Home
National Instruments NI 9235 User's Manual
Contents
1. 80 dB 640 kHz Input noise f 1 kS s NI 9235 ben 0 38 UV V ms NI KA AE iR 0 25 uV V ms f 10KS s NI 9235 es 0 85 UV Vims INT9 236s notera 0 5 V V ms SFDR 1 kHz 60 dBFS NDS ae 110 dB NEUSS nana manon 115 dB THD 1 kHz 20 dBFS NI 9235 us don 90 dB NO Ones 95 dB Rejection by analog prefilter of signal frequencies at oversample rate National Instruments Corp 25 NI 9235 9236 Crosstalk fin 1 KHZ 100 dB Common mode voltage all signals to earth ground 60 VDC CMRR f 0 to 60 Hz NI 9235 120 dB INI236 deans oto et bed 110 dB MTB P eire ir 566 796 hours at 25 C Bellcore Issue 2 Method 1 Case 3 Limited Part Stress Method iyi Note Contact NI for Bellcore MTBF specifications at other temperatures or for MIL HDBK 217F specifications NI 9235 9236 26 ni com Shunt Calibration Characteristics Shunt calibration accuracy NI 9235 NI 9236 Measurement Percent of Reading Percent of Reading Conditions Gain Error Gain Error Typical 25 C 5 C 0 09 0 07 Maximum 40 to 70 C 0 22 0 2 Resistance NI 9235 50 KQ NI 9236 100 KQ Output value NI 9235 599 28 u V V NI 9236 873 47 uV N Temperature drift 15 ppm C Method into tette ees Shunt across completion resistor National Instruments Corp 27 NI 9235 9236 Excitation Characteristics Excitation ty
2. 89 7413130 India 91 80 41190000 Israel 972 3 6393737 Italy 39 02 41309277 Japan 0120 527196 Korea 82 02 3451 3400 Lebanon 961 0 1 33 28 28 Malaysia 1800 887710 Mexico 01 800 010 0793 Netherlands 31 0 348 433 466 New Zealand 0800 553 322 Norway 47 0 66 90 76 60 Poland 48 22 3390150 Portugal 351 210 311 210 Russia 7 495 783 6851 Singapore 1800 226 5886 Slovenia 386 3 425 42 00 South Africa 27 0 11 805 8197 Spain 34 91 640 0085 Sweden 46 0 8 587 895 00 Switzerland 41 56 2005151 Taiwan 886 02 2377 2222 Thailand 662 278 6777 Turkey 90 212 279 3031 United Kingdom 44 0 1635 523545 National Instruments Corp 37 NI 9235 9236 National Instruments NI ni com and LabVIEW are trademarks of National Instruments Corporation Refer to the Terms of Use section on ni com 1ega1 for more information about National Instruments trademarks Other product and company names mentioned herein are trademarks or trade names of their respective companies For patents covering National Instruments products refer to the appropriate location Help Patents in your software the patents txt file on your media or ni com patents 2008 National Instruments Corp All rights reserved 374645A 01 Jun08
3. NI 9235 9236 20 ni com Data rate range f using internal master timebase Minimum 794 S s Maximum Data rate range f using external master timebase Minimum 195 3125 S s MAXIMUM 10 547 kS s 256 Data rates f p n 2 4 5 063 Full scale range 29 4 mV V 462 500 11 55 500 ue Scaling coefficient 3 5062 nV V per LSB Overvoltage protection between any two terminals 30 V 1 The data rate must remain within the appropriate data rate range Refer to the Understanding NI 9235 9236 Data Rates section for more information National Instruments Corp 21 NI 9235 9236 Accuracy NI 9235 Percent of Range Offset Error P ercent of 30 days 1 year Reading after cal after cal Measurement Conditions Gain Error 5 C 5 C Calibrated typ 25 C 5 C 0 02 0 1 0 15 Calibrated max 40 to 70 C 0 07 0 17 0 4 Uncalibrated typ 25 C 5 C 0 15 1 25 Uncalibrated max 40 to 70 C 0 53 2 14 Range equals 29 4 mV V Exclusive of lead wire desensitization error Calibrated errors represent offset stability following unstrained measurement Errors include the effect of completion resistor tolerance and drift Stability NI 9235 Gain drift a e 6 ppm C Offset drift 2 2 uV VPC NI 9235 9236 22 ni com Accu
