Home

THE EXTERNALIZED SURFACE USER'S GUIDE V7.2 Σ

image

Contents

1. XUNIF_HC_ROAD 1 2110000 XUNIF_HC_ROAD 2 2800000 XUNIF_HC_ROAD 3 2900000 XUNIF_TC_ROAD 1 1 51 XUNIF_TC_ROAD 2 0 08 XUNIF_TC_ROAD 3 0 05 XUNIF D ROAD 1 0 05 XUNIF D ROAD 2 0 4 XUNIF D ROAD 3 0 1 NWALL LAYER 2085 XUNIF ALB WALL 0 2 XUNIF EMIS WALL 0 97 XUNIF HC WALL 1 2110000 XUNIF HC WALL 2 2800000 XUNIF HC WALL 3 2900000 XUNIF TC WALL 1 1 51 XUNIF TC WALL 2 0 08 XUNIF TC WALL 3 0 05 XUNIF D WALL 1 0 05 XUNIF D WALL 2 0 4 XUNIF D WALL 3 0 1 XUNIF Z0 TOWN Ee dies XUNIF BLD Oe 55 XUNIF_BLD_HEIGHT 10 XUNIF_WALL_O_HOR 0 5 XUNIF_H TRAFFIC 10 XUNIF LE TRAFFIC 0 XUNIF H INDUSTRY 5 XUNIF LE INDUSTRY 0 amp NAM FRAC LECOCLIMAP F XUNIF SEA Oey XUNIF_WATER 0 5 XUNIF TOWN 0 XUNIF NATURE 0 5 amp NAM PGD GRID CGRID LONLAT REG amp NAM LONLAT REG XLONMIN 0 XLONMAX 0 XLATMIN 0 XLATMAX 0 NLON 1 NLAT 1 amp NAM_PGD_ SCHEMES CNATURE ISBA CSEA SEAFLX y CTOWN TEB CWATER WATFLX amp NAM_ZS XUNIF_ZS 0 amp NAM_ISBA XUNIF_CLAY 0 4 XUNIF_SAND m XUNIF RUNOFFB 0 5 CISBA 3 L 10 8 1 Uniform values prescribed 1d example without patches 241 CPHOTO NO
2. BINLLV ASCLLV active biomass character T LL LEN ES h DIRECT CFTYP_CNA_NITRO EN BINLLF BINLLV none u ASCLLV 4 1 2 4 1 ISBA scheme 64 4 1 2 4 2 TEB scheme Over urban areas all surface parameters have to be specified by the user in namelist NAM DATA TEB But if LECOCLIMAP TRUE NAM FRAC only some of them can be specified and the missing parameters are completed with ECOCLIMAP database Fortran name CFNAM_URBTYPE CFTYP_URBTYPE XUNIF_BLD XUNIF_BLD_HEIGHT CFNAM_BLD_HEIGHT CFTYP_BLD_HEIGHT XUNIF WALL O HOR CENAM WALL O HOR CFTYP WALL O HOR XUNIF Z0 TOWN CENAM Z0 TOWN CFTYP Z0 TOWN XUNIF ALB ROOF CENAM ALB ROOF CFTYP ALB ROOF 4 1 2 4 2 TEB scheme description 13 21 corresponding to covers real 151 152 154 155 156 157 none type of urban area 158 159 160 161 character LEN 28 character DIRECT BINLLF LEN 6 BINLLV ASCLLV DIRECT none LEN 28 BINLLF BINLLV buildings height character LEN 6 ASC character DIRECT BINLLF Sone LEN 6 BINLLV ASCLLV none wall surf hor surf real character LEN 28 character LEN 28 character DIRECT BINLLF Hon LEN 6 BINLLV ASCLLV character LEN 28 et fe er pe dl momentum DIRECT BINLLF none BINLLV ASCLLV pf none _ r0oF albedo DIRECT none BINLLF BINLLV 65 character LE
3. e LDIAG OCEAN flag for ocean variables 8 6 1 Namelist NAM _DIAG OCEANn 203 9 Externalized surface model output fields Model output fields depend on the tile and on the configuration of run In case of NETCDF outputs files e Fields colored in orange are not written Fields colored in blue are never written for any tile e Fields colored in green are not written for FLAKE and TEB 9 Externalized surface model output fields 204 9 1 Prognostic model output fields 9 1 Prognostic model output fields 205 Canopy For flake and watflux replace SSO CAN by WAT SBL for isba by ISBA_CAN for teb by TEB_CAN for seaflux by SEA_SBL Common fields SSO CAN ZI altitudes of canopy levels m Not in PREP step 0 SSO CAN Ul wind at canopy levels m s 0 SSO CAN El Tke at canopy levels m2 s2 Flake Isba Watflux Seaflux Teb not in PREP step WAT SBL TI WAT SBL Ql WAT SBL PI temperature humidity and pression WAT SBL LMO Monin Obhukov length e Teb not in PREP step TEB CAN LM TEB CAN LE mixing and dissipative lengths Canopy 206 SEAFLUX LMERCATOR TEMP_OCI SALT_OCI UCUR OCI VCUR OCI TKE_OCI temperature salinity zonal current meridian current turbulent kinetic energy SEAINBATHI bathymetry index SSS SEA_HMO sea surface salinity oceanic mixing length e LINTERPOL SST SST_MTHm SST month t e SST sea surface temperature e ZOSEA sea roughness length SEAFLUX
4. e LFRAC flag to save in the output file the sea inland water natural covers and town fractions e LDIAG GRID flag for mean grid diagnostics 8 1 1 Namelist NAM _DIAG SURF ATMn 191 8 2 Diagnostics relative to the general surface monitor and to each surface scheme 8 2 Diagnostics relative to the general surface monitor and to each surface scheme 192 8 2 1 Namelist NAM DIAG SURFn Fortran name Fortran type values default value nm mee oise E NN FALSE FALSE FALSE LSURF_VARS logical e N2M flag to compute surface boundary layer characteristics N2M 1 computes temperature at 2 m specific humidity at 2 m relative humidity zonal and meridian wind at 10 m and Richardson number 2m and 10m quantities are calculated extrapolating atmospheric forcing variables with Paulson laws using surface heat water and momentum fluxes N2M 2 computes temperature at 2 m specific humidity at 2 m relative humidity zonal and meridian wind at 10 m and Richardson number 2m and 10m quantities are calculated interpolating between atmospheric forcing variables and surface temperature and humidity e SURF BUDGET flag to save in the output file the terms of the surface energy balance net radiation sensible heat flux latent heat flux ground flux for each scheme on the four separate tiles on each patch of the vegetation scheme if existing and aggregated for the whole surface The diagnosed fie
5. CCH_DRY_DE CSEA_ALB CCH_DRY_DE CCH_DRY_DE CCH_DRY_DE LSURF BUDGI E SURF_EVAP_BUDGI LSURF_MISC_BUDGI LSURF_MISC_BUDGE hj H Il Gl Fl H ll WSAT Z04D NP89 I y A H m Ka Ej Ej Dd Dd H E a WES89 TA96 WES89 WES89 WES89 H 243 1d example 12 ID F I NTIM 10 8 2 Uniform values prescribed with patches amp NAM DATA ISBA he Mee KTM c oc ce c LO LO 10 LD NO c c c 00 OO a em KUN ON ON ON ON un mom om momo ono nn OD OO OOo Ada a ao oon N O O O 0 0 0 00 00 0000 OO A00 M DOO O0 GOOSE 0 00 oo o EA A AAA A Od N A A A A A A A AAD NA A A A A A A AAO DIN A e NM TT LO WO OO O c c o c c NM TT LO or OO DN c c c c N NTL DWO 00 O0 c c c c CN LO LO LO LN LO 10 LO LO LO LO LN LO LO LM 10 LO LO LN LO LO LO LO LO LO LO LO LO LO LO LN LO LO LO LO LO LO LO LM Uu uU O C0 C0 C0 C0 CO UW VW C0 FA HI HI HH Hl HH AHHH HH E E E E E E E E E E Ed LEO OOOOOOCOOOCOO gt gt a gt A gt E gt ai al gt FI E d 1 1 di 4 a 1 1 Al 1 N ES 5 S 5 B N N 5 ES N d 8 Al hh E Eo E E E E fa E Eo E BE Eu Eu B E Eo E E Eu E fu E Ea E fa fu E Ea BE Ea E 5 fa DE fu E I E oH ol Hl HR IH HI H oH H H H H H lH H H H lH H H H H HI HI H H H
6. files The following namelist is valid only for simulation without patches In case of use of patches like for A gs options it should be updated amp NAM_DATA_ISBA NTIME 12 CFNAM VEGTYPE 1 CFNAM VEGTYPE 2 CFNAM VEGTYPE 3 i CFNAM VEGTYPE 4 CFNAM VEGTYPE 5 CFNAM VEGTYPE 6 CFNAM VEGTYPE 7 CFNAM VEGTYPE 8 CFNAM VEGTYPE 9 CFNAM_VEGTYPE 10 CFNAM_VEGTYPE 11 CFNAM_VEGTYPE 12 CFNAM_VEG 1 1 CFNAM_VEG 1 2 CFNAM_VEG 1 3 CFNAM_VEG 1 4 CFNAM_VEG 1 5 CFNAM_VEG 1 6 CFNAM_VEG 1 7 CFNAM_VEG 1 8 CFNAM_VEG 1 9 CFNAM_VEG 1 10 CFNAM_VEG 1 11 CFNAM_VEG 1 12 CFNAM LAI 1 1 CFNAM LAI 1 2 CFNAM LAI 1 3 CFNAM LAI 1 4 CFNAM LAI 1 5 CFNAM LAI 1 6 CFNAM LAI 1 7 CFNAM LAI 1 8 CFNAM LAI 1 9 CFNAM LAI 1 10 CFNAM LAI 1 11 CFNAM LAI 1 12 CFNAM 20 1 1 CFNAM 20 1 2 CFNAM 20 1 3 CFNAM Z0 1 4 CFNAM 20 1 5 x CFNAM Z0 1 6 CFNAM 20 1 7 CFNAM Z0 1 8 CFNAM Z0 1 9 CFNAM Z0 1 10 10 8 3 Surface parameters read from external files vv EGTYPE_ vv EGTYPE vv EGTYPE_ vv VI ECTYPE EGTYPE vv ECTYPE vv EGTYPE_ vv EGTYPE VI ECTYPE vv ECTYPE vv EGTYPE_ vv ECTYPE NE V V V V V V
7. Fortran name Fortran type values default value xwsnow ROOF fa me XWSNOW ROAD eu mn KTSNOW woor fra hoe XISNOW ROAD eal hoe ASNOW ROO fe roe xasnow ROAD eu one XENON ROOF frea hoe KRSNOW ROAD fr mn e CSNOW_ROAD snow scheme used over roads e CSNOW ROOF snow scheme used over roofs e XWSNOW ROOF roof snow content e XWSNOW ROAD road snow content eXTSNOW ROAD road temperature eXTSNOW ROOF roof temperature e XRSNOW ROOF roof density e XRSNOW ROAD road density e XASNOW ROAD road albedo e XASNOW ROOF road albedo 5 7 2 Namelist NAM PREP TEB SNOW 144 5 7 3 Namelist NAM PREP TEB GARDEN duplication of NAM PREP ISBA to initialize vegetation in urban areas 5 7 3 Namelist NAM PREP TEB GARDEN 145 5 7 4 Namelist NAM_PREP_GARDEN_SNOW duplication of NAM_PREP_ISBA_SNOW to initialize vegetation in urban areas 5 7 4 Namelist NAM_PREP_GARDEN_SNOW 146 6 How to run the externalized surface physical schemes Here are described the options available during the run of the several surface schemes 6 How to run the externalized surface physical schemes 147 6 1 SURF_ATM general options available over all tiles 6 1 SURF_ATM general options available over all tiles 148 6 1 1 Namelist NAM SURF_CSTS Fortran name Fortran type values default value eas et fin XANSMIN real bs XANSMAX real Joss XAGLAMIN real fos XAGLAMAX real loss X
8. called PGD file below At this step you perform 3 main tasks 1 You choose the surface schemes you will use 2 You choose and define the grid for the surface 3 The physiographic fields are defined on this grid Therefore the PGD file contains the spatial characteristics of the surface and all the physiographic data necessary to run the interactive surface schemes for vegetation and town 2 PREP routine prep_surf_atm_n f90 this program performs the initialization of the surface scheme prognostic variables as temperatures profiles water and ice soil contents interception reservoirs snow reservoirs 3 run of the schemes routine coupling surf atm n f90 this performs the physical evolution of the surface schemes It is necessary that this part contrary to the 2 previous ones is to be coupled within an atmospheric forcing provided either in off line mode or via a coupling with an atmospheric model 4 DIAG routine diag surf atm n f90 this computes diagnostics linked to the surface e g surface energy balance terms variables at 2m of height etc It can be used either during the run adding these diagnostics in the output file s of the run or independantly from the run for a given surface state still an instantaneous atmospheric forcing is necessary for this evaluation In addition in order to read or write the prognostic variables or the diagnostics variables respectively in the surface files the following subro
9. e LSURF VARS not for aggregated tiles OS TILE specific humidity For each tile and all tiles aggregated 216 ISBA e LSURF_EVAP_BUDGET with LSURF_BUDGETC can be cumulated in C ISBA NAM_DIAG_ISBAn LEG_ISBA LEGI_ISBA LEV_ISBA LES_ISBA LER_ISBA LETR_ISBA bare ground evaporation and sublimation vegetation evaporation and sublimation evaporation due to interception for tile nature vegetation evapotranspiration EVAP_ISBA DRAIN_ISBA RUNOFF_ISBA total evaporation flux drainage runoff DRIVEG_ISBA RRVEG_ISBA SNOMLT_ISBA dripping from the vegetation reservoir precipitation intercepted by vegetation snow melt CHORT SGH NAM_SGH_ISBAn or CISBA DIF NAM ISBA 0 HORTON ISBA horton runoff LFLOOD NAM SGH ISBAn 0 IFLOOD PFLOOD floodplains infiltration precipitation intercepted by the floodplains 0 LEF ISBA LEIF ISBA floodplains evaporation and sublimation e LSURF BUDGETC NAM DIAG SURFn and LGLACIER NAM ISBAn ICE FC ISBA ice flux e LPATCH BUDGET NAM DIAG ISBAn and NPATCH gt 1 upper and common fields can be given by patch by replacing ISBA by PATCH in their names e LSURF MISC BUDGET NAM DIAG ISBAn HV ISBA Halstead coefficient PSNG ISBA PSNV ISBA PSN ISBA snow fraction over ground vegetation and total TALB ISBA total albedo CSNOWz 3 L or CSNOW CRO NAM PREP ISBA SNOW 0 TS ISBA TSRAD ISBA total surface and radiative temperature SWII ISBA TSWII ISB
10. eal XRZHZOM real EE DRA de mm Lorum Sion fe Lovers Jogi fe e LALDTHRES flag to set aminimum wind and shear like done in Aladin model e XCISMIN minimum wind shear to compute turbulent exchange coefficient used only if LALDTHRES e XVMODMIN minimum wind speed to compute turbulent exchange coefficient used only if LALDTHRES e LALDZOH to take into account orography in heat roughness length e LDRAG_COEF_ARP to use drag coefficient computed like in Arpege Aladin models e LNOSOF no parameterization of subgrid orography effects on atmospheric forcing 6 1 2 Namelist NAM_SURF_ATM 150 e XEDB XEDC XEDD XEDK coefficients used in Richardson critical numbers computation e XUSURIC XUSURID XUSURICL Richardson critical numbers e XVCHRNK XVZOCM Charnock s constant and minimal neutral roughness length over sea formulation of roughness length over sea e XRIMAX limitation of Richardson number in drag computation e XDELTA MAX maximum fraction of the foliage covered by intercepted water for high vegetation eLVZIUSTARO ARP flag to activate aladin formulation for zoh over sea e LRRGUST ARP flag to activate the correction of CD CH CDN due to moist gustiness e XVZIUSTARO aladin formulation for zoh over sea e XRZHZOM aladin formulation for zoh over sea e XRRSCALE aladin formulation for zoh over sea e XRRGAMM HA aladin formulation for zoh over sea e XUTILGUST correction of CD CH CDN due to moist gustine
11. 003 XUNIF GMES 8 0 003 XUNIF RE25 7 0 0000003 XUNIF RE25 8 0 000000 XUNIF BSLAI 7 0 06 XUNIF BSLAI 8 0 06 XUNIF LAIMIN 7 0 3 XUNIF LAIMIN 8 0 3 XUNIF SEFOLD 7 5184000 XUNIF SEFOLD 8 5184000 XUNIF GC 7 0 00025 XUNIF GC 8 0 00025 XUNIF DMAX 7 0 1 XUNIF DMAX 8 0 1 XUNIF F2I 7 0 3 XUNIF F2I 8 0 3 XUNIF H TREE 7 20 XUNIF H TREE 8 20 XUNIF CE NITRO 7 3 79 XUNIF CE NITRO 8 3 79 XUNIF_CF_NITRO 7 9 84 XUNIF_CF_NITRO 8 9 84 XUNIF_CNA_NITRO 7 1 3 XUNIF_CNA_NITRO 8 1 3 XUNIF_RSMIN 10 40 XUNIF_RSMIN 11 40 XUNIF_GAMMA 10 0 XUNIF_GAMMA 11 0 XUNIF WRMAX CF 10 0 2 XUNIF WRMAX CF 11 0 2 XUNIF RGL 10 100 XUNIF RGL 11 100 XUNIF CV 10 0 00002 XUNIF CV 11 0 0000 XUNIF Z0 O ZOH 10 10 XUNIF Z0 O ZOH 11 10 XUNIF ALBNIR VEG 10 0 3 XUNIF ALBNIR VEG 11 0 3 XUNIF ALBVIS VEG 10 0 1 XUNIF ALBVIS VEG 11 2 0 1 XUNIF ALBUV VEG 10 0 0425 XUNIF ALBUV VEG 11 0 0425 XUNIF ALBNIR SOIL 10 0 3 XUNIF ALBNIR SOIL 11 0 3 XUNIF ALBVIS SOIL 10 0 1 XUNIF ALBVIS SOIL 11 0 1 XUNIF ALBUV SOIL 10 0 06 XUNIF ALBUV SOIL 11 0 06 XUNIF GMES 10 0 003 XUNIF GMES 11 0 003 XUNIF RE25 10 0 0000003 XUNIF RE25 11 0 0000 XUNIF BSLAI 10 0 06 XUNIF BSLAI 11 0 06 XUNIF LAIMIN 10 0 3 XUNIF LAIMIN 11 0 3 XUNIF SEFOLD 10 5184000 XUNIF SEFOLD 11 518400 XUNIF_GC 10 0 00025 XUNIF_G
12. 207 WATFLUX e LINTERPOL TS TS WATERm TS WATER month t e TS WATER surface temperature e ZOWATER water roughness length WATFLUX 208 FLAKE e TS_WATER surface temperature e T SNOW T ICE T MNW T WML T BOT T BI temperatures for snow ice mean mixed layer bottom bottom of the upper layer of the sediments CT shape factor thermocline e H SNOW H ICE H ML H BI snow ice mixed layer and upper layer of bottom sediments thickness e ZOWATER USTAR WATER roughness length and friction velocity FLAKE 209 SNOW Applied for ISBA ROAD ROOF and GARDEN SURF VEG ROOF ROAD GARD e WSNOW_SURF_l RSNOW_SURF1 ASNOW SURF e CSNOW 1 L TSNOW_SURFI e CSNOWZ 3 L or CSNOW CRO HSNOW SURFI e CSNOW CRO SGRAN1_SURFI SGRAN2 SURFI SHIST SURFI SAGE SURFI SNOW 210 ISBA GARDEN For garden add TWN_ at beginning of fields names e TGI WGI WGII temperature liquid water and ice water contents for each layer e WR water intercepted on leaves e CPHOTO NON and CPHOTO AGS and CPHOTO AST LAI e RESA aerodynamical resistance ISBA GARDEN 211 ISBA LFLOOD Z0 FLOOD roughness length of flood water LGLACIER CE STO glacier ice storage e TSRAD NAT radiative temperature e LLAND USE OLD PATCH OLD DG e CPHOTO NON AN ANDAY ANFM LE AGS net C02 assimilation daily net CO2 assimilation maximum leaf assimilation evapotranspiration CPHOTO NIT or CPHO
13. 3 eee m solar radiation in water filename DT 111 DIRECT character BINLLF YEXTCOEF WATERFILETYPE LEN 6 ASCLLV none BINLLV 4 8 1 Namelist NAM DATA FLAKE 112 4 9 Namelist to add user s own fields 4 9 Namelist to add user s own fields 113 4 9 1 Namelist NAM DUMMY PGD This namelist allows to incorporate into the physiographic file any surface field You can treat up to 999 such fields These fields will be written on all the files you will use later after prognostic fields initialization or during and after run etc Their name in the files are DUMMY GRnnn where nnn goes from 001 to 999 During the execution of the programs these fields are stored in the XDUMMY_FIELDS first dimension spatial dimension second dimension total number of fields in the module MODD DUMMY SURF FIELD Sn You must modify the fortran source where you want to use them Fortran name Fortran type default value NDUMMY PGD NBR integer o CDUMMY PGD NAME 1000 character LEN 20 1000 CDUMMY PGD FILE 1000 character LEN 28 1000 CDUMMY PGD COMMENT 1000 character LEN 40 1000 DUMMY PGD FILETYPE 1000 character LEN 6 1000 DUMMY PGD AREA 1000 character LEN 3 1000 ALL DUMMY PGD ATYPE 1000 character LEN 3 1000 ART Only the first NDUMMY PGD NBR values in these arrays are meaningfull e NDUMMY PGD NBR number of dummy fields e CD
14. 9 NIF_EMIS 8 10 NIF_EMIS 8 11 NIF_EMIS 8 12 NIF_DG 5 1 NIF_DG 5 2 NIF_DG 5 3 NIF_DG 6 1 NIF_DG 6 2 NIF_DG 6 3 NIF_DG 7 1 NIF_DG 7 2 NIF_DG 7 3 NIF_DG 8 1 NIF_DG 8 2 NIF_DG 8 3 NIF_ROOTFRAC 5 1 NIF_ROOTFRAC 5 2 OO 0 ns osos R OD el 0 00 OD 0 0 0 0 OO Or C O E C Or ES Or Or Oy 0 OO 100 700 NINO Or OOO OO ee k Hr O1 II 247 XUNIF_ROOTFRAC 1 3 999 XUNIF_ROOTFRAC 5 3 999 XUNIF_ROOTFRAC 2 1 999 XUNIF_ROOTFRAC 6 1 999 XUNIF_ROOTFRAC 2 2 999 XUNIF_ROOTFRAC 6 2 999 XUNIF_ROOTFRAC 2 3 999 XUNIF_ROOTFRAC 6 3 999 XUNIF_ROOTFRAC 3 1 999 XUNIF_ROOTFRAC 7 1 999 XUNIF_ROOTFRAC 3 2 999 XUNIF_ROOTFRAC 7 2 999 XUNIF_ROOTFRAC 3 3 999 XUNIF_ROOTFRAC 7 3 999 XUNIF_ROOTFRAC 4 1 999 XUNIF_ROOTFRAC 8 1 999 XUNIF_ROOTFRAC 4 2 999 XUNIF_ROOTFRAC 8 2 999 XUNIF_ROOTFRAC 4 3 999 XUNIF_ROOTFRAC 8 3 999 XUNIF_RSMIN 1 40 XUNIF_RSMIN 2 40 XUNIF GAMMA 1 0 XUNIF GAMMA 2 0 XUNIF WRMAX CF 1 2 0 2 XUNIF WRMAX CF 2 0 2 XUNIF RGL 1 100 XUNIF RGL 2 100 XUNIF CV 1 0 00002 XUNIF CV 2 0 00002 XUNIF Z0 O ZOH 1 10 XUNIF Z0 O ZOH 2 10 XUNIF ALBNIR
15. ARCHOOK ifort32_ubuntu for the compilation of DR_HOOK library compile the master version of the code in the src directory run make and then make installmaster Master executables are created in directory exe If everything goes well until this step then master surfex has been successfully installed on you computer How to install a pre defined experiment 1 in another terminal in src directory do export VER_USER FORC 2 run configure 3 execute the profile file corresponding to this user version of surfex conf profile_surfex LXgfortran SURFEX V7 2 0 FORC MPIAUTO DEBUG 4 run make user and make installuser to create the scecific executables in directory exe 5 go into MY_RUN FORCING directory and run prepare_forcing bash with a name of experiment as argument for example prepare_forcing bash hapex a namelist MY PARAM nam will open vi editor simply quit use command q Some information will then be written on the screen and should look like SRC_SURFEX home lemoigne surfex EXPORT_v7_2 namelist NAM_MY_PARAM read gt PREP_INPUT_EXPERIMENT YEXPER HAPEX gt PREP INPUT EXPERIMENT INI 1 gt PREP_INPUT_EXPERIMENT INPTS 17521 gt PREP_INPUT_EXPERIMENT JNPTS 17521 gt PREP_INPUT_EXPERIMENT ZTSTEPFRC 1800 gt PREP_INPUT_EXPERIMENT YFORCING_FILETYPE NETCDF YFILE_FORCIN DATA hapex HAPEX DAT 30 rw r r lemoigne mc2 1543644 jui 22 16 51 home lemoigne surfex EXPO
16. INIFILE CONF PRO l sussorssossosssossssssonsnnnsnnssnnssnnssnssonsnnnsnnssnnsnnnsnnnne 81 4 3 3 C rtesiam DO NETT DT E C 82 4 3 3 1 Namelist NAM CARTESLIAN ioeceeruee eth oe e koh nde gerechnet PES EO reor hehe 83 4 3 3 2 Namelist NAM INIFILE CARTESIAN eere soon eren eene enne tn setatis etos snas toss tassa sno 84 434 Loneitude Ia tude grids etti rt tre etis reto oae de hes aono dadas ideada 85 4 3 4 1 Nam list NAM LONLAT REG ecce riso toni epe haere tancia icono hend 86 4 3 4 2 Namelist NAM LONLA TV AL ocioteca deidad 87 Table of Contents 4 3 5 Regular Lambert ers ui cda di ibid da 88 2 3 5 T Nam list NANE TGN nassen doce idad ici 89 43 6 Gaussian STid8 A O 90 43 6 1 Namelist NAMDIN iecit riore erae oriens qiie e Ra ade IN E PR eee Egan Nen NER Teer 91 4 3 6 2 Namelist NAMRGRE nassen herren errechnen 92 43 6 3 Nam list NAMGEM AA A A ce PRO que case a edn Fo a Coe cH MIN tte Pad eds 93 4 Land cover fractos coerente riso on p eren det s ede PR ap aco er eue herren ee 94 44 1 Namelist NAM COVER i isissscccsessscsessisessosdssestoveedssccsensssecsisdsctescssecseesssoscovsapssenssadessestoseesssessoos 95 4 4 2 Namelist NAM PGD ARRANGE COVER usssssssssonssnssnsssnnssssssnssonsnnssnnssnnsnnnssnssonsnnnsnnnnnn 97 4 4 3 Namelist NAM READ DATA COVER naan onno onseor soon coon eoncenscenseonveoneenveencenseene 98 4 4 4 Namelist NAM WRITE COVER TEX sane ooo onse
17. LEN 6 MASC95 BRUT82 KANDO7 MASCOS e CZOH TEB option for zOh roof amp road MASCOS Mascart et al 1995 BRUT82 Brustaert 1982 KANDO7 Kanda 2007 6 6 1 Namelist NAM_TEBn 171 6 7 IDEAL ideal flux scheme options 6 7 IDEAL ideal flux scheme options 172 6 6 1 Namelist NAM IDEAL FLUX e NFORCE number of surface forcing instants for fluxes The default value is NFORC 2 e NFORCT number of surface forcing instants for radiative temperature The default value is NFORC 2 e XTIMEF times of forcing for fluxes from beginning of run e XTIMET times of forcing for temperature from beginning of run e XSFTH hourly data of heat surface flux W m2 e CSFTQ Unit for the evaporation flux kg m2 s or W m2 e XSFTQ hourly data of water vapor surface flux e XSFCO2 hourly data of CO2 surface flux kg m2 s e CUSTARTYPE type of computation for friction e XUSTAR hourly data of friction m2 s2 e X70 roughness length m e XALB albedo e XEMIS emissivity e XTSRAD radiative temperature K 6 6 1 Namelist NAM IDEAL FLUX 173 7 How to run the externalized surface chemical schemes Here are described the options available during the run of the several schemes for emission and deposition of chemical species Note that all the schemes for deposition and emission of chemical species do activate only if chemical species are present i e if the coupling between atmosphere and
18. NAM_PREP_SEAFLUX amp NAM PREP WATFLUX amp NAM PREP ISBA amp NAM PREP ISBA SNOW CFILE CFILE CFILE CTYPE CFILE EAFLX CTYPE CFILE CTYPE CFILE ISBA CTYPE CSNOW 10 5 How to initialize variables from grib file arpifs AN G arpifs AN G arpifs AN G arpifs AN G arpifs AN G RIB RIB RIB RIB RIB 20030101 20030101 20030101 20030101 20030101 00 00 00 00 00 235 10 6 How to initialize main ISBA scheme options amp NAM_SGH_ISBAn CRUNOFF WSAT amp NAM ISBAn CROUGH Z04D CSCOND NP89 CALBEDO DRY CC1DRY DEF CSOILFRZ DEF CDIFSFCOND DEF i CCPSURF DRY CSNOWRES DEF amp NAM_CH_ISBAn CCH DRY DEP WES89 10 6 How to initialize main ISBA scheme options 236 10 7 How to get lake temperature profile as output amp NAM DIAG FLAKEn amp NAM WRITE DIAG_SURFn amp END 10 7 How to get lake temperature profile as output LWATER_PROFILE XZWAT_PROFILE 1 XZWAT_PROFILE 2 XZWAT_PROFILE 3 XZWAT_PROFILE 4 XZWAT_PROFILE 5 XZWAT_PROFILE 6 XZWAT_PROFILE 7 LSELECT T CNAME_SELECT 1 CNAME_SELECT 2 CNAME_SELECT 3 CNAME_SELECT 4 CNAME_SELECT 5 CNAME_SELECT 6 CNAME SE
19. Parrish 1988 for VG W099 Wosten et al 1999 for VG e NGROUND LAYER number of soil layer used in case of diffusion physics in the soil CISBA DIF e XUNIF CLAY uniform prescribed value of clay fraction e YCLAY clay fraction data file name e YCLAYFILETYPE type of clay data file DIRECT BINLLF BINLLV ASCLLV e XUNIF SAND uniform prescribed value of sand fraction e YSAND sand fraction data file name e YSANDFILETYPE type of sand data file DIRECT BINLLF BINLLV ASCLLV e XUNIF RUNOFFB uniform prescribed value of subgrid runoff coefficient e YRUNOFFB subgrid runoff coefficient data file name e YRUNOFFBFILETYPE type of subgrid runoff data file DIRECT BINLLF BINLLV ASCLLV e XUNIF WDRAIN uniform prescribed value of subgrid drainage YWDRAIN subgrid drainage data file name e YWDRAINFILETYPE type of subgrid drainage data file DIRECT BINLLF BINLLV 4 7 1 Namelist NAM ISBA 108 ASCLLV e YCTI topographic indices file name e YCTIFILETYPE type of topographic file DIRECT BINLLF BINLLV ASCLLV e XUNIF SOM uniform prescribed value of organic matter e YSOM TOP organic matter topsoil data file name e YSOM SUB organic matter subsoil data file name e YSOMFILETYPE type of organic matter data file DIRECT BINLLF BINLLV ASCLLV e LIMP SAND reads sand fraction in an existing PGD file e LIMP CLAY reads clay fraction in an existing PGD file e L IMP CTI reads topographi
20. V V EV V EG 01 EG 02 EG 03 EG 04 EG 05 EG 06 EG 07 EG 08 EG 09 EG 10 EG 11 V EG 12 LAI 01 LAI 02 LAI 03 LAI 04 LAI 05 LAI 06 LAI 07 LAI 08 LAI 09 LAI 10 LAI 11 LAI 12 20 01 20 02 20 03 20 04 20 05 20 06 20 07 20 08 20 09 20 10 DAT DAT DAT DAT DAT DAT DAT DAT DAT DAT DAT DAT DAT DAT DAT DAT DAT DAT DAT DAT DAT DAT DAT DAT DAT DAT DAT DAT DAT DAT DAT DAT DAT DAT DAT DAT DAT DAT DAT DAT DAT DAT DAT DAT DAT DAT CFTY CE TY CETY CITY CFTY CFTY CFTY CPFTY CFTY CFTY CE TY CF TY CFTY CE LY CFTY CFTY CFTY CFTY CETY CETY CFTY CETYPR CETY CFTY CFTYE CFTYP CFTYP CE TYP CHTYP CELYB CFTYP CFTYP GETS CFTY CETY CETY CFTY CFTY CRTYB CPFTIYPR OPTYBI CETYB_ CE LY Pe CETEYB lt GEILE CETYP Li U JE A We a EL DD Ei Ei Ed EH EH b Bd B BE pH pH op 400000000000 0 EGTYP EGTYP EGTYP EGTYP EGTYP EGTYP EGTYPE EGTYP EGTYP EGTYP EGTYP EGTYP LH U 1 U Lt U 1 U 1 U U 1 U Eal U LE U 1 U Ij mn A A A A A A A A A A 1 U FU ex PRPPRPPRPRPEP RB U U 0 UU U U OANA REW NE U te lt U Hr F U PRP NFO U P_LAI P
