Home
http://utomir.lib.u-toyama.ac.jp/dspace/ Title 富山大学工学部紀要,34
Contents
1.
2. 34 1983 On Using of the Personal Computer for the Elementally Problems on the Control Systems
3. a 34 1983 6 1 6 0 S
4. L 2
5. 1 R D 3 1 2 3 wb 3 1
6. Al Mg tk Al A1 Mg Al Mg AA ERRORS AI Mg
7. Kelly 9 Hn H Bn Bo H Ho Sn SbCl mil PO eee note in ees w Ho Ho fede le a s Sects niet Ros a
8. 1982 10 20 2 2 EKA 590 C 960C DHT
9. R wm 84 1983 cs overall reaction interfacial area in pellet reaction interfacial area in pellet based on the core model mean reaction interfacial area of grains within each spherical shell concetration of oxygen in pellet concentration of oxygen in bulk phase effective diffusivity of oxygen in ash layer mass transfer coefficient across gas film reaction rate constant based on unit surface area of a pellet reaction rate constant based on unit surface area of grain reaction rate constant defined as Eq 20 gas flowrate radial initial radius radius coordinate within spherical pellet radius of ZnS spherical pellet of reaction interface within grain of grain temperature time conversion localized fraction of unconverted solid reactant porosity dimensionless radius R Rp tortuosity 2x K 1 Szekely J and J W Evans Chem Eng Sci 25 1091 1970 2 Szekely J and J W Evans
10. MnOz MnO TOR RAI wR F TCD He Mn MnO MnzOs MnO Mn MnOs MnzOs MnsO4 MnO Boudouard Mn Mn
11. CHAD 1 x volt volt f c 1 1 CHA RAM A D D A 1 CHS 2 ie D mn ace ag lt 4 OX TK 80 ADDRESS TIMING TD DECODER LENEsAroh eae gt o RAM FI RTA x R W_
12. 1 Ems 1 2 idt idt a Im dr Ta u 2 1 tine E f Ra faa de T Th Tela in EU Ds 4 5 B H nm Hill 34 1983 Bm
13. TIL 0 LD XY PANAFACOM C15E XY WX4671 1
14. aN ap fea Capillary Siphoning 4 E Z cake capillary siphoning 2 2 3 OR BL WALEN y b OME ERIR amp AKERS A C5 90C 960C
15. 39 cm 2 01 cm HS 1 mm 2840 EI 27 2 Q 7 B H 0 49 Wb m 0 41 Wb m 0 3 Wb m 0 12 Wb m 20 V 8 4 b gt b 950 Hz 1000 Hz B H 8 a Pn
16. 4 4 1 1 1 240C Reid Pritchett 398 C Shine Mallory 350 355 355 395C 1 355C 250C 7 395C 4 4 2 1 360C 360C 1 360
17. a Zn 22 Al RE RS
18. It 1 Szekely M BBTV ALY Fig 1 Rp rs
19. 2 p 4 4 ipso p 7 oc 3 ipso k 4 2 8 1 DMF C1 2 100 DTA S a 5 mnm 2 1 1 0 66g 0 1 g 360C 0 178
20. P P 1 S f 1 Pe 9 Ba Bo Ph KnSnf Pe Kp Bn Bo f 2 Kn Ke Kg Pi 13 P P Po TtmsR P Pit Po 14 3 5 9 Kn Ke 6
21. V203 V203 VosssCro o15 203 Igz IAi C Ag Zeiger C Igg 1Ai eg ML Zeiger 1 Co CrDC K et N Co Cr
22. B H S x 1 Pauw FRANKIN IEEE TRANS POWER APPARATUS SYSTE 1 2 249 1972 2 NN 1 2 260 1972 3 BA 85 10 1740 840 4 n 93 11 535 1 48 5 94 503 7 49 6 Fr
23. 0 10V TR6141 ee HP 85 0 10 Micro ae ee V XX aes Y oe VOAC707 HP 85 MEL COM70 10 pee XY Fig 1 Block Diagram of System 1 1 2 HP 85 HP 85 TRG6141 VOA 5 C707 MELCOM70 10 Fig 2 3 HP 85 HP 85 CTL FLAG
24. 40 1 11 H 11 1 2 1 2 1 3 2 2 0 3 1 b 9 3 Sa 8 1 1 1 CHE x 0 0 0 0 1 1 1 1 z2 0 0 1 1 1 1 0 0 x3 0 1 1 0 0 1 1 0 EXILE EEGs CRED ct b 1 3
25. 3 1 5 3 2 Ht 34 1983 Fig 6 Fig 8 Fig 8 620 Fig 13 14 10 08 106 lt 04 4 0 Oz 04atm 4 Q 02atm Cal Oz 07 atm Exp 02 Tei i 5 5 3 mip t min T 910 C O2 O02atm 2Re 1 5cm T 710C Q 10Umin Re 1 2cm Fi
26. 750C K Talamini 2 3 1 mi A E
27. 910C 2 56 mm 40 Re 1 Eq 1 D A Fig 6 D 4 1 5 2 3 3 Kc Dea 1 06 min N T P 2Rp 1 2cm 0 58 0 6 Fig 7 CHS T C 700 10 515 00 amp gt 5 4 p 1 0 x lt Dea bp
28. ACOUSTICS LETTERS 3 8 pl50 153 1980 5 8 p133 136 1982 Bw B 1 RREA E 2 3 Ll Till
29. 4 Al Mg Si th Al 1 Mg2Si Mg Si TMT lt 100 gt TMT TMT Ww E H NIS NisS gt
30. x gt A D gt RAM gt RAM D A A D D A 10 8 2 D A 10 2 RAM D A 1 2 RAM PD5101 8 1 K PD5101 C MOS RAMT STATIC RAM CMOS STATIC
31. 4 mp 261C 256 5 3 4 mp 208 209C C 55 86 H 4 46 N 5 82 CuHuNOs C 55 69 H 4 67 N 5 91 3 4 x 1 I Shimao K Fujimori and S Oae Bull Chem Soc Jpn 55 546 1982 2 A Kirpal Ber 30 1599 1897 3 E B Reid and E G Pritchett J Org Chem 18 715 1953 4 H J Shine and H E Mallory J Org Chem 27 2390 1962 5 LShimao and H Hashidzume Bull Chem Soc Jpn 49 754 1976 6 L Shimao and S Matsumura Bull Chem Soc Jpn 49 2294 1976 7 LM Klotz H A Fiess J Y Chen Ho and M Mellody J Am Chem Soc 76 5140 1954 8 F Ullmann and J B Uzbachian Ber 36 1801 1903 9 V Froelicher and J B Cohen J Chem Soc 119 1425 1921 22 4 4 Rearrangements of
32. X 2 2 2 2 n 2 n n m 9 m 5 m 4 4608 224 9 1 12 1 AL78 17 1979 2 2 2 197 1981 3 1982
33. Ar 1 5 2 0X10 2torr AES 4 at Co Cr C 4o 8 100 we T Stefanelli amp Rosenfeld 8 Top down 94 9 HA 8
34. H B H l Brm Bo lt 3 5 Brin H H KmHm eb gt HB i Oe 8 a d Km Brm Bm oe Hn Hm H fle N hi A m dr a 3 5 l M Br Bo 7 n O n n a Bas oy ego o A B H RR RRS 9 i N Kn Br Ba or 8 9 z b Km Kn 5 m n 0 Hi 5 m n
35. m 34 1983 3 4 3 4 5 REM DI 94129 37 10 DIM IBF 29 0BF 29 20 OPEN 5 IBUF IB F gt OBUF lt 0BF gt IEC1 30 IFC 5 40 EOR WS5 90 S0 CONNECT 5 30 1 70 PRINT 85 H 73 PRINT 5 M300 300 75 PRINT 5 S3 77 INPUT K L M S Q R T 80 A 1 81 8 19 82 1 90 FOR D H TO B STEP 1 uIM IBF 29 0BF a lt 9 OPEN 5 IBUFCIB F gt OBUF lt OBF gt IEC1 39 IFC 5 40 EOR S5s 9D 50 CONNECT S 39 1 60 PRINT 85 H 70 PRINT 5 N300 300 30 PRINT 85 S3 90 READ K L gt M gt SRQ 95 DATA 623 2175 1000 2800 0 1 1 8 100 A21 110 B 19 120 C 1 130 FOR D A TO 8 STEP C 140 X INT 399cKxLOG10 D gt 150 PRINT 5 D sXs 360 160 PRINT 52 D sX3 3L3 1 3 1 C 199 X INT 395 KXLDGI9 D gt 118 PRINT 85 D sX5 300 120 PRINT 5 D Xs Oa k 130 PRINT 5 M x3 250 135 IF 0 gt R THEN 14 140 PRINT 5 P 0 145 PRINT 9x0 150 PRINT 4 5 M 33 300 168 NEXT D 170 IF H N HEN 299 189 A A110 181 8 8219 3 208
36. SN HP 85 SN MELCOM70 10 HP 85 1 1 1 1 1 1 Fig 1 P Model 548SH EXT 0 10V 3 Tlic BRO 0 10V
37. 55 I N cas 31 345 pose mxn Fin Fout II B Cut
38. IA showing relation of n Xand T 1 O D mm mm HH IL OO Duk 1 0 D ON Q 53 gt ANN N POO Wow 1 D o m ra 1 1 1 0 02 04 oe Ri 10 Fig 10 Rr Rc and RD as a function of conversion Effect of porosity Effect of pellet radius Effect of gas flow rate 590 960 T Oo 1 Levenspiel O Chemical Reacti
39. A Fast Algorithm for Generating All the Prime Implicants of Logical functions Divide Method Hideo MATSUDA Takashi MIYAGOSHI We already proposed a submap method which determines prime implicants of a logical function by the computer The present report describes a divide submap method which is much more effectual than the submap method A given logical function of n variables is divided into 3 logical functions of n variables where n n 72 and then the fundamental submap method is applied to each of those divided logical functions Because the number of bit operations for logical product and the memory space size for the program to occupy decrease remarkably by using divide technique we can reduce the computing time by 40 percent and treat logical functions of more variables in comparision with the fundamental method H x a
40. 1 Mn0O 1323K Mn MnO 1573K CO Mn 2 Mn0O Mn0 3 MnEFe 04 MnO FeO MnO 1313K MnO 4 Mn0O MnO Fe Mn Mn0 494kJ mol gt 51 5 3 xA 1 A J Georgiev A N Pokhvisnev and E F Vegman
41. 10 SN ne Fig 10 XPS Spectrum of lnSe _ Valence band 5 INTENSITY ou 0 ES CA XPS xX 1 HP 83 85 ROM P 34 1983 14 1 1980 2 HEWLETT PACKARD HP82941A BCD
42. d 5 S i lt 1 gt lt 8 gt lt 9 gt lt 12 gt ZW
43. Al Mg A
44. 2 2 G S K 1 TiS 1 T2S 1 T3S GS K 1 TiS 1 T28 1 Ts3S gt gt gt o gt jr 6 6 SEa BETIE AGa og EP 8 005 ae ade E394 ET VECTOR LOCUS eo 330 POR 0 ost 10 1 3 Sa TUR ssi TI b0 a7 sd 9 Ie IP 9 2 Sete ee TEP 9 91 Ted a936 gA MENT v Sa TFC peer ge 330 GOSUB 580 NEXT Ww 9 v59 ces 340 FOR wal 95 TO 7 S UE 2806RRM K 1 T1 s 40 EOR 5 90 TEP 4 05 umn Glel aos 1 4T34 39 CONNECT 3 E30 359 GOSUB 5008 NEXT i 1 368 FUR W 9 TD 70 DRY DATA T1 12 75 K 2 1 1 2 70 INPUT USING T1 T2 T3 Ka sT1 T2 T3 K 8 PRINT 5 200 200 9 378 G0SUB SABA NEXT W OO 30 FOR Msg TD STEP i 0 a5 ee T1 T2Z 2 e Ral 99 PRINT 85 9 eee nag Bet i 4 5999 NEXT W oe PRINT WSs Oty ig 180 PRINT 5 PVECTOR 89505 3 Locus 110 PRINT 52 M100 10 120 PRINT 5 X1 230 8 130 PRINT 5 NM609 25 140 PRINT 5 X9 25 150 PRINT 5 S4 150 hz 1 170 FOR 8 100 TO 2000 STEP 509 188 PRINT S N sBs 1850
45. 2 FT PT TH ET sl sl ssl el ml mml ms 3 8 100 9 50 msec 4 8 ny 3 4 2 34 1983 3 9 4 8 50 100 3 2164 117 0 382 Peony ss msec msec 16829 269 9 38 8 36
46. g g Fig 11 6 RRP amp 1 0 0 8 Gc Qc 47Rp 1 223 19 ks k RAR ks 05 70 11 17Tx10 1 KI TEE a ie 20 Fig 12 Temperature dependence Qc of Ks and ks ks Ks Fig 12 Ks ks Ks
47. 99_ 3 h 28 hZ Pere eer eee eee ee eee errr eer rere reer Terre er eer eee eee eee eee eee eee ee 1 2 qLxr lt L T 0 0 x 0 0p x g T 0 0 Yu Biot x q CO 0 B r 0 99 0 9V cha 4 2 Zy de 0 2 3 q 8g 9 9 a f c ZZ 692z 666 f c oazr cbc x lt 2 3 989gZ d 0 2 4 deeds of E 2 4 q 6 S3 2 3 co Co 0 0 sm E Io 34 1983 nax nar 2 2 a 650 i 5 5 a TAT Ore CO sg talag Rape Bes T San 3 2 i NTE ZZ ER 2 nm ym f 1 1 iggy 2 a 1 On ga E aln 1 1 1 TI 6 Am AX ad 02 mae sin 0 n 1 q ere ae aot n 7 3 2 90354 a 86 6 ba na nm cf 97z cdoq zt 22 27 3 1 Ong BD atm AN GRR a m 1 1 n _ 72 1 l 1 Gif AB 1 gga ZZ ang CDT rnt mn gt a 50
48. WEH l bit 1 SN 3 FORTRAN FACOM 230 45S 2 n 3 8 9 true 100 9 50 C P U TIME 2 1 3 9 1 6 50 z 4 5
49. 4cm 2 3 34 1983 1 3
50. RAM x 2 yy 10 HE EE RAM 16 A000 A3FF 1024 10 8 1024 HA E 512 FEOO 511 01FF 2 DATA X 1 3 A D 2 A D 1 K es 10 oumurvorri DATA ema a _ OR aa AD571 y fo JD
51. 2 2 1 amp Au Fig 8 XPS Mgko 3 x10 Torr 0 01eV sec 6 eV 5 d 3eV 6 s 2 2 InSe In4d au Valence bane 3 Fig 9 5 5 TER 4172 II V ai ee eee 0 SSR ImSe In 4d D eo Fig 8 XPS Spectrum of Au Fig 9 XPS Spectrum of Inse Im 4 d 2 2 1 2 3 InSe 2
52. 34 1983 2 4 1 3 n x15 X05 t Ln a y Ten Sn 0 0 0 0 0 1 1 1 1 No n n CE CG Du 2 M ME Me 1 F F Fm 1 2 Ps 212223 Pa 2 n 5 5 zn 3 BR xj zz zs 7 z 2 z x M M Mg 23 8 8 ALR 8 1 z
53. 1273K MnO MnO Mn Mn Mn 91473 K 95Pa a Mn MnFe 04 Mn Fe 0 Mn Fe 0 ee Mn Mn0 Mnz0 Mn 0 MnOz x 1 61 1 42 1 11 Mn Mn 0O Fe Mn 0 CO H ICE SRI Se HEL Mn Fe Mn 9 Mn MnO
54. 2 3 3 2 8 3 27 n 2 2 4 AT 32 9 6 2 b ae 1 2 Sj 1 2 S L true 3 S SRE HL true 4 F aglow ee 1 1 5 2 4 EL G KS ZRP KEELNE