4. between modules NI 9235 9236 18 ni com Sleep Mode This module supports a low power sleep mode Support for sleep mode at the system level depends on the chassis that the module is plugged into Refer to the chassis manual for information about support for sleep mode If the chassis supports sleep mode refer to the software help for information about enabling sleep mode Visit ni com info and enter cseriesdoc for information about C Series documentation Typically when a system is in sleep mode you cannot communicate with the modules In sleep mode the system consumes minimal power and may dissipate less heat than it does in normal mode Refer to the Specifications section for more information about power consumption and thermal dissipation National Instruments Corp 19 NI 9235 9236 Specifications The following specifications are typical for the range 40 to 70 C unless otherwise noted The specifications are the same for the NI 9235 and the NI 9236 unless otherwise noted Input Characteristics Number of channels 8 analog input channels Quarter bridge completion NI 9235 120 Q 10 ppm C max INE9236 5 babes es 350 Q 10 ppm C max ADC resolution 24 bits Type of ADC Delta Sigma with analog prefiltering Sampling mode Simultaneous Internal master timebase fy Frequency enn 12 8 MHz ACCUTACY airen eraai aae 100 ppm max
5. for more information about filtering NI 9235 9236 12 ni com Quarter bridge measurements are inherently sensitive to accuracy degradation due to the lead resistance of wiring from the sensor to the measurement device For a given change in the gage resistance the total effective resistance changes slightly less Accordingly the measured mV V reading is less than its true value However you can use shunt calibration to quantify the lead wire desensitization and can then design the software application to correct subsequent readings for this gain error The gain error caused by a lead wire equals R Rg where Rz is the lead wire resistance and Rg is the quarter bridge completion resistance Shunt Calibration The NI 9235 9236 shunt calibration circuitry consists of a precision resistor and a software controlled switch connected across the internal quarter bridge completion resistor Refer to the software help for information about enabling the shunt calibration switch for the NI 9235 9236 Each input channel has a unique shunt calibration resistor that can operate independently as shown in Figures 5 and 6 National Instruments Corp 13 NI 9235 9236 Shunt calibration simulates strain input by changing the resistance of an arm in the bridge by a known amount By shunting or connecting a large resistor across one arm of the bridge a specific change occurs in the bridge voltage ratio With the connected sensor in a stable typicall
6. has been evaluated as EEx nC IIC T4 Ex nA IIC T4 or Ex nL IIC T4 equipment NI 9235 9236 4 ni com Special Conditions for Marine Applications Some modules are Lloyd s Register LR Type Approved for marine applications To verify Lloyd s Register certification visit ni com certification and search for the LR certificate or look for the Lloyd s Register mark on the module Caution To meet radio frequency emission requirements for marine applications use shielded cables and install the system in a metal enclosure Suppression ferrites must be installed on power supply inputs near power entries to modules and controllers Power supply and module cables must be separated on opposite sides of the enclosure and must enter and exit through opposing enclosure walls National Instruments Corp 5 NI 9235 9236 Connecting the NI 9235 9236 The NI 9235 9236 has a 24 terminal detachable spring terminal connector that provides connections for 8 analog input channels EXCO AIO RCO EXC2 Al2 RC2 EXC4 Al4 RC4 EXC6 Al6 RC6 DOOOOOOOOOOE DOOOOOOOOOOE V EXC1 An RC1 EXC3 Al3 RC3 EXC5 AI5 RC5 EXC7 AI7 RC7 NI 9235 9236 Figure 1 NI 9235 9236 Terminal Assignments 6 ni com You can connect a quarter bridge sensor to each channel Each channel has an EXC terminal that provid
7. OPERATING INSTRUCTIONS AND SPECIFICATIONS NI 9235 9236 8 Channel 24 Bit Quarter Bridge Analog Input Module Fran ais Deutsch HA 820 fP ni com manuals NV NATIONAL y INSTRUMENTS This document describes how to use the National Instruments 9235 and National Instruments 9236 and includes specifications and terminal assignments In this document the NI 9235 and NI 9236 are referred to inclusively as the NI 9235 9236 Visit ni com info and enter rdsoftwareversion to determine which software you need for the modules you are using For information about installing configuring and programming the system refer to the system documentation Visit ni com info and enter cseriesdoc for information about C Series documentation ayi Note The safety guidelines and specifications in this document are specific to the NI 9235 9236 The other components in the system might not meet the same safety ratings and specifications Refer to the documentation for each component in the system to determine the safety ratings and specifications for the entire system Visit ni com info and enter cseriesdoc for information about C Series documentation NI 9235 9236 2 ni com Safety Guidelines Operate the NI 9235 0236 only as described in these operating instructions Hot Surface This icon denotes that the component may be hot Touching this component may result in bodily injury Safety Guidelines for Hazardous Loca