21. coefficient for momentum CH drag coefficient for heat CE drag coefficient for evaporation differs from CH only over sea ZO roughness length ZOH thermal roughness length e LSURF_VARS flag to save in the output file the surface specific humidity for each scheme on the four separate tiles on each patch of the vegetation scheme if existing The diagnosed fields are stands for the scheme considered nothing field aggregated on the whole surface name of a scheme e QS specific humidity e 2M MIN ZS flag for 2 meters quantities evaluated on the minimum orographyy of the grid 8 2 1 Namelist NAM DIAG SURFn 194 8 2 2 Namelist NAM WRITE DIAG SURFn Fortran name Fortran type values default value CSELECT array of string of characters ooo 4 e LSELECT if true it indicates that a selection will be used as output e CSELECT array containing the list of output fields e LPROVAR TO DIAG used to write out prognostic variables like diagnostic one on average over all patches 8 2 2 Namelist NAM WRITE DIAG SURFn 195 8 3 Diagnostics relative to the ISBA vegetation scheme 8 3 Diagnostics relative to the ISBA vegetation scheme 196 8 3 1 Namelist NAM DIAG_ISBAn Fortran name Fortran type default value LPGD logical FALSE LSURF EVAP BUDGET FALSE LSURF MISC BUDGET FALSE LPATCH BUDGET TRUE LWOOD SPIN FALSE LSOILCARB SPIN FALSE LPGD flag to save in
22. e LSOM SOM TOP SOM SUB clay sand organic matter e RUNOFFB orographic runoff coefficient e WDRAIN subgrid drainage coefficient e LCTI topographic index statistics TI MIN TI MAX TI MEAN TI STD TI SKEW ISBA GARDEN 226 Common fields GRID CONF PROJ CARTESIAN LONLATVAL XX YY DX DY LONLAT REG REG_LON REG_LAT GAUSS LATGAUSS LONGAUSS LAT_G_XY LON_G_XY MESHGAUSS e COVER FIELDS ZS e AVG ZS SIL ZS orography e SSO STDEV MIN ZS MAX _ ZS SSO ANIS SSO DIR SSO SLOPE subgrid orography HO2IP HO2JP HO21M HO2JM AOSIP AOSJP AOSIM AOSJM subgrid orography roughness e DUMMY GRd dummy fields e EMIS name emission data x y t Common fields 227 SEAFLUX e BATHY bathymetry SEAFLUX 228 FLAKE e WATER DEPTH WATER FETCH T BS DEPTH BS EXTCOEF WAT FLAKE 229 10 Example of namelist features 10 Example of namelist features 230 10 1 How to define a target grid amp NAM_PGDF ILE amp NAM PGD GRID amp NAM CONF PROJ amp NAM CONF PROJ GRID CPGDFILE PGDFIL CGRID E 2 5km AROM CONF PROJ XLAT0 46 401460686331625 XLON0 2 2000000000000273 PK 0 7241894422 XR XBI XLATCI XLONC NIMAX 588 ETA 0 00 EN 46 401460686331625 EN 2 2000000000000273 NJMAX 500 XDX 2499 7648911167489 XDY 2499 7648911167489 10 1 How to define a target grid E FRANCE 231 10 2 How to use ECOCLIMAP I This is th
23. in CEMIS_PGD_NAME DIRECT BINLLF BINLLV ASCLLV e CEMIS PGD AREA area of meaningfullness of the fields you have specified in CEMIS PGD NAME CALL NAT TWN SEA WAT LAN respectively for everywhere natural areas town areas sea inland waters land natural cover town For example oceanic emission of DNS is relevant on SEA e CEMIS PGD ATYPE type of averaging during PGD for the fields you have specified in CEMIS PGD NAME ART INV LOG respectively for arithmetic inverse and 4 10 1 Namelist NAM CH EMIS PGD 116 logarithmic averaging Example amp NAM_CH_EMIS_PGD NEMIS_PGD_NBR 2 CEMIS_PGD_NAME 1 COE NEMIS_PGD_TIME 1 0 CEMIS_PGD_COMMENT 1 C0_00h00 CEMIS PGD AREA 1 LAN CEMIS PGD ATYPE 1 ARI CEMIS PGD FILE 1 2 co 00 asc CEMIS PGD FILETYPE 1 2 ASCLLV CEMIS_PGD_NAME 2 COE NEMIS PGD TIME 2 43200 CEMIS PGD COMMENT 2 CO 12h00 CEMIS_PGD_AREA 2 LAN CEMIS_PGD_ATYPE 2 ARI CEMIS PGD FILE 2 2 co 12 asc CEMIS_PGD_FILETYPE 2 ASCLIV CEMIS_PGD_NAME 3 DMSE NEMIS_PGD_TIME 3 0 CEMIS_PGD_COMMENT 3 dms_cte CEMIS PGD AREA 3 SEA CEMIS PGD ATYPE 3 ARI CEMIS PGD FILE 3 dms asc CEMIS PGD FILETYPE 3 ASCLLV 4 10 1 Namelist NAM CH EMIS PGD 117 5 Initialization of the prognostic fields 5 Initialization of the prognostic field
24. number of forcing time steps during the run e forcing time step seconds year e month e day hour seconds longitude for each point of the domain degrees e latitude for each point of the domain degrees e altitude of each point of the domain m height of temperature forcing for each point of the domain m height of wind forcing for each point of the domain m 3 2 1 Forcing format in ASCII and binary cases 25 3 2 2 Forcing format in NETCDF case There is one file FORCING nc Dimensions e time e xx e yy Variables e time time units minutes since 1986 01 01 00 00 00 example e FORC TIME STEP forcing time step s e LON yy xx longitude degrees e LAT yy xx latitude degrees e ZS yy xx surface orography m UREF yy xx reference height for the wind m e ZREF yy xx reference height for the temperature m The forcing parameters are e Atmospheric temperature Tair time yy xx K e Atmospheric humidity Qair time yy xx kg m3 e Atmospheric pression PSurf time yy xx Pa e Rain precipitation Rainf time yy xx kg m2 s e Snow precipitation Snowf time yy xx kg m2 s e Wind speed Wind time yy xx m s e Wind direction Wind DIR time yy xx degrees from N clockwise e Long wave radiation LWdown time yy xx W m2 e direct short wave radiation DIR SWdown time yy xx W m2 e diffuse short wave radiation SCA SWdown time yy xx W m2 e flux of CO2 CO2air ti
25. scheme have to be set and state variable have to be initialized These two tasks are performed by mean of tools PGD and PREP which lead to create the initial file used in the simulation 3 1 The input files 23 3 2 forcing files 3 2 forcing files 24 3 2 1 Forcing format in ASCII and binary cases There are e one ASCII binary file by atmospheric parameter beginning by Forc_ one ASCII configuration file named Params_config txt The forcing parameters are e Atmospheric temperature Forc_TA txt Forc_TA bin K e Atmospheric humidity Forc_QA txt Forc_QA bin kg m3 Atmospheric pression Forc_PS txt Forc_PS bin Pa e Rain precipitation Forc_RAIN txt Forc_RAIN bin kg m2 s e Snow precipitation Forc_SNOW txt Forc_SNOW bin kg m2 s e Wind speed Forc_WIND txt Forc_WIND bin m s e Wind direction Forc_DIR txt Forc_DIR bin degrees from N clockwise e Long wave radiation Forc_LW txt Force LW bin W m2 e direct short wave radiation Fore DIR SW txt Fore DIR SW bin W m2 e diffuse short wave radiation Forc SCA SW txt Force SCA SW bin W m2 e flux of CO2 Forc_CO2 txt Fore CO2 bin kg kg The Forc files contain a line by forcing time step This line contains the value of the forcing parameters for each point of the user domain The Params config txt file contain following information Y N only in binary case to specify if the forcing data must be swapped number of points e
26. snae 157 63 1 Namelist NAM WATFLUXN ccs ssscssviscscsscessvaceeisdoscceassvasassddsoddeceseesedesdossectonsseossdessevesssossseads 158 6 4 FLAKE lake scheme Options sscasscsssescscsssisseisonsscoscossssscasoadsodastes eeessescssceosessssoosseessessosscsesenss 159 6 4 1 Namelist NAM FLAKER 50 teteerreeserrsdonsveerveedehsnendecendoendensndeerdocorenddrandededenonns deidad 160 6 5 ISBA vegetation scheme optionS essessesessossesossossessossesossossesossossesossoesessossssossossesossossesee 161 6 5 1 Nanielist NAM SGH ISBA Ii 3 siessvcsssiscscsccessoaseeisdoscecassvasassddeoddeceseesedesdossectensseossdessevesssoscdeads 162 6 5 2 Namelist NAM ISBAT oo renes tesoro aee ere A de eos ere rune 163 6 5 3 Nanielist NAM SURE DSE sscssssscsssisdssaseesseaceeisdoscasssostcsssdeeddocoseoscbesdesecctesusseassdessevesssoscdeads 165 6 5 4 Namelist NAM ASSTMI iioc epaniencs tisse aee Pha ep eL gano ne ho Reel ey UE ae eva sdosdeesssusseossdessesdosscsseeacs 166 6 5 5 Nanielist NAM AGRT eiie t asdscatecsioaceeisdosedearsvassssddeoddeceseessbesdosceetonnsscossdessevesssoscdeads 167 vi Table of Contents 6 5 6 Namelist NAM DEEPSOLL wesc sessecdsossssccocssessediodssecseaseedsstsdosdtesspessobesdossessonso ssendsvacecosvesesease 168 6 5 7 Namelist NAM TREEDRAQG csisisevccdscsesdssestesescssdscnsssncadsacosseudusseiseesdsscecessisedeseustesdavasvesnses 169 6 6 TEB town scheme Options neces torto ptor A 170 6 6 1 Namelist NAM A
27. that corresponds to experiment xxxx 3 then run successively 1 in src directory make user verify that VER_USER FORC and that corresponding profile file has been executed 2 in MY RUN FORCING directory prepare forcing bash to create input files related to your experiment 3 then go to SSRC SURFEX MY RUN KTEST xxxx and run pgd exe prep exe and offline exe 12 How to compile your own source for surfex 1 choose a name for your own source directory in src for example MYSRC Cp the sources from OFF LINE or SURFEX directories that you want to modify onto SRC SURFEX src IMYSRC 2 go to SSRC SURFEX src MYSRC and make your modifications 3 go to SSRC SURFEX src and launch successively export VER USER MYSRC Jconfigure conf profile_surfex LXgfortran SFX V7 2 0 MYSRC MPIAUTO DEBUG make user and make installuser New executable files for MYSRC will be created in exe directory 1 2 Export off line version of SURFEX from version 7_2 2 Overview of the externalized surface sequence The externalized surface facilities do not contain only the program to run the physical surface schemes but also those producing the initial surface fields before the run and the diagnostics during or after the run All these facilities are listed below and they separate in 4 main parts 2 Overview of the externalized surface sequence 2 1 The sequence 1 PGD routine pgd_surf_atm f90 this program computes the physiographic data file
28. to SSRC SURFEX MY RUN FORCING and run prepare forcing bash mytest 3 2 4 installation of an experiment 29 3 3 One example of off line surfex application This example is based on the situation of the 25 of October 2004 at O6UTC and covers a temporal period of 24 hours During this day an unstable weather was observed in France especially in the Southern part Here two different file formats are used as input for the externalized surface off line software Both are portable the first format is netcdf and the second is the ascii one Netcdf format has been chosen because of several participations of PILPS intercomparison projects that requires such format due to its portability It follows the Alma concept proposed by Polcher in 1998 3 3 One example of off line surfex application 30 3 3 1 netcdf format file 3 3 1 netcdf format file 31 3 3 1 1 FORCING nc For this experiment atmospheric forcing is extracted from French database named BDAP Base de Donnees Analysees et Prevues Data come from the analysis of surface parameters performed by Safran analysis system devoted to hydrological applications A constant value in space is applied for each gridbox 3 3 1 1 FORCING nc 32 3 3 1 2 list of parameters Variable name Dimensions Unit Description days hours minutes seconds since is YYYY MM DD HH MM SS Number_of_points Number_of_points degrees degrees Number_of_points m Reference_Height_for_Wind
29. to be used in MESONH it must only be factor of 2 3 or 5 e YSIZE number of grid points in J direction according to YINIFILE grid recovered by the new domain If to be used in MESONH it must only be factor of 2 3 or 5 e IDXRATIO resolution factor in I direction between the YINIFILE grid and the new grid If to be used in MESONH it must only be factor of 2 3 or 5 e IDYRATIO resolution factor in J direction between the YINIFILE grid and the new grid If to be used in MESONH it must only be factor of 2 3 or 5 4 3 2 3 Namelist NAM INIFILE CONF PROJ 81 4 3 3 Cartesian grids 4 3 3 Cartesian grids 82 4 3 3 1 Namelist NAM_CARTESIAN This namelist defines the projection in case CGRID CARTESIAN Fortran name Fortran type default value e XLATO reference latitude real decimal degrees e XLONO reference longitude real decimal degrees NIMAX number of surface points of the grid in direction x NJMAX number of surface points of the grid in direction y e XDX grid mesh size on the conformal plane in x direction real meters e XDY grid mesh size on the conformal plane in y direction real meters 4 3 3 1 Namelist NAM CARTESIAN 83 4 3 3 2 Namelist NAM INIFILE CARTESIAN This namelists defines the horizontal domain from an existing surface file in which grid type is CARTESIAN If nothing is set in the namelist a grid identical as the one in the file is chosen Fortran name Fortran t
30. txt file This field is represented on figure 3 6 GDS COLAAGES 288 3 288 287 7 287 4 287 1 286 8 286 5 286 2 285 9 285 6 72007 01 24 14 41 Figure 3 6 Initial surface temperature for vegetation taken from PREP txt file An other example shows the roof surface temperature over the working area Toulouse city is located roughly at x 15 y 22 3 3 2 2 PREP txt 39 T ROOF1 288 2 288 287 8 287 6 287 4 287 2 287 286 8 286 6 286 4 GraDS C LAAGES 7007 01 24 14 54 Figure 3 7 Initial surface temperature for the roofs taken from PREP txt file 3 3 2 2 PREP txt 3 3 2 3 Extracting 2d fields It s possible to extract 2d fields from PGD txt covers orography etc and from PREP txt initial prognostic variables like soil temperature profile soil water content profile etc For that purpose you need to run SXPOST tool located at the same place as PGD PREP and OFFLINE SURFEX_EXPORT src exe Input files for SXPOST are PGD txt or PREP txt if exists and a namelist containing the number of fields to be extracted the name and a flag indicating if the variable depends on patches or not The name of a given field is the name written in PGD txt or PREP txt file where characters SPMamp have been removed For example to extract orography the name of the field is ZS in SURFEX the mask over which it s defined can be FULL total gridbox To extract surface temperat
31. values by patch and LGARDEN for garden CPHOTO NON or CPHOTO AGS or CPHOTO AST LAI VEG ZOVEG PATCH DGI vegetation fraction surface roughness length fraction for each patch soil depth ZOREL orography roughness length CHORT SGH DICE soil ice depth for runoff VEGTYPE Pp fraction of each vegetation type for each patch RSMIN GAMMA CV RGL EMIS ISBA WRMAX CF minimum stomatal resistance coefficient for RSMIN calculation vegetation thermal inertia coefficient maximum solar radiation usable in photosynthesis surface emissivity coefficient for maximum water interception LSURF DIAG ALBEDO ALBNIR SOIL ALBVIS SOIL ALBUV SOIL ALBNIR ISBA ALBVIS ISBA ALBUV ISBA near infrared visible uv soil and total albedos LPGD is in namelists NAM DIAG ISBAn and NAM DIAG TEBn LGARDEN is in namelist NAM PGD SCHEMES CHORT is in namelist NAM SGH ISBAn LSURF DIAG ALBEDO is T for the run step ISBA amp GARDEN 223 Chemical diagnostics e NBEQ gt 0 CCH_DRY_DEP WES89 NAM CH SEAFLUXn NAM CH WATFLUXn NAM CH TEBn NAM CH ISBAn DV NAT name DV TEB name DV WAT name DV SEA name LCH BIO FLUX NAM CH ISBAn FISO FMONO isoprene and monoterpenes emission fluxes e CDSTYN Y FLX DSTd dust variables to be send to output Chemical diagnostics 224 9 3 Physiographic fields 9 3 Physiographic fields 225 ISBA GARDEN For GARDEN add TWN_ at beginning of fields names e CLAY SAND
32. vegetation eere 185 7 6 1 Nanielist NAM CH TS BA Iss iecsessscsssiscssaseesieccosisdoscssssovicassadeoadecoseoscbesdosecctesusseossdessevesssosebeads 186 7 7 Chemical aerosol scheme ORILAM uussussssssonssonsnnssnnssnnsnnssnnsnnnsnnssnnsnnnsnnssnnsnnnsnnssnnsnnnsnnnsnne 187 7 7 1 Namelist NAM CHS SORTEA DL isssssdscicccssusdebicdsvacenssvadescddesciucspsvscdindesetesesscbevasdisecsceseuseviods 188 vii Table of Contents 8 Externalized surface diagnostics csvecs sscdecssecssecscbindscatvessevsoutsiocacersyecsedeadedecetevgueeseadesdeveaseesenteds 189 8 1 Diagnostics relative to the general surface monitor eee e eee eene eere eee ene tn oe eno 190 8 1 1 Namelist NAM DIAG SURF ATM eese eee netto sten seta setae seen seen seen seen esten eaa 191 8 2 Diagnostics relative to the general surface monitor and to each surface scheme 192 8 2 1 Namelist NAM DIAG SUREFN ae voter pa o pua oed e evt vv ndi vetu eU Ee ee 193 8 2 2 Namelist NAM WRITE DIAG SUREn ane vene sos setas etae cooneoonseonseeosee 195 8 3 Diagnostics relative to the ISBA vegetation scheme eee eee esee eee eee ee ee eene eet enaee 196 8 3 1 Namelist NAM DIAG ISBAI csscscissscoscsssscesosssoccssesssonssscostonssoudsesessoscnseessovessecsssevssessonesss 197 8 4 Diagnostics relative to the TEB town scheme ceres eee eee eere e eene seen aset tn sese
33. will be cmputed at the surface FLUX ideal fluxes are prescribed The have to be set in the fortran routine init ideal flux f90 SEAFLX this is a relatively simple scheme using the Charnock formula CWATER scheme used for inland water The different possibilities are NONE no scheme used No fluxes will be cmputed at the surface FLUX ideal fluxes are prescribed The have to be set in the fortran routine init ideal flux f90 WATFLX this is a relatively simple scheme using the Charnock formula FLAKE this is lake scheme from Mironov 2005 e CTOWN scheme used for towns The different possibilities are NONE no scheme used No fluxes will be cmputed at the surface FLUX ideal fluxes are prescribed The have to be set in the fortran routine init ideal flux f90 TEB this is the Town Energy Balance scheme Masson 2000 with all the susequent ameliorations of the scheme e L GARDEN general flag to activate TEB GARDEN 4 2 1 Namelist NAM PGD SCHEMES 74 4 3 Definition of the grid Note that all the namelists presented in this section are ignored if the grid is imposed in the fortran code from an atmospheric model This is the case when one already have defined the atmospheric grid and one want to be sure that the surface has the same grid For example this is what happens in the MESONH program PREP_IDEAL_CASE when no physiographic surface file is used If you are in this
34. 0 05 UNIF D ROAD 1 0 05 UNIF D ROAD 2 0 4 UNIF D ROAD 3 0 1 WALL LAYER 3 UNIF_ALB WALL 0 2 UNIF_EMIS_WALL 0 97 UNIF_HC_WALL 1 2110000 UNIF_HC_WALL 2 2800000 UNIF_HC_WALL 3 2900000 UNIF_TC_WALL 1 1 51 UNIF_TC_WALL 2 0 08 UNIF_TC_WALL 3 0 05 UNIF_D_WALL 1 0 05 UNIF D WALL 2 0 4 UNIF D WALL 3 0 1 UNIF ZO TOWN alt UNIF BLD UNIF BLD HEIGHT 10 95 0 0 0 0 0 0 1 05 1 0 1 0 5 0 GRID LONLAT REG LONMIN LONMAX LATMIN LATMAX LON LAT B ii sO 065 0 c ce Mer ow NATURE ISBA 10 8 2 Uniform values prescribed 1d example with patches 250 CSEA SEAFLX CTOWN TEB CWATER WATFLX amp NAM_ZS XUNIF_ZS 113 amp NAM_ISBA XUNIF_CLAY 0 37 XUNIF SAND 0 37 XUNIF_RUNOFFB 0 5 CISBA 2 L CPHOTO NIT NPATCH 12 3 NGROUND LAYER 2 amp NAM PREPFILE CPREPFILE PREP amp NAM_PREP_SURF_ATM NYEAR 1986 NMONTH 1 NDAY 1 XTIME 0 amp NAM_PREP_SEAFLUX XSST_UNIF 285 NYEAR 1986 NMONTH 1 NDAY 1 XTIME 0 amp NAM_PREP_WATFLUX XTS_WATER_UNIF 285 NYEAR 1986 NMONTH 1 NDAY 1 XTIME 0 amp NAM PREP TEB XTI ROAD 285 XTI BLD 285 XTS ROAD 285 XTS ROOF 285 XTS WALL 285 XWS ROAD 0 X
35. 0 06 XUNIF ALBUV SOIL 5 0 06 XUNIF GMES 4 0 003 XUNIF GMES 5 0 003 XUNIF RE25 4 0 0000003 XUNIF RE25 5 0 000000 XUNIF BSLAI 4 0 06 XUNIF BSLAI 5 0 06 XUNIF LAIMIN 4 0 3 XUNIF LAIMIN 5 0 3 XUNIF SEFOLD 4 5184000 XUNIF SEFOLD 5 5184000 XUNIF GC 4 0 00025 XUNIF GC 5 0 00025 XUNIF DMAX 4 0 1 XUNIF DMAX 5 0 1 XUNIF F2I 4 0 3 XUNIF F2I 5 0 3 XUNIF H TREE 4 20 XUNIF H TREE 5 20 XUNIF CE NITRO 4 3 79 XUNIF_CE_NITRO 5 3 79 10 8 2 Uniform values prescribed 1d example with patches 248 XUNIF_CF_NITRO 4 9 84 XUNIF_CF_NITRO 5 9 84 XUNIF_CNA_NITRO 4 1 3 XUNIF_CNA_NITRO 5 1 3 XUNIF_RSMIN 7 40 XUNIF_RSMIN 8 40 XUNIF_GAMMA 7 0 XUNIF_GAMMA 8 0 XUNIF WRMAX CF 7 0 2 XUNIF WRMAX CF 8 0 2 XUNIF RGL 7 100 XUNIF RGL 8 100 XUNIF CV 7 0 00002 XUNIF CV 8 0 00002 XUNIF Z0 O ZOH 7 10 XUNIF Z0 O ZOH 8 10 XUNIF ALBNIR VEG 7 0 3 XUNIF ALBNIR VEG 8 0 3 XUNIF ALBVIS VEG 7 0 1 XUNIF ALBVIS VEG 8 0 1 XUNIF ALBUV VEG 7 0 0425 XUNIF ALBUV VEG 8 0 0425 XUNIF ALBNIR SOIL 7 0 3 XUNIF ALBNIR SOIL 8 0 3 XUNIF ALBVIS SOIL 7 0 1 XUNIF ALBVIS SOIL 8 0 1 XUNIF ALBUV SOIL 7 0 06 XUNIF ALBUV SOIL 8 0 06 XUNIF GMES 7 0
36. 00 YSEABATHY character LNB Fortran name Fortran type values YSEABATHYFILETYPE character LEN 6 DIRECT BINLLF BINLLV ASCLLV NETCDF none YNCVARNAME character WNB e XUNIF SEABATHY uniform value of bathymetry imposed on all points real meters If XUNIF_SEABATHY is set file YSEABATHY is not used YSEABATHY data file name If XUNIF SEABATHY is set file YSEABATHY is not used If neither XUNIF_SEABATHY and YSEABATHY is set then bathymetry is set to zero e YSEABATHYFILETYPE type of data file NETCDF YNCVARNAME name of variable to be read in NETCDF file 4 6 3 Namelist NAM_SEABATHY 105 4 7 Namelist for ISBA scheme 4 7 Namelist for ISBA scheme 106 4 7 1 Namelist NAM_ISBA Fortran name Fortran type values default value CISBA character LEN 3 2 L 3 L DIF CPEDO_FUNCTION string of 4 characters CH78 C084 CP88 W099 CH78 em hg O a xuni rono fer UNIE woran ed woran peee mes C O CA XUNIF_SOM real 1 E 20 wsom sus Jammere EN CS O A um clay jme id imeen jm oo TE SEE bonu faas fe CPHOTO string of 3 characters NON AGS LAT AST LST NIT NCB NPATCH number of patches used in ISBA One patch corresponds to aggregated parameters 12 patches correspond to separate energy budgets for all vegetation types present in ISBA 3 patches correspond to bare soil types low vegetation trees If C
37. 1 Q nj z M D WALL Q nj z M D WALL aa Hj nj 22 M_BLD Q H z z M WALL a a Hj nj Z Z M Z0 TOWN GOO E Ee Ale QM H WN Q Hj Z M_LE LECOCLIMAP CFNAM SEA CFNAM WATER CFNAM NATUR CFNAM TOWN CGRID LONMI LONMA LATMI LATMA LON LAT Z Z E x x lt CNATURI CSEA CTOWN CWATER LONLAT N 2 X N X XUNIF ZS x x x YS HY BLD_HEIGHT _ O_HOR _TRAFFIC M_LE TRAFFIC INDUSTRY INDUSTRY H L ee LL ISBA EAFLX S R TE EB E WATFLX D_ROOF DAT ALB_ROAD DAT EMIS_ROAD DAT HC_ROAD DAT HC_ROAD DAT HC_ROAD DAT TC_ROAD DAT TC_ROAD DAT TC_ROAD DAT D_ROAD DAT D_ROAD DAT D_ROAD DAT ALB_WALL DAT EMIS_WALL DAT HC_WALL DAT HC_WALL DAT HC_WALL DAT TC_WALL DAT TC_WALL DAT TC_WALL DAT D_WALL DAT D_WALL DAT D_WALL DAT ZO_TOWN DAT BLD DAT LD HEIGHT DAT _ O HOR DAT TRAFFIC DAT LE TRAFFIC DAT H INDUSTRY DAT LE INDUSTRY DAT Hd m W gt E Li SEA DAT WATER DAT NATURE TOWN DAT lza rj gt H 10 8 3 Surface parameters read from external files CETYP D_ROOF 3 CFTYP ALB ROAD CETYP CFTYP CFTYP CETYP EMIS_ROA HC_ROAD HC_ROAD HC_ROAD CFTYP TC ROAD CFTYP TC ROAD CFTYP C
38. 10 XO D 00 OY A c A A NMO sr 10 O D 00 DN A Sur RR d ND ge IMS AL See ep AUS IME RES DOR RR S PR Ne ae FIDA ONUS wet gems CR fe SRS SUIS NAT ee UNDO Re SA aS Rue Ry d oso POS S IS Ier aR INA GEM RUN ORS hg TR OR me ts LO LO LD LO LO LO LO LO LO LO XO XO XO XO XO XO XO XO XO XO XO XO XO XO XO XO XO XO XO XO XO XO XO XO XO XO Lo XO XO XO XO O XO XO Lo XO XO XO XO XO XO XO XO XO O gQudcdocduoudocouu U U U U U U U U U U HAHAHAHAHAHA OOV OD CD F4 FH FH Fd Fd Fd Fd FE FE FH FH HHHHHHHHHH ZA 2323232233 Bl B B Dd Ed E Ed d d Ed B Ed Gi CEE KE AK CK KK OO OO OO OOo oo 1 a3 3 3 2 gt El Ed El Ed BE Ed Bd Ed Ed HM gt gt gt gt gt gt gt gt gt gt gt gt 11 4 4 4 4 4 4 4 4 HH HN N N N N N N N PN bN N N El HA AH A El BR B B E depre pe de npe mr top b obs s zd he ele s ems ALT E des Mh be FA SE o a eb s b des RE abr d di des b de A E al o tl Ea Fu Bn Bn Bn Bn Eu Bu Bu Bu Bn Bn no Bu Eu Bu n B Bn n Bu Eu Bu n Bn Bn Bn Bu Eu Bu Bu B Bn ee Bu Bu Bn Bn Bn noB Bu Bu Bn Bn Bn noB Bn n n Bn Du fu HH F4 Fd Hd H4 oH HI Hd Fd Fd Fdo Hd Hd oH Fd Fd Fd Fdo Hd Hi HI FH FH Fd Fd Hd oH OH Fd OF Fd Fd Fdo Hd oH FH Fd Fd Fdo Hd Hd HI HE HI FH Fd Hd HI HI HIE HI HI HI HH A A A A A A A 2 2 2 2 2 2 z 2 2 2 2 2 2 2 22 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 22 LAA gd 4 45 4x 42 ED A ug Eu EEE ER EB ER ER ER EEE I IR 5 4 4 IE 49 I GE FE GE IH 4 IE X 45 x TE TB IH Dp IE x 49 4 I ER IH x
39. 11 XUNIF EMIS 4 12 XUNIF_DG 1 1 XUNIF_DG 1 2 XUNIF_DG 1 3 XUNIF_DG 2 1 XUNIF_DG 2 2 XUNIF_DG 2 3 XUNIF_DG 3 1 XUNIF_DG 3 2 XUNIF_DG 3 3 XUNIF_DG 4 1 XUNIF_DG 4 2 XUNIF_DG 4 3 XUNIF_ROOTFRAC 1 1 XUNIF_ROOTFRAC 1 2 OO 0 sos os OT OL SOL 01 05 197 Ly 515 15 01 Or 01 98 98 4 98 2 98 98 98 98 2 98 98 98 5 98 98 SO 60 60 01 60 60 OL 60 60 01 60 60 299925 999 s7 Ex cem puc RR 0 000 010 OD DOD ODD OO ODO ONO OOO 0 00 10 CO Y OO GI OOI d CC CX OD 0 0 0 0 O ee eee eee eee eee eee 10 8 2 Uniform values prescribed 1d example with patches DS ODS PS DS DS DS PS DI DS DS 0X 0S 0S DS DS 0S DI 0S DS DS 0S DI DS DS DI 0S 0S DS ODS 0S DI DS DS 0X PS 0S DS ODS 0S 0S 0S DS DS PS DI DS PS 0S PS 0S DS DS ODS DI DS DS NIF_VEG 8 7 NIF_VEG 8 8 NIF_VEG 8 9 NIF_VEG 8 10 NIF_VEG 8 11 NIF_VEG 8 12 NIF_LAI 8 1 NIF_LAI 8 2 NIF_LAI 8 3 NIF_LAI 8 4 NIF_LAI 8 5 NIF_LAI 8 6 NIF_LAI 8 7 NIF_LAI 8 8 NIF_LAI 8 9 NIF_LAI 8 10 NIF_LAI 8 11 NIF_LAI 8 12 NIF_Z0 8 1 NIF_Z0 8 2 NIF_ZO 8 3 NIF Z0 8 4 NIF Z0 8 5 NIF Z0 8 6 NIF Z0 8 7 NIF Z0 8 8 NIF Z0 8 9 NIF 20 8 10 NIF 20 8 11 NIF 20 8 12 NIF_EMIS 8 1 NIF_EMIS 8 2 NIF_EMIS 8 3 NIF_EMIS 8 4 NIF_EMIS 8 5 NIF_EMIS 8 6 NIF_EMIS 8 7 NIF_EMIS 8 8 NIF_EMIS 8
40. 2 1 4 Namelist NAM_NACVEG declaration of keys for ISBA assimilation scheme 2DVAR Bouyssel et al Fortran name Fortran type values default value News jme Je ramea fea Ja cust feat Jos sono feat fui sorm fea jo owe je sow je cwm je Loswo Jeu Los ei Livre Jena mur fu hmmoc e SIGNE MAX fea pz A El 3 0 2 2 1 4 Namelist NAM_NACVEG 2 2 2 in MESONH In this case MESONH FM files are used The parallelization of the surface fields is done during the reading or writing of the fields by the FMREAD and FMWRIT routines 2 2 2 in MESONH 17 2 2 2 1 Initialization of surface fields integrated in MESONH programs In MESONH there are usually 2 ways to produce initial files depending if you want to use real or ideal atmospheric conditions However from the surface point of view there is no difference between these 2 main possibilities of fields real e g from operationnal surface scheme in an operationnal model or ideal e g uniform whatever the treatment done for the atmospheric fields This is allowed because the same externalized routines corresponding to PGD and PREP are used In the case of realistic atmospheric fields the MESONH programs calling the surface are 1 PREP_PGD it uses the PGD facility of the surface 2 PREP_NEST_PGD surface fields are only read and rewritten except the orography that is modified the modification of the orography its