55. Fig 7 1 2 EREI ET CS Se 1 SETTING 2 START 8 PLOT 4 MELCOM 5 LOAD 6 RESULT 1 2 3 4 MELCOM 70 10 5 6 iB PLOT MELCOM START 3 SETTING START RESULT Fig 7 a Flow Chart Fig 7 b Flow Chart ESCA
56. Fig 1 Rp RL R dR CHEM iV PREIS BITS 0 4 Eq 1 on apn castor l 1 Fig l Stractural model DeA a r M Re EE he Op E 1 R OR aR MM r re at t 0 2 1 2 2 Ca ope at R 0 3 oC Dea Kc Cab CA at R Rp OR 1 C 4 at 3 m Eq 1 4 Rp AR t At EN at R 0 i n at R Rp R7 A CA r
57. 0 0 0 1 Pis Ss 2 0 0 1 Pog x 3 0 1 0 P38 5 0 1 1 ss x yax 8 1 1 1 Pss x zzzs 4 Sz Pi S7 ys Ps7 3 0 1 0 Sik CHa x bb P37 sy S4 Pi B P44 4 1 Ps8 2 22X3 Pas 10203 0 0 Ss x 4 5 b OF Pra 12 25 ICSI DAF ii Si zyx 5 7 Pzj 7 8 Pi 8 gt P2 8 gt P3 32 gt Ps8 8
58. XY XY HIRI T
59. 2 800 no Fig 8 Representative plots of fraction of resistance 7 vs conversion X 2 4 2 O x 04 910 06 Fig 10 Ele SS A MIF FEDAE SS Se Ga10 Umin O 202atm RN E 058 060
60. 2 2 1 S S S jw Xl Y1J X1 FICE Xl Yl w XY 9 XL Y XY aS 1 4
61. OO 1 1 1 Wie CAE 99 9 200kg cm 80 2 3 3 4 05 g far thor 1 2 Fig 1 3 cm tL
62. M 4 a 200 270 1 3 2 4 4 1 3 1 80 190 X Y 290 450 4 THY i REN KYOKU ZRHYO 28 DIM IBF 29 0BF 29 30 OPEN 852 IBUFCIB F gt OBUF COBF IEC1 49 IFC 93 50 EOR 851 00 60 CONNECT 05 30 1 70 PRINT St H 88 Ta 0174532 98 READ ALB 100 DATA 1738 1380 110 FOR R 2 8 TO 1000 STEP 200 120 X INTCACRD 130 Y9 INT B 140 PRINT O58 H s X03 378 150 FOR I TO 360 160 Tisist 170 X INT RgCOS T1 9 5 R 130 YzINTCRZSINCT1 8 5 B 193 PRINT 058 D73 3 29 NEXT I 2 3 NEXT R lt 20 REM 230 PRINT 831 53 235 Cag 248 FOR 1 TO 315 ST EP 45
63. 590C 960 1982 10 20 ESCA R AR SH He WH pili MELCOM70 10 ESCA AES ee Was ESCA XPS
64. le a Cre tat 3 Computation conversion by Eq 11 Write computed results _ Yes No f 3 1 Conting sto REETU b EO MAMET IT BTU A tE 44 a 7 geo Fig 2 Flowchart of the 3 1 1 1128 0 5 Fig 3 ds AS 2 1 2 ds z 2 ni ni d AKT o 8 044 computer program Fig 3 Grain size dist
65. 452kJ mol Fig 7 34 1983 MnFe 0 C 003 K s G 3 S E F a 8 Coz 1200 1400 1600 Temperature K MnO 115 FeO itt Mno 200 Fed 200 Reiative intensity 30 40 50 60 70 Diffraction angle 20 Fe Ka Fig 4 Effluent gas analysis curve for the reduction of MnFe 0 with carbon and the X ray diffraction patterns for the reduction products 10 08 06 04 02 0 50 100 150 200 Time Fig 5 Effect of temperature on the reduction rate of MnO with carbon 0 50 100 150 200 Time s Fig 6 Relation between time and 1 4 a er the reduction of MnO with carbon MnO MnFez04 MRMARIRTICHIFSZ 2 3 1628 K Mn0 5 Fe C wW 20 x 608 2 MnQ 5 Fe C 24 1608 K MnO M0 C 494 k moi MnO 5 Fe C 452 kj mol 28 i 60 62 2 64 T 10K Time s Fig 7 Effect of iron powder on the reduction rate of Fig 8 Arrhenius plots for the reduction of MnO with carbon MnO with carbon MnO
66. 2Bm Ke Bm 6 2 1 mm 9 4 4 22 4 100LV 60 He CH S 212 Wb mi AT m 0 3 W m Ph Pe 12 51 W Ki Ke 2A x 10 Ke 6 56 x 10 3 Q 9 P Pi P Ph Pi W Pe
67. 1 RA 1 1 Mn NO0 MnO 1273K H MnO MnO Fe C Ar 1373K 43 cai MnFe204 X He 1473 K ChB MEL arcs 1 2 Ee ee regulator 8 Trema conductivity x x OIE 9 lron piece Fig 1 Mn eres Ip te ane a w 4 Gas refining system _ urnac MnFe204 Ft i PRAGA 5 Reaction a Schon 2 ICH RR Be L 6 Sample 13 Temperature controller 7 Trap Ascarite Recorder igi 7 HAH Fig 1 Experimental apparatus MnO MnFez04 DARRAR BIA 2 3 VT He CO CO
68. HP 85 b TR 6141 MELCOM70 10 VOAC 707 HP 85 KAO 3 HP 85 TR 6141 MELCOM70 10 1 1 2 HP 85 TR 6141 MELCOM 70 10 HP 85 CTL 50msec MHDS LAY A C LOAD TR614 TR 6141 LOAD HP 85 TR 6141 FLAG NO TR 6141 50msec TR 6141 SN 74LS 05 MELCOM 70 10 65 EAR ESC
69. 1 1 XY BACIC T 1 1 19 DIN 1BF 20 OBF 20 130 PRINT 51 H1 0 12 eo ai 39 OPEN 5 IBUFCIB 49 PRINT 52 K1 100 Bie isc F gt OBUFCOBF IEC1 25 49 IFC 05 150 REM 240 FOR B1 400 TO 210 STEP 200 50 EOR 83 00 160 A0s 5 6 P NM1119 0 CONNECT 05130 170 FOR B9 269 TO 260 ieee ee 70 PRINT 52 H STEP 200 80 PRINT 33 S2 189 PRINT 3 M s BO 2 269 PRINT 53 P sA15 110 PRINT 83 M12003 278 hlzhly1 99 2 120 PRINT 51 X0 100 280 NEXT B 9 K 300 PRINT 5 H 18 200 h9zRey1 s10 ER 1 7 10 60 XY
70. A a I BEC EBRD ZT D AS NTO a HD ERER UBER q alt 1982 10 20 Application of Yus Variational Method to Heat Conduction of Solid with Phase Change Yoshiyuki FURUYA Department of Applied Mathematics Faculty of Engineering Toyama University Takaoka By refering to Yu s variational method a sufficiently long melting slab is investigated The slab is acted upon by a prescribed heat input at one face and has its other face insulated In order to find a solution involving two unknown functions the heat balance integral method introduced by Goodman is used as a subsidary condition S 1 Introduction Yu and Vujanovic derived the variational formulation of heat conduction of rod introducing the variational invariant vaf 01 By har NSR CSS 1 1 where c is the h
71. f Zn8 20 gt ZnO 1 Denbigh ae A Fa on KOI 900 eae R T Gokarn 0 560 970 600 690 590 960
72. ers Ri Cal r at R 0 L Ri CAi ri at R R n Rn CAn rn at R Rp Eq 1 a e de n 2 n 1 R Ri IRP R2 Ri E 2 Hee a ae NR a 0 oe ira 1 e r Ri ks 6 Dea ri R 0 Eq 3 3CA 4CA CAs 0 7 R Rp CAn 2 4 CAm 3 20 CAn 2 BCab 8 K 2 AR 9 D A Eqs 5 7 8 A Eq 4 dri 2 k R Oly 10 dt 3 Om X me LE AE a atl Re 34 E1885 2 tp 3 x Sof R 1 dR r Rp 0 g 2 2 1 WH qn Computation physical parameters Computation reaction interface r by integration of Eq 10 LE E ales r EORI ZnS 0 Zn0 SO0s EST aten gas concentration amp i Bia re shies Ke D 1 of time step
73. t o e foe oo ow oe e or os os Var 0 5477 0 7746 0 9487 1 0954 1 2247 1 3416 1 4491 1 5492 1 6432 y 2 2453 t 0 4738 0 6701 0 8207 0 9477 1 0596 1 1607 1 2537 1 3402 1 4215 v 3 3750 0 5809 0 8216 1 0062 1 1619 1 2990 1 4230 1 5370 1 6432 1 7428 y 3 6262 0 6022 0 8516 1 0430 1 2044 1 3465 1 4750 1 5932 1 7032 1 8065 3 6251 t 0 6021 S xA i M Biot J Aero Sci 24 12 p 857 1957 2 J Yu Q J Mech and Appl Math 25 2 gt p 225 1972 3 KFAR L p 9 4 I p 130 133 5 p 297 1980 10 FURUYA Application of Yu s Variational Mathod One Study on the Variational Principle of Heat Conduction Yoshiyuki FURUYA A spacial variation which is independent of time is introduced By imposing the spacial variation on the system of heat conduction one side raised to a constant temperature andhas a penetration depth 9 a variational principle is obtained The formulation is based on the structure of heat conduction equation and the boundary condition This variational equation together with the sweep method and Ritz s method provide a approximate solution of 2
74. zz5 2 1 S S5 1 4 S 6 DEY 4 1 F Fp 2 n 3 z z x 8 1 0 8 2 CDA 9 Ps x x r 461 Of 4 9 3 P 4 ziz2zs 4 Poy 8 MATA HL 9 4
75. j 1 1 34 1983 1 0 0 0 0 1 1l 1 1 z3 0 1 1 0 0 1 1 0 4 a fo fs Pe a ya 2 1 nh oH ie 10 hiro AIT Sk n2 0 i l yA 2 mi 2 1 lo lo Hili aia ati 2 1 fea Mia Wo Pi a oa ag EH 2 E A A A At A A ot Fi Fo Fs Fs Fy Fe Fe Fy T 1 4 2 06 X 1 rafofofofofofs fefe 1 F 3
76. 7 S S i Py CLICK PR 1 2 2 5 Fi N Pig Pij nz 1 true 0 false T 6 2 b b 2 3 ii DF TTE MORMAFANTB LA essen semean 33 7 gt If fala bb ELTK JATA 2 7 Pij 3 2 M M2 Ms M3 M Meg Me My FOLDS 7 AED Cit 1 4 8
77. fF 8 1982 10 20 4 4 A 4 Wallach 2
78. 1 packing of pure copper chips 2 silicagel E ee oes on Se ae eae X Fig 1 Schematic diagram of experimental apparatus 5 preheater 6 auto thermal controller 7 thermocouple 8 ceramic packing 9 specimen 10 platinum wire 11 quartz 0 9 min N T P Spring 12 cathetometer 13 gas outlet 14 cooling water inlet 15 electric furnace 1 54 min N T P 2 2 1 X O O OKE n
79. CMA CMA HP 85 S N MINDY AT 1982 10 20 S1 x 0 qi penetration depth go M Biot J Yu 2 2 9 c 4 ar 99 A 99 2 ie 94 5 de PO PIN 2 1
80. 2 48 2 4 4 YH 3 8 4 Hooc Neng COoH ea iooc yenen CoH 1 _ 0 1 2 noc rend Cm Polymer HO 3 4 4 1 3 lk 1 6 3 3 4 4 3 3 gt Hooc NH Po COO HO 1 C1 90C 2 26 3 37 4 p 4 430 H S0 es ee hooc ON Ycon HOOC N N COOH HO 2 3 P ooc NrN mi co 4 Wallach
81. 3 6 E A DN ER 3 10 a q 34 1983 3 10 3 5 6as J lia ae le Qe ip oe a a Sa A CI 1 1227 0 9700 0 25 az 3 1425 a a2 0 3805 B 3 8 n 2 Btrorex 1 1 1 2 2 2 l i 244 a a Z 2aa 1 2 1 1 plepa to a1 3 37 ay 4r 3 toaa 1 1 m Z A B Da a 1 1549 4 1 9489 4 q q 99 1 6875 q M 3 3 6 9 9r aera 2q a3 3 11 3 5 as 3 11 WU ee 2L tas 3 as corer EF a 5 at P 1 ta 37 03 0 3 12 I mM 70 3 13 3 13 A B 3 12 KRA 1 6875 0 3890 0 25a3 44 4132 a3 a3 0 0149 pp C 3 8 3 3 KEMU M A B C 0 3333 1 2732 0 0899 0 3805 0 0149 2 2 2222 0 0899 x 0 3805 0 9375 0 0899 0 0149 6 4200 0 3805 0 0149 4 9348 0 3840 x 0 0899 1 3840 x 0 3805 3 0507 x 0 0149 zal 1 4 9348 0 0899 4 x 0 38057 9 x 0 0149 1 0776 1 9538 WG 3 6262 N 4 3 6 97 _ Ja 8m
82. ZCD 3 BER 97 2 DP CulnS E th Cuns X EPMA AES Cu Inm S 1 0 6 2 4 112 lt 1 5cV 0 10 0 23eV In 101 58 3 1 1 10 11 12 13 Contents A Fast A
83. 1 2 4 1 3 1 3 3 22 1 2 3 5 6 X INIT CHECK COUNT a XINIT X b
84. dg f sS ff Bm 0 78 Bn B Pi Ph KiSa t Sasa 15 Ph Pe Ph of Be 7100 W kg Pe e f Bm 100 W kg Pt No 6 Pe E f O g ff Pi Pe HEY Ph PA S 0 Ki
85. A B C D K 1 G S K 1 7T S T4T 2S 1 T3S EXP SL 1 TS _ EXP SL S 345 PRINT 5 PI 358 PRINT 5 S6 360 PRINT 5 M1500 2 300 370 PRINT 5 PG S gt 375 PRINT 85 RO 20 380 PRINT 5 1630 0 385 PRINT 5 R29 29 390 PRINT 5 Px 395 PRINT 5 RS 20 400 PRINT 5 1214 0 410 PRINT 5 M2000 2 335 420 PRINT 5 PK 440 PRINT 85 M1745 2 265 450 PRINT 5 P CxS 17 DxS 1 500 PRINT 5 M2451 2 335 510 PRINT 4 5 D AxS 1 520 PRINT 5 M2451 2 265 530 PRINT 5 P 3xS 1 549 PRINT 5 2050 1 50 545 PRINT 85 34 550 PRINT 5 PDATA A sBsCsD k 560 PRINS See ee LM Bs ted HMS 2900 PRINT 5 H 9999 END K G 5 lt TTmT 8 1 T 8 1 T S 2 4 1 4 XY eee a EA TOUPRE NT a O TOTES TRN TDU RN LT NTENNI TT 6 j N idt DOSEN HARE Nhe SHUN EU tosga
86. Mn CO CO MnO 1598 1639K MnO C 1 1 5 MnO Fig 5 1598 K 200s 1 0 Fig 6 0 2 0 8 Fig 7 494kJ mol Ashin 7 1 698kJ mol Fig 8 MnO 5 Fe 1608 1628K MnO
87. a b c d n yn xisxs x2 y ax ax xi gt X Fyn xn i xs Xn 0o23 gt n gt 1 xi gt X y ax ax2 x2 lt x y O xis XS x2 2 20 Hz J DMA A D A D 1 90 1981 2 183 2 1982 CQ 3 WER
