Home
HUNT ENGINEERING PC9
Contents
1. 4 eee e eee ee eese ento eese eee 17 Examplel two or more boards in the same host PC booted as one system method A 17 Examplela two or more boards in the same host PC booted as one system method B 19 Example2 two or more boards in the same host PC booted separately sss 19 Example3 two or more boards in different host PCs booted separately sss 21 Example4 two or more boards in different host PCs booted as one 21 Example5 more than two boards in a system booted separately see 21 TROUBLESHOOTING eese esee 22 HARDWARE etes toii veis EEE eee da E 22 SOFTWARE OO T CICERO EDD ECT RO OR e reus 22 CE MARKING 23 TECHNICAL SUPPORTCL 24 APPENDIX 1 HERON SERIAL BUS COMMANDS 25 MODULE ADDRESS ter e Pee Ein 25 MODULE QUERY 5 tensor ent te RE Eton dae ee pet oett 25 INTERNAL REGISTER PROGRAM 25 APPENDIX 2 INTERNAL REGISTER DESCRIPTION eee ee ee eren nenne 26 RECEIVE CHANNEL TIMESLOT REGISTERS sis 2 c e gie dices ish eH e Ut ROT RENE 26 TRANSMIT CHA
2. Arhitrarv choice wa Um connection to Er riui 1 Arhitrarv choice Ch1 PCI connection to host 2 Programming of this functionality is straightforward but some care must be taken over when each system is started Each host resets its HEPC9 and configures its HEART network Once running the modules on each board can communicate with each other via the EM2 connections and can communicate with the Host PC via their PCI interfaces In this case each boards will have its own network file and Heartconf or Setver Loadet can configure each of them individually Now it is important to design your system correctly to avoid problems that can arise if data is sent to a system before it is booted The act of booting the second half will mean that 19 HUNT ENGINEERING PC9 EM2 USER MANUAL data is lost because of the reset and when that system is started you will not know where the data will start Netwotk files for the above system could be BD Board type Board Id Device Id 4 Using API BD HEP9A 0 0 rM Nodes description ND BD nb ND NAME ND Type HERON ID filename s pur c6 0 HERONA ROOT 00000002 board0d out Host interface pcif 0 hostA normal 0x05 HEPC9 inter board modules currently EM1 C EM1 or EM2 em2 0 em2A normal 0x06 from slot fifo to slot fifo timeslots OC M P
3. 7 MODULE FEATURES rta soes roe saa Pee o epe eu PEE 8 HEART CONNECTIONS te toos toe rbi e RR err ete re rs Eee eto te e e ce Pe eese sen 8 M 9 GIGABIT SERIAL 9 GIGABIT SERIAL CABEING eh uto rrt e te eater eit er e rens 9 HERON SERIAL BUS eerte RO er tH Reto o PP NERO 10 rne IRE pee Pei piede Pen aer 10 MODULE ID e c M 11 UMT CONNECTIONS inai rhe reete ER IO Ree TRE EC D CUR ERE TURNO D OTRO eee 11 has eio 11 HARDWARE DETATLS 5 eee ee eee eerie ae vo erroe eaae e erano eee erre bussei 12 HERON MODULE TYPE ob ces ERG Rib RUE 12 HARDWARE RESET eet entire e Fe ee EAR ERE NIA 12 A en 12 PHYSICAL DIMENSIONS OF THE 12 POWER REQUIREMENTS OF THE PCO EMO 13 Calculating Latency when using the EM2 sse eene 13 Serial VO characteris toS is eet ea etiem RE 14 FITTING THE PC9 EM2 TO YOUR HEPOQO ecce ee ee 15 ACHIEVABLE SYSTEM THROUGHPUT eee eeeeeeee esee seen sese eese estes seen soo 16 EXAMPLE CONFIGURATIONS
4. Create a connection between host fifo 0 and the C6x fifo 0 It uses 1 timeslot The precise timeslot is chosen by Server Loader or HeartConf heart hostA 0 heronA 0 1 And create connection back from the C6x fifo 0 to the host fifo 0 heart heronA 0 hostA 0 1 create the connections from the DSP modules to each other via the EM2 heart heronA 1 em2A 0 1 heart em2A 0 heronA 1 1 An for the second board BD Board type Board Id Device Id 4 Using API BD HEP9A 1 0 tea See Be Dee ee P eRe ee wee eee ee Nodes description ND BD nb ND NAME ND Type HERON ID filename s I EEE E O ye cas Ee aa pe rar EREN pe ere a LADLE er eet c6 1 HERONB ROOT 0x13 boardl out Host interface pcif 1 hostB normal 0x15 HEPC9 inter board modules currently EM1 C 1 or EM2 em2 1 em2B normal 0x16 from slot fifo to slot fifo timeslots Hehe Se Be ee See eee n Se ee ee ee eee ee ee Se eee eee d Create a connection between host fifo 0 and the C6x fifo 0 It uses 1 timeslot The precise timeslot is chosen by Server Loader or HeartConf heart hostB 0 heronB 0 1 20 HUNT ENGINEERING PC9 EM2 USER MANUAL And create a connection back from the C6x fifo 0 to the host fifo 0 heart heronB 0 hostB 0 1 create the connections from the DSP modules to each other via the EM2 heart heronB
5. If this data rate were sustained the FIFOs inside the PC9 EM2 would eventually fill In this scenario the EM2 may be programmed to either block the incoming data from being put onto the heart system or to simply lose data when the internal FIFO is full 16 HUNT ENGINEERING PC9 EM2 USER MANUAL Example configurations Example1 two or more boards in the same host PC booted as one system method A This example shows the simplest use of the PC9 EM2 where there are two HEPC9s in the same host machine These two boards can be booted separately routing their own connections to their EM2 modules There is no need for reset or HSB propagation Arhitrarv choice Arhitrarv choice Ch1 PCI connection to host 1 Programming of this functionality is straightforward The host resets each of the HEPC9s and configures each HEART network The modules on each board can communicate with each other via the EM2 connections and can communicate with the Host PC via their PCI interfaces In this case both boards can appear in the same network file and Heartconf or Server Loader can configure both of them at the same time Using the Server Loader is the safest way to configure such a system as it will follow this sequence Reset Both boards Configure FPGA modules on both boards if any defined in the network file 17 HUNT ENGINEERING PC9 EM2 USER MANUAL Reset both boards to ensure any FPGA modules are initial