41. 2 4 1 ISBA scheme coefficient for maximum interception water storage capacity maximum solar radiation none available for photosynthesis 61 ratio of surface roughness lengths character CENAM Z0 O Z0H LEN 28 character CFTYP ZO O ZOH LEN 6 XUNIF ALBNIR VEG real character CFNAM_ALBNIR_VEG LEN 28 character LEN 6 XUNIF_ALBVIS_VEG real character LEN 28 CFTYP_ALBNIR_VEG CFNAM_ALBVIS_VEG character CFTYP_ALBVIS_VEG LEN 6 XUNIF_ALBUV_VEG real DIRECT BINLLF BINLLV ASCLLV none DIRECT BINLLF BINLLV ASCLLV none DIRECT BINLLF BINLLV ASCLLV vegetation near infra red albedo vegetation visible albedo vegetation UV albedo ZA 1 character CFNAM ALBUV VEG LEN 28 character CFTYP ALBUV VEG LEN 6 XUNIF ALBNIR SOIL character CFNAM ALBNIR SOIL LEN 28 character LEN 6 character LEN 28 CFTYP ALBNIR SOIL XUNIF ALBVIS SOIL CFNAM_ALBVIS_SOIL character CFTYP_ALBVIS_SOIL LEN 6 XUNIF_ALBUV_SOIL real none UE i DIRECT BINLLF BINLLV ASCLLV none DIRECT BINLLF BINLLV ASCLLV none DIRECT BINLLF BINLLV ASCLLV none none soil near infra red albedo ZA soil visible albedo soil UV albedo character CFNAM_ALBUV_SOIL LEN 28 character CFTYP_ALBUV_SOIL LEN 6 DIRECT BINLLF BINLLV ASCLLV Isba A gs parameters d
42. 25 0 2 0 15 0 1 1 5E 1 55E GDS COLAAGES we2 2004 OCT 25 12 UTC 20D7 01 24 18 11 3 4 1 Examples of prognostic variables output 44 Figure 3 10 Root layer water content after 12 hours of integration 293 291 289 287 285 283 281 279 277 275 273 1 5E 1 55E GDS COLAAGES Te 2004 OCT 25 06 UTC 207 01 4 14 07 Figure 3 11 Interception by vegetation water content after 12 hours of integration 3 4 1 Examples of prognostic variables output 3 4 2 list of available variables This list has been made by using vespa which is a tool that has been used to realize the plots of this document This is not the complete possible list since only the fileds that are present in netcdf ouput files are listed KKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKK KKKKKKKKKKK WV E SPA KKKKKKKKKKK Ck CK Ck Ck Ck ck Ck Ck kk Ck CI C KC I KK KK AAA AA ko ko XX V aluable P lot E xternalized S urface A pplication XX XX KKEKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKK KKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKK ISBA PROGNOSTIC VARIABLI GI ca ISBA DIAGNOSTIC VARIABLI TG1 Soil temp layer 1 WG1 Soil liqu WGI1 Soil icel TG2 Soil temp layer 2 WG2 Soil liquid layer 2 id layer 1 WGI2 Soil ice2 TG3 Soil temp layer 3 WG3 Soil liqu WGI3 Soil ice3 WR In WSNOW V R
43. 5 4 1 2 2 ideal physiographic fields These fields are either uniform fraction of each 215 ecoclimap ecosystem orography or any field needed by the surface schemes As mentionned above orography can be in the case of the coupling with an atmospheric model imposed as the atmospheric model non uniform field 4 1 2 2 ideal physiographic fields 56 4 1 2 3 realistic physiographic fields PGD can use files to build accurate physiographic fields from geographical information This is possible only if the grid chosen can be linked to geographical coordinates latitude and longitude Le if the grid type is LATLONREG or CONF PROJ The files that can be used are e A file describing the type of cover of the surface This describes where are located the different cover types forests towns seas etc At the time being the file provided contains the ecoclimap data 215 land covers on the world with a resolution of 30 PGD computes the fraction of surface coverage occupied by each type in the grid mesh From this information the surface parameter convenient for the surface schemes such as building fraction leaf area index etc are deduced using correspondance arrays a parameter has always the same value for a given cover type anywhere in the world e A file containing the orography GTOPO30 The resolution of the file is 30 on the world This allows to compute the model orography and the following subgrid scale or
44. A soil wetness index and total swi by layer TSWI T ISBA total soil wetness index over the soil column WGTOT T ISBA WGI T ISBA total water and ice content over the soil column CISBA DIF NAM ISBA TSWI S ISBA WGTOT S ISBA WGI S ISBA total soil wetness index water and ice contents over the surface 0 TSWI R ISBA WGTOT_R_ISBA WGI R ISBA total soil wetness index water and ice contents over the root zone 0 TSWI D ISBA WGTOT D ISBA WGI D ISBA total soil wetness index water and ice contents over the deep soil WSNOW T ISBA DSNOW T ISBA TSNOW T ISBA total snow reservoir depth and temperature CRUNOFF SGH or CRUNOFF DT92 NAM SGH ISBAn FSAT_ISBA soil saturated fraction CRAIN SGH NAM SGH ISBAn ISBA 217 ISBA 0 MUF_ISBA fraction of the grid cell reached by the rainfall LFLOOD NAM SGH ISBAn 0 FFG ISBA FFV_ISBA FF ISBA flood fraction over ground vegetation and total 0 FFLOOD ISBA PIFLOOD_ISBA grid cell potential flood fraction and floodplain inflitration LPATCH BUDGET previously defined fields for each patch 0 SWIL TSWII 0 HV PSNG PSNV PSN TALB 0 CSNOW 3 L or CSNOW CRO TS PATCH TSRAD PATCH SNOWLIQI SNOWTEMPI 0 WSNOW VEGT DSNOW VEGT TSNOW VEGT 0 CRUNOFF DT92 FSAT PATCH 0 LFLOOD FFG PATCH FFV PATCH FF PATCH o CPHOTO NON NAM ISBA GPP RESP AUTO RESP ECO gross primary production autotrophic respiration ecosystem respiration LAGRIP NAM_AGRI RRIS
45. A PESE e Pp koe degna Poena ERE Sesia siosio 171 6 7 IDEAL ideal flux scheme options ensen soon sosvsonvenncenseonseoneesvennvenseenseoneesnensvenneenseensen 172 6 6 1 Namelist NAM IDEAL BEUK cicessedscscesssesterscsvdeenassecasescoesesdesscisinsssscacdessicesescns esdaseitesises 173 7 How to run the externalized surface chemical schemes eere eere conc eene nn 174 Z1 Chemical settings control oe seceoesio eto oae eot nep s eher ES op ne send Poe epe aee ah Pete oa RE eee epe eine pide 175 LLN Namielist NAM CH CONTROL n ann reed 176 7 2 Chemical anthropogenic emissions seonsesvensvenncenseonseoneenvennvenncenseoneesvensvennvensennsen 177 7 2 1 Namelist NAM CH SURPFEY useccsis scecoresostes eeoseeetus sede eoo op ecu hehe Poe eo e ded voee dira 178 7 3 Chemical deposition over OCEAI 6ss0 sssscesieodosssserssssocseesscoessscosdeossoedseoescoscessossoscsenssodasteseeseoeass 179 7 3 1 Namehist NAM CH SEABPLUNXHR sten ee isanos soisi dai 180 7 4 Chemical deposition over lakes sans ensen soon cesveonvenncenseonseoneenvennvenncenseoneesnensrenneenseensen 181 74 1 Namelist NAM CH WATEL UX tics ccscssccssestcssudasicessnstsstadsvcsucessoncdisdesssstessossotsdicedscnsovsevieas 182 7 5 Chemical deposition over LOWNS sss soncenvconseoneesvennvenncenseonsesnennnennvenseenseonvesnensrenneensennsen 183 7 5 T Namehst NAM CH TEBA did 184 7 6 Chemical deposition and biogenic emissions over
46. ALBWAT real loas XALBCOEF TAO6 real joos7 XALBSCA WAT real joo XEMISWAT real Joss XALBWATICE real Joss XEMISWATICE real AT A XHGLA real li a XWSNV real bo XCFFV real Boo XZOSN real foor XZOHSN real looo XEMISSN snow emissivity e XANSMIN minimum value for snow albedo e XANSMAX maximum value for snow albedo e XAGLAMIN minimum value for permanent snow ice albedo e XAGLAMAX maximum value for permanent snow ice albedo e XALBCOEF TA96 coefficient used in th computation of albedo if TA96 option selected XALBSCA WAT water diffuse albedo XEMISWAT water emissivity e XALBWATICE sea ice albedo e XEMISWATICE sea ice emissivity XHGLA Height of aged snow in glacier case allows Pn 1 e XWSNV Coefficient for calculation of snow fraction over vegetation e XCFFV Coefficient for calculation of floodplain fraction over vegetation e XZOSN roughness length of pure snow surface m e XZOHSN roughness length for heat of pure snow surface m 6 1 1 Namelist NAM SURF CSTS 149 6 1 2 Namelist NAM SURF_ATM Fortran name Fortran type values default value amm feu oes wow a e Lu mms exa f Lusm Jem fe LDRAG COEFARP oge je oso gil m eats bmc m m m ex a t uw et bump ran joos uut ra O o ver jm oos zoem fan o max an po XDELTAMAX ma jo LLVAWUSTARO_ARP oge P a NEM IXVZIUSTARO
47. Averaged Snow Evaporation Heat Flux ER ISBA Averaged Canopy Water Interception Evaporation ETR ISBA Averaged Vegetation Evapotranspiration VAP ISBA Averaged Evapotranspiration 1 1 tj DRAIN ISBA Averaged Soil Drainage Flux RUNOFF ISBA Averaged Supersaturation Runoff CH ISBA Averaged thermal diffusion coefficient HV ISBA Halstead coefficient ZOREL Output ZOREL VEGTYPE PATCH 1 fraction of vegetation type 1 VEGTYPE PATCH 2 fraction of vegetation type 2 VEGTYPE PATCH 3 fraction of vegetation type 3 VEGTYPE PATCH 4 fraction of vegetation type 4 VEGTYPE PATCH 5 fraction of vegetation type 5 VEGTYPE PATCH 6 fraction of vegetation type 6 VEGTYPE PATCH 7 fraction of vegetation type 7 VEGTYPE PATCH 8 fraction of vegetation type 8 VEGTYPE PATCH 9 fraction of vegetation type 9 VEGTYPE PATCH 10 fraction of vegetation type 10 VEGTYPE PATCH 11 fraction of vegetation type 11 VEGTYPE PATCH 12 fraction of vegetation type 12 ISBA PHYSIOGRAPHIC VARIABLES VEG Output vegetation fractio ZO ISBA Output Z0 ISBA LAI Output LAI ISBA A A D LBNIR_SOIL Output_ALBNIR_SOIL LBVIS_SOIL Output_ALBVIS_SOIL TEB PROGNOSTIC VARIABL GI un T_ROOF1 Roof_Temperatur
48. Bn Fn PB Bu Bn Bu Bu Bn Fu Eo Bn Bu Eo Bu Bn Dn B Bn Bn B Bn Bn PF Bu Bn Bu Bu Bn PB fo Bn Bu fo Bn Bn fo BE Bn Bn BE Bn Dn Bu fu F4 ob ob oH oH oH HI H lH IH lE IH lH oH HII HI IH HE nn nn HI HI HI HI Be HH H H ZZZZZZZZAZAZAZAZAZAZAZAZAZAZAZAZAZAZAZAZAZAZAZAZAZAZAZAZAZAZAZAZAZAZAZAZAZAZAZAZAZAZAZAZADZ A ped al speak et spade ETE ed quA tm Eis e Te e A IED Rods np gtd uh quA D LEON SR goat ER GRAL Euh Go oed et ip eh oe MG A poc Gud LEG spat RD el a quae Rd A IED pa peak xxx KK XK KKK ODS v4 KKK KKK ODS v4 v4 KKK KKK v4 v4 KK KKK ODS v4 v4 KKK KKK KKK KKK DE 244 10 8 2 Uniform values prescribed 1d example with patches ROVEN NI FR tein ERS Ds PRI OMEN Ret atte dee ike tera A Re GRE Rs tee SOR KNN JE ANT o ERS o ER OO OO CO CO CO OO 00 OO PP Cd 04 c4 cd LO LO LO LO 1 AHH OO OO CO OO OO CO CO OO CO COO O00 0000 01 OY O a 100 O1 OV as a 1 1 1 1 1 NN OOOOO FA AA HDDDODDDDDDD DDD 0 0 0 0 r0 9 0 8 DOO Quu oOoDooo 000 000 540 0 MM O0 Oo O0 Q o 0 odo O0Ooo cD oodc ooou oxc yo go og gw gw Ww W W W W Ww Ww Ww W Wm W Ww Ww W W W W Ww Ww Ww HW W W Wm Ww dw Ww W W W Ww Ww Ww Ww W m W Ww Ww Ww Ww m m Wm Ww Ww Ww M A O HN AAR AR ROAR RRR ROTA AAR AR AR ORR RRR OTN AAR AR AR OR RRR ROUTAN AAR aa a 0 CO st LO O O0 DN c c c c ON MO HLN XO no DN c A c c _ N MO HLN XO D DADA A c A NMO s
49. C 11 0 0002 XUNIF_DMAX 10 0 1 XUNIF_DMAX 11 0 1 XUNIF F2I 10 0 3 XUNIF F2I 11 0 3 XUNIF H TREE 10 20 XUNIF H TREE 11 20 XUNIF CE NITRO 10 3 79 XUNIF_CE_NITRO 11 3 79 XUNIF_CF_NITRO 10 9 84 XUNIF_CF_NITRO 11 9 84 XUNIF_CNA_NITRO 10 1 3 XUNIF_CNA_NITRO 11 1 3 amp NAM DATA TEB NROOF LAYER S XUNIF ALB ROOF 0 2 XUNIF EMIS ROOF 0 97 XUNIF HC ROOF 1 2110000 XUNIF HC ROOF 2 2800000 10 8 2 Uniform values prescribed 1d example with patches 249 amp NAM_FRAC amp NAM_PGD_GRID amp NAM_LONLAT_REG amp NAM_PGD_SCHEM ES DS DS DS DS DS ODS ODS DI DS PS DS PDS DI DS DS ODS 0S DS PS ZA OPS DI DS ODS 0S 0S DS DS ODS ODS DS A ODS ODS DS DS DS DS PDS C ZZ Xxx x C xx KM E UNIF WALL O HOR UNIF H TRAFFIC UNIF LE TRAFFIC UNIF H INDUSTRY ECOCLIMAP F UNIF SEA UNIF TOWN UNIF NATUR lza UNIF_LE_INDUSTRY 0 UNIF_WATER 0 0 1 UNIF_HC_ROOF 3 2900000 UNIF_TC_ROOF 1 1 51 UNIF_TC_ROOF 2 0 08 UNIF_TC_ROOF 3 0 05 UNIF_D_ROOF 1 0 05 UNIF_D_ROOF 2 0 4 UNIF_D_ROOF 3 0 1 ROAD_LAYER 35 UNIF ALB ROAD 0 2 UNIF EMIS ROAD 0 97 UNIF HC ROAD 1 2110000 UNIF HC ROAD 2 2800000 UNIF HC ROAD 3 2900000 UNIF TC ROAD 1 1 51 UNIF TC ROAD 2 0 08 UNIF TC ROAD 3
50. D ROAD real road layers depth m character CENAM D ROAD LEN 28 mt CFNAM_TC_ROAD wm A le DD 25 e Tan DIRECT CFTYP_D_ROAD EN BINLLF BINLLV 5 ASCLLV XUNIF ALB WALL wall albedo character GENAMCADBOWALEe ENS NEN NEN DIRECT character wall emissivity CFTYP_ALB_WALL BINLLF BINLLV mM LEN 6 ASCLLV wall layers heat J K m 5 5 5 5 5 5 5 5 5 5 o O O O O XUNIF_EMIS_WALL real character CFNAM_EMIS_WALL LEN 28 character DIRECT BINLLF CFTYP EMIS WALL LEN 6 BINLLV ASCLLV character ous EN NENNEN NEN character DIRECT CFTYP_HC_WALL LEN 6 BINLLF BINLLV none i ASCLLV XUNIF_TC_WALL real character CFNAM_TC_WALL LEN 28 character DIRECT BINLLF LEN 6 BINLLV ASCLLV XUNIF D WALL real character CFNAM D WALL LEN 28 lL DIRECT ZA wall layers thermal none Ms conductivity wall layers depth character BINLLF BINLLV XUNIF_H_TRAFFIC real none anthropogenic 2 sensible 4 1 2 4 2 TEB scheme 67 5 5 5 5 5 5 5 5 5 5 o o o o O CFTYP_TC_WALL CFTYP_D_WALL E 5 E 3 heat fluxes due to traffic character CFNAM_H_TRAFFIC LEN 28 character CFTYP_H_TRAFFIC LEN 6 XUNIF_LE_TRAFFIC real character CFNAM LE TRAFFIC LEN 28 character CFTYP_LE_TRAFFIC LEN 6 XUNIF_H_INDUSTRIES real character CFNAM_H_INDUSTRIES LEN 28 character CFTYP_H
51. EUIL irrigation threshold CPHOTO NCB and LWOOD SPIN NAM DIAG ISBAn INCREASEI TAU WOOD biomass increase for each layer wood turnover time CRESPSL CNT NAM PREP ISBA CARBON and LSOILCARB SPIN NAM DIAG ISBAn TURNOVERI biomass turnover LTR ML NAM ISBA 0 FAPAR FAPIR FAPAR BS FAPIR BS DFAPARC DFAPIRC fapar and fapir of vegetation of bare soil and cumulated from 0 UTC DLAI EFFC cumulated effective LAI LPGD values by patch CISBA DIF 0 DROOT_DIF DG2 DIF RUNOFFD DTOT_DIF ROOTFRACI root depth dg2 depth runoff depth total soil depth for moisture root fraction by layer 0 W33 moisture threshold for bare soil evaporation not by patch WSATI WFCI WWILTI soil porosity field capacity wilting point by layer not by patch LAGRIP AND CPHOTO LAT or CPHOTO LST or CPHOTO NIT or CPHOTO NCB 0 TSEED TREAP dates of seeding and reaping 0 IRRIG WATSUP flag for irrigation water supply during irrigation process e LPROVAR TO DIAG NAM WRITE DIAG SURFn TGI ISBA WGI_ISBA WGII ISBA WR ISBA LGLACIER CE STO ISBA ASNOW ISBA CSNOW 3 L or CSNOW CRO WSNOW 1 ISBA DSNOW 1 ISBA TSNOW Il ISBA CPHOTO NON and CPHOTO AGS and CPHOTO AST LAI ISBA 218 ISBA 219 SEAFLUX LPROVAR_TO_DIAG NAM_WRITE_DIAG_SURFn or LINTERPOL SST NAM_SEAFLUXn SST sea surface temperature e LDIAG OCEAN NAM DIAG OCEANn TOML SOML UOML VOML DOML mean temperature sali
52. FTYP CFTYP CFTYP ALB WALL CFTYP TC ROAD D ROAD 1 D ROAD 2 D ROAD 3 CFTYP CFTYP CETEYP 4 CITY CFTYP TC WAL EMIS WA HC WALI HC WALL HC WALI CFTYP TC WALL CFTYP TC WALL CFTYP D WALL 1 1 CFTYP_D_WALL 2 CFTYP_D_WALL 3 CFTYP_ZO_TOWN CFTYP_BLD CFTYP_BLD_HEIG CFTYP WALL CFTYP H O H TRAFFI CFTYP LE TRAFE CFTYP H CFTYP LE CFTYP SEA CFTYP WAT El po CFTYP NATUR CFTYP TOWN 255 GI INDUST INDUS amp NAM_ISBA XUNIF_CLAY XUNIF_SAND XUNIF_RUNOFFB UON wha amp NAM PR EPFILE amp NAM PREP SURF ATM amp NAM PR EP SEAFLUX amp NAM PREP WATFLUX amp NAM PR amp NAM PR amp NAM PR EP TEB EP ISBA EP ISBA SNOW CISBA CPHOTO NPATCH OO 0 3 L NON NGROUND_LAYER 3 CPREPFILE PREP NYEAR 2004 NMONTH 10 NDAY 25 XTIME 21600 XSST_UNIF 285 NYEAR 2004 NMONTH 10 NDAY 25 XTIME 21600 XTS_WATER_UNIF 285 NYEAR 2004 NMONTH 10 NDAY 25 XTIME 21600 XTI_ROAD 285 XTI_BLD 28 XTS_ROAD 28 XTS_ROOF 28 XTS_WALL 28 XWS_ROAD 0 XWS_ROOF 0 NYEAR 2004 NMONTH 10 NDAY 25 XTIME 21600 XHUG_SURF 0 2 XHU
53. G ROOT 0 2 XHUG_DEEP 0 2 MTG SURE 285 XIG ROOT 288 XTG_DEEP 292 NYEAR 2004 NMONTH 10 NDAY 25 XTIME 21600 CSNOW 13 L 10 8 3 Surface parameters read from external files 256 amp NAM IO OFFLIN LH amp NAM DIAG SURFn amp NAM DIAG SURF ATMn amp NAM DIAG ISBAn amp NAM DIAG TEBn amp NAM SGH ISBAn amp NAM ISBAn NAM CH ISBAn NAM SEAFLUXn H SEAFLUXn NAM CH WATFLUXn NAM CH TEBn WEE CHO WIRE ee Ae et D z Q LPRINT T CFORCING_FILETYPE NETCDF CSURF_FILETYPE LFI y CTIMESERIES_FILETYPE NETCDF LWRITE_COORD T N2M LFRAC LPGD CRUNOFF CROUGH CSCOND CALBEDO CC1DRY CSOILFRZ CDIFSFCOND CSNOWRES CCPSURF CCH_DRY_DE CSEA_ALB CCH_DRY_DE CCH_DRY_DE CCH_DRY_DE LSURF BUDGI E y LSET FORC ZS T LSURF EVAP BUDG LSURF MISC BUDGI LSURF MISC BUDGI 7 N Ej Ej Dd Dd H Il Gl Gl H Ej H Il WSAT 04D P89 HK mj nj e a WES89 TA9 6 WES89 WES89 WES89 10 8 3 Surface parameters read from external files H 257
54. HI HI IH HI HI H IH MH ZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZ J 4 35 A X23 E ER EN A AS O A A A EA EEE ER EIER A NE OEE VAR HS EEE pS ER 13 EG nd xxx KK XK KKK KKK KKK KKK KKK KKK KKK KKK v4 v4 KKK KX bi RT ce c ce cb ce LO 10 LD 10 10 c c c 00 OO We WO CO CR ces SO A A E alge CS uS eae CRUE DEI CANC O RS PC ET ae O GC CO LORS TE CAS cie ctor Cr CO LEE umb el et ee C C9 OY OX OQO OQO 0 00 f ic Oo X QOO Q 10 00 0 CX C 0 1 00 Orn O CX OOS 0E Oo OOS OQ CO I g og wg Wy gp Ww Ww Hg W W Hn HW W W Hn HW W W WH W Ww HW A H W d HW Ww d HH HW Ww W HH HW Ww d i de uisa ee ee ee ee E O H N A A A A dent bie ar c4 NM TWO Oh OD A a a A A A A A A A A A OD dd NA A A A A A A A A OD dd ON a A A A A A A A A O AN SSS ANA A ar AN M si LO WO D OO O c rc c c ON M sP LO OP WDA c c c c ON OD si LO VORP WA c c ce c CN Ef m ee ee BR D On EI Bl ee E amp Re A ks OX Om Date bee MI Me RD Aen CONCI RS DA CON kG A E E cen Ce UN a as AUI ORO Ce oe E E amp i i QJ i QU QU QU QU Qu A ec ec c c ce o c e e e oe en ocn eB o eB eB e e e em e e oe en ocn ce eB eB eB oe oe eB n n n mH dd DA DA DA DA DA pd DA DA DA DA DA DA a E E OO IS A Dobbe nn CQ VW VW VW VW VW VVW u u WWW CO CO HI HI HH HH HH HH HH H H E RE AA Ed Bd FE B pd B BE Bd Bd Bl Bd B Bl B1 E Bd CLEO OO OO 0o000050505702 53 a b ata Da a La at o o e o o d a Di D Dun t t t eek le Bah Bn Dn B
55. IE x ek P4 04 DS ODE PX P4 ODE PX ODE ODS ODE DE PX ODE ODE DE DE PX PX PX ODE ODE PX X X PX PX P4 P4 DX X PX DE PX PX DE PX DE ODS DE PX P4 DE DE ODE DE DE PX PX DE DE ODE DE DE DE DX Er ee Se E AM Rd CoU HD AS WI UR Re SUASIT ES ES IN AS TIAS OO OO CO CO OO 00 OO A er RE cA E Cd 04 c4 cd LO LO LO LO LD c4 c4 rd OO OO OO OO OO CO COO OO CO COO D OO OO 00000 OO a AN D D OY O a a 1 1 1 1 1 1 A OOOOO A HAH HDD DODDDDDDADAAD N ooooooooooooo0o0o0o0o0o000000o0c0o Tnnvvvovoooooooooooooooo00o000000000 D EN ER REN O HN AAR ROR ORR RRR OTN AAR RR AR ORR RRR OTN AAR AR AR ORR RRR OTN aaa a a 0O0 CO st LO O DADA c A c ON MO st 10 O D 00 D c A c c NO HLN XO D 00 OS A A c A NM s 10 O 00 OY A c A dn NMO st no N e c C EX cM x M c t DE M cac E t Wu c NE A I cU cM x MEM Et Cd cd c c c c c c e oc NO NNN N N N N N N NN NN NN NN N NN NN NN OI N N NN OI OI OI NN COL OI OI NNN ON ON AA gucdcdoduououo uU U U U U U U U U U u HAHAHAHAHAHA DOOD H FH FH FH FH AH FH FE FH H Hi Ho H H H H H H H H A 2 2 2 3332 23 B B Bd Bd Bd B Ed Bd Bd Bd Ed Ed Go d Kd EE KE K K K K Kj O O OOOOOoOOoOOoOoOoOoOoOoOZZ2zZzZzSZ ESZ SSZ IS2A XS Ed Ed El Ed FE Ed Bd Ed Ed BR ppp gt gt gt gt 11 4 4 4 4 4 4 4 4 4 4 HA N N NN NON BN N NN NN El El B BE BRE a A DB kae a EIS i oe did ete OO AIR es e n dee Mord deae PT osse S RC e sb NEN Ea Fu Fn Bn Bn Bn Bu Bu Bu Bu Bn Bn Bn Bu a B Bn Bn Bu Eu Bu Bu Bn B
56. INE eer hene idv 234 10 5 How to initialize variables from grib file ecce eee eee eene ee eene eene seen eee en se etan 235 10 6 How to initialize main ISBA scheme options eee e eere ene e eere eee enne etant ense teens eeu 236 10 7 How to get lake temperature profile as output eere eee eene eere eee en eene en oe coen 237 10 8 user defined surface parameters 238 10 8 1 Uniform values prescribed 1d example without patches 239 10 8 2 Uniform values prescribed 1d example with patches 244 10 8 3 Surface parameters read from external files ans eo onse ecce eee eee ee eene seen ee eeen 253 1 How to install the software 1 How to install the software 1 1 Export off line version of SURFEX until version 7 1 included Instructions to install surfex on a linux PC and to run a Id example I select a directory where installation has to be done for example HOME or HOME MYDIR where MYDIR is an existing directory if not it has to be created by the user From now on it is supposed that the user has defined aMYDIR directory download EXPORT v7 1 gz and move it into 5HHOME MYDIR EXPORT_v7 1 gz extract files from archive tar zxvf EXPORT v7 1 gz or gunzip EXPORT v7 1 gz and then tar xvf EXPORT v7 1 tar at this stage directory EXPORT v7 1 is created in MYDIR and contains all software peaces initialize environment varia
57. INTERPOL TS interpolate monthly SST to daily SST function interpol quadra e XICHCE coefficient used in the Ecume formulation computation of exchange coefficients over sea 6 2 1 Namelist NAM SEAFLUXn 155 6 2 2 Namelist NAM SURF SLT Fortran name Fortran type values default value CEMISPARAM SLT string of 5 characters Vig0l Sch04 Sch04 e CEMISPARAM SLT One line sea salt emission parameterization type This namelist gives the distribution of emitted sea salt of SURFEX For Each paramterization type a geometric standard deviation and a median radius is given See the code init sltn f90 MesoNH or init sltn mnh AROME ALADIN for values associated to these parameterizations Note that if the defaut value is change it is necessary to uses the same modes in the sea initialisation in the atmospheric model It concerns the value of XINIRADIUS SLT initial radius XINISIG SLT standard deviation and CRGUNITS mean radius definition to have the same aerosol size distribution emitted and in the atmosphere It is possible to do it directly in the fortran code modd salt mnh in case of aladin arome modd salt f90 for MesoNH or for MesoNH only change the values of these variables in NAM AERO CONF prep real case or prep ideal case 6 2 2 Namelist NAM SURF SLT 156 6 3 WATFLX inland water scheme options 6 3 WATFLX inland water scheme options 157 6 3 1 Namelist NAM WATFLUXn Fortran name Fortran type values
58. LECT 7 WUHAN OB NE MER LIT oN ON ON OM oM TW 1 TW 2 IW 3 TW 4 TW 5 TW 6 TW_7 0 0 F 0 0 0 0 0 237 10 8 user defined surface parameters Ecoclimap is not used LECOCLIMAP F Information is not read from databases but the usern defines his own surface parameters Uniform field is used in this 1D case 10 8 user defined surface parameters 238 1d example Q DA MM 0 c 10 XO M st WM EUR OO c s WO O0 N sf 1O DE QI M LD N RR ono oa a a SSSR m NN ON CON CON ON S OS ON ON a SU QN OO s OO XO O0 D cJ cJ c LO LO LM WM WM 10 10 10 10 10 10 1 OY O O 0000010000000 HH M M 1 1 1 1 M M M1 ODOOOOOOOONANAN NAN AN AN AN NN NN NANO o yog g gm wg Ww WW oW W Ww Ww Ww Ww W m Ww Ww Ww Ww W wW W W Ww Ww Ww HW W W Ww Ww Ww Ww W Wn Ww Ww Ww HW wm m Wm Ww Ww Ww M Am Q AAA REDE OH ed QN M HF LD XO O0 D A A 4 aaa HA p PS E n SR A CP O A M ED E E aps ij O AN a A lt lt OO dd NN mn A A c CY UY E E EJ Ed FE Fd Ed E Ed Ed A e NM SL OR DD c c c c QOO HN OP 000 A A AA AR OAR OAR OAR OR OAN NK D Di A Qi DU ayas mo nyna o Nin K NN amp nd NN OO si LO XO OD c c c c c Pd pd pd pd pd pd pd pd pd pd pd pd ced c ce c cd oc ce c c c ci cd c c oc cd c c c n c on cec s N N NN N S OR SSSR UR T C fu do I9 ata qe qo CES MES qb A CES ester SS A ee UA E PRE Pr o RE RP ee Se S en
59. LEN 6 root depth CFNAM_ROOT_DEPTH CFTYP_ROOT_DEPTH XUNIF_GROUND_DEPTH CFNAM_GROUND_DEPTH CFTYP_GROUND_DEPTH XUNIF_ROOT_EXTINCTION CFNAM_ROOT_EXTINCTION CFTYP_ROOT_EXTINCTION XUNIF_ROOT_LIN character LEN 28 DIRECT BINLLF BINLLV ASCLLV character LEN 6 ground depth for i hydrology character LEN 28 DIRECT BINLLF BINLLV ASCLLV character LEN 6 root extinction percentage real character LEN 28 DIRECT BINLLF BINLLV ASCLLV character LEN 6 root linear parameter real E 4 1 2 4 1 ISBA scheme 60 character LEN 28 CFNAM ROOT LIN DIRECT character CFTYP_ROOT_LIN LEN 6 ASCLLV BINLLF BINLLV parameters depending on number of vegtypes only default eu description unit value resistance character CFNAM_RSMIN LEN 28 character CFTYP_RSMIN LEN 6 XUNIF_GAMMA real character CFNAM_GAMMA LEN 28 character CFTYP_GAMMA LEN 6 XUNIF_WRMAX_CF real DIRECT BINLLF BINLLV ASCLLV DIRECT BINLLF BINLLV ASCLLV obs coefficient used in the 0 computation of RSMIN character CENAM WRMAX CF LEN 28 character CFTYP WRMAX CF LEN 6 XUNIF RGL CENAM RGL character LEN 28 CFTYP_RGL character DIRECT BINLLF BINLLV ASCLLV DIRECT BINLLF BINLLV ASCLLV DIRECT BINLLF BINLLV ASCLLV character LEN 6 4 1
60. LEPGD_ISBA CTYPEPGD 5 6 1 Namelist NAM_PREP_ISBA 133 string of 6 MESONH GRIB ASCII LFI CFILEPGDTYPE in characters i NAM PREP SURF ATM NYEAR integer none e XHUG SURF uniform prescribed value of liquid soil water index SWI for the surface soil layer This prescribed value if defined has priority on the use of CFILE_HUG and CFILE_ISBA data e XHUG ROOT uniform prescribed value of liquid soil water index SWI for the root zone soil layer s This prescribed value if defined has priority on the use of CFILE HUG and CFILE ISBA data e XHUG DEEP uniform prescribed value of liquid soil water index SWI for the deep soil layer s This prescribed value if defined has priority on the use of CFILE HUG and CFILE ISBA data e XHUGI SURF uniform prescribed value of ice soil water index SWI for the surface soil layer This prescribed value if defined has priority on the use of CFILE HUG and CFILE ISBA data e XHUGI ROOT uniform prescribed value of ice soil water index SWI for the root zone soil layer s This prescribed value if defined has priority on the use of CFILE HUG and CFILE ISBA data e XHUGI DEEP uniform prescribed value of ice soil water index SWI for the deep soil layer s This prescribed value if defined has priority on the use of CFILE HUG and CFILE ISBA data e CFILE HUG SURF name of the file used to define the liquid soil water index SWI for the surface soil layer e CFILE H
61. LF BINLLV ASCLLV e COROGTYPE type of orography string of 3 characters 2 AVG mean orography ENV envelope relief defined from mean orography and the subgrid orography Ze XENV eo standard deviation as SIL silhouette relief defined as the mean of the two subgrid silhouettes in directions x and y if two main directions can be defined for the grid chosen MAX maximum orography over grid box avoid averaging in case of sea land grid box e XENV enhance factor in envelope orography definition real e LIMP ZS reads orography from an existing PGD file 4 6 1 Namelist NAM ZS 103 4 6 2 Namelist NAM GAUSS INDEX This namelist computes the gaussian grid indices once and for all Fortran name Fortran type values default value INDEX 100K ohne anne pg t E CE NM GENE pe 1 gum e LINDEX STORE flag to write out gaussian grid indices in a binary file eL STOP PGD flag to stop PGD execution once the binary file containing the gaussian grid indices is ready e YINDEX_1KM name of the file where gaussian grid indices at 1 km resolution are written YINDEX 10KM name of the file where gaussian grid indices at 10km resolution are written YINDEX 100KM name of the file where gaussian grid indices at 100km resolution are written 4 6 2 Namelist NAM GAUSS INDEX 104 4 6 3 Namelist NAM_SEABATHY This namelist defines the bathymetry file default value XUNIF_SEABATHY real 3