88. ey ea eens Han eg Bae o DR i NI RR ADDRESS INPUT VOLT ho 9 10 CPU A D pATA X lsiFEoo 9 SILLOIFF 2 DMA CPU Stock wwo TL A D startconverT o tHe o O OO O O e CPU wwmer APORESs ee ee a es 3 pATA Bus ae SE 08 CLOCK ATH bs aTa aD GETS 6gsec CLOCK 5 48 csec A D START CONV
89. 9389 2 MIV MA 9400 0RTR 338R 23 INX H 9401 3388 PP MIV fA 3402 93387 23 INX N 3405 9385 33E SE MV SE 931D FS PUSH PSW 938F 229 MIV A RA 931 DS PUSH 9 9390 76 HLT 33j 11 04 34 LXID 9494 DISPLAY HL RESISTER 9322 3E FF MVI R FE CR E NO 9324 10 OCR 9325 12 STRX D 93C5 F5 PUSH PSW 9326 CA 29 93 JZ 9325 93 cs PUSH 8 9329 AF XRR A 9322 95 PUSH D 932A C3 24 93 JMP 9324 93 23 ES PUSH A 932D D1 POP 0 33C4 co co 51 CALL 91C0 932 F POP FSW 9327 E POP H 932F cg RET 93C8 0 POP 0 OVERFLOW CHECK 93C9 C PSP 8 Eseia DATA RDJ T9 FG 93CR Fl PSP PSW 9330 FS PUSH PSW 33C8 C3 75 93 JPP 9379 933 3A 06 99 LDR 9096 9334 17 RAL 9335 3A 97 99 LOR 9979 9338 07 RLC 9339 OR 4S 93 Je 9349 3 34 1983 Hot 3 2 3 XY 7
90. D 0 1I I amp 1 n Il 1 2 19 oe OSY Sb O iaR L Gi Geen Sees sees 1 L n fo In Io n Hill 34 1983 i wit TR PORE n t O t 0 is h t t i A THAR ti t t 0 id h t t ia In id Ine Te ee gt Te L R E R 2 Hy 1 t C a1
91. 34 1983 Sa S 7 1 1 0 Sr x X Se 6 1 0 1 So xy S4 4 1 0 0 S 4 x x Si 1 0 0 0 CH Si yy xy 1 7 Se gt 0 eS 1 1 2 7 7 1 S PP 2 Sg 1 ra 1 CY UO B PF FF Fo Fo oo o Fr OF Oro FoF FF oo FF oo
92. GPC Se A KRRIT ILA MAE ES BIRO AIA CG BRIO FHA HELLAT Vik GPC GPC 43 45 OR Sn Pb Cu Ni m shu N
93. P Pe Ph Xx dF _ af Ble XO 4 Pi Pe Ph 0 200 400 600 800 1000 f Hz 8 a amp E B Wb m Ye W im RE I C we to l 0 20 7 30 40x10 H AT m 600 800 1000 400 E Hz 8 b 100 200 Hz Pi A 34 1983 7
94. 1 0 2 4 3 1 1 8 04 199 3 1 3 Dea O 2R 098cm A 2R 1 2 cm 2R 1 5 cm 1 Dea Se ae De 1 Du 13 Dk Knudsen Dm Fig 5 Relation between average pore Dx radius and porosity a 650 A 3 1 2 1 2 4 Te AA ld 16 40 Eaq 9 Dea Dm 14 T Du Chapman Enokog lt MILE E Le LL
95. B 7 5 28 1 5 2 0 32g 3 0 055g 370 C 58 56 H 3 81 Hill 34 1983 N 9 51 CisHioN20s C 58 74 H 3 52 N 9 79 2 2 X 1 2 86g 8 300m UP 100P 22 15h 1 Na 3 0 18g 3 mp 240 241 C C 61 03 H 4 49 N 8 63 CieHi4N20s C 61 16 H 4 49 N 8 91 IR 2 1
96. 1 110 140 Yh X 160 210 230 280 Y R 1 1 2 2 2 3 2d iM 1BFK30 JBF 29 KERE 2 EP 19 5 gt Paggana sg JPEN 5 IBUFCIB 495 REM 0 F3 OBUFCOBF IEC1 418 PRINT 51 S3 eran Bad 38 IFC 85 428 FUR 820 TO 18 Bis as 30 EOR 85 00 330 Y Bz199 399 See 59 CONNECT 5330 1 44
97. HP 85 FLAG FLAG 15 usec HP 85 i i a A FLAG TR 6141 VOAC707 MELCOM70 10 Fig 4 5 1 1 3 Fig 6 HP 85 BCD 2 10 BCD 2 XHB IB GP IB RS 232C RAE SIL CB bT ECU L ATENEA YTE ELTAX
98. 23 1 P m EB 1 P m 6 6 S C CZ H gt es n GC MS GPC LC 58 GC MS Z
99. 241 4 1979 CQ On the Device of the Nonlinear Function Generator by using the Computer Hirofumi TAKASE Takayuki NAKAGAWA This report is explained to the working of the apparatus which is made the function generator by associating computer with programs of the machine words and generated the characteristics curves of generator W x p 1982 10 20 d BASIC XY
100. 1 g10 T 650C_ Q 1 5 min 2R 098cm 30 4 3 40 100 400 Cy x10 gmol cm Fig 2 Relation between react ion rate at zero time and oxygen concentration 2 3 C EION R R 1 090 rp Eq 4 100 110 VT x 103 1 k Fig 3 Arrhenius plot of the rate constant 4 CAo 1 KcRp 1 Dea 1 Ro 1 Re 1 KsRc TPA 4 6 g mol cm3 Rc 4 3 tRe3 0 g mol 1 Eq 5 d 4 7 Sar T TPs 5 rps 1 Eq 1 Nr S72 Sia 6 Eq 6 5 Eq 4 KOW a 4 mR 2 dRe _ eee em O eee aE eae TC Ao 7 PR AM del eee es Cle Dew RA LR t 0 Rc
101. Le L A B 4 for 1 0 for 1 P 0 5 10 15 O A 15 BS er ete Be E 0639 eeso550 804MT 9IOC Q 25Umn Oz02atm 900 C Fig 6 Comparison of calculated reaction curve with experimen tal data 34 1983 2 5 L min 1 0 1 1 Fig 6 A B Fig 7 1 0 1 1 1 0 5 0
102. n 1 Fig 8 Comparison of calculated reaction curve with experimental data for various reaction ANIS FRA temperature Ri Ri 1 b 900 0 1 005 E 001 Ub O 2Re 098om 0 02atm A Re 1 2 cm 0 04atm Q 1 5 l min Re RiRin Rn ooa 100 1 10 1 T X10 17K Fig 10 Illustration of dividing of pellet s Fig 9 Temperature dependence of radius Rp at equal interval from reaction rate constant based on Ri to Rn reaction interface of grain E 44 z Rin3 R A ET 15 m a ASE ZN oe 4 wre W Ri Ri i mb HEZ ai C Qi mbiai a 17 16 n 1 a 2 mbiai 18 i Fig 11 Plot of aivs at X 0 90 ai
103. D Fe Mn Fe 0 Fe 0s MnFez04 X Ha Fig 4 1163K 9 BCR ETL MnO FeO E XX MnO FeO CO H MnFe 04 1273K MnO 1313K Mn0O F Fe Mn 1 MnO 2 2 91323 1573K MnO Mn
104. X1 jY1 YJ 5 8 K 1 T1S SU 1 T2S5 1 T5 aw K 1 TIS GS S FTS TsS 1 TS 2 ra G S lt 3 SL GS 44S 4 1 2 3 4 XY X1 K 1 TeTaw2 Ti Tz Ta w3 7 Yl K T1 T2 T3 TiT2T3w w z 5 Z 1 Te2Taw T2 Ts w X1 K T1 T2 T3 Ta w Z Yl K 1 T1T2 T2T3 T3Ta T4Ti T4T2 T1T3 w T1T2T3T aw Z 6 Z w 1 Tew 1 Taw 1 Tew m 34 1983 X1 SIN wL Z COS wL Z 7 1 w X1 COS wL T wSIN wL Z SIN wL T w COS wL Z 8 Z 1 Tw X jY1 XY Xo Yo Xl Y 1 X INT Xo oX1 9 Y INT Yo 8YD a po 8 71 2 BRA B C D
105. 680 Fig 15 TSG ee GT gt T 750 C T 900C T 680 C T 600 C 2Rp 1 2cm 02 0 4atm 590 960
106. W d 2 5 4 Ra Ks Ca 2 Mzns dt ti 650 C 1 5 6 min Fig 2 0 85 1 2 2 590 C 960 0 2 atm 1 54 min N T P gX at t o Eq 2 Ks Arrhenius Fig 3 700 700 Ks 8 51X10 exp 5 68X10 RT ae
107. 2 3 3 2 3 1 1 43g 30m6 90C 30 4 0 37g mp270C HR 273 C 2 0 35g 3 0 54g 7 5 3 2 g 90C 30 4 p 2 1 1 110C 5 h
108. TCD No 1 CO TCD No 2 CO CCO CO t X 2 2 1 He 1 17x 10 m3 s 0 03K s MnO XX Fig 2 Mn0O 1323K MnzCag Mn A X Mn Mn0O Mn L lt mel MnO 1573 K
109. _ tn tz o ImM IM lL e Te te Te t aes ie ees ee 3 tl Te log Im Io Im In t t Te log Im Im lo De Te Io Te log In k T t t T ti dp t T Duty factar br ds 1 1 Iw Iw In 6 4 lw Iy dp Te Te 6 TA Te dr 0 5 Iy dg 0 5 1 6 T 1 L 2 o 4
110. im IEEE Trans on Sonics and Ultrasonics SU 28 4 p257 264 1981 fa AB KA TRO 3 TAT
111. 1 0 Fig 7 Relation between tortuosity and porosity Eq 0 3 1 4 1 SDM ee ee 1 5 L min 1 2 cm Fig 8 ks Arrh 1 0 enius plot Fig 9 08 06 Ks ks Ber Fig 10 0 2 RE Ri 0 l 5 Rn t min
112. 1 Z 18 20 22 20 E 2 18 2 6 2 Z 2 gt Z ie er 1 P m SORE 1 P m E TT 6 E E P OCHs Cram DONI
113. 3 5 A P 9 9 lt laa a e 3 1 A 6 x za 2 E E EE AA Sern ware ua nea eae eased 3 6 V Wai az an 2 3 DHHREANZEIIC y YDRE LEK a az gz 2 4 36 oJ 6 m oq 2 3 7 A A c 7 3 5 3 7 l 2 n m 1 l OPT EE ER RS eer Te 3 8 9 EE E 3 8 qj gt d T 3 7 EE a T N I a 0 0 gq 2 ae ar g 6 1 a cos ogo Bee J r 0a 2q 3 9 3 5 DM 6a 4 4 a qq x 4 1 2 1 1 I A 3 8 7 MUO 2 4 0 33334 0 1145 0 01534 0 5199 4 0 2 2 2 q 0 4631 gg 0 5199 29 1 1227 dq _ 2 2453 y2 24537 0 II 2
114. PP 3 14 3 14 3 5 8a4 5 G 3 ae Ab z a il tn 2 s 3 4 W A B C qq 1 8131 1 8131 0 0796 0 2667 0 0899 0 6667 x 0 3805 1 7143 x 0 0149 0 25a 78 9568 g4 a4 0 0076 oo D 3 3 8 A B C D 0 3333 1 2732 al a 44 2 2 2222 a a2 0 9375 gios 0 6044 aray 2 2222 agay 12 2449 a3ay 3 7899 of 13 6595 05 30 1088 a3 53 1379 92 35 1 4 9348 a 4a 903 16g4 q kn 1 0792 29 1 9561 qq 1 8125 d 3 na 3 6251 q 36251 Eo SE SE EE Et V 5 1 90 V31i 2 q v 2 2453 t 3 q V 3 3750t 4 q V3 62621 5 q V3 62517 1 3 1 1 z 2 2 34 1983 q v3 6Z
115. 4 80 25 0625 40 ORTA A 8 C 0 K 0 0 25 0625 40 7 XY 1 3 2 2 80 280 w X1 YI 288 345 W z 1 T2T sw T2 T3 w Xl K 1 T TW T T2 T3 w2 Z Y1 K T T T T T T3w w Z Z 1 T w2 1 T2w 1 T 3w Xl Kw T T T3 w Ti T2T3w Z Yl Kw l D1 T2472 T34T 37 w Z 1 T w X1 COS wL TwSIN wL Z 1 SIN wL TwCOS wL Z Z l w X1 SIN wL 2 Y1 COS wL Z 5 EM VESTIR LICS 19 DIM BF SW nBFY39 20 OPEN 5 TBUFCIB F gt DBUF CBF gt IEC 38 IFC 5 40 EOR 5 20 59 CONNECT 5 39 1 60 PRINT 5 He 78 INPUT USING T1 T2 T3 Ka iT1 T3 T3 K 230 OIM RC1990 290 DIM 3 lt 1999 295 0 9 388 FOR W 9 TO B S
116. 5 Mt1409 1 559 970 PRINT 5 PCt T2E SI T3XS 330 PRINT 5 200 1 58 a 729 PRINT Nos PD DATA T LTE oe ae T2 ia99 mat 4 M1488 339 ia a ace AT Ek PUTE 1928 ar Int as H 9999 END X1 YI 40 5 270 XY 280 360 w 0 0 5 0 005 0 5 1 0 0 01 1 7 0 05 T 500 620 Xl Yl 380 440 w 0 1 5 Y l 900 1020 XY Z 2 3 G S K S CS 1 DS 1 AS 1 BS 1 F REM NT Jo 18 DIM IBFC20 0B8F 20 d 20 OPEN 5 IBUF I8 F gt OBUF OBF gt IEC1 30 IFC 5 40 EOR 5 9D 50 CONNECT 05 30 1 70 PRINT 5 H 80 DIM R 2900 90 INPUT USING A B C D T sR B C D K 95 R2 e 020 100 FOR X1 TO 2500 STEP 10 110 M 10 X1 625 x 9 1 130 C1 CxBxDx M 4 B C MXM DsMgM 24 U CzBz 3 BzD2 U
117. 760 5860 C A si FAA CFF 6 1172 BIS Eg 1M 30 D x Kc 20 O T 860 C A 15 2 3 1 Kc 10 810 910 950 C CRU v EX 3A 4 Eq 1 Kc Ke Froesslng Fig 5 010 020 0 15 f00 X Fig 4 Comparison of experimental data with Eq I Sh 2 0 0 58Re071Sc123 12 Eq 19 Re 0 71 Re Fe 2 3 2 DalLBLIXTSPREOBS Reyndds number
118. Keizo OGAWA Kogi UMEDA Kimiko TACHI Hirofumi TAKASE Takayuki NAKAGAWA We studied the solutions of elementally problems on the control systems and the characteristics of its by using the BASIC programs of the digital computer In this paper we have discribed the results of BASIC programs of its systems and shown the figures of characteristics of its I te Ht a 8 oC ah gt BASIC 1982 10 20 1 GSA OBIT MET ORB
119. Rp n 1 Rp 2 ne Bc R 8 2 CAo 3Kc 6Dea Ks 3 Kc Dea Rp 2 Dea Rp Ks Rp x AR a 1 X 44 zp3 RP 34 1983 Eq 9 Eq 8 3 PBR 1 R 1 1 1 Rp Rp 2 i ga De 2 CA 3 Ke 6Dea Ks 3 Ke Dea 2D 1 4 wa TE 00 Kc D Ks t Rp 1 1 RRR Es ERE 1 ay X 565 DA 2CA Ke fX 1 5 X 1 5 1 Eq 1 Fig 4
120. ene 45 8 2 2 54 9 ESCA 64 10 SERIEabra pte 69 11 Yu 76 12 80 13 GAS CFE Ss es eater aes pease Senin nese kao et eae 92 K atte OW Prime Impicant
121. x 27 zi MBL n m bit 40 X 1982 10 20 A fF JE R K A 1
122. 280 Ti IxT 290 XsINT 1999zC0S T1 2 0 54A 300 YsINT 1699xSIN T1 0 5 8 310 PRINT 852 M sAS 3B 320 PRINT 85 D X3 37 5 239 1 INT 1959xC0S T 1 1 0 5 A 30 gt 340 YizINT 1050zSINCT 19 0 5 B gt 350 PRINT O52 M 2 X15 Yl 366 PRINT 2 PP3 9 365 CzC 45 375 NEXT I 380 PRINT 3 M1896 1 319 398 E 2 410 FOR F 189 TO 249 STEP 208 420 PRINT 95 M S Fs 1319 430 PRINT 5 P E 440 E E 2 450 NEXT F 460 PRINT 85 H 500 END 1 4 5 5 20 60 XY 80 210 235 375 8 380 450
