Home

Integrating Manual Dexterity with Mobility for Human

image

Contents

1. There is a clear role for robots that can both navigate and manipulate with some degree of autonomy Non dexterous mobile manipulators capable of excavation and resource extraction will partner with dexterous mobile manipulators to mine raw materials and to dig trenches install habitat modules and then cover them with regolith to protect them from radiation The same machines will transition over time to assist humans that occupy these habitats and will also serve as caretakers in between human crews Computer systems that act as cognitive and physical prosthetics for astronauts in these hostile environments are feasible and necessary to reach these ambitious goals The round trip commu nication latency can vary between 2 seconds low Earth orbit to upwards of 30 minutes Mars depending on where the planets are in their orbits making it impossible for controllers on Earth to react to problems on the space vehicle or in Martian habitats in a timely manner Intelligent systems with the capacity for collaborative and independent problem solving become critical to mission success Rather than simply follow preprogrammed commands robots must be able to assess a situation and recommend a course of action without human intervention every step of the way and then effect a solution involving a spectrum of human robot collaborations Manual dexterity and autonomous mobility are key elements of this vision The coupling be tween systems that are designed to
2. opportunity In COMDEX 2003 R W Pew and editors Van Hemel S B Technology for Adaptive Aging The National Academies Press Washington DC 2003 Nicholas Roy Gregory Baltus Dieter Fox Francine Gemperle Jennifer Goetz Tad Hirsch Dim itris Margaritis Mike Montelermo Joelle Pineau Jamie Schulte and Sebastian Thrun Towards personal service robots for the elderly In Workshop on Interactive Robots and Entertainment WIRE 2000 http web mit edu nickroy www papers wire2000 pdf B Schlender Intel s Andy Grove The next battles in tech Fortune pages 80 81 May 2003 M Swinson and D Bruemmer Expanding frontiers of humanoid robotics Intelligent Systems 12 17 2000 A Affiliations of the Signatories This document was prepared by Professors Rod Grupen and Oliver Brock at the Laboratory for Perceptual Robotics University of Massachusetts Amherst Ambrose Robert Robonaut Team Leader Automation Robotics and Simulation Division NASA Johnson Space Center Atkeson Christopher Professor Robotics Institute Carnegie Mellon University Brock Oliver Assistant Professor of Computer Science and Co Director of the Laboratory of Perceptual Robotics University of Massachusetts Amherst Brooks Rodney Professor of Computer Science and Engineering and Director of the Com puter Science and Artificial Intelligence Laboratory CSAIL at the Massachusetts Institute of Technology and co founder and Chief Technology Offic
3. 2004 1 but inevitably the same challenge faces the US health care system in the future 5 The prospects for large scale institution alization of the elderly population are daunting both in terms of the investment in infrastructure required and in the quality of life issues as older people are moved out of their homes and into centralized facilities The answer is technology for aging in place The centralized mainframe approach to health care for baby boomers around the globe must be augmented with information technology and assistive devices that promise to be the health care equivalent of low cost personal computers 6 In the long term we must consumerize health and wellness technologies and make it practical and affordable to push them into existing homes The goal must be to provide cognitive and physical assistance to the elderly and infirm Dexterous machines are an important facet of this armamentarium In the shorter term mobile manipulators can make significant contributions to health care in existing hospitals for services to convalescence and recovery operations before they make it into people s homes There are millions of stroke and heart attack patients that are not currently getting adequate post surgical followup and quality of life support These systems must share critical geometry with humans to co exist in human environments and to serve as assistants to clients across a wide spectrum of service specification
4. Integrating Manual Dexterity with Mobility for Human Scale Service Robotics The Case for Concentrated Research into Science and Technology Supporting Next Generation Robotic Assistants Executive Summary This position paper argues that a concerted national effort to develop technologies for robotic service applications is critical and timely targeting research on integrated systems for mobility and manual dexterity This technology provides critical support for several important emerging markets including health care service and repair of orbiting spacecraft and satellites planetary exploration military applications logistics and supply chain support Moreover we argue that this research will contribute to basic science that changes the relationship between humans and computational systems in general This is the right time to act New science and key technologies for creating manual skills in robots using machine learning and haptic feedback coupled with exciting new dexterous machines and actuator designs and new solutions for mobility and humanoid robots are now available A concentrated program of research and development engaging federal research agencies industry and universities is necessary to capitalize on these technologies and to capture these markets Investment in the US lags other industrialized countries in this area partly because initial markets will probably serve health care and will likely appear first outside the bo