62. LO XO O0 DN Ad dd NM HNO 0D c Add NMO st 10 XO 00 O c n dn dn COLO sf 10 OP 00 O cH dn n NMS WMO Mule i ree Rd Sansen aen Pion RE CE O Une gee goa AE S RS me ur rr E RED DR On STE Ne ec IRIS em ONSE ER Re SRE Sm Oe te P RE ont a RS ce ETS SO Om o D D D D D o D D D D OD D D D D D D D DoD D D D D D DoD D D D D D DoD D D D D D o D D D D OO OO CO OO oou U U U U U U U U U U U M HH 00 0 00 00 0 0C LU DV HI Hl HO HA HH H AAH HF H H H H H H H H H H H 0 0 0 0 0 0 SSO E E E Ed Ed Ed Bd Ed Ed Ed Ed G k Gi KE i AK Ki KG OO OO OO00O000900 323 23 2 2 2 gt gt 23 2 gt gt HH EH El EH A Hp PP D gt gt gt gt 4 4 4 4 4 4 4 4 4 4 4 4 N NN N N NN N N N NN E HH Rl BE Bd Ed Ed A Bd B 5 05555 KR N D o PO S RCE EEE a FE A PO OA EFT Ed sede zs me Pope de doce al al Ea Fu Bn Bn Bn Bn Fs Bu Bu Bn Bn Bn Bn Bu Eu Bu n B Bn Bn Bu Eu Bu Bn Bn Bn Dno Bu ee Bu Bu B Bn Bn Bn Bn Bu Bu Bn Bn Bn Bn ee Bu Bn Bn Bn noB Bn Bu n Bn Du fu Fd F4 Fd Fd Hd H4 HI HI Hd OF Fd Fd oH oH oH Fd OF Fd Fd oH Hd oH Hd OF Fd Fdo Hd Hd oH FH OF Fdo Fd Fd oHd oH oH Fd Fd Fdo Hd Hd HI HIE HI FH Fd Hd HI HI HI HI HI HI HH AA A A A A A A A A A A 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 22 gt gt 4x qu 49 4 4x 4 DD 34 9 A 9 D D En EB A EB EB 45 x 4 2 4 4 IE ER IE IE FE GE IH 4 4 SY I I 4 5 4 x 4 9 x 49 a IE 3 49 x IE GE 43 x 2 P4 04 ODS ODS PX P4 ODE PX ODE
63. M PREP TEB 141 e CFILE WS name of the file used to define the soil water reservoirs The use of a file or prescribed value of XWS ROAD and XWS ROOF has priority on the data in CFILE WS file e CTYPE WS type of the CFILE_WS file if the latter is provided CTYPE WS must then be given The following values are currently usable MESONH the file type is a MESONH file GRIB the file type is a GRIB file coming from any of these models 1 ECMWF european center forecast model 2 ARPEGE Arpege french forecast model 3 ALADIN Aladin french forecast local model 4 MOCAGE Mocage french research chemistry model e XTS ROAD uniform prescribed value of temperature for road supposed at an altitude of 0m mean sea level altitude The temperature is then modified for each point depending on its altitude following a uniform vertical gradient of 6 5 K km7 This prescribed value if defined has priority on the use of CFILE TS and CFILE TEB data e XTS ROOF uniform prescribed value of temperature for roof supposed at an altitude of 0m mean sea level altitude The temperature is then modified for each point depending on its altitude following a uniform vertical gradient of 6 5 K km This prescribed value if defined has priority on the use of CFILE TS and CFILE TEB data e XTS WALL uniform prescribed value of temperature for wall supposed at an altitude of 0m mean sea level altitude The temperature is then modified
64. MENT JNPTS 17521 gt PREP_INPUT_EXPERIMENT ZTSTEPFRC 1800 gt PREP_INPUT_EXPERIMENT YFORCING_FILETYPE NETCDF YFILE_FORCIN Data hapex HAPEX DAT 30 rw r r 1 lemoigne mc2 1543644 jui 22 16 51 home lemoigne surfex EXPORT v7 0 EXP forcing FORCING nc rw r r 1 lemoigne mc2 644 jui 22 16 51 home lemoigne surfex EXPORT v7 0 EXP forcing PARAMS nc 7 once the installation is done go to SSURFEX EXPERIMENT rundir hapex directory and launch successively l pgd exe 2 prep exe 3 offline exe 8 to view output 1d you can use vespa tool Type vespa to get available fields and then vespa FIELDNAME to plot FIELDNAME 9 How to rerun a pre defined experiment with new inputs 1 you can define new surface characteristics by modifying file SURFEX EXPERIMENT rundir hapex OPTIONS nam and then run pgd exe prep exe and offline exe 2 you can define new initial values for state variables by modifying file SURFEX EXPERIMENT rundir hapex OPTIONS nam and then run prep exe and offline exe 3 you can modify the forcing characteristics 1 you can rerun SSURFEX EXPERIMENT forcing 2 prepapre files bash and modify namelist MY PARAM to select the number of time steps you want to treat parameter NUMBER OF TIME STEPS FINAL the format of the input forcing files parameter YFORCING FILETYPE 2 then go to SURFEX_EXPERIMENT rundir hapex and rerun pgd exe prep exe and offline exe 10 How to create a new experiment 1 you need to mo
65. N NPATCH 1 NGROUND_LAYER 3 amp NAM PREPFILE CPREPFILE PREP amp NAM PREP SURF ATM NYEAR 2004 NMONTH 10 NDAY 25 XTIME 21600 amp NAM PREP SEAFLUX XSST UNIF 285 NYEAR 2004 NMONTH 10 NDAY 25 XTIME 21600 amp NAM PREP WATFLUX XTS WATER UNIF 285 NYEAR 2004 NMONTH 10 NDAY 25 XTIME 21600 amp NAM_PREP_TEB XTI_ROAD 285 XTI_BLD 285 XTS_ROAD 285 XTS_ROOF 285 XTS_WALL 285 XWS_ROAD 0 XWS_ROOF 0 NYEAR 2004 NMONTH 10 NDAY 25 XTIME 21600 amp NAM_PREP_ISBA XHUG SURF 0 2 XHUG_ROOT 0 2 XHUG_DEEP 0 2 XTG SURE 285 XTG_ROOT 288 XTG_DEEP 292 NYEAR 2004 NMONTH 10 NDAY 25 XTIME 21600 amp NAM_PREP_ISBA_SNOW CSNOW 3 L amp NAM_IO_OFFLINE LPRINT T CFORCING_FILETYPE NETCDF CSURF_FILETYPE LEI CTIMESERIES FILETYPE NETCDF LWRITE_COORD T LSET_FORC_ZS T 10 8 1 Uniform values prescribed 1d example without patches 242 amp NAM DIAG _ SURFn amp NAM_DIAG_SURF_ATMn amp NAM_DIAG_ISBAn amp NAM_DIAG_TEBn amp NAM_SGH_ISBAn amp NAM_ISBAn NAM_CH_ISBAn NAM_SEAFLUXn H SEAFLUXn NAM CH WATFLUXn NAM CH TEBn Boos A O O E D z Q 10 8 1 Uniform values prescribed 1d example without patches N2M CRUNOFF CROUGH CSCOND CALBEDO CCIDRY CSOILFRZ CDIFSFCOND CSNOWRES CCPSURF
66. N 6 m real character LEN 28 character LEN 6 J ASCLLV XUNIF_EMIS_ROOF real 5 5 O roof emissivity character CFNAM_EMIS_ROOF LEN 28 character LEN 6 CFTYP_TC_ROOF XUNIF_D_ROOF CFTYP_EMIS_ROOF character LEN 6 real DIRECT BINLLF BINLLV ASCLLV DIRECT BINLLF BINLLV ASCLLV DIRECT BINLLF BINLLV ASCLLV roof layers heat capacity roof layers thermal conductivity roof layers depth non J KAm 2 2 5 5 O O e none W K m 5 5 5 5 o O ZN m character CFNAM_D_ROOF LEN 28 character LEN 6 XUNIF_ALB_ROAD character CFNAM ALB ROAD LEN 28 character LEN 6 XUNIF EMIS ROAD character CENAM EMIS ROAD LEN 28 CFTYP EMIS ROAD XUNIF HC ROAD CFTYP D ROOF CFTYP ALB ROAD character LEN 6 real DIRECT BINLLF BINLLV ASCLLV DIRECT BINLLF BINLLV ASCLLV DIRECT BINLLF BINLLV ASCLLV road albedo road layers heat capacity 5 5 5 5 2 2 5 5 5 5 5 5 o o o o o o nm character CFNAM HC ROAD LEN 28 character LEN 6 XUNIF_TC_ROAD 4 1 2 4 2 TEB scheme CFTYP_HC_ROAD DIRECT BINLLF BINLLV ASCLLV road layers thermal non conductivity e 5 5 O 66 character LEN 28 character DIRECT BINLLF GETIESTESROAD LEN 6 BINLLV ASCLLV XUNIF
67. NAM FRAC siscscecscsccssssass indi dd 4 1 2 2 id al physiographic fields eerte hera UP P Yee Pa Rn oen Fe See Y een 4 1 2 3 realistic physiographic fieldss scere ee rore eter YS eto poe Ph ano ek eu voee Yen verte e pe ere T Table of Contents 4 1 2 4 user defined physiographic fields 58 41241 ISBA AA A A ON 59 41242 TEB Scheme nine a dd aliada da 65 41243 TEB GARDEN SCHEME 35 c5ssesiscdssissesseudosesdessousocdccnisveasiadacdeadsietdovascescosesisenseadosdestoseses seasons 69 41244 SEAFLUX Scheme nennen errechnen 70 4 12 45 IA E A A A A ad oU 72 4 2 Choice of the surface schemes sisssessecssssscesssecosessediossdecssasscssstecsescoesseasebiscessevesseseusdadsececassosseacons 73 4 2 1 Namelist NAM PGD SCHEMES iisciscssescssessossscssccsensssocsesssotesesscsevsssoscovsspssenssadesseseossesesecsoes 74 4 3 Definition of the Sri AAA ossea senede osida isese sea sob sdas ss ososi tooss so todos ei s isas 75 2 5 T Choice of tlie grid VM store doce diria dadas dedicas 76 4 3 1 1 Nam list NAM PGD GRID ssscssscsdscscccsiostesssdesecetcssitestedsoctecnssoncbisdodacebssescestsdesseecsssesctecdees 77 4 3 2 Conformal projection grids Mercator Lambert Polar stereographic 78 4 3 2 1 Namelist NAM CONE PRO oec ceti eor ed oth nda cionado tacita enean doen 79 4 3 2 2 Namelist NAM CONF PROJ GRID cc sisesscssccocsssssateassodescosscessescsecceussessobasostensossdcssensoes 80 4 3 2 3 Namelist NAM
68. NAM WRITE COVER TEX 99 4 5 Specificities of ecoclimap Il classification 4 5 Specificities of ecoclimap II classification 100 4 5 1 Namelist NAM ECOCLIMAP2 This namelist allows to choose which LAT is used a climatological one average over years 2002 2006 or a specific year between 2002 and 2006 This is the place to define irrigation file Fortran name Fortran type values default value YIRRIG character LEN 28 nr e LCLIM_LAT if TRUE climatological LAI is computed otherwise the LAI corresponding to current year if between 2002 and 2006 is used e YIRRIG irrigation file name 4 5 1 Namelist NAM_ECOCLIMAP2 101 4 6 Orography subgrid orography gaussian indices and bathymetry 4 6 Orography subgrid orography gaussian indices and bathymetry 102 4 6 1 Namelist NAM_ZS This namelist defines the orography file and orographic treatment to be done values default value none Fortran name Fortran type XUNIF_ZS real character LEN 28 __ defuit orography is 0 YFILETYPE character LEN 6 DIRECT BINLLF BINLLV ASCLLV none COROGTYPE character LEN 3 AVG ENV SIL MAX e XUNIF ZS uniform value of orography imposed on all points real meters If XUNIF ZS is set file YZS is not used e YZS data file name If XUNIF ZS is set file YZS is not used If neither XUNIF ZS and YZS is set then orography is set to zero e YFILETYPE type of data file DIRECT BINL
69. OOF DAT HC ROOF DAT HC ROOF DAT TC ROOF DAT TC ROOF DAT TC ROOF DAT D ROOF DAT D ROOF DAT CFTY CETY CFTY CETY CFTY CETY CFTY CFTY CFTY CETY CE EX CFTY CFTY CETY CFTY CFTY CFTYP CETY CFTY CETY CFTY CETY CFTY CFTYE CFTYP CETY CETY CFTY CFTY CFTY CETY CFTY CFTY CETY CFTY CETY CFTY CFTY CFTY CFTY CFTY CFTY CFTY CFTY CHTY CETY CFTY CETY CFTY CFTY CFTY CFTY CPTY CFTY D D D D U U gt U U pi U D nU D U U HU U D U U g po U D D D D D D ROOTFRAC ROOTFRAC ROOTFRAC RSMIN 1 _Z0_O_ZOH _GAMMA 1 RMAX_CF GL 1 V 1 BNIR V BVIS V LBUV VE LBNIR S LBVIS S LBUV SO ES 1 E25 1 LAI 1 IMIN 1 FOLD 1 la Li Li La Wer M zo Es un D Q pH ad Roa re D DAX H Z H H E W O oQommuuout t H _ALB ROOF EMIS ROO HC ROOF HC ROOF HC ROOF TC ROOF TC ROOF TC ROOF D ROOF 1 D ROOF 2 C C 254 amp NAM_FRAC amp NAM_PGD_GRID amp NAM_LONLAT_REG amp NAM PGD SCHEME amp NAM ZS D LAYER M ALB M HC M HC M HC M TC M D ROOF 3 3 ROAD M EMIS ROAD Q nj z M HC WAL M HC WAL M TC WAL M TC WAL M TC WAL M D WALL M EMIS WALL HC WALL 1 1 4
70. PHOTO equals NON any number of patches between 1 and 12 is possible for the other values of CPHOTO 12 patches are required The order and the signification of each patch is the following 4 7 1 Namelist NAM ISBA 107 1 bare ground 2 rocks 3 permanent snow 4 deciduous forest 5 conifer forest 6 evergreen broadleaf trees 7 C3 crops 8 C4 crops 9 irrigated crops 10 grassland C3 11 tropical grassland C4 12 garden and parks CISBA type of soil discretization and physics in ISBA 2 L force restore method with 2 layers for hydrology 3 L force restore method with 3 layers for hydrology DIF diffusion layer with any number of layers CPHOTO type of photosynthesis physics The following options are currently available NON none is used Jarvis formula is used for plant transpiration AGS ISBA AGS without evolving Leaf Area Index LAI ISBA AGS with evolving Leaf Area Index AST ISBA AGS with offensive defensive stress without evolving Leaf Area Index LST ISBA AGS with offensive defensive stress with evolving Leaf Area Index NIT ISBA AGS with nitrogen with evolving Leaf Area Index e LTR ML to activate new radiative transfert calculation only if CPHOTO ZNON e CPEDO FUNCTION Pedo transfert function for DIF The following options are currently available CH78 Clapp and Hornberger 1978 for BC C084 Cosby et al 1988 for BC CP88 Carsel and
71. RT_v7 2 MY_RUN FORCING FORCING nc gt input files moved to home lemoigne surfex EXPORT_v7_2 MY_RUN KTEST hapex 8 once the installation is done go to SRC_SURFEX MY_RUN KTEST hapex directory and launch successively 1 pgd exe 2 prep exe 3 offline exe 9 to view output 1d you can use vespa tool Type vespa to get available fields and then vespa FIELDNAME to plot FIELDNAME 10 How to rerun a pre defined experiment with new inputs 1 you can define new surface characteristics by modifying file SRC_SURFEX MY_RUN KTEST hapex OPTIONS nam and then run pgd exe prep exe and offline exe 2 you can define new initial values for state variables by modifying file SRC_SURFEX MY_RUN KTEST hapex OPTIONS nam and then run prep exe and offline exe 3 you can modify the forcing characteristics 1 you can rerun SRC_SURFEX MY_RUN FORCING prepapre_forcing bash and modify namelist MY PARAM to select the number of time steps you want to treat parameter NUMBER OF TIME STEPS FINAL the format of the input forcing files parameter YFORCING_FILETYPE 2 then go to SSRC SURFEX MY RUN KTEST hapex and rerun pgd exe prep exe and offline exe 1 2 Export off line version of SURFEX from version 7 2 6 11 How to create a new experiment 1 you need to modify SRC_SURFEX src FORC my_forcing f90 to introduce the call to the new program that is going to read your dataset 2 you need to create a new subroutine named SRC_SURFEX src FORC my_forc_xxxx f90
72. SNOW V TSNOW V HSNOW V WSNOW V RSNOW V TSNOW V HSNOW V WSNOW V RSNOW V TSNOW V HSNOW V ASNOW V EG2 Snow EG3 Snow GI ca RI ISBA EG1 Snow EG2 Snow EG2 Snow EG2 Snow EC3 Snow EC3 Snow EG3 Snow EG Snow albedo namic resis id layer 3 terception reservoir RESA Aerody EC1 Snow Wa EC1 Snow de EG1 Snow tance ter Equivelent layer 1 nsity layer 1 temperature layerl heat layerl Water Equivelent layer 2 density layer 2 temperature layer2 heat layer2 Water Equivelent layer 3 density layer 3 mperatu re layer3 heat layer3 Averaged Richardson Number 3 4 2 list of available variables 46 RN_ISBA Averaged_Net_Radiation H ISBA Averaged Sensible Heat Flux LE ISBA Averaged Latent Heat Flux GFLUX ISBA Averaged Ground Heat Flux LEG Ground Evaporation Heat Flux LEGI Soil Ice Sublimation LEV Vegetation Evaporation Heat Flux LES Snow Evaporation Heat Flux LER Canopy Water Interception Evaporation LETR Vegetation Evapotranspiration EVAP Evapotranspiration DRAIN Soil Drainage Flux RUNOFF Supersaturation Runoff EG ISBA Averaged Ground Evaporation Heat Flux LEGI ISBA Averaged Soil Ice Sublimation LEV ISBA Averaged Vegetation Evaporation Heat Flux LES ISBA
73. THE EXTERNALIZED SURFACE USER S GUIDE V7 2 Table of Contents 1 How to install the software viiselcdeccicccccsdssvedscsiccecec cstedsdslevcdev cotelscslevecesscsvededslevevevddeted c ievesesscsvedscece L 1 1 Export off line version of SURFEX until version 7 1 included 2 1 2 Export off line version of SURFEX from version 7 2 cese eerte ee eere eee ee eee en see 2 Overview of the externalized surface sequence e ee eere scere eee eee esee eee en sese ense ee sa sees scel 2 1 The SE GUC AA A E D TATE 2 2 The atmospheric models using the externalized SUFrfACe oooooooossss 10 22 1 n offline mode Er REESE LL 2 2 1 1 namelist NAM IO QEFLINE ireeoeee ecce eese oett een exer sovdsesesdovessenssoccssscsstevsesessovessssel 2 2 2 1 2 namelist NAM EAND USE essen 2 2 1 3 Namelist NAM ZS BUTE Ricesseccicedecceddsictdesusdesceceessoscbeadecsessonedcuvsscssdequsstesevsadocsesdosesvovescsie LO 2 2 1 4 Namelist NAM NA C VEG iirecerieiecscecrs esce buen eto idolo added ados corn eerie cere LO 2 2 2 1 Initialization of surface fields integrated in MESONH programs 18 2 2 2 2 Namelist NAM PGDFILE ccccastecedssdecsesdosgevesesssvdscesisosebeosesseddounscovessovcecuesbedebondedsesseiesdonsscooel D 2 2 2 3 MESONH run and DIA OSOS coe heine 20 ALICIA LE NERD 3 1 Th input A O dus Lorcimg Dies E sei
74. TO NCB BIOMASSI biomass of previous day RESP BIOM l nnbiomass 2 daily cumulated respiration of biomass CPHOTO NIT RESP BlOMnnbiomass 1 nnbiomass e CRESPSL CNT LITTERI litter pools SOILCARBI soil carbon pools LIGNIN_STRI ratio lignin carbon in structural litter e CDSTYN Y FLX DSTMd dust variables ISBA 212 TEB e T_ROOFI WS ROOF roof temperatures roof water content e T ROADI WS ROAD road temperatures road water content e T WALLI wall temperatures TI BLD TI ROAD internal building temperature deep road temperature e T CANYON Q CANYON temperature and humidity of canyon air TEB 213 9 2 Diagnostic model output fields 9 2 Diagnostic model output fields 214 All tiles aggregated LFRAC NAM DIAG SURF ATMn FRAC SEA FRAC NATURE FRAC WATER FRAC TOWN fractions for each tile e N2M gt 1 L2M MIN ZS T NAM DIAG SURFn T2M MIN ZS Q2M MIN ZS HU2M MIN ZS temperature air humidity and air relative humidity at 2 meters brought back to min zs eLSURF BUDGET FMUNOSSO FMVNOSSO zonal and meridian frictions without and with SSO Pa N2M 1 or LSURF BUDGET or LSURF BUDGETC TS TSRAD EMIS surface temperature radiative temperature surface emissivity e LCOEF UREF ZREF reference heights for momentum and heat All tiles aggregated 215 For each tile and all tiles aggregated Replace TILE by ISBA WAT SEA or TEB to get names of diagnostic fields Fo
75. UG ROOT name of the file used to define the liquid soil water index SWI for the root zone soil layer s e CFILE HUG DEEP name of the file used to define the liquid soil water index SWI for the deep soil layer s e CFILE_HUG name of the file used to define the soil water profiles The use of a file or prescribed value of XHUG SURF XHUG ROOT and XHUG DEEP has priority on the data in CFILE HUG file e CTYPE HUG type of the CFILE HUG file if the latter is provided CTYPE_HUG must then be given The following values are currently usable MESONH the file type is a MESONH file GRIB the file type is a GRIB file coming from any of these models 1 ECMWF european center forecast model 2 ARPEGE Arpege french forecast model 3 ALADIN Aladin french forecast local model 4 MOCAGE Mocage french research chemistry model ASCII LFI PREP file from Surfex 5 6 1 Namelist NAM PREP ISBA 134 ASCLLV ASCII latlonval file one file for each depth e XTG SURF uniform prescribed value of temperature for the surface soil layer supposed at an altitude of 0m mean sea level altitude The temperature is then modified for each point depending on its altitude following a uniform vertical gradient of 6 5 K km This prescribed value if defined has priority on the use of CFILE TG and CFILE ISBA data e XTG ROOT uniform prescribed value of temperature for the root zone soil layer s supposed at an altitude of 0
76. UMMY_PGD_NAME list of the dummy fields you want to initialize with your own data You can give any name you want This is a way to describe what is the field This information is not used by the program It is just written in the FM files e CDUMMY_PGD_FILE list of the names of the files containing the data for the fields you have specified in CDUMMY_PGD_NAME e CDUMMY PGD FILETYPE list of the types of the files containing the data for the fields you have specified in CDUMMY PGD NAMEY DIRECT LATLON BINLLF BINLLV ASCLLV e CDUMMY PGD AREA area of meaningfullness of the fields you have specified in CDUMMY_PGD_NAME CALL NAT TWN SEA WAT LAN respectively for everywhere natural areas town areas sea inland waters land natural cover town For example oceanic emission of DNS is relevant on SEA e CDUMMY_PGD_ATYPE type of averaging during PGD for the fields you have specified in CDUMMY_PGD_NAME ART INV LOG respectively for arithmetic inverse and logarithmic averaging 4 9 1 Namelist NAM DUMMY PGD 114 4 10 Namelist for chemistry anthropogenic emissions 4 10 Namelist for chemistry anthropogenic emissions 115 4 10 1 Namelist NAM CH EMIS PGD This namelist is used to initialize chemistry components emissions You can treat up to 999 such fields These fields will be written on all the files you will use later after prognostic fields initialization or during and af
77. URF ATM me oo Be Bl OA og e XSST_UNIF uniform prescribed value of Sea Surface Temperature This prescribed value if defined has priority on the use of CFILE_SEAFLX data e CFILE SEAFLX CFILEPGD SEAFLX name of the PREP PGD files used to define the Sea surface Temperature The use of a file or prescribed value XSST UNIF has priority on the data in CFILE SEAFLX file e CTYPE CTYPEPGD type of the CFILE SEAFLX CFILEPGD SEAFLX files if the latter is provided CTYPE must then be given The following values are currently usable MESONH the file type is a MESONH file GRIB the file type is a GRIB file coming from any of these models 1 ECMWF european center forecast model 2 ARPEGE Arpege french forecast model 3 ALADIN Aladin french forecast local model 4 MOCAGE Mocage french research chemistry model NETCDF the file type is a NETCDF file coming from MERCATOR possible only for CTYPE ASCII PREP PGD Surfex ASCII file LFI PREP PGD Surfex LFI file NYEAR year of surface UTC time It is used only if no atmospheric file or no surface file is given in those the date can be read e NMONTH month of surface UTC time It is used only if no atmospheric file or no surface 5 3 1 Namelist NAM PREP SEAFLUX 124 file is given in those the date can be read e NDAY day of surface UTC time It is used only if no atmospheric file or no surface file is given in those the da
78. VEG 1 0 3 XUNIF ALBNIR VEG 2 0 3 XUNIF ALBVIS VEG 1 0 1 XUNIF ALBVIS VEG 2 0 1 XUNIF ALBUV VEG 1 0 0425 XUNIF ALBUV VEG 2 0 0425 XUNIF ALBNIR SOIL 1 0 3 XUNIF ALBNIR SOIL 2 0 3 XUNIF ALBVIS SOIL 1 0 1 XUNIF ALBVIS SOIL 2 0 1 XUNIF ALBUV SOIL 1 0 06 XUNIF ALBUV SOIL 2 0 06 XUNIF GMES 1 0 003 XUNIF GMES 2 0 003 XUNIF RE25 1 0 0000003 XUNIF RE25 2 0 000000 XUNIF BSLAI 1 0 06 XUNIF BSLAI 2 0 06 XUNIF LAIMIN 1 0 3 XUNIF LAIMIN 2 0 3 XUNIF_SEFOLD 1 5184000 XUNIF_SEFOLD 2 5184000 XUNIF_GC 1 0 00025 XUNIF GC 2 0 00025 XUNIF DMAX 1 0 1 XUNIF DMAX 2 0 1 XUNIF F2I 1 0 3 XUNIF F2I 2 0 3 XUNIF H TREE 1 20 XUNIF H TREE 2 20 XUNIF CE NITRO 1 3 79 XUNIF_CE_NITRO 2 3 79 XUNIF CF NITRO 1 9 84 XUNIF CF NITRO 2 9 84 XUNIF CNA NITRO 1 1 3 XUNIF CNA NITRO 2 1 3 XUNIF RSMIN 4 40 XUNIF RSMIN 5 40 XUNIF GAMMA 4 0 XUNIF_GAMMA 5 0 XUNIF WRMAX CF 4 0 2 XUNIF WRMAX CF 5 0 2 XUNIF RGL 4 100 XUNIF RGL 5 100 XUNIF CV 4 0 00002 XUNIF CV 5 0 00002 XUNIF Z0 O Z0H 4 10 XUNIF Z0 O ZOH 5 10 XUNIF ALBNIR VEG 4 0 3 XUNIF ALBNIR VEG 5 0 3 XUNIF ALBVIS VEG 4 0 1 XUNIF ALBVIS VEG 5 0 1 XUNIF ALBUV VEG 4 0 0425 XUNIF ALBUV VEG 5 0 0425 XUNIF_ALBNIR_SOIL 4 0 3 XUNIF_ALBNIR_SOIL 5 0 3 XUNIF_ALBVIS_SOIL 4 0 1 XUNIF_ALBVIS_SOIL 5 0 1 XUNIF ALBUV SOIL 4
79. WS ROOF 0 NYEAR 1986 NMONTH 1 NDAY 1 XTIME 0 amp NAM_PREP_ISBA XHUG_SURF 1 XHUG_ROOT 1 XHUG_DEEP 1 XTG_SURF 276 16 XTG_ROOT 276 16 XTG_DEEP 276 16 NYEAR 1986 NMONTH 1 NDAY 1 XTIME 0 10 8 2 Uniform values prescribed 1d example with patches 251 amp NAM_PREP_ISBA_SNOW amp NAM IO OFFLIN GI amp NAM DIAG SURFn amp NAM_DIAG_SURF_ATMn amp NAM_DIAG_ISBAn amp NAM_DIAG_TEBn amp NAM SGH ISBAn amp NAM ISBAn NAM CH ISBAn NAM SEAFLUXn H SEAFLUXn NAM CH WATFLUXn NAM CH TEBn Blocs pcc Dc D z Q CSNOW 3 L LPRINT T CFORCING_FILETYPE NETCDF CSURF_FILETYPE LEI i CTIMESERIES_FILETYPE NETCDF WRITE COORD T SET FORC ZS T LSURF BUDGET F N2M 0 LCOEF LE LSURF VARS mE LFRAC E LPGD SE LSURF_EVAP_BUDGET F LSURF_MISC_BUDGET F LSURF_MISC_BUDGET F CRUNOFF WSAT CROUGH Z04D CSCOND NP89 CALBEDO DRY A CCIDRY DEF CSOILFRZ DEE r CDIFSFCOND DEF r CSNOWRES DEE r CCPSURF DRY CCH_DRY_DEP WES89 CSEA_ALB TA96 CCH_DRY_DEP WES89 CCH DRY DEP WES89 CCH DRY DEP WES89 10 8 2 Uniform values prescribed 1d example with patches 10 8 3 Surface parameters read from external
80. X X DE PX DE O PX PX PX DE ODE X X X PX PX P4 P4 DX X X X PX ODE PX PX X PX PX PX P4 DE DX ODE X X PX PX PX PX DE X PX PX DX N WO te JR ae A ed as ARS Oe SS SE a TR 00 mo Lin ARP ER HAA 1 cd LD LM LO NNO c4 c4 rd OO OO OO OO OO CO OO OO CO COO OO CO x des NN 10 NNNN 1 1 1 OOOOO 1 1 mi 1 OO O O O O O O O O O O O wv 10 N O10 O O OOOO 0 0 0 0 0 00 00 1 0 0 0 MIO O0 O0 O O 0 90 0 00 000 044050000 0 00 00 Oo AN A A A A A O A NA A A A A A A AA O A NA A A A A A A AA O A NA A A A A A A nana O A NA A A A AA Cd cd cn NM HWM XO O0 DN A c c c NM sf LO SO 00 OY c A A c NM st 10 XO 00 DN c cn c A NM HWM OD 00 DN A A d dn NM WM WO Moe BRL IRS ACC NT EXE M t xc cxt GER ALME E EE CE r M COR NC CINE COR Sa tun E ONE CR EE CN ON M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M 00 00 NA sf sf sP P os or oo gQucdcddududcdcuuu AA EDO 0 CD TD CO CDI CO Oe CO CO KD AAA EXER EX ER et HHHHHHHHHHHHVD9IOI DO OD 2i HH HE HH d Ed Ed Ed EE i d i AK AKA i CK CK KO OO OO OOo oo 1 a 2 2 a 3 gt a HH El EH HE HA HHl gt b gt gt gt gt gt gt gt gt gt gt gt HHHHH HH HHHHHN NNN NNNNNNNNEH AH RE BE Bd Ed Bd A B DB 5 5555 A Ed dee ele des bees de dee dos dedos e dem OR T ses d o bM re sd e ES remi e se o M eb d E TEN EEE Ea Fu Bn Bn Bn Bn Eu Bu Bu Bn Bn Bn Bn Bu a Bn Bn Bn Bu Eu Bu Bu B Bn Dn e
