLUP RLUP LBL 1abe120_ end if 51 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 ion was jumped if ion jumped 1 RCL ion jumped 1abe123__ RLUP RLUP mark MARK 0 0 STO ion_jumped RLUP exit EXIT begin else GTO 1abe124__ LBL 1abe123__ RLUP RLUP LBL 1abe124__ end if jump ion to next position if ion px mm ion x step gt ion x max RCL ion x RCL ion px m
23. defa j adjustable during flight _Linear_Damping _Qz_tune _Az_tune _AMU_Mass_per_Charge 10 _Target_Voltage _Left_Cap_Voltage _Right_Cap_Voltage O O O O O O O 0 0 0 adjustable variable for linear damping Qz tuning point Az tuning point mass tune point in amu unit charge voltage of sims target voltage on left cap voltage on right cap EOS adjustable at beginning of flight PE Update each usec 0 Percent Energy Variation 90 Cone Angle Off Vel Axis 180 Random Offset mm 0 Random_TOB 0 Phaze_Angle_Deg Hz Effective Radius in cm mm Grid Unit definition of static variables defs defs defs first 0 scaled rf 0 rfvolts 1000 05 05 1 pe surface update time step in usec 90 random energy variation 180 deg cone angle sphere del start position x y z in mm 909091 random time of birth over one cysle 0 1 41 entry phase angle of ion rf frequency of quad in hz effective quad radius rO in cm grid scaling mm grid unit first call flag Scaled rf base rf voltage 44 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 defs dcvolts 0 0 dc Voltage defs
24. J 0C 1 Remove Global Q Off General spe11 PolarListPlot LogListPlot gt gt Graphics Graphics ip 11 2 21 Mie r_ 2 nr_ 1 47 0 61 0 22 sang 0 eang_ 360 _ 0 6328 ipl 2 x 2 r n rtd 180 radian to degree cm nr Imaginaryl ni snorm 1 x 2 nang IntegerPart eang sang dlt 1 d1tr Re m eang sang 180 nang 17 sphere xc x 4 05 x 1 3 2 nc IntegerPart nc 1 z cm x E IntegerPart Max xc Abs z 15 an 0 For n gt nc 1 n 1 an n z 1 1 amat nc For n nc gt 2 n
25. to ion motions exit if zero time step 48 246 247 248 249 250 251 252 258 254 255 256 257 258 259 260 261 262 268 264 265 266 267 268 269 270 271 272 278 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 rcl linear damping x 0 exit abs sto damping sto tterm chs e x 1 gt lt factor 1 e t damping rcl tterm sto factor rcl ion ax mm rcl ion vx mm rcl damping rcl factor Sto ion ax mm rcl ion mm rcl ion vy mm rcl damping rcl factor Sto ion ay mm rcl ion az mm rcl ion vz mm rcl damping rcl factor Sto ion az mm exit if damping set to zero force damping term to be positive compute and save number of time constants 1 e t damping damping recall ax acceleration recall vx velocity multiply times damping and sub from ax multiply times factor Store as new ax acceleration recall ay acceleration recall vy velocity multiply times damping and sub from ay multiply times factor Store as new ay acceleration recall az acceleration recall vz velocity multiply times damping and sub from az multiply times factor Store as new az acceleration seg Other Actions rcl Next PE Update rcl ion time of flight x lt y exit rcl Update each usec sto next pe update 1 sto Update PE Surface used to control pe surface updates recall time for next pe surface
26. update recall ion s time of flight exit if tof less than next pe update recall pe update increment add to tof and store as next pe update request a pe surface update seg Terminate sto rerun flym turn off rerun mode 49 00 1 Ot 2 000000000000000000 lt div class moz text flowed style font family moz fixed gt 2 This PRG file was automatically generated from SL source code using the SIS Simplified SIMION Compiler SL 1 0 1 2004 01 12 WARNING This file will be overwritten if you recompile THHHHE SL program to record field data at all points on a 2D or 3D grid THHHHE The extents and granularity of the grid adjustable ion x min 0 5 DEFA ion x min 1 adjustable ion x max 54 5 DEFA ion x max 28 adjustable ion x step 2 DEFA ion x step 1 adjustable ion y min 98 5 DEFA ion y min 1 2 adjustable ion max 98 5 DEFA ion 28 2 adjustable 2 DEFA ion step 1 adjustable ion 2 min 0 DEFA ion 2 14 adjustable ion 2 0 DEFA ion 2 14 adjustable ion z step 5 DEFA ion z step 2 static ion initialized 0 DEFS ion_initialized 0 2 static ion jumped 0 DEFS ion jumped 0 sub other actions SEG other actions ion splat 0 prevent ion splats even on electrodes 0 STO ion_splat 50 49 50 51 52 58 54 59 56 57