6. connector For Hunt use only Power circuit Power circuit FPGA DONE LED 6 HUNT ENGINEERING PC9 EM2 USER MANUAL Getting Started The PC9 EM2 is a module that plugs into the External Module slot of a HEPC9 HERON Module Carrier The PC9 EM2 should be fitted to the HEPC9 along with any other modules that your system has and their retaining nuts fitted see a later section of this manual for details The connections provided by the PC9 EM2 are point to point and appear as FIFOs in the HEART system Where you fit the cables is what determines the boards that are connected and the FIFO numbers that will be used Each cable can make a connection in both directions Because the connection can be programmed to propagate the hardware reset it is possible to boot the remote or slave boards in the system over the PC9 EM2 connection when using the Server Loader program Because the connections are also able to carry the HSB connections it is also possible to configure FPGAs over this connection In that case the Server Loader will propetly statt the system If however you choose to boot the systems at the different ends of the PC9 EM2 connection separately the PC9 EM2 should not propagate the reset and HSB between the systems In that case the connection can be used to send and receive data but careful consideration must be given to the synchronisation of those two systems If for example the first system booted immediate
7. connectors so if a module is fitted entirely the wrong way round the module does not line up with the markings on the carrier catd In particular notice the triangles on the silk screen of the PC9 EM2 modules and the External Module slot of the HEPCO These should be overlaid when the module is fitted Care must be taken not to apply excessive pressure to the centre of the module as this could stress the module s PCB unnecessarily For positive retention of the modules simply fit the nylon bolts supplied in the accessory kit to the top thread of each mounting pillar Nylon nut 15 HUNT ENGINEERING PC9 EM2 USER MANUAL Achievable System Throughput In a HERON system there are many factors that can affect the achievable system throughput It must be remembered at all times that the part of the system that has the lowest limit on bandwidth will govern the throughput of the system The PC9 EM2 can access its internal Heart FIFOs in 32 bit mode while the serial channels can access the same FIFOs at 125Mbytes sec For example if a particular PC9 EM2 channel is programmed to read data from one timeslot on a heart system that is running at 100MHz it will be taking data from the heart architecture at 66 6Mbytes sec The serial channel will be running at just over half capacity If however a channel is programmed to use two timeslots it is possible for data to be read from the heart system at 133 3Mbytes sec
8. simply an extension of examples 2 or 3 Now the synchronisation built into your application must arrange that the system boots correctly across all of the boards 21 HUNT ENGINEERING PC9 EM2 USER MANUAL Troubleshooting The following sections attempt to cover all likely problems Please check through this section before contacting technical support Hardware If the Hardware has been installed according to the Instructions there is very little that can be wrong Has the DONE LED gone out Are the serial cables connected in the way that the network topology expects Are the board numbers correctly selected on each module carrier Are all board carriers powered up Software As long as the software has been installed using the installation program supplied on the HUNT ENGINEERING CD there should be little problem with the software installation If you have problems then return to one of the example programs supplied with the system 22 HUNT ENGINEERING PC9 EM2 USER MANUAL CE Marking HUNT ENGINEERING has performed testing on its products to ensure that it is possible to comply with the European CE marking directives The PC9 EM2 cannot be CE marked as it 15 component in a system but as long as the following recommendations are followed a system containing the PC9 EM2 could be CE marked The immense flexibility of the HUNT ENGINEERING product range means that individual systems should be marked in acc