123. 3 zzys S iy2 4 P x xxx xix zi z xazs ars OF 4 x z xs zz x ziyocs Blin BR xy x5 Py Fx 8 3 4 4 9 ey 4 Pog xs aP EREL TPg tita Pi a 2 RU Pi x Aon THENP RUP x 2 2 tx x 2 2 079F 6 1 5 1
124. 3 15 Observations Tandberg Hanssen 1974 show that prior to a dispersion brusque the prominence ma terial exhibits increased random motions with velocities vu 30 50 km sl If we use this value as v in Eq 2 30 we obtain D lt 10 cm s7 The total mass loss AM is about 10 m g which is about 20 of original total prominence mass Due to the mass loss leading to the unbalance of forces along the vertical direction pog lt B 47 0B o dy the prominence may exhibit the observed ascending motion 10 8 6 4 2 0 2 4 6 8 10 ya VV DISCUSSIONS AND CONCLUSIONS Fig 8 Eigenmode structures of A and with S 10 E B Be 0 1 ka 0 5 and E l w Ta 0 02078 0 14271 The oscillating inence of Kippenhahn and Schl ter is almost stable structure of makes a series of vortexes against reconnecting modes however it becomes in the magnetic island The amplitudes of A and are plotted in arbitrary units We have shown that the current sheet prom suddenly unstable with the time scale of t 10 s by the externally driven nonlinear fast magnetosonic waves The threshold of fast waves causing forced reconnecting instability is given by Eq 3 11 which can be estimated as J 0 5 v4 c kA If we take v 4 c 10 and RA 10 J is about 0 5 10 2 which means that if the wave amplitude A B B of fast waves exceeds 0 07 the forced reconnecting mode can be excited by the ponderomotive f
125. T1 72 73 K 1 2 5 5 Ex s Ll G s 11 1 4 1 EX 1 8 519 530 1110 1470 1 EX 2 EX 4 9 11
126. i190 PRINT 83 P A 200 A A 1 210 NEXT B 220 PRINT 5 M3500 18 30 230 PRINT 5 P 240 PRINT 5 M530 15 90 25 PRINT 5 Pi 268 PRINT 5 599 30 9 270 PRINT 52 P 1 280 DIM Pr1999 298 DIM S 1999 295 26 300 FOR us9 TO 9 5 ST BL w ea can cane 410 FOR Wel 75 5 428 021 430 GOSUB 5008 NEXT W 449 UOTO 700 500 REM SUG PROGRAM 510 Zs 1 T2sT3sMzM 2 T2 T3 2XMXM 520 1 KKY1 T2xT3xMM TixcT2 T3 turu gt 530 Y1sKx T1 T2 T3 T 1xT2eT3aeWaw lt W 2 540 X IHT 699 X1x509 550 Y INT 1000 712500 S52 IF Q lt gt 1 THEN 5380 555 V wx1d Sod NTC599 X1 XS 99 573 5 IHT 19991Y1X 500 575 PRINT V R V S V 577 3070 623 580 iF i gt THEN 600 598 PRINT Ni og PRINT WS O XR 2 PORTANT wel 328 RETURN 75 PRINT 5 53 RMK 51 M IRCO 34 oe 29 TO 18 6 510 530 Se E E 349 PR ar Lc LE 7 345 AINT WRYD 35 iF 5 THEN ae 360 RETURN 968 PRINT 5 1200 1 506 905 PRINT 85 55 310 PRINT 52 PGCsi 326 RINT 5 RO 14 930 PRINT 85 1600 0 940 PRINT 5 M1500 1 659 950 PRINT 5 PK 1 T1 X3 968 PRINT
127. 1 n 2 On 5s 2 4 This is the variational equation we found We shall try to find the solution of the following type P jz 1 2 po sind ad Sahil NE CN 2 5 This solution has two parameters s t and f t Therefore we must find the subsidary condition of eq eq 2 4 The heat balance integral method introduced by Godman is chosen for this aim Introduce the quantity L I f cOdz SS EE sie oe EE sae eee es 2 6 and differentiate with respect to time by considering the heat conduction equation we find the follow ings Ca TESI c gz cm0 itf a FE de Cm Om 8 aa E n Inserting the boundary condition of the melting line3 4 6 m Z Q t pls cecooocosoooocooocococoooooooocooooooooooo 2 7 where ol ir the latent heat per unit volume we have dl 6 din nOn pl s QG NSA lt OSS SOS So Bw Hee bow Me lt 2 8 3 Method of Solution In this section we shall find the solution of eq 2 4 with the subsidary condition 2 8 We set the solution as eq 2 5 also we set x 2 1 F 0 eR ee ECE ET CE io ite 3 1 Inserting eqs 2 5 and 3 1 into eq 2 1 we have 2 2Y E AAEN A VEE E EREE y 5 1 VA pe Fe 3 2 Therefore we see left side of eq 2 4 e 1 4r 3 Os 1 y7 Bulletin of Faculty of Engineering Toyama University 1983 AA s 8 1 2 ys or RR RRS RE EEE RS E 3 3 A
128. 3 CxD2 U 3 2 140 AL Kz ARUZU AZBxXC RC U 4 ARBEDECU 4 Ax CzDz CVU 4 CEBEDECU 4 BxMgM CxMxU DxUzM C 1 150 B1 Kx RzBxCxD 5 AZBECU 3 AZCECU 3 RXDX M 3 9 CzB M 3 gt 4 BEDx U 3 CzDz U 3 C1 160 Y1 19xL0G19 1zR1 B1xB1 170 R1 DEG RTN B1 R1 180 IF ABS R1 R2 gt 10 9 THEN 200 190 R1 R1 GOTO 205 200 R1 R1 130 205 R2sR1 210 X INT X1 300 220 Y INT71299 Y1x19 RCX zINT 12900 R1x 1 230 IF X lt gt 399 THEN 25 0 235 IF O 1 THEN 289 240 PRINT 95 N X3 sy 259 IF 0 1 THEN 280 251 PRINT 5 O Xs sy 253 IF Oz1 THEN 280 255 IF Y lt 399 THEN 282 270 PRINT W Y1 R1 280 NEXT Xi 281 IF 0 1 THEN 298 282 PRINT 95 S5 284 PRINT 052 N1600 1 250 286 PRINT 5 PG 288 0 1 GOTO 280 298 FOR X 300 TO 2800 STEP 10 300 IF X lt gt 300 THEN 32 0 310 PRINT 535 3X3 3RCX 320 PRINT 953 D sxXs 3 RCX 325 IF R X lt 300 THEN 3 330 PRINT XRCX 340 NEXT X 343 PRINT 5 N1150 1 650 7 230 286 350 560
129. 90 2041 745 7 D O KENY PROC IEE 124 6 578 1977 8 i 101 1 56 56 9 484 10 I 81 11 1 59 12 101 11 667 56 Iron Loss Characteristic of Iron Core Having Nonliner Magnetization Curve due to Square Wave Pulse Voltage Akio YANASE Masaaki SAKUI Hiroshi FUJITA Recently in the electrical application the development of industrial apparatus using a semiconductor chopper system easily employed as a source of a DC variable voltage is remarkable and it makes great strides in the extension of application field However there are very few reports on the iron loss characteristic of these apparatuses We derived the fundamental method for the analysis of iron loss in the iron core when DC chopper with square wave pulse voltage is used Furthermore We obtained experimentaly the iron loss charac teristic of the iron core having nonlinear magnetization curve and found that there was difference in general idea between the DC chopper and the symmetrical AC voltage In this paper the nutline of the results mentioned above is reported
130. A9 935F rg RET DERDSP COUNTER 9288 21 2C 35 LXI H 9S 2C 9360 COUNTER 928E C3 AS 92 JMP 92 A9 RKKKEKKE LIMIT 9360 FS PUSH PSW 92C 21 80 95 LXI N 9S 80 9536 09 NOP 32C4 C3 AS 92 JMP 92 R9 9362 ES PUSH H HHX1 BX12 CX H 9363 98 DCX 8 92C7 21 20 96 LXI H 96 20 9364 78 MOV AB 92CA C3 AS 92 JMP 92 R9 9365 FE 990 XRI OO akkKKK COMPARATOR 9367 C2 70 93 JNZ 9379 82CD 21 93 96 LXI H 96 93 936A 79 MAV R 9200 C3 AS 92 JMP 92 RI 93668 FE 90 XRI 99 EEEE EAEE TE E E A ER 9360 CA 80 93 jZ 9380 TE EE EE EEEE TE EEEE EEE E EE de 9379 2A 92 94 LALO 94902 9373 23 INX H kkk kkk kkk kkk kkk kkk kkk kkk kkk kkk kk 9374 22 02 94 SHLD 9402 2 9377 22 FE 83 SHLD 83F6 9300 33 2 MRIN COOP oes ss 937A c3 c9 93 JMP 93CO 9379 Ej PSP K k k k k k k k k k k ak k ak k k k ak ak k ak k ak k ak k k k k k k k k 937 Fl PaP PSW 9300 MAIN woes 3ZF cs RET 3300 21 00 AD LXI HOO RG END MESSAGE 9303 01 00 04 LXI 8 00 04 9389 BN 9306 D 10 93 CALL 9310 9309 CD RO 93 CALL 93AD 9389 21 F8 83 LX H 83F8 930C 30 33 CALL 9335 9383 3E SF MVI A 6F 930F CD 60 95 CALL 9359 9385 MOV MR 9312 23 I 9386 23 INX n 9313 C3 09 93 JMP 93 99 9387 3E BF MVI R BF g31D as ces X INITI SUB
131. After formulating the variational principle we used the quadratic approximate formula as the test function The method introduced in this paper is able to find the solution of the type presented as eq 2 5 FURUYA Application of Yus Variational Mathod Yu and Vujanovic investigated the problem of fixed boundary 0 L and found the variational gs eg principle V 0 4 1 But our problem is the moving boundary s L and the variational principle is eq 2 4 The method in this paper has a posibiljty of treating the problems in curvilinear coordinate in two or three dimensions which we shall investigate later References J C Yu Q J Mech amp Appl Math 25 1972 265 B Vujanovic AIAA J 9 1971 131 T R Goodman and J L Shea J Appl Mech 27 1960 16 T R Goodman Trans ASME 80 1958 335 M A Biot J Aero Sci 24 1957 857 B A Boley Appl Math 21 1963 1 T Akasaka Suti keisan Numerical Calculation Corona Publishing Co Tokyo 1967 p 345 in Japanese Y Furuya J Phys Soc Jpn 43 1977 1068 Y Furuya J Phys Soc Jpn 45 1978 1015 Oo O CONDO FP Ww wee waa wee we we we we we Read at the Meeting of the Physical Society of Japan at Shizuoka on October 1978 RECEIVED October 20 1982 A Model of Disparitions Brusques sudden disappearance of eruptive prominences As an Instability Driven by MHD Waves Jun ichi SAKAI Department
132. Azoxybenzene 4 4 dicarboxylic Acid Ichiro SHIMAO When azoxybenzene 4 4 dicarboxylic acid 1 was heated at about 360 C 1 was phyrolyzed to form azobenzene 4 4 dicarboxylic acid 2 2 hydroxyazobenzene 4 4 dicarboxylic acid 3 and resinous material The aqueous solution of sodium salt of 1 was irradiated to give the corresponding o hydro xyazo compound Na salt of 3 Treatment of 1 with sulfuric acid at 90C gove 2 3 4 hydroxy azobenzene 4 carboxlic acid 4Jand carbon dioxide al 4 4 4 4 1 360 C1 4 4 2 J 2 4 3 1J o 3 Na 1 90 2 3 4 4 4 1982 10 20 MnO MnFez04 2 3 HIE A Mn
133. Brusques J Sakai K I Nishikawa configuration becomes an ideal neutral current sheet with completely anti parallel magnetic field We present basic MHD equations including gravity 90 Zs E PP div pv 0 2 7 o 4 vo Vp Bm 1 curl B x B pge 2 8 2 3B L ourl v x B vB 2 9 ot Aro where the pressure is p oc and the conductivity The plasma is assumed to be incom pressible because the prominence plasma is low 8 Introducing vector potentials and A defined by v curlge and B curl Ae and furthermore linearizing Eqs 2 7 2 9 around the equi librium solutions of Eqs 2 3 2 5 iead to the following system of equations a Ah By _ gt a cea 0 2 10 oH 9 ee 0A 22 OA 94 Ot k P y 6 ay ax Boa Se a 9 a A gS 2 11 OA _ p ID p a Bi a Bux AA 2 12 where Eq 2 11 can be derived from the z component of the curl of Eq 2 8 and Eq 2 12 is Oo the x component of Eq 2 9 The last term 5 T in Eq 2 11 gives rise to an effective accel eration on disturbances which leads to strong stabilization on reconnecting modes Taking B 0 these equations reduce to those derived by Furth et al 1963 We assume that all physical quantities vary like exp 7 gx wt and we normalize these quantities as follows p A y and by 0 v aB a and ta respectively where va B 470 0 1 2 an