5. at can be emulated in other parts of the world to serve their economies We are being outspent and it will take much less time to lose our advantage in education and training than it took to create it We argue that a concerted investment in technologies for mobility and machine dexterity involving all branches of engineering materials science computer science and cognitive science will serve to shore up this slowly eroding infrastructure and attract the world s best young minds into areas of critical future economic value to our nation 3 Research and Technical Challenges e Embodiment Power actuation packaging mobility mechanisms sensors Reliable integrated packages for sensing tactile visual auditory and proprioceptive and actuation power source power to weight ratio volume controllability systems must be developed to meet these goals Simple robust cost effective mechanical systems combining safety load carrying ca pacity and speed dexterity and power Hands are an essential sensorimotor component for achieving the applications cited A new approach encompassing embodiment control and cognitive organization is nec essary to fuel critical future applications e Grasping and Manipulation New control techniques are required for robots to interact purposefully with the envi ronment at scales representing the human niche ranging approximately from 107 m to 101 m from 0 01 N to 105 N and over dur
6. ations ranging from milliseconds to hours New techniques are required to model and reason about complex systems and system of systems ranging from coordinating multiple limbs large scale mobility multiple robots and human robot teams e Control Perception Representation Cognition New approaches to representing sensorimotor interaction are needed at several levels feature object context and at several spatial and temporal scales Incomplete world state must be addressed with intelligent active information gathering technologies that recover critical context on a task by task basis New approaches are needed for modeling activity in sensor data and discrete event feedback Representations employed by robots must be grounded in natural phenomena accessible directly to humans and robots alike e Teaching Learning and Developmental Programming Interactions between body parts sensors archival information other robots human collabo rators and an unstructured environment form hierarchies of complex systems that challenge traditional approaches to programming New approaches to instruction imitation and exploration must be incorporated into machine learning techniques to acquire the building blocks of cognitive systems Formal models of generalization and processes of assimilation and accommodation New programming techniques are needed that incorporate lifelong training and inst
7. avoid some forms of contact with the environment while seeking others often simultaneously and in service to multiple objectives is critical to mission success Military Applications The Pentagon spent 3 billion on unmanned aerial vehicles between 1991 and 1999 and is reportedly prepared to spend 10 billion by 2010 under a Congressional mandate that one third of its fleet of ground vehicles should be unmanned by 2015 National Defense Authorization Act for Fiscal Year 2001 S 2549 Sec 217 The same impact is expected for pilotless air and water vehicles where drone aircraft for reconnaissance and air to ground missile deployment is already becoming accepted military doctrine Boeing Northrop Grummond and Intel among many others are currently assembling infrastructure to support these significant markets A similar revolution in military technology one that exploits new technology for manual dex terity finally promises to replace human hands in dangerous environments as well With the ability to manipulate autonomous machines may one day serve to reduce the exposure of human soldiers in combat in the supply chain re fueling ordnance in BSL4 facilities for handling dangerous substances Moreover this new technology can provide mobile information gathering agents with the ability to probe environments dig and sample soil Logistics and Supply Chain Support Almost every aspect of product distribution is au tomated with two notabl
8. e exceptions transportation and load unload at distribution centers Loading and unloading shipping containers and inventory control in warehouse and distribution operations can be automated in the near term by mobile manipulation systems For example if there is sufficient demand volume there is a significant cost advantage to using shipping containers to transport materials by land and sea As a result large distribution systems like Walmart can reduce costs significantly by making inventory management and distribution more autonomous Mobile manipulation technologies can support automating the rest of distribution logistics and material supply chain reducing costs enhancing inventory tracking and supply chain security Contributions to Basic Science Many of the traits we consider uniquely human stem not from great capacity for strength speed or precision but instead from our adaptability and ingenuity our dexterity When we move from laboratories and simulation into the real world the merits of flexibility and adaptation and the cognitive representations that support these processes are clearly justified 7 The human hand and the neuroanatomy that co evolved to support it are critical to the success of human beings on earth and our distinctive cognitive ability In addition to creating integrated mobile manipulators and an array of autonomous manual skills research on mechanisms control and representations for robot hands has the p