9. these transitions are sent to other PC9 EM2s that may be connected via the gigabit serial connections This allows a system wide reset to be selected if required and this signal is then encoded on the same cable connection as the data Gigabit Serial Connections Each connection provides a differential PECL transmit pair and a differential receive pair These may connect directly to another PC9 EM2 with cables provided by HUNT ENGINEERING The serial data rate of each channel is 1 25Gbits per second This equates to 125Mbytes per second These serial connections are mainly used to provide point to point connections between two ot mote HEPC9s By appropriate programming of control registers of the carrier board and the 9 25 data may be routed between HERON modules that are on different HEPC9s in much the same way as if they were on the same It should be noted that the data bandwidth available for a serial channel is 125Mbytes per second while it is possible for inter node communications on the same carrier to exceed this figure Therefore the system topology should be chosen so that any datapaths where the sustained data rate may exceed 125Mbytes sec are constrained to be on the same cartier board Data to be transmitted is routed from the heart architecture and split into 8 bit bytes These bytes are then converted into 10 bit codes which are then serialised and transmitted At the receive end the data stream is de seri
10. transmit FIFO becomes full For certain applications this bit may be programmed to 1 which allows data to continue flowing in those timeslots even when the transmit FIFO is full In this mode data may be lost but soon as the FIFO can accept more data the new data from the timeslots is more recent Address 6 Tx channelO Timeslot Register 6 0 Address 7 Tx channel1 Timeslot Register 6 0 Address 8 Tx channel2 Timeslot Register 6 0 Address 9 Tx channel3 Timeslot Register 6 0 Address 10 Tx channe4l Timeslot Register 6 0 Address 11 Tx channel5 Timeslot Register 6 0 26 HUNT ENGINEERING PC9 EM2 USER MANUAL Receive channel reset with UMI registers Each of the six receive channels may have their data FIFOs reset flushed by an active low assertion of any of the 4 UMI signals Uncommitted Module Interconnects This feature may be useful when the non blocking mode of the transmit channel is used Only the least significant 4 bits are used Bit 0 is set to make UMIO reset the FIFO bit 1 for bit 2 for UMI2 and bit 3 for UMI3 Multiple bits may be set so that more than one UMI signal may reset the FIFO This register is cleared at reset Address 12 Channel 0 Receive FIFO reset with UMI 3 0 Address 13 Channel 1 Receive FIFO reset with UMI 3 0 Address 14 Channel 2 Receive FIFO reset with UMI Address 15 Channel 3 Receive FIFO reset with UMI 3 Address 16 Channel 4 Receive FIFO reset wit
11. 1 em2B 1 1 heart em2B 1 heronB 1 1 For full details of the syntax refer to the network file description document but notice the correct connection to FIFOO on the first EM2 module and FIFO1 on the second This must reflect where the cable is plugged Notice also that the cable carries data in both directions The system is now ready for use by the application A Virtual FIFO exists in each direction between the two boards and can be used in the same way that a virtual FIFO connection is used between modules on the same board For the synchronisation problem there are many solutions all of which need to be made part of your application software One way could be that one end does not start until it receives a particular pattern and that end is booted first Then the other end when booted last sends that pattern to start the system Example3 two or more boards in different host PCs booted separately This example is the same in every respect as example 2 Example4 two or more boards in different host PCs booted as one system The hardware supports connecting the reset and HSB across multiple boards Using this technique it is possible to boot and configure a multi board system as if it were one boatd Currently the Server Loader and Heartconf do not suppott this technique but it will be possible as soon as work on those features is completed Example5 more than two boards in a system booted separately This example is
12. Commands Module address The PC9 EM2 is configured to respond to Heron Serial Bus HSB commands addressed to it using the combination of the Board number and slot number that the module is fitted to In this way all modules can be uniquely addressed in the same system The HSB address is a 7 bit address that is formed by the bottom three bits of the slot number with the 4 bits from the board number switch forming the top 4 bits of the seven e g on board number 1 slot 6 the address would be board number lt lt 3 slot 2 0 which is OxOE The PC9 EM2 can respond to two different types of serial bus commands Module Query The 9 2 can receive a message requesting its module type Master to EM2 module module type query 01 gt address of requestor It will then send a reply as follows EM2 module to original master module query response 02 gt module address from 7 module type 05 gt family number 02 gt option Internal Register Program The Configuration transaction will be Master to EM2 module Register write 07 gt address of register gt data gt address of tegister2 gt data2 There is no reply to register program messages 25 HUNT ENGINEERING PC9 EM2 USER MANUAL Appendix 2 Internal Register Description The internal registers of the PC9 EM2 are programmed via the Heron Serial Bus HSB Receive channel timeslot registers Each of the six receive channels of the PC9 EM2