8. als the data rate minus the stopband frequency Understanding NI 9235 9236 Data Rates The frequency of a master timebase fy controls the data rate f of the NI 9235 9236 The NI 9235 9236 includes an internal master timebase with a frequency of 12 8 MHz but the module also can accept an external master timebase or export its own master timebase To synchronize the data rate of an NI 9235 9236 with other modules that use master timebases to control sampling all of National Instruments Corp 17 NI 9235 9236 the modules must share a single master timebase source Refer to the software help for information about configuring the master timebase source for the NI 9235 9236 Visit ni com info and enter cseriesdoc for information about C Series documentation The following equation provides the available data rates of the NI 9235 9236 pe fuc256 n where n is any integer in the set 2 4 5 63 However the data rate must remain within the appropriate data rate range Refer to the Specifications section for more information about the data rate range When using the internal master timebase of 12 8 MHz the result is data rates of 10 kS s 8 333 kS s 7 143 kS s and so on down to 794 S s depending on the value of n When using an external timebase with a frequency other than 12 8 MHz the NI 9235 9236 has a different set of data rates hy Note The cRIO 9151 R Series Expansion chassis does not support sharing timebases
9. bandwidth are either unaliased signals or signals that have been filtered by at least the amount of the stopband rejection Passband The signals within the passband have frequency dependent gain or attenuation The small amount of variation in gain with respect to frequency is called the passband flatness The digital filters of the NI 9235 9236 adjust the frequency range of the passband to match the data rate Therefore the amount of gain or attenuation at a given frequency depends on the data rate Figure 7 shows typical passband flatness for the 10 kS s data rate National Instruments Corp 15 NI 9235 9236 0 025 0 000 Gain dB 0 025 0 050 0 2 3 Frequency kHz Figure 7 Typical Passband Response for the NI 9235 9236 NI 9235 9236 16 ni com Stopband The filter significantly attenuates all signals above the stopband frequency The primary goal of the filter is to prevent aliasing Therefore the stopband frequency scales precisely with the data rate The stopband rejection is the minimum amount of attenuation applied by the filter to all signals with frequencies within the stopband Alias Free Bandwidth Any signal that appears in the alias free bandwidth of the NI 9235 9236 is not an aliased artifact of signals at a higher frequency The alias free bandwidth is defined by the ability of the filter to reject frequencies above the stopband frequency and equ
10. es the excitation voltage stimulus an AI terminal that measures the bridge voltage and an RC terminal that provides the quarter bridge completion Refer to Figure 2 for an illustration of how to connect quarter bridge sensors to the NI 9235 9236 For best system accuracy set up the connections to EXC and RC with equal lengths of an identical wire type and gauge For best system accuracy set up the connection to Al directly at the sensor instead of shorting Al to RC directly at the terminals Figure 2 Quarter Bridge Connections for the NI 9235 9236 National Instruments Corp 7 NI 9235 9236 Connecting Wires to the NI 9235 9236 Connector Use a flathead screwdriver with a blade smaller than 2 3 x 1 0 mm 0 09 x 0 04 in to connect wires to the detachable spring terminal connector Insert the screwdriver into a spring clamp activation slot and press a wire into the corresponding connector terminal then remove the screwdriver to clamp the wire into the terminal Refer to the Specifications section for more information about spring terminal wiring Figure 3 Connecting Wires to the NI 9235 9236 Connector NI 9235 9236 8 ni com Wiring for High Vibration Applications If an application is subject to high vibration National Instruments recommends that you use the NI 9965 backshell kit to protect the connections Refer to Figure 4 for an illustration of the NI 9965 connector backshell Fi
11. gure 4 NI 9965 Connector Backshell National Instruments Corp 9 NI 9235 9236 NI 9235 9236 Circuitry The NI 9235 9236 is isolated from earth ground However the individual channels are not isolated from each other The EXC terminals all connect internally to a common excitation supply You must connect each EXC terminal to only one gage to maintain the channel to channel crosstalk performance of the module Each channel on the NI 9235 9236 has an independent 24 bit ADC and input amplifier that enables you to sample signals from all eight channels simultaneously Refer to Figures 5 and 6 for illustrations of the input circuitry for one channel of the NI 9235 9236 NI 9235 9236 10 ni com Excitation Filtered Differential E Amplifier e Bridge Shunt Completion Resistor Resistor NI 9235 eo P C 2 0V 1 ADC i _ Bridge Figure 5 Input Circuitry for One Channel of the NI 9235 National Instruments Corp 11 NI 9235 9236 e o AUG C 3 3V _ Bridge Excitation Filtered Differential i E Amplifier o i Bridge Shunt Completion Resistor Resistor NI 9236 wa Sat Se dq Figure 6 Input Circuitry for One Channel of the NI 9236 The NI 9235 9236 also includes filters to prevent aliasing The filters on the NI 9235 9236 filter according to the sampling rate Refer to the Understanding NI 9235 9236 Filtering section
12. ive electrical supply system that powers equipment This category is for measurements of voltages from specially protected secondary circuits Such voltage measurements include signal levels special equipment limited energy parts of equipment circuits powered by regulated low voltage sources and electronics Caution Do not connect the NI 9235 9236 to signals or use for measurements within Measurement Categories II HI or IV NI 9235 9236 30 ni com Safety Standards This product is designed to meet the requirements of the following standards of safety for electrical equipment for measurement control and laboratory use e IEC 61010 1 EN 61010 1 e UL 61010 1 CSA 61010 1 E Note For UL and other safety certifications refer to the product label or visit ni com certification search by module number or product line and click the appropriate link in the Certification column Hazardous Locations US UL ausos tnnt Class I Division 2 Groups A B C D T4 Class I Zone 2 AEx nA IIC T4 Canada C UL ssss Class I Division 2 Groups A B C D T4 Class I Zone 2 Ex nA IIC T4 Europe DEMRKO Ex nA IIC T4 National Instruments Corp 31 NI 9235 9236 Environmental National Instruments C Series modules are intended for indoor use only but may be used outdoors if installed in a suitable enclosure Refer to the manual for the chassis you are using for more inf
13. licable European directives as amended for CE markings as follows e 2006 95 EC Low Voltage Directive safety e 2004 108 EC Electromagnetic Compatibility Directive EMC ayi Note Refer to the Declaration of Conformity DoC for this product for any additional regulatory compliance information To obtain the DoC for this product visit ni com certification search by module number or product line and click the appropriate link in the Certification column Environmental Management National Instruments is committed to designing and manufacturing products in an environmentally responsible manner NI recognizes that eliminating certain hazardous substances from our products is beneficial not only to the environment but also to NI customers NI 9235 9236 34 ni com For additional environmental information refer to the NI and the Environment Web page at ni com environment This page contains the environmental regulations and directives with which NI complies as well as other environmental information not included in this document Waste Electrical and Electronic Equipment WEEE EU Customers At the end of their life cycle all products must be sent to a WEEE recycling center For more information about WEEE recycling centers and National Instruments WEEE initiatives visit ni com environment weee htm EFAA mises BEDE RE RoHS REA National Instruments HAt EEFE A oo r d rp Bg ap f Fg AREE EM RR ROHS XF National Ins
14. ormation about meeting these specifications Operating temperature IEC 60068 2 1 IEC 60068 2 2 Storage temperature IEC 60068 2 1 IEC 60068 2 2 Ingress protection Operating humidity TEC 60068 2 56 Storage humidity IEC 60068 2 56 Maximum altitude Pollution Degree IEC 60664 NI 9235 9236 32 40 to 70 C 40 to 85 C IP 40 10 to 9096 RH noncondensing 5 to 95 RH noncondensing 2 000 m ni com Shock and Vibration To meet these specifications you must panel mount the system and use the NI 9965 backshell to protect the connections Operating vibration Random IEC 60068 2 64 5 Sms 10 to 500 Hz Sinusoidal IEC 60068 2 6 5 g 10 to 500 Hz Operating shock IEC 60068 2 27 esses 30 g 11 ms half sine 50 g 3 ms half sine 18 shocks at 6 orientations Electromagnetic Compatibility This product is designed to meet the requirements of the following standards of EMC for electrical equipment for measurement control and laboratory use EN 61326 EMC requirements Industrial Immunity e EN 55011 Emissions Group 1 Class A e CE C Tick ICES and FCC Part 15 Emissions Class A National Instruments Corp 33 NI 9235 9236 Note For EMC compliance operate this device with 3 shielded cabling CE Compliance This product meets the essential requirements of app
15. pe Constant voltage Excitation value NE92395 t eben 2 0 V x 196 NI 9236 eer 3 3 V x 196 Maximum output current INE 9235 urn ati 80 mA NI9236 ied ee dite 46 mA Power Requirements Power consumption from chassis NI 9235 Active mode 735 mW max Sleep mode 25 uW max NI 9236 Active mode 675 mW max Sleep mode NI 9235 9236 28 ni com Thermal dissipation at 70 C NI 9235 Active mode 735 mW max Sleep mode NI 9236 Active mode 675 mW max Sleep mode 25 uW max Physical Characteristics If you need to clean the module wipe it with a dry towel Spring terminal wiring 18 to 28 AWG copper conductor wire with 7 mm 0 28 in of insulation stripped from the end MEIST 5 Sri een ne conos 153 g 5 4 oz Safety Safety Voltages Connect only voltages that are within the following limits Between any two terminals 30 V max National Instruments Corp 29 NI 9235 9236 Isolation Channel to channel None Channel to earth ground Continuous sees 60 VDC Measurement Category I Withstand 1 000 Vms verified by a 5 s dielectric withstand test Measurement Category I is for measurements performed on circuits not directly connected to the electrical distribution system referred to as MAINS voltage MAINS is a hazardous l
16. racy NI 9236 Percent of Range Offset Error Percent of 30 days 1 year Reading after cal after cal Measurement Conditions Gain Error 5 C 5 C Calibrated typ 25 C 5 C 0 02 0 08 0 14 Calibrated max 40 to 70 C 0 07 0 16 0 39 Uncalibrated typ 25 C 5 C 0 15 0 79 Uncalibrated max 40 to 70 C 0 53 1 67 Exclusive of lead wire desensitization error Range equals 29 4 mV V Calibrated errors represent offset stability following unstrained measurement Errors include the effect of completion resistor tolerance and drift Stability NI 9236 Gam drift nna 6 ppm C Offset drift 1 7 uV VPC National Instruments Corp 23 NI 9235 9236 Channel to channel matching calibrated Input Signal Gain Phase Frequency fin Typical Maximum Maximum 0 to 1 kHz 0 08 0 11 0 34 KHz fin 0 to 4 kHz 0 17 0 32 Phase nonlinearity fin 2010 1 KAZ atte 0 002 Fin 0 to 4 KHZ 0 1 Input delay 38 2 f 11 us Passband Frequency iacente ines 0 45 f Flatness f 10 KS s 33 mdB max Stopband Frequency sr sen ten 0 55 f Rejectiomi eite eds 100 dB NI 9235 9236 24 ni com Alias free bandwidth 0 45 f Oversample rate sss 64 f Rejection at oversample rate f 10 KS S ec eroe
17. tions The NI 9235 9236 is suitable for use in Class I Division 2 Groups A B C D T4 hazardous locations Class I Zone 2 AEx nA IIC T4 and Ex nA JIC T4 hazardous locations and nonhazardous locations only Follow these guidelines if you are installing the NI 9235 9236 in a potentially explosive environment Not following these guidelines may result in serious injury or death A Caution Do not disconnect I O side wires or connectors unless power has been switched off or the area is known to be nonhazardous A Caution Do not remove modules unless power has been switched off or the area is known to be nonhazardous National Instruments Corp 3 NI 9235 9236 Caution Substitution of components may impair A suitability for Class I Division 2 A Caution For Zone 2 applications install the system in an enclosure rated to at least IP 54 as defined by IEC 60529 and EN 60529 A Caution For Zone 2 applications connected signals must be within the following limit Capacitance 0 2 uF max Special Conditions for Hazardous Locations Use in Europe This equipment has been evaluated as Ex nA IIC T4 equipment under DEMKO Certificate No 07 ATEX 0626664X Each module is marked x II 3G and is suitable for use in Zone 2 hazardous locations If you are using the NI 9235 9236 in Gas Group IIC hazardous locations or in ambient temperatures of 40 C Ta 70 C you must use the device in an NI chassis that
18. truments HE RoHS GEIS IR ER ni com environment rohs china Forinformation about China RoHS compliance go to ni com environment rohs china National Instruments Corp 35 NI 9235 9236 Calibration You can obtain the calibration certificate and information about calibration services for the NI 9235 9236 at ni com calibration Calibration interval 1 year Where to Go for Support The National Instruments Web site is your complete resource for technical support At ni com support you have access to everything from troubleshooting and application development self help resources to email and phone assistance from NI Application Engineers National Instruments corporate headquarters is located at 11500 North Mopac Expressway Austin Texas 78759 3504 National Instruments also has offices located around the world to help address your support needs For telephone support in the United States create your service request at ni com support NI 9235 9236 36 ni com and follow the calling instructions or dial 512 795 8248 For telephone support outside the United States contact your local branch office Australia 1800 300 800 Austria 43 662 457990 0 Belgium 32 0 2 757 0020 Brazil 55 11 3262 3599 Canada 800 433 3488 China 86 21 5050 9800 Czech Republic 420 224 235 774 Denmark 45 45 76 26 00 Finland 358 0 9 725 72511 France 01 57 66 24 24 Germany 49
19. y unloaded state you can measure the output of the bridge before and after the shunt calibration You can compare the measured reading change to the shunt calibration output value to verify system setup or compensate for quarter bridge lead wire desensitization error Refer to the Specifications section for the shunt calibration output value Visit ni com info and enter 1wcomp for information about lead wire compensation Excitation Voltage The NI 9235 9236 provides a constant excitation supply voltage to each channel The excitation supply provides sufficient output current to power all eight channels at minimum resistance The excitation supply retains regulation even if one channel experiences a gage short If more than one channel has a gage short the excitation supply enters a current limit state and the excitation voltage falls accordingly NI 9235 9236 14 ni com Understanding NI 9235 9236 Filtering The NI 9235 9236 uses a combination of analog and digital filtering to provide an accurate representation of in band signals while rejecting out of band signals The filters discriminate between signals based on the frequency range or bandwidth of the signal The three important bandwidths to consider are the passband the stopband and the alias free bandwidth The NI 9235 9236 represents signals within the passband as quantified primarily by passband flatness and phase nonlinearity All signals that appear in the alias free
Download Pdf Manuals
Related Search
Related Contents
de Gebrauchsanweisung Bodenstaubsauger en Alb.Asp.Zerma149 f 95%. Digital Timer Philips Indirect light 70978/55/PU XT Prime User Manual View Links Series user`s manual for models 28080 Serie iE warning Transcend® AUTO Quick Guide Copyright © All rights reserved.
Failed to retrieve file