27. 0 00 20050 000000000000 Animation of Mie Scattering 2006 0 Japan Mathematica Con ference C F Bohren and D R Huffman Absorption and Scattering of Light by Small Particles Wiley Interscience 1998 P W Barber and S C Hill Light Scattering by Particles Computational Meth ods World Scientific Pub 1990 H C Hulst Light Scattering by Small Particles Dover Pubns 1982 63 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 3l 32 33 34 35 OOO HHHHHHHHHH 2002 000 0000000000 2005 0000 0000000000 2000 0000 0000000000 2000 000 00 020000000000000000000000000000 00000 2006 00000000 25aRB 12 N Ochkin N G Preobrazhensky and N Shaparev Optogalvanic Effect in Ionized Gas Fisec 1999 Miyazaki Scheingraber and R Vidal Phys Rev A 28 1983 2229 J E M Goldsmith Opt Lett 10 1985 116 C R Vidal Opt Lett 5 1980 158 B Stahlberg P Junger and T Fellman Appl Spectrosc 43 1989 654 00000000000000000000 000000000000000 von Baeyer 000 0000000000000 00 2006 Johnson 0000 00000000000000 0000 2004 000 00000000000000 00 BP 2004 000 0000000000000 00000 2005 HHHHHHHH 000000 2006 HHHHHHHHH 000000 2001 HHHHHHHHHHHHHHH 000000 2001 00 0000000000000
28. 0 000000000000000000000000000 2 0 908 0 2 3 000000000000000000000000 0000 PHHHHH HHHHHHHHHHHHHHHH 2 38 0000000000 000 0000 00000002400002400000 00000000000000000 0 254 2 4 00 0000000 00000000000000 00000000000 200000 2 4 Mathieu 0000 Mathieu 00 0 2 23 0 0000 0040 000000000000 O Mathematica 0000 250000000 r vs MM MM TEN F 0 2 5 00000000000000000000 ar 004 0 06 0 070000 00000000000000000000000000000000000 0 000000000000000000000000000 Mathematica 000000000 00000 030 HHHHHHHHHHHH 31 000000 HHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHH 3 10 NA 3 1 000000000000000000000000000000 0 000000000000000000000000000000000000 00000000000000000000000000000 300000000 0000000 000000000000000000000000000000 HHHHHHHHHHHHHHH SIMION7 0 4HHH HHHHHHHHHHHHH 00000 3 100000 3 2 33000000000000000000000 3 2 3300000000000000000000 30000000000 10
29. 000 20000 9 725 9 75 9 775 98 9 825 9 85 9 875 ml 6 10 000000000 6 9 0 000000 0000000000000 100020 000 Sum 124m 0 0 9 7 9 9um 0 0 0 0 000000000 9 710um 9 880um OO 9 710 um 30 15 10 92 93 94 95 96 deg 9 880 94 95 96 deg O 6 11 6 10 000000000 9 710um 9 880um 00000000000 00000000000000000000000000000000 0000000000000000 9 7100 000000 92 93 38 9 710m 9 880m Mie 1 47 632 8nm Zar 9 710 um He Ne 2 4 6 229 880 He Ne 6 12 9 710um 9 880um MielHHHHHHHHH 6 1100000 655000000000000000000 0000000 9000000 39 06600000000000000 000 0000 00 000000 000000 00020000000000000000000 0 6 9 00000000600 0000000000000000000000000000000000000 0000000000000000000000 6 13 66000000000000000000 6900000000000 00000000000000000000000000 40 L3 L3 L3 L3 L3 C3 OOo OO L3 L3 L3 L3 r3 Ho lt Co 31000000000000000000000 0 0 HHHHHHHHHHHHHHHHHHHHHHH 0 0
30. 0000 2 24 2250000000 00000 00000 400000000000000000000000000 0000000000000000000000000000000000000 000000000 00000 9000000000000000 A e 6 3 HHHHHHHHHHHAw lt 0HHHHHHHHHHHHHHHHHHHHHHH 0 lt 0000000000000000000000000000000000 000000 90 32 000200000000000 2000000000000000000000000000000000 00000000000000000000000000000000000 00000 2 1 2 7 4 2 4 3 m 6 7 00 20000000000000 0 3 3 4 80 00 0000000 HHHHUHHHUHHHHHHHHHHH 000000000000000000000000000000000 00000000000000000066000000000000000 HHHHHHHHHHHH 33 00020000000000000000000 0002000000000000000000000000000000000 00007000000000000000000000000000000000 00000000000000000000000200000000000 00000000000000000000000000000 6 8 1 30 000 120 0000000000000000000000000 0 12 30 0 4 secular motion 34 641 000000
31. 000000 0 6600000000000000 He NeHHHH 0000 00 00000 HHHHHHHH Miego 99000 CHH H69HHHHHHHHH 90 000000000000000000000000 0 6900000000 0000000 0000000000000000000 0 6 100000000000000000 00000 000000000 9 710um 0 9 880 0 6 110000 00000000000000000000000 000000000000000000000000000000000000 0000000000000000000000009090000000 0 0000000000000000000000000000000000 mathematica5 2 NMinimize http www nao ac jp index html 35 90 80 70 60 H 50 4 30 20 10 0 0 69 0000000000000000000000000000000000 00000000000000000000000000000000 000000000000000000 96 300000 250000 200000 150000 100000 3000p fi uml 140000 120000 100000 80000 60000 40