13. HUNT ENGINEERING Au S Chestnut Court Burton Row treme AI r Brent Knoll Somerset TA9 4 UK Tel 44 0 1278 760188 Fax 44 0 1278 760199 Email sales hunteng co uk http www hunteng co uk http www hunt dsp com HUNT ENGINEERING PC9 EM2 Inter board module USER MANUAL Hardware Rev A Document Rev C M Siggins 30 01 03 COPYRIGHT This documentation and the product it is supplied with are Copyright HUNT ENGINEERING 2002 All rights reserved HUNT ENGINEERING maintains a policy of continual product development and hence reserves the right to change product specification without prior warning WARRANTIES LIABILITY and INDEMNITIES HUNT ENGINEERING warrants the hardware to be free from defects in the material and workmanship for 12 months from the date of purchase Product returned under the terms of the warranty must be returned carriage paid to the main offices of HUNT ENGINEERING situated at BRENT KNOLL Somerset UK the product will be repaired ot replaced at the discretion of HUNT ENGINEERING Exclusions If HUNT ENGINEERING decides that there is any evidence of electrical or mechanical abuse to the hardware then the customer shall have no recourse to HUNT ENGINEERING its agents In such circumstances HUNT ENGINEERING may at its discretion offer to repair the hardware and charge for that repair Limitations of Liability HUNT ENGINEERING makes no warranty as to the fitness of the product for any
14. NNEL TIMESLOT REGISTERS trennen nns 26 RECEIVE CHANNEL RESET WITH UMI REGISTERS eene eene 27 TRANSMIT CHANNEL RESET WITH UMI REGISTERS rennen enne 27 ZAP HEART REGISTER ee p NO B RC EU IEEE Re 27 3 HUNT ENGINEERING PC9 EM2 USER MANUAL RESET PROPAGATION REGISTERS en ceto vts dese tte av eed cA te edicere e E dh doves tea eee 27 HSB PROPAGATION REGISTERS 28 ZAP HSB PROPAGATION CONTROL ccscsesssscsececeessececececsessnsececeeeceeseaeseeeesesenesesesececeeeesaeeeeceeeeensaaeas 28 APPENDIX 3 GIGABIT SERIAL I O CONNECTOR PINOUT 29 4 HUNT ENGINEERING PC9 EM2 USER MANUAL Introduction The PC9 EM2 is a module designed specifically for use with Hunt Engineering 9 Heron Module Carriers to provide point to point communication between HEPC9s The PC9 EM2 plugs into the special External Module slot of an HEPC9 This slot of the HEPC9 is designed for external modules to connect to the Heart architecture of the HEPC9 so that connections of the inter node data may be made from one HEPC9 to another The external module slot is simply bypassed when there is no module fitted to it The interboard connectivity is achieved with up to six 1 25 Gigabit bi directional links over which the inter node fifo data may be passed The serial link connections between HEPC9s may be made according to the connect
15. R MANUAL plugged into which will reset the whole carrier board This function will only normally be used on a slave or remote carrier that is NOT being reset by a host process and this register will therefore normally be programmed from the master carrier over one of the serial links Only the least significant 6 bits are used Setting bitO allows a reset to propagate from channel 0 up to bit 5 to allow a reset to propagate from channel 5 Naturally these bits are NOT cleared at reset They are just initialised to 0 at power up Address 25 Reset propagation 5 0 HSB propagation registers These 1 bit registers are used to control whether or not a transmit channel will send HSB messages over its serial link to another PC9 EM2 Only bit 0 is used setting bit O will allow HSB propagation These bits are NOT cleared at reset They are just initialised to at power up Additionally all six registers may be cleared using the Zap HSB Propagation Control Address 26 Transmit channel 0 HSB propagation Address 27 Transmit channel 1 HSB propagation Address 28 Transmit channel 2 HSB propagation Address 29 Transmit channel 3 HSB propagation Address 30 Transmit channel 4 HSB propagation Address 31 Transmit channel 5 HSB propagation ZAP HSB propagation control This register is used as an easy means of clearing all six HSB Propagation Registers No data bits are used a write access alone clears all 6 reg
16. alised into 10 bit codes converted back into 8 bit data bytes then 32 bit words and then fed into the heart architecture The 10 bit encoding is done for two reasons firstly so that the serial data stream is edge rich to make clock recovery practical and secondly to maintain the DC level of the serial signal as close to zero as possible There is also the advantage that some of the spare 10 bit codes may be used for other functions for example reset and HSB propagation See Heron Serial Bus section and UDPReset section for more detail on reset and HSB propagation The reset and HSB propagation takes priority over data transfer but the loss of data bandwidth is insignificant and immeasurable Gigabit Serial Cabling The 9 2 is supplied with a single 15cm serial cable that has been specially manufactured for HUNT ENGINEERING HUNT ENGINEERING also have 50cm cables made These are suitable for making connections within the same PC Additional cables can be purchased from HUNT ENGINEERING your local HUNT ENGINEERING supplier These cables are polarised with a blanking plug to prevent incorrect insertion The correct insertion is so that the metal side of the cable connector mates with the metal at the side of the PCB connector 9 HUNT ENGINEERING PC9 EM2 USER MANUAL The standard cable supplied with HEPC9 EM2 For connections outside of the PC more substantial cabling is necessary The cabling used must be specifica