134. COUNT c CHECK D A ACC care ac 03FF BC XINIT HL gt DATA HL gt DISPL count x lt 335C EE 99 XR 90 lt ADDRESS gt lt M CODE gt lt MNEMONIC gt 933E C SB 93 JNZ 9358 9341 3A 96 99 LDH 9906 JMP TERBLE 9344 CE 80 ABI 80 RAKKKK SINE RRRKKEKKK 9346 C3 SO 93 JMP 9350 92R0 21 E2 94 LXI H 94 E2 9349 EE FF XRI FF 92A3 22 6E 93 SHLD 93 6E 9348 C2 S6 93 JNZ 9356 92A6 21 40 94 LXI N 94 40 934E 3A 06 99 LDR 9906 92A9 22 OA 93 SHLD 93 OA 935 D6 80 SUI 80 32RC c3 00 93 JMP 33 00 9353 c3 SD 93 JHP 9355 X A 13 8 kk k kk 9356 3E 00 MVI R 00 92RF 21 AO 93 LXI HN 93 AQ 9358 c3 SD 93 JMP 935D 9282 C3 AS 92 JMP 92 AJ 93568 3E FF MVI R FF X A 12 9350 MOV M A 9285 21 47 96 LXI H 96 4 935 F POP PSW 9288 C3 AS 92 JMP 92
135. D 1 0 W j i 0 b i A i DATA BUS ey a D A CONV gt Dy PA LATCH ERTER 1 34 1983 2 RAM RAM RAM RAM x 1 K RAM 1024
136. Installation and Theory of Operating Manu al P 33 1980 3 VOAC707 A P 15 1799 4 TR6141 P 3 11 1979 5 MELCOM70 B6721 P 9 Automization of ESCA measurement with Personal Computer HP 85 Izumi Miyake Toyokazu Tanbo Chiei Tatsuyama The improvement of the S N ratio of the XPS spectrumhas been studied by using a micro computer HP 85 The D C voltage froma programable voltage generator contr olled by HP 85 is applied on a double pass CMA for the measurement of the binding ene rgy The signal fromthe CMAis read into HP 85 through a digital voltmeter Repeating the measurement and the averaging the data in the same spectral region the S N ratio is improved dramatically We can measure the valence band spectrum of a semiconductor which has not been observed without this system This system also enables us to analy ze the data easily ESCA RAA BHR HP 85 XPS S N HP 85
137. Met Trans 2 1691 1699 1971 3 p104 40 4 p 190 5 54 W 55 1291 1969 cm cm cm g mol cm g mol cm cm sec j cm sec rd N cm sec J cm sec J cm sec 1 min cm cm cm cm CK WER EDK e AEE AGEL 2 Kinetic Study of Oxidation of Zinc Sulfide Pellets II Analysis based on the Structural Model Satoshi KONDO Toyonobu MIYAMOTO Setuko AKAKABE and Nobuichi OHI The oxidation of zinc sulfide pellets was studied kinetically by use of a thermobalance over the temperature range 990 C to 960 C Structural parameters of pellets such as pore size distribution and individual grain size supplied most of the information required for the comparison of reaction rates with the predictions made by the structural model were determined experimentally The reaction mechanism consisting of homogeneous to topoch emical was analyzed satisfactorily based on the structural model 2 fa
138. ST EP 9 985 31 GOSUB 5008 NEXT V 32 FOR W 0 51 TO 1 S TEP 9 91 338 GOSUB 500 NEXT V 340 FOR W 1 95 TO 7 S TEP 9 95 350 GOSUB S00 NEXT V 368 FOR M 8 TO 70 379 GOSUB 5888 MEXT u 3380 FOR 9 9 TO 1 STEP 9 1 399 0 1 498 GOSUB 599 NEXT W 410 FOR 9 1 TO 5 420 9 1 438 GOSUB S 9 e NEXT Y 44 GOTO 790 500 REM SUB PROGRAM 510 Z 1 T2xT3xMxM 2 T24T3 2zuxW 529 X1L KX 1 T2xT3xWxu Tix T2 T3s xexy Z 538 Y i Kx T1 T2 T3 T LaT2uTSaWs dxWd Z 540 X INT 1609 X1x409 559 INT 1300 71 400 352 IF 3 gt THEN 589 555 MX1G 569 RCVISINTS 16004K1 490 570 3 INT 1399 Y1x 400 575 PRINT Y RCY SLY 577 50T0 620 5380 IF gt 9 THEN 600 590 PRINT 5 M X3 ry 580 PRINT SON ata PRINT YoY 20 RETURN 7a9 PRINT 59 53 720 PRINT 5 M R6O CH 738 FOR V g TO 19 748 GOSUB 399 NEXT Y 750 FOR V 29 TO 39 3T EP 19 768 50SUB 399 NEXT 778 59 S99 REM SUB PROGRAM 810 PRINT 5 Me RIY s 3Sc 815 PRINT 5 D RCY SCV 817 PRINT 5 N6 820 PRINT 5 R35 35 Q30 PRINT 5 P s 10 340 PRINT 52 N RCY s 3SC 845 PRINT W R CY SCY 358 IF 5 THEN 900 868 RETURN 908 PRINT 5 M2350 2 350 905 PRINT 5 SS 919 PRINT 5 PG S 2 920 PRINT 5 RO 14 930 PRINT 5 1700 0 940 PRINT 5 M2650 2 400 930 PRINT 5 PKC1 T1 xs 368 PRINT 5 M2600 2 206 970 PRINT 5 P 1 T2 S 2 1 73x8 989 PRINT 5 2
139. has received much attention because it can produce plasma vortex motions and excite forced tearing modes and ballooning modes Sakai and Washimi 1982 Sakai 1982 a The ponderomotive force due to fast waves sakai and Washimi 1982 is given by I F p 3 1 ol fy 0023 Oy 2 3 2 where J denotes the wave intensity of the fast waves J A B B The sign of the y component of the force means that it acts as a negative pressure while the x component acts as an usual pressure From the fact that curl F 0 we can conclude that the ponderomotive force creates plasma vortex motions which may enhance the weakly unstable reconnecting modes in the prominence If we take into account the ponderomotive force due to fast magnetosonic waves Eq 2 11 takes the form as o api 1 22 d B o 94 ot E a zlo Po Ar Bio A ae dy Ox x oo 2 027 _ L BAx EG 20a o 3 3 where the last term represents the effect of the ponderomotive force which comes from the z component of curl F IlI 2 Wave Kinetic Equation for Fast Magnetosonic Waves In order to make dicussions self consistent we have to consider the wave kinetic equation for fast magnetosonic waves which describes the wave intensity 7 interacting with the reconnecting modes The wave kinetic equation Sakai and Washimi 1982 is given by Hy 11 1B BA Ot ono oN aay Oe i _ ae o nh 3 4 where v is the group velocity of the fast
140. instability can be driven by the effective accelerating term due to the pon deromotive force The growth rate yr is about 0 3 in the region of 0 1 which means that the typical growing time rt is about 100 s 1 e very rapid Another interesting characteristic of this insta Ge Ti 08 12 16 bility appears in its eigenfunction of velocity shown a in Fig 8 The eigenfunction oscillates across the Fig 7 Growth rate and real frequency of the forced reconnecting mode as a function of E B B with creates multiple plasma vortexes across the prom ka 0 5 and S 10 current sheet which means that the instability inence Furthermore fairly broad band waves with shorter wavelength than the width of the prominence can be excited By making use of quasi linear approximation we can estimate the diffusion coefficient D across the prominence te eee E a 3 12 NO02 He YP We estimate the total mass loss M as M SpdrdS D AtS 3 13 where At is the typical growth time which is taken as At 10 s and do dx m n a m 10 5 x 10 20 m S is the total area S gt 5 10 kmx 105km 5 x 10 cm On the A Model of Dispariticns Brusques J Sakai K I Nishikawa other hand the diffusion coefficient D is approxi mately given by D v2 3 14 where we used w gt yin the of 0 1 and Ue is typical random velocity As y 0 3 zi and wr t we find D 0 1 TA
141. n 0 5 T 1 0 min 05 Q 1 0 1 1 1 T x10 1 K Fig 6 Relation between Dea and e Fig 7 Arrhenius plots of Ks Kc and Dea 2 4 3 RV UIE I CLS EF IPED VAC CA Eq 4 Rp Eq 9 Eq 6 4rRp2 2 3 Cao 9 1 Ke Rp D A 1 X 1 1 Ks 1 x a 34 1983 Rc Rp Rr Eq 09 Rc Ke sec cm pea See 3
142. of Applied Mathematics and Physics Faculty of Engineering Toyama University Takaoka Toyama 933 Japan and Ken Ichi NISHIKAWA Plasma Physics Laboratory Princeton University Princeton New Jersey 08540 U S A ABSTRACT A model of disparitions brusques sudden disappearance of eruptive prominences is discussed based on the Kippenhahn and Schl ter configuration It is shown that Kippenhahn and Schluter s current sheet is very weakly unstable against magnetic reconnecting modes during the lifetime of quiescent prominences Disturbances in the form of fast magnetosonic waves originating from nearby active regions or the changes of whole magnetic configuration due to newly emerged magnetic flux may trigger a rapidly growing instability associated with magnetic field reconnection This instability gives rise to disruptions of quiescent prominences and also generates high energy particles l I INTRODUCTION It is well known that quiescent prominences are long lived slowly changing phenomena with lifetimes ranging from days to months and which sometimes undergo a sudden disappearance due to an ascending motion which is called as disparitions brusques see Tandberg Hanssen 1974 Their dimensions are generally taken to be of the order of 5x10 km wide 5 x 104km high and 10 km long The characteristic temperature is of the order of 5 x 10 K and the elec tron number density is in the range of 10 10 cm The magnetic field i
143. this compound to MnO and Fe followed from 1273 K The reduction of MnFe2 O4 which yields Fe Mn carbide proceeded from 1313 K MnO MnFe204 2 3 HIE A U Mn0O 1 MnO 1323K Mn Mn0O 1573K CO Mn 2 MnO Mn0 3 MnEFez04 Mn0O FeO MnO 1313 K Mn0O 1982 10 20 W oC
144. waves and p the pressure perturbation associated with the reconnecting mode which is given by b p c 3 5 The basic equations describing the coupling between the fast magnetosonic waves and the reconnecting modes are Eq 2 10 2 12 3 3 and 3 4 Il 4 Forced Reconnecting Modes due to Fast Waves If we assume that the external fast magnetosonic waves persist long enough gt 10s during the interaction with reconnecting modes we can divide the wave intensity 7 into two parts I x y t h x h x 3 6 A Model of Disparitions Brusques J Sakai K I Nishikawa where J is determined from the equation ol Be ty i 3 7 which gives a solution h x 1 0 exp gz 2 3 8 I represents the perturbation due to the coupling with reconnecting modes From Eq 3 8 we find that the wave intensity gradually decreases in the vertical direction where its characteristic scalelength A is given by A v2 g If we use v U4 210 cms g 10 cms A becomes A 4x 10 cm which means that the wave intensity J is nearly constant in the prominence because A is larger than the characteristic height 5 10 km of the prominence Assuming all perturbed quantities as f y exp i kz 6 and linearizing Eq 3 4 around Jp we find 2 ees EEA So if A v 2 2 3 9 wo ku i v Po TO y amp where we used Eq 3 5 As shown later the real frequency part is approximately given by w kv kv