9. er of iRobot Corporation Brown Chris Professor Computer Science University of Rochester Burdick Joel Professor of Mechanical Engineering and Bioengineering Deputy Director Center for Neuromorphic Systems Engineering California Institute of Technology Cutkosky Mark Professor and Associate Chair Design Division Department of Mechanical Engineering Stanford University Fagg Andrew Associate Professor of Computer Science University of Oklahoma Grupen Roderic Professor of Computer Science and Director of the Laboratory of Perceptual Robotics University of Massachusetts Amherst Hoffman Jeffrey Professor Department of Aeronautics and Astronautics Massachusetts In stitute of Technology Howe Robert Professor of Engineering Director of the BioRobotics Laboratory Harvard Uni versity Huber Manfred Assistant Professor Department of Computer Science and Engineering Uni versity of Texas at Arlington Khatib Oussama Professor of Computer Science Stanford University Khosla Pradeep Professor and Head Department of Electrical and Computer Engineering Philip and Marsha Dowd Professor of Electrical and Computer Engineering and Robotics Carnegie Mellon University Kumar Vijay Professor Mechanical Engineering and Applied Mechanics and Computer and Information Science University of Pennsylvania Leifer Lawrence Professor Department of Mechanical Engineering Director Stanford Center for Design R
10. esearch Director Stanford Learning Laboratory Stanford University Matari Maja Associate Professor Computer Science Department Director USC Center for Robotics and Embedded Systems CRES University of Southern California Nelson Randal Associate Professor Department of Computer Science University of Rochester Peters Alan Associate Professor of Electrical Engineering Department of Electrical and Com puter Science Vanderbilt University Salisbury Kenneth Departments of Computer Science and Surgery Stanford University Sastry Shankar NEC Distinguished Professor of Electrical Engineering and Computer Sciences and Bioengineering Berkeley University Savely Robert Bob Senior Scientist for Advanced Software Technology Chief Scientist Au tomation Robotics and Simulation Division NASA Johnson Space Center B The US Moon Mars Initiative The Moon Mars initiative includes a new space vehicle to return astronauts to the Moon as early as 2015 Highlights of President Bush s space exploration goals include e completing work on the International Space Station by 2015 e developing and testing a new manned space vehicle the crew exploration vehicle by 2008 and conducting the first manned mission by 2014 e returning astronauts to the moon as early a 2015 and no later than 2020 e using the Moon as a stepping stone for human missions to Mars and worlds beyond and e allocating 11 billion in funding for explora
11. ket aimed at elder care By way of comparison the total budget for the National Science Foundation including operations and all areas of supported research is approximately 5 6B year in 2004 NSF PR 04 12 February 2 2004 Honda Sony and Toyota are making significant investments into humanoid robotic technology Toyota is launching a service robotics division to respond to the R amp D challenges posed in this new domain 3 So far most efforts in humanoid robotics have focused largely on walking It stands to reason that new technologies for manipulation and manual dexterity are next With stakes of this magni tude the US must take measures to mobilize its resources by actively building consortia of industry and academia to meet this challenge If this is not afforded the priority it deserves then we will have squandered our technological advantage Educational US academic institutions have been the torch bearer for high technology training for the entire world community for several decades Sadly the United States is losing that distinction Applications for graduate school in the US from Europe and Asia are down starkly in the past couple of years This is due in part to restricted access of foreign born students to our educational market since 9 11 01 and also partly to the massive investment by these nations into research development and education US educational institutions are an effective pipeline for creative young researchers th