17. eans that the latency varies depending on how you use them For example if you use a block flag to determine when to write that write may be delayed until there is space 13 HUNT ENGINEERING PC9 EM2 USER MANUAL If we start with data to be transmitted from the EM2 being available at the HEART system 1 Data that is valid on the ring is clocked into the transmit FIFO on the next 100MHz cycle 2 Data will flow through the transmit FIFO in 6 cycles of the 100MHz 3 Data is read from the transmit FIFO 1n bytes converted to 10 bit codes serialised and transmitted from the TX outputs in 12 of the 125MHz clocks 4 At the receiving end the RX inputs are de serialised decoded and written into the receive FIFO in 10 of the 125MHz clocks 5 The data will be available to the HEART system in 13 cycles of the 100MHz 6 The time slots travel around the HEART ring constantly so the longest wait for a slot will be five 100MHz clocks the data will placed onto the ring in the sixth clock at the latest 7 The data goes out onto the HEART system in the next 100MHz cycle Ie Items 1 2 5 6 and 7 add up to 21 up to 5 of the 100MHz cycles Items 3 and 4 add up to 22 of the 125MHz cycles Therefore the ADDITIONAL latency in using an EM2 in the data path will be 386nS to 43615 21 M 10nS 22x 815 Where M 0 to 5 So for modules on different carrier boards minimum latency is achieved with fastest FIFO clocks
18. eart heronB 0 hostB 0 1 create the connections from the DSP modules to each other via the EM2 heart heronA 1 em2A 0 1 heart em2A 0 heronA 1 1 heart heronB 1 em2B 1 1 heart em2B 1 heronB 1 1 For full details of the syntax refer to the network file description document but notice the correct connection to FIFOO on the first EM2 module and FIFO1 on the second This must reflect where the cable is plugged Notice also that the cable carries data in both directions The system is now ready for use by the application A Virtual FIFO exists in each direction between the two boards and can be used in the same way that a virtual FIFO connection is used between modules on the same board 18 HUNT ENGINEERING PC9 EM2 USER MANUAL Example a two or more boards in the same host PC booted as one system method B The hardware supports connecting the reset and HSB across multiple boards Using this technique it is possible to boot and configure a multi board system as if it were one boatd Currently Nov 2002 the Server Loader and Heartconf does not support this technique but it will be possible as soon as work on those features are completed Example2 two or more boards in the same host PC booted separately This example is a quite simple extension of the example above The two HEPC9s are in different host machines and are each booted and their HEART connections configured separately There is no need for reset or HSB propagation
19. h UMI Address 17 Channel 5 Receive FIFO reset with UMI Transmit channel reset with UMI registers Each of the six transmit channels may have their data FIFOs reset flushed by an active low assertion of any of the 4 UMI signals Uncommitted Module Interconnects This feature may be useful when the non blocking mode of the transmit channel is used Only the least significant 4 bits are used Bit 0 is set to make UMIO reset the FIFO bit 1 for bit 2 for UMI2 and bit 3 for UMI3 Multiple bits may be set so that more than one UMI signal may reset the FIFO This register is cleared at reset Address 18 Channel 0 Transmit FIFO reset with U MI Address 19 Channel 1 Transmit FIFO reset with U MI Address 20 Channel 2 Transmit FIFO reset with UMI Address 21 Channel 3 Transmit FIFO reset with U MI Address 22 Channel 4 Transmit FIFO reset with U MI Address 23 Channel 5 Transmit FIFO reset with U MI ZAP Heart Register This register is used as an easy means of clearing all timeslot bits that may be programmed in the Transmit channel timeslot registers and Receive channel timeslot registers No data bits are used a write access alone clears all 12 registers Address 24 Zap Heart Control Reset propagation register This six bit register to determine which receive channels propagate a received reset condition from a remote carrier onto the UDP Reset of the carrier that the PC9 EM2 is 27 HUNT ENGINEERING PC9 EM2 USE
20. his section describes the features of the PC9 EM2 and why they are provided Power Gigabit Serial Cable Connections Supply Ccts Serial Serial Serial Serial Serial Serial HERON Transceiver Transceiver Transceiver Transceiver Transceiver Transceiver Serial Bus Module ID Tx Fifo 0 Rx Fifo 0 Tx Fifo 1 Rx Fifo 1 Tx Fifo 2 Rx Fifo 2 Tx Fifo 3 Rx Fifo 3 Tx Fifo 4 Rx Fifo 4 Tx Fifo 5 Rx Fifo 5 UDPReset UMI HEART CONNECTIONS Heart Connections The External Ring Module slot on a HEPCO is bypassed when there is no module fitted into that slot All external modules break into the heart architecture and become part of it when they plugged in and the module itself provides the Heart functionality for this slot This feature is transparent to the user as the number of registers on the HEART ring is the same with and without the EM2 Programming of data paths between the Heart architecture and the PC9 EM2 is exactly the same as for other module slots on the carrier board No further detail is supplied here as the heartconf software tool provided by HUNT ENGINEERING will be used For reference only the full description and addresses of the timeslot registers is detailed in the Appendix 8 HUNT ENGINEERING PC9 EM2 USER MANUAL Reset The reset signal from the carrier board is driven into the PC9 EM2 to initialise internal logic Additionally transitions of the reset signal are detected and codes for