81. ZREF Number_of_points m Reference_Height Number of points m surface orography time Number of points time Number of points time Number of points time Number of points time Number of points time Number of points time Number of points time Number of points time Number of points time Number of points time Number of points Kg m2 s Kg m2 s Kg m3 deg air specific humidity downward direct shortwave radiation downward diffuse shortwave radiation downward longwave radiation rainfall rate snowfall rate CO2 concentration Dimensions Number of points and time represent respectively the total number of gridboxes in the area of interest and the number of atmospheric time steps The following pictures show the time evolution of forcing quantities for the integration period over the region of interest Each curve correspond to a grid point 3 3 1 2 list of parameters 33 290 286 284 0123 4 5 6 7 8 9 10 1112 13 14 15 16 17 18 19 20 21 22 23 24 25 26 Figure 3 1 Time evolution of temperature over the working area 0 012 0 011 0 01 0 009 0 008 0 007 012 3 4 5 6 7 8 9 10 1112 13 14 15 16 17 18 19 20 21 22 23 24 25 26 Figure 3 2 Time evolution of specific humidity over the working area 3 3 1 2 list of parameters 34 400 380 340 20 0123 4 5 6 7 8 9 10 1112 13 14 15 16 17 18 19 20 21 22 23 24 25 26 Figure 3 3 Time evolution of longwave incoming
82. _INDUSTRIES LEN 6 XUNIF LE INDUSTRIES real DIRECT BINLLF BINLLV none ASCLLV anthropogenic latent none heat fluxes due to traffic DIRECT BINLLF none BINLLV ASCLLV anthropogenic sensible heat fluxes DIRECT BINLLF BINLLV ASCLLV none anthropogenic latent heat fluxes due to factories character CFNAM_LE_ INDUSTRIES LEN 28 character CFTYP_LE_INDUSTRIES LEN 6 4 1 2 4 2 TEB scheme DIRECT BINLLF BINLLV ASCLLV none 68 4 1 2 4 3 TEB_GARDEN scheme Over urban areas all vegetation surface parameters have to be specified by the user in namelist NAM_DATA_TEB_GARDEN a duplication of NAM_DATA_ISBA 4 1 2 4 3 TEB_GARDEN scheme 69 4 1 2 4 4 SEAFLUX scheme Treat SST as a forcing variable For that purpose several SST files at a given time are required and namelist NAM DATA SEAFLUX should be filled Fortran name Fortran type values default description unit option character RT LEN 28 LE DIRECT BINLLF BINLLV CFTYP_SST character LEN 6 ASCLLV none 2 EEE ME KEEN ME NMONTHSST Jineser o 3 po po S EE e LSST_DATA flag to initialize SST from a climatology NTIME number of SST input files e CFNAM SST SST data file name e CFTYP SST type of SST data file DIRECT BINLLF BINLLV ASCLLV NYEAR SST year of SST data file e NMONTH SST month of SST data file NDAY SST day of SST data file e XTIME SST t
83. _LAI P LAT 1 12 P_LAI 1 12 P Z0 1 1 P Z0 1 2 rrererrrrrre FO OND Ow Ww QUA A A RTS amp NAM DATA TI 10 8 3 Surface parameters read from external files CF CF CF CE CF CF CE CE CF CF CF CF CF CE CF CF CF CF CF CF CF CE CE CE CE CF CF CF CF CE CF CE CF Cr CF CE CF CH CF CF CF CF CF NR CF CE CF CF CF CF CH CF CE Z M_DG 1 3 M_RSMIN 1 M_GAMMA 1 Z J GL 1 V 1 2535 PPPA LBNIR_V LBVIS_V LBUV_VE z gt Li Li SS pp z h ES 1 E25 1 LAI 1 z uo Du EFOLD x Q H D aN ZWDAxK EP Ha n H H z oOoQommuuout nj 1 gt H zj 7 Il M_ALB z GI M HC M HC M HC M TC M TC M TC IMIN 1 1 H Z H H D O ROOF EMIS ROOF BVIS SOII LBUV SOIL ZO_O_ZOH 1 RMAX_CF 1 M_ROOTFRAC 1 1 M_ROOTFRAC 1 2 M_ROOTFRAC 1 3 UU Q Q DH CJ A D D 4 4 DG_3 DAT ROOTFRAC_1 DAT ROOTFRAC_2 DAT ROOTFRAC_3 DAT RSMIN DAT Z0 O ZOH DAT GAMMA DAT WRMAX CF DAT RGL DAT CV DAT ALBNIR VEG DAT ALBVIS VEG DAT ALBUV VEG DAT ALBNIR SOIL DAT ALBVIS SOIL DAT ALBUV SOIL DAT GMES DAT RE25 DAT BSLAI DAT LAIMIN DAT SEFOLD DAT DAT DAT DAT _TREE DAT CE NITRO DAT CF_NITRO DAT CNA_NITRO DAT ALB ROOF DAT EMIS ROOF DAT HC R
84. _LAYER amp NATURE PATCH_NUMBER PATCH_NUMBER 1 Value of DIM_FULL indicates that this is a 2D exercise and the gridbox contains a non zero fraction of nature of water lake and of town but there s no fraction of sea because the number of points with a non zero fraction of sea DIM_SEA is zero 1279 gridboxes contain vegetation and 240 gridboxes contain a fraction of town onmly one gridbow contains a fraction ok inland water lake Surface scheme to treat vegetation is Isba 3 L which means that soil is represented with 3 layers The number of patches is 1 it indicates that the vegetation is not splitted into patches like it could this should be the case for the A gs option of Isba that treats explicitly photosynthesis 3 3 2 1 PGD txt 37 GrADS COLAAGES 3 3 2 1 PGD txt Figure 3 5 Orography field taken from PGD txt file 260 240 220 200 180 160 140 7007 01 24 14 33 38 3 3 2 2 PREP txt This file contains the information related to physiography and orography read from PGD txt file and rewritten as well as initial values of prognostic variables of the different schemes contained in SURFEX amp NATURE TG1 X Y TG1 K 2 85764095630693821 E 02 2 8548082006251650E 02 2 85405275301386501 E02 2 8546873 For example here are shown the first initial values of skin surface temperature over natural area for Isba surface scheme as they are written in PREP
85. aged Richardson Number CD WAT Averaged Drag Momentum Coef CDN WAT Averaged Neutral Drag Coef CH WAT Averaged Drag Thermal Coef RESA WAT Averaged Aerodyn Resistance RN WAT Averaged Net Radiation H WAT Averaged Sensible Heat Flux LE WAT Averaged Latent Heat Flux GFLUX WAT Averaged Ground Heat Flux SURF ATM DIAGNOSTICS VARIABL El RI 3 4 2 list of available variables Averaged Richardson Number F 48 RN Averaged Net Radiation H Averaged Sensible Heat Flux LE Averaged Latent Heat Flux GFLUX Averaged Ground Heat Flux SURF ATM FRACTIONS FORCING FRAC SEA Fraction of sea FRAC WATER Fraction of water FRAC TOWN Fraction of town FRAC NATURE Fraction of nature FIELDS TA air temperature QA air specific humidity WIND wind speed DIR SW downward direct shortwave radiation SCA SW downward diffuse shortwave radiation LW downward longwave radiation PS surface pressure RAIN rainfall rate SNOW snowfall rate CO2 CO2 concentration DIR SW downward direct shortwave radiation DIR wind direction 3 4 2 list of available variables 49 4 The physiographic fields 4 The physiographic fields 4 1 Overview of physiographic fields computation PGD The physiographic fields are averaged or interpolated on the specified grid by the program PGD They
86. are stored in a file called PGD file but only with the physiographic 2D fields the geographic and grid data written in it During the PGD facility 1 You choose the surface schemes you will use 2 You choose and define the grid for the surface 3 The physiographic fields are defined on this grid 4 1 Overview of physiographic fields computation PGD 51 4 1 1 Choice of the grid There are 3 possibilities 2 are always possible one is available only if the PGD routine is integrated into an atmospheric model initialization facility 1 The grid is chosen via namelists options see below 2 The grid is defined as a part of the grid of an already existing surface file indicated via namelists see below 3 The grid is defined as being identical to the one of an atmospheric model which is given as fortran argument in the coupling of the PGD surface facilities routine PGD_SURF_ATM into an atmospheric model initialization procedures In this case all namelists that are usually used to define the surface grid are ignored Note that in addition to the grid the orography can also be given from the atmospheric file 4 1 1 Choice of the grid 52 4 1 2 Choice of the physiographic fields There are 3 main possibilities depending on LECOCLIMAP flag 4 1 2 Choice of the physiographic fields 53 4 1 2 1 Namelist NAM FRAC This namelist defines if ECOCLIMAP mechanism based on fractions of covers will be used or not Fort
87. bles needed for surfex 1 set main environment variable 2 export SURFEX EXPORT HOME MYDIR EXPORT v7 1 3 then run a configuration script included in the archive 4 SSURFEX EXPORT conf profile surfex run install surfex if your linux distribution is ubuntu don t run install surfex but install surfex ubuntu install surfex install surfex ubuntu 1 realizes the compilation of surfex sources 2 prepares executable files for pgd prep offline and sxpost applications stored in SURFEX_EXPORT src exe directory If everything goes well until this step then surfex has been successfully installed on you computer How to install a pre defined experiment 1 go to SSURFEX EXPERIMENT forcing directory 2 run 1 compile and link bash script in order to prepare executable that will then be used to install an experiment 3 run 2 prepare files bash to know the available experiments 4 run 2 prepare files bash with a name of experiment as argument for example 2 prepare files bash hapex a namelist MY PARAM nam will open vi editor simply quit use command q Some information will then be written on the screen and should look like SURFEX EXPORT home lemoigne surfex EXPORT v7 1 namelist NAM MY PARAM read gt PREP INPUT EXPERIMENT YEXPER HAPEX gt PREP INPUT EXPERIMENT INI 1 1 1 Export off line version of SURFEX until version 7 1 included 2 gt PREP_INPUT_EXPERIMENT INPTS 17521 gt PREP_INPUT_EXPERI
88. c indices in an existing PGD file e LIMP SOM reads organic matter in an existing PGD file e LIMP DENSITY reads soil density in an existing PGD file e XSOILGRID uniform soil depth grid for CISBA DIF 4 7 1 Namelist NAM ISBA 109 4 8 Namelist for FLake scheme 4 8 Namelist for FLake scheme 110 4 8 1 Namelist NAM_DATA_FLAKE Over lakes if one wants to use Flake scheme some parameters have to be specified by the user in the namelist NAM DATA FLAKE Fortran name Fortran type XUNIF WATER DEPTH character YWATER DEPTH LEN 28 character LEN 6 character YWATER_DEPTH_STATUS LEN 28 XUNIF_WATER_FETCH character YWATER_FETCH LEN 28 character YWATER_DEPTHFILETYPE YWATER_FETCHFILETYPE character YT_BSFILETYPE LEN 6 XUNIF_DEPTH_BS real character YDEPTH_BS LEN 28 character LEN 6 XUNIF_EXTCOEF_WATER real character YEXTCOEF WATER LEN 28 4 8 1 Namelist NAM_DATA_FLAKE YDEPTH_BSFILETYPE values default advice description unit vl NT E Ie hem o DIRECT BINLLF ASCLLV BINLLV filename u I status file name DIRECT BINLLF ASCLLV BINLLV DIRECT BINLLF ASCLLV BINLLV filename i p temperature at the outer edge of the thermally K active layer of the of the bottom sediments qe u ii layer DIRECT BINLLF ASCLLV BINLLV filename s NENNEN extinction coefficient of F
89. case ignore all the namelists presented in this section and only the namelists for cover and the following ones have to be used 4 3 Definition of the grid 75 4 3 1 Choice of the grid type 4 3 1 Choice of the grid type 4 3 1 1 Namelist NAM_PGD_GRID This namelist defines the grid type either specified or from an existing surface file Fortran name Fortran type default value CGRID string of 10 characters CONF PROJ YINIFILE string of 28 characters YFILETYPE string of 6 characters CGRID type of grid and projection It is used only if a file is not prescribed see below The different grid possibilities are GAUSS this grid is a gaussian grid global grid that may be stretched rotated CONF PROJ this grid is a regular grid in meters in x and y perpendicular directions on conformal projection plan Mercator Lambert or polar stereographic CARTESIAN this grid is a regular grid in meters in x and y perpendicular directions with no reference to real geographical coordinates LONLAT REG this grid is defined as a regular latitude longitude grid LONLATVAL this grid is defined as a not regular latitude longitude grid all points and mesh sizes are defined IGN this grid type contains all IGN French National Geographical Institute possible Lambert projections NONE this grid is not regular Only the number of points and the size of each grid mesh i
90. d calculated Qsat Tair NB READ FORC subdivisions of the reading of forcings Can vary from 1 all forcing data read in one time to the total number of forcing time steps what was done until now It s usefull especially for netcdf forcing files on tori and yuki e LLAND_USE if LLAND USE TRUE fractions of vegtypes can be given at INIT level by the namelist NAM LAND USE and other surface parameters are calculated through ECOCLIMAP It allows to make a restart with new fractions of vegtypes But for the moment the water balance is not kept in this case it will be done in next version 2 2 1 1 namelist NAM IO OFFLINE 13 2 2 1 2 namelist NAM LAND USE This namelist is needed when LLAND_USE TRUE NAM IO OFFLINE The file referenced in this namelist has to be formatted as a Surfex PREP file and to contain at least 13 record DIM FULL VEGTYPE Pl VEGTYPE_P12 If CFTYP VEGTYPE OFFLIN the file is a NETCDF file and its name needs to be PARAMS nc Fortran name Fortran type values default value CFTYP VEGTYPE character LEN 6 ASCIT FA LFI OFFLIN 2 2 1 2 namelist NAM LAND USE 14 2 2 1 3 Namelist NAM ZS FILTER Fortran name Fortrantype values default value e NZSFILTER number of iterations of the spatial filter applied to smooth the orography integer 1 iteration removes the 24 signal 50 of the 4A signal 25 of the G r signal etcA 1 2 2 1 3 Namelist NAM ZS FILTER 15 2
91. default value CINTERPOL TS string of 6 characters ES 2 NONE CWAT ALB string of 4 characters UNIF TA96 UNIF e CWAT ALB type of formulation used to set albedo over water e CINTERPOL TS interpolate monthly SST to daily SST function interpol quadra 6 3 1 Namelist NAM WATFLUXn 158 6 4 FLAKE lake scheme options 6 4 FLAKE lake scheme options 159 6 4 1 Namelist NAM FLAKEn Fortran name Fortran type values default value CSNOW FLK string of 3 characters CFLK FLUX string of 3 characters FLK DEF CFLK_ALB string of 4 characters UNIF TA96 UNIF e LSEDIMENTS to use the bottom sediments scheme of Flake default e CSNOW_FLK snow scheme to be used For the time being only option DEF is active e CFLK_FLUX scheme to be used to compute surface fluxes of moment energy and water vapor For the time being only option FLK is active e CFLK_ALB type of albedo for Flake 6 4 1 Namelist NAM_FLAKEn 160 6 5 ISBA vegetation scheme options 6 5 ISBA vegetation scheme options 161 6 5 1 Namelist NAM SGH_ISBAn Fortran name Fortran type values default value CRUNOFF string of 4 characters WSAT DT92 SGH WSAT CTOPREG string of 4 characters DEF NON DEF CKSAT string of 4 characters DEF SGH DEF e CRUNOFF type of subgrid runoff The following options are currently available WSAT runoff occurs only when saturation is reached DT92 Dumenil
92. deposition scheme WES89 Wesley 1989 deposition scheme 7 4 1 Namelist NAM CH WATFLUXn 182 7 5 Chemical deposition over towns 7 5 Chemical deposition over towns 183 7 5 1 Namelist NAM CH TEBn Fortran name Fortran type values default value CCH DRY DEP string of 6 characters NONE WES89 WES89 e CCH DRY DEP type of deposition scheme NONE no chemical deposition scheme WES89 Wesley 1989 deposition scheme 7 5 1 Namelist NAM CH TEBn 184 7 6 Chemical deposition and biogenic emissions over vegetation 7 6 Chemical deposition and biogenic emissions over vegetation 185 7 6 1 Namelist NAM CH_ISBAn Fortran name Fortran type values default value CCH DRY DEP string of 6 characters NONE WES89 WES89 e CCH DRY DEP type of deposition scheme NONE no chemical deposition scheme WES89 Wesley 1989 deposition scheme L CH BIO FLUX flag to activate the biogenic emissions 7 6 1 Namelist NAM CH ISBAn 186 7 7 Chemical aerosol scheme ORILAM 7 7 Chemical aerosol scheme ORILAM 187 7 7 1 Namelist NAM CHS ORILAM Fortran name Fortran type values default value wensmapus m ense fu le ense m e LCH_AERO_ FLUX switch to active aerosol surface flux for ORILAM e LCO2PM switch to activate emission of primary aerosol Black and Organic carbon compute from CO emssion Uses only if CO emission is defined in the s
93. dify SSURFEX EXPERIMENT forcing src my forcing f90 to introduce the call to the new program that is going to read your dataset 2 you need to create a new subroutine named SURFEX EXPERIMENT forcing src my forc xxxx f90 that corresponds to experiment Xxxx 3 go then to SURFEX_EXPERIMENT forcing and run successively 1 1 Export off line version of SURFEX until version 7 1 included 1 1_compile_and_link bash to account for your new subroutine 2 2_prepare_files bash to create input files related to your experiment 3 then go to SURFEX_EXPERIMENT rundir xxxx and run pgd exe prep exe and offline exe 11 How to compile your own source for surfex 1 cp the sources from OFF_LINE or SURFEX directories that you want to modify onto SURFEX_EXPORT src MYSRC 2 go to SURFEX_EXPORT src MYSRC and make your modifications 3 go to SSURFEX EXPORT src and simply launch command make new executable files will be created in exe directory and will replace the old ones 12 How to include the BUGFIX when exists 1 download BUGFIX EXPORT v7 1 gz 2 extract files from archive BUGFIX EXPORT v7 1 gz a directory named MYSRC and containing bug fixes will be created 3 place extracted MYSRC in SSURFEX EXPORT src as replacement of the old one 4 go to SSURFEX EXPORTv src and simply launch command make new executable files will be created in exe directory and will replace the old ones 1 1 Export off line version of SURFEX until version 7 1 i
94. e po TE ld Se A AAA E AA ET jue Psi RES pf e CLAMBERT type of Lambert prjection L1 Lambert I L2 Lambert II L3 Lambert III LA Lambert IV L2E Extended Lambert II L93 Lambert 93 NPOINTS number of grid points defining the grid e XX X coordinate of grid mesh center YY Y coordinate of grid mesh center e XDX grid mesh size on the conformal plane in x direction real meters e XDY grid mesh size on the conformal plane in y direction real meters e XCELLSIZE size of the cell equal in X and Y Has priority on XDX and XDY e XX LLCORNER X coordinate of left side of the domain e XY LLCORNER Y coordinate of lower side of the domain e NCOLS number of columns e NROWS number of rows The simultaneous use of XX LLCORNER XY LLCORNER NCOLS and NROWS has priority of this of NPOINTS XX and YY it simplifies the namelist in case of a regular grid 4 3 5 1 Namelist NAM IGN 89 4 3 6 Gaussian grids These namelists define the projection in case CGRID GAUSS 4 3 6 Gaussian grids 90 4 3 6 1 Namelist NAMDIM Fortran name Fortran type default value e NDGLG number of pseudo latitudes 4 3 6 1 Namelist NAMDIM 91 4 3 6 2 Namelist NAMRGRI Fortran name Fortran type default value e NRGRI number of pseudo longitudes on each pseudo latitude circle starting from the rotated pole 4 3 6 2 Namelist NAMRGRI 92 4 3 6 3 Namelis
95. e Bu Bn B Bn Bn Bn ee Bu Bn Bn Bn noB Bu Bu Bn Bn Bn noB Bn Bn Bn Bn Dn fu HH Fd Fd Hd Hd HI HI Hi FH Fd Fd H HI HI Hi FH Fd Fd oH HE HI HI FH Fd Fd H oH HI HI FH Fd Fd Hd HI HI HIE HI FH Fd H HI HI HI HI FH FH H HI HI HI HI HI HI HH A AAA AA A A A A 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 22 2 2 2 2 22 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 22 ENE a Ed 4 KENG O E EA u ET Ze Ed u Ze Be ie NEE TEKENS 4 4 es 4 9 44 Ze Ed Ta Te Be ed NRE EN 1 4 4 9 4 4 a Fa 44 Ze FR TS ZT WENEN RE ie 1 4 4 9 P4 P4 ODS ODS PX P4 ODE ODE ODE ODE DE DE PX DE ODE DE DE DE DE PX ODE ODE DE DE DE DE PX P4 P4 DX DE DE DE DE PX DE DX DE DE DE PX PX DE DX DE DE DE PX ODS ODE ODI ODE ODS DS OD DS 246 10 8 2 Uniform values prescribed 1d example with patches XUNIF_VEG 4 7 XUNIF_VEG 4 8 XUNIF_VEG 4 9 XUNIF_VEG 4 10 XUNIF_VEG 4 11 XUNIF_VEG 4 12 XUNIF_LAI 4 1 XUNIF_LAI 4 2 XUNIF_LAI 4 3 XUNIF_LAI 4 4 XUNIF_LAI 4 5 XUNIF_LAI 4 6 XUNIF_LAI 4 7 XUNIF_LAI 4 8 XUNIF_LAI 4 9 XUNIF_LAI 4 10 XUNIF_LAI 4 11 XUNIF_LAI 4 12 XUNIF_ZO 4 1 XUNIF_ZO 4 2 XUNIF Z0 4 3 XUNIF Z0 4 4 XUNIF Z0 4 5 XUNIF Z0 4 6 XUNIF Z0 4 7 XUNIF Z0 4 8 XUNIF Z0 4 9 XUNIF Z0 4 10 XUNIF Z0 4 11 XUNIF Z0 4 12 XUNIF EMIS 4 1 XUNIF EMIS 4 2 XUNIF EMIS 4 3 XUNIF EMIS 4 4 XUNIF EMIS 4 5 XUNIF EMIS 4 6 XUNIF EMIS 4 7 XUNIF EMIS 4 8 XUNIF EMIS 4 9 XUNIF EMIS 4 10 XUNIF EMIS 4
96. e at the bottom of the lake K 5 5 1 Namelist NAM PREP FLAKE 130 e XUNIF T Bl temperature at the bottom of the upper layer of sediments K e XUNIF CT shape factor thermocline e XUNIF H SNOW snow layer thickness m e XUNIF H ICE ice layer thickness m e XUNIF H ML thickness of the mixed layer m e XUNIF H Bl thickness of the upper level of the active sediments m e CFILE FLAKE CFILEPGD FLAKE name of the PREP and PGD files used to define the Sea surface Temperature The use of a file or prescribed value XTS WATER UNIF has priority on the data in CFILE FLAKE file e CTYPE CTYPEPGD type of the CFILE FLAKE CFILEPGD FLAKE files if the latter is provided CTYPE CTYPEPGD must then be given The following values are currently usable MESONH the file type is a MESONH file GRIB the file type is a GRIB file coming from any of these models 1 ECMWF european center forecast model 2 ARPEGE Arpege french forecast model 3 ALADIN Aladin french forecast local model 4 MOCAGE Mocage french research chemistry model ASCII Surfex PREP PGD ASCII file LFI Surfex PREP PGD LFI file NYEAR year of surface UTC time It is used only if no atmospheric file or no surface file is given in those the date can be read NMONTH month of surface UTC time It is used only if no atmospheric file or no surface file is given in those the date can be read e NDAY day of surface UTC ti
97. e classical way how to use ecoclimap and other databases orography sand and clay In previous version the name of ecoclimap database was ecoclimats v2 it has been replaced by ECOCLIMAP I GLOBAL amp NAM FRAC LECOCLIMAP T amp NAM COVER YCOVER ECOCLIMAP I GLOBAL j YFILETYPE DIRECT amp NAM_ZS YZS gtopo30 5 YFILETYPE DIRECT amp NAM_ISBA YCLAY clay_fao YCLAYFILETYPE DIRECT A YSAND sand fao A YSANDFILETYPE DIRECT A CISBA 3 L y CPHOTO NON NPATCH i NGROUND LAYER 3 10 2 How to use ECOCLIMAP I 232 10 3 How to use ECOCLIMAP II amp NAM FRAC LECOCLIMAP T amp NAM COVER YCOVER ECOCLIMAP II EUROP DIRECT YFILETYPE 10 3 How to use ECOCLIMAP II 233 10 4 How to use 1D Oceanic Model amp NAM SI EABATHY amp NAM PREP SEAFLUX amp NAM Sl EAFLUXn YSEABATHY YSEABATHYFILETYPE YNCVARNAME CFILE SEAFLX Q Q CTYPE LOCEAN_MERCATOR T LOCEAN_CURRENT B CSEA ALB TA96 LPROGSST T 10 4 How to use 1D Oceanic Model a m mercator 20031203 nc N NETCDF topo ETCDF etopo2 nc 234 10 5 How to initialize variables from grib file amp NAM_PREP_SURF_ATM amp NAM_PREP_TEB amp
98. e of CI formulation for dry soils The following options are currently available DEF Giard Bazile formulation GB93 Giordani 1993 Braud 1993 e CSCOND type of thermal conductivity The following options are currently available NP89 Noilhan and Planton 1989 formula PL98 Peters Lidard et al 1998 formula e CSOILFRZ type of soil freezing physics option The following options are currently available DEF Boone et al 2000 Giard and Bazile 2000 LWT Phase changes as above but relation between unfrozen water and temperature considered CDIFSFCOND type of Mulch effects The following options are currently available DEF no mulch effect MLCH include the insulating effect of leaf litter mulch on the surf thermal cond e CSNOWRES type of turbulent exchanges over snow The following options are currently available DEF Louis RIL Maximum Richardson number limit for stable conditions ISBA SNOW3L turbulent exchange option CALBEDO type of bare soil albedo The following options are currently available DRY dry bare soil albedo WET wet bare soil albedo 6 5 2 Namelist NAM ISBAn 163 MEAN albedo for bare soil half wet half dry EVOL albedo of bare soil evolving with soil humidity e CROUGH type of orographic roughness length The following options are currently available ZOID orographic roughness length does not depend on wind direction Z04D orogra
99. e off line mode Fortran name Fortran type values default value CSURF FILETYPE FA ASCI LFI ASCII characters string of 6 NETCDF OFFLIN NONE ASCII CTIMESERIES FILETYPE TEXTE BINARY FA LFI NONE CFORCING FILETYPE NETCDF BINARY ASCII NETCDF characters CPGDFILE string of 28 characters CPREPFILE HIS One characters CSURFFILE SEE OA characters LPRINT PGD PREP SURFOUT XTSTEP_OUTPUT LWRITE COORD LOUT_TILENAME e CSURF_FILETYPE type of Surfex surface files created during PGD or PREP steps e CTIMESERIES FILETYPE type of the files containing the output diagnostic time series e CFORCING FILETYPE type of atmospheric forcing files e CPGDFILE name of the PGD file e CPREPFILE name of the PREP file e CSURFFILE name of the final output surfex file restart file e PRINT write information on screen during run LRESTART write restart file LINQUIRE enable test of inquiry mode e XTSTEP SURF surface time step e XTSTEP OUTPUT time step of the output time series eLSET FORC ZS if T the orography of the forcing file is set to the same value as in surface file Number of forcing time steps 2 2 1 1 namelist NAM IO OFFLINE 12 e LWRITE COORD enables write of fields XLAT and XLON in output file e LOUT_TIMENAME change name of output file at the end of the day e LLIMIT QAIR General flag for coherence between forcing Qair an
100. e_Layer_1 T_ROOF2 Roof_Temperature_Layer_2 T_ROOF3 Roof_Temperature_Layer_3 T ROAD1 Road Temperature Layer 1 3 4 2 list of available variables 47 T_ROAD2 Road_Temperature_Layer_2 T ROAD3 Road Temperature Layer 3 T WALL1 Wall Temperature Layer 1 T WALL2 Wall Temperature Layer 2 T WALL3 Wall Temperature Layer 3 TI BLD Internal Building Temperature TI ROAD Deep Road Temperature WS ROOF1 Roof Water Content Layer 1 WS ROOP2 Roof Water Content Layer 2 WS ROOF3 Roof Water Content Layer 3 WS ROAD1 Road Water Content Layer 1 WS ROAD2 Road Water Content Layer 2 WS ROAD3 Road Water Content Layer 3 T CANYON Canyon Air Temperature Q CANYON Canyon Air Humidity EB DIAGNOSTIC VARIABL GI RI TEB Averaged Richardson Number CD TEB Averaged Drag Momentum Coef CDN TEB Averaged Neutral Drag Coef CH TEB Averaged Drag Thermal Coef RESA TEB Averaged Aerodyn Resistance RN TEB Averaged Net Radiation H TEB Averaged Sensible Heat Flux LE TEB Averaged Latent Heat Flux GFLUX TEB Averaged Ground Heat Flux WATER PROGNOSTIC VARIABLI GI TS WAT Averaged Water Temperatur Gl Gl Z0 WATI Roughness length WATER DIAGNOSTIC VARIABLI GI RI WAT Aver
