Home
簡易弾性波探査器による流域保水容量の推定法
Contents
1. 1 Burroucus E R Jr et al Geophysical exploration in watershed studies Jour of Soil and Water Conser 20 1 3 7 1965 2 p 5 1951 3 1 211 71 131 1968 4 Geophysical Specialties Division Engineering Seismograph MD Models Instruction Manual 1 80 1964 5 11 182 pp 1960 6 40 48 1968 D 283 250 260 1970 8
2. 4 7 m 1
3. y RKAKE maximum water holding capacity
4. 2 3 km sec VIE 1 5 km sec 0 33 km sec 0 3 km sec 0 1 km sec Table 1 JI MR1 256 RO Volume of shallow soil layer in No 1 and No 2 watersheds _0 4 km sec Ta area Total Pae l Velocity Depth mY m8 km sec m8 m 1 12 1 2 1 2 1 No 1 wa INo 2 wa INo 1 wa No 2 wa No 1 wa INo 2 wa INo 1 wa Z H Z Es Z Exposed rock 5 801 l 0 1 8 726 33 957 4 364 16 979 0 33 0 22 4 285 17 234 3 161 25 851 4 742 0 31 0 23 20 547 2 3 21 953 1 041 54 883 2 603 0 30 0 28 33 275 3 4 9 392 107 _ 932 873 375 0 30 0 16 29 698 4 5 3 424 5 15 408 203 0 30 0 26 15 408 5 890 4 895
5. 0 40 km sec 0 4 1 0 km sec 1 0 km sec 3 1 m Tig 1 5 Fig 4 525 Table 1 COWL m 0 5 m X 25 1 6
6. D ro 3 1 E Bh 5 121 Fig l 250 350 m sec 60 T 250 m sec on O A Q Ww S MR Frequ
7. 1 0 016 m m 2 3 2m PUL PUD 0 5m omy Prospecting watershed A R B Arrangement of seismic measuring line R i HR Ro ml Measurement of seismic velocity E h Ro FR AT Analysis of seismic time distance curve tH Rost A Calculati
8. 1 2 Bo Fig 10 1 2 4 6 8 10 12 14 16 KE Distance m Fig 10 42 Time Schematic figure of seismic wave by reference No 4 GJA 87 2 Fig 9 1 2 1 1 5 amp
9. Ko BRYNE 4 7 m
10. pF 2 1 pF 2 0 48 0 45 3 45 ps 10 1 3 g o 00 a o O oo o 1 So 0 gt o ps E D e o 0 5 ee e s O W 45 IAF i E 03 SWE hE COC EEE ps E 1 jo po RHET 50 100 500 1000 2000 3 z SHE RIB Seismic velocity sec Po g cm ETI AMR 27 0 1 Fig 7 g cm Relation between seismic velocity and dry density of soil
11. ps 10 o BMLTRUE SKE W Aor 45 Fig 7 5 45 3 18 8 p g ee 45 0 886 0 06 2 ro ASS ps 0 179 90 306 3 8 3 2 SS aNs 0 1596 3 0 7646 0 05 E O f 090 Yen 0 01 0 01 C 00 1000 MERER Seismic velocity e lt a a 5 0 of soil RSD COZADRILV DY SBA
12. 2 2 T 5 3 5 kg PU1 PUL Ek 30cm 3 cm
13. 196171 S Fig 8 1 137 mm 2 114 mm CHO 480 130mm R 480 mm 130mm R O 1 Nol watershed 253R No2 watershed MAENFHA Maximum tempolarily holding rainfall S mm N t2 oO 0 20 40 60 80 100 120 140 MARAE Accumulated rainfall R mm Fig 8 1 2
14. p 1 2 1 4 0 15 0 30 1 4 1 1 1 E p v VE p po pv pyv po 9 ps 2 Fig 6 By 107 109 CC G S Bo TOMEI Epp ps px ps 0 89 g cms 0 90g cm3
15. 13 B p 593 1970 9 p 600 1970 10 1968 11 BS p 205 1942 12 74 1 8 1969 88 2708 Estimating Method of Maximum Water Holding Capacity in Shallow Soil in a Watershed by Portable Seismic Prospecting Equipment Akio Kixuyva Yukio Masuima and Shigeaki Harrtori Summary One of the important factors affecting the runoff during rainfall and immediately after rainfall is the water holding capacity in shallow soil layer in a forested watershed This being so quantitative measuring method of the factor is demanded A trial of estimating method of soil depth and total pore space in shallow soil layer was conducted with measuring seismic velocity by means of portable seismic prospecting equipment The relation between dry density ps g cm and seismic velocity v m sec of soil was found approximately as follows Fig 7 ps 0 179 v0 206 The formula was adopted in the case of soil water content by more than 45 in volume per cent The total pore space in shallow soil layer in a watershed was calculated applying the ps and total soil volume and after that possibili
16. 1 pF 2 10 30 45 12 7 42 4 29 8 1 480 mm 2 130 mm 1 2 2 1 SRO 1 4 8 IC
17. ps 0 89 g cm Bo Tig 6 45 1 SHOZAWA TAKARAGAWA experimental watershed 0 4 1 0 km sec 1 0km sec Volume 3 BE Volocity ik Volume jk Velocity Volume km sec m8 km sec m8 25 R 1 SR 11 2 1 11 R No 2 wa No 1 wa INo 2 wa No 1 wa No 2 wa No 1 wa No 2 wa INo 1 wa No 2 wa 14 617 0 44 0 72 79 2 362 c 4 676 0 50 0 77 5 304 _66 2 603 0 49 16 733 1 45 4 875 Z0 0 49 0 64 3 175 f 305 203 480 22 649 0 49 0 71 25 291 2 733 1 45 4 875 84 270 pp 0 89 g cm3