145. 0 PRINT 053 H300 5 ere 68 PRINT 53 H er 350 PRINT 5 52 450 PRINT 051 0300 5 eee lt 78 PRINT 53 NH399 300 88 PRINT 5 S2 318 FOR AZ TO 25 328 X Ax1000300 250 PRINT 52 M s x3 300 350 PRINT 05 D X 300 Y3 460 PRINT 5 02800 476 PRINT 95 H2808 y3 489 NEXT B 570 PRINT 5 M300 24 6 588 FOR 420 TO 250 ST EP 20 598 PRINT 85 P A5 616 PRINT 5 M H 00 240 615 4 200 CSU EL IESE LETT EERE att te nee 626 NEXT A ee 55 D Xs pd PRINT 85 M180 30 39 PRINT 85 H 398 PRINT 95 NeiX 510 FOR Bs TO 180 ST 2 2 2 10 50 XY 310 400 420 480 25 18 490 540 560 620 80 410 550 1 3 AWK
146. 14 eA f 1 ak Ra Seb ae 7 et Re Rp Rr 7 S Ed lt Se 9 7 9 qn 2 4 1 650 900C Eq 9 Eaq 19 X Fig 8 650 C 7R 90 7R 6 800C 7 20 Ms Fig 9 BS 7R Mb
147. 350 2 208 990 PRINT 5 PDRTRsT T2 T3 K a sTis sT2 3 3T33 SK 1999 PRINT 5 M2700 2100 1819 PRINT 85 P T17 T2 s sTisT2sey 1820 PRINT 85 H 12180 T 0 9174332 2120 READ A B 8 Hot 138 DATA 1699 1320 1140 FOR 2 299 TD 199 9 STEP 200 1 58 O INTIA 2 1 80 YO INTCRD 1 79 PRINT S524 sur Y t130 FOR 1 TD 368 190 TI1 IXT 290 INTTSxC0SKT1 5 210 Y INTSxSINCT1D 34B 228 PRINT 5 D X3 ty 1230 NEXT I 1240 NEXT 2 1250 REM 1268 PRINT 5 S3 1278 C20 1280 FOR 129 70 315 TEP 45 1299 T1zIzxT 1300 X INT 19 ZC0S T 5 0 5 A 1310 Y IRT 1990xSIN T 1 gt 0 5 8 1320 PRINT 5 M 3A3 D 3B 1330 PRINT 5 D 3x sy 1340 X1 INT 1959xC0S T1 0 5 A 38 1350 Y1 IHT 1959gSIN T1 9 5 8 1369 PRINT 5 NX15 YL 1370 PRINT 5 P 5C3 1388 Cac 45 1390 NEXT I 1430 PRINT 52 41950 1339 318 E21 1429 FOR 1959 TO 26 99 STEP 400 1430 PRINT 8S H SF3 1330 1440 PRINT 5 P 3E3 1439 Es E 1 1469 NEXT 1470 PRINT 5 H 1308 END OATA T L 1 1 x 10 34 1983 Gls K l Tl s 14 T2e6 14 T3 a6 DATA T1 72 173 K 2 1 1 2 T1 T2 2 K E s 14T2 s 1 T3 s 1i Tlx DATA T1 72 735 K 1 2 3 2 5 x 9 K oe 14T2ee 14735 ac 1 Tlks i DATA
148. A DATA Old Data Set up New Data New Data Valid Fig 2 Input Timing of HP 85 Fig 3 Output Timing of HP 85 DATA x Data Valid LOAD Fig 4 Input Timing of TR6141 DATA Old Data Data Valid Next Data PRINT COMMANDO _ Eig 5 Output Timing of VOAC707 CHANNEL CHANNEL 8 Fig 6 Interface Circuit 34 1983 SN 75452B VOAC 707 HP 85 VOAC 707 TTL HP 85 VOAC 707 HP 85 VOAC 707M PRINT COMMAND FLAG PRINT CO MMAND 5zsec HP 85 FLAG 154sec IC 15 Zsec HP 85 CTL IC 5 V 3 1 2
149. CO 1 Mn B MnO C Mn CO 1 Ashin b MnO 1583 K Mn MnO MnO Fig 3 15 Fez0 1163K 1273 K MnO C 0 03 K s Gas _evolution 1200 1400 Temperature K Fig 2 Effluent gas analysis curve for the reduction of MnO with carbon and the X ray diffraction patterns for the reduction products MnO 15 aFe 0 C Gas evolution 30 40 50 60 70 Diffraction angle 26 Fe Ka Fig 3 Effluent gas analysis curve for the reduction of MnO 15 Fez0 with carbon and the X ray diffraction patterns for the reduction products C MnO 60 K 1513K 1
150. ERT A4 D TOR 25usec DATA READY A D 10 RAM 1 48usec 1 4 1 4 DN A D Do Da n AD571 JD fs m Ao a3 D a PPDSIOI es Sa 34 1983 2 3
151. Instability Driven by MHD Waves Jun ichi SAKAI and Ken Ichi NISHIKAWA 80 Abstract of Master degree s thesis in 1982
152. PRINT Rh X D 210 PRINT 53 M sX3 300 lt 29 NEXT D 30 IF A M THEN 288 240 A Ax10 250 B Bx10 260 C Cx10 270 GOTO 130 288 PRINT 5 M300 30 o 290 A 1 300 B 19 310 C 1 320 FOR E A TO B STEP 330 Y INT 300 KILOG1 O E gt 340 PRINT 5 D30 5 Y 359 PRINT 5 D sS3 sy 352 PRINT A E Y 354 PRINT 5 M30 s Y 4 182 CsCxi9 199 30TO 39 29 G R 216 FOR Y 489 TD L ST EP u 228 PRINT St H s35 220 PRINT 5 D399 y 240 PRINT 5 M299 Yi 245 G G T 258 PRINT 5 0 G5 268 PRINT 5 04 ise uu 27 NEAT x 239 PRINT 39 END a an ye 490 NEAT E 410 IF R 199 THEN 500 420 Hs10 430 B Bx19 440 C C218 458 GOTO 326 470 PRINT 5 H 508 REM 31 FOR 1 399 TOS 5 TEP K 528 PRINT 5 2 M s X13 250 530 PRINT 5s P sRs 540 R Rx19 550 NEXT 1 299 REM 618 FOR Y1 399 TOL 5 TEP K 5620 PRINT 5 M180 338 PRINT 5 P 0 640 Q 0210 650 NEXT Y1 660 PRINT 5 H 70a FNA 1009 109 At mn HII 10 i 100 1 4 3 3 10 50 80 160 K 1 10
153. Stal 5 1967 389 2 E Mazanek Aufbereit Tech 18 1977 473 3 45 1981 901 4 17 1981 11H 5 18 1982 10H 6 A D Gotlib 1966 92 7 A K Ashin and S T Rostovtsev Izv VUZov Cher Met 10 1964 13 8 46 1982 1138 34 1983 On the phenomena in the reduction process of MnO and MnFezO4 with carbon Masao IKEDA and Kiyoshi TERAYAMA The effect of iron oxide on the reduction of MnO with carbon was investigated in order to study the characteristics of pre reduction of Mn ores by the gas analysis method The results obtained were as follows 1 As the reduction of MnO which yields Mn carbide occured from 1323 K the direct reducton with carbon proceeded from 1573 K and metallic manganese was obtained 2 For the reduction of MnO by the addition of Fe or Fe203 the reduction rate was accelerated and the activation energies were smaller than that 494 kJ mol for the general reduction with carbon 3 On the reduction process of MnFez04 the nonstoichiometric compound MnO FeO was formed and the reduction of
154. a which shows that the dominant terms in Eq 3 9 are the first and the second terms and also the dominant term in the denominator in Eq 3 9 is the last term From these considerations and elimination of A in Eq 3 3 we obtain PS g4 d eo BA dy 2 na Pane Bio dy k2 A BoA Be 704 BK dow dy 4 Togi w 1 4kA b S y 2 2 2 aes 2 2 ag 0 3 10 where the last two terms shows the modification due to the ponderomotive force of the fast waves Here we consider the physical mechanism why the slowly growing reconnecting modes can be enahnced by the ponderomotive force of the fast waves We imagine the situation where there occurs weakly unstable reconnecting modes as shown in Fig 2 b Near the X type points region the plasma exhibits inflow into the X point while near the O type region the outflow occurs Equation 2 10 shows that density enhancement appears near the O type region on the other hand the density decreases near the X point The coupling eq 3 9 between the reconnecting modes and fast modes indicates that the density increment gives rise to the decre ment of and vice versa because the dominant term of Eq 3 9 should be read as J 1 kloc 8po 01 Which shows that o and J are out of phase with each other These interactions cause the inhomogeneous distribution of the intensity of the fast mode which was nearly constant in the prominence The wave intensity can be en
155. d wm After some manipulations we obtain tA ap ag BA FE Go 2 13 2 d Ce a pf Q RLA 4 VA 2 14 dy dy where eee are given by E 1iSw F SE G iSath y P 2m 2E sney s secr 7 Q 2 se SR 2 1 3 a T 2 15 R SE ch y T V ash 2y lsy2 sech 4 T 83 a Bulletin of Faculty of Engineering Toyama University 1983 SE T 1 ie ch y a ka Wo WTA 0 S tr t4 tr 42002 C shows the magnetic Reynolds number which is the order of 10 10 in the prominence Alfv n trasit time rs is 20 s and the resistive diffusion time Tr is about 10 s The eigen value equations 2 13 and 2 14 have been solved for the even A and odd mode Fig 3 which shows magnetic islands The numerical procedure employed is referred to our previous work Nishikawa 1980 The characteristics of the reconnecting mode are summarized as follows 1 As shown in Fig 4 gravity namely the normal magnetic field B see eq 2 6 has 6 10 10 106 0001 001 01 1 0 0 003 0 002 W Ta 0 001 y a Fig 3 Eigenmode structures of A and with S 10 B B Be 0 01 ka 0 5 and 74 0 001806 001049 OOO ODi nai x i The amplitudes of A and are Bn Boo plotted in arbitrary units Fig 4 Dependence of the eigenvalues on the values of E 8 B with ka 0 5 and S 10 10 and 10 A Model of Dispar
156. eads to intense plasma heating and particle acceleration It is important to keep in mind that about 7 of the magnetic field energy sustaining current filaments can be converted to plasma thermal energy as well as high energy particle acceleration The nonlinear coalescence instability is thought to an important mechanism for plasma heating after disparition brusque as well as solar flares and X ravs bright ening in the corona Tajima et al 1982 We have investigated the triggering mechanism of disparitions brusques by fast magnetosonic waves which leads to forced excitation of the reconnecting mode The reconnecting mode can also be externally driven by finite amplitude shear Alfv n waves which may originate from the foot of the magnetic field sustaining the prominence The details of this mechanism will be published elsewhere Sakai 1983 c ACKNOWLEDGMENTS The one Sakai of authors would like to thank S Migluolo C Hyder and B C Low for their valuable comments concerning the manuscript He also would like to thank R M MacQueen and the staff of the High Altitude Observatory for their hospitality while visiting the Observatory A part of the paper has been presented in the 1982 International Conference on Plasma Physics held on June 8 15 1982 at Goteborg Sweden REFERENCES 1 Anzer U 1969 Solar Phys 8 37 2 Dolginov A Z and Ostryakov V M 1980 Sov Astron 24 749 3 Dungey J 1958 Cosmic Electrodynamic
157. eat capacity per unit volume the temperature change A the heat conductivity L the length of the rod The suffix O denotes the quantity not subjected to any variation therefore it becomes 6 amp after the variational process We shall examine to evaluate the problem of moving boundary that is the heat conduction of solid with phase change by applying their theory We also use the heat balance integral method 4 Ni as a subsidary condition proposed by Goodman 8 2 Basic Formulation Take a sufficiently thick slab of thickness L occupying the region 0 L insulated at x L exposed to a prescribed heat input Q t at x 0 It will be assumed here that the melted portion is immediately removed Let s s t denote the thickness of the portion of the material which has melt ed We introduce the variational invariant v f gy A ZEV ja Sean E SS 2 1 FURUYA Application of Yus Variational Mathod and take the variations as the changes of the quantities due to the virtual displacement of the position of the melting line s t The variation of V is evaluated as av om Fp Bo F Caa J L 0h 00 0 OUS O oaa nN EE 2 2 S eG 00 AZ s 80 ax 2 2 where suffix m denotes the melting state Integrating by part and using the fact 60 m 0 we see 9 0 fh T AX 5 68 d es a 28 az Nik 2 3 Inserting eq 2 3 into eq 2 2 by considering the heat conduction equation we see ee 9 An Zy NN mw 9