101. ed dust of SURFEX For Each paramterization type a geometric standard deviation and a median radius is given Moreover the repatition of mass flux could be derive from the friction velocity case of AMMA or EXPLI or imposed case of Dal87 alf98 She84 or PaG77 See the code init_dstn f90 MesoNH or init_dstn mnh AROME ALADIN for values associated to these parameterizations Note that if the defaut value is change it is necessary to uses the same modes in the dust initialisation in the atmospheric model It concerns the value of XINIRADIUS initial radius XINISIG standard deviation and CRGUNITD mean radius definition to have the same aerosol size distribution emitted and in the atmosphere It is possible to do it directly in the fortran code modd_dust mnh in case of aladin arome modd_dust f90 for MesoNH or for MesoNH only change the values of these variables in NAM_AERO_CONF prep real case or prep ideal case e XFLX MSS FDG FCT Value of the factor representing the ratio of the vertical mass flux over the horizontal mass flux in the saltation layer use only If CVERMOD NONE This factor depend on the size distribution of the aerosol consider in the model e CVERMOD New parameterization of the dust emission formulation In development not recommended to uses it in this version 6 5 3 Namelist NAM_SURF_DST 165 6 5 4 Namelist NAM ASSIM Declaration of keys for ISBA assimilation scheme 2DVAR Bouyssel e
102. een MY PARAM nam and OPTIONS nam will be done in case the forcing filetype would be different 3 2 3 creation of forcing files 28 3 2 4 installation of an experiment Go to SSRC SURFEX src and type export VER_USER FORC configure conf profile_surfex LXgfortran SURFEX V7 FORC MPIAUTO DEBUG make user This compile the additional fortran code needed to install a predefined experiment Then go to SRC_SURFEX MY_RUN FORCING and launch prepare_forcing bash giving the experiment name as argument If you want to create a new experiment named for example MYTEST you ll have to modify SRC SURFEX src FORC my forcing f90 program in order to refer to the new subroutine that you ll have created and that must be named my forc mytest f90 and stored in SRC SURFEX src FORC You simply have to add few lines in my forcing f90 program CASE MYTEST CALL MY FORC MYTEST HEXPER KNI KNPTS PTSTEP FORC amp KYEAR KMONTH KDAY PTIME amp PLON PLAT PZS PZREF PUREF amp amp PTA PQA PPS PWINDSPEED PWINDDIR PDIR SW PSCA SW PLW PRAIN PSNOW PCO2 Then copy my forc hapex f90 into my forc mytest f90 replace HAPEX by MYTEST refer to the correct input file and adapt the reading sequence Create SSRC SURFEX MY RUN NAMELIST mytest and namelist MY PARAM nam and OPTIONS nam inside this directory When this is done e go to SSRC SURFEX src and run make user e go
103. elf is considered as an atmospheric model routine as orography is also a field of the atmospheric model 3 PREP REAL CASE it uses the PREP facility of the surface that can produce either ideal or realistic surface fields 4 SPAWNING it does not produce surface fields any more The surface fields will be recreated during the PREP_REAL_CASE step following the SPAWNING In the case of ideal atmospheric fields the MESONH program calling the surface is PREP IDEAL CASE it uses both the PGD and PREP facilities of the surface Ideal or realistic the latter only in conformal projection physiographic fields can be either produced or read from a file Then the prognostic surface variables either ideal or realistic can be computed by PREP If you use MESONH atmospheric model the input and output surface files are the same as the atmospheric ones so there is no need to specify via surface namelists any information about the input or output file names 2 2 2 1 Initialization of surface fields integrated in MESONH programs 18 2 2 2 2 Namelist NAM_PGDFILE Note however that in PREP_PGD just before the call to the surface physiographic computation in PGD for which the namelists are described in the next chapter there is a namelist to define the output physiographic file Fortran name Fortran type 2 2 2 2 Namelist NAM_PGDFILE 19 2 2 2 3 MESONH run and diagnostics Then the MESONH run can be done During this one the d
104. epending on number of vegtypes only 4 1 2 4 1 ISBA scheme ZA ZA 1 1 62 Fortran name Fortran type values description XUNIF_GMES DIRECT BINLLF BINLLV ASCLLV DIRECT BINLLF BINLLV ASCLLV character LEN 6 real character LEN 28 character LEN 6 real character LEN 28 DIRECT BINLLF BINLLV ASCLLV character LEN 6 mesophyll conductance ratio d biomass d lai kg m none none i i i none none ini minimum LAI DIRECT BINLLE BINLLV ee M Ln e folding time for senescence maximum air saturation deficit character aa LEN 2S Re character LEN 6 DIRECT BINLLF CFTYP_DMAX BINLLV ASCLLV XUNIF_F2I real critical normilized soil water content for stress parameterization character oe LEN 28 o EL ae DIRECT BINLLF BINLLV ASCLLV character CFTYP F2I LEN 6 4 1 2 4 1 ISBA scheme ld i 63 XUNIF_H_TREE real height of trees m character CFNAM_H_TREE LEN 28 h N DIRECT CFTYP_H_TREE ENZO BINLLF BINLLV E ASCLLV parameter character OND LEN Ld a character DIRECT BINLLF ET LEN 6 BINLLV ASCLLV nitrogen character ae J LEN228 NEN character DIRECT BINLLF SPICE ES NERY LEN 6 BINLLV ASCLLV ae lethal minimum value of leaf area ratio character CFNAM CF NITRO LEN 28 character DIRECT BINLLF EES JGEN 9
105. f the prognostic fields 118 5 1 Overview of fields computation PREB sane ooscenseonsesn conv eencenncenseoneesnensvennvenseensen 119 5 2 Date initialization and default input data file for all schemes 120 5 2 1 Namelist NAM PREP SURE ATM ivscscccsssssesscssoccccsssteasesssesenssssstseecsossnsesssosssessesteseaseisesnses 121 5 3 Sea scheme SEAELX did dida edad 123 5 3 1 Namelist NAM PREP SEAFLEUNX ii ccccssscssestessscssdscnsssncadsacossesdesseisieddssccccessisesascnstesdaraitessads 124 54b Lake scheme WATEL X nee indian dir 126 5 4 1 Namelist NAM PREP_WATELUX ijccccscscssvstessicsvdeensssieassadecsevessssiseesdsscaseossoecsdsdustesdaseiteskoes 127 5 5 Lake scheme FLAKE engsten DIPL e Poe iod a dS ei o aireado 129 5 5 1 Namelist NAM PREP FLAKE ossesesessssessssesesessesesssoesesessesesossesesesossesososseseessssssssssssesse 130 5 6 Vegetation scheme ISBA 5 rstsesresternacasedesenetersndndedeennkderadenddoervendebeededadseonmndenadenndeerpendedsde 132 5 6 1 Namelist NAM PREP TSBA si ccsssidesicdscsesdssustesoicavdegessstecssadecsevensssisvesdescuseohsicscsdcdnsiesdasaitesnens 133 5 6 2 Namelist NAM PREP ISBA SNOW assen sane onsoncensoorenseorenneensoncenvencenveorenseerenneeneen 137 5 6 3 Namelist NAM PREP ISBA CARBON onsoncensoovenseorenseeneoncensencenseorenseorenneeneen 139 5 5 Town scheme TEB iia did ideada 140 57 1 Namelist NAM PREP TER io ccsssidesiad
106. file is used either from namelist or by fortran code as in MESONH programs If a file is used the date is read in it e define the default file in which each scheme can read the needed data e g temperature Note that all the information given in this namelist can be erased for each scheme by the namelist corresponding to this scheme as the information in the shceme namelists have priority on namelist NAM PREP SURF ATM Fortran name Fortran type values default value B atmospheric prep file used in the program CFILE ste ot ce calling the surface facilities if any none characters otherwise string of 6 MESONH GRIB a 3 CFILETYPE unde ASCII LFI type of the atmospheric prep file if any atmospheric pgd file used in the program CFILEPGD Ro calling the surface facilities if any none characters otherwise ue A CFILE CFILEPGD name of the prep pgd file used to define 1 the date 2 the file in which to read the needed data e g temperature The use of a file or prescribed value in each scheme namelist has priority on the data in CFILE CFILEPGD file of namelist NAM PREP SURF ATM CFILE and CFILEPGD can identify the same file e CFILETYPE CFILEPGDTYPE type of the CFILE CFILEPGD file if the latter is provided CFILETYPE CFILEPGDTYPE must then be given The following values are currently usable MESONH the file type is a MESONH file GRIB the file type is a GRIB file comin
107. for each point depending on its altitude following a uniform vertical gradient of 6 5 K km7 This prescribed value if defined has priority on the use of CFILE TS and CFILE TEB data e XTI BLD uniform prescribed value of internal building temperature This temperature is not dependent on altitude This prescribed value if defined has priority on the use of CFILE TS and CFILE TEB data e XTI ROAD uniform prescribed value of deep road temperature supposed at an altitude of 0m mean sea level altitude The temperature is then modified for each point depending on its altitude following a uniform vertical gradient of 6 5 K km7 This prescribed value if defined has priority on the use of CFILE TS and CFILE TEB data CFILE TS name of the file used to define the soil temperature profile The use of a file or prescribed value of XTS ROAD XTS ROOF XTS WALL XTI BLD or XTI ROAD has priority on the data in CFILE TS file e CTYPE TS type of the CFILE TS file if the latter is provided CTYPE TS must then be given The following values are currently usable MESONH the file type is a MESONH file GRIB the file type is a GRIB file coming from any of these models 1 ECMWF european center forecast model 2 ARPEGE Arpege french forecast model 3 ALADIN Aladin french forecast local model 4 MOCAGE Mocage french research chemistry model e CFILE TEB CFILEPGD TEB name of the PREP PGD files used to define any TEB va
108. g from any of these models 1 ECMWF european center forecast model 2 ARPEGE Arpege french forecast model 3 ALADIN Aladin french forecast local model 4 MOCAGE Mocage french research chemistry model 5 2 1 Namelist NAM PREP SURF ATM 121 ASCII ASCII Surfex PREP PGD file LFI LFI Surfex PREP PGD file e NYEAR year of surface UTC time It is used only if no atmospheric file or no surface file is given in those the date can be read NMONTH month of surface UTC time It is used only if no atmospheric file or no surface file is given in those the date can be read NDAY day of surface UTC time It is used only if no atmospheric file or no surface file is given in those the date can be read e XTIME time from midnight of surface UTC time It is used only if no atmospheric file or no surface file is given in those the date can be read seconds 5 2 1 Namelist NAM PREP SURF ATM 122 5 3 Sea scheme SEAFLX 5 3 Sea scheme SEAFLX 123 5 3 1 Namelist NAM_PREP_SEAFLUX This namelist information is used to initialize the SEAFLX sea scheme temperature Fortran name Fortran type values default value CFILE_SEAFLX string of 28 i CFILE in NAM_PREP_SURF_ATM characters CIE string of 6 MESONH GRIB NETCDF CFILETYPE in characters ASCII LFI NAM PREP SURF ATM string of 28 CFILEPGD in string of 6 MESONH GRIB ASCII CFILEPGDTYPE in characters LFI NAM PREP S
109. gtype placed before in the list of 12 parameters depending on the number of vegetation types default inis R Fortran name Fortran type values salue description unit XUNIF_VEGTYPE real between 0 and 1 none vegetation type character aE cen ASS CFTYP_VEGTYPE character LEN 6 ee EINES EINEN file type E parameters depending on the number of vegtypes and time default 5 Fortran name Fortran type values Oe description unit sg IS ids fraction character SANGER LEN 28 emme character DIRECT BINLLF BINLLV LLL jamo vascu m p SE NN character N LEN 28 a MN zen HE character DIRECT BINLLF BINLLV CFTYP_LAI LEN 6 ASCLLV none file type NN XUNIF Z0 real roughness length character CRE LEN 28 O fem character DIRECT BINLLF BINLLV s STA Juno pascuv rome fe um E 4 1 2 4 1 ISBA scheme 59 character LEN 28 CFNAM EMIS file name CFTYP emis character DIRECT BINLLF BINLLV file type LEN 6 ASCLLV parameters depending on the number of vegtypes and soil levels default Fortran name Fortran type values value XUNIF ROOTFRAC real CFNAM_ROOTFRAC CFTYP_ROOTFRAC XUNIF_ROOT_DEPTH description soil layer thickness character LEN 28 DIRECT BINLLF BINLLV ASCLLV character LEN 6 root fraction character LEN 28 DIRECT BINLLF BINLLV ASCLLV character
110. he surface schemes you will use It is not possible once chosen to modify the surface schemes in the later steps PREP running of the schemes DIAG Depending on the schemes you use some additional physiographic fields will be computed if they are needed for the surface scheme chosen For example the ISBA scheme used for vegetation and soil needs the fractions of clay and sand 4 2 Choice of the surface schemes 73 4 2 1 Namelist NAM PGD SCHEMES This namelist defines the four schemes that will be used one for each type of surface sea inland water town vegetation Fortran name Fortran type values default value CSEA string of 6 characters NONE FLUX SEAFLX SEAFLX WATFLX CTOWN string of 6 characters NONE FLUX TEB mm jeu A e CNATURE scheme used for vegegation and natural soil covers The different possibilities are NONE no scheme used No fluxes will be cmputed at the surface FLUX ideal fluxes are prescribed The have to be set in the fortran routine init ideal flux f90 TSZO In this cheme the fluxes are computed according to the ISBA physics but the surface characteristics temperature humidity etc remain constant with time ISBA this is the full ISBA scheme Noilhan and Planton 1989 with all options developped since this initial paper e CSEA scheme used for sea and ocean The different possibilities are NONE no scheme used No fluxes
111. iagnostics can be or not be computed In DIAG the surface diagnostics can also be recomputed 2 2 2 3 MESONH run and diagnostics 20 2 2 3 in AROME In this case MESONH FM files are also used for the surface only The parallelization of the surface fields is done during the reading or writing of the fields by parallelization routines of ALADIN atmospheric model 2 2 3 in AROME 21 3 Off line Guide 3 Off line Guide 3 1 The input files The use of the externalized surface software in off line mode requires the preparation of several types of file especially the input data necessary for the run and the definition of the options specified in the namelist OPTIONS nam is the namelist name used in the off line model The same namelist is used for the PGD PREP and RUN facilities The description of the different namelist blocks for PGD The physiographic fields and PREP Initialization of the prognostic fields tools are described in the next chapter The namelist block where functionnalities of the off line run in terms of Input Output is named NAM IO OFFLINE the princip of an off line simulation is that the atmospheric variables are known in advance Thus time series of air temperature humidity wind speed precipitation pressure and radiation terms are known These data are pre treated in order to be written in specific files see below called forcing files like for any model some parameters related to the
112. iform values prescribed 1d example without patches NIF NIF NIF_ NIF NIF NIF NIF NIF_ NIF_ NIF_ NIF NIF_ NIF DG 1 3 NIF ROOTFRAC 1 1 NIF ROOTFRAC 1 2 NIF ROOTFRAC 1 3 NIF RSMIN 1 NIF GAMMA 1 NIF WRMAX CF 1 NIF RGL 1 NIF CV 1 NIF Z0 O ZOH NIF ALBNIR V NIF ALBVIS V NIF ALBUV VE MIS MIS MIS SS HH nn MIS MIS MIS MIS E Ed Dd Dd Ed Dd Dd Ed Dd Dd NIF ALBVIS SOIL NIF ALBUV SOIL NIF GMES 1 NIF RE25 1 NIF BSLAI 1 NIF LAIMIN NIF SEFOLD NIF GC 1 NIF_DMAX NIF_F2I NIF_H_T NIF_CE NIF_CF 1 1 R _N N Lr OOF LAY NIF ALB ROOF NIE EMIS ROOF NIF_HC_ROOF 1 NIE HC ROOF NIF HC ROOF NIF TC ROOF NIF TC ROOF NIF TC ROOF NIF D ROOF NIF D ROOF NIF D ROOF OAD LAYER NIF ALB ROAD NIF EMIS ROAD 2 3 1 2 3 1 2 3 ST Oly Il 9g SIT Oly II IL SIR 2973 SOT 1 0 30 7999 2999 999 150 0 04 OGL 307 0 00001 10 O LO 05 0425 hoy 05 0425 001 00000015 29 0 1536000 DO DODO DD OD OOI NooowrFroooooooo ORN wR RES n CO O1 0 24 N oo 3 0 2 0 97 2110000 2800000 2900000 1 51 08 05 05 4 sb 52 9 CO X WO 100 010 7 240
113. ime in seconds of SST data file How to initialise SST from external files an example with 3 SST input files lat lon value type amp NAM DATA SEAFLUX NTIME 3 LSST DATA T CFNAM SST 1 sst l dat a CET CFNAM_SST 2 sst 2 dat a CET CFNAM_SST 3 sst 3 dat CFT NYEAR SST 1 1985 NMONTH SST 1 12 NDAY_SST 1 NYEAR SST 2 1986 NMONTH_SST 2 1 NDAY SST 2 NYEAR SST 3 1986 NMONTH_SST 3 1 NDAY SST 3 Il N W 0 Ha Sos OS S gt x e XUNIF xxx uniform prescribed value of parameter xxx If XUNIF xxx is set file CFNAM_ xxx is not used CENAM xxx data file name associated to parameter xxx If XUNIF xxx is set file CFNAM_ xxx is not used e CFTYP xxx type of sea data file DIRECT BINLLF BINLLV ASCLLV 4 1 2 4 4 SEAFLUX scheme 70 IME _ 4 1 2 4 4 SEAFLUX scheme 71 4 1 2 4 5 TSZ0 scheme Treats TG and WG gradients as forcing variables For that purpose values of gradients at each time of a day are required and namelist NAM_DATA_TSZ0 should be filled Fortran name Fortran type values default description UNI DHUGRD fea Jo o NTIME number of subdivisions of a day to apply forcing gradients e XUNIF_DTS values of temperature gradient for each time of a day e XUNIF DHUGRD values of humidity gradient for each time of a day 4 1 2 4 5 TSZO scheme 72 4 2 Choice of the surface schemes You must first choose t
114. ime steps used for the simulation should be lower or equal to NUMBER_OF_TIME_STEPS_INPUT e ZATM_FORC_STEP frequency of atmospheric forcing e YFORCING FILETYPE is the type of the forcing files asked by the user NETCDF 1 file will be created FORCING nc ASCII or BINARY Params config txt ascii file describing the configuration of the run will be cretaed if forcing file type is ASCII or BINARY The content of this file is number of grid cells of the domain number of atmospheric time steps 0 atmospheric time step 9 year corresponding to the begining of the simulation 9 month corresponding to the begining of the simulation 0 day corresponding to the begining of the simulation 0 seconds corresponding to the begining of the simulation 9 longitudes of grid cells 9 latitudes of grid cells 9 elevation meters of grid cells reference height for thermodynamical variables for each grid cell reference height for wind for each grid cell ASCII 11 ascii files one per parameter Forc_CO2 txt Forc_DIR txt Forc_PS txt Forc_RAIN txt Forc SNOW txt Forc WIND txt Forc DIR SW txt Forc LW txt Forc_QA txt Forc SCA SW txt Forc_TA txt BINARY 11 binary files one per parameter Forc_CO2 bin Forc_DIR bin Forc PS bin Forc_RAIN bin Forc SNOW bin Forc WIND bin Forc DIR SW bin Forc LW bin Fore QA bin Fore SCA SW bin Forc_TA bin All forcing files will be placed in SSRC SURFEX MY RUN KTEST hapex and a consistency test betw
115. is namelist information is used to initialize the FLAKE sea scheme temperature Fortran name XTS_UNIF XUNIF_T_SNOW XUNIF_T_ICE XUNIF_T_WML XUNIF_T_BOT XUNIF_T_B1 XUNIF_CT XUNIF_H_SNOW XUNIF_H_ICE XUNIF_H_ML XUNIF_H_B1 CFILE_FLAKE Fortran type real real real real real real real real real real real string of 28 characters string of 6 characters string of 28 characters string of 6 characters values default value TE TE TE TS WATER or 277 15 if TS WATER x 273 15 TS WATER 0 1 or 277 05 if TS WATER 273 15 po fos ss 0 or 0 01 if XTS_WATER lt 273 15 XWATER DEPTH or XWATER DEPTH 2 if TS WATER 273 15 D CFILE in NAM PREP SURF ATM MESONH GRIB ASCII LEL CFILETYPE in NAM PREP SURF ATM fg CFILEPGD in NAM_PREP_SURF_ATM MESONH GRIB ASCI LFI CFILEPGDTYPE in NAM PREP SURF ATM none none e XTS UNIPF uniform prescribed value of water surface temperature supposed at an altitude of 0m mean sea level altitude The temperature is then modified for each point depending on its altitude following a uniform vertical gradient of 6 5 K km This prescribed value if defined has priority on the use of CFILE FLAKE data e XUNIF T SNOW surface temperature of snow K e XUNIF T ICE surface temperature at the ice atmosphere or at the ice snow interface K e XUNIF T WML mixed layer temperature K e XUNIF T BOT water temperatur
116. l and Todini 1992 subgrid runoff formula SGH Decharme et al 2006 Topmodel like subgrid runoff e CTOPREG kind of regression Option activated only if CRUNOFF SGH The following options are currently available DEF Wolock and MacCabe regression between topographic indices computed at 1km and 100m resolution recommended NON no regression CKSAT Activates the exponential profile for Ksat The following options are currently available DEF homogeneous profile SGH exponential decreasing profile with depth due to compaction of soil CRAIN Activates the spatial distribution of rainfall intensity The following options are currently available DEF homogeneous distribution SGH exponential distribution which depends on the fraction of the mesh where it rains This fraction depends on the mesh resolution and the intensity of hourly precipitation If the horizontal mesh is lower than 10km then the fraction equals 1 CHORT Activates the Horton runoff due to water infiltration excess The following options are currently available DEF no Horton runoff SGH Horton runoff computed e L TRIP Activates TRIP river routing model RRM scheme LFLOOD Activates the flooding scheme 6 5 1 Namelist NAM SGH ISBAn 162 6 5 2 Namelist NAM ISBAn Fortran name Fortran type values default value Lomo prac fose rus Loan fea jeu rss at Pe hoec fr TE bwam fesa e CCIDRY typ
117. lds are stands for the scheme considered nothing field aggregated on the whole surface name of a scheme field for this scheme RN net radiation H turbulent sensible heat flux LE turbulent latent heat flux GFLUX ground or storage heat flux FMU_ zonal wind stress FMV_ meridian wind stress If both LSURF BUDGET and LRAD BUDGET are T then downward and upward shortwave radiation per spectral band will be written into output file theya re computed even if LRAD BUDGET is false The following output fields are then available SWD downward short wave radiation SWU upward short wave radiation SWBD downward short wave radiation for each spectral band SWBU upward short wave radiation for each spectral band LWD downward long wave radiation LWU upward long wave radiation 8 2 1 Namelist NAM _DIAG SURFn 193 e LSURF_BUDGETC flag to save in the output file the time integrated values of all budget terms that have been activated e LRESET_BUDGETC flag to reset cumulatives variables at the beginning of a run e LCOEF flag to save in the output file the transfer coefficients used in the computation of the surface energy fluxes for each scheme on the four separate tiles and aggregated for the whole surface The diagnosed fields are stands for the scheme considered nothing field aggregated on the whole surface name of a scheme field for this scheme CD drag
118. le values are 1 DEF Norman 1992 2 PRM Rivalland 2003 3 CNT Century model 2007 5 6 3 Namelist NAM_PREP_ISBA_CARBON 139 5 7 Town scheme TEB 5 7 Town scheme TEB 140 5 7 1 Namelist NAM PREP TEB This namelist information is used to initialize the TEB urban scheme variables road roof and wall temperature profiles water intercepted by roofs and roads snow building internal temperature Fortran name Fortran type values default value CFILE WS string of 28 CFILE_TEB in this namelist characters CTYPE_WS ee MESONH GRIB LFI CTYPE in this namelist characters CFILE TS here CFILE_TEB in this namelist characters CTYPE_TS string of 6 MESONH GRIB LFI CTYPE in this namelist characters CFILE_TEB string of 28 CFILE in NAM_PREP_SURF_ATM characters CTYPE SHE OFS MESONH GRIB ASCII CFILETYPE in NAM_PREP_SURF_ATM characters LFI CFILEPGD_TEB Sting of 28 CFILEPGD in NAM_PREP_SURF_ATM characters string of 6 MESONH GRIB ASCIH CFILEPGDTYPE in SINEERGD characters ULEI NAM PREP SURF ATM e XWS ROAD uniform prescribed value of soil water interception for the road reservoir This prescribed value if defined has priority on the use of CFILE WS and CFILE TEB data e XWS ROOF uniform prescribed value of soil water interception for the roof reservoir This prescribed value if defined has priority on the use of CFILE WS and CFILE TEB data 5 7 1 Namelist NA
119. m mean sea level altitude The temperature is then modified for each point depending on its altitude following a uniform vertical gradient of 6 5 K km This prescribed value if defined has priority on the use of CFILE TG and CFILE ISBA data e XTG DEEP uniform prescribed value of temperature for the deep soil layer s supposed at an altitude of 0m mean sea level altitude The temperature is then modified for each point depending on its altitude following a uniform vertical gradient of 6 5 K km This prescribed value if defined has priority on the use of CFILE TG and CFILE ISBA data e CFILE TG SURF name of the file used to define the surface soil temperature profile e CFILE TG ROOT name of the file used to define the root zone soil temperature profile e CFILE TG DEEP name of the file used to define the deep soil temperature profile CFILE TG name of the file used to define the soil temperature profile The use of a file or prescribed value of XTG SURF XTG_ROOT and XTG DEEP has priority on the data in CFILE TG file CTYPE TG type of the CFILE TG file if the latter is provided CTYPE_TG must then be given The following values are currently usable MESONH the file type is a MESONH file GRIB the file type is a GRIB file coming from any of these models 1 ECMWF european center forecast model 2 ARPEGE Arpege french forecast model 3 ALADIN Aladin french forecast local model 4 MOCAGE M