21. ised Make HEART connections for booting DSPs Boot DSPs on both boards Re configure both HEART networks to match the network file Use HSB to inform DSPs on both boards that they can start This sequence is important as if one board were to be initialised and allowed to run before the other board was configured then any data sent could be lost and the results after configuring the second board are undefined A network file for the above system could be BD API Board_type Board Id Device Id 4 Using API BD HEP9A O BD HEP9A 1 0 suc i eene iM c P ae E D Ue rd cea ee A d Ret Nodes description ND BD nb ND NAME ND Type HERON ID filename s decens em es ae Pao ale SIX IL UU t nde lu us Dee e rne di e c6 0 HERONA ROOT 00000002 boardo out c6 1 HERONB ROOT 0x13 boardl out Host interface pcif 0 hostA normal 0x05 pcif 1 hostB normal 0x15 HEPC9 inter board modules currently EM1 C EM1 or EM2 em2 0 em2A normal 0x06 em2 1 em2B normal 0x16 from slot fifo to slot fifo timeslots ee Rin lel cede E Le nie ae et e A SI ae d Create a connection between host fifo 0 and the C6x fifo 0 It uses 1 timeslot The precise timeslot is chosen by Server Loader or HeartConf heart hostA 0 heronA 0 1 heart hostB 0 heronB 0 1 And create a connection back from the C6x fifo 0 to the host fifo 0 heart heronA 0 hostA 0 1 h
22. isters Addtess32 Zap HSB Propagation Control 28 HUNT ENGINEERING PC9 EM2 USER MANUAL Appendix 3 Gigabit serial 1 O Connector pinout The serial I O connectors pinned out so that the corresponding rx and tx pairs for one channel are housed in the same connector shell The figure below shows the view looking onto the top edge of the PC9 EM2 5555568 60000 000000 000000 00900009 000000 The pinout for each serial channel is as follows Pin number Function 1 Tx Tx Polarising pin 2 3 4 GND 5 6 Rx Rx 29 HUNT ENGINEERING PC9 EM2 USER MANUAL
23. ivity requirements of the end system For example it is possible that only one serial link may be required between a pair of HEPC9s In other applications where multiple data paths exist between HEPC9s multiple serial links may be used In addition to the internode data the PC9 EM2 also transmits the state of the HEPC9 s reset signal over any connected serial links to other PC9 EM2s These other remote EM2 s may be programmed over the HSB to propagate the state of the received reset onto the UDPRESET of the remote HEPC9 thus providing the function of remote resetting The PC9 EM2 may also be programmed again over the HSB to propagate HSB messages over the serial links It is therefore possible to perform all HSB functions on a remote HEPC9 such as heart configuration module queries and any other arbitrary HSB messaging The PC9 EM2 module connects to the HEPC9 through several standard interfaces e The first is directly into the Heart architecture The FIFO input and output interfaces ate embedded into the PC9 EM2 itself This is used for the main inter node communications The second is the HERON Serial Bus used for configuration messages The last is the general control such as reset power etc 5 HUNT ENGINEERING PC9 EM2 USER MANUAL Location of Items on the PC9 EM2 Channels 012345 Gigabit serial connectors Gigabit serial transceivers 5 2 g o a o E O E Es t o e T T JTAG
24. lly optimised for Gbit serial transmission in both directions line cables normally intended for Fibre Channel applications which despite its name is actually copper cable connections HUNT ENGINEERING can manufacture cables that take the EM2 connections to a 9 way D type connector that can be fitted to the backplate of your PC Then standard Fibre Channel cables which can be purchased from HUNT ENGINEERING or yout local HUNT ENGINEERING supplier can be fitted directly to those 9 way D types Heron Serial Bus The Heron Serial Bus connects to the PC9 EM2 not only so that its internal registers may be programmed with it but also so that HSB messages may be sent between HEPC9s via the gigabit serial connections This bridging of the HSB is achieved by use of some of the spare 10 bit codes to transmit the various states of the local Heron Serial Bus to the remote PC9 EM2 which in turn masters the remote HSB with identical bus behaviour The propagation of HSB messages is programmable for each channel This programming is made using the Heartconf software utilty The propagation of HSB across multiple boards is optional but if selected this connection is then encoded on the same cable connection as the data The PC9 EM2 also responds to HSB Module Query commands UDPReset Changes in the state of the reset signal are transmitted by PC9 EM2 using spare 10 bit codes The UDPReset signal is output from the receiving PC9 EM2 onto it