158. erg Hanssen E 1974 Solar Prominences D Reidel Pub Co Wu C C Leboeuf J N Tajima T and Dawson J M 1980 PPG 511 Center for Plasma Physics and Fusion Engineering UCLA Zweibel E 1982 Ap J 258 L53 Received October 20 1982 56 Gryllus bimaculatus A Nerve 3 Lr Nerve 3 Pattern generator 1
159. erg Hanssen s book 1974 Since the Kippenhahn and Schliiter model several attempts of explaining the structure of quiescent prominences have been made Low 1975 Lerche and Low 1977 Heasley and Mihalas 1976 Milne Priest and Roberts 1979 Low and Wu 1981 by the combination of magneto statics and energetics On the other hand the problem of the stability of quiescent prominences has been attacked by several authors Kuperus and Tandberg Hanssen 1967 Anzer 1969 Nakagawa and Malville 1969 Nakagawa 1970 Pustil nik 1974 Dolginov and Ostryakov 1980 also see Tandberg Hanssen s book 1974 However the triggering mechanisms causing disparitions brusques are still not clear In the present paper we propose a model of disparitions brusques as an instability externally driven by MHD waves based on the Kippenhahn and Schliiter equilibrium model which is generally accepted Except for the Rayleigh Taylor instability which may be important for lim iting the size of prominence Dolginov and Ostryakov 1980 the Kippenhahn and Schluter con figuration is stable against ideal MHD perturbations with k g 0 Miglivalo 1982 as well as kllg Zweibel 1982 In Sec II we present the stability analysis for resistive MHD perturbations especially magnetic reconnecting modes which may be important for the explanation of plasma heating and particle acceleration processes observed after disparition brusque It is shown that the Kippenhahn and Schl
160. f unconverted solid reactant at X 0 90 reactant at X 0 45 JIE PEAS ASB HE DOCH BS boy h 2 SC A ROR 600 REIG SN NE v a 7 680 C Fig 17 Cross section of reacted pellet at X 0 9 Fig 17 900 C 680 C 600C X 0 9 900C KE 600 C
161. g 13 Comparison of calculated Fig 14 Comparison of calculated reaction reaction Curve with experimental curve with experimental data for data for various gas flowrate various oxygen concentration 3 3 0 9 0 45 Figs15 16 mr Om r 3 Og Et som Nhe vl Ts Pm Tg 900 C 08 lk 0 45 5 t X 0 38 4 Q 1 5 L min ae Oz 04atm SMA Bis ED CIs 2 04 P at X 045 l O 04atm 1 0 2Re 12 cm i 02 04 06 08 10 v E Fig 15 Effect of temperature on Fig 16 Effe t of temperature on fraction of unconverted solid fraction o
162. hanced near the X point region Eventually the ponderomotive force of the fast mode can drive the plasma vortex motions near the X point shown in Fig 6 We have confirmed by numerical calculations that the main term contributing to the stability is the last one in Eq 3 10 which represents the acceleration effect due to gravity if the Bulletin of Faculty of Engineering Toyama University 1983 ponderomotive force does not exist and furthermore the term including 0A dy is not essential for the plasma stability problem it only modifyies the real fre O e quency part If we take into account the ponderomotive force and the intensity J exceeds a critical value B I given by eee tel L 2c2 vhk 3 11 1 the sign of the last term in Eq 3 10 can change AU which means that the effective gravity due to the ponderomotive force exceeds the gravity g It is easily understood that if the net gravity changes sign by the lifting force due to fast waves the Fig 6 The plasma vortex motions due to the ponderomotive force of the fast magnetosonic waves system will be unstable In order to confirm the above idea we have changed the sign of gravity in Eq 3 10 and calculated the growth rate The growth rate and real frequency versus B B are shown in Fig 7 with parameters S 10 a ka 0 5 From the numerical calculations we find that the forced reconnecting mode does not depend on S which means that the
163. iiter s current sheet is very weakly unstable against magnetic reconnecting modes during the lifetime of quiescent prominences In Sec III we discuss some temporary disturbances such as fast magnetosonic waves origi nating from nearby active regions or the changes of whole magnetic configuration due to a newly emerged magnetic flux nearby We show that these disturbances may trigger a rapid growing instability associated with magnetic field reconnection It is shown that the ponderomotive force due to finite amplitude fast magnetosonic waves can induce an effective ascending motion which in turn causes a rapid growing instability with broad band fluctuations In Sec IV we discuss some nonlinear effects associated with reconnecting modes and suggest the plasma heating and particle acceleration mechanisms II STABILITY OF KIPPENHAHN AND SCHL TER MODEL AGAINST RECONNECTING MODES II 1 Kippenhahn and Schl ter Model We briefly review the Kippenhahn and Schliiter model which is a most simple analytic model A dense plasma sheet in the corona against gravity is supported by the magnetic tension Bulletin of Faculty of Engineering Toyama University 1983 Fig 1 the static equilibrium equation The solution can be obtained from V Po poge url Bx B 0 2 1 and the equation of state Dy wx Th 2 1 where po is the density p the pressure By the magnetic field the number density To the temperature and x Boltzman constan
164. itions Brusques J Sakai strong stabilization effect against the reconnecting mode The growth rate yz is proportional to S7 for the It is difficult to compute the growth rate in the range of S 10 we find that the growth rate yz is the order of 107 107 by the This growth time is close to the diffusion time tg 10 s which for gt 0 1 as compared to yr S classical collisional tearing mode 10 for prominences however extrapolation of computational results means that the prominences are almost stable during their lifetime several months lt 10 s 2 The growth rate versus wavenumber is shown in Fig 5 The maximum growth rate occurs near ka 0 2 The reconnecting mode has a real frequency which shows that the magnetic islands can propagate along the vertical direction of the prominence From these results we conclude that the prominence based on Kippenhahn and Schliiter model is almost stable against the reconnecting mode K I Nishikawa 0 020 0 016 0 012 WT 0 008 H 0 0 4 0 8 1 2 ka Fig 5 Growth rate and real frequency as a function of ka with S 10 and amp BB 0 01 I TRIGGERING MECHANISMS OF DISPARITIONS BRUSQUES Observations indicate that the whole prominence rises in the atmosphere at a steady increasing velocity and disappears Since the prominence often reforms in the same location and basically with the same shape it is thought that the suppo
165. lgorithm for Generating All the Prime Implicants of Logical functions Divide Method Terre eee eee ea ere eee ea are ere ee Hideo MATSUDA Takashi MIYAGOSHI i RE 1 Iron Loss Characteristic of Iron Core Having Nonliner Magnetization Curve due to Square Wave Pulse Voltage Akio YANASE Masaaki SAKUI Hiroshi FUJITA 10 Rearrangements of Azoxybenzene 4 4 dicarboxylic Acid pp Ichiro SHIMAO 20 On the phenomena in the reduction process of MnO and MnFex with carbon ee Masao IKEDA and Kiyoshi TERAYAMA 24 On the Device of the Nonlinear Function Generator by using the Computer KM Hirofumi TAKASE Takayuki NAKAGAWA 29 On Using of the Personal Computer for the Elementally Problems on the Control SS Keizo OGAWA Kogi UMEDA Kimiko TACHI 36 Hirofumi TAKASE Takayuki NAKAGAWA Kinetic Study of Oxidation of Zinc Sulfide Pellets I Analysis based on the Core Model pp Satoshi KONDO Shoji TAKATA Shoichi HUSHIMA 45 Setuko AKAKABE and Noduichi HI Kinetic Study of Oxidation of Zinc Sulfide Pellets II Analysis based on the Structural Model Satoshi KONDO Toyonobu MIYAMOTO Setuko AKAKABE 54 and Nobuichi OHI Automization of ESCA measurement with Personal Computer HP 85 i Izumi MIYAKE Toyokazu TANBO Chiei TATSUYAMA 64 One Study on the Variational Principle of Heat Conduction A Mode of Disparitions Brusques As an
166. lid B based on a pellet mol sec T temperature CK t time sec Wp initial weight of ZnS g g mole X Conversion porosity P apparent molar density of ZnS g molsycm Sc Schmidt Number Sh Sherwood Number Re Reynolds Number 1 Kinetic Study of Oxidation of Zinc Sulfide Pellets I Analysis based on the Core Model Satoshi KONDO Shoji TAKATA Shoichi HUSHIMA Setuko AKAKABE and Nobuichi OHI The oxidation of zinc sulfide pellets was studied by use of athermobalance at temper atures between 590 C and 960 C Assuming that the reaction proceeds in topochemical ma nner experimental results were analyzed based on the core model to show the effects of temperature porosity pellet size and gas flow rate on the nature of control regimes The relative magnitude of each resistance residing in gas film ash layer and chemical reaction to overall reaction were evaluated as the function of temperature and progress ive conversion 1 BR K E 590C 960C