12. ng grasping and manipulation with more mature technologies for signal processing and mobility can yield new integrated behavior that supports applications heretofore unattainable We are advancing this argument now because new developments regarding actuation and sensing promise to make robots more responsive to unexpected events in their immediate surroundings This is a boon to mobility technology and is the missing link to producing integrated manipulation systems New bio inspired robots are demonstrating impressive performance and better robustness than their traditional robotic forbears We have discovered that legged locomotion need not be as difficult and complex as we had thought Therefore we can afford to add new capabilities and complexity on top of legged platforms Grasping and dexterous manipulation still await comparable insights and the technological foundations are now in place Health Care Health care is the largest segment of the US economy and is becoming too ex pensive to deliver We follow closely on the heels of Asia and Europe where demographic pressure is forcing technology to meet the demand for a more efficient means of in place elder care now This pressure is due largely to a precipitous decline in the ratio of wage earners to retirees and the prospects are very nearly the same in much of the industrialized world So far the US is forestalling the problem by holding the birth rate slightly above 2 0 2 07 in
13. otential to advance our understanding of the com putational processes underlying cognition Specifically the process of grounding knowledge has important implications in language human development and man machine interfaces The result will be practical implementations of machines and computational decision making that responds to changing situations and complicated environments Mobile manipulators exploit structure in the form of Newtonian mechanics We may exploit rules governing other domains as well in bioinformatics molecular forces and reaction dynamics govern behavior in enterprise systems business rules form categories of transactions and documents A focused and integrated research initiative in this area will prepare for emerging commercial markets lead to new kinds of adaptable machines and influence the future relationship between networks of machines and human societies 2 Technological and Economic Risk Technological Leadership Commercial versions of mobile manipulation systems will support service robotics health care military and space applications markets that can transform economies Moreover virtually any computational system that interacts with complex and open environments or datasets will benefit Europe and Japan are investing tremendous resources in the development of this technology with 30 billion dollars of investment planned over the next 5 years in Japan alone to prepare for the nascent service robotics mar
14. rders of the United States It is the considered opinion of the signatories of this document that this situation must be reversed To capitalize on domestic research investment over the past two decades and to realize this commercial potential inside of the United States we must transform critical intellectual capital into integrated technology now Our goal is to ensure that the US economy and scientific communities benefit as this nascent market blossoms and we will outline the economic risks of allowing other nations to continue to go it alone Robert Ambrose Andrew Fagg Lawrence Leifer Christopher Atkeson Roderic Grupen Maja Matari Oliver Brock Jeffrey Hoffman Randal Nelson Rodney Brooks Robert Howe Alan Peters Chris Brown Manfred Huber Kenneth Salisbury Joel Burdick Oussama Khatib Shankar Sastry Mark Cutkosky Pradeep Khosla Robert Bob Savely Vijay Kumar Affiliations of Signatories can be found on page 8 1 Commercial Potential The service robotics industry is projected to be a huge commercial opportunity with products going to market at an accelerating rate over the next 20 years Service robotics currently shares some important characteristics with the automobile industry in the early twentieth century 2 and the home computer market in the 1980 s 6 We argue that many of the new opportunities that exist rely on technologies supporting manual dexterity Specifically the marriage of new research on manual dexterity involvi
15. ruc tion Methods for transferring experience earned by one agent human or robot into mean ingful and actionable knowledge by another agent or agents 4 Action Items The immediate agenda involves using this document to address the community including funding agencies industry and academia in order to direct attention to this critical technical economic and scientific challenge The signatories of this document would be happy serve help this role This introduction will be followed by presentations at workshops symposia and panels to elabo rate on the critical technical challenges and opportunities to create a more detailed research agenda and to create an organized advocacy group and fund raising strategy A Workshop on Mobile Manip ulation has been discussed with NSF and will lead to a proposal soon to kick this process off We invite outside participants to help in the organization of such events and we look forward to serv ing the information needs of industry and federal agencies in realizing this important milestone in service robotics applications References 1 2 Central Intelligence Agency The world factbook http www cia gou cia publications factbook geos us html 2004 Uutinen Julkaistu Service robotics defines future of man machine interaction Tekes Tech nical Programmes hittp akseli tekes fi Resource pha tuma kone2015 en robotics uutinen htz 2004 D Kara Sizing and seizing the robotics