32. 000000 1999 000 0000000000 000 2005 000 0000 0000000 0000000000000000000 00 2006 64
33. 000000000000000 0 00000000000000000 0 0000000000000000000 0 0000000000000 HHHHHHHHH 410000000 0000000 0 00000 0 0 7 paNO0 0000000000000 14 00000000000 0 0000000000000000000000000000000 0000000000000 4 300000000000000000000000 000000000 4 4 000000000000000000000 0000000000000 15 42 0000000000000000 32HHHHHHHHHHHHHHSIMION70HHHHHHHHHHHHHHH 0000000000000 4 500003000000000000000000 0000000000000 51 10 7 00000000000000000000 0000 000000 zy AAS TUA 7004 45 00000 zy 0 00000000000000 zy 0 0000000000000000000000000 0000000000000000000000300000000000000 00000000 00 0000 0000 000000000 16 43 0000000000 0 3 200 380000000000 31000000000000000000 000000000000000000 Ions Mass 2 10 Ion s Charge 1 Units AMU_Mass_per_Charge 1 1020 Ion s KE 0 1eV Azimuth 0 Elevation 0 HHHHHHHHHHHHHHHH Hinear_Damping 00 V 1kV Q 1MHz 00 200 3 2 0 3HHHHHHHHHHHHHHHHHHHHHHHHHHHH 0000000 3 300000000000000 0000 03200000000000 00 000000000000000 0000000000000000 0 0 0 wo i 7 dg
34. 00000000000000000000 0 00000000000000000000000000000000 0000000000000000000000000000000000 0000 OOOO 0000 0000 000000 00 00 00 00 12000000000000 000000000000000000000000000 00000 00 00 0000000000000000000 qJ 3 DO OO HHHHHHHHH SIMION70HHHHHHHHHHHHHHHHHHHH 00000000000000000000000000000000000 OU Oo Oo 0000000000000000000000000000000000 00000000000000000000000000000000000 00000 0000000000000000000000000000000000 00 00000 000000000000 0000000000000000000000000000000000 000 62 10 11 12 13 14 15 HOU E March and J F J Todd Quadrupole Ion Trap Mass Spectrometry Wiley Interscience 2005 0000 00000000000 00000 2000 J Metcalf and D Straten Laser Cooling and Trapping Springer 1999 Nielsen and L Chuang Quantum Computaiton and Quantum Informa tion Cambridge 2000 J I Cirac and P Zoller Phys Rev Lett 74 20 1995 4091 W Paul Rev Mod Phys 62 1990 531 M D Barrett et al Nature 429 737 739 2004 J Chiaverini et al Nature 432 602 2004 0000 0000000000 2005 0000 0000000000 2005 00 0 00000000000000000000
35. 24 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 1b1 rcl rfvolts rcl reverse rcl dcvolts chs 2 sto Adj ElectO2 chs 2 sto Adj ElectO4 chs 2 sto Adj ElectO6 exit init 1 sto first RCL Effective Radius in cm entr 2 rcl Freqency Hz entr times rf voltage add dc voltage electrode 2 voltage electrode 4 voltage electrode 6 voltage exit program segment parameter initialization subroutine tunn off first pass flag recall effective radius in cm r 2 multiply by frequency squared 1 022442 11 Qz MASS FREQ FREQ RO RO 1 022442E 11 chs sto scaled rf rcl Mass per Charge rcl 02 tune sto rfvolts rcl scaled rf rcl Mass per Charge rcl Az tune 2 chs sto dcvolts rcl Phaze Angle Deg gt rad sto theta rcl Freqency Hz 6 28318E 6 sto omega rtn multiply by mass per unit charge rf tuning point save rf voltage multiply by mass per unit charge substitute dc tune point additional dc factor save dc voltage degrees to radians phasc angle rf frequancy in hz to radians microsecond save frequency in radians usec return from subroutine tstep adjust rcl ion time step 0 1 x gt y exit sto ion_time_step keep time step lt 0 1 Usec accel_adjust rcl ion_time_step x 0 exit adds viscous effects