18. eee A Relation between maximum tempolarily hold ing rainfall in watershed soil layer and ac cumulated rainfall for No 1 and No 2 wa tersheds SHOZAWA TAKARAGAWA ex perimental watershed by Sucryama a o Travel time msec DET E N Fig 9 A example of seismic time distance curve Up 1R First sanf ASUNA Threshold level haot aa Cac TT RE I AOA A cc De Ac es ER Time interval read Instant of from indicator lights hammer blow 270 Ek 2 S 2 S 9 Fig 9 2 2 3
19. PUI PUL PUI PUL 1 TOR PUI PUL PUI d 1 2 Vinod Gabon 41 1 KAEM vo v 1 2 1 20 25 m 15 20 m PUL 1 3 1 4 8m 4 7 m
20. 2 5 g cm 85 Table 2 1 2 1 Total pore space of shallow soil layer in No 1 and No 2 watersheds SHOZAWA TAKARAGAWA experimental watershed ee ee e P Seismic velocity Volume of soil Dry density Total pore space ee 1 pe 2 1 x 2 m m km sec m8 g cm ETER m8 Y 0 30 108 108 0 58 0 77 83 243 _ 1g 0 49 25 291 0 64 0 74 18 715 D 1 45 4 875 0 80 0 68 3 315 m 77 138 274 105 273 k S E ae 105 273 64 800 1 62 1 620mm gt F 0 23 22 649 0 55 0 78 17 666 E 0 71 2 733 0 69 0 72 1 968 ra are g 19 634 RS _ Z RA 19 634 44 200 0 44 440 mm po 2 5 g cm 7 v pp Table 1 Table 2 1 1 620 mm 2 440 mm
21. A BES CORR 20 318 MW Calculated depth m 1 0 20 30 R B R Measuring depth m Fig 2 _ Relation between calculated depth from seismic time distance curve and measuring depth of spm 2705 4
22. Bull Gov For Exp Sta No 270 1975 77 88 I DEWAR Bete lc LA TRA EOMER E a5 A E V A KO H BO Akio Kixuya Yukio MAsHIMA and Shigeaki ATTORI Estimating Method of Maximum Water Holding Capacity in Shallow Soil in a Watershed by Portable Seismic Prospecting Equipment DS
23. 1974 8 13 2 3 78 270 BH Burrovcus D 1 2
24. Fig 3 1 1 2 Fig 4 5 1 6 48 ha 2 4 42 ha THROS 1 2 2 2 Fig 4 a Fig 5 a GBT CZ ORR ETH 1 100m Ce 2 50m 1 BRT 1 058 m 2 720 m
25. 480 0 31 0 27 4 895 aee Teroa 61 619 44 199 138 274 25 382 0 30 0 23 108 108 Total Average ed 83 HTH 8 Lich pw p REV pe p P 7 v v Elod A c i o0 A 20 E EEEE 1
26. ency Oo JRR 100 200 TAKARAGAWA ZAE Kawazu ASAKAWA ANNAKA CI F 2 R NAKANOJO 2 PTTTrrrrrrrrrrrrrri 600 700 52 WE IR BR BE Seismic velocity ec SSS IAIN aa 300 400 500 zeza MINI Fig 1 Frequency distribution of seismic velocity in forested shallow soil layer BETS A B Fig 2 4 BH
27. equal velocity line Cb Map of equal depth line Unit m Dotted lines are location of measuring line Cv lt 04km sec 04 lt V lt 1 0km sec EZA V 21 0 km sec Fig 4 32 1 No 1 watershed SHOZAWA TAKARAGAWA experimental watershed a Cb m H H H 4 a Map of equal velocity line b Map of equal depth line Unit m Measuring location of soil layer depth Another ones are same in Fig 4 b Fig 5 2 No 2 watershed SHOZAWA TAKARAGAWA experimental watershed 82 270 1 4 Fig 4 a b 1 890 Fig 5 a b CER 2 0 4 km sec 1
28. on of velocity Calculation of depth gt o 3g t 5718 SRRR FIBRR oF Equal velocity line Equal depth line h ze 3 Bt 8 a4 Calculation at oie lw sol os ee i layer in a watershed i fe m 38 Se E Estimation of maximum water holding REDRA o CHEB Dts 1 Fig 3 2 The flow chart for estimating method of maximum water holding capacity in shal low soil layer in a watershed by means of portable seismic prospecting equipment capacity in shallow soil layer in a watershed Stal a b m a Map of
29. ty of estimating method of average maximum water holding capacity in shallow soil layer in a watershed was indicated Table 2 Received August 13 1974 1 2 3 Forest Influences Division
Download Pdf Manuals
Related Search
Related Contents
Silvercrest Model WC11 Floor Plan ORTEC Micro-Detective HX Operator Manual, P/N 931062 Rev. J Weber 38050 User's Manual Enregistreur de données de température 陸 上 自 衛 隊 仕 様 書 Fiche Programme_ETSL_Ateliers36.indd Makita BHR240 User's Manual Copyright © All rights reserved.
Failed to retrieve file