16. s In Orbit Servicing of Satellites The dream of a re usable space shuttle that can service the International Space Station ISS and important and unique orbiting platforms like the Hubble space telescope is waning as administrators at NASA struggle with the exposure of humans to a 1 50 risk of catastrophic failure of the spacecraft The design of the shuttle is driven by the configuration required for a space plane with the significant overhead of human life support The support chain of maintenance and supply at the threshold of space should not expose humans to unnecessary risk Robotic maintenance missions are the answer Collaboration between robots and humans in such missions is facilitated when both humans and robots can operate the same tools and have overlapping sensory viewpoints accessible workspace and force and velocity capacity This argues for anthropomorphic robot design to achieve these specifications and once again robot hands and dexterous manipulation are an important key to success Planetary Exploration On January 14 2004 the President outlined his goals to return to the Moon and then push onto Mars These goals will require the construction of habitat and the maintenance and operation of science labs geological exploration crews chemical processing plants etc The human pioneers that first undertake this mission will be exposed to tremendous risk while outside of protected habitat and yet such activity cannot be avoided
17. s the role of native structure computational and complexity issues knowledge representation and experimental methods The goal of the research is to advance computational accounts for sensorimotor and cognitive development in a manner that enhances our ability to ed ucate improves health care leads to new theories for controlling intelligent robots and provides a basis for shared meaning between humans and machines Information about the constituent labo ratories publications and group activities is available at http www robotics cs umass edu The work is realized on Dexter the UMass bi manual humanoid robot shown in Figure 2 10 Figure 2 Dexter the UMass LPR platform for studying bi manual dexterity D 3 Robonaut NASA Johnson Space Center Figure 3 NASA s Robonaut in its terrestrial configuration on a Segway RMP D 4 Domo MIT 11 Figure 4 MIT s Domo A Forse Sensing Humanoid Robot for Manipulation Research 12
18. tion over the next five years which includes requesting an additional 1 billion in fiscal 2005 Congress responded in July by recommending a 220 million reduction C American Demographic Trends The United States has seen a rapid growth in its elderly population during the 20th century The number of Americans aged 65 and older climbed to 35 million in 2000 compared with 3 1 million in 1900 For the same years the ratio of elderly Americans to the total population jumped from one in 25 to one in eight The trend is guaranteed to continue in the coming century as the baby boom generation grows older Between 1990 and 2020 the population aged 65 to 74 is projected to grow 74 percent The elderly population explosion is a result of impressive increases in life expectancy When the nation was founded the average American could expect to live to the age of 35 Life expectancy at birth had increased to 47 3 by 1900 and the average American born in 2000 can expect to live to the age of 77 Because these older age groups are growing so quickly the median age reached 35 3 years in 2000 the highest it has ever been West Virginia s population is the oldest with a median age of 38 6 years Utah is the youngest with a median age of 26 7 years D Systems D 1 ISAC Vanderbilt Recent work at Vanderbilt University is underway to help the sick elderly and physically chal lenged live independently The robot is task general and able to cope with
19. unstructured dynamic environments ISAC s hands are equipped with multi fingered grippers that allow the robot to pick Figure 1 ISAC feeding a physically challenged individual Center for Intelligent Systems Vander bilt University up a variety of objects To pick up a spoon ISAC employs sensitive touch sensors that help it place the spoon between the thumb and three fingers ISAC was designed as a multi agent system ISAC had the ability to store and structure the knowledge it acquires A spreading activation network is used to form associations between database records ISAC uses a Sensorimotor Ego Sphere SES that processes incoming perceptual data according to temporal and spatial significance 7 D 2 Dexter University of Massachusetts The Laboratory for Perceptual Robotics at UMass Amherst focuses on the relationship between evolving models of infant development and the adaptive acquisition of sensory motor and compu tational strategies in synthetic systems Biological systems employ a variety of intrinsic constraints that structure and facilitate the formation of conceptual structures and problem solving ability The work supported by the UMass Infrastructure grant is focused on learning more about these mecha nisms as they occur in developing human infants and to adapt principles of development for use in robot systems It addresses central issues in cognitive science and artificial intelligence the origins of conceptual system

Download Pdf Manuals

image

Related Search

Related Contents

FICHE 1 CRÉATION D`UN COIN ACCUEIL  Pipeline Pilot Interface to FTrees3D User Guide  Manual del propietario  SAHEL DIMANCHE - Nigerdiaspora  PDFダウンロード(2.82MB)  Sweeper 7100 Cleanstar basic Operating Instructions  HA8000シリーズ ソフトウェアガイド Windows Server 2008ファミリ編  User manual - Online Security Products  Origin Storage KB-081NR notebook spare part  CNC*Dnc Manual - CNC Automation & Productivity Tools  

Copyright © All rights reserved.
Failed to retrieve file