36. HHHHH AHHHHHHHHHHH 0 00000000000000000 Cc OU OU 000 000 000 000 Apparent Isotope Shifts Observed by Two Step Optogalvanic Spectroscopy KEYWORD isotope shift neon optogalvanic effect Doppler shift two step excitation atomic spectra Optogalvanic spectroscopy OGS is a method for efficiently detecting atomic and molecular spectra This technique has been used in frequency locking and stabiliza tion of lasers So far various state selective spectroscopies have been reported 24 In this note we suggest that the isotope shifts observed in two step OGS are affected by the incident direction of exciting lasers and we estimate the isotope shift of the 155 2p4 transition of neon 59 Light Chopper Reference Signal Hollow Cathode Lamp Light Chopper Reference f Signal k Fig D 1 Energy levels of Ne relevant to Fig D 2 Schematic diagram of the ex the present observations perimental apparatus for two step opto galvanic spectroscopy OGS A coun terpropagation and B copropagation The schematic energy diagram of a neon atom is shown in Fig D 1 We used a tun able single mode laser diode LD Newport 2010M with a spectral width of 4 MHz resonant with 152 224 transition and a multimode consisting of 3 to 5 lines He Ne laser Me
37. and 5 sto Ion_Time_of_Birth Store random get nominal z start add random shift subtract half shift store random z start birth create random time of birth use it for ion done _Adjust generates trap rf with fast adjust has first pass initialization first recall first pass flag gsb init if this is first reference gt init scaled_rf _AMU_Mass_per_Charge multiply by mass per unit charge _Qz_tune rf tuning point rfvolts save rf voltage scaled_rf _AMU_Mass_per_Charge multiply by mass per unit charge _Az_tune substitute dc tune point chs additional dc factor dcvolts save dc voltage _Left_Cap_Voltage Adj ElectO1 electrode 1 voltage Right Cap Voltage Adj _Elect03 electrode 3 voltage Target Voltage Adj ElectO4 electrode 4 voltage Time of Flight current tof in micro seconds omega omega tof theta add phasing angle sin theta omgga tof rfvolts times rf voltage dcvolts add dc voltage 2 sto Adj ElectO1 electrode 1 voltage 2 sto Adj ElectO3 electrode 3 voltage 2 sto Adj ElectO5 electrode 5 voltage Time of Flight current tof in micro seconds omega omega tof theta add phasing angle sin theta omgga tof AT 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 2
38. atoms are toward the He Ne laser in order to be Doppler shifted by Avg and resonant with the 224 355 transition of Ne atoms In case A such atoms are away from LD Conventional OGS Two step case Two step case OGS Signal arb units Av GHz Fig D 3 Results obtained for the 1s2 2p4 and 155 2p4 35 transitions of Ne Upper curve conventional single step OGS Middle A and lower B curves two step OGS For case B the curve is deconvoluted by two Gaussian peaks and the frequency of the LD should be higher blue shifted than the central frequency of the 155 2p4 transition by Avg On the other hand case B the two laser beams are in the same direction and the frequency of the LD should be red shifted by Aug The higher resolution seen in the two step excitation is explained by such velocity selection The apparent isotope shift is determined by deconvoluting the observed curve with two Gaussian peaks as shown for case B in Fig 3 The isotope shift for the 155 2p4 transition should be the mean value of the two apparent shifts obtained by the two schemes of two step OGS The isotope shift thus obtained is estimated at 1 8 0 1 GHz If a He Ne laser with a single mode is used the peaks of two step OGS will become much sharper and a more accurate value of the isotope shift will be obtained 61 1 000000000 00 00 00 00000000000000000 00000000000
39. lles Griot LHP925 with a longitudinal mode spacing of 257 MHz resonant with 2p4 3s9 transition As shown in Fig D 2 the two laser beams were crossed at an angle of less than 10 and were counterpropagated case A and copropagated case B A commercial hollow cathode lamp Hamamatsu Photonics L2783 3NE LI with Ne pressure of 800 Pa was dc discharged The discharge voltage and laser power were set to values that prevented self absorption and self reversal The He Ne laser was chopped at a frequency of f typically 330 Hz and the two step excitation signal was detected by a lock in amplifier Figure D 3 shows the OGS signals obtained without a He Ne laser we call it con ventional OGS in this note and detected by scanning the LD frequency through the 15 2 4 transition of Ne along with two step OGS signals in cases and B The conventional OGS signal 155 2p4 is relevant to the stationary state of Ne and the line is Doppler broadened The isotopic component of Ne appears at the right foot of that of The resolution in two step OGS is higher than that in conventional OGS The central frequency of the 633 nm line 2p4 3s2 transition of is higher than that of Ne and this shift is denoted by This value is reported to be 0 9 60 GHz by Stahlberg et al by considering that the He Ne laser line consists of the lines only from the isotope Ne In both cases and B in Fig D 2 the velocity components of