25. ly starts to send data on a connection it is probable that the other system will not yet be configured to receive When that second system is booted it will be reset and its connections configured before it will be ready to send and or receive data During that reset and configuration phase data will probably be lost from the system It is important that your application software correctly handles this situation There is a setvet loader example on the HUNT ENGINEERING CD that demonstrates one possible way of handling this Of course different applications will need to find different solutions The Gbit connection is designed to be totally reliable However is the cable is routed outside of your PC it could be disturbed by noise or movement of the cable In that case the connection should recover and work properly afterwards but data could be lost gained corrupted during the disturbance If your system is intended to run for long periods of time then you should build something into your application programs that can detect and recover from such a disturbance The connections to and from the PC9 EM2 are programmed using the standard Heartconf tool at the same time as yout other HEART connections You can refer to the separate user manual for Heartconf and the Network File syntax to find the full details but there are some examples later in this manual that show the typical uses 7 HUNT ENGINEERING PC9 EM2 USER MANUAL Module Features T
26. may be individually programmed to output received data into any timeslot of the local Heart system Only the least significant six bit are used bit O 15 set to use timeslot 0 bit 1 for timeslot 1 up to bit 5 for timeslot 5 The use of multiple timeslots is allowed although the use of more than two timeslots has no benefit as the serial transceivers cannot receive data fast enough to fully utilise the bandwidth of two timeslots These bits are cleared at reset and an access to the ZAP Heart register Address 0 Rx channelO Timeslot Register 5 0 Address 1 Rx channel Timeslot Register 5 0 Address 2 Rx channel2 Timeslot Register 5 0 Address 3 Rx channel3 Timeslot Register 5 0 Address 4 Rx channel4 Timeslot Register 5 0 Address 5 Rx channel5 Timeslot Register 5 0 Transmit channel timeslot registers Each of the six transmit channels of the PC9 EM2 may be individually programmed to read data from any timeslot of the local Heart system for transmission Only the least significant six bit are used bit O 15 set to use timeslot 0 bit 1 for timeslot 1 up to bit 5 for timeslot 5 These bits are cleared at reset and by an access to the ZAP Heart register Additionally bit 6 of each register is used to program the blocking mode of the transmit channels By default this bit is set to 0 which means that data is blocked in the heart system on any timeslot that is sending to this channel when the
27. module including mating connectors and cables is 14 5mm This means that the assembly of a HEPC9 module carrier and the PC9 EM2 is MORE than the 20mm single slot spacing of PCI 12 HUNT ENGINEERING PC9 EM2 USER MANUAL The arrangement of cabling with the PC9 EM2 The mating connectors occupy the space above the PC9 EM2 and finish level with the top edge of the HEPC9 board A small gap is necessary to allow for the cables which exit these connectors upwards in a conventional PC The cables are just 1mm thick but to allow for bending etc 3 4 mm should be allowed above the top of the HEPC9 Power Requirements of the PC9 EM2 The PC9 EM2 only uses power from the 5V HEPC9 supply The 3 3V and 1 5V for the FPGA and the 2 5V for the serial transceivers are generated on board from this 5V The power demands of the PC9 EM2 are governed by the amount of data flowing into and out of the serial channels and also the amount of data flowing around the local Heart architecture The maximum current for worst case test patterns is approximately 1 5A on the 5V input Calculating Latency when using the EM2 One feature of HEART is that the latency of a communication is controlled within limits that can be calculated The way that the connections of HEART are pre connected means that there are no arbitration delays It is also not possible that a connection will fail to connect it is already connected before the data is sent The use of FIFOs m
28. ordance with the directives after assembly 1 The host computer or housing in which the 9 2 is installed is properly assembled with EMC and LVD in mind and ideally should itself carry the CE mark 2 Any cabling between boatds or peripherals is either entirely inside the case of the host computet or has been assembled and tested in accordance with the directives The PC9 EM2 serial I Os ARE protected against Static discharge so if the cabling does exit the case there 1s suitable protection already fitted HUNT ENGINEERING are able to perform system integration in accordance with these directives if you are unsure of how to achieve compliance yourself 23 HUNT ENGINEERING PC9 EM2 USER MANUAL Technical Support Technical support for HUNT ENGINEERING products should first be obtained from the comprehensive Support section http www hunteng co uk support index htm on the HUNT ENGINEERING web site This includes FAQs latest product software and documentation updates etc Or contact your local supplier if you are unsure of details please refer to http www hunteng co uk for the list of current re sellers HUNT ENGINEERING technical support can contacted by emailing support hunteng co uk calling the direct support telephone number 44 0 1278 760775 ot by calling the general number 44 0 1278 760188 and choosing the technical support option 24 HUNT ENGINEERING PC9 EM2 USER MANUAL Appendix 1 HERON Serial Bus