167. lso using eqs 2 5 and 3 1 we have right side of eq 2 4 eal On f t 2p 1 UDP OS verre 3 4 Equating eq 3 3 and eq 3 4 and seting fy f we find w 7 2 1 if hast 1 yj a 1 shor 0 3 5 Also inserting eq 2 5 into eq 2 6 we have T 1 EYO PE E ores Se SE re ee Ne 20222 2 0 3 6 Let us set the origin of time as the time when the melting beings i e S O 0 3 7 Integrating eq 2 8 and substituting eq 3 6 we have G 57 f a ob pl s f QO de E EAN E E EE a 3 8 Here we set f0 DO 3 9 From eq 3 8 the relation of s and is found as 7 ei F Cm Om 01 ds E E E 3 10 Eliminating f and s from eqs 3 5 and 3 10 we have as l 1 ENEA TIE IA E TAT A E E E A ee Ne 3 11 Here we find the simultaneous equations 3 8 and 3 11 For avoiding the troublesome calculations we assume cm c and A A Using Adams Bashforth s method by recalling eqs 3 7 and 3 9 we find ft Out att agt rere 3 11 s t bit boi Hoes eS Sere 3 13 with i 20 1 Gi by 0 a ewes cL AA pee ahh a les T hobi cat T ent eai 5 at ae Om ue by ar 24 6 z a T2 nb gb 2a2 etc 4 Conclusion i 8 9 In the previous works we investigated the melting elastic solid by Biot s variational method
168. oKepo SLAP EMR 2 sma Repository 9 MZA MA 34 Author s 34 1 101 Issue Date 1983 03 Other O halhandlenet 10110 11956 me http utomir lib u toyama ac jp dspace ISSN 0387 1339 Bulletin of Faculty of Engineering Toyama University Vol 34 1983 H 1 1 2 ears 10 3 7 4 eeettae ee 20 4 Mno MnEe O4 2 3 24 5 eee 29 6 plait JN 36 7 1
169. on Engineering 2nd Ed p 357 John Wiley and Sons New York Wen C Y Ind Eng Chem 60 34 1968 2 Cannon K J and K G Denbigh Chem Eng Sci 6 145 1957 Denbigh K G and G S G Beveridge Trans Insin Chem Engrs 40 23 1962 3 Mendoza E R E Cunninghamand J J Roneo J of Catal 17 277 1970 4 Gokarn A N and L K Doraiswamy Chem Eng Sci 26 1521 1971 5 Takemura T K Yoshida and D Kunii J Chem Eng Japan 7 276 1974 6 Froessling N Gerlands Beir Geophys 32 170 1938 7 Ranz W E and W R Marshall Chem Eng Prog 48 141 1952 8 L 2443 5 134 1960 9 WR JE 82 236 1966 it 34 1983 Hl Cao concentration of oxygen in bulk phase g mols cm Dea effective diffusivity of oxygen in ash layer cm sec Ke mass transfer coefficient across gas film cm sec J Ks reaction rate constant based on unit surface area cm sec Mzns molecular weight of ZnS g g mole Q gas flowrate 1 min R gas constant 1 98 cal g mol K Re radius of unreacted ZnS core cm Rp initial radius of ZnS sphere Cem RD resistance of diffusion through ash layer sec cm Rec resistance of diffusion through gas film sec cm RR resistance of chemical reaction at interface within pellet sec cm rp reaction rate for gas A based on a pellet mol sec rpp reaction rate for so
170. orce of the fast waves The first magnetosonic waves with relatively high amplitude 0 1 may be excited from other active regions or solar flares It is interesting to note that such finite amplitude fast magnetosonic waves that excite reconnecting modes are modulational unstable Sakai 1983 b and decay into slow magnetosonic modes associated with local enhancement of the amplitude The modulational instability which threshold m is given by m G V4 0 1 gives rise to more effective interaction between fast waves and reconnecting modes Besides the role of fast magnetosonic waves causing the effective acceleration the increase of supporting magnetic field B due to hitting of the foot or whole magnetic field change by a newly emerging magnetic flux nearby may give rise to the ascending acceleration and in turn there appear forced reconnecting modes It is important to consider the nonlinear stage of the forced reconnecting modes in connection Bulletin of Faculty of Engineering Toyama University 1983 with plasma heating and particle acceleration mechanism because as mentioned before soft X rays pictures Svestka 1976 show a brightening above the place where the filament just disappeared In the early stage of the reconnecting instability many current filaments are produced with currents all in the same direction Such a system will be unstable against nonlinear coalescence instability Wu et al 1980 Leboeuf et al 1981 which l
171. ribution 0 04 10 0 100 400 Fig 4 Representative pore volume distribusion in a ZnS pellet BS EAS SE DOE DATES boy b ABLE EE IKE LEE SS 2 3 1 2 2 Re 0 98 1 2 1 5 cm 3 MILA 0 516 Fig 4 0 8 2 0 req Fig 5 Fig 5
172. rting magnetic field is not destroyed merely temporarily disturbed This temporary disturbances seem to trigger an instability which causes the disparition brusques Some disturbances may originate from nearby active region or solar flares We propose two triggering mechanisms leading to ascending motion of prominences One possibility is that 1f some disturbances may hit the foot magnetic field supporting the prominence to increase the normal magnetic field B the magnetic tension may exceed the gravity force and in turn give rise to ascending motion Another possibility considered here is the interaction between the reconnecting mode and fast magnetosonic waves originating from other active regions or solar flares We may imagine that the finite amplitude fast magnetosonic disturbances propagate vertically along the prominence because in the prominence the main magnetic field is horizontal i e B B o If we consider fast modes with wavelengths A which is smaller than the width of the prominence A lt a it is a good approximation to neglect the diffraction effect due to inhomogeneity and also to treat fast modes propagating almost perpendicular to the normal magnetic field B Bulletin of Faculty of Engineering Toyama University 1983 IIl 1 Ponderomotive Force due to Fast Magnetosonic Waves We consider nonlinear fast magnetosonic waves propagating upward in the prominence Recently the ponderomotive force due to fast waves
173. s University Press Cambridge p 54 4 Furth H P Killeen J K and Rosenbluth M N 1963 Phys Fluids 6 459 5 Measley J N and Mihalas D 1976 Ap J 205 273 6 Hyder C L 1967 Solar Phys 2 49 7 Kippenhahn R and Schl ter A 1957 Z Aztrophys 43 36 8 Kuperus M and Tandberg Hanssen E 1967 Solar Phys 2 39 9 Leboeuf J M Tajima T and Dawson J M 1982 Phys Fluids 25 784 10 Low B C 1975 Ap J 197 251 11 Low B C and Wu S T 1981 Ap J 248 335 12 Lerche I and Low B C 1977 Solar Phys 53 385 13 Migliuolo S 1982 J Geophys Res 87 8057 14 Milne A M Priest E R and Roberts B 1979 Ap J 232 304 90 15 16 17 18 19 20 21 22 23 24 25 26 20 28 29 A Model of Disparitions Brusques J Sakai K I Nishikawa Nakagawa Y 1970 Solar Phys 12 419 Nakagawa Y and Malville J M 1969 Solar Phys 9 102 Nishikawa K I 1980 J Phys Soc Japan 48 2104 Nishikawa K I and Sakai J 1982 Phys Fluids 25 1384 Pustil nik L A 1974 Sov Astron 17 763 Sakai J 1982 a Ap J 263 970 Sakai J 1983 b Solar Phys in press Sakai J 1983 c in preparation Sakai J and Washimi H 1982 Ap J 258 823 Svestka Z 1976 Solar Flares Dordrecht D Reidel vestka Z 1980 Phil Trans R Soc Lond A297 575 Tajima T Brunel F and Sakai J 1982 Ap J 258 L45 Tandb
174. s not as yet directly measurable but limb observations give a line of sight magnetic field B which is in the range of 0 5 to 30 or 40 gauss Tandberg Hanssen 1974 The cause of disparitions brusques generally is a flare induced activation and here the external perturbations have a profound influence on the stability of quiescent prominences Some tempo rary disturbances seem to trigger an instability which causes the disparition brusque _ Skylab observations have shown that the filament disruptions represent one of the most important mechanisms of solar activity see vestka 1989 Soft X rays pictures show a brightening A Model of Disparitions Brusques J Sakai K I Nishikawa above the place where the filament just disappeared Svestka 1976 p 230 which means that there occur plasma heating and particle acceleration The filament activation has been discussed in connection with the two ribbon flare After the disparition brusque X rays pictures show that a system of growing loops has maximum brightness at their tops where the temperature exceeds 10 K Svestka 1980 This loop system grows and at the same time the two ribbons drift apart at the loop foot points Svestka 1976 Fig 6 Hyder 1967 has presented a phenomenological model for disparitions brusques based on the Kippenhahn and Schuliiter model 1957 and the Dungey model 1958 For a comprehensive review of prominences and models the reader is referred to Tandb
175. sorora hh 4 gee GEEEEEET D 3T2 Wg Tic ENB NoN 0 4 Xx3 se 4 OM 4 3 3 1 nm n DE nn 4 1 2 bt Pij l a l 1 8 1 262144 VCS Se CERO LD 10S true
176. t The magnetic field and density distribution are given by the following relations B tanh y a 2 3 B B const 2 4 oo Y p 0 sech y a 2 5 where a 1s the characteristic width of the prominence B the magnetic field com ponent far from the sheet o 0 the density at y 0 Fig 2 a From the force balance in the x direction we have B a E where amp is the sound velocity temperature 2 6 is assumed to be constant and shows the measure of relative strength between B and B In the corona is in the range of 1 10 if we use a 5 10 km g 10 cms 2 and Jy 5 x 10 K II 2 Reconnecting Modes We current sheet shown in Fig 2 a against investigate the stability of the reconnecting modes namely current fila mentation instability in which magnetic field disturbances are schematically drawn in Fig 2 b This reconnecting mode has been treated Nishikawa and Sakai 1982 in con nection with tearing modes Furth Killeen and Rosenbluth 1963 because in the limit of 0 the Kippenhahn and Schl ter corona prominence photosphere Fig 1 A schematic configuration of a quiescent promi nence based on Kippenhahn and Schliiter model SN V X Bo Pray a b Fig 2 Magnetic field configurations a The equilibrium state b Reconnecting modes and vortex motions A Model of Disparitions
Download Pdf Manuals
Related Search
Related Contents
présentation Rugby 610 F MC -8L/8FX FAMILY USER`S MANUAL Instructions d`installation / SUNNY BOY 240 / SUNNY MULTIGATE Basilic (plante) Smeg SGR30 User's Manual Annexe C.3.1 - Assainissement et Protection des Sols LargoTint Decorator Configuration Toolkit User's guide Pot à colle à bois blanche Hermeticol : notice d`utilisation Manual de Utilização Cabeça PROFIBUS PO5064 e Cabeça Copyright © All rights reserved.
Failed to retrieve file