40. m RCL x step X gt Y GTO 1abe135__ RLUP RLUP ion px ion px mm ion x step RCL ion px mm RCL ion x step 4 STO ion px mm RLUP begin else GTO 1abe136__ LBL 1abe135__ RLUP RLUP ion px mm ion x min RCL ion min STO ion px mm RLUP if ion py mm ion y step ion y max RCL ion max 52 153 154 155 156 157 158 159 160 161 162 168 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 198 194 195 196 197 198 199 200 201 202 208 204 RCL ion RCL ion y step 4 gt 1abe133__ RLUP RLUP ion py mm ion ion y step RCL ion py mm RCL ion y step STO ion_py_mm RLUP begin else GTO 1abe134__ LBL 1abe133__ RLUP RLUP ion py mm ion min RCL ion STO ion py mm RLUP if ion pz mm ion x step ion z max RCL ion 2 RCL ion pz mm RCL ion x step 4 X gt Y GTO label31__ RLUP RLUP ion pz mm ion pz mm ion z step RCL ion pz mm RCL ion z step STO mm RLUP begin else GTO 1abe132__ LBL 1abe131__ RLUP RLUP ion splat 1 1 STO ion splat RLUP exit EXIT LBL label32 end if LBL label34 end if 53 205 206 207 208 209 210 211 212 218 214 LBL 1abe136__ end if ion jumped 1 1 STO ion jumped RLUP EXIT end segment lt div gt 54 00 I
41. omega 6 2 freq in radians usec defs theta 0 0 phase offset in radians defs reverse 1 0 defs Next PE Update 0 0 next time to update pe surface program segments below Seg initialize randomize ion s position ke and direction 1 sto Rerun Flym force rerun on rcl rcl turns traj file saving off get ion s initial velocity components ion vz mm get ion s specified velocity components ion vy mm ion vx mm See EAST convert to 3d polar coords convert to polar 3d save polar coord values Speed rlup Store ion s speed az angle rlup store ion s az angle el angle store ion s el angle make sure Percent Energy Variation legal force 0 lt Percent Energy Variation lt 100 Percent Energy Variation abs x y rlup sto Percent Energy Variation make sure Cone Angle Off Vel Axis is legal force 0 lt Cone Angle Off Vel Axis lt 180 Cone Angle Off Vel Axis abs x gt y rlup sto Cone Angle Off Vel Axis calculate ion s defined ke ion mass get ion s mass Speed recall its total speed convert speed to kinetic energy kinetic energy save 5 defined kinetic energy compute new randomized ke con
42. vert from percent to fraction Percent Energy Variation 100 661 energy 2 rand fac 2 del energy rand del energy 1 fac 1 energy kinetic energy new ke fac ke sre convert new ke to new speed ion mass recall ion mass 45 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 118 114 115 116 117 118 119 120 121 122 128 124 125 126 127 128 129 180 131 132 133 134 135 136 137 138 139 140 141 gt lt swap x any y gt Spd convert to speed isto speed save new speed compute randomized el angle change 90 Cone Angle Off Vel Axis we assume elevation of 90 degrees for mean SO cone can be generated via rotating az 90 2 Cone Angle Off Vel Axis rand 2 rcl Cone Angle Off Vel Axis rand Cone Angle Off Vel Axis 90 rcl Cone Angle Off Vel Axis 90 compute randomized az angle change this gives 360 effective because of elevation angels 180 rand 90 90 randomized az recall new ion speed rcl speed recall new speed at this point x speed y az 2 el convert to rectangular velocity components

Download Pdf Manuals

image

Related Search

Related Contents

Bruciatore a gasolio VITOFLAME 200  everynight - DarrenJames.com  Pour télécharger le bulletin dans sa totalitée - Saint  Canon imagePROGRAF iPF8300 Basic Guide  NOTA - ECHO Depend on it  User Manual UbiQ-231    CHARTE D`UTILISATION DU SERVICE « ASP TVA  General Product Specification  

Copyright © All rights reserved.
Failed to retrieve file