29. particular purpose In event shall HUNT ENGINEERING S liability related to the product exceed the purchase fee actually paid by you for the product Neither HUNT ENGINEERING nor its suppliers shall in any event be liable for any indirect consequential or financial damages caused by the delivery use or performance of this product Because some states do not allow the exclusion or limitation of incidental or consequential damages or limitation on how long an implied warranty lasts the above limitations may not apply to you TECHNICAL SUPPORT Technical support for HUNT ENGINEERING products should first be obtained from the comprehensive Support section http www hunteng co uk support index htm on the HUNT ENGINEERING web site This includes FAQs latest product software and documentation updates etc Or contact your local supplier if you are unsure of details please refer to http www hunteng co uk for the list of current re sellers HUNT ENGINEERING technical support can contacted by emailing support hunteng co uk calling the direct support telephone number 44 0 1278 760775 ot by calling the general number 44 0 1278 760188 and choosing the technical support option 2 HUNT ENGINEERING PC9 EM2 USER MANUAL TABLE OF CONTENTS INTRODUCTION Pn 5 LOCATION OF ITEMS ON THE 9 2 nose eese 6 GETTING STARTED eere eaa eoru eee eee erue e ra reae a neon
30. s HEPC9 The UDPReset is asserted low by the PC9 EM2 when serial channel receives an active reset condition AND that channel is programmed to propagate the reset locally This feature may be used where one HEPC9 may be remote and or host less so that it may be reset by its UDPReset in this way 10 HUNT ENGINEERING PC9 EM2 USER MANUAL Module ID The HERON specification assigns pins on the HERON module that give a HERON module access to the carrier ID of the carrier that it is plugged into and a unique HERON slot identifier The External Module slot of the HEPC9 also has its unique module ID so that an external module such as the PC9 EM2 is addressed on Heron Serial Bus HSB using this information UMI connections The PC9 EM2 connects to the UMI Uncommitted Module Interconnect signals of the HEPC9 so that they may be used to flush a FIFO when it is used in the non blocking mode This feature is sometimes useful in applications where it is not necessary to receive all data that is sent For example if live video data is being transmitted through the architecture and a particular module s requirement is to occasionally receive the next frame of video In this scenario the PC9 EM2 could be programmed to flush the relevant FIFOs when a particular UMI signal is asserted low to get rid of old data Each transmit and each receive FIFO may be individually programmed to be reset by any UMI signal Multiple UMI signals may be used to re
31. set a FIFO Done LED There is a Done LED labelled DONE It is illuminated if the FPGA is not configured The DONE led should illuminate briefly at power on and then go out showing that the FPGA is correctly configured 11 HUNT ENGINEERING PC9 EM2 USER MANUAL Hardware Details HERON Module Type The PC9 EM2 module is of type Expansion module The PC9 EM2 does not have a processor so does not assert the Module has processor pin as defined in the HERON specification The PC9 EMZ2 does not support JTAG so does not assert the Module has JTAG pin as defined in the HERON specification The PC9 EMZ has a serial bus so asserts the Module has serial bus pin as defined in the HERON specification Hardware Reset Before the PC9 EM2 can be used it must be reset This reset initialises the Heron Serial Bus circuitry into a state where it can be used Depending on how this and any other PC9 25 in the system have been programmed this local reset may also reset other PC9 EM2s and their module carriers and similarly a reset on a remote carrier may cause a teset to be propagated locally This signal is driven by the HEPCO Config The PC9 EM2 does not connect to the config signal Physical Dimensions of the Module The PC9 EM2 module is 3 85 inches by 1 9 inches overall The 5mm limit on component height under the module is not violated by the PC9 EM2 The maximum height of the PC9 EM2 above the
32. the sending module in the slot immediately upstream of the sending EM2 AND the receiving module in the slot immediately downstream of the receiving EM2 The times will 64605 to 746nS 6 x 10nS 41 M 10nS 22 x 80S where M 0 to 10 The maximum latency will occur with the slowest FIFO clocks the sending module in the slot immediately DOWNstream of the sending EM2 AND the receiving module in the slot immediately UPstream of the receiving EM2 The times will be 1086nS to 118605 6 x 16 6nS 41 M x 10nS 4 x 10 10nS 22 8nS where M 0 to 10 Serial characteristics The serial I O is compatible with the differential PECL standard but is intended only for connection to another EM2 module 14 HUNT ENGINEERING PC9 EM2 USER MANUAL Fitting the PC9 EM2 to your HEPC9 Fitting a PC9 EM2 module to your HEPCO is very simple Ensure that the HEPC9 does NOT have power applied when fitting modules and normal anti static precautions should be followed at all times The External Module slot of the HEPC9 has four positions for fixing pillars 9 Fixing pillars PC9 EM2 module Mating connectors The PC9 EM2 modules are asymmettic about their
Download Pdf Manuals
Related Search
Related Contents
ebode FM-SP FM transmitter MANUAL DE INSTRUCCIONES TP-Link RE200 Data Sheet StarTech.com 24in Internal USB Motherboard Header to Parallel Adapter Copyright © All rights reserved.
Failed to retrieve file