Home

the manual

image

Contents

1. Page 93 of 206 Defines the centre CentreOfGravity 0 0m 1 8m 0 0m CentreOfGravity 0 0ft 5 0ft 0 0ft CentreOfGravity x y z of gravity of a As per vehicle Da WAS locomotive or Distance specs existing NB can be left out if not known wagon Curve Friction ane oe ORTSRigidWheelBase 5ft 6in ORTA RIR A WERIBASE 1 WAG bie ied Distance a oes ORTSRigidWheelBase 3 37m p NB can be left out if not known Locomotive Gearing Only required if locomotive is geared ORTSSteamGearRatio a b ENG kania of ears Value Asperloco spes New ORTSSteamGearRatio 2 55 0 0 ORTSSteamMaxGearPistonRate x ENG Max speed of valne aniy AS per lace Spirs New ORTSSteamMaxGearPistonRate 650 piston in ft min Indicates whether the locomotive 3 ORI ssteanGeaniype A ENG has fixed gearing Fixed Select As per loco specs New OTs scombest ype FIXA or selectable gearing Locomotive Performance Adjustments Optional only to be used by experienced modellers Multiplication i aa i ORTSBoilerEavporationRate 15 0 ORTSBoilerEavporationRate x ENG adiustin Factor As per loco specs New i J g between 10 15 NB leave out if not used maximum boiler steam output Tabular input X steam describing the produced in f coal coal ORTSBurrRate x y ENG TALE Or COR bs y coa As per loco specs New NB leave out if not used combusted to the rate of steam comb
2. 14 3 Discrete Triggers Unlike MSTS OR does not restrict the operation of some discrete triggers related to locomotives to the cabview related sms file usually named cab sms file On OR they are all also active in the file related to the external view usually named eng sms file OR manages following MSTS discrete triggers DynamicBrakelncrease currently not managed DynamicBrakeOff SanderOn SanderOff WiperOn WiperOff HornOn ONO WP Page 182 of 206 9 10 11 12 13 14 15 16 17 18 20 21 22 27 28 30 31 32 33 34 36 37 38 39 41 42 43 44 45 46 47 48 54 56 57 58 59 60 61 62 63 HornOff BellOn BellOff CompressorOn CompressorOff TrainBrakePressurelncrease ReverserChange ThrottleChange TrainBrakeChange EngineBrakeChange DynamicBrakeChange EngineBrakePressurelncrease EngineBrakePressureDecrease SteamEjector2On SteamEjector2Off SteamEjector1 On SteamEjector1 Off DamperChange BlowerChange CylinderCocksToggle FireboxDoorChange LightSwitchToggle WaterScoopDown currently not managed WaterScoopUp currently not managed FireboxDoorClose SteamSafetyValveOn SteamSafetyValveOff SteamHeatChange currently not managed PantographiUp Pantographi Down Pantograph1 Toggle currently not managed VigilanceAlarmReset TrainBrakePressureDecrease VigilanceAlarmOn VigilanceAlarmOff Couple CoupleB currently not managed CoupleC currently not managed Uncouple UncoupleB
3. USER3 copy middle approach USER4 no check block for lower float clearstate float setstate float diststate float adiststate float nextstate float routestate float blockstate blockstate 0 clearstate 0 routestate 0 setstate 0 nextstate next_sig_Ir SIGFN_NORMAL diststate next_sig_Ir SIGFN_DISTANCE adiststate diststate if diststate SIGASP_CLEAR_1 diststate SIGASP_CLEAR_2 Page 144 of 206 if diststate SIGASP_APPROACH_1 diststate SIGASP_APPROACH_ 3 get block state if lenabled clearstate 1 if block_state BLOCK_JN_OBSTRUCTED clearstate 1 if block_state BLOCK_OCCUPIED blockstate 1 check if distant indicates correct route if diststate SIGASP_STOP top route state SIGASP_STOP clearstate 1 if blockstate 0 amp amp clearstate 0 amp amp diststate SIGASP_CLEAR_ 2 aspect selection for top route not shown middle route if blockstate 0 amp amp clearstate 0 amp amp diststate SIGASP_APPROACH_3 aspect selection for middle route not shown lower route if blockstate 0 amp amp clearstate 0 amp amp diststate SIGASP_RESTRICTING if Approach_Control_Speed Approach_Control_Req_Position Approach_Control_Req_Speed state SIGASP_RESTRICTING Get draw state draw_state def_draw_state state 1
4. 0 0 mph 0 0 0 Forward 0 Apply 30 Va0 inHg EOT IBP 12 0 70 82 7 kg h Boiler pressure 359 inHg Fuel levels 100 coall 100 water FPS 70 The default firing setting is automatic fireman If manual firing is engaged with Ctlr F then additional information is included X2802 12 04 34 0 0 mph Version Time Speed Gradient 0 0 Direction 0 Forward Throttle 0 Train brake Apply 30 V40 inHg EOT IBH Engine brake 0 Steam usage 206 2 kg h Boiler pressure 360 inHg Boiler water levely 91 safejrange Boiler Water level 89 absolute Fire mass 100 Fuel levels 100 coali 100 water FPS 63 7 4 4 Multiplayer Additional Information If a multiplayer session is active the following additional information is shown the actual status of the player dispatcher helper or client the number of players connected and the list of trains with their distances from the train of the player viewing the computer 7 4 5 Compass Window Open Rails software displays a compass that provides Smee a heading based on the camera s direction together Samman x with its latitude and longitude Compass To activate the compass window press the O zero key To deactivate the compass window press the 0 zero key a second time at 32 217930 Lon 130 696300 Page 38 of 206 7 4 6 F1 Information Monitor The F1 key displays the following set of panels in a tabbed format selected by clicking wit
5. Data logger Evaluation Content Updater Experimental IV Advanced adhesion model 10 Adhesion moving average filter size IV Break couplers J Curve dependent resistance J Curve dependent speed limit J Tunnel dependent resistance J Override non electrifiedroute line voltage IV Steam locomotive hot start 6 4 1 Advanced adhesion model OR supports two adhesion models the basic one is similar to the one used by MSTS while the advanced one is based on a model more similar to reality For more information read the section on Adhesion Models later in this manual 6 4 2 Adhesion moving average filter size The computations related to adhesion are passed through a moving average filter Higher values cause smoother operation but also less responsiveness 10 is the default filter size 6 4 3 Break couplers When this option is selected if the force on a coupler is higher than the threshold set in the eng file the coupler breaks and the train is divided into two parts Page 22 of 206 6 4 4 Curve dependent resistance When this option is selected resistance to train motion is influenced by the radius of the curve on which the train is running This option is described in detail here theory and also here OR application 6 4 5 Curve dependent speed limit When this option is selected OR computes whether the train is running too fast on curves and if so a warning message is logged and displayed on the mon
6. Some commands can also be set in the note row in which case they apply from the start of the train These commands are indicated below by an asterisk behind the command name The commands hold and nosignalwait can also be set as location commands hold nohold and forcehold If hold is set it defines that the exit signal for that location must be held at danger up to 2 minutes before train departure An exit signal is allocated to a platform if this signal is beyond the end platform marker in the direction of travel but is still within the same track node so there must not be any points etc between the platform marker and the signal By default the signal will not be held If set per location it will apply to all trains but can be overridden for any specific train by defining nohold in that train s column If set per train it will apply to that train only forcehold will set the first signal beyond the platform as the hold signal even if this signal is not allocated to the platform as exit signal This can be useful at locations with complex layout where signals are not directly at the platform ends but not holding the signals could lead to delay to other trains callon This will allow a train to call on into a platform occupied by another train For full details see the discussion above on the relationship between signalling and timetable connect Syntax connect lt train gt maxdelay n hold h
7. last column 0 2 3 5 0 0 5 0 2 3 US2EmpLoggerCar US2Freight6 US2Freight6 US2BNSFCar US2FCarRF2 US2EmpLoggerCar US2BNSFCar US2FCarRF2 US2Freight6 US2Freight6 Work Orders Location Whitefish Siding 1 Whitefish Siding 3 Whitefish Siding 5 Whitefish Siding 8 Procedures basic instructions for driving trains in Open Rails 7 4 7 F4 Track Monitor Status A This window which is displayed by pressing F4 has two different layouts according the the train s control mode Auto Signal mode Manual mode or Explorer mode it is strongly suggested to follow the link and read the related paragraph Auto Signal or Auto mode is the default mode when running activities or timetables There are however two main cases where you must switch to Manual mode by pressing Ctrl M To switch to manual mode press Ctrl M when the train is stopped when the activity requires shunting without a predefined path when the train runs out of control due to SPAD Signal Passed At Danger or passing a red signal or exits the predefined path by error If such situations occur you will usually get an emergency stop To reset the emergency stop and then move to correct the error you must first switch to Manual mode You can return to auto mode by pressing Ctrl M again when the head of the train is again on the correct path with no SPAD situation In standard situations you can also r
8. open rails The evolutionary train simulator linking MSTS compatibility to top range features Welcome to the future of rail simulation Reference Manual Version 1 0 Revised May 18 2015 Contents 1 Legalise a aaa aa Eaa E aE a Eaa aa EA EAE AA Uren ERREA 1 2 New in This Release ercicciscsicecerecsnecenestiecunenssenenneisuiusonsineendeatnmieatiecmeeinnuseieenereeaieewtaasienesmaddemenertiee 2 Snrod ction as nee et ee st eee eae eee eee 3 4 MSTS File Format Gompanowity accel ce esataeevenat ceetetaniastee damiaras eediaenaidnattnasdesl naucanbiedtee deatraaceauas 6 Getting Stated eer a e T eae wine he ete ee ie eee enes 9 6 Open Ralls Options isseire iinis e E E REA EERO NEUKE EEEE AEE A ENEE E 13 BO EIN TAN cote a E E E E E 34 8 Open Rails Physics i sccenctecenscesenepecarucen ans sechoiesengntretetstocetinng ares cis eneiocenareiniieeeioenerdienrmieceateretmienanes 70 9 Further Open Rails Rolling Stock Features virccicetssassscisterseccatenssetebensiprenanasciasenmneceneenegsanaseneoarmeunes 121 10 Open Rails Train Operation siactie cs cctrce etic ic eh me caacness cetera secenwk ais eal one certs os ree hetnetdeaataneuteende 122 11 Timetable Mode perenne eee ey Rene ee re er mere Pe ene ee ee eee ee eee oer reer eee es 151 12 Oper Rails Multi Player sccivicesashimnerdsluba denial nanna a anara a A EEVEE slob ieneceeeimeangealenene 171 13 Multi Player Setting up a Server from Your Own Computer ssssssssesseessserererrnrnessr
9. varisie2 22 EK 7 ipa 5 N A i t none cue topp ineShot file the list of all sound streams is displayed as 3 bx 94 none cue 0 Stopped OneShot 0 RETE 95 none cue 0 Stopped OneShot 0 well as their state On the left the value of the 18347 EE ee ee analog sound variables is displayed for the oe ERE selected sms file The volume refers to the first ee l Sound cache none cu copped OneSho stream of the selected sound file es 101 none cue 0 Stopped OneShot 0 ee 102 none cue 0 Stopped OneShot 0 Active and inactive sounds toggle passing from prs eae i i i 105 none cue 0 Stopped Release 0 internal to external views and vice versa r aaah ah 107 none cue 0 Stopped OneShot 0 109 none cue 0 Stopped OneShot 0 _ 110 none cue 0 Stopped OneShot 0 111 none cue 0 Stopped OneShot 0 112 none cue 0 Stopped OneShot 0 113 none cue 0 Stopped OneShot 0 114 none cue 0 Stopped OneShot 0 115 none cue 0 Stopped OneShot 0 116 tictac wav cue 0 Playing Loop 1 117 none cue 0 Stopped OneShot 0 118 none cue 0 Stopped OneShot 0 119 none cue 0 Stopped OneShot 0 clear_ex sms 1 signal sms 1 signal sms 1 H signal sms 1 Page 68 of 206 7 16 OpenRailsLog txt Log file When the Logging option in the main window is checked a log file named OpenRailsLog txt file is generated
10. where is the version number of the Open Rails release you are having problems with and is a quick description of the problem you are having This format aids the developers in getting a quick idea of the issue being reported The first post in this newly started topic should give further information on your problem Start out with exactly what problem you are getting describing it in narrative and supplementing this description with screenshots error messages produced by Open Rails and so on Next give a clear indication of the content you were using that is Route Activity Path Consist Locomotive and Rolling Stock whatever is applicable whether it is freeware or payware what the exact name of the downloaded package was and where it can be obtained Of course posting a download link to a trustworthy site or directly attaching files to the post also is OK Continue with an exact description of what you were doing when the problem arose this may already be included in the first paragraph if the problem is train operation related Again screenshots etc can be helpful to better describe the situation Page 195 of 206 Lastly take a look at your desktop for a text TXT file entitled OpenRailsLog txt Upload and attach this file to the end of your post This is very important as the log file contains all relevant program data the user has no chance to ever see and thus it is one of the most important sources of informa
11. 9 It is also possible to animate the wipers by inserting into the s file an animation named EXTERNALWIPERS 0 0 10 Gauges of solid type have to be named AMMETER 1 10 100 where the three numbers indicate that this is the second ammeter that it has a width 10mm and a maximum length of 100mm The color and direction orientation follow those defined in cvf files 11 Digits for 3D cabs can now use custom ACE files e g name the part as CLOCK 1 15 CLOCKS This will draw the second clock with 15mm font dimension with the CLOCKS ACE file in CABVIEW3D containing the font If no ace is specified the default will be used Page 189 of 206 12 Mirrors and doors can be operated from 3D cabs Names to be used are LEFTDOOR RIGHTDOOR and MIRRORS A demo trainset with a 3Dcab that may be useful for developers can be downloaded from http www tsimserver com Download Df11G3DCab zip 15 3 2 A Practical Development Example For a Digital Speedometer for content developers Let s suppose you have to create a digital speedometer using a font with size 14 To explain it in gmax speak you must have an object called SPEEDOMETER in the cab view and it must be comprised of at least one face As the sample cab has only one digital speedometer it can be named SPEEDOMETER_0_14 The number 0 indicates that this is the first soeedometer gauge in the cab and the number 14 indicates the size of the font to display Note that an unders
12. and replacement of an earlier experimental option Always use highest level of detail The new option allows you to increase or reduce the level of detail generally shown independently of the viewing distance and world object density 6 10 17 Adhesion proportional to rain snow fog When this option is selected adhesion becomes dependent on the intensity of rain and snow and the density of fog Intensities and density can be modified at runtime by the player 6 10 18 Adhesion factor random change This factor randomizes the adhesion factor corrector by the entered percentage The higher the value the higher the adhesion variations Page 33 of 206 7 Driving a Train 7 1 Game Loading Once you have pressed Start Open Rails loads and processes all the data needed to run the game During this phase the route s splash screen is shown If the same session was loaded previously a bar showing loading progress is shown at the bottom of the display During loading if logging is selected the log file OpenRailsLog txt will already begin storing data 7 2 Entering the Simulation At the end of the loading phase you are in the cab of the train you will drive Note some newer locomotives have experimental 3D cabs if no cab interior display appears then type Alt 1 to display the cab interior Depending on the configuration of the activity in case of activity mode your train will be in motion or stopped In this second case if the tra
13. b h gt qBumn 243 Ib h Comb 5 3 lbs t2 m 0 gal uk h emp Inj 0 gal uk h temp 2 2 0 F l ny 1 000 Stoker False nental Slip Monitor As can be seen from this screenshot related to a fictitious train with a diesel an electric and a Page 60 of 206 steam loco information about diesel and electric locomotives is contained on a single line while information about steam locomotives includes a large set of parameters which shows the sophistication of OR s steam physics In the bottom part of this HUD two moving graphs show the evolution in time of the throttle value and of the power of the player locomotive the one where the active cab resides Throttle 7 15 3 Extended HUD for Brake Information BRAKE INFORMATION Main reservoir 134 psi Car Type BrkCyl BrkPipe AuxRes ErgRes MRPipe RetValve TripleValve Handbrk Conn AnglCock BleedOff 0 0 1P 35 psi 64 psi 84 psi 84 psi Emergency F A B A B A B 0 1 1P 35 psi 64 psi 84 psi 84 psi Emergency 32884 0 1P 0 psi 63 psi 63 psi 63 psi Release 0 32884 1 1P 0 psi 63 psi 63 psi 63 psi Release 0 A B 32884 2 1P 0 psi 63 psi 63 psi 63 psi Release 0 A B This extended HUD display includes all the information of the basic HUD plus Brake status information Information is shown for all cars The first number shows the car UiD in the train as found in the consist file or the activity file the following alphanumeric string shows the brake
14. basis with a O O custom dll Simulator State contains isco Appcsianes currently running activity date time season weather tdb information and or Loco Physics modules can be replaced on a per wagon basis position and speed of all trains alignment of tumouts switches indication of all signals some critical animation states i e loco lights on or off bell is ringing pan is up or down Multiple Possible Tower Operator Viewer 2D Track Schematic Viewer Save and restore games by saving and restoring simulator game state el Network interface keeps simulator state in sync among multiple players 20 2 Open Rails Game Engine The Open Rails software is built on Microsofts XNA game platform using XNA Framework 3 1 and NET Framework 3 5 SP1 Source code is developed in Microsoft s Visual C programming language Page 199 of 206 The XNA Framework is based on the native implementation of NET Compact Framework for Xbox 360 development and NET Framework on Windows It includes an extensive set of class libraries specific to game development to promote maximum code reuse across target platforms The framework runs on a version of the Common Language Runtime that is optimized for gaming to provide a managed execution environment The runtime is available for Windows XP Windows Vista Windows 7 Windows 8 and Xbox 360 Since XNA games are written f
15. but with newer video cards they re much less important than in the early days of MSTS What does remain important to both environments are Draw Calls A Draw Call occurs when the CPU sends a block of data to the Video Card Each model in view plus terrain will evoke one or more Draw Calls per frame i e a frame rate of 60 second means all of the draw calls needed to display a scene are repeated 60 times a second Given the large number of models displayed in any scene and a reasonable frame rate the total number of Draw Calls per second creates a very large demand on the CPU Open Rails software will adjust the frame rate according to the number of required Draw Calls For example if your CPU can handle 60 000 Draw Calls per second and the scene in view requires 1000 Draw Calls your frame rate per second will be 60 For the same CPU if the scene requires 2000 Draw Calls your frame rate per second will be 30 Newer design faster CPU s can do more Draw Calls per second than older design slower CPU s Generally speaking each Draw Call sends one or more polygon meshes for each occurrence of a texture file for a model and usually more when there are multiple material types What this means in practice is if you have a model that uses two texture files and there are three instances of that model in view there will be six draw calls once for each of the models 3 in view times once for each texture file 2 files used results in six
16. eng file to determine if the braking physics uses passenger or freight standards self lapping or not This is controlled within the Options menu as shown in General Options above Selecting Graduated Release Air Brakes in Menu gt Options allows partial release of the brakes Some 26C brake valves have a cut off valve that has three positions passenger freight and cut out Checked is equivalent to passenger standard and unchecked is equivalent to freight standard The Graduated Release Air Brakes option controls two different features If the train brake controller has a self lapping notch and the Graduated Release Air Brakes box is checked then the amount of brake pressure can be adjusted up or down by changing the control in this notch If the Graduated Release Air Brakes option is not checked then the brakes can only be increased in this notch and one of the release positions is required to release the brakes Another capability controlled by the Graduated Release Air Brakes checkbox is the behavior of the brakes on each car in the train If the Graduated Release Air Brakes box is checked then the brake cylinder pressure is regulated to keep it proportional to the difference between the emergency reservoir pressure and the brake pipe pressure If the Graduated Release Air Brakes box is not checked and the brake pipe pressure rises above the auxiliary reservoir pressure then the brake cylinder pressure is released completely at a rate determ
17. locomotive controlled as desired by the reverser For economical use of steam it is also desirable to operate at the lowest cut off values as possible so the reverser should be operated at low values especially running at high speeds When running a steam locomotive keep an eye on the following key parameters in the Heads up Display HUD F5 as they will give the driver an indication of the current status and performance of the locomotive with regard to the heat conversion Boiler and Fire and work done Cylinder processes Also bear in mind the above driving tips Version X2802 Time 12 00 07 Speed 0 0 mph Gradient 0 0 Direction 0 Forward Throttle 0 fe Train brake Apply 30 Va0 inHg EOT IBP 12 Engine brake 0 Steam usage 82 7 kg h Boiler pressure 359 inHg Fuel levels 100 coall 100 water FPS 70 e Direction indicates the setting on the reverser and the direction of travel The value is in per cent so for example a value of 50 indicates that the cylinder is cutting off at 0 5 of the stroke e Throttle indicates the setting of the regulator in per cent e Steam usage these values represent the current steam usage per hour e Boiler Pressure this should be maintained close to the maximum working pressure of the locomotive e Boiler water level indicates the level of water in the boiler Under operation in Automatic Fireman mode the fireman should manage this e Fuel levels indicate
18. plus the OR specific parts if any or this new file contains at its beginning only an include reference to the original file plus the modified parts and the OR specific parts This does not apply to the Name statement and the Loco Description Information where in any case the data in the base eng file is retained An example of an OR specific bc13ge70tonner eng file to be placed into the OpenRails subfolder that uses the second possibility is as follows include bcl3ge70tonner eng Wagon MaxReleaseRate 2 17 MaxApplicationRate 3 37 MaxAuxilaryChargingRate 4 EmergencyResChargingRate 4 BrakePipeVolume 4 ORTSUnbalancedSuperElevation 3in Engine AirBrakeMainresvolume 16 MainResChargingRate 5 BrakePipeChargingRate 21 EngineBrakeReleaseRate 12 5 EngineBrakeApplicationRate 12 5 BrakePipeTimeFactor 00446 BrakeServiceTimeFactor 1 46 BrakeEmergencyTimeFactor 15 ORTSMaxTractiveForceCurves O 00 50 0 el 2D 0 23125 38 23125 1 6984 2 3492 5 1397 10 698 20 349 50 140 25 0 46250 61 46250 1 27940 Page 116 of 206 2 13969 5 5588 10 2794 20 1397 50 559 POM coma 0 69375 91 69375 2 31430 57 12572 10 6287 20 3143 50 1257 STA 0 92500 1 21 92500 5 22350 10 11175 20 5588 50 2235 3 2625 0 115625 Lod Ahk 5 6 25 5 34922 10 17461 20 8730 50 3492 who 0 138750 1
19. shows of dynamic brake e Engine shows the running status of the engine In case of a gear based engine after the Engine line a Gear line appears displaying the actual gear N means no gear inserted e FPS Number of Frames rendered per second Page 36 of 206 If the Autopilot is active an additional line will be shown An example of the basic HUD for Diesel locomotives Version 7 4 2 Electric Locomotives Additional information For electric locomotives information about the pantograph state is also shown and whether the locomotive has power at least one pantograph raised or not Time Speed Gradient Direction hrottle Train brake e EQ 7 6 bar BE 0 0 BP 7 6 Engine brake ake Up Down On 19 7 4 3 Steam Engine Additional Information When using a steam engine the following additional information is displayed in the HUD e Steam Usage in lbs h based on entirely new physics code developed by the Open Rails team It is calculated by parsing the eng file for the following parameters number of cylinders cylinder stroke cylinder diameter boiler volume maximum boiler pressure maximum boiler output exhaust limit and basic steam usage e Boiler pressure e Water level e Levels of coal and water in Page 37 of 206 Version Time Speed Gradient Direction Throttle Train brake Engine brake Steam usage An example of the basic HUD for Steam locomotives X2802 12 00 07
20. throttle OR briefly shows a message near the bottom of the screen This is helpful for operations that don t have visible feedback and also allows you to control the train without being in the cab Uncheck this option if you prefer to monitor your cab instruments and don t want to see these messages OR uses the same message scheme for system messages such as Game saved or Replay ended but you cannot suppress these system messages The player can change the braking capability of all of the cars in the simulation to include These cause the brake cylinder on a car to retain some fixed pressure when the train brakes are released this causes the car to produce a constant braking force If this option is not checked then brake retainers are only found on cars that have an appropriate entry as described in their wag files Page 15 of 206 6 1 7 Brake pipe charging rate The Brake Pipe Charging Rate PSl Second value controls the charging rate of the main air brake pipe Increasing the value will reduce the time required to recharge the train i e when releasing the brakes after a brake application while decreasing the value will slow the charging rate See also the paragraphs on the OR implementation of the braking system 6 1 8 Language OR is an internationalized package It supports many languages and others can be added by following the instructions contained in the Localization Manual which can be found in the O
21. 0 Forward 0 Apply 30 V 0 inHg EOT BP 0 1800 BSI z 1608 b h 14 00 1b h b 0 00 m 0 pulling O pushing OIN TOTKVY qe 3 By default the simulation pauses when the replay is exhausted Use Pause replay at end on the Saved Games window to change this Page 58 of 206 Little can usefully be achieved by adjusting the train controls during replay but the camera controls can be freely adjusted If changes are made e g switching to a different camera view or zooming out then replay of the camera controls is suspended while replay of the train controls continues The result is a bit like editing a video To resume the replay of the camera controls just press Esc to open the Pause Menu and then choose Continue playing A possible future development may be to edit the replay file to adjust times or to add messages to provide a commentary This would allow you to build demonstrations and tutorials Replay is a feature which is unique to Open Rails You can use it to make your own recordings and Open Rails provides a way to exchange them with other players 7 14 1 Exporting and Importing Save Files To export a Save file use the command Menu gt Options gt Resume gt Import export saves gt Export to Save Pack m Import and export saved games Import Save Pack Open Save Packs folder Save Pack shrtpass 2012 12 27 18 36 04 exported successfully Save Pack folder contains 2 save packs shrtpass 2012 11 10 1
22. 206 6 10 13 Location linked passing path processing When this option is NOT selected ORTS acts similarly to MSTS That is if two trains meet whose paths share some track section in a station but are both provided with passing paths as defined with the MSTS Activity Editor one of them will run through the passing path therefore allowing the meet Passing paths in this case are only available to the trains whose path has passing paths When this option is selected ORTS makes available to all trains the main and the passing path of the player train Moreover it takes into account the train length in selecting which path to assign to a train in case of a meet for content developers A more detailed description of this feature can be found under Location Linked Passing Path Processing in the chapter Open Rails Train Operation 6 10 14 MSTS Environments By default ORTS uses its own environment files and algorithms e g for night sky and for clouds With this option selected ORTS applies the MSTS environment files This includes support of Kosmos environments even if the final effect may be different from the current MSTS one 6 10 15 Adhesion factor correction The adhesion is multiplied by this percentage factor Therefore lower values of the slider reduce adhesion and cause more frequent wheel slips and therefore a more difficult but more challenging driving experience 6 10 16 Level of detail bias This option is an expansion
23. 5 45 27 Ma 5 17 5 54 i 5 25 6 03 s 5 33 6 10 30 b 5 40 6 17 31 fo 5 45 6 22 32_ anaheis 5 49 6 26 33 Fu eron 5 58 6 35 34 Buena park 6 04 6 41 35 _ Nonwall 6 12 6 36 commerce Metrolink 6 59 37_ rrack 3 Sforcehold ILA Union 45 Track 11 Sforcehoid LA Union 46 ck 12 Sforcehoid ILA Union 7 20 47 _ Giend 50 van Nuys Shold 52 _ chatsworth Shoki 53_ simivaliey 54 moorpark Shold 58 ventura 60 Santa Barbara 62 63 _ cuadalupe 64 crover Beach 65 bsan wis Obispo Shoid 66 isstab Sforms MOS03 setstop Satable fout_path ST_LAX MTQ Jout_path ST_LAXI2 MTO fout_time 06 50 out_time 07 32 fin_path ST_MTO LAXB fin_path ST_MTO _LAxa2 fin_time 17 22 forms MO605 in_time 16 05 forms MOs04 AR 11 7 What tools are available to develop a Timetable It is recommended to use a powerful stand alone program Excel is not required called Timetable Editor It is included in the OR pack and accessed from the Tools button on the OR menu Page 170 of 206 12 Open Rails Multi Player 12 1 Goal The Multi Player mode implemented in this stage is intended for friends to play OR together each assuming the role of a train engineer operating a train There is a built in way to compose and send text messages but there is no built in tool for chatting thus players are encouraged to use Ventrillo Skype MSN Yahoo Teamspeak or other tools to communicate vocally The current
24. 600 20 700 50 1000 75 1200 100 1250 Diesel the same as above or different Jerk of ChangeDownRPMpS RPM s Maximal output power Num of exhaust particles at IdleRPM Num of exhaust particles at MaxRPM Exhaust particle multiplier at transient Exhaust color at steady state Exhaust color at speeding up Diesel engine power tab RPM Power in Watts Diesel engine fuel consumption tab RPM Specific consumption g kWh Diesel engine RPM vs throttle tab Throttle Demanded RPM 8 2 1 5 Diesel Engine Speed Behavior The engine speed is calculated based on the RPM rate of change and its rate of change The usual setting and the corresponding result is shown below ChangeUpRPMpS means the slope of RPM RateOfChangeUpRPMpSS means how fast the RPM approaches the demanded RPM Page 76 of 206 RPM Rates Example 1600 1400 1200 1000 3800 oc 600 ChangeUpRPMpS 75 400 ChangeDownRPMpsS 25 200 RateOfChangeUpRPMpSSs 5 i RateOfChangeDownRPMpSS 1 0 20 40 60 80 100 120 Time s Demanded RPM Real RPM 8 2 1 6 Fuel Consumption Following the MSTS model ORTS computes the diesel engine fuel consumption based on eng file parameters The fuel flow and level are indicated by the HUD view Final fuel consumption is adjusted according to the current diesel power output load 8 2 1 7 Diesel Exhaust The diesel engine exhaust feature can be modified as needed The main idea of this feature is based on the
25. Al train timetable that is maxspeed is the product of the first MAxVelocity parameter by the Performance parameter divided by 100 Such performance parameter list is written divided by 100 by the AE in Service_Definition block in the activity editor again as Efficiency for every station stop From the starting location of the Al train up to the first station the Performance linked to such station is used from the first station to the second one the Performance linked to the second station is used and so on From the last station up to end of path the Default performance mentioned above is used This corresponds to MSTS behaviour Moreover the Efficiency parameter is used also to compute acceleration and braking curves 10 12 3 Start of Run of Al train in a Section Reserved by Another Train The Al train is created as in MSTS It is up to the activity creator not to generate deadlocks Creation of a train in a section where another train resides is possible only if the created train is in front of the pre existing train 10 12 4 Stop Time at Stations The platform passenger number as defined by the MSTS activity editor is read by OR Each passenger requires 10 seconds to board This time must be divided by the number of passenger wagons within the platform boundaries Also locomotives with the line PassengerCapacity in their eng file count as passenger wagons EMU DMU The criterion to define if a passenger wag
26. Apprentice 5 A page like the following should appear Ignore the part crossed out but pay special attention to the part enclosed in red The Default Port Forwarding Guide for the Airlink Rt210W What is Port Forwarding View all Router Screenshots Or you can r Static IP Address guide to setup a static if address i setting up a static ip address please cor ddress you setup in the Static IP address File Edit View Favorites Tools Help i Q wx x a A pe Search Sie Favorites QD Media amp B i v Disses n the picture above the address bar has http www google com in it Just eplace all of that with the internal IP address of your router By default the IP Address should be set to 192 168 1 1 6 Then follow the steps listed on the screen Remember you want to forward port 30 000 by default but if you change that you ll have to forward the correct port If you still cannot get others connected to your computer please go to www tsimserver com forums and ask questions Page 181 of 206 14 Open Rails Sound Management 14 1 OR vs MSTS Sound Management OR executes sms files to a very high degree of compatibility with MSTS 14 2 sms Instruction Set OR recognizes and manages the whole MSTS sms instruction set in a way generally compatible with MSTS The differences are described below The Activation instruction behaves differently from MSTS with regard to cameras CabCam Externa
27. Defines that a train is to wait at a station until another train has arrived so as to let passengers make the connection between the trains The train will be timetabled to allow this connection and the connect command is set to maintain this connection if the arriving train is running late Note that the connect command will not lock the signal If the paths of this train and the arriving train conflict before the arriving train reaches the station additional wait or hold commands must be set to avoid deadlock Command value reference to train which is to be waited for this is compulsory Page 159 of 206 Command qualifiers maxdelay n n is the maximum delay in minutes of the arriving train for which this train is held If the delay of the arriving train exceeds this value the train will not wait The maximum delay is independent from this train s own delay This qualifier and its value are compulsory nold h h is the time in minutes the train is still held after the other train has arrived and relates to the time required by the passengers to make the connection This qualifier and its value are compulsory wait Syntax wait lt train gt maxdelay n notstarted owndelay n Defines that a train is to wait for the referenced train to allow this train to proceed first The referenced train can be routed in the same or the opposite direction as this train itself A search is done for the first track section w
28. HEP locomotive Weather Clear z 600 VAC Head End Power Locomotive type Diesel Electric Path Path Name GO Georgetown Eastbound 210 Ext m Singleplayer Multiplayer Tools Options Start User name open Host port 30000 P M Logging rails do eee aye client Timetable mode is unique to Open Rails and is based on a timetable that is created in a spreadsheet formatted in a predefined way defining trains and their timetables their paths their consists some operations to be done at the end of the train run and some train synchronization rules Timetable mode significantly reduces development time with respect to activities in cases where no specific shunting or train operation is foreseen The complete description of the timetable mode can be found here The spreadsheet has a csv format but it must be saved in Unicode format with the extension timetable_or in a subdirectory named Openrails that must be created in the route s ACTIVITIES directory For the game player one of the most interesting features of timetable mode is that any one of the trains defined in the timetable can be selected as the player train The drop down window Timetable set allows you to select a timetable file from among those found in the route s Activities Openrails folder Now you can select in the drop down window Train from all of the trains of the timetable the tr
29. as follows by OR e StartLoop ReleaseLoopRelease the wav file is continuously looped from beginning to end when the ReleaseLoopRelease instruction is executed the wav file is played up to its end and stopped e StartLoopRelease ReleaseLoopRelease the wav file is played from the beginning up to the last CuePoint and then continuously looped from first to last CuePoint when Page 184 of 206 the ReleaseLoopRelease instruction is executed the wav file is played up to its end and stopped e StartLoopRelease ReleaseLoopReleaseWithJump the wav file is played from the beginning up to the last CuePoint and then continuously looped from the first to the last CuePoint When the ReleaseLoopReleaseWithJump instruction is executed the wav file is played up to the next CuePoint then jumps to the last CuePoint and stops It is recommended to use this pair of instructions only where a jump is effectively needed as e g in horns this because this couple of instructions is more compute intensive and can lead to short sound breaks in the case of high CPU loads 14 6 Testing Sound Files at Runtime The sound debug window is a useful tool for testing Page 185 of 206 15 Open Rails Cabs OR supports both MSTS compatible 2D cabs as well as native 3D cabs even on the same locomotive 15 1 2D Cabs OR supports with a high degree of compatibility all functions available in MSTS for 2D cabs and provides some significant enhancements described i
30. at the final inward position The stable can be used where a train forms another train but when the train must clear the platform before the new train can be formed to allow other trains to use that platform It can also be used to move a train to a siding after completing its last duty and be stabled there as static train Separate timings can be defined for each move if such a time is not defined the move will take place immediately when the previous move is completed If timings are defined the train will be static after completion of the previous move until that required time If the formed train has a valid station stop and the return path of the stable command in_path terminates in the area of the platform of the first station stop of the formed train the setstop check see setstop qualifier in forms command will automatically be added Page 164 of 206 Command value none Command qualifiers out_path lt path gt lt path gt is the path to be used by the train to move out to the stable position The start of the path must match the end of the path of the incoming train out_time time time definition when the outward run must be started Time is defined as HH mm and must use the 24 hour clock in_path lt path gt lt path gt is the path to be used by the train for the inward run from the stable position to the start of the new train The start of the path must match the end of the out_path
31. below will be ignored by MSTS Make these additions to the act file with a Unicode enabled editor Note that these additions will be removed by the MSTS Activity Editor if the act activity file is opened and saved as an act file by the AE However if the activity is opened in the AE and saved in an apk Activity Package the additions will be included Since activity files are not used in Timetable mode none of the following features will operate in that mode 10 16 1 No Halt by Activity Message Box MSTS activities may contain instructions to display a message box when the player train reaches a specific location in the activity or at a specific time Normally the simulation is halted when the message box is displayed until the player manually closes the box This behavior can be modified if the line ORTSContinue nn where nn number of seconds to display the box is added to the event declaration EventTypeLocation or EventTypeTime in the act file For example EventCategoryLocation EventTypeLocation ID 1 Activation Level 1 Outcomes DisplayMessage Test nopause Name Locationl Location 146 14082 1016 56 762 16 10 TriggerOnStop 0 ORTSContinue 10 Now the activity will continue to run while the message window is displayed If the player does nothing the window disappears automatically after nn seconds The player may close the window manually or pause the activity by
32. between cabs to drive the train from a different position If you change to a rear facing cab then you will be driving the train in the opposite direction If there are many cabs in your train pressing Ctrl E moves you through all forward and rear facing cabs in order up to the last cab in the train If you end up in a rear facing cab your new forward direction will be your old backward direction So you will now drive the train in the opposite direction A safety interlock prevents you from changing cabs unless the train is stationary and the direction lever is in neutral with the throttle closed 7 6 9 Train Oscillation You can have train cars oscillating swaying by hitting Ctrl V if you want more oscillation click Ctrl V again Four levels including the no oscillation level are available by repeating Ctrl V 7 7 Autopilot Mode Autopilot mode is not a simulation of a train running with cruise control instead it is primarily a way to test activities more easily and quickly but it can also be used to run an activity or part of it as it is possible to turn autopilot mode on or off at runtime as a trainspotter or a visitor within the cab Autopilot mode is enabled with the related checkbox in the Experimental Options It is active only in activity mode i e not in explorer or timetable modes When starting the game with any activity you are in player driving mode If you press Alt A you enter the autopilot mode yo
33. clicking on the appropriate button in the window Note that this modification does not work for the terminating event of the activity 10 16 2 Al Train Horn Blow This feature requires selection of the Extended Al train shunting option Horn blow by Al trains is achieved by inserting into the Al train path a waiting point with a waiting time value between 60011 1 second horn blow and 60020 10 seconds horn blow The Al train will not stop at these waiting points but will continue at its regular speed If a normal waiting point follows a horn blow waiting point the horn blow must be terminated before the normal waiting point is reached just in case On the other hand a horn blow waiting point may be positioned just after a normal WP thus achieving the effect that the train blows the horn when it restarts Page 149 of 206 10 16 3 Al Horn Blow at Level Crossings If the line ORTSAIHornAtCrossings 1 is inserted into the activity file following the line NextActivityObjectUID 32768 note that the number in the brackets may be different then Al trains will blow their horn at level crossings for a random time between 2 and 5 seconds The level crossing must be defined as such in the route editor Simple road crossings not defined as level crossings may also be present in the route The Al train will not blow the horn at these crossings Examining the route with TrackViewer allows identification of the true leve
34. conditions around the traveling train The train induced flows can influence passengers on a subway platform and is also associated with the cross sectional area of the train body the train length the shape of train fore and after bodies surface roughness of train body etc A high speed train entering a tunnel generates a compression wave at the entry portal that moves at the speed of sound in front of the train The friction of the displaced air with the tunnel wall produces a pressure gradient and as a consequence a rise in pressure in front of the train On reaching the exit portal of the tunnel the compression wave is reflected back as an expansion wave but part of it exits the tunnel and radiates outside as a micro pressure wave This wave could cause a sonic boom that may lead to structural vibration and noise pollution in the surrounding environment The entry of the tail of the train into the tunnel produces an expansion wave that moves through the annulus between the train and the tunnel When the expansion pressure wave reaches the entry portal it is reflected towards the interior of the tunnel as a compression wave These compression and expansion waves propagate backwards and forwards along the tunnel and experience further reflections when meeting with the nose and tail of the train or reaching the entry and exit portals of the tunnel until they eventually dissipate completely The presence of this system of pressure waves in a tunne
35. coupled train decouples and Page 134 of 206 moves further in its own path it can only reverse due to above conditions The coupled train follows its own path 2 The trainset coupling to the coupled train is a locomotive in this case the coupling train steals from the coupled train all the cars between the coupled train s locomotive and the coupling train decouples and moves further in its own path it can only reverse due to the above conditions The coupled train follows its own path e or if there is no reverse point further in the path of the coupling train the coupling train couples with the coupled train and becomes part of it is absorbed by it The coupled train follows its own path Now on how to design paths If one wants the coupling train to be absorbed by the coupled train simply put the end point of the path of the coupling train below the coupled train If one wants the coupling train to move further on in its path after having coupled with the coupled train put in the path of the coupling train a reverse point below the coupled train If one also wants that the coupling train does not immediately restart but that it performs a pause a waiting point has to be added in the path of the coupling train subsequent to the reverse point It is suggested to put the waiting point near the reverse point and in any case in the same track section OR will execute the waiting point even if it is not exactly below what r
36. currently not managed UncoupleC currently not managed MSTS sms files for crossings crossing sms control error and permission announcements ingame sms together with their triggers are managed by OR MSTS triggers for derailment and fuel tower are currently not managed by OR MSTS sms files related to weather clear_ex sms clear_in sms rain_ex sms rain_in sms snow_ex sms snow_in sms are managed by OR The signal file signal sms and its discrete trigger 1 is managed by OR Moreover OR manages the extended set of discrete triggers provided by MSTSbin Page 183 of 206 14 3 1 OR Specific Discrete Triggers OR manages the following set of new discrete triggers that were not present under MSTS If MSTS or MSTSbin executes an sms where such discrete triggers are used it simply ignores the related statements triggers 101 GearUp and 102 GearDown for gear based engines they are triggered by the E resp Shift E key and they are propagated to all gear based diesel engines of a train and run also for Al trains triggers 103 ReverserToForwardBackward and 104 ReverserToNeutral valid for all locomotive types this couple of triggers allows to distinguish if the reverser is moved towards an active or towards a neutral position which is not possible under MSTS triggers 105 DoorOpen and 106 DoorClose valid for all locomotive types they are triggered by the Q and Shift Q keys and are propagated to the wagons of
37. dynamic shadowing if your system has low FPS frames per second capability The options configuration that you select is saved when you click OK When you restart OR it will use the last options configuration that you selected There are 10 option panels described below 6 1 General Options xl General Audio Video Simulation Keyboard Data logger Evaluation Content Updater Experimental Alerter in cab T Also in external views IW Control confirmations MV Dispatcher window JV Large address aware binaries for all 64bit and 3GB tuning on 32bit Retainer valve on all cars MV Graduated release air brakes 21 lt j Brake pipe charging rate PSI s System Language Automatic Pressure unit System v Other units 6 1 1 Alerter in Cab As in real life when this option is selected the player driving the train is required to perform specific actions to demonstrate that he is alive i e press the Alerter Button or press the Key Z As the player may sometimes use a view other than the cabview to follow the train and therefore will not see the alerter warning selecting the related option A so in external views enables the alerter in those views as well Page 13 of 206 6 1 2 Dispatcher window It is suggested to always select this option When this option is selected pressing Ctrl 9 at runtime creates an additional window like the following This window coexists with the
38. etc still need to be included in the file As always make sure that you keep a backup of the original MSTS file Open Rails has been designed to do most of the calculations for the modeler and typically only the key parameters are required to be included in the ENG or WAG file The parameters shown in the Locomotive performance Adjustments section should be included only where a specific performance outcome is required since default parameters should provide a satisfactory result When creating and adjusting ENG or WAG files a series of tests should be undertaken to ensure that the performance matches the actual real world locomotive as closely as possible For further information on testing as well as some suggested test tools go to this site NB These parameters are subject to change as Open Rails continues to develop General Information ORTSSteamLocomotiveType x ENG Describes the type Text Simple New ORTSSteamLocomotiveType Simple of locomotive Compound Geared WheelRadius x ENG ess Distance m in As per loco specs Existing peA eatin Boiler Parameters ORTSSteamBoilerType x ENG Describes the type Text Saturated New ORTSSteamBoilerType Saturated of boiler Superheated Page 90 of 206 Volume cu ft This parameter is not overly critical and where an BoilerVolume 220 ft 3 Aus 420
39. first comment row e lt Blank gt row A row with a blank empty cell in the first column is taken as a continuation of the preceding row e Path row The path row defines the path of that train The path must be a pat file as defined by the MSTS Activity Editor and must be located in the route s Path directory This field is compulsory The timetable uses the same paths as those defined for activities However waiting points must not be defined in paths for use in timetables as the processing of waiting points is not supported in the timetable concept Waiting points within a timetable must be defined using the specific control commands The path statement can take a qualifier binary Large timetables can require many paths and loading those paths can take considerable time several minutes To reduce this loading time the paths can be stored in a processed binary format This format is the same as used in the save command Note that the binary path information cannot be directly accessed by the user either for reading or for writing When binary is set the program will check if a binary path exists If so it will read that path Page 154 of 206 If not it will read the normal path and will then store this as binary for future use Binary paths are stored in a subdirectory named OpenRails which must be created in the Paths directory of the route Important If a path is edited the binary versi
40. for High Speed Operations Railway Track Engineering by J S Mundrey 8 10 8 Maximum Curve Velocity The maximum velocity on a curve may exceed the equilibrium velocity but must be limited to provide a margin of safety before overturning velocity is reached or a downward force sufficient to damage the outside rail of the curve is developed This velocity is generally referred to as maximum safe velocity or safe speed Although operation at maximum safe velocity will avoid overturning of rolling stock or rail damage a passenger riding in a conventional passenger car will experience centrifugal force perceived as a tendency to slide laterally on their seat creating an uncomfortable sensation of instability To avoid passenger discomfort the maximum velocity on a curve is therefore limited to what is generally referred to as maximum comfortable velocity or comfortable speed Operating experience with conventional passenger cars has led to the generally accepted practice circa 1980 of designating the maximum velocity for a given curve to be equal to the result for the calculation of equilibrium velocity with an extra amount added to the Page 109 of 206 actual super elevation that will be applied to the curve This is often referred to as unbalanced super elevation or cant deficiency Tilt trains have been introduced to allow faster train operation on tracks not originally designed for high speed operation as well as high speed railway operat
41. formulae to describe its performance Once designed and built the performance of the locomotive was measured and adjusted by empirical means i e by testing and experimentation on the locomotive Even locomotives within the same class could exhibit differences in performance A simplified description of a steam locomotive is provided below to help understand some of the key basics of its operation As indicated above the steam locomotive is a heat engine which converts fuel coal wood oil etc to heat this is then used to do work by driving the pistons to turn the wheels The operation of a steam locomotive can be thought of in terms of the following broadly defined components e Boiler and Fire Heat conversion e Cylinder Work done Boiler and Fire Heat conversion The amount of work that a locomotive can do will be determined by the amount of steam that can be produced evaporated by the boiler Boiler steam production is typically dependent upon the Grate Area and the Boiler Evaporation Area Grate Area the amount of heat energy released by the burning of the fuel is dependent upon the size of the grate area draught of air flowing across the grate to support fuel combustion fuel calorific value and the amount of fuel that can be fed to the fire a human fireman can only shovel so much coal in an hour Some locomotives may have had good sized grate areas but were poor steamers because they had small draught capabili
42. general combustion engine exhaust When operating in a steady state the color of the exhaust is given by the new ENG parameter engine ORTS Diesel ExhaustColor The amount of particles emitted is given by a linear interpolation of the values of engine ORTS Diesel IdleExhaust and engine ORTS Diesel MaxExhaust in the range from 1 to 50 Ina transient state the amount of the fuel increases but the combustion is not optimal Thus the quantity of particles is temporarily higher e g multiplied by the value of engine ORTS Diesel ExhaustDynamics and displayed with the color given by engine ORTS Diesel ExhaustTransientColor The format of the color value is aarrggbb where aa intensity of light rr red color component gg green color component bb blue color component and each component is in HEX number format 00 to ff 8 2 1 8 Cooling System ORTS introduces a simple cooling and oil system within the diesel engine model The engine temperature is based on the output power and the cooling system output A maximum value of 100 C can be reached with no impact on performance It is just an indicator but the impact on the engine s performance will be implemented later The oil pressure feature is simplified and the value is proportional to the RPM There will be further improvements of the system later Page 77 of 206 8 2 2 Diesel Electric Locomotives Diesel electric locomotiv
43. it on the Taskbar to make it active You can hide it by pressing Ctrl 9 again or by pressing Esc when that window has the focus This window is an extended version of the Dispatcher Window You can zoom in and out by rotating the mouse wheel or by holding both the left and right mouse button and moving the mouse if you do not have a mouse wheel You can hold shift key while click the mouse in a place in the map which will quickly zoom in with that place in focus You can hold Ctrl while click the mouse in a place in the map which will zoom out to show the whole route Holding Alt and click will zoom out to show part of the route Page 174 of 206 Compose MSG CanJoin Res 8750 m I Show Avatars Draw Path I Auto Switch W Pick Signals Penalty Pick Switches See in Game Assist Normal View Train Remove Follow Tang Client ae i k cota A i 2 E sena rate i ji Cotimbia Falls Chip Spur Ww A red line will be drawn for each train so you can find its intended path You can select a train either by clicking on the name in the right bar or in the map by clicking the green train body After that you can click the Remove button to delete that train from the game You can pan the window by dragging it with the left mouse button One can click a switch or signal and press Ctrl Alt G to jump to that switch with the free roam camera The Dispatcher player can click a switch black dot and cho
44. may check this box so that OR will show the two overhead wires that are more common 6 10 4 Show shape warnings When this option is selected when OR is loading the shape s files it will report errors in syntax and structure even if these don t cause runtime errors in the Log file OpenRailsLogFile txt on the desktop 6 10 5 Forced red at station stops In case a signal is present beyond a station platform and in the same track section no switches in between OR will set the signal to red until the train has stopped and then hold it as red from that time up to two minutes before starting time This is useful in organizing train meets and takeovers however it does not always correspond to reality nor to MSTS operation So with this option the player can decide which behavior the start signal will have This option is checked by default Unchecking the option has an effect on simulation behavior only if no Timetable mode operation is under way 6 10 6 Load night textures only when needed As a default OR loads night textures together with the day textures at daytime When this option is selected to reduce loading time and reduce memory used night textures are not loaded in the daytime and are only loaded at sunset if the game continues through sunset time 6 10 7 Signal light glow When this option is set a glowing effect is added to signal semaphores when seen at distance so that they are visible at a greater distance There are
45. must be separated by Additional control commands can be included Such commands can also be set for locations where the train does not stop and therefore has no timing details but the train must pass through Page 153 of 206 that location for the commands to be effective Although a location itself can be defined more than once in a timetable it is not possible to define timing details for trains for a location more than once If a train follows a route which takes it through the same location more than once the train must be split into separate train entries 11 4 5 Special Columns e Comment column A column with the comment definition in the first row is a comment column and is ignored when reading the timetable except for the cell at the intersection of the first comment column and the first comment row e lt Blank gt column A column with a blank empty cell in the first row is taken as a continuation of the preceding column It can be used to insert control commands which apply to the details in the preceding column This can be useful when timings are derived automatically through formulas in the spreadsheet as inserting commands in the timing cell itself would exclude the use of such formulas 11 4 6 Special rows e Comment row A row with the comment definition in the first column is a comment row and is ignored when reading the timetable except for the cell at the intersection of the first comment column and the
46. necessary to consider the performance of the following elements e Boiler and Fire Heat conversion e Cylinder Work done For more details on these elements refer to the Elements of Steam Locomotive Operation Summary of Driving Tips Wherever possible when running normally have the regulator at 100 and use the reverser to adjust steam usage and speed Avoid jerky movements when starting or running the locomotive thus reducing the chances of breaking couplers When starting always have the reverser fully wound up and open the regulator slowly and smoothly without slipping the wheels 8 4 2 1 Open Rails Steam Functionality Fireman The Open Rails Steam locomotive functionality provides two operational options 1 Automatic Fireman Computer Controlled In Automatic or Computer Controlled Fireman mode all locomotive firing and boiler management is done by Open Rails leaving the player to concentrate on driving the locomotive Only the basic controls such as the regulator and throttle are available to the player 2 Manual Fireman In Manual Fireman mode all locomotive firing and boiler management must be done by the player All of the boiler management and firing controls such as blower injector fuel rate are available to the player and can be adjusted accordingly A full listing of the keyboard controls for use when in manual mode is provided on the Keyboard tab of the Open Rails Options panel Use the keys Crtl
47. of dispose Command For Player Train When the player train terminates and a dispose command is set for that train to form another train either form trigger or stable the train will indeed form the next train as detailed and that next train will now be the new player train So the player can continue with that train for instance on a return journey On forming the new train the train will become Inactive This is a new state in which the train is not authorized to move Note that the F4 Track Monitor information is not updated when the train is Inactive The Next Station display in the F10 Activity Monitor will show details on when the train is due to start The train will become active at the start time as defined for the formed train For information the Activity Monitor window shows the name of the train which the player is running Page 166 of 206 11 5 3 Termination of a Timetable Run On reaching the end of a timetable run the program will not be terminated automatically but has to be terminated by the player 11 5 4 Calculation of Running Delay An approximate value of the delay is continuously updated This approximation is derived from the booked arrival time at the next station If the present time is later as the booked arrival and that difference exceeds the present delay the delay is set to that difference The time required to reach that station is not taken into account This approximation will res
48. or for the turnout behind the train the Shift G key e Hold down the Alt key and use the left mouse button to click on the switch in the Main Window Use the dispatcher window as described here Please note that with the last two methods you can throw any switch not only the one in front but also the one behind the train However note also that not all switches can be thrown in some cases the built in Al dispatcher holds the switch in a state to allow trains especially Al trains to follow their predefined path The arrow and eye symbols have the same meaning as in the track monitor The switch is red when it is reserved or occupied by the train and green when it is free A switch shown in green can be operated a switch shown in red is locked Page 44 of 206 7 4 11 F9 Train Operations Monitor The Open Rails Train Operations window is similar in function to the F9 window in MSTS but includes additional features to control the air brake connections of individual cars For example it is possible to control the connection of the air brake hoses between individual cars to uncouple cars without losing the air pressure in the train s air brake hose or uncouple cars with their air brakes released so that they will coast The unit which the player has selected as the unit from which to control the train i e the lead unit is shown in red Cars are numbered according to their UiD in the Consist file con or UiD in the Activi
49. recommended to adjust the table below to get more realistic behavior In ORTS single or multiple engines can be set for one locomotive In case there is more than one engine other engines act like helpers engines start stop controls Shift Y by default The power of each active engine is added to the locomotive power The number of such diesel engines is not limited If the ORTS specific definition is used each parameter is tracked and if one is missing it is estimated from the MSTS specific settings In case DieselPowerTab and or DieselTorqueTab are missing the missing table is computed based on the existing one or both are filled by default tables Engine ORTSDieselEngines 2 Num of engines Diesel IdleRPM 510 Idle RPM MaxRPM 1250 Maximal RPM StartingRPM 400 Starting RPM StartingConfirmRPM 570 Starting confirmation RPM ChangeUpRPMpsS 50 Increasing change rate RPM s ChangeDownRPMpsS 20 Decreasing change rate RPM s RateOfChangeUpRPMpSsS 5 Jerk of ChangeUpRPMpS RPM s Page 75 of 206 RateOfChangeDownRPMpSS 5 MaximalPower 300kW IdleExhaust 5 MaxExhaust 50 ExhaustDynamics 10 ExhaustColor 00 fe ExhaustTransientColor 00 00 00 00 DieselPowerTab 0 0 510 2000 520 5000 600 2000 800 70000 1000 100000 1100 200000 1200 280000 1250 300000 DieselConsumptionTab 0 0 510 10 1250 245 ThrottleRPMTab 0 510 5 520 10
50. runround qualifier needs a path which defines the path the engine s is to take when performing the runround If the train has more than one leading engine all engines will be run round Any other power units within the train will not be moved For specific rules and conditions for runround to work see discussion on the relationship between signalling and the timetable concept If runround is defined the time at which the runround is to take place can be defined If this time is not set the runround will take place immediately on termination of the incoming train Command value referenced train this is compulsory Command qualifiers runround lt path gt lt path gt is the path to be used by the engine to perform the runround This qualifier is optional if set the value is compulsory rrtime time time is the definition of the time at which the runround is to take place The time must be defined in HH mm and must use the 24 hour clock This qualifier is only valid in combination with the runround qualifier is optional but if set the value is compulsory setstop if this train itself has no station stops defined but the train it is to form starts at a station this command will copy the details of the first station stop of the formed Page 163 of 206 train to ensure this train will stop at the correct location For this qualifier to work correctly the path of the incoming train must terminate in the platform area of t
51. set to control train and signaling behaviour and actions There are four sets of commands available e Location commands e Train control commands e Create commands e Dispose commands 11 4 7 2 Command syntax All commands have the same basic syntax A command consists of Syntax name defines the control command Syntax value set the value related to the command Not all commands take a value Syntax qualifiers adds additional information to the command Not all commands have qualifiers Some qualifiers may be optional but others may be compulsory or compulsory only in combination with other qualifiers Syntax qualifier values a qualifier may require a value Command syntax name value qualifier value Multiple values may be set separated by Note that any qualifiers always apply to all values 11 4 7 3 Train Reference Many commands require a reference to another train This reference is the other train s name as defined in the first row 11 4 7 4 Location Commands Location commands are hold forcehold nowaitsignal terminal These commands are also available as train control commands and are detailed in that paragraph Page 158 of 206 11 4 7 5 Train control commands All available train control commands are detailed below These commands can be set for each timing cell i e at each intersection of train column and location row The commands will apply at and from the location onward if applicable
52. size selection and a choice of regular or bold style More than one font or size can be used in the same cabview Here is an example 80 100 120 ER 12 12151 Ai 12 00 23 An optional line of the format ORTSfont fontsize fontstyle fontfamily has to be inserted in the cvf block of the digital control or digital clock where fontsize is a float default value 10 fontstyle an integer having the value 0 default for regular and 1 for bold and fontfamily is a string with the font family name ex Times New Roman The default is Courier New This is an example that displays a 12 pt bold font using the Sans Serif font family DigitalClock Type CLOCK DIGITAL CLOCK Position 40 350 56 11 Style 12HOUR Accuracy 1 ControlColour 255 255 255 ORTSFont 12 1 Sans Serif Only the first parameter of ORTSFont can be present or only the first two or all three Note that you cannot use the MS Cabview editor on the cvf file after having inserted these optional lines because the editor will delete these added lines when the file is saved Page 188 of 206 15 3 3D cabs The key to enter into a 3D cab provided the player locomotive has one is Alt 1 15 3 1 Development Rules for content developers 1 The 3D cab is described by an s file the associated ace or dds files and a cvf file having the same name as the s file All these files reside in a folder named CABVIEW3D cre
53. so you can add a delay with the optional parameter ORTSCircuitBreakerClosingDelay The power on sequence time delay can be adjusted by the optional ORTSPowerOnDelay value for example ORTSPowerOnDelay 5 s within the Engine section of the eng file value in seconds The same delay for auxiliary systems can be adjusted by the optional parameter ORTSAuxPowerOnDelay A scripting interface is available in order to create a customized circuit breaker or a customized power supply system it will be useful later when the key bindings will be customizable for each locomotive The power status is indicated by the Electric power value in the HUD view The pantographs of all locomotives in a consist are triggered by Control Pantograph First and Control Pantograph Second commands P and Shift P by default The status of the pantographs is indicated by the Pantographs value in the HUD view Page 79 of 206 8 4 Steam Locomotives 8 4 1 General Introduction to Steam Locomotives 8 4 1 1 Principles of Train Movement Key Points to Remember Steam locomotive tractive effort must be greater than the train resistance forces Train resistance is impacted by the train itself curves gradients tunnels etc Tractive effort reduces with speed and will reach a point where it equals the train resistance and thus the train will not be able to go any faster This point will vary as the train resistance v
54. switches in between WPs set in a path used by a player train have no influence on the train run except again when the WP is followed by a signal in the same track section In such cases for both Al trains and player train the signal is set to red when the train approaches the WP For Al trains the signal returns to green if the block conditions after the signal allow this one second after expiration of the WP Player trains must stop BEFORE the WP or else they get an emergency stop In this case the signal returns to green 5 seconds after expiration of the WP If there are more WPs in the track section where the signal resides only the last one influences the signal Waiting points cannot be used in Timetable mode Page 128 of 206 10 7 2 Absolute Waiting Points When the Extended Al shunting option is selected and OR is not in Timetable Mode waiting points with a waiting time between 30000 and 32359 are interpreted as absolute time of day waiting points with a format 3HHMM where HH and MM are the hour and minute of the day in standard decimal notation If the Al train will reach the WP before this time of day the WP will expire at HH MM If the Al train will reach the WP later the WP will expire after one second This type of WP can also be used in conjunction with a signal in the same track section as explained in preceding paragraph Again such waiting points won t have an effect on a player train
55. the coal and water levels of the locomotive For information on the other parameters such as the brakes refer to the relevant sections in the manual Page 88 of 206 For the driver of the locomotive the first two steam parameters are the key ones to focus on as operating the locomotive for extended periods of time with steam usage in excess of the steam generation value will result in declining boiler pressure If this is allowed to continue the locomotive will ultimately lose boiler pressure and will no longer be able to continue to pull its load Steam usage will increase with the speed of the locomotive so the driver will need to adjust the regulator reverser and speed of the locomotive to ensure that optimal steam pressure is maintained However a point will finally be reached where the locomotive cannot go any faster without the steam usage exceeding the steam generation This point determines the maximum speed of the locomotive and will vary depending upon load and track conditions Page 89 of 206 8 4 3 Steam Locomotive Physics Parameters for Optimal Operation for content developers 8 4 3 1 Required Input ENG and WAG File Parameters The OR Steam Locomotive Model SLM should work with default MSTS files however optimal performance will only be achieved if the following settings are applied within the ENG file The following list only describes the parameters associated with the SLM other parameters such as brakes lights
56. the consist that is also the sms files of the wagons can refer to these triggers triggers 107 MirrorOpen and 108 MirrorClose valid for all locomotive types they are triggered by the Shift Q key Triggers from 109 to 118 are used for TCS scripting as follows triggers 109 and 110 TrainControlSystemInfo1 and Info2 triggers 111 and 112 TrainControlSystemActivate and Deactivate triggers 113 and 114 TrainControlSystemPenalty1 and Penalty2 triggers 115 and 116 TrainControlSystemWarning1 and Warning2 triggers 117 and 118 TrainControlSystemAlert1 and Alert2 Triggers from 121 to 136 are used to synchronize steam locomotive chuffs with wheel rotation The sixteen triggers are divided into two wheel rotations Therefore every trigger is separated from the preceding one by a rotation angle of 45 degrees In addition OpenRails extends triggers 23 and 24 electric locomotive power on power off that were introduced by MSTSbin to diesel engines Keys Y for diesel player engine and Shift Y for diese helpers apart from physically powering on and off the diesel engines trigger the above triggers 14 4 Variable Triggers OR manages all of the variable triggers managed by MSTS There can be some difference in the relationship between physical locomotive variables e g Force and the related variable This applies to Variable2 and Variables 14 5 Sound Loop Management Sound loop management instructions are executed
57. the track or overturning The following drawing illustrates the basic concept described Lateral displacement of the centre of gravity permitted by the suspension system of the rolling stock is not illustrated Page 107 of 206 Centre of Gravity dy U W Figure 1 Forces at work when a train rounds a curve 8 10 5 Use of Super Elevation In order to counteract the effect of centrifugal force Fc the outside rail of the curve may be elevated above the inside rail effectively moving the centre of gravity of the rolling stock laterally toward the inside rail This procedure is generally referred to as super elevation If the combination of lateral displacement of the centre of gravity provided by the super elevation velocity of the rolling stock and radius of curve is such that resulting force Fr becomes centred between and perpendicular to a line across the running rails the downward pressure on the outside and inside rails of the curve will be the same The super elevation that produces this condition for a given velocity and radius of curve is known as the balanced or equilibrium elevation Centre of Gravity ARE Ee A Fr W w _ G gt Figure 2 This illustrates the above concept Page 108 of 206 8 10 6 Limitation of Super Elevation in Mixed Passenger amp Freight Routes Typical early railway operation resulted in rolling stock being operated at less than equilibrium velocity all wheels equal
58. when crossing tile boundaries do not compete with the main rendering loop RenderProcess for the same CPU cycles Thread safety issues are handled primarily through data partitioning rather than locks or semaphores to maximise performance Ongoing testing by the Open Rails team and the community will determine what and where the practical limits of the software lie As the development team receives feedback from the community improvements and better optimization of the software will contribute to better overall performance potentially allowing high polygon models with densely populated routes at acceptable frame rates Page 201 of 206 21 Plans and Roadmap Here are some highlights that the community can expect from the Open Rails team after v1 0 A more complete roadmap can be found at https launchpad net or milestones 21 1 User Interface A new Graphical User Interface GUI within the game 21 2 Operations In addition to the new Timetable concept described in this document some further improvements are planned e Extended ability to customize signals to accommodate regional geographic or operational differences e Ability to use mixed signal environments from dark territory to fully automatic in cab train control within the same route e Specifying random variations for Al trains in consist and delays e Specifying separate speed profiles for passenger or freight trains e Al trains which can split or combine e A schedule
59. will require pressing the backslash key to connect the air hoses correctly and then waiting for the brake pressure to stabilize again 8 6 1 3 Setting Brake Retainers If a long consist is to be taken down a long or steep grade the operator may choose to set the Brake Retainers on some or all of the cars to create a fixed braking force by those cars when the train brakes are released This requires that the retainer capability of the cars be enabled either by the menu option Retainer valve on all cars or by the inclusion of an appropriate keyword in the car s wag file The train must be fully stopped and the main brakes must be applied so that there is adequate pressure in the brake cylinders Pressing Shift controls how many cars in the consist have their retainers set and the pressure value that is retained when the train brakes are released The settings are described in Brake Retainers below Pressing Shift cancels the settings and exhausts all of the air from the brake cylinders when the brakes are released The F5 display shows the symbol RV ZZ for the state of the retainer valve in all cars where ZZ is EX for Exhaust or LP or HP When the system brakes are released and there are no retainers set the air in the brake cylinders in the cars is normally released to the air The BC pressure for the cars with retainers set will not fall below the specified value In order to change the retainer
60. 0 15 4 TrainHasCallOn Function This function is intended specifically to allow trains to call on in Timetable mode when allowed to do so as defined in the timetable The use of this function allows a train to call on into a platform in Timetable mode without jeopardizing the functionality in normal Activity mode Page 145 of 206 It is a Boolean function and returns state as follows e Activity Mode e Returns true if e Route from signal is not leading into a platform e Timetable Mode e Returns true if e Route from signal is not leading into a platform e Route from signal is leading into a platform and the train has a booked stop in that platform and either of the following states is true e Train has CallOn command set for this station e Train has Attach command set for this station and the train in the platform is the train which it has to attach to e Train is part of RunRound command and is to attach to the train presently in the platform The use of this function must be combined with a check for blockstate BLOCK_OCCUPIED Note this function must NOT be used in combination with blockstate JN_OBSTRUCTED The state JN OBSTRUCTED is used to indicate that the route is not accessible to the train e g switch set against the train opposite movement taking place etc Some signal scripts allow signals to clear on blockstate JN_OBSTRUCTED This can lead to all kinds of incorrect situation
61. 0lb h BoilerVolume x ENG Volume of boiler we actual value is not Existing BoilerVolume 110 m 3 available use EvapArea 8 3 as an approximation i Boiler evaporation Area sq ft sq ORTSEvaporationArea 2198 ft 2 RTSE A ORTSEvaporationArea x ENG ae a As per loco specs New ORTSEvaporationArea 194 m42 Max boiler A Pressure psi SEP MaxBoilerPressure 200psi MaxBoilerP axBoilerPressure x ENG working pressure kPa As per loco specs Existing MaxBoilerPressure 200kPa Gauge pressure Superheating Area sq ft sq ORTSSuperheatArea 2198 ft 2 RT heatA ORT SSuperbeat nea ENG heating area m As per loco specs men ORTSSuperheatArea 194 m 2 Locomotive Tender Info Mass Ibs kg 1 uk gal 10lb lt MaxTenderWater Mass 36500lb MaxT Wat axTenderWaterMass x ENG Water in tender eee As per loco specs Existing MaxTenderWaterMass 16000kg 8 34lb MaxTenderCoalMass x ENG Coal in tender Mass Ibs kg As per loco specs Existing ea Lerman etre Fire Locomotive fire Area sq ft sq ORTSGrateArea 2198 ft 2 ORTSGrateA EN A N Parenrsa N G grate area m S corgi ii ORTSGrateArea 194 m 2 Internet search See ORTSFuelCalorific x ENG Calorific value of Energy Density for coal use a New ee ee fuel btu Ib kj kg default value of J KE 13700 btu lb Use following as aor Maximum fuel defaults New ORTSSteamFiremanMaxPossibleFiringRate hat fi OR
62. 11G3DCab demo trainset In the CABVIEW3D folder of that download you will find an ace file called SPEED ACE Copy that file and paste it into the CABVIEWSD folder for your model Now open OR and test your speedometer Page 190 of 206 16 OR Specific Route Features As a general rule and as already stated Open Rails provides all route functionalities that were already available for MSTS plus some opportunities such as also accepting textures in dds format OR provides a simple way to add snow terrain textures the following default snow texture names are recognized ORTSDefaultSnow ace and ORTSDefaultDMSnow ace to be positioned within folder TERRTEX SNOW of the concerned route For the snow textures that are missing in the SNOW subfolder and only for them ORTS uses such files to display snow if they are present instead of using file blank omp To have a minimum working snow texture set the file microtex ace must also be present in the SNOW subfolder Page 191 of 206 17 Developing OR Content Open Rails is defining and developing its own development tools However it is already possible to develop OR content rolling stock routes 3D objects activities using the tools used to develop MSTS content thanks to the high compatibility that OR has with MSTS Below some of the advantages of OR specific content are described 17 1 Rolling Stock 1 OR is able to display shapes with many more polygons than MSTS Shapes with more tha
63. 12 10 Using the Public Server A special public server is deployed so that you do not need to use your own computer as the server avoiding the setup problems you may encounter You can find the IP and port numbers here To connect to this public server you must act as described here using IP and port numbers as found on the above link with only a difference the first player entering the session has to enter by clicking on Client and not on Server even if he intends to be the dispatcher If the port has no player yet whoever connects first will be declared the dispatcher others connected later will be normal players The public server runs a special code that is not part of OR If you plan to run such a server for free please contact the email listed in http tsimserver com forums showthread php 2560 12 10 1 Additional info on using the Public Server e If the computer of the player acting as dispatcher crashes or if the connection with it breaks down the public server will try to appoint another player as dispatcher Such player will receive on his monitor the following message You are the new dispatcher Enjoy e lf aclient crashes or loses the connection its position is held by the server for about two minutes If the client re enters the game within such time frame it will re enter the game in the position where he was at the moment of the crash Page 177 of 206 13 Multi Player Setting up a Server from Your
64. 200 300 Czech Rep Tilting trains 150 270 France Tilting trains 180 260 Germany Tilting trains 180 300 Italy Tilting trains 160 275 Norway Tilting trains 150 280 Spain Tilting trains 160 210 equivalent for standard gauge 139 182 Sweden Tilting trains 150 245 UK Tilting trains 180 300 Table 2 Super Elevation limits source Tracks for tilting trains A study within the Fast And Comfortable Trains FACT project by B Kufver R Persson 8 11 Super Elevation Curve Speed Limit Application in OR Open Rails implements this function and has standard default values applied The user may elect to specify some of the standard parameters used in the above formula 8 11 1 OR Super Elevation Parameters Typical OR parameters can be entered in the Wagon section of the wag or eng file and are formatted as below ORTSUnbalancedSuperElevation 3in ORTSTrackGauge 4ft 8 5in 8 11 2 OR Super Elevation Default Values The above values can be entered into the relevant files or alternatively OR will default to the following functionality OR will initially use the speed limit value from the route s trk file to determine whether the route is a conventional mixed freight and passenger route or a high speed route Page 111 of 206 Speed limit lt 200km h 125mph Mixed Freight and Pass route Speed limit gt 200km h 125mph High speed passenger route Default values of tracksup
65. 3 1705 1024 4 024 Shadow primitives 1468 195 356 Slop j6 Render primitiv 913 Aff 1 2 Loader proce Sound proc Total process Camera The values in the Camera line refer to the two tile coordinates and to the three coordinates within the tile Page 66 of 206 At the bottom of the picture some moving graphs are displayed that show the actual load of the computer i tat Erame time Referring to memory occupation about at least 400 MB must remain free to avoid out of memory exceptions By pressing Ctrl Alt F6 at runtime you get a picture like this one that allows you to take note of the interactive IDs for debugging purposes Version CUEVA ENIS 1640082 Tms 20019 Ghee Poed Fone Tein beko Gen Senio BOGS bar BE OEP 68 EON EP 8A ter R G23 Engine teke 0 16S PLATFORID Maread 1707 S FNAL ee SIGNAL Oynemite beke THEO SIGNAL 1193S VAL 1Up2 Dawn 7000 MAL LI SOUNDREGION Cram eke Clase Beanie Poman y parm 0 09 a 3 pushing ON 6 Page 67 of 206 7 15 8 Viewing Signal State and Switches By pressing Ctrl Alt F11 you get a picture like the following that shows the state of the signals and switches on the path 7 15 9 Sound Debug Window Oe es By pressing Alt S this window opens Selected sound Active sounds Speed 7 8 ABe 44 a It shows in the upper part the list of all active sMS veistie foz Popa aie baa apa files by expanding the detail of a specific smMS
66. 5 of 206 e The Al train proceeds with the locomotive at the rear and wants to uncouple and proceed in the reverse direction a reverse point has to be put in the point where the train will stop and a WP has to be put sequentially after the reverse point somewhere under the part of the train that will remain with the train formatted as above As the train has changed direction at the reverse point again cars are counted starting from the locomotive e The Al locomotive proceeds and couples to a loose consist and wants to get only a part of it a reverse point is inserted under the loose consist and a WP is inserted sequentially after the reverse point somewhere under the part of the train that will remain with the train formatted as above What is NOT currently possible is the ability to couple the Al train to the player train or to another Al train and to steal from it a predefined number of cars With the currently available functions it is only possible to steal all the cars or to pass all the cars If it is desired that only a number of cars be passed from an Al or player train to the other the first Al train has to uncouple these cars as described above then move a bit forward and then make the second Al train couple to these Cars 10 13 2 3 Function 6 Join and split Introduction Join and split means that two trains Al or player each start running on their own path then they join and run coupled together a part of their p
67. 82 138750 5 50288 10 25144 20 12572 50 5029 875 0 161875 2 12 161875 5 68447 10 34223 20 17112 50 6845 Tel 0 185000 2 42 185000 5 89400 10 44700 20 22350 50 8940 The ORTSMaxTractiveForceCurves are formed by blocks of pairs of parameters representing speed in metres per second and tractive force in Newtons these blocks are each related to the value of the throttle setting present at the top of each block For intermediate values of the speed an interpolated value is computed to get the tractive force and the same method applies for intermediate values of the throttle Page 117 of 206 It is not possible to replace only a part of the Lights block It must be replaced in its entirety 8 15 Train Control System The Train Control System is a system that ensures the safety of the train In MSTS 4 TCS monitors were defined the vigilance monitor the overspeed monitor the emergency stop monitor and the AWS monitor Open Rails does not support the AWS monitor In order to define the behavior of the monitors you must add a group of parameters for each monitor in the Engine section of the eng file These groups are called VigilanceMonitor OverspeedMonitor EmergencyStopMonitor and AWSMonitor In each group you can define several parameters which are described in the tables below Page 118 of 206 General parameters MonitoringDevice MonitorTimeLimit x Period of time
68. 9 38 13 shrtpass 2012 12 27 18 36 04 OR will pack the necessary files into a single archive file with the extension ORSavePack and place it in the folder Open Rails Save Packs This ORSavePack file is a zip archive which contains the replay commands a screenshot at the moment of saving a Save file so that Open Rails can offer its Resume option and a log file This arrangement means that the ORSavePack archive is ideal for attaching to a bug report You can use the mport Save Pack button on the same window to import and unpack a set of files from an ORSavePack archive They will then appear in your Saved Games window 7 15 Analysis Tools The extended HUDs provide a rich amount of information for analysis evaluation and to assist in troubleshooting You can move through the sequence of HUD displays by repeatedly pressing Shift F5 You can turn off any extended HUD while continuing to show the basic HUD by pressing Alt F5 Pressing Alt F5 again returns the display of the currently active extended HUD Page 59 of 206 This page shows in the first line data about the whole train Under Player you will find the train number as assigned by OR followed by an F if the forward cab is selected and an R if the rear 2 CONSIST INFORMATION Player Tilted Type Weight Control Mode Out of Control Cab Aspect OF False Pass 467t EXPLORER UNDEFINED Clear 2 f 20 O o Flipped Type Weight Drn
69. Cabs Wheels False Pass 96t DF False Pass 62t False Pass 32t False Pass 32t False Pass 32t False Pass 32t False Pass 32t False Pass 32t False Pass 32t False Pass 32t False Pass 32t True Pass 20t Ta 0 1 2 4 3 1 1 cab is selected Tilted is true in case the consist name ends with tilted e g ETR460_tilted con in which case it means that it is a tilting train Control mode shows the actual control mode Read more about this Cab aspect shows the aspect of next signal In the other lines data about the train cars are shown Data are mostly self explanatory Under Drv Cabs a D appears if the car is drivable and an F and or a R appear if the car has a front and or a rear cab The next extended HUD display shows locomotive information MOTIVE INFO on Forward Fwd Mud I 242 Fuel 20062 L Status Running Power 31 3163 Wi Load 76 5 7126 RPM Flow Cart Fwd Mud Circuit breaker Glosed TCS OK D Auxiliary power PowerOn Can2 Ew MU d ey Input 23 y 160 3 S p 4242 SSF uel Cal14 359 btu Ib Adj Port Open0 09 f S O o ip Boi e T SS 1 34 660 Ib h Boiler Eff 0 8 Heat 17198 btu lb tu Ib and 35Aebtu tte3 Heat 29857 673 btu WESS 2 718 514 btu Temp 3 EIG S o 091 NES 2 CUrSupen 128 F Sup Facts 1 29 Comp h Oilb h Cock Obh Gen 105 Ib h Stoke Ovlb h Exhaust 2 ck Tapsi PreComp 1 apsi PreAdm kapsi MEP 43 apsi MaxiSafe 16 006 Ib h 2 x 3 0 Boil Heat True Gear False Fuel 124
70. Douglas Jones Edward Keenan Eric Pannese Eric Swenson Eugen Rippstein Jim Jendro Jim Ward John Sandford Joseph Hoevet Joseph Realmuto Larry Steiner Laurie Heath Lutz Doellermann Marc Nelson Markus Gelbmann Mat j Pacha Matt Peddlesden Matt Munro Paul Bourke Paul Gausden Paul Wright Peter Gulyas Peter Newark Phil Voxland Remus lancu Richard Plokhaar Rick Grout Rick Hargraves Riemer Grootjans Rob Lane Fabian Joris Robert Hodgson Gy rgy S rosi Robert Murphy Greg Davies Roberto Ceccarelli Hank Sundermeyer Robert Roeterdink Haifeng Li Samuel Kelly James Ross Scott Miller Jan Vytla il Sid Penstone Jean Louis Chauvin Tim Muir Jeff Bush Walter Niehoff Jeffrey Kraus Yao Wes Card e Jijun Tang and 1 Member of the Open Rails Management Team Page 203 of 206 Dave Nelson for providing us a meeting place at Elvas Tower Pete Peddlesden for hosting our website and repository and of course Wayne Campbell for inspiring this improbable journey Page 204 of 206 23 Appendices 23 1 Units of Measure Open Rails supports the same default units of measure as MSTS which are mostly but not exclusively metric When creating models just for Open Rails we recommend you do not use defaults but specify units for all values that represent physical quantities As shown below Open Rails provides a wider choice of units than MSTS Measure Default Applies OR MSTS Comme
71. Draw Calls As an aid to performance Open Rails will examine a scene and will issue Draw Calls for only the models that are visible As you rotate the camera other models will come into view and some that were in view will leave the scene resulting in a variable number of Draw Calls all of which will affect the frame rate Model builders are advised that the best performance will result by not mixing different material types in a texture file as well as using the fewest number of texture files as is practical 17 6 Support Support can be requested on the OR forum on www elvastower com forums The OR development team within the limits of its possibilities is willing to Support contents developers Page 193 of 206 18 Version 1 0 Known Issues 18 1 Water Pickup from Troughs This capability of MSTS has not yet been implemented in ORTS Currently there is a temporary solution by default the key T Refill performs a refill of the water to the 100 level when the locomotive is more than 2000 m from a water source Refilling from water towers is currently implemented 18 2 Empty Effects Section in eng File If an engine file is used that has an Effects section that contains no data the engine will not be loaded by ORTS Page 194 of 206 19 In Case Of Malfunction 19 1 Introduction When you have an issue with Open Rails ORTS no matter what it is the OR development team is always thankful for reports of possible bu
72. DrawLight 0 DrawLight 3 DrawLight 6 SignalDrawState 7 LowWhite DrawLights 3 DrawLight 0 DrawLight 3 DrawLight 7 SignalFlags FLASHING SignalAspects 8 SignalAspect STOP Red SignalAspect STOP_AND_PROCEED LowWhite SpeedMPH 25 SignalAspect RESTRICTING LowYellow SpeedMPH 25 SignalAspect APPROACH_1 MidYellow SpeedMPH 40 SignalAspect APPROACH_2 TopYellowMidGreen SignalAspect APPROACH_3 TopYellow SignalAspect CLEAR_1 MidGreen SpeedMPH 40 SignalAspect CLEAR_2 TopGreen ApproachControlSettings PositionM 500 SpeedMpH 10 SignalNumClearAhead 5 Page 143 of 206 Signal function reduced to show use of approach control only This function uses approach control for the lower route CLL SCRIPT SL_J_40_LAC Searchlight Top Main Junction extern float block_state extern float route_set extern float def_draw_state extern float next_sig_Ir extern float sig_feature extern float state extern float draw_state extern float enabled Returned states drawn SIGASP_STOP Top Cleared SIGASP_APPROACH_3 SIGASP_APPROACH_2 SIGASP_CLEAR_2 Middle Cleared SIGASP_APPROACH_1 SIGASP_CLEAR_1 Lower Cleared SIGASP_RESTRICTING SIGASP_STOP_AND_PROCEED User Flags USER1 copy top approach USER2 top approach junction
73. F to switch between Manual and Automatic firing modes Page 86 of 206 8 4 2 2 Hot or Cold Start The locomotive can be started either in a hot or cold mode Hot mode simulates a locomotive which has a full head of steam and is ready for duty Cold mode simulates a locomotive that has only just had the fire raised and still needs to build up to full boiler pressure before having full power available This function can be selected through the Open Rails options menu on the Simulation tab 8 4 2 3 Main Steam Locomotive Controls This section will describe the control and management of the steam locomotive based upon the assumption that the Automatic fireman is engaged The following controls are those typically used by the driver in this mode of operation Cylinder Cocks allows water condensation to be exhausted from the cylinders Open Rails Keys toggle C Regulator controls the pressure of the steam injected into the cylinders Open Rails Keys D increase A decrease Reverser controls the valve gear and when the steam is cutoff Typically it is expressed as a fraction of the cylinder stroke Open Rails Keys W increase S decrease Continued operation of the W or S key will eventually reverse the direction of travel for the locomotive Brake controls the operation of the brakes Open Rails Keys increase decrease Recommended Option Settings For added realism of the performance of the steam locom
74. Information The setting of the retained pressure and the number of retainers is controlled using the Ctrl and Ctrl keys Ctrl plus the left and right square bracket and keys on an English keyboard The Ctrl key will reset the retainer on all cars in the consist to exhaust the default position Each time the Ctrl key is pressed the retainer settings are changed in a defined sequence First the fraction of the cars set at a low pressure is selected 25 50 and then 100 of the cars then the fraction of the cars at a high pressure is selected instead then the fraction at slow direct For the 25 setting the retainer is set on every fourth car starting at the rear of the train 50 sets every other car and 100 sets every car These changes can only be made when the train is stopped When the retainer is set to exhaust the ENG file release rate value is used otherwise the pressures and release rates are hard coded based on some AB brake documentation used by the Open Rails development team 8 7 Dynamically Evolving Tractive Force The Open Rails development team has been experimenting with max continuous tractive force where it can be dynamically altered during game play using the ORTSMaxTractiveForceCurves parameter as shown earlier The parameters were based on the Handbook of Railway Vehicle Dynamics This says the increased traction motor heat increase resistance which decreases current and tractive force We used a moving averag
75. MAN train is in manual mode only player train see here OOC train is out of control EXPL train is in explorer mode only player train When relevant this field also shows delay in minutes e g S 05 mean Signal mode 5 minutes delay e Auth End of authorization info that is the reason why the train is preparing to stop or slow down Possible reasons are SPDL speed limit imposed by speed sign Page 63 of 206 SIGL speed limit imposed by signal STOP signal set at state STOP REST signal set at state RESTRICTED train is to reduce speed at approaching this signal EOA end of authority generally only occurs in non signaled routes or area where authority is based on NODE mode and not SIGNAL mode STAT station TRAH train ahead EOR end of train s route or subroute in case the train approaches a reversal point AUX all other authorization types including auxiliary action authorizations e g waiting points When the control mode is NODE the column Auth can show following strings EOT end of track EOP end of path RSW switch reserved by another train LP train is in loop TAH train ahead MXD free run for at least 5000 meters NOP no path reserved When the control mode is OOC the column Auth can show following strings SPAD passed signal at danger RSPD passed signal at danger running backwards OOAU passed authority limit OOPA out of path SLPP slipped into pat
76. Own Computer As any online game you need to do some extra work if you want to host a multiplayer session 13 1 IP Address If you are running at home and use a router you may not have a permanent IP Thus before you start as a server you must find your IP The quickest ways are the following 1 Using Google type in find ip address then Google will tell you find ip address Ad related to find ip address IP Address Lookup serviceobjects com www serviceobjects com IP Lookup Verify amp Geotarget Website Visitors via XML Updates Data Hourly our public IP address is 100 0 0 1 Learn more 2 If the above does not work try http whatismyipaddress com ip lookup which shows your IP in the middle of the page Page 178 of 206 Lookup IP Address Location This IP lookup tool is designed to provide additional information about the entered IP address These details include the hostname Geographic location information includes country region state city latitude longitude and telephone area code and a location specific map The geographic details are pulled from a commercially available geolocation database Geolocation technology can never be 100 accurate in providing the location of an IP address When the IP address is a proxy server and it does not expose the user s IP address it is virtually impossible to locate the user The country accuracy is estimated at about 99 For IP addresses in the United States i
77. Pick Switches are checked as default You can uncheck one of them when a signal and a switch are superimposed in a way that it is difficult to select the desired item You can click a switch or signal in the dispatcher window and press Ctrl Alt G to jump to that switch with the free roam 8 key camera If you click on View Self the dispatcher window will center on the player train However if the train moves centering will be lost You can select a train by left clicking with the mouse its green reproduction in the dispatcher window approximately half way between the train s head and its name string The train body becomes red Then if you click on the button See in game the main Open Rails window will show this train in the views for the 2 3 4 or 6 keys and the 5 key view if available for this train Display of the new train may require some time for OR to compute the new image if the train is far away from the previous camera view Take into account that continuous switching from train to train especially if the trains are far away can lead to memory overflows If after a train selection you click on Follow the dispatcher window will remain centered on that train Page 48 of 206 7 6 Additional Train Operation Commands OR supports an interesting range of additional train operation commands Some significant ones are described here below 7 6 1 Diesel Power On Off With the key Y the player diesel engine i
78. Start User name 6 open V Logging Host port 30000 O rails 7 windowed Restor Server Client 5 1 Installation Profiles In the simplest case where you have only a basic MSTS installation see paragraph Does Open Rails need MSTS to run for a precise definition of a MSTS installation OR should already correctly point to that Installation To check this you should initially see under Installation Profile the string Default Under Route you should see the name of one of the MSTS routes in your MSTS installation You can easily add remove or move other MSTS installations and select among them e g if you have any so called mini routes installed Click on the Options button and select the Content tab See the Content Options discussed below for more instructions 5 2 Updating OR When a new release of OR is available and your computer is online a link Update to xnnnn appears in the upper right corner The string xnnnn is the release number of the newest release that matches your selected level of update Various level of updates called Update Channels are available You may choose the desired level in the Options Update window described below Page 9 of 206 When you click on the update link OR will download and install the new release In this way your version of Open Rails is always up to date Note however that previously sa
79. TSSteamFiremanMaxPossibleFiringRate x ENG Fabel ras Mass Ibs kg UK 3000Ib h alternate 42001b h ae can shovel in an US 50001b h value to ORTSSteamFiremanMaxPossibleFiringRate hour MSTS 2000kg h Page 91 of 206 Indicates that the locomotive has a SteamFiremanlsMechanicalStoker x ENG pee nents Factor Pern Taner Existing SteamFiremanlsMechanicalStoker 1 0 stoker and hence 1 stoker a large rate of coal feed Steam Cylinder N f st NumCylinders x ENG al Factor As per loco specs Existing NumCylinders 2 3 Length of cylinder APE CylinderStroke 26in Cyl k EN D A Exist ylinderStroke x G rake istance m in s per loco specs xisting CylinderStroke 0 8m i Diameter of ae CylinderDiameter 21in D EN D A E CylinderDiameter x G evlindet istance m in s per loco specs xisting CylindetDiameter 0 6m Number of steam F LP cylinders a LPNumCylinders x ENG Compound Factor As per loco specs Existing LPNumCylinders 2 locomotive only Length of LP z cylinder stroke 5 TES LPCylinderStroke 26in LPCyl k EN D A E CylinderStroke x G Compound istance m in s per loco specs xisting LPCylinderStroke 0 8m locomotive only Diameter of LP 3 cylinder er are LPCylinderDiameter 21in LPCylinderDiameter x ENG Compound Distance m in As per loco specs Existing LPCylinderDiameter 0 6m locomotive o
80. This file contains rich information about the execution of the game session allowing identification of critical problems This file should always be attached to requests of support in case of problems The contents of the file are often self explanatory and therefore can be evaluated by the same contents developer It includes reports of various errors in the MSTS files which are ignored by OR including missing sound files unrecognized terms in some files etc Selecting the Experimental Option Show shape warnings described here allows OR to report errors found in shape files in the log file It includes also reports about malfunctions in the gaming session such as trains passing red signals as well as OR malfunctions 7 17 Code embedded Logging Options OR source code is freely downloadable check the www OpenRails org website for this Within the code there are some debug options that when activated generate specific extended log files e g for analysis of signal and of Al train behavior Short specific info on this can be provided to people with programming skills 7 18 Testing in Autopilot Mode Autopilot mode is a powerful tool to help in testing activities Page 69 of 206 8 Open Rails Physics Open Rails physics is in an advanced stage of development The physics structure is divided into logical classes more generic classes are parent classes more specialized classes inherit properties and methods of their parent class Theref
81. Travelled distance travelled Gives an indication if all is well If a train started an hour ago and travelled is still 0 0 something s clearly wrong e Speed present speed e Max maximum allowed speed Page 62 of 206 e Al Mode gives an indication of what the Al train is doing Possible states INI train is initializing Normally you would not see this STP train is stopped other than in a station The reason for the stop is shown in Authority BRK train is preparing to stop Does not mean it is actually braking but it knows it has to stop or at least reduce speed soon Reason and distance to the related position are shown in Authority and Distance ACC train is accelerating either away from a stop or because of a raise in allowed speed RUN train is running at allowed speed FOL train is following another train in the same signal section Its speed is now derived from the speed of the train ahead STA train is stopped in station WTP train is stopped at waiting point EOP train is approaching end of path STC train is Static train or train is in Inactive mode if waiting for next action e Al data shows throttle first three digits and brake last three digits positions when Al train is running but shows departure time booked when train is stopped at station or waiting point or shows activation time when train is in inactive mode state STC e Mode SIGN signal NODE
82. a SSS CODE WORD Clas yt 28 sf x gt gt oye e del del del oe RES ffi pig EL 38 E a ug SS S eh el cece ce av Ss FES 4 3 sek 3 135 ales lan at Sa ga te 29 a amp jf fF CAs hs ee ly Seley 8s Ss ss zs f zi Matchlock 8 28 C 17x2 66 180 16 080 70 000 102 000 7 6 21 5 3500 1720 805 485 335 245 45 90 60 Matelas sc 18x24 G6 180 18 020 77 000 115 000 7 6 21 6 14000 1930 900 545 375 275 165 105 65 Matelasser 8 32 C 19x24 66 180 20 070 85 000 128 000 8 0 22 11 45002140 1000 605 415 305 185 115 75 Matellarum S U C 20x24 66 ISO 22 260 92 000 136 000 8 6 23 4 50002315 1085 655 450 330 200 125 80 Typically the ruling gradient is defined as the maximum uphill grade facing a train in a particular section of the route and this grade would typically determine the maximum permissible load that the train could haul in this section The permissible load would vary depending upon the direction of travel of the train Page 83 of 206 8 4 1 2 Elements of Steam Locomotive Operation A steam locomotive is a very complex piece of machinery that has many component parts each of which will influence the performance of the locomotive in different ways Even at the peak of its development in the middle of the 20th century the locomotive designer had at their disposal only a series of factors and simple
83. ails Open Rails software OR is a community developed and maintained project from openrails org Its objective is to create a new transport simulator platform that is first compatible with routes activities consists locomotives and rolling stock created for Microsoft Train Simulator MSTS and secondly a platform for future content creation freed of the constraints of MSTS in this manual MSTS means MSTS with MSTS Bin extensions if not explicitly stated in a different way Our goal is to enhance the railroad simulation hobby through a community designed and supported platform built to serve as a lasting foundation for an accurate and immersive simulation experience By making the source code of the platform freely available under the GPL license we ensure that OR software will continually evolve to meet the technical operational graphical and content building needs of the community Open architecture ensures that our considerable investment in building accurate representations of routes and rolling stock will not become obsolete Access to the source code eliminates the frustration of undocumented behavior and simplifies understanding the internal operation of the simulator without the time consuming trial and error prone experimentation typically needed today Open Rails software is just what the name implies a railroad simulation platform that s open for inspection open for continuous improvement open to third parties and commercia
84. ain you desire to run as the Player train Season and weather can also be selected Page 11 of 206 5 4 3 Run Now click on Start and OR will start loading the data needed for your game When loading completes you will be within the cab of your locomotive You can read further in the chapter Driving a Train 5 4 4 Multiplayer Mode Open Rails also features this exciting game mode several players each one on a different computer in a local network or through the Internet can play together each driving a train and seeing the trains of the other players even interacting with them by exchanging wagons under the supervision of a player that acts as dispatcher The multiplayer mode is described in detail here 5 4 5 Replay This is not a real gaming mode but it is nevertheless another way to experience OR After having run a game you can save it and replay it OR will save all the commands that you gave and will automatically execute the commands during replay it s like you are seeing a video on how you played the game Replay is described later together with the save and resume functions Page 12 of 206 6 Open Rails Options Clicking on the Options button opens a multi panel window The Menu gt Options panels contain the settings which remain in effect during your simulation Most of the options are self explanatory you may set them according to your preference and system configuration For example you can turn off
85. an be added even if they are not always available Click on the Add button and locate the desired installation OR will automatically enter a proposed name in the Name window that will appear in the Installation set window on the main menu form Modify the name if desired then Click Save to add the new path and name to Open Rails Then click OK to return to Open Rails To remove an entry note that this does not remove the installation itself select the entry in the window and click Delete then OK to close the window To modify an entry use the Browse button to access the location make the necessary changes and then Save the changes Page 27 of 206 6 9 Updater Options These options control which OR version update channel is active see also here The various options available are self explanatory Options General Audio Video Simulation Keyboard Data logger Evaluation Content Updater Experimental Update channel Release channel Recommended for users The release channel contains only official hand picked stable versions Experimental channel For supporters The experimental channel contains automatically generated weekly versions Nightly channel For developers The nightly channel contains every single version created None No automatic updates Page 28 of 206 6 10 Experimental Options Some experimental features bein
86. antek Aethra Aethra Starvoice AGK Nordic Airlink Airlink 101 Airlink AirLive Airnet AirTies Alcatel Lucent Alice Alice Box AIBICIDIEIFIGIHIIIJIKILIMIN OIPIQIRISITIUIVIWIXIZ A Allied Data Allied Telesyn AllNet Ambit Ansel Aolynk AOpen AP Router Apple Arris Artnet Asante Asmax Asus Ativa ATnT AusLinx AWB Networks Axess Tel Axesstel AZiO Aztech 3 A page may appear allowing you to select your specific model of router Airlink Port Forwarding Guides Select your router model from the list below Rt210W Page 180 of 206 4 It then shows all the programs games for which you want to forward ports Just click Default Guide Port Forwarding for the Airlink Rt210W Welcome to our guide list for the Airlink Rt210W Please select the program you are forwarding ports for from the list below If you do not feel like figuring out how to forward ports manually we have a simple software solution called PFConfig that can forward your ports for you automatically We offer complete support for our product and will help you get your ports forwarded If peer Sabhe program you are forwarding ports for be sure to visit fur Default Guide fothis router AIBICIDIEIFIGIHIIJIKILIMIN OIPIQIRISITIUIVIWIXIYIZ A 1AV Streamer Alpha Centauri 1st SMTP Server Americas Army 3 In A Bed Amplitude 3CX Anarchy Online BETA TLinks PX 3615 675 Apache A Valley Without Wind APB ABC Apple Remote Desktop Access Remote PC
87. any car one speed of operation at which the car trucks have no more tendency to run toward either rail than they have on straight track where both rail heads are at the same level known as the equilibrium speed At lower speeds the trucks tend constantly to run down against the inside rail of the curve and thereby increase the flange friction whilst at higher speeds they run toward the outer rail with the same effect This may be made clearer by reference to Fig 2 which represents the forces which operate Page 103 of 206 on a car at its centre of gravity With the car at rest on the curve there is a component of the weight W which tends to move the car down toward the inner rail When the car moves along the track centrifugal force Fe comes into play and the car action is controlled by the force Fr which is the resultant of W and Fc The force Fr likewise has a component which still tends to move the car toward the inner rail This tendency persists until with increasing speed the value of Fe becomes great enough to cause the line of operation of Fr to coincide with the centre line of the track perpendicular to the plane of the rails At this equilibrium speed there is no longer any tendency of the trucks to run toward either rail If the speed be still further increased the component of Fr rises again but now on the opposite side of the centre line of the track and is of opposite sense causing the trucks to tend to move toward the outer ins
88. area sq m y density of air 1 2 kg m Rt tunnel perimeter m Lir length of train m Lt length of tunnel m V train velocity m s P locomotive mass tonne G train mass tonne Wt additional aerodynamic drag in tunnel N KN Source Reasonable compensation coefficient of maximum gradient in long railway tunnels by Sirong YI Liangtao NIE Yanheng CHEN Fangfang QIN Page 114 of 206 8 13 Tunnel Friction Application in OR for content developers To enable this calculation capability it is necessary to select the Tunnel dependent resistance option on the Open Rails Menu The implication of tunnel resistance is designed to model the relative impact and does not take into account multiple trains in the tunnel at the same time Tunnel resistance values can be seen in the Train Forces HUD The default tunnel profile is determined by the route speed recorded in the TRK file 8 13 1 OR Parameters The following parameters maybe included in the TRK file to overwrite standard default values used by Open Rails ORTSSingleTunnelArea x Cross section area of single track tunnel units area ORTSSingleTunnelPerimeter x Perimeter of single track tunnel units distance ORTSDoubleTunnelArea x Cross section area of double track tunnel units area ORTSDoubleTunnelPerimeter x Perimeter of double track tunnel units distance To insert these values in the trk file it is su
89. aries due to changing track conditions Theoretical tractive effort is determined by the boiler pressure cylinder size drive wheel diameters and will vary between locomotives Low Factors of Adhesion will cause the locomotive s driving wheels to slip Forces Impacting Train Movement The steam locomotive is a heat engine which converts heat energy generated through the burning of fuel such as coal into heat and ultimately steam The steam is then used to do work by injecting the steam into the cylinders to drive the wheels around and move the locomotive forward To understand how a train will move forward it is necessary to understand the principal mechanical forces acting on the train The diagram below shows the two key forces affecting the ability of a train to move Tractive Effort Train Force N or Lbf Train Resistance Train Speed km h or mph The first force is the tractive effort produced by the locomotive whilst the second force is the Page 80 of 206 resistance presented by the train Whenever the tractive effort is greater than the train resistance the train will continue to move forward once the resistance exceeds the tractive effort then the train will start to slow down and eventually will stop moving forward The sections below describe in more detail the forces of tractive effort and train resistance Train Resistance The movement of the train is opposed by a number of different forc
90. as e g Curtius Kniffler or Kother The D parameter is used in the advanced adhesion model described later From A B and C a coefficient CK is computed and the adhesion force limit is then calculated by multiplication of CK by the car mass and the acceleration of gravity 9 81 as better explained later The adhesion limit is only considered in the adhesion model of locomotives The adhesion model is calculated in two possible ways The first one the simple adhesion model is based on a very simple threshold condition and works similarly to the MSTS adhesion model The second one the advanced adhesion model is a dynamic model simulating the real world conditions on a wheel to rail contact and will be described later The advanced adhesion model uses some additional parameters such as e ORTSAdhesion ORTSSlipWarningThreshold T where T is the wheelslip percentage considered as a warning value to be displayed to the driver e ORTSAdhesion Wheelset Axle ORTSInertia Inertia where Inertia is the model inertia in kg m and can be set to adjust the advanced adhesion model dynamics The value considers the inertia of all the axles and traction drives If not set the value is estimated from the locomotive mass and maximal power The first model simple adhesion model is a simple tractive force condition based computation If the tractive force reaches its actual maximum the wheel slip is indicated in HUD vie
91. ass over the same track sections The incorporated train must not have waiting points nor station stops in the common path part the coupled train instead may have them If there are reversals within the common path part they must be present in both paths 7 At the point of decoupling the number of cars and locomotives to be decoupled from the train can be different from the number of the original train 8 The whole train part to be decoupled must lie on the same track section After decoupling the incorporated train returns to being a standard Al train 9 Manual decoupling for player trains occurs using the F9 window automatic decoupling occurs with the 4NNSS and 5NNSS commands see previous paragraph the first one has to be used when the part to be decoupled is at the rear of the train and the second one where the part is at the front of the train 10 In the standard case where the main part of the train continues in the same direction the following cases can occur If the decoupled part is on the front this decoupled part can only proceed further in the same direction ahead of the main part of the train To avoid it starting immediately after decoupling it is wise to set a WP of some tens of seconds in the path of the decoupled train This WP can be set at the beginning of the section where decoupling occurs OR will move it under the decoupled part so you don t need to be precise in positioning it If the decoupled part is o
92. atcher compares the paths of the trains to identify possible passing points and then reserves tracks for a train up until a passing point When a train gets near the next passing point the reservation is extended to the next one The end result is that in Timetable Mode an Al train cannot be placed on a track if that section of track is already occupied by or reserved for another train A section of track is any track bounded by either a switch or a signal Also a train is not created if it would be partly or fully superimposed on an already existing train or if its path is not long enough for it This applies to both Timetable Mode and Activity Mode 7 15 6 Extended HUD for Debug Information The last extended HUD display shows Debug information The first line Logging enabled refers to logging as described in paragraphs 6 6 and 6 7 A wide variety of parameters is shown from frame wait and render speeds in milliseconds to number of primitives Process Thread resource utilization and number of Logical CPUs from the system s bios They are very useful in case of OR stuttering to find out where the bottleneck is DEBUG INFORMATION Logging enabled False Build 0 0 4937 35482 2013 07 08419 42 44Z Memory 270 MB 110 textu 1153materials 63 shapes 9 tiles 25 MB managed 1134 1003 11 GCs CPU 13 4 logical processors GPU 31 FPS 332 47 dern model 3 Adapter ATI Mobility Radeon HD 01512 MB Shadow maps 56 111 177 24 958378 530
93. ate a locomotive with the own engine off and the helper s engine on 8 2 1 4 ORTS Specific Diesel Engine Definition If no ORTS specific definition is found a single diesel engine definition is created based on the MSTS settings Since MSTS introduces a model without any data crosscheck the behavior of MSTS and ORTS diesel locomotives can be very different In MSTS MaxPower is not considered in the same way and you can get much better performance than expected In ORTS diesel engines cannot be overloaded No matter which engine definition is used the diesel engine is defined by its load characteristics Page 74 of 206 maximum output power vs speed for optimal fuel flow and or mechanical characteristics output torque vs speed for maximum fuel flow The model computes output power torque according to these characteristics and the throttle settings If the characteristics are not defined as they are in Relative Power Output m N Relative power Relative torque j oo A RELATIVE POWER AND TORQUE Nw o 0 IdleRPM 110 Max RPM ENGINE SPEED RPM the example below they are calculated based on the MSTS data and common normalized characteristics In many cases the throttle vs speed curve is customized because power vs speed is not linear A default linear throttle vs speed characteristics is built in to avoid engine overloading at lower throttle settings Nevertheless it is
94. ated within the main folder of the locomotive 2 If the cvf file cannot be found in the CABVIEWSD folder the 3D cab is associated with the cvf file of the 2D cab 3 Instruments are named with the same conventions as 2D cabs i e FRONT _HLIGHT SPEEDOMETER etc 4 A cab can have multiple instances of the same instruments for example multiple clocks or speedometers 5 Instruments are sorted based on the order of their appearance in the cvf file for example SPEEDOMETER 0 corresponds to the first speedometer in the cvf file SPEEDOMETER 1 corresponds to the second one 6 An instrument can have multiple subgroups to make the animation realistic for example TRAIN_BRAKE 0 0 and TRAIN_BRAKE 0 1 belong to the instrument TRAIN_ BRAKE 0 However if the instrument is a digital device the second number will be used to indicate the font size used for example SPEEDOMETER 1 14 means the second speedometer which is digital as defined in cvf will be rendered with 14pt font This may be changed in future OR releases The important information for a digital device is its location thus it can be defined as an object with a small single face in the 3D model 7 Animation ranges must be in agreement with the cvf file 8 Within the Wagon section of the eng file a block like the following one has to be generated ORTS3DCab ORTS3DCabFile Cab s ORTS3DCabHeadPos 0 9 2 4 5 2 RotationLimit 40 60 0 StartDirection 12 00
95. ath and then they split and run further each on its own path in the same direction or in opposite directions This can have e g the following example applications Application 1 apair of helper locomotives couples to the rear or to the front of a long train the resulting train runs uphill when they arrived uphill the helper locomotives uncouple from the train if the helpers were coupled to the rear of the other train the train continues forward on its path while the helper locomotives return downhill If the helpers were coupled to the front the helpers will enter a siding and stop the train will continue forward on its path and when the train has passed the helpers can reverse and return downhill This means that a complete helper cycle can be simulated Application 2 a passenger train is formed from two parts that join e g two sections of a HST the train reaches an intermediate station and the two sections decouple one section takes the main line while the other one takes a branch line this can happen in any direction for both trains While the joining train the one that moves and couples to the other train the joined train must be an Al train at the moment the joined train may be either an Al train or a player train autopiloted or not Page 136 of 206 Activity development 1 The two trains start as separate trains couple together and decouple later in the game After that of cour
96. booked to start after midnight will instead be started at the beginning of the day As a result of these rules it is not really possible to run an activity around or through midnight with all required Al trains included 11 5 7 Known Problems e f a dispose command is processed for the player train and the new train runs in the opposite direction the reverser will jump to the reverse state on forming that new train e A run round command defined in a dispose command cannot yet be processed It will be necessary to switch to Manual to perform that run round e f two trains are to be placed on a single siding using create with ahead qualifier but the trains have paths in opposite directions the trains may be placed in incorrect positions e f the binary qualifier is set for path but the OpenRails subdirectory in the Paths directory does not exist the program will not be able to load any paths Page 169 of 206 11 6 Example of a Timetable File Here is an excerpt of a timetable file shown in Excel OR SurflinerTimetable xlsx OpenOffice org File Modifica Visualizza Inserisci Formato Strumenti Dati Finestra B BULARREAN VE KSG O S CONN by MOE Bd Calibri Flu 6CS 228 Hw VRR EE O ES a ee ee ee ee ee ee ee a eee 2 frommen ECS i 3 fronti ST_MESAC OCNN TT_QCNN COMM LAX12 i 4 fon Metro_6 Metro_SPush 6 esta 4 37 4 55 5 22 oc 4 39 5 16 24 25 fsa 5 02 5 39 26 Is 5 11
97. can only be modified by editing the contents of the cvf file The headout views if available are selected by Home right hand side looking forward or End left hand side looking back and the headout view direction is controlled by the mouse with the right button depressed Page 51 of 206 e Key Alt 1 opens the 3D driver s view if the locomotive has a 3D cabview file from the interior of the controlling cab of the player locomotive The camera position and view direction are fully player controllable Rotation of the camera view in any direction is controlled by the mouse with the right hand button depressed or alternatively by the four arrow keys The camera s position is moved forward or backward along the train axis with the PageUp and PageDown keys and moved left or right or up or down with Alt the four arrow keys The headout views if available are selected by Home right hand side looking forward or End left hand side looking back and the outside view direction is controlled by the mouse with the right button depressed e Keys 2 and 3 open exterior views that move with the active train these views are centered on a particular target car in the train The target car or locomotive can be changed by pressing Alt PageUp to select a target closer to the head of the train and Alt PgDown to select a target toward the rear The 2 View selects the train s head end as the initial target the 3 View t
98. cific signaling functions are available Sigcfg and sigscr files referring to these functions must be located as described in the previous paragraph 10 15 1 SPEED Signals a New Signal Function Type The SPEED signal function type allows a signal object marker to be used as a speed sign Page 138 of 206 The advantages of such a use are e The signal object marker only applies to the track on which it is placed Original speed signs always also affect any nearby lines making it difficult and sometimes impossible to set a specific speed limit on just one track in complex areas e Asa signal object the SPEED signal can have multiple states defined and a script function to select the required state e g based on route selection This allows different speed limits to be defined for different routes through the area e g no limit for the main line but specific limits for a number of diverging routes The SPEED signal is fully processed as a speed limit and not as a signal and it has no effect on any other signals Limitation it is not possible to define different speeds related to type of train passenger or freight 10 15 2 Definition and Usage The definition is similar to that of any other signal with SignalFnType set to SPEED It allows the definition of drawstates and aspects like any other signal Different speed values can be defined per aspect as normal An aspect can be set to not have an active speed limit If this as
99. claim is made if the train ahead is also stopped No distinctions are made between types of train and there are no priority rules 10 5 Deadlock Processing When a train is started it will check its path against all other trains including those not yet started If a section is found on which this train and the other train are due in opposite directions the boundaries of that total common section are determined and deadlock traps are set at those boundaries for each train in the appropriate direction These boundaries are always switch nodes When a train passes a node which has a deadlock trap for that train the trap is sprung When a train approaches a node which has an active deadlock it will stop at that node or at the last signal ahead of it if there is one This train will now also spring its deadlock traps and will claim the full common section of that deadlock to ensure it will be the next train allowed onto that section The deadlock traps are removed when a train passes the end node of a deadlock section When a train is started and the train s path includes one or more reversal points deadlocks are only checked for the part of the path up to the first reversal point On reversal deadlocks are checked for the next part etc Deadlock traps are removed when a train switches to Manual mode When the train switches back to Auto mode the deadlock check is performed again There are no deadlock checks in Explorer M
100. core is used to separate the numbers as the LOD export tool does not support the use of colons in object names when exporting More on this later The speed does not display where the face for the SPEEDOMETER object is located but where the pivot point for the SPEEDOMETER object is located Normally you would place the SPEEDOMETER object somewhere in the cab where it will not be seen With the SPEEDOMETER_0_14 object selected in gmax go to the Hierarchy tab select Affect Pivot Only and click Align to World to reset the orientation to world coordinates Then use the Select and Move tool to move the pivot to where in the cab you wish the numerals to appear As you have aligned the pivot point to World coordinates the numerals will display vertically As most locomotive primary displays are normally angled you may have to rotate the pivot point so that it aligns with the angle of the display screen Export the S file for the cab as per normal You will then have to uncompress the s file for the cab using Shape File Manager or the S file decompression tool of your choice Then open the S file with a text editor and search for the letters speed until you find the first instance of SPEEDOMETER_0_14 and change it to be SPEEDOMETER 0 14 Search again and find the second instance of SPEEDOMETER_014 and change that also to SPEEDOMETER 0 14 Save the S file in the text editor Now just one more thing Download the DF
101. created in a minimized state so to display it in front of the OR window you must click on Alt Tab and select the dispatcher window icon or click on one of the OR icons in the taskbar If you are running OR in full screen mode you must also have the Fast full screen Alt Tab option selected to have both the OR and the dispatcher windows displayed at the same time After the dispatcher window has been selected with Alt Tab successive Alt_Tabs will toggle between the OR window and the dispatcher window The dispatcher window is resizable and can also be maximized e g on a second display You can define the level of zoom either by changing the value within the Res box or by using the mouse wheel You can pan through the route by moving the mouse while pressing the left button You can hold the shift key while clicking the mouse in a place in the map this will quickly zoom in with that place in focus You can hold Ctrl while clicking the mouse in a place in the map which will zoom out to show the whole route Holding Alt and clicking will zoom out to show part of the route a9 DispatchViewer oo Res 2001 24m I Draw Path I Pick Signals IV Pick Switches See in Game Follow po Reg iwda Lecco_Monza RS Manovracorta A ce P Sud staManovra gt AstaManovracorta Page 47 of 206 The dispatcher window shows the route layout and monitors the movement of all trains While the player trai
102. cteristics to get results that are more precise 8 3 Electric Locomotives At the present time diesel and electric locomotive physics calculations use the default engine physics Default engine physics simply uses the MaxPower and MaxForce parameters to determine the pulling power of the engine modified by the Reverser and Throttle positions The locomotive physics can be replaced by traction characteristics speed in mps vs force in Newtons as described below Some OR specific parameters are available in order to improve the realism of the electric system Since the simulator does not know whether the pantograph in the 3D model is up or down you can set some additional parameters in order to add a delay between the time when the command to raise the pantograph is given and when the pantograph is actually up In order to do this you can write in the Wagon section of your eng file or wag file since the pantograph may be on a wagon this optional structure ORTSPantographs Pantograph lt lt This is going to be your first pantograph Delay 5 s lt lt Example a delay of 5 seconds Pantograph parameters for the second pantograph Other parameters will be added to this structure later such as power limitations or speed restrictions Page 78 of 206 By default the circuit breaker of the train closes as soon as power is available on the pantograph In real life the circuit breaker does not close instantly
103. d by a train However because of the logic as described above if set for a station which has both terminal platforms as well as through platforms trains with paths continuing through those platforms will have the normal stop positions 11 4 7 6 Dispose Commands Dispose commands can be set in the dispose row to define what is to be done with the train after it has terminated See special notes below on the behaviour of the player train when it is formed out of another train by a dispose command or when the player train itself has a dispose command forms Syntax forms lt train gt runround lt path gt rrime time setstop forms defines which new train is to be formed out of this train when the train terminates The consist of the new train is formed out of the consist of the terminating train and any consist definition for the new train is ignored The new train will be static until the time as defined in start row for that train This means that the new train will not try to clear its path signals etc and will not move even if it is not in a station If the incoming train is running late and its arrival time is later as the start time of the new train the start of the new train is also delayed but the new train will immediately become active as soon as it is formed For locomotive hauled trains it can be defined that the engine s must run round the train in order for the train to move in the opposite direction The
104. d the train is due to be held a special check is performed to ensure the rear of the train is not in the path of the referenced train or if it is the referenced train has already cleared that position Otherwise a deadlock would result with the referenced train not being able to pass the train which is waiting for it Command value referenced train this is compulsory Command qualifiers maxdelay n n is the maximum delay in minutes of the referenced train for which the wait is still valid This delay is compensated by any delay of the train which is to wait e g if maxdelay is 5 minutes the referenced train has a delay of 8 minutes but this train itself has a delay of 4 minutes the compensated delay is 4 minutes and thus the wait is still valid This parameter is optional if not set a maxdelay of 0 minutes is set as default owndelay n n is delay in minutes the owndelay qualifier command makes the command valid only if the train in question is delayed by at least the total minutes as set for the owndelay qualifier This can be used to hold a late running train such that is does not cause additional delays to other trains in particular on single track sections waitany Syntax waitany lt path gt both This command will set a wait for any train which is on the path section as defined If the qualifier both is set the wait will be applied for any train regardless of its direction otherwise the wait is set only
105. d train for which the wait is still valid This delay is compensated for any delay of the train which is to wait e g if maxdelay is 5 minutes the referenced train has a delay of 8 minutes but this train itself has a delay of 4 minutes the compensated delay is 4 minutes and so the wait is still valid This parameter is optional if not set a maxdelay of 0 minutes is set as default notstarted the wait will also be applied if the referenced train has not yet started Page 160 of 206 owndelay n n is delay in minutes the owndelay qualifier command makes the command valid only if the train in question is delayed by at least the total minutes as set for the owndelay qualifier This can be used to hold a late running train such that is does not cause additional delays to other trains in particular on single track sections follow Syntax follow lt train gt maxdelay n owndelay n This command is very similar to the wait command but in this case it is applied to each common section of both trains beyond a part of the route which was not common The train is controlled such that at each section where the paths of the trains re join after a section which was not common the train will only proceed if the referenced train has passed that position The command therefore works as a wait which is repeated for each such section The command can only be set for trains routed in the same direction When a wait location is found an
106. d volume scroll button allows adjustment of the volume of OR sound Page 17 of 206 6 3 Video Options x General Audio Video simulation Keyboard Data logger Evaluation Content Updater Experimental IV Dynamic shadows IV Fast full screen alt tab IV Glass onin game windows IV Model instancing Overhead wire J Vertical sync fo cab 2D stretch a 2000 Viewing distance m J Distant mountains 10 2 Viewing distance km 40 Viewing vertical FOV 40 vertical FOV is the same as 53 horizontal FOV on 4 3 10 World object density 71 horizontal FOV on 16 9 1280x1024 Window size Ambient daylightbrightness 6 3 1 Dynamic shadows With this option it is possible to enable or disable the display of dynamic shadows Disabling can be helpful if low frame rates are experienced 6 3 2 Fast full screen alt tab When this option is selected and OR is running full screen pressing Alt Tab leaves OR full screen and running and allows the Dispatcher Window to be shown in front of it If this option is not selected OR is minimized The Dispatcher Window option must also be selected and the Dispatcher Window started with Ctrl 9 to display the Dispatcher Window Each successive press of Alt Tab will toggle between the Dispatcher window and the OR window 6 3 3 Glass on in game windows When this option is checked the in game windows are displayed in a semitransparent mode 6 3 4 Model insta
107. diate angle cocks to permit the air pressure to gradually approach the same pressure in the entire hose This models the operations performed by the train crew The HUD display changes to show the new condition of the brake hose connections and angle cocks BRAKE INFORMATION Main reservoir 134 psi Car Type BrkCyl AuxRes ErgRes MRPipe RetValve TripleValve Handbrk Conn AnglCock BleedOff 0 0 1P 35 psi 84 psi 84 psi Emergency T A B A B 0 1 1P 35 psi 84 psi 84 psi Emergency 32884 0 1P 0 psi 63 psi 63 psi Release 0 A B 32884 1 1P 0 psi 63 psi 63 psi Release 0 32884 2 1P 0 psi 63 psi 63 psi Release 0 A B A B All of the hoses are now connected only the angle cocks on the lead locomotive and the last car are closed as indicated by the The rest of the cocks are open and the air hoses are joined together all I to connect to the air supply on the lead locomotive Upon connection of the hoses of the new cars recharging of the train brake line commences Open Rails uses a default charging rate of about 1 minute per every 12 cars The HUD display may report that the consist is in Emergency state this is because the air pressure dropped when the empty car brake systems were connected Ultimately the brake pressures reach their stable values Page 99 of 206 BRAKE INFORMATION Main reservoir 140 psi Car Type BrkCyl BrkPipe AuxRes ErgRes MRPipe RetValve TripleValve Handbrk Conn Ang
108. e Timetable is selected in the menu Then the desired timetable file must be selected in the Timetable set display After selecting the required timetable a list of all trains contained in that timetable is displayed and the required train can be selected Season and weather can also be selected these are not preset within the timetable definition 11 3 Timetable Definition 11 3 1 General A timetable consists of a list of trains and per train the required timing of these trains The timing can be limited to just the start time or it can include intermediate times as well At present intermediate timings are limited to platform locations as created using the MSTS Route Editor Each column in the spreadsheet contains data for a train and each row represents a location A cell at the intersection of a train and location contains the timing data for that particular train at that location Special rows and columns can be defined for general information or control commands The first row for each column contains the train definition The first column for each row contains the location definition The cell at the intersection of the first row and first column must be empty This paragraph only lists the main outline full detailed description will follow in the next paragraphs 11 3 2 Column definitions A column is defined by the contents of the first row Default the first row defines the train name Special column
109. e and any Saves of the same age or older will be of no further value and will be marked as invalid automatically e g the 3 entry in the list The button in the bottom left corner of the menu deletes all the invalid Saves for all activities in Open Rails 7 14 Save and Replay As well as resuming from a Save you can also replay it just like a video All the adjustments you made to the controls e g opening the throttle are repeated at the right moment to re create the activity As well as train controls changes to the cameras are also repeated Just like a black box flight recorder Open Rails is permanently in recording mode so you can save a recording at any time just by pressing F2 Save Normally you would choose the replay option by Menu gt Resume gt Replay from start Page 57 of 206 A second option Menu gt Resume gt Replay from previous save lets you play back a shortened recording It resumes from the most recent Save it can find and replays from that point onwards You might use it to play back a 5 minute segment which starts an hour into an activity A warning is given when the replay starts and a replay countdown appears in the F5 Head Up Display Warning a Sd 08 35 00 Replay started en ng at 08 35 after 00 00 11 Countdown Version Time Replay Speed Acceleration Direction Throttle Train brake Boiler pressure Steam generation Steam us 08 35 02 00 00 09 0 0mph 0 000 m s s
110. e four arrow keys Successive presses of the 5 key will move the view to successive views if they exist within the active train Note that the active train may be an Al train selected by Ctrl 9 e Key 6 is the brakeman s view the camera is assumed to be at either end of the train selected by AlttHome and Alt End Rotation is controlled by the arrow keys or mouse with right button depressed There is no brakeman s view for a single locomotive e Key 8 is the free camera view the camera starts from the current Key 2 or Key 3 view position and moves forward PageUp key or back PageDown key along the view direction The direction is controlled by the arrow keys or the mouse with right button depressed The speed of motion is controlled by the Shift increase or Ctrl decrease Page 52 of 206 keys Open Rails saves the position of previous Key 8 views and can recall them by repeatedly pressing Shift 8 e Ctrl 9 is an ORTS feature it controls the target train for the Key 2 3 4 5 and 6 views during activities or timetable operations If there is more than one active train or there are consists declared in the activity for pickup pressing this key combination will set the view to display each train or consist in turn To return to the player train press the 9 key There may be a delay for each change of view as Open Rails calculates the new image The cab view and data values in the F4 window always remain with the Player trai
111. e is set to the lower head Route selection is through dummy DISTANCE type route selection signals Signal definition SignalType SL_J_40_ LAC SignalFnType NORMAL SignalLightTex bltex SigFlashDuration 0 5 0 5 SignalLights 8 SignalLight 0 Red Light Position 0 6 3 0 11 Radius 0 125 SignalLight 1 Amber Light Position 06 3 0 11 Radius 0 125 SignalLight 2 Green Light Position 0 6 3 0 11 Radius 0 125 SignalLight 3 Red Light Position 0 4 5 0 11 Radius 0 125 SignalLight 4 Amber Light Position 0 4 5 0 11 Radius 0 125 SignalLight 5 Green Light Position 0 4 5 0 11 Radius 0 125 SignalLight 6 Amber Light Position 0 2 7 0 11 Radius 0 125 SignalLight 7 White Light Position 0 2 7 0 11 Radius 0 125 SignalDrawStates 8 SignalDrawState 0 Red DrawLights 1 DrawLight 0 SignalDrawState 1 TopYellow DrawLights 1 DrawLight 1 SignalDrawState 2 TopGreen DrawLights 1 Page 142 of 206 DrawLight 2 SignalDrawState 3 TopYellowMidGreen DrawLights 2 DrawLight 1 DrawLight 5 SignalDrawState 4 MidYellow DrawLights 2 DrawLight 0 DrawLight 4 SignalDrawState 5 MidGreen DrawLights 2 DrawLight 0 DrawLight 5 SignalDrawState 6 LowYellow DrawLights 3
112. e of the actual tractive force to approximate the heat in the motors Tractive force is allowed to be at the maximum per the ENG file if the average heat calculation is near zero If the average is near the continuous rating than the tractive force is de rated to the continuous rating There is a parameter called ContinuousForceTimeFactor that roughly controls the time over which the tractive force is averaged The default is 1 800 seconds 8 8 Curve Resistance Theory 8 8 1 Introduction When a train travels around a curve due to the track resisting the direction of travel i e the train wants to continue in a straight line it experiences increased resistance as it is pushed around the curve Over the years there has been much discussion about how to accurately calculate curve friction The calculation methodology presented and used in OR is meant to be representative of the impacts that curve friction will have on rolling stock performance Page 102 of 206 8 8 2 Factors Impacting Curve Friction A number of factors impact upon the value of resistance that the curve presents to the trains movement as follows e Curve radius the smaller the curve radius the higher the higher the resistance to the train e Rolling Stock Rigid Wheelbase the longer the rigid wheelbase of the vehicle the higher the resistance to the train Modern bogie stock tends to have shorter rigid wheelbase values and is not as bad as the older style 4 whee
113. e under the influence of centrifugal force Centrifugal force is commonly defined as e The apparent force that is felt by an object moving in a curved path that acts outwardly away from the centre of rotation e An outward force on a body rotating about an axis assumed equal and opposite to the centripetal force and postulated to account for the phenomena seen by an observer in the rotating body For this article the use of the phrase centrifugal force shall be understood to be an apparent force as defined above 8 10 4 Effect of Centrifugal Force When rolling stock rounds a curve if the rails of the track are at the same elevation i e the two tracks are at the same level the combination of centrifugal force Fc and the weight of the rolling stock W will produce a resulting force Fr that does not coincide with the centre line of track thus producing a downward force on the outside rail of the curve that is greater than the downward force on the inside rail Refer to Figure 1 The greater the velocity and the smaller the radius of the curve some railways have curve radius as low as 100m the farther the resulting force Fr will move away from the centre line of track Equilibrium velocity was the velocity at which a train could negotiate a curve with the rolling stock weight equally distributed across all the wheels If the position of the resulting force Fr approaches the outside rail then the rolling stock is at risk of falling off
114. ecting brakes and manipulating the brake hose connections can be found here and here 7 6 4 Doors and Mirror Commands Note that the standard keys in OR for these commands are different from those of MSTS 7 6 5 Wheelslip Reset With the keys Ctrl X you get an immediate wheelslip reset 7 6 6 Toggle Advanced Adhesion Advanced adhesion can be enabled or disabled by pressing Ctrl Alt X 7 6 7 Request to Clear Signal When the player train has a red signal in front or behind it it is sometimes necessary to ask for authorization to pass the signal This can be done by pressing Tab for a signal in front and Shift Tab for a signal behind You will receive a voice message reporting if you received authorization or not On the Track monitor window the signal colours will change from red to Page 49 of 206 red white if permission is granted 7 6 8 Change Cab Ctrl E All locomotives and some passenger cars have a forward facing cab which is configured through an entry in the ENG file For example the MSTS Dash9 file TRAINSET DASH9 dash9 eng contains the entry CabView dash9 cvf Where a vehicle has a cab at both ends the ENG file may also contain an entry for a reversed cab CabView dash9 _rv cvf OR will recognise the suffix _rv as a rear facing cab and make it available as follows When double heading banking or driving multiple passenger units DMUs and EMUs your train will contain more than one cab and OR allows you to move
115. elapsed before the alarm is triggered or the penalty is triggered Time MonitoringDeviceMonitorTimeLimit 5s MonitoringDevice AlarmTimeLimit x Period for which the alarm sounds prior to the penalty being applied Time MonitoringDeviceAlarmTimeLimit 5s MonitoringDevice PenaltyTimeLimit x Period in seconds before the penalty can be reset once triggered Time MonitoringDevicePenaltyTimeLimit 60s MonitoringDevice CriticalLevel x Speed at which monitor triggers Speed MonitoringDeviceCriticalLevel 200kph MonitoringDevice ResetLevel x Speed at which monitor resets Speed MonitoringDeviceResetLevel 5kph MonitoringDevice AppliesFullBrake x Sets whether full braking will be applied Boolean Oor1 MonitoringDeviceAppliesFullBrake 0 MonitoringDevice AppliesEmergencyBrake x Sets whether emergency braking will be applied Boolean 0or 1 MonitoringDeviceAppliesEmergencyBrake 1 MonitoringDevice AppliesCutsPower x Sets whether the power will be cut to the locomotive Boolean 0or 1 MonitoringDeviceAppliesCutsPower 1 Page 119 of 206 MonitoringDevice Sets whether the engine will be Sisk Boolean 0 or 1 MonitoringDeviceAppliesShutsDownEngine 0 AppliesShutsDownEngine x shut down g pp RELH MonitoringDevice Set whether the monitor resets TPN Boolean 0 or 1 MonitoringDeviceR
116. emains of the coupling train after coupling decoupling is only the locomotive If the coupled train is an Al train obviously it must be stopped on a waiting point when it has to be coupled by the coupling train 10 13 2 2 Extended Al Function 5 Al train uncouples any number of its cars To uncouple a predefined number of cars from an Al train a special waiting point WP has to be inserted The format of this waiting point in decimal notation is usually 4NNSS where NN is the number of cars in front of the Al train that are NOT uncoupled locomotive included and SS is the duration of the waiting point in seconds The 5NNSS format is also accepted In this case the remaining Al train is formed by NN cars locomotives included starting from the rear of the train Of course there must be at least one locomotive in this part of the train It must be noted that the front of the Al train is the part which is at the front of the train in the actual forward direction So if the consist has been created with the locomotive at first place the locomotive will be at the front up to the first reverse point At that point front will become the last car and so on The following possibilities arise e The Al train proceeds and stops with the locomotive at the front and wants to uncouple and proceed in the same direction a WP with the above format is inserted where the Al train will stop counting cars starting from the locomotive Page 13
117. en player and non player trains that are frequent in MSTS have been practically eliminated 3 5 3 Focus on Realistic Content The physics underlying adhesion traction engine components and their performance are based on a world class simulation model that takes into account all of the major components of diesel electric and steam engines This includes elements like friction resistance in curves and tunnels a very sophisticated steam locomotive physics modeling many optional curves to define precise locomotive physics coupler forces and much more It is foreseen that beyond release 1 0 Open Rails will approach the level of physics realism only available in professional simulators Existing models that do not have the upgraded Open Rails capabilities continue of course to perform well In the package of this version also ancillary programs tools are delivered including e Track Viewer a complete track viewer and path editor e Activity Editor a draft new activity editor to move beyond MSTS e Timetable Editor a tool for preparing Timetables Page 5 of 206 4 MSTS File Format Compatibility Open Rails software supports the MSTS file formats detailed below The software uses a file parser to read the MSTS file information for use by the Open Rails software Testing of the parser software indicates that it will locate many errors or malformation in these files that are not highlighted by the MSTS train sim software or by other u
118. en the compressor is on default 4 engine enginebrakereleaserate Rate of engine brake pressure decrease in PSI per second default 12 5 engine enginebrakeapplicationrate Rate of engine brake pressure increase in PSI per second default 12 5 engine brakepipechargingrate Rate of lead engine brake pipe pressure increase in PSI per second default 21 engine brakeservicetimefactor Time in seconds for lead engine brake pipe pressure to drop to about 1 3 for service application default 1 009 engine brakeemergencytimefactor Time in seconds for lead engine brake pipe pressure to drop to about 1 3 in emergency default 1 Page 101 of 206 engine brakepipetimefactor Time in seconds for a difference in pipe pressure between adjacent cars to equalize to about 1 3 default 003 8 6 4 Brake Retainers The retainers of a car will only be available if either the General Option Retainer valve on all cars is checked or the car s wag file contains a retainer valve declaration To declare a retainer the line BrakeEquipmentType y in the wag file must include either the item Retainer_4 Position or the item Retainer_3 Position A 4 position retainer includes four states exhaust low pressure 10 psi high pressure 20 psi and slow direct gradual drop to zero A 3 position retainer does not include the low pressure position The use and display of the retainers is described in Extended HUD for Brake
119. er of the ENG file Wagon OR_adhesion Curtius_Kniffler ABCD where A B C are coefficients of Curtius Kniffler Kother or similar formula By default Curtius Kniffler is used f A Fnmax Weather _ coeff M 981 C B Speed kmph j This means that the maximum is related to the speed of the train or to the weather conditions The D parameter is used in an advanced adhesion model and should always be 0 7 There are some additional parameters in the Force Information HUD view The axle wheel is driven by the Axle drive force and braked by the Axle brake force The Axle out force is the output force of the adhesion model used to pull the train To compute the model correctly the FPS rate needs to be divided by a Solver dividing value in a range from 1 to 50 By default the Runge Kutta4 solver is used to obtain the best results When the Solver dividing value is higher than 40 in order to reduce CPU load the Euler modified solver is used instead In some cases when the CPU load is high the time step for the computation may become very high and the simulation may start to oscillate the Wheel slip rate of change in the brackets becomes very high There is a stability correction feature that modifies the dynamics of the adhesion characteristics Higher instability can cause a huge wheel slip You can use the DebugResetWheelSlip Ctrl X keys by default command to
120. er ton US per degree of curvature for standard gauge tracks At very slow speeds say 1 or 2 mph the curve resistance is closer to 1 0 Ib or 0 05 up grade per ton per degree of curve Page 106 of 206 8 10 Super Elevation Curve Speed Limit Theory 8 10 1 Introduction When a train rounds a curve it tends to travel in a straight direction and the track must resist this movement and force the train to move around the curve The opposing movement of the train and the track result in a number of different forces being in play 8 10 2 19th amp 20th Century Vs Modern Day Railway Design In the early days of railway construction financial considerations were a big factor in route design and selection Given that the speed of competing transport such as horses and water transport was not very great soeed was not seen as a major factor in the design process However as railway transportation became a more vital need for society the need to increase the speed of trains became more and more important This led to many improvements in railway practices and engineering A number of factors such as the design of the rolling stock as well as the track design ultimately influence the maximum speed of a train Today s high speed railway routes are specifically designed for the speeds expected of the rolling stock 8 10 3 Centrifugal Force Railway locomotives wagons and carriages hereafter referred to as rolling stock when rounding a curve com
121. erate faster according to the set value Most of the time the train behaviour is controlled through the physics But especially the dec factor does have an important side effect The deceleration value is also used to calculate the expected required braking distance Setting a higher deceleration will reduce the required braking distance allowing the train to continue to run at maximum allowed speed for longer distances This can have a significant effect on the timing Take care though not to set the value too high the calculated braking distance must of course be sufficient to allow for proper braking otherwise the train cannot stop in time resulting in SPADs etc A typical value for modern stock for the dec command is 2 or 3 Dispose row The dispose row defines what happens to an Al train when it has reached the end of its run i e it has reached the end of the defined path The information in the dispose row can detail if the train is to be formed into another train and if so how and where For details see the commands as described further down This row is optional and if included the use per train is also optional If the row is not included or the field is not set for a particular train the train is removed from the activity after it has terminated The dispose row presently does not affect the end of the run for the player train Page 157 of 206 11 4 7 Control commands 11 4 7 1 General Control commands can be
122. erelevation will be applied based upon the above classifications Track gauge will default to the standard value of 4 8 5 1435mm Unbalancedsuperelevation Cant Deficiency will be determined from the value entered by the user or will default to the following values e Conventional Freight 0 Omm e Conventional Passenger 3 75mm e Engines amp tenders 6 150mm Tilting trains require the addition of the relevant unbalancedsuperelevation information to the relevant rolling stock files Page 112 of 206 8 12 Tunnel Friction Theory 8 12 1 Introduction When a train travels through a tunnel it experiences increased resistance to the forward movement Over the years there has been much discussion about how to accurately calculate tunnel resistance The calculation methodology presented and used in OR is meant to provide an indicative representation of the impacts that tunnel resistance will have on rolling stock performance 8 12 2 Factors Impacting Tunnel Friction In general the train aerodynamics are related to aerodynamic drag pressure variations inside the train train induced flows cross wind effects ground effects pressure waves inside the tunnel impulse waves at the exit of tunnel noise and vibration etc The aerodynamic drag is dependent on the cross sectional area of the train body train length the shape of train fore and after bodies the surface roughness of train body and geographical
123. ers You can also request a private club so that only your friends know of your server The forum is free to join and post http www tsimserver com forums Page 171 of 206 12 6 Starting a Multi Player Session 12 6 1 Starting as Server Al Open Rails 2646 _ camz l Installation profile 2 2 l Default X Add Edit Remove Tools e Route Route Catania Messina VE Catania Messina gt Linea costiera della Sicilia nord orientale Mode Lunghezza della linea 96km Activi Timetable a ay elettrificata nel 1954 Activity Locomotive Dash 9 v Explore Route Y The GE 9 44CW commonly called the Dash 9 a modern diesel electric locomotive most effective pulling loads over long stretches at moderate speeds Locomotive Any Locomotive Locomotive type Diesel Electric Consist F 1 Dash 8 Cement A Starting at a X Heading to G gt Time 12 00 v Duration Season Summer Difficulty Weather Clear Bd Singleplayer Multiplayer Options Start User name Client 6 o p en Logging Host port 74 50 121 15 20460 rails ae Resume 7 Windowed Replay Server Client On the OR main menu you select in a standard way as described in the Getting started chapter on the left side Route activity or explore route and in case of explore route you select as usual locomotive consist path t
124. es are driven by electric traction motors supplied by a diesel generator set The gen set is the only power source available thus the diesel engine power also supplies auxiliaries and other loads Therefore the output power will always be lower than the diesel engine rated power In ORTS the diesel electric locomotive can use ORTSTractionCharacteristics or tables of ORTSMaxTractiveForceCurves to provide a better approximation to real world performance If a table is not used the tractive force is limited by MaxForce MaxPower and MaxVelocity The throttle setting is passed to the ThrottteRPMTab where the RPM demand is selected The output force increases with the Throttle setting but the power follows maximal output power available RPM dependent 8 2 3 Diesel Hydraulic Locomotives Diesel hydraulic locomotives are not implemented in ORTS However by using either ORTSTractionCharacteristics or ORTSMaxTractiveForceCurves tables the desired performance can be achieved when no gearbox is in use and the DieselEngineType is electric 8 2 4 Diesel Mechanical Locomotives ORTS features a mechanical gearbox feature that mimics MSTS behavior including automatic or manual shifting Some features not well described in MSTS are not yet implemented such as GearBoxBackLoadForce GearBoxCoastingForce and GearBoxEngineBraking Output performance is very different compared with MSTS The output force is computed using the diesel engine torque chara
125. es the amount of clouds e fog increase decrease e precipitation increase decrease This demonstrates Open Rails software s foundation for dynamic weather effects in the game Moreover pressing Alt P can change the weather from clear to raining to snowing and back to clear 7 10 4 Seasons In activity mode Open Rails software determines the season and its related alternative textures to display from the Season parameter in the MSTS Activity file In other modes the player can select the season in the start menu 7 11 Screenshot Print Screen Press the keyboard Print Screen key to capture an image of the game window This will be saved by default in the file C Users lt username gt Pictures Open Rails Open Rails lt date and time gt png Although the image is taken immediately there may be a short pause before the confirmation appears If you hold down the Print Screen key then OR takes multiple images as fast as it can The key to capture the current window Alt Print Screen is not intercepted by OR 7 12 Suspending or Exiting the Game You can suspend or exit the game by pressing the ESC key at any time The window shown at the right will appear roe Pause Menu ij Quit Open Rails Alt F4 The window is self explanatory f Save your game F2 If you are running OR in a Window you can also 7 Continue playing Escape exit OR by simply clicking on the x on the right top S ARNS J of the OR window Ree 1 Window
126. es whether the wag file uses the FCalc utility or other friction data If FCalc was used to determine the Friction variables within the wag file Open Rails compares that data to the Open Rails Davis equations to identify the closest match with the Open Rails Davis equation If no FCalc Friction parameters are used in the wag file Open Rails ignores those values substituting its actual Davis equation values for the train car A basic simplified Davis formula is used in the following form res _ force ORTSDavis _ A speedMpS ORTSDavis _ B ORTSDavis _ C speedMpS Where res_force is the friction force of the car The rolling resistance can be defined either by FCalc or ORTSDavis_A _B and _C components If one of the ORTSDavis components is zero FCalc is used Therefore e g if the data doesn t contain the B part of the Davis formula a very small number should be used instead of zero When a car is pulled from steady state an additional force is needed due to higher bearing forces The situation is simplified by using a different calculation at low speed 5 mph and lower Empirical static friction forces are used for different classes of mass under 10 tons 10 to 100 tons and above 100 tons In addition if weather conditions are poor snowing is set the static friction is increased When running on a curve and if the Curve dependent resistance option is enabled additional resistance is calculated based on the curve rad
127. es which are collectively grouped together to form the train resistance The main resistive forces are as follows i Journal or Bearing resistance or friction ii Air resistance The above two values of resistance are modelled through the Davis formulas and only apply on straight level track iii Gradient resistance trains travelling up hills will experience greater resistive forces then those operating on level track iv Curve resistance applies when the train is traveling around a curve and will be impacted by the curve radius speed and fixed wheel base of the rolling stock v Tunnel resistance applies when a train is travelling through a tunnel Tractive Effort Tractive Effort is created by the action of the steam against the pistons which through the media of rods crossheads etc cause the wheels to revolve and the engine to advance Tractive Effort is a function of mean effective pressure of the steam cylinder and is expressed by following formula for a simple locomotive Geared and compound locomotives will have slightly different formula TE Cyl 2 x M E P x d2 x s D Where Cyl number of cylinders TE Tractive Effort lbf M E P mean effective pressure of cylinder psi D diameter of cylinder in S stroke of cylinder piston in D diameter of drive wheels in Page 81 of 206 Theoretical Tractive Effort To allow the comparison of different locomotives as well as determi
128. esetOnZeroSpeed 1 ResetOnZeroSpeed x when the speed is null 8 peed 1 MonitoringDevice Sets whether the monitor resets ar j Boolean 0 or 1 MonitoringDeviceResetOnResetButton 0 ResetOnResetButton x when the reset button is pushed g tuy Specific parameters of the Overspeed Monitor MonitoringDeviceAlarmTime Period for which the alarm sounds Time MunitoringbevivedlanummenetareQverspeelt 2s BeforeOverSpeed x prior to the penalty being applied MonitoringDeviceTrigger eee M D T OnTrackO dM 5kph OnTrackOverspeedMargin x Allowed overspeed Speed onitoringDeviceTriggerOnTrackOverspeedMargin 5kph ed ee Maximum allowed speed Speed MonitoringDeviceTriggerOnTrackOverspeed 200kph Page 120 of 206 9 Further Open Rails Rolling Stock Features 9 1 Train Engine Lights OR supports the whole set of lights accepted by MSTS 9 2 Tilting trains OR supports tilting trains A train tilts when its con file name contains the tilted string e g ETR460_tilted con Page 121 of 206 10 Open Rails Train Operation Note that this document details behaviour while in single player mode only For multi player mode different rules may apply 10 1 Open Rails Activities OR has the aim of running in a compatible way most of the activities written for MSTS Also activities specifically for OR can be created using the additional functions OR features like Extended Al Shunting Discussions of
129. et to be developed further To distinguish between these items the following styles are used in the description of timetable mode Items shown in black italics are available but only in a provisional implementation or in a limited context Further development of these items is still required Important aspects where the use of specific OR or MSTS items for timetables differs significantly from its use in an activity are shown in bold Apart from the items indicated as above it should be realised that as work continues all items are still subject to change 11 2 General 11 2 1 Data definition The timetable data is defined in a Spreadsheet and saved as a csv file character separated file in Unicode format As the separation character either comma or semi colon must be used Do not select space or tab as the separation character As or are possible separation character these symbols must not be used anywhere within the actual data Enclosure of text by quotes either single or double has no effect Also the character should not be used in train names since it is the prefix for reserved words in the Timetable 11 2 2 File structure The saved csv files must be renamed with extension timetable_or The timetable files must be placed in a subdirectory named OpenRails created in the route s Activities directory Page 151 of 206 11 2 3 File and train selection When starting a timetable run the mod
130. eturn to a correct situation e g get back to in front of the signal at danger authorised path etc Once a normal situation has been restored the player can switch back to Auto Mode If the action led the player train onto a section of track already cleared for another train that train is also stopped 10 3 4 Explorer Mode When OR is started in Explorer Mode instead of in an activity the train is set to Explorer Mode The player has full control over all switches Signals will clear as normal but signals can be cleared over routes which are not normally available using the Tab or Shift Tab commands Page 126 of 206 10 4 Track Access Rules All trains clear their own path When in Auto Signal mode part of that function is transferred to the signals In Auto Node mode trains will clear their path up to 5 000 metres or the distance covered in 2 mins at the maximum allowed speed whichever is greater In Auto Signal mode the number of signals cleared ahead of the train is taken from the value of the SignalNumClearAhead parameter as defined in the sigcfg dat file for the first signal ahead of the train In Manual mode the distance cleared is 3 000 metres maximum or as limited by signals Distances in Explorer Mode are similar to those in Auto Mode If a train is stopped at a signal it can claim the track ahead ensuring it will get priority as the next train onto that section but to avoid needless blocking of other possible routes no
131. eturn to auto mode while the train is moving Details are described in the paragraph of the link shown above Page 40 of 206 Track Monitor display in Auto Signal mode Speed Aira lt j Actual speed Projected 60 9 mph C Predicted speed Limit A ail Control mode PACE LE Max allowed speed Dist Speed Aspect Eye indicating Cab direction s q Advance signal area EA Fixed distance indicators gt A Signal aspect Speed limit Distance of first object Own train symbol ws Backward state line Arrow indicating reverser direction Backward information area p Track Monitor display in Manual mode Explorer mode Track Monitor Speed yan i Actual speed Projected Aus Predicted speed Limit 71 mphit pe WED Dist Speed Aspect Max allowed speed Control mode lt q Advance signal area Eye indicating Cab direction Fixed distance indicators gt 1 01mi Forward information area Distance of first object __ a H Arrow indicating reverser direction Own train symbol Train ahead indication Backward information area Advance signal area j Page 41 of 206 Track Monitor Displayed Symbols common for Auto and Manual mode unless indicated otherwise We End of authority other than signal i Train ahead Reversal point Auto mode only l Station symbol Auto mode only No
132. ext switch or signal or the end of track The diverging point is determined this is the switch node where the reverse route diverges from the incoming route From this point a search is made for the last signal facing the reverse direction which is located such that the full train will fit in between the signal and the end of the path If there is such a signal this will become the diverging point In order for a train to be able to reverse the rear of the train must be clear of this diverging point Reversal for Al trains occurs as in MSTS that is when the Al train s first car reaches the reversal point If at that point the rear of the train has not yet cleared the diverging point the reversal takes place later when the diverging point is cleared For player trains the reversal can take place starting from 50 meters before the reversal point provided the diverging point is cleared As in MSTS double reversal points can be used to set a signal at red after such reversal points However waiting points are recommended for this as explained in the next paragraph 10 7 Waiting Points 10 7 1 General Waiting points WP set in a path used by an Al train are regularly respected by the train and executed when the head of the train reaches the WP Differently from MSTS waiting points do not influence the length of the reserved path except when the WP is followed by a signal in the same track section no nodes that is
133. f they fail to restore Undelete 7 Pause replay at end 1 of 3 saves for this route are no longer valid Pause seconds before end 30 3 Import Delete all invalid saves in Open Rails export Replay from previous save Replay from start 7 13 1 Saves from Previous OR Versions You should be aware that these Saves will only be useful in the short term as each new version of Open Rails will mark Saves from previous versions as potentially invalid e g the second entry in the list below Q Saved Games Settle amp Carlisle Line Short Passenger Run Time Tile 24 04 2014 20 04 00 00 04 0 0 6112 7 15057 6 24 04 2014 19 49 00 00 04 0 0 6112 7 150576 I 24 04 2014 19 27 00 00 06 0 0 6112 7 15057 6 Distance Page 56 of 206 When you resume from such a Save there will be a warning prompt Open Rails This save was made by an older version of Open Rails and may be incompatible with the current version X 2002 Please do not report any problems that may result Continue at your own risk The Save will be tested during the loading process If a problem is detected then you will be notified Veo Save file is incompatible with current revision of Open Rails so activity NG cannot continue Save file C Users Chris AppData Roaming Open Rails shrtpass 2014 04 24 19 49 42 save Save file revision 0 Open Rails revision 2002 This Sav
134. file The function TRAINHASCALLON will return true if the section beyond the signal up to the next signal includes a platform where the train is booked to stop and the train has the callon flag set This function will also return true if there is no platform in the section beyond the signal The function TRAINHASCALLON_RESTRICTED returns true in similar conditions except that it always returns false if there is no platform in the section beyond the signal Both functions must be used in combination with BLOCK_STATE BLOCK_OCCUPIED 11 5 6 3 Wait Commands and Passing Paths From the location where the wait or follow is defined a search is made for the first common section for both trains following on from a section where the paths are not common However on single track routes with passing loops where passing paths are defined for both trains the main path of the trains will run over the same tracks in the passing loops and therefore no not common sections will be found As a result the waiting point cannot find a location for the train to wait and therefore the procedure will not work If waiting points are used on single track lines the trains must have their paths running over different tracks through the passing loop in order for the waiting points to work properly It is a matter of choice by the timetable creator to either pre set passing locations using the wait Page 168 of 206 comma
135. for Al trains which can depend on other trains e g wait a limited time 21 3 Open Rails Route Editor Now that the project is moving beyond MSTS we are at last able to specify the Open Rails Route Editor This will free us from the constraints and fragility of the MSTS tool The editor will of course use GIS data edit the terrain and allow objects to be placed and moved In particular it will be possible to lay both track pieces and procedural track The procedural track may bend up and down to follow the contours of the land and twist to build banked curves and spirals There will be support for transition curves and it will be easy to lay a new track parallel to an existing one The new Route Editor will not be backwards compatible with MSTS routes It will work with Open Rails routes and there will be a utility to create an Open Rails route from an MSTS route No timetable is available for this work Page 202 of 206 22 Acknowledgements Open Rails is the result of true teamwork performed by a group of passionate people We owe a massive thanks to all of them and therefore wish to mention them below and excuse ourselves if someone has been forgotten Adam Kane Adam Miles Alex Bloom Andre Ming Anthony Brailsford Barrie Scott Barry Munro Bill Currey Bill Prieger Bob Boudoin Bruno Sanches Carlo Santucci Chris Jakeman Chris Van Wagoner Craig Benner Daniel Leach David B Clarke Dennis Towlson Derek Morton Doug Kightley
136. for trains heading in the same direction as the definition of the path Page 161 of 206 The path defined in the waitany command must have a common section with the path of the train itself otherwise no waiting position can be found This command can be set to control trains to wait beyond the normal signal or deadlock rules For instance it can be used to perform a check for a train which is to leave a siding or yard checking the line the train is to join for any trains approaching on that line for a distance further back than signalling would normally clear so as to ensure it does not get into the path of any train approaching on that line With the both qualifier set it can be used at the terminating end of single track lines to ensure a train does not enter that section beyond the last passing loop if there is another train already in that section as this could lead to irrecoverable deadlocks no waitsignal Syntax waitsignal nowaitsignal Normally if a train is stopped at a station and the next signal ahead is still at danger the train will not depart But there are situations where this should be overruled Some stations are free line stations that is they are not controlled by signals usually small halts without any switches The next signal probably is a normal block signal and may be some distance from the station In that situation the train does not have to wait for that signal to clear in order
137. function of control setting and speed can be defined in a DynamicBrakeForceCurves table that works like the MaxTractiveForceCurves table see here If there is no DynamicBrakeForceCurves defined in the ENG file than one is created based on the MSTS parameter values 8 6 3 Native Open Rails Braking Parameters Open Rails has implemented additional specific braking parameters to deliver realism in braking performance in the simulation Following are a list of specific OR parameters and their default values The default values are used in place of MSTS braking parameters however two MSTS parameters are used for the release state MaxAuxilaryChargingRate and EmergencyResChargingRate wagon brakepipevolume Volume of car s brake pipe in cubic feet default 5 This is dependent on the train length calculated from the ENG to the last car in the train This aggregate factor is used to approximate the effects of train length on other factors Strictly speaking this value should depend on the car length but the Open Rails Development team doesn t believe it is worth the extra complication or CPU time that would be needed to calculate it in real time We will let the community customize this effect by adjusting the brake servicetimefactor instead but the Open Rails Development team doesn t believe this is worth the effort by the user for the added realism engine mainreschargingrate Rate of main reservoir pressure change in PSI per second wh
138. g introduced in Open Rails may be turned on and off through the Experimental tab of the Options window as described below x General Audio Video Simulation Keyboard Data logger Evaluation Content Updater Experimental Experimental features that may slow down the game use at your own risk Super clevation IV Load night textures only when needed Jo 4A a I Signal light glow 50 Minimum length m JV Extended AI train shunting 1435 Gauge mm I7 Autopilot Automatically tune settings to keep performancelevel ETCS circular speed gauge 60 i Target frame rate I Extend object maximum viewing distance to horizon I Double overhead wires V Load DDS textures in preference to ACE I Show shape warnings IV Location linked passing path processing IV Forced red at station stops MSTS environments Level of detail bias Default detail 0 Adhesion factor correction 100 c J Adhesion proportional to rain snow fog Adhesion factor random change 10 6 10 1 Super elevation If the value set for Level is greater than zero OR supports super elevation for long curved tracks The value Minimum Length determines the length of the shortest curve to have super elevation You need to choose the correct gauge for your route otherwise some tracks may not be properly shown When super elevation is selected two viewing effects occur at runtime 1 If an external camera view is selected the tracks and the
139. ggested that you add them just prior to the last parenthesis 8 13 2 OR Defaults Open Rails uses the following standard defaults unless overridden by values included in the TRK file i Tunnel Perimeter Speed track 2track lt 160km h 21 3 31m 160 lt 200km h 25 0m 34 5m 200 lt 250km h 28 0m 35 0m 250 lt 350km h 32 0m 37 5m ii Tunnel Cross Sectional Area __ Speed _ _itrack 2track lt 120km h 27 0m 45 0m lt 160km h 42 0m2 76 0m2 200km h 50 0m2 80 0m2 250km h 58 0m2 90 0m2 350km h 70 0m2 100 0m2 Page 115 of 206 8 14 OR Specific File Inclusions for MSTS eng and wag Files In the preceding paragraphs many references have been made to OR specific parameters and tables to be included in eng and wag files MSTS is in general quite tolerant if it finds unknown parameters and even blocks within eng and wag files and continues running normally However this way of operating is not encouraged by the OR team Instead a cleaner approach as described here has been implemented Within the trainset folder containing the eng and wag files to be upgraded create a subfolder named OpenRails Within this subfolder a text file named xxxx eng or xxxx wag where xxxx eng Or Xxxx wag is the name of the original file must be created For the contents of this new file there are two possibilities either the file contains all of the information included in the original file except for modified parts of course
140. gnal to signal Only in specifically defined situations can routes be cleared short of a signal as detailed below Auto Node is set when the train has not encountered any signals yet e g on unsignalled routes or at the start of the route when there is no signal along the path of the train as far as it can be cleared e g in yards where the train starts but has no clear route yet to the first signal Auto Node can also be set if the route ahead cannot be fully cleared up to the next signal and partial clearing is allowed A number of sub states are defined in Auto Node depending on the reason that clearance is Page 123 of 206 terminated In the list below A indicates a subtype which can occur if no signal has yet been encountered B indicates a subtype when a route from a signal is partially cleared The following states are possible e A route ahead is clear to the maximum distance for which the track is cleared The control mode is set to Auto Node Max Distance e A route ahead is blocked at a switch which is aligned for and occupied or reserved by another train Control mode is set to Auto Node Misaligned Switch e A B only if signal allows access to occupied track or after Tab command route ahead is occupied by a stationary train or train moving in the same direction Control mode is set to Auto Node Train Ahead e Note that for A it should not be possible that the route ahead is occupied by a train mo
141. gnals only become valid when the rear of the train has cleared the position of soeedpost or signal When a speed limit set by a signal is lower than the speed limit set by the last speedpost the speed limit is set to the lower value However when a speed limit as set by a signal is higher than the present speed limit set by the last speedpost the limit defined by the speedpost will be maintained If a lower speed limit was in force due to a limit set by another signal the allowed limit is set to that as defined by the speedpost If a soeedpost sets a limit which is higher than that set by the last signal the limit set by the signal is overruled and the allowed limit is set to that as defined by the speedpost Instead the valid speed limit is always the lower of that of the last signal and that of the last speedpost Page 129 of 206 10 10 Further Features of Al Train Control Al trains always run in Auto control mode Al trains will ignore any manual setting of switches and will reset all switches as defined in their path Al trains will stop at stations and will adhere to the booked station departure times if possible Al trains will stop at a platform such that the middle of the train is in the middle of the platform If the train is longer than the platform it means that both the front and rear of the train will extend outside the platform If the platform has a signal at the end and this signal is held at danger see above and
142. gs Of course it is up to the developers to decide if something is a real bug but in any case your reporting of it is an important step in helping the development team to improve Open Rails 19 2 Overview of Bug Types The development team uses two ways of keeping track of bugs 1 So called Maybe Bugs are reported in a simple forum post see next paragraph for links This is done in order to give developers a chance to filter out problems caused by circumstances the development team cannot control such as corrupted content 2 Decided Bugs are issues a developer has looked at and has found to be a real issue in the program code of Open Rails They are reported at our Bug Tracker at https ougs Launchpad net or registration is required 19 3 Maybe Bugs If you find an issue with Open Rails you should first file a Maybe Bug report at any of the following forums monitored by the Open Rails development team e Elvas Tower http www elvastower com Maybe it s a bug section of the Open Rails sub forum This is the forum that is most frequently checked by the OR development team e TrainSim com http www trainsim com Open Rails discussion section of the Open Rails sub forum e MJRMSTSRepaints http mirmstsrepaints proboards com more forums may be added in the future A Maybe Bug report consists of a simple post in a new topic in the forum The title of the topic should be of the form Open Rails V Bug
143. h SLPT slipped to end of track OOTR out of track MASW misaligned switch Distance distance to the authority location Signal aspect of next signal if any Distance distance to this signal Note that if signal state is STOP and it is the next authority limit there is a Page 64 of 206 difference of about 30m between authority and signal distance This is the safety margin that Al trains keep to avoid accidentally passing a signal at danger Consist the first part of the train s service name Only for the player always the PLAYER string is displayed Path the state of the train s path The figure left of the sign is the train s present subpath counter a train s path is split into subpaths when its path contains reversal points The details between and are the actual subpath Following the final can be x lt N gt this indicates that at the end of this subpath the train will move on to the subpath number N Path details The path shows all track circuit sections which build this train s path Track circuit sections are bounded by nodes signals or cross overs or end of track Each section is indicated by its type is plain train section gt is switch no distinction is made for facing or trailing switch is crossover is end of track Following each section is the section state Numbers in this state refer to the train numbers as shown at the start of each row Below lt n gt indicate
144. h can be customized or is estimated by the engine parameters 8 2 1 1 Starting the Diesel Engine To start the engine simply press the START STOP key once The direction controller must be in the neutral position otherwise a warning message pops up The engine RPM revolutions per minute will increase according to its speed curve parameters described later When the RPM reaches 90 of StartingRPM 67 of IdleRPM by default the fuel starts to flow and the exhaust emission starts as well RPM continues to increase up to StartingConfirmationRPM 110 of IdleRPM by default and the demanded RPM is set to idle The engine is now started and ready to operate 8 2 1 2 Stopping the Diesel Engine To stop the engine press the START STOP key once The direction controller must be in the neutral position otherwise a warning message pops up The fuel flow is cut off and the RPM will start to decrease according to its speed curve parameters The engine is considered as fully stopped when RPM is zero The engine can be restarted even while it is stopping RPM is not zero 8 2 1 3 Starting or Stopping helper Diesel Engines By pressing the Diesel helper START STOP key Shift Y on English keyboards the diesel engines of helper locomotives can be started or stopped Also consider disconnecting the unit from the multiple unit MU signals instead of stopping the engine see here Toggle MU connection It is also possible to oper
145. h the mouse on the desired heading Key Commands displays the actions of the keyboard keys Key Commands CO e e EOE Escape F2 Alt F4 Pause PrintScreen Alt INVIO G Shift G At G Control G Alt U Control E Alt E Game Multi Player Dispatcher Control 9 Game Multi Player Texting Control T Game Switch Manual Mode Control M Briefing displays what the activity creator has entered as information to be provided to the player about the activity le Briefing Building and Sorting Outbound Cuts Difficulty Medium Estimated time to complete 20 minutes June 10th 15 00 You need to assemble a cut of cars for westbound pickup There are two cuts in the yard on Whitefish Siding 3 and 5 and a single empty logger on Whitefish Siding 1 You need to pull the appropriate westbound cars out of the two cuts get the logger and assemble them all into a single westbound ready cut on Whitefish Siding 8 To learn more about completing Activities see Help press F1 Page 39 of 206 Timetable shows the list of the station stops if any with scheduled and actual times of arrival and departure During the activity the actual performance will be shown on the F10 Activity Monitor Work Orders if defined by the activity creator lists the coupling and uncoupling operations to be performed When an operation has been completed the string Done appears in the
146. halting of the activity by the location event and suppresses the display of the event message Also if the value of 0 is inserted in the line as in the example above the display of the event message is completely suppressed Only one sound file per event is allowed Page 150 of 206 11 Timetable Mode 11 1 Introduction The timetable concept is not a replacement for the activity definition but is an alternative way of defining both player and computer controlled Al and Static trains In an activity the player train is defined explicitly and all Al trains are defined in a traffic definition Static trains are defined separately In a timetable all trains are defined in a similar way On starting a timetable run the required player train is selected from the list of available trains In the timetable definition itself no distinction is made between running trains any of the running trains can be selected as player train and if not selected as such they will be run as Al trains Static trains are also defined in the same way but cannot be selected as the player train As a result the number of different activities that can be played using the same timetable file is equal to the number of trains which are defined in the timetable The development of the timetable concept is still very much a work in progress This document details the state as it is at the moment but also includes items yet to be produced or items which have y
147. he departing train This qualifier is optional and takes no values triggers Syntax triggers lt train gt triggers also defines which new train is to be formed out of this train when the train terminates However when this command is used the new train will be formed using the consist definition of the new train and the existing consist is removed Command value referenced train this is compulsory static Syntax static The train will become a static train after it has terminated Command value none stable Syntax stable out_path lt path gt out_time time in_path lt path gt in_time time static runround lt path gt rrtime time rrpos lt runround position gt forms lt train gt triggers lt train gt stable is an extended form of either forms triggers or static where the train is moved to another location before the related command is performed In case of forms or triggers the train can move back to the same or to another location where the new train actually starts Note that in these cases the train has to make two moves outward and inward A runround can be performed in case forms is defined If triggers is defined the change of consist will take place at the stable position Any reversal s in the inward path or at the final inward position are taken into account when the new train is build such that the consist is facing the correct direction when the new train is formed
148. he last car AlttHome resets the target to the front Alt End to the rear of the train The camera s position with respect to the target car is manipulated by the four arrow keys left or right arrows rotate the camera s position left or right up or down arrows rotate the camera s position up or down while remaining at a constant distance from the target The distance from the camera to the target is changed by zooming with the PageUp and PageDown keys Rotation of the camera view direction about the camera s position is controlled by holding down the Alt key while using the arrow buttons or by moving the mouse with the right mouse button depressed The scroll wheel on the mouse zooms the screen image the field of view is shown briefly Ctrl 8 resets the view angles to their default position relative to the current target car e Key 4 is a trackside view from a fixed camera position with limited player control the height of the camera can be adjusted with the up and down arrow keys Repeated pressing of the 4 key may change the position along the track e Key 5 is an interior view that is active if the active train has a passenger view declaration in any of its cars or in the caboose The view direction can be rotated by the arrow keys or the mouse with right button pressed The camera position is moved forward or backward along the train axis with the PageUp and PageDown keys and moved left or right or up or down with Alt th
149. he time as defined in start is normally used as the start time of the timetable activity If a train is formed out of another train and this train is included in the timetable then if this train is delayed and has not arrived before the defined start time the starting of this train is also delayed until the train out of which it is formed has arrived This applies to both Al and player train This means that the start of the player activity can be delayed For details on starting and running of trains around midnight see the paragraph below The start field can also contain the following command create lt time gt ahead lt train gt The create command will create that train at the time as indicated If no time is set the train will be created before the start of the first train The train will be static until the time as set as start time The normal rules for train placement still apply so a train cannot be placed onto a section of track already occupied by another train However storage sidings often hold multiple trains To allow for this and to ensure the trains are stored in proper order first one out up front the parameter ahead lt train gt must be used The train will now be placed ahead of the referenced train in the direction of the train s path Multiple trains can be stored on a single siding but care must be taken to set the proper references The reference must always be to the previous train
150. hich is common to both trains starting at the location where the wait is defined or at the start of the path if defined in the note row If the start location is already common for both trains then first a search is done for the first section which is not common to both trains and the wait is applied to the next first common section beyond that If the wait is set the section will not be cleared for this train until the referenced train has passed this section This will force the train to wait The referenced train must exist for the wait to be valid However if notstarted is set the wait will also be set even if the referenced train has not yet been started This can be used where the wait position is very close to the start position of the referenced train and there is a risk that the train may clear the section before the referenced train is started Care should be taken when defining a wait at a location where the train is to reverse As the search is performed for the active subpath only a wait defined at a location where the train is to reverse will not be effective as the common section will be in the next subpath after the reversal In such a situation the train should be split into two separate definitions one up to the reversal location and another starting at that location Command value referenced train this is compulsory Command qualifiers maxdelay n n is the maximum delay in minutes of the reference
151. icking on a field and pressing the new desired key Three symbols will appear at the right of the field with the first one you validate the change with the second one you cancel it with the third one you return to the default value By clicking on Check OR verifies that the changes made are compatible that is that there is no key that is used for more than one command By clicking on Defaults all changes that were made are reset and the default values are reloaded By clicking on Export a printable text file Open Rails Keyboard txt is generated on the desktop showing all links between commands and keys Page 24 of 206 6 6 Data Logger Options General Audio Video Simulation Keyboard Data logger Evaluation Content Updater Experimental Use dataloggerto record your simulation data in game command F12 Please remember that the size of the dump file grows with the simulation time comma Separator route M Speed units J Start logging with the simulation start x IV Log performance data J Log physics data I Log miscellaneous data By selecting the option Start logging with the simulation start or by pressing F12 a file with the name dump csv is generated in the configured Open Rails logging folder placed on the Desktop by default This file can be used for later analysis Page 25 of 206 6 7 Evaluation Options options i x General Audio Video Simula
152. if there is no signal in the same section if instead there is a signal it will stay red until the WP has expired or until the train will stop in front of the WP the later of the two events will be considered Absolute waiting points are a comfortable way of synchronizing and scheduling train operation 10 8 Signals at Station Stops If the signal at the end of a platform protects a route which contains switches that signal will be held at danger up to 2 minutes before the booked departure If the station stop is less than 2 minutes the signal will clear as the train comes to a stand This applies to both Al train and player trains However if the platform length is less than half the train length the signal will not be held but will clear as normal to allow the train to properly position itself along the platform Signals which only protect plain track will also not be held In some railway control systems trains do not get a red at the station starting signal when they have to stop in that station To achieve this you can select the Experimental Option Forced red at station stops to disable this signal behavior Signals at waiting points for player trains will be held at danger until the train has stopped and the waiting point has expired For signals at waiting points for Al trains see the preceding paragraph 10 9 Speedposts and Speed Limits Set by Signals Speed limits which raise the allowed speed as set by speedposts or si
153. ime season and weather On the lower right side you enter your User Name and the host and port address If you want to run as standalone server or if you want to have more than instance of OR running in MP mode on the same computer you must set Host port to 127 0 0 1 30000 30000 is the default port but you can change to any integer between 10000 and 65536 If you want to run in a local area network usually valid host addresses are 192 168 1 2 or 192 168 1 1 After having inserted the Username and Host port data you click on Server When server starts Windows Firewall may ask if you want to allow OR access to the Internet If so Click Allow If you use other firewall software you may need to configure it to allow OpenRails to access the Internet There is no built in limit of how many players can connect a server with good Internet upload bandwidth can be expected to handle at least 10 client connections Page 172 of 206 12 6 2 Starting as Client On the left side of the main menu you must enter only route path and consist The other parameters are received from the server On the right side you enter your username IP address and port of the server and click on Client 12 7 In Game Controls Once the server and clients have started and connected to display MultiPlayer status you must press F5 to display the basic HUD at the bottom of it you will see the information You can watch how many players and trains are prese
154. in is driven by an electric locomotive as the first operation you have to raise the pantograph key P To look around in the simulation you can select different views using the keyboard as described in Changing the View below 7 3 Open Rails Driving Controls Open Rails follows MSTS very closely providing controls to drive steam electric and diesel locomotives both on their own or working together but also offers additional capabilities A very wide range of systems and instruments specified in the ENG and CVF files is supported To control the train you have at your disposal a set of keyboard commands that is equivalent to those of MSTS plus some new ones You can get a printable version of the command set as described in paragraph 6 5 Keyboard options or you can press F1 to immediately get the scrollable F1 Information Window as shown and described below Alternatively you can operate the cabview controls by mouse click buttons and mouse drag levers and rotary switches 7 3 1 Throttle Control Steam locomotives have a continuous throttle or regulator but many diesel and electric locomotives have a notched throttle which moves only in steps To avoid jerks some of these steps may be smooth where the power is gradually and automatically adjusted to achieve the setting 7 3 2 Dynamic Braking Dynamic braking is the use of the traction motors of a locomotive electric or diesel electric as generators to slow the trai
155. ine e TrainHasCallOn e Activity or Timetable call on always allowed e TrainsHasCallOn_Restricted e Activity or Timetable call on never allowed 10 15 6 How to Lay Down These Signals on the Route These signals can be laid down with the MSTS RE In the tdb file only a reference to the SignalType name is written an in the world file only a reference to the signal head is written As these are accordingly to MSTS standards no need to manually edit route files exists 10 15 7 Signalling Function NEXT_NSIG_LR This function is similar to NEXT_SIG_LR except that it returns the state of the nth signal ahead Function call state NEXT_NSIG_LR MstsSignalFunction fn_type int n Returned value state of nth signal ahead except e When there are less than n signals ahead of the train e when any of the intermediate signals is at danger In those situations the function will return SIGASP_STOP Page 147 of 206 Usage take for instance the sequence of signals as shown below HED HI HD HID B C D The distance between signals B and C as well as between C and D is shorter than the required braking distance Therefore if D is at danger both C and B must show yellow similar if C is at danger both B and A must be yellow Problem now is what aspect should be shown at A if B is yellow is it because C is at red so A must also be yellow or is it because C is at yellow as D is at red in which case A can show g
156. ined by the retainer setting The following brake types are implemented in OR e Vacuum single e Air single pipe e Air twin pipe e EP Electro pneumatic e Single transfer pipe air and vacuum The operation of air single pipe brakes is described in general below Page 97 of 206 The auxiliary reservoir needs to be charged by the brake pipe and depending on the WAG file parameters setting this can delay the brake release When the Graduated Release Air Brakes box is not checked the auxiliary reservoir is also charged by the emergency reservoir until both are equal and then both are charged from the pipe When the Graduated Release Air Brakes box is checked the auxiliary reservoir is only charged from the brake pipe The Open Rails software implements it this way because the emergency reservoir is used as the source of the reference pressure for regulating the brake cylinder pressure The end result is that you will get a slower release when the Graduated Release Air Brakes box is checked This should not be an issue with two pipe air brake systems