120. me It is used only if no atmospheric file or no surface file is given in those the date can be read e XTIME time from midnight of surface UTC time It is used only if no atmospheric file or no surface file is given in those the date can be read seconds e LWAT SBL activates surface boundary multi layer scheme over inland water 5 5 1 Namelist NAM PREP FLAKE 131 5 6 Vegetation scheme ISBA 5 6 Vegetation scheme ISBA 132 5 6 1 Namelist NAM_PREP_ISBA This namelist information is used to initialize the ISBA vegetation scheme variables soil temperature profile soil water and ice profiles water intercepted by leaves snow Fortran name Fortran type values default value CHILE HUG SURF Sting of 28 D CFILE_HUG in this namelist characters CHILE HUG ROOT ring of 28 characters CHILE HUG DEEP string of 28 characters cas fe real none real none real none CFILE TG SURF ing of28 BE CFILE_TG in this namelist characters string of 28 CFILE TG ROOT CFILE TG in this namelist characters string of 28 CFILE TG DEEP CFILE TG in this namelist characters characters string of 6 MESONH GRIB LFI 2 CTYPE TG Sharacters ASCII ASCLLV CTYPE in this namelist characters string of 6 MESONH GRIB ASCU LFI CFILETYPE in characters A NAM_PREP_SURF_ATM string of 28 CFILEPGD in characters NAM_PREP_SURF_ATM XHUGI_DEEP XTG_SURF XTG_ROOT XTG_DEEP CTYPE CFI
121. me yy xx kg kg 3 2 2 Forcing format in NETCDF case 26 3 2 3 creation of forcing files For the preparation of forcing files specific programs are used and are located in SRC_SURFEX src FORC The structure of SSRC SURFEX MY RUN directory part dedicated to forcing looks like MY RUN DATA Alp_for_0203 Alqueva0206 cdp9697 hapex ma01 me93 v192 FORCING prepare forcing bash NAMELIST Alp for 0203 Alqueva0206 cdp9697 hapex ma01 me93 v192 KTEST hapex DATA directory contains subdirectories one per experiment in which atmospheric time series ascii files are stored NAMELIST directory contains subdirectories one per experiment in which at least 2 namelists are stored the first one named MY PARAM nam contains information related to the forcing For example for the hapex experiment MY PARAM nam looks like amp NAM MY PARAM YEXPERIMENT NAME HAPEX A NUMBER_GRID_CELLS 1 r NUMBER OF TIME STEPS INPUT 17521 NUMBER OF TIME STEPS FINAL 17521 ZATM FORC STEP 1800 r YFORCING_FILETYPE NETCDF e YEXPERIMENT NAME is the name associated to the experiment 12 characters e NUMBER GRID CELLS is the grid cell number e NUMBER OF TIME STEPS INPUT number of time steps of forcing serie e NUMBER OF TIME STEPS FINAL 3 2 3 creation of forcing files 27 number of t
122. n Dn Bu E Bu Bu Bn Bn Bn ee Bu Bu Bn Bn Bn noB Bn Bu Bn Bn Bn noB Bn Bn n Bn Du fu HH Fd Fd Ho HI HI HI HE FH Fd Fd HI HI HI HI FH Fd Fd H HI HI HI FH Fd Fd H H HI HE HI Fd Fd Hd HI HI HI FH FH FH Hd HI HI HIE HI FH FH H HI HI HI HI HI HI HH A AAA A A A A A 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 22 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 22 ENE a Be KENG dE Ed NEE TENEN d 4 459 4 4 9 44 TEKENS 4 4 47 154 4 9 44 Ze Ed Ta Te Be ed Ja 44 Ze Ed 4 9 ed Fr Fa gt Ze FR TS ZT NEN NS NE NE Ed NS P4 P4 ODS PX PX P4 ODE ODE ODE ODS DE DE PX DE ODE DE DE DE DE PX DE ODE ODE DE DE DE PX P4 DE DX DE DE DE PX P4 DE DE ODE DE DE PX PX DE DX ODE DE DE ODE ODE ODE ODI ODE ODS DS OD DS 245 10 8 2 Uniform values prescribed 1d example with patches Ko ent I AM S ECCE ER O CE EU EDER CR es Cue EE 00 A S Cd 04 c4 cd LO LO LO NNO c4 c4 rd OO OO OO OO OO CO OO OO CO COO OO CO FONDS NN 10 0 O1 OO 1 nn N OOOOO 1 1 mi 1 OO O O O O O O O O O O O x 10 O Q OUO OQ O O O 0 0 0 QU O UC Arm MOM SeeSee 0 0 oc SO o0O G0o O 0 0gocOc oocdo idcdc dc oc yo go gm w gw Ww WW W W Ww Ww W W Ww Ww W W W W Ww Ww Ww W W W Ww Ww Ww W W Ww Ww Ww Ww W m W Ww Ww Ww Ww wm m Wm W Ww IS AN A A A A A A OT NA A A A A A A A A O A NA A A A A A A AA O A NA A A A A A A A a O A NA A A AAA Cd cd cn QN OO sff
123. n oeso coon conc enncenseonseoneesvennvenseene 99 4 5 Specificities of ecoclimap II classification 100 45 1 Namelist NAM ECOCLIMAP2 cicdscsscssscecssvssebicdssecseasvesssacdoesiesssessebasdoscestossosssendsedcecesoeseseses 101 4 6 Orography subgrid orography gaussian indices and bathymetry 102 4 6 1 Namelist NAM DS TT D UT DD 103 4 6 2 Namelist NAM GAUSS INDEX sscoosvoerversonnsersernenssndesondoonocrsesdevesdendegsornsdenssaosdendeseedendce 104 4 63 Namelist NAM SHA BAT LY eei eceessesce eset tots rca Rs drea e Ya doped eeu PE CUR ior eorr e ehe 105 4 7 NamelistIor ISB A SCHEME titine A dee oae evade 106 4 7 1 Namelist NAME TSBA Ss cissscscecsiecsessscsssssdesarcesivaceeisdoscasssosessssddeoddvcoseuscbesdoseccuosusseossdescevesswoscbeads 107 4 8 Namelist for FLake scheme ueri rete rhe eo tani nibo Roe key ner aov cree PP ee Py adocdendeseddenade 110 4 8 1 Namelist NAM DATA FLAKE siscscscccssosseesscoscevsssessessdsoadscoseosedendosteetennsseossdessesesssosessass 111 Table of Contents 4 9 Namelist to add user s own fields 113 4 9 1 Namelist NAM DUMMY PER cssisscdscssskssustesoscssdsensssncasssdoeseudesseisesdssccecessisedessnstesdasaitesnsds 114 4 10 Namelist for chemistry anthropogenic emissions ensen soon sosv conc enncenseonvesnensvenneenseensen 115 4 10 1 Namelist NAM CH EMIS PGD erect eesaectere cronicas ondo daneersedebtadhedeederaideenede 116 5 Initialization o
124. ncluded 1 2 Export off line version of SURFEX from version 7 2 From version 7 2 of Surfex the configuration and installation environment of off line Surfex is adapted to this from Meso nh This leads to changes in configuration and installation processes Instructions to install surfex on a linux PC and to run a 1d example I 1 2 Export off line version of SURFEX from version 7 2 select a directory where installation has to be done for example HOME or HOME MYDIR where MYDIR is an existing directory if not it has to be created by the user From now on it is supposed that the user has defined a MYDIR directory download EXPORT v7 2 0 gz and move it into SHOME MYDIR EXPORT v7 2 O tar gz You can also get the package from SVN directly extract files from archive tar zxvf EXPORT v7 2 0 gz or gunzip EXPORT v7 2 0 gz and then tar xvf EXPORT v7 2 O tar at this stage directory EXPORT v7 2 is created in MYDIR and contains all software peaces initialize environment variables needed for surfex go into src directory and run Jconfigure Then execute the profile file for this master version of surfex conf profile_surfex LXgfortran SFX V7 2 0 MPIAUTO DEBUG special case of ubuntu linux distribution if your linux distribution is ubuntu edit the file Makefile in src directory comment lines ARCHOOK linuxgfortran and ARCHOOK ifort32 and uncomment lines ARCHOOK linuxgfortran_ubuntu and
125. nity zonal current meridian current density SEAFLUX 220 WATFLUX LPROVAR TO DIAG NAM WRITE DIAG SURFn or LINTERPOL TS NAM WATFLUXn TS WATER surface temperature e LWATER PROFILE for FLAKE NAM DIAG FLAKEn TW d water temperature in output levels WATFLUX 221 TEB e T BLD building interior temperature TEB e LSURF MISC BUDGET NAM DIAG TEBn Z0 TOWN town roughness length XOF_BLD XOF_BLDWFR domestic heating XFLX_BLD heat flux from bld XOF_TOWN total anthropogenic heat XDQS_TOWN heat storage inside building XTI_BLD_EQ XTI_BLDWFR building internal temperature RN ROAD H ROAD LE ROAD GFLUX ROAD fluxes for road RN WALL H WALL GFLUX WALL fluxes for wall RN ROOF H ROOF LE ROOF GFLUX ROOF fluxes for roof RUNOFF_TWN runoff for town RN GARDEN H GARDEN LE GARDEN GFLUX GARDEN fluxes for garden RN BLT H BLT LE BLT GFLUX BLT fluxes for built surfaces SWA ROOF SWA SN ROOF LWA ROOF LWA SN ROOF sdown and ldown absorbed by roof and by snow on roof SWA ROAD SWA SN ROAD LWA ROAD LWA SN ROAD sdown and ldown absorbed by road and by snow on road SWA GARDEN LWA GARDEN sdown and ldown absorbed by garden e LSURF BUDGETC RUNOFFC TWN cumulated runoff on town LPGD and LGARDEN FRAC GARDEN fraction of garden 222 ISBA amp GARDEN To get fields names for GARDEN add G_ at beginning of following names For albedos add only G LPGD
126. o uoce ke vi o nde a PR ED 3 2 1 Forcing format in ASCII and binary cases sss so onsesoonse coon eee eese eee seen nose eese sete ZO 3 2 2 Forcing format in NEICDE case hen 20 Table of Contents 3 2 3 OA este 3 2 4 Installation of an expermment eene eerte aerae eap oven ot onore one Eee eee er ria rere er 29 3 3 One example of off line surfex application eee ee eere ecce eee eere eee eese ense ee ea sees sss 30 3 3 1 mietedT format Dile 4 rend O D 325 12 list OF Daramelers oic oe eri rent AS 3 3 2 SCH format Tiles tod A O RT OO 3 3 2 3 Extracting 2d Delds ios A bains dl AA AI Sor TEE D7 3 4 Some output of off line simulation eee eee ee ee eren ee ee eee eee en sees ease eo ease eo so sees so sese sese es FI 3 4 1 Examples of prognostic variables output ceee ecce esee eee ee eene eene eee ense essa sees ss sc 3 4 2 list of available variables 4 9 eno o eos a eo no Cena e nnb aa de o eaa do seo aseo ao ee hacc snos adeo eas doa rosaceo oa esa fO 4 The physiographic Trelds al 4 1 Overview of physiographic fields computation PGD eeeeeeeeeeeeeeeee eee 4 11 Choice of Ce A onini Fey nee SZ 4 1 2 Choice of the physiographic fields eere eere eere eee e e eee ee eese eese eese 0000100000400 4 1 2 1 Namelist
127. ocage french research chemistry model ASCII LFI PREP file from Surfex ASCLLV ASCII latlonval file one file for each depth e CFILE ISBA CFILEPGD ISBA name of the PREP PGD files used to define any ISBA variable The use of a file or prescribed value XHUG SURF XHUG_ROOT XHUG DEEP XTG SURF XTG ROOT XTG DEEP CFILE WG and CFILE TG has priority on the data in CFILE ISBA file e CTYPE CTYPEPGD type of the CFILE ISBA CFILEPGD ISBA files if the latter is provided CTYPE CTYPEPGD must then be given The following values are currently usable MESONH the file type is a MESONH file GRIB the file type is a GRIB file coming from any of these models 1 ECMWF european center forecast model 2 ARPEGE Arpege french forecast model 3 ALADIN Aladin french forecast local model 4 MOCAGE Mocage french research chemistry model ASCII PREP PGD Surfex ASCII file LFI PREP PGD Surfex LFI file NYEAR year of surface UTC time It is used only if no atmospheric file or no surface file is 5 6 1 Namelist NAM PREP ISBA 135 given in those the date can be read NMONTH month of surface UTC time It is used only if no atmospheric file or no surface file is given in those the date can be read e NDAY day of surface UTC time It is used only if no atmospheric file or no surface file is given in those the date can be read e XTIME time from midnight of surface UTC time It is used onl
128. ographic characteristics the surface of frontal obstacle A over the surface of the grid mesh S in each DAS S DAS VIA JS A S direction directional z the half height of these obstacles h 2 h 2 h 72 h 2 used to compute the directional Zo These 8 parameters are used to compute the total roughness length in the four directions given by the model axis zp ud Zooi Zoe p Zoe used to compute the Hz the Subgrid Scale Orography SSO parameters standard deviation m anisotropy Ya Os Tz direction of the small main axis and slope m For ISBA scheme a file with the clay fraction of the near surface soil The resolution of the file provided is 5 on the world e For ISBA scheme a file with the sand fraction of the near surface soil The resolution of the file provided is 5 on the world 4 1 2 3 realistic physiographic fields 57 4 1 2 4 user defined physiographic fields 4 1 2 4 user defined physiographic fields 58 4 1 2 4 1 ISBA scheme Over natural areas all surface parameters for each vegtype at a given frequency have to be specified by the user in namelist NAM_DATA_ISBA If LECOCLIMAP TRUE NAM_FRAC only part of the surface parameters for each vegtype can be given in NAM DATA ISBA They are then completed by ECOCLIMAP data If only data for some of the 12 vegtypes are given other vegtypes are filled with the values of the first given ve
129. order of the domain real decimal degrees XLONMAX must be larger than XLONMIN but no more than 360 larger e XLATMIN minimum latitude covered by the grid 1 e corresponding to the south border of the domain real decimal degrees XLATMIN must be between 90 and 90 and smaller than XLATMAX e XLATMAX maximum longitude covered by the grid i e corresponding to the right border of the domain real decimal degrees XLATMAX must be between 90 and 90 and larger than XLATMIN e NLON number of surface points in the longitude direction e NLAT number of surface points in the latitude direction 4 3 4 1 Namelist NAM_LONLAT_REG 86 4 3 4 2 Namelist NAM_LONLATVAL This namelist defines the projection in case CGRID LONLATVAL Fortran name Fortran type values default value unit none degrees none degrees XX XY NPOINTS number of grid points defining the grid e XX longitude of grid mesh center e YY latitude coordinate of grid mesh center e XDX grid mesh size in x direction real degrees East e XDY grid mesh size in y direction real degrees North 4 3 4 2 Namelist NAM LONLATVAL 87 4 3 5 Regular Lambert grids 4 3 5 Regular Lambert grids 88 4 3 5 1 Namelist NAM_IGN This namelist defines the projection in case CGRID IGN Fortran name Fortran type character len 3 integer real real real real real real real integer integer values default valu
130. phic roughness length depends on wind direction BE04 Beljaars 2004 orographic drag NONE no orographic treatment By default CROUGH is set to UNDE undefined since its initialization depends if LISBA_CANOPY is activated or not finally default value of CROUGH is updated as follows CROUGH Z04D if LISBA_CANOPY F CROUGH BE04 if LISBA_CANOPY T e CCPSURF type of specific heat at surface The following options are currently available DRY specific heat does not depend on humidity at surface HUM specific heat depends on humidity at surface e LCANOPY_DRAG drag activated in SBL scheme within the canopy LGLACIER If activated specific treatment as in Arpege over permanent snow ice regions Snow depth initialised to 10m and soil ice to porosity During the run snow albedo ranges from 0 8 to 0 85 e XTSTEP time step for ISBA Default is to use the time step given by the atmospheric coupling seconds e XCGMAX maximum value for soil heat capacity e XCDRAG drag coefficient in canopy e LVEGUPD True update vegetation parameters every decade 6 5 2 Namelist NAM ISBAn 164 6 5 3 Namelist NAM SURF DST Fortran name Fortran type values default value CEMISPARAM DST string of 5 characters AMMA Dal8S7 EXPLI alf98 EXPLI AMMA CVERMOD string of 6 characters CMDVER NONE e CEMISPARAM_ DST One line dust emission parameterization type This namelist gives the distribution of emitt
131. r the tiles aggregated remove _TILE from the names of the fields All the following flags are in namelist NAM DIAG SURFn e N2M gt 1 T2MMIN T2MMAX HU2MMIN HU2MMAX W10M and W10MMAX not for FLAKE nor TEB RI_TILE Bulk Richardson number T2M TILE T2MMIN TILE T2MMAX_TILE air temperature at 2 meters O2M TILE air humidity at 2 meters HU2M TILE HU2MMIN TILE HU2MMAX TILE air relative humidity at 2 meters ZONIOM TILE MERIOM TILE WIOM TILE WIOMMAX_TILE zonal meridian wind at 10 meter only if 1 level of atmospheric model is upper than 10 m e LSURF BUDGET RN TILE H TILE LE TILE LEI TILE GFLUX TILE net radiation at surface sensible heat flux total latent heat flux sublimation latent heat flux net soil vegetation flux LRAD BUDGET 0 SWD TILE SWU TILE LWD TILE LWU TILE SWD TILE b SWU_TILE_b short wave downward and upward radiation long wave downward and upward radiation short wave downward and upward radiation by spectral band FMU FMV zonal and meridian frictions without and with SSO Pa e LSURF BUDGETC not for FLAKE nor for TEB RNC TILE HC TILE LEC TILE LEIC TILE GFLUXC_TILE cumulated fluxes at surface LRAD BUDGET 0 SWDC_TILE SWUC TILE LWDC TILE LWUC TILE cumulated radiations FMUC TILE FMVC TILE cumulated frictions with SSO e LCOEF CD TILE CH TILE CE TILE drag coefficients for wind heat vapor ZO TILE ZOH_TILE roughness lengths for momentum and heat
132. radiation over the working area 200 150 100 50 0 012 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 Figure 3 4 Time evolution of shortwave incoming radiation over the working area 3 3 1 2 list of parameters 35 3 3 2 ascii format files This format is used in the off line applications because it s the simpliest format that may replace more complex in terms of file handling like Ifi format used in the meso NH framework or FA used in the Arome framework 3 3 2 ascii format files 36 3 3 2 1 PGD txt This file contains the information related to physiography and orography essentially The file is splitted into several parts The first one corresponds to the gridbox as seen as a single pixel where quantities are aggregated The corresponding field names are prefixed with FULL This gridbox may be separated into four tiles respectively associated to nature town sea ocean and lake The corresponding field names are respectively prefixed with NATURE TOWN SEA and WATER The physiographic parameters written out into PGD txt file are mainly the fraction of land covers contained in each gridbox These fractions are computed from ECOCLIMAP database amp FULL DIM_FULL 1280 amp FULL DIM_SEA 0 amp FULL DIM NATURE 1279 amp FULL DIM WATER gt 1 amp FULL DIM_TOWN amp FULL ECOCLIMAP amp NATURE ISBA amp NATURE PHOTO amp NATURE GROUND_LAYER GROUND
133. ran name Fortran type values default value cocinar usa km eC Teer XUNIF WATER real between 0 and 1 none CFNAM WATER character LEN 28 n eer between 0 and 1 CFNAM NATURE character LEN 28 E P E rs mw am new e XUNIF SEA uniform prescribed value of sea fraction If XUNIF_SEA is set file CFNAM SEA is not used e CFNAM SEA sea fraction data file name If XUNIF_SEA is set file CFNAM SEA is not used e CFTYP SEA type of sea data file DIRECT BINLLF BINLLV ASCLLV e XUNIF WATER uniform prescribed value of water fraction If XUNIF WATER is set file CFNAM WATER is not used e CFNAM WATER water fraction data file name If XUNIF WATER is set file CFNAM WATER is not used e CFTYP WATER type of water data file DIRECT BINLLF BINLLV ASCLLV e XUNIF NATURE uniform prescribed value of nature fraction If XUNIF NATURE is set file CFNAM NATURE is not used e CFNAM NATURE nature fraction data file name If XUNIF NATURE is set file CFNAM NATURE is not used e CFTYP NATURE type of nature data file DIRECT BINLLF BINLLV ASCLLV e XUNIF TOWN uniform prescribed value of town fraction If XUNIF TOWN is set file CENAM TOWN is not used CFNAM TOWN town fraction data file name If XUNIF TOWN is set file CENAM TOWN is not used 4 1 2 1 Namelist NAM FRAC 54 e CFTYP TOWN type of town data file DIRECT BINLLF BINLLV ASCLLV 4 1 2 1 Namelist NAM FRAC 5
134. riable The use of a file or prescribed value XWS ROAD XWS ROOF XTS ROAD XTS ROOF XTS WALL XTI BLD XTI ROAD CFILE WS or CFILE TS has priority on the data in CFILE TEB file e CTYPE CTYPEPGD type of the CFILE TEB CFILEPGD TEB file if the latter is 5 7 1 Namelist NAM PREP TEB 142 provided CTYPE must then be given The following values are currently usable MESONH the file type is a MESONH file GRIB the file type is a GRIB file coming from any of these models 1 ECMWF european center forecast model 2 ARPEGE Arpege french forecast model 3 ALADIN Aladin french forecast local model 4 MOCAGE Mocage french research chemistry model ASCII PREP PGD Surfex ASCII file LFI PREP PGD Surfex LFI file NYEAR year of surface UTC time It is used only if no atmospheric file or no surface file is given in those the date can be read NMONTH month of surface UTC time It is used only if no atmospheric file or no surface file is given in those the date can be read NDAY day of surface UTC time It is used only if no atmospheric file or no surface file is given in those the date can be read e XTIME time from midnight of surface UTC time It is used only if no atmospheric file or no surface file is given in those the date can be read seconds e LTEB_CANOPY activates surface boundary multi layer scheme over town 5 7 1 Namelist NAM PREP TEB 143 5 7 2 Namelist NAM PREP TEB SNOW
135. rotation angle of the simulation domain around the reference longitude real 4 3 2 1 Namelist NAM CONF PROJ 79 4 3 2 2 Namelist NAM CONF PROJ GRID This namelists defines the horizontal domain in case CGRID CONF PROJ Fortran name Fortran type arcen fra wc ma Wimax ne e XLATCEN latitude of the point of the center of the domain real decimal degrees e XLONCEN longitude of the point of the center of the domain real decimal degrees NIMAX number of surface points of the grid in direction x NJMAX number of surface points of the grid in direction y e XDX grid mesh size on the conformal plane in x direction real meters e XDY grid mesh size on the conformal plane in y direction real meters 4 3 2 2 Namelist NAM CONF PROJ GRID 80 4 3 2 3 Namelist NAM INIFILE CONF PROJ This namelists defines the horizontal domain from an existing surface file in which grid type is CONF PROJ If nothing is set in the namelist a grid identical as the one in the file is chosen Fortran name Fortrantype default value IXSIZE integer EE size TYSIZE integer aN size e IXOR first point I index according to the YINIFILE grid left to and out of the new physical domain e IYOR first point J index according to the YINIFILE grid under and out of the new physical domain e XSIZE number of grid points in I direction according to YINIFILE grid recovered by the new domain If
136. s 118 5 1 Overview of fields computation PREP The prognostic fields temperature humidity ice snow etc are averaged or interpolated on the specified grid by the program PREP They are stored in the surface file The computation is done separately for each surface scheme During the PREP facility 1 You initializes the date of the surface 2 You initializes the prognostic variables of the chosen sea scheme 3 You initializes the prognostic variables of the chosen lake scheme 4 You initializes the prognostic variables of the chosen vegetation scheme 5 You initializes the prognostic variables of the chosen town scheme Here are presented the initialization procedures for the schemes that need such information for example scheme IDEAL does not need any information here but modificaton of the code source init_ideal_flux f90 Note that for each scheme and for some for each variable of the scheme it is possible to initialize the prognostic fields either form an operationnal or research model or using prescribed usually uniform fields 5 1 Overview of fields computation PREP 119 5 2 Date initialization and default input data file for all schemes 5 2 Date initialization and default input data file for all schemes 120 5 2 1 Namelist NAM PREP SURF ATM This namelist information is used to possibly e initialize the date of all surface schemes The namelist information is used only if no input data
137. s The following option is currently available DIRECT direct Charnock computation No effect of convection in the the boundary layer on the fluxes formulae ITERAT iterative method proposed by Fairall et al 1996 from TOGA COARE experiment amended by Mondon and Redelsperger 1998 to take into account effect of atmospheric convection on fluxes COARE3 iterative method proposed by Fairall et al 1996 from TOGA COARE experiment amended by cnrm memo to take into account effect of atmospheric convection precipitation and gustiness on fluxes ECUME iterative method proposed by Fairall et al 1996 from TOGA COARE experiment amended by cnrm memo to take into account effect of atmospheric convection precipitation and gustiness on fluxes improvement of surface exchange coefficients representation LPWG correction of fluxes due to gustiness LPRECIP correction of fluxes due to precipitation LPWEBB correction of fluxes due to convection Webb effect e CSEA ALB type of albedo formula The following options are currently available UNIF a uniform value of 0 135 is used for water albedo TA96 Taylor et al 1996 formula for water direct albedo depending on solar zenith angle 8 MK10 albedo from Marat Khairoutdinov e LPROGSST set it to TRUE to make SST evolve with tendency when using the 1d oceanic model NTIME COUPLING coupling time frequency between surface and the 1d oceanic model e C
138. s prescribed There is no positioning of each point compared to any other YINIFILE name of the file used to define the grid It is possible to define the grid as a subgrid of a previously created file This is currently possible only for files that have a CONF PROJ or CARTESIAN grid type The exact definition of the subgrid grid chosen is prescribed in a namelist described below depending on the type of grid available in the file chosen The use of a file has priority on the CGRID type YFILETYPE type of the YINIFILE file if the latter is provided YFILETYPE must be given The following values are currently usable MESONH the file type is a MESONH file 4 3 1 1 Namelist NAM PGD GRID 77 4 3 2 Conformal projection grids Mercator Lambert Polar stereographic 4 3 2 Conformal projection grids Mercator Lambert Polar stereographic 78 4 3 2 1 Namelist NAM CONF PROJ This namelist defines the projection in case CGRID CONF PROJ Fortran name Fortran type default value XLATO reference latitude for conformal projection real decimal degrees XLONO reference longitude for conformal projection real decimal degrees e XRPK cone factor for the projection real XRPK 1 polar stereographic projection from south pol 1 gt XRPK gt 0 Lambert projection from south pole XRPK 0 Mercator projection from earth center 1 XRPK 1 polar stereographic projection from north pole e XBETA
139. scribed value XTS WATER UNIF has priority on the data in CFILE WATFLX file e CTYPE CTYPEPGD type of the CFILE WATFLX CFILEPGD WATFLX file if the latter is provided CTYPE CTYPEPGD must then be given The following values are currently usable MESONH the file type is a MESONH file GRIB the file type is a GRIB file coming from any of these models 1 ECMWF european center forecast model 2 ARPEGE Arpege french forecast model 3 ALADIN Aladin french forecast local model 4 MOCAGE Mocage french research chemistry model ASCII PREP PGD Surfex ASCII file LFI PREP PGD Surfex LFI file NYEAR year of surface UTC time It is used only if no atmospheric file or no surface file is given in those the date can be read e NMONTH month of surface UTC time It is used only if no atmospheric file or no surface file is given in those the date can be read 5 4 1 Namelist NAM PREP WATFLUX 127 e NDAY day of surface UTC time It is used only if no atmospheric file or no surface file is given in those the date can be read e XTIME time from midnight of surface UTC time It is used only if no atmospheric file or no surface file is given in those the date can be read seconds e LWAT SBL activates surface boundary multi layer scheme over inland water 5 4 1 Namelist NAM_PREP_WATFLUX 128 5 5 Lake scheme FLAKE 5 5 Lake scheme FLAKE 129 5 5 1 Namelist NAM_PREP_FLAKE Th
140. scsesdosusdesoicasdigeossiecssadocsevensseisivesdescaaeeisioccbicdestesdasaibesises 141 5 7 2 Namelist NAM PREP TEB SNOW cositas cidcid dad decai 144 Table of Contents 5 7 3 Namelist NAM PREP TEB GARDEN sossossossssssnsssssnssnssnssnssnnsnnsnnsnnssnssnssnssnnsnnsnnsnnsnnnne 145 5 7 4 Namelist NAM PREP GARDEN SNOW esssssssssnsssssnsssssnssnsssnsnnsnnsnnsnnssnssnssnnsnnsnnsnnsnnnne 146 6 How to run the externalized surface physical schemes es soan sonc oonc ensen soon eesveencenseensen 147 6 1 SURF ATM general options available over all tiles onvoor soscooncenneenseoneecee 148 6 1 1 Namelist NAM SURE CS TS nrrsensersreerveessnndrsereeinvadensideordocpenderanderadetonnsdennsdetddndeveedenade 149 6 1 2 Namelist NAM SURE AT inde degens nto Fo ato eR ey Py SE Ue ee doneer tete koe eb sed uper 150 6 1 3 Namelist NAM WRITE SURF ATM sssssossnensconessesssenesssenesnnsanenssonensensensessnsnesnnsssenssenene 152 6 1 4 Namelist NAM SSOR eerte ttis nr hope Pha ePn nea ho Ente PER Een ph aee essen 153 6 2 SEAELX sea scheme OpLUloliS esercito totes n es nee nr reina bandera ees PE ES nior ig rere Us eR 154 6 2 1 Namelist NAM SEAFLUXN screens ergens sadeseadoodendonoideveddendeesorndebesdosdeneenaddundde 155 6 2 2 Namelist NAM SURE SL i essetis ces des eoa aiii Sive es raa YU ped 156 6 3 WATFLX inland water scheme options eese eere eee eene entente ntes stone tassa
141. sit cv ett oret oe eb ove ant ad UY UY AULUULULULUULUULUULUULUULUUOUULUOUUOUHHHMHHMHAMHHMHHHEI HH E El FE Ed Ed Ed E Ed Ed E Ed Ed E Ed Ed FE El El Ed AH A lt lt lt lt Oo oo oo oo co como 35 T Il gt gt E a e gt E a dl gt gt e e gt si d a gt 3i eT e gt gt gt a El Hi z a P 4 e 4 FI I Al A B E 2 S N N S E E y i Fl E Eu fo fo fo fo fu fo fo fu fo fo fo fu fo fo fu fo fo fo fu fo fo fo fo fo fo fu fo fo fo fo fo fo fu fo fu fo fo fo fo fu fo fu fo fo fo fo fu fu Pa gt ZH Hd Hd OH Hi HI HI HI H Fd H HI HI HI HI H Fd Fd HI HI HI HI HI Fd F4 H HI HI HI FI Fd Fd HI HI HI HI HI FH FH HI HI HI HI HI HH HH HI HI HH UY H42424244424242424242424442424244242444242424242424244242424242424242424242424242442424242424242424242424242424 e RED m DL RID Rb O De Vela el ce Rae co JRE doe LD lC DL oe Ee Rc EE Ee We DL O AD Rico DOLD al ED Rica DN oe vao ei ED Hr DD EE fes E A O04 ON PX ON D DE P4 ODE ODS DE DE PX DE DX DE DE DE DE DE DE PX DE DE DE DE DE DE PX DE DE DE DE DE DE PX DX DE DE DE DE P4 DE DE DE DE DE DE PX DE DS CERES ad er mjm CE a B sd un H a o amp s co 4 du O S z 33 239 10 8 1 Uniform values prescribed 1d example without patches DS D DS DS DS ODS DS DI DS DS DS DS DI DS DS DI DS DI DS ODS OPS 0S PS DS DS DI DI PS PS ODS DS DI DS D DS DS DS PS DS PDS amp NAM DATA TEB DS ODS Z ODS ODS ODS ODS DI X DS DS DS DI DS A 10 8 1 Un
142. ss e LCPL_ARP activate aladin formulation for Cp and L e LOVNPLUS An option for the resolution of the surface temperature equation Arpege 6 1 2 Namelist NAM SURF ATM 151 6 1 3 Namelist NAM_WRITE_SURF_ATM Fortran name Fortran type values default value e LNOWRITE_CANOPY if T do not write canopy prognostic variables in initial restart or LBC files e LNOWRITE_TEXFILE if T do not fill class_cover_data tex file during the model setup 6 1 3 Namelist NAM_WRITE_SURF_ATM 152 6 1 4 Namelist NAM SSOn The namelist NAM_SSOn concerns the roughness parameterization for orography Fortran name Fortran type values default value CROUGH string of 4 characters Z01D Z04D NONE BEO4 BEO4 e CROUGH type of orographic roughness length The following options are currently available ZOID orographic roughness length does not depend on wind direction Z04D orographic roughness length depends on wind direction BE04 Beljaars 2004 orographic drag NONE no orographic treatment e XFRACZO Z0 Min Z0 Href XFRACZO e XCOEFBE coefficient for Beljaars calculation of SSO drag 6 1 4 Namelist NAM SSOn 153 6 2 SEAFLX sea scheme options 6 2 SEAFLX sea scheme options 154 6 2 1 Namelist NAM SEAFLUXn Fortran name Fortran type values default value CSEA FLUX DIRECT ITERAT COARE3 ECUME wwe fea OO meme NONE e CSEA FLUX type of flux computation physic
143. stic heating QF BLDWER domestic heating FLX BLD heat flux from bld TI BLD EQ internal temperature without heating TI BLDWER internal temperature without heating QF TOWN total anthropogenic heat DQS TOWN storage inside building H WALL wall sensible heat flux H ROOF roof sensible heat flux H ROAD road sensible heat flux RN WALL net radiation at wall RN ROOF net radiation at roof RN ROAD net radiation at road GFLUX WALL net wall conduction flux GFLUX ROOF net roof conduction flux GFLUX ROAD net road conduction flux LE ROOF roof latent heat flux LE ROAD road latent heat flux LPGD flag to save PGD fields if TEB garden is activated LPGD_FIX flag to save fixed PGD fields if TEB garden is activated 8 4 1 Namelist NAM DIAG TEBn 199 8 5 Diagnostics relative to the FLAKE scheme 8 5 Diagnostics relative to the FLAKE scheme 200 8 5 1 Namelist NAM_DIAG_FLAKEn Fortran name Fortran type default value LWATER_PROFILE FALSE eL WATER PROFILE flag to save in the output file miscelleaneous fields The diagnostic is temperature at the depths defined by XZWAT PROFILE depth of output levels m in namelist 8 5 1 Namelist NAM DIAG FLAKEn 201 8 6 Diagnostics relative to the 1D oceanic scheme 8 6 Diagnostics relative to the 1D oceanic scheme 202 8 6 1 Namelist NAM DIAG OCEANn Fortran name Fortran type default value LDIAG_OCEAN FALSE
144. surface include the chemical species concentrations and fluxes 7 How to run the externalized surface chemical schemes 174 7 1 Chemical settings control 7 1 Chemical settings control 175 7 1 1 Namelist NAM CH CONTROLn Fortran name Fortran type values default value CCHEM SURF FILE string of 28 characters a 7 e CCHEM SURF FILE name of general chemical purpose ASCII input file 7 1 1 Namelist NAM CH CONTROLn 176 7 2 Chemical anthropogenic emissions 7 2 Chemical anthropogenic emissions 177 7 2 1 Namelist NAM CH SURFn Fortran name Fortran type values default value LCH_SURF_EMIS logical FALSE e LCH_SURF_EMIS flag to use anthropogenic emissions or not 7 2 1 Namelist NAM CH SURFn 178 7 3 Chemical deposition over ocean 7 3 Chemical deposition over ocean 179 7 3 1 Namelist NAM_CH_SEAFLUXn Fortran name Fortran type values default value CCH DRY DEP string of 6 characters NONE WES89 WES89 e CCH DRY DEP type of deposition scheme NONE no chemical deposition scheme WES89 Wesley 1989 deposition scheme 7 3 1 Namelist NAM CH SEAFLUXn 180 7 4 Chemical deposition over lakes 7 4 Chemical deposition over lakes 181 7 4 1 Namelist NAM CH WATFLUXn Fortran name Fortran type values default value CCH DRY DEP string of 6 characters NONE WES89 WES89 e CCH DRY DEP type of deposition scheme NONE no chemical
145. t NAMGEM Fortran name Fortran type default value e RMUCEN sine of the latitude of the rotated pole RLOCEN longitude of the rotated pole radian e RSTRET stretching factor must be greater than or equal to 1 4 3 6 3 Namelist NAMGEM 93 4 4 Land cover fractions 4 4 Land cover fractions 94 4 4 1 Namelist NAM COVER This namelist gives the information to compute the surface cover fractions Fortran name Fortran type values default value BINLLV ASCLLV N Ir XRM_COAST real 20 LORCA GRID logical XLAT ANT real LIMP COVER logical e XUNIF COVER specified values for uniform cover fractions For each index i between 1 and 573 XUNIF_COVER i is the fraction of the i ecosystem of ecoclimap The same fraction of each ecosystem is set to all points of the grid The sum of all ecosystem fractions must be equal to One SL L LL LS If XUNIF_COVER is set it has priority on the use of an ecosystem file see next item YCOVER In the case of grid without any reference to geographical coordinates CARTESIAN or NONE XUNIF_COVER must be set e YCOVER ecoclimap data file name It is used only if XUNIF COVER is not set e YFILETYPE type of YCOVER file DIRECT BINLLV BINLLF ASCLLV e XRM COVER for each point all fractions of ecosystems that are below XRM_COVER are removed i e set to zero and the corresponding area fractions are distributed among the remaining ecosys
146. t al Fortran name Fortran type values default value CASSIM character LEN 5 PLUS AVERA 2DVAR PLUS e LASSIM Assimilation or not e CASSIM type of correction 6 5 4 Namelist NAM ASSIM 166 6 5 5 Namelist NAM AGRI Agricultural Practices Fortran name Fortran type values default value Dow Jeu LAGRIP General switch for agricultural practices seeding and irrigation 6 5 5 Namelist NAM_AGRI 167 6 5 6 Namelist NAM DEEPSOIL deep soil characteristics Fortran name Fortran type values default value Lpempson init fr e LDEEPSOIL General switch for deep soil fields temperature and relaxation time XTDEEP CLI 236 236 220 209 206 211 214 210 207 212 220 229 XGAMMAT_CLI 4 4 4 3 1 2 3 1 1 1 1 2 e LPHYSDOMC General switch to impose CT and soil water ice contents CT 9 427757E 6 6 5 6 Namelist NAM_DEEPSOIL 168 6 5 7 Namelist NAM TREEDRAG Declaration to take into account tree drag in the atmospheric model instead of SURFEX The ZO forest is therefore reduced to the ZO grass Fortran name Fortrantype values default value e LTREEDRAG flag used to take into account tree drag in the atmospheric model instead of SURFEX 6 5 7 Namelist NAM TREEDRAG 169 6 6 TEB town scheme options 6 6 TEB town scheme options 170 6 6 1 Namelist NAM_TEBn Fortran name Fortran type values default value CZOH character
147. taa eeno 198 8 4 1 Namelist NAM DIAG TE BI i iccesciccsssdescesdssssdssesssecscveisosedessosseddoondcoessosceskestocedosdsssesseiesdonesds 199 8 5 Diagnostics relative to the FLAKE Scheme ccscccsssccssssccsssscssssscssssccssssccssssscsssssssssssees 200 8 5 1 Namelist NAM DIAG FLAKEN ossssvserrososveorsesensoenssoonvissortnoennddoondesvoodensvedenoansedeoseonsdonnsene 201 8 6 Diagnostics relative to the 1D oceanic scheme 202 8 6 1 Namelist NAM DIAG OCEAND cssssssssssssssccenssescsssscssnacconscssssssccssnacconscsscssessssnscconsees 203 9 Externalized surface model output fields oooooomss 204 9 1 Prognostic model output fields naechsten er 205 Cano eoi A A E delen Rena 206 SEAFLUX A NE 207 WATELUX Io ad diia 208 A ER oh RTE SO ARTE RE 209 SNOW essetis ER AE A SCT EE NUN EUN AE 210 viii Table of Contents ar 9 2 Diagnostic model output fields rere ee All lesaeesregsated energisch For each tile and all tiles aggregated oossssssssz 1 0 Chemical di3g nos Css A nneNin ere A A 9 3 Physiosrashie Meld smeer oc ne er ere nn nent 225 Common fields RR RR A RRA 10 Example of namelist features een nenne 10 1 How to define a target grid esse L 10 2 How to use ECOCLIMAP Vicicsiccesssdiecicscccecsisetsesdsvcicnaisissbisdecsesdbastesbeccacdacsestecebiudai etdessccedssesk Oe 10 3 How to use ECOCLIMAPTE ci dd ias Table of Contents 10 4 How to use 1D Oceanic Model nen een E
148. te can be read e XTIME time from midnight of surface UTC time It is used only if no atmospheric file or no surface file is given in those the date can be read seconds e LSEA_SBL activates surface boundary multi layer scheme over sea LOCEAN MERCATOR oceanic variables initialized from MERCATOR if T e LOCEAN_CURRENT initial ocean state with current if F ucur 0 vcur 0 5 3 1 Namelist NAM_PREP_SEAFLUX 125 5 4 Lake scheme WATFLX 5 4 Lake scheme WATFLX 126 5 4 1 Namelist NAM_PREP_WATFLUX This namelist information is used to initialize the WATFLX sea scheme temperature Fortran name Fortran type values default value none CFILE_WATFLX Beer 28 EEE CFILE in NAM_PREP_SURF_ATM characters CIS string of 6 MESONH GRIB ASCIL CFILETYPE in characters VLEI NAM_PREP_SURF_ATM CFILEPGD_WATELX ting of 28 DD CFILEPGD in NAM PREP SURF ATM characters D wa fe EE MONT me me EE pA ig ku ee wars ja e XTS WATER UNIF uniform prescribed value of water surface temperature supposed at an altitude of 0m mean sea level altitude The temperature is then modified for each point depending on its altitude following a uniform vertical gradient of 6 5 K km This prescribed value if defined has priority on the use of CFILE WATFLX data e CFILE WATFLX CFILEPGD WATFLX name of the PREP PGD files used to define the Sea surface Temperature The use of a file or pre
149. tem fractions Whatever the value of XRM_COVER at least one ecosystem remains for each grid point e XRM COAST limit of coast coverage under which the coast is replaced by sea or inland water e XRM LAKE limit of inland lake coverage under which the water is removed e XRM SEA limit of sea coverage under which the sea is removed e LORCA GRID flag to ensure the compatibility between surfex and Orca grid which minimal latitude over Antarctica is 77S e XLAT ANT minimum Orca grid latitude over Antarctica 4 4 1 Namelist NAM COVER 95 e LIMP_COVER reads the cover fractions in an existing PGD file to avoid their computation 4 4 1 Namelist NAM_COVER 96 4 4 2 Namelist NAM PGD ARRANGE COVER This namelist initialyses change water not lake to nature and or town to rock keys Fortran name Fortran type values default value crow To rock Jeu f eL WATER TO NATURE Change Wetland treated as inland water into nature e LTOWN TO ROCK Change Town into Rock 4 4 2 Namelist NAM PGD ARRANGE COVER 97 4 4 3 Namelist NAM READ DATA COVER Fortran name Fortran type values default value e LREAD DATA COVER if T covers data are read in bin files if F in fortran routines 4 4 3 Namelist NAM READ DATA COVER 98 4 4 4 Namelist NAM WRITE COVER TEX Fortran name Fortran type values default value CLANG character LEN 2 dw o e CLANG language used in the file class cover tex tex 4 4 4 Namelist
150. ter run etc Their name in the files are EMIS_GRnnn where nnn goes from 001 to 999 During the execution of the programs these fields are stored in the XEMIS_GR_FIELDS first dimension spatial dimension second dimension total number of fields in the module MODD EMIS GR _FIELD n The temporal evolution the aggregation of prescribed emissions and the link with the corresponding chemical prognostic variables are handled by the subroutine CH EMISSION FLUXn f90 Fortran name Fortran type default value ens pe images N EMIS_PGD_ EMIS a EMIS D EMIS E amis oomme mer o EMIS Ey EMIS ES 5 EMIS E Only the first NEMIS_PGD_NBR values in these arrays are meaningfull NEMIS PGD NBR number of dummy fields e CEMIS PGD NAMKC list of the dummy fields you want to initialize with your own data You can give any name you want This is a way to describe what is the field This information is not used by the program It is just written in the FM files e CEMIS_PGD_FILE list of the names of the files containing the data for the fields you have specified in CEMIS PGD NAMKC e CEMIS PGD COMMENT list of the comments associated to each emission field NEMIS_PGD_TIME list of the time of the files containing the data for the fields you have specified in CEMIS PGD NAMEY e CEMIS_PGD_FILETYPE list of the types of the files containing the data for the fields you have specified
151. the output file the physiographic fields of ISBA scheme that are computed from ecoclimap data from the ecosystem fractions eLSURF EVAP BUDGET flag to save in the output file the detailed terms of the water vapor fluxes on each patch of the vegetation scheme if existing and aggregated for the natural surface The diagnosed fields are e SURF MISC BUDGET flag to save in the output file miscelleaneous fields The diagnosed fields are HV Halstead coefficient SNG snow fraction over bare ground SNV snow fraction over vegetation SN total snow fraction SWI soil wetness index for each ground layer w w j wy Wi where w is the volumic water content w is the porosity and w corresponds to the plant wilting point GPP Gross primary production RDK Dark respiration e PATCH BUDGET flag to save in the output file the diagnostics for each patch default is T eL WOOD SPIN diagnostics related to ISBA CC model e SOILCARB SPIN diagnostics related to ISBA CC model 8 3 1 Namelist NAM DIAG ISBAn 197 8 4 Diagnostics relative to the TEB town scheme 8 4 Diagnostics relative to the TEB town scheme 198 8 4 1 Namelist NAM DIAG_TEBn Fortran name Fortran type default value LSURF_MISC_BUDGET FALSE LPGD logical FALSE LPGD FIX FALSE eL SURF MISC BUDGET flag to save in the output file miscelleaneous fields The diagnosed fields are Z0 TOWN roughness length for town QF BLD dome
152. try model e LSNOW IDEAL if LSNOW IDEAL FALSE only one value can be given for following snow parameters and a vertical interpolation is processed If LSNOW_IDEAL TRUE values are given for each layer and there is no vertical interpolation performed 5 6 2 Namelist NAM PREP ISBA SNOW 137 e LSNOW_FRAC TOT if LSNOW_FRAC_TOT TRUE the total snow fraction XPSN MIN 1 0 ZSNOWSWE XWCRN_EXPL where ZSNOWSWE is the snow liquid water content and XWCRN_EXPL is the critical value of the equivalent water content of the snow reservoir e XWSNOW uniform value to initialize snow content one for each layer e XTSNOW uniform value to initialize snow temperature one for each layer e XRSNOW uniform value to initialize snow density one for each layer e XASNOW uniform value to initialize snow albedo e XSGISNOW uniform value to initialize snow layers grain feature 1 for Crocus one for each layer e XSG2SNOW uniform value to initialize snow layers grain feature 2 for Crocus one for each layer e XHISTSNOW uniform value to initialize snow layer grain historical parameter for Crocus one for each layer e XAGESNOW uniform value to initialize snow grain age for Crocus one for each layer 5 6 2 Namelist NAM PREP ISBA SNOW 138 5 6 3 Namelist NAM_PREP_ISBA_CARBON Fortran name _ Fortran type values default value CRESPSL string of 3 characters DEF PRM CNT e CRESPSL soil respiration option Possib
153. ure over vegetation the name will be TG1 and the mask NATURE grep amp PGD txt returns all variables of this file To distinguish variables defined or not over patches a flag is used if the variable is patch dependant the flag must be set to in the contrary it should be For example orography ZS doesn t depend on patches but surface temperature TG1 does If the simulation uses patches and the flag is then only the first patch will be treated bare ground The namelist SXPOST nam looks like 2 FULL ZS NATURE TG1 Running SXPOST will return a file per variable which will contain the longitude the latitude and the value of the field for each gridbox over which the field is defined For example TG1 which is known only over nature won t have a value for each gridbox of the domain 3 3 2 3 Extracting 2d fields 41 3 3 2 4 I O diagram optional obviously not exhaustive Figure 3 8 Surfex diagram showing the input output files produced by the different tools the list of produced variables in case YWRPRGM z TEXTE is obviously not exhaustive 3 3 2 4 I O diagram 42 3 4 Some output of off line simulation 3 4 Some output of off line simulation 43 3 4 1 Examples of prognostic variables output 293 291 289 287 285 283 281 279 277 275 273 1 5E 1 55E GDS COLAAGES Te 2004 OCT 25 06 UTC 2007 01 4 14 07 Figure 3 9 Initial surface temperature field 0 4 0 35 0 3 0
154. urface field see PREP PGD and if there is no data for primary aerosol emissison e XEMISRADIUST Aerosol flux mean radius of aitken mode in f 4m only if LCH AERO FLUX TRUE e XEMISRADIUSJ Aerosol flux mean radius of accumulation mode in 4m only if LCH AERO FLUX TRUE e XEMISSIGI Aerosol flux standard deviation of aitken mode in am only if LCH AERO FLUX TRUE e XEMISSIGJ Aerosol flux standard deviation of accumulation mode in am only if LCH AERO FLUX TRUE e CRGUNIT Aerosol flux Definition of XEMISRADIUSI or XEMISRADIUSJ mean radius can be define in mass MASS or in number NUMB 7 7 1 Namelist NAM CHS ORILAM 188 8 Externalized surface diagnostics The diagnostics for the surface require the call to the complete physics of the surface Therefore they can be computed either during the run of the schemes in order to have for example continuous time series of these diagnostics or can be computed at a given instant only if atmospheric forcing is given at this instant for the surface scheme to do one time step The cumulated diagnostics are of course significant only when computed during a run 8 Externalized surface diagnostics 189 8 1 Diagnostics relative to the general surface monitor 8 1 Diagnostics relative to the general surface monitor 190 8 1 1 Namelist NAM DIAG SURF_ATMn Fortran name Fortran type default value LFRAC FALSE LDIAG GRID FALSE
155. utines are used init surf atm n f90 write surf atm n f90 and write diag surf atm n f90 2 1 The sequence 9 2 2 The atmospheric models using the externalized surface The externalized surface can presently be used in 1 in offline mode 2 MESONH 3 AROME For each model additionnal possibilities of the surface especially the ability to read and write in files with particular formats are added 2 2 The atmospheric models using the externalized surface 10 2 2 1 In offline mode In this case several types of files can be used e ASCII files not efficient in term of storage but completely portable e TEXTE files not efficient in term of storage but completely portable e netcdf files that can be used by the program code OFFLIN e BINARY files increases the efficiency of the system LFI files increases the efficiency of the system This special format is used in meso NH and Arome models for surface fields FA files This special format is used for Arpege and Aladin models currently PGD and PREP steps may be done using ASCH LFI or FA files and also the run produces time series of each variable prognostic or diagnostic in any of the formats listed above files and the output instant of the run in an ASCII LFI or FA file The namelists are all included in the namelist file named OPTIONS nam 2 2 1 In offline mode 11 2 2 1 1 namelist NAM IO OFFLINE This namelist is the main namelist used in th
156. y if no atmospheric file or no surface file is given in those the date can be read seconds e LISBA_CANOPY activates surface boundary multi layer scheme over vegetation 5 6 1 Namelist NAM_PREP_ISBA 136 5 6 2 Namelist NAM PREP ISBA SNOW This namelist defines the type of snow scheme used in ISBA scheme Fortran name Fortran type values default value CFILE ISBA in NAM PREP ISBA MESONH GRIB LFI CTYPE in NAM PREP ISBA D e CSNOW type of snow scheme Possible snow schemes are 1 D95 Douville et al 1995 snow scheme 2 3 L Boone and Etchevers 2000 three layers snow scheme 3 EBA Bogatchev and Bazile 2005 Arpege operational snow scheme 4 CRO Crocus model e NSNOW LAYER number of snow layers e CFILE SNOW name of the file used to define the snow profiles The use of a file or prescribed value of XRSNOW XTSNOW XWSNOW and XASNOW and XSGISNOW XSG2SNOW XHISTSNOW and XAGESNOW in case of CSNOW CROCUS has priority on the data in CFILE SNOW file e CTYPE SNOW type of the CFILE SNOW file if the latter is provided CTYPE SNOW must then be given The following values are currently usable MESONH the file type is a MESONH file GRIB the file type is a GRIB file coming from any of these models 1 ECMWF european center forecast model 2 ARPEGE Arpege french forecast model 3 ALADIN Aladin french forecast local model 4 MOCAGE Mocage french research chemis
157. ype default value IXSIZE integer EE size TYSIZE integer aN size e IXOR first point I index according to the YINIFILE grid left to and out of the new physical domain e IYOR first point J index according to the YINIFILE grid under and out of the new physical domain e XSIZE number of grid points in I direction according to YINIFILE grid recovered by the new domain If to be used in MESONH it must only be factor of 2 3 or 5 e YSIZE number of grid points in J direction according to YINIFILE grid recovered by the new domain If to be used in MESONH it must only be factor of 2 3 or 5 e IDXRATIO resolution factor in I direction between the YINIFILE grid and the new grid If to be used in MESONH it must only be factor of 2 3 or 5 e IDYRATIO resolution factor in J direction between the YINIFILE grid and the new grid If to be used in MESONH it must only be factor of 2 3 or 5 4 3 3 2 Namelist NAM INIFILE CARTESIAN 84 4 3 4 Longitude latitude grids 4 3 4 Longitude latitude grids 4 3 4 1 Namelist NAM LONLAT REG This namelist defines the projection in case CGRID LONLAT REG default value LON Fortran name Fortran type e XLONMIN minimum longitude covered by the grid i e corresponding to the west border of the domain real decimal degrees XLONMIN must be smaller than XLONMAX but no more than 360 smaller e XLONMAX maximum longitude covered by the grid i e corresponding to the east b

Download Pdf Manuals

image

Related Search

Related Contents

Jour après jour  Part 1. Set WP1 in STA mode, join your router  OM, 326 S X-series, EPA, 2005-09  Kenmore 596.760697 Refrigerator User Manual  Manual do Usuário  Les publications de BOUDON Raymond  Lea esto primero - Support  MANUAL DE INSTRUÇÕES  取扱説明書 - TOTO  Notice - Calideal  

Copyright © All rights reserved.
Failed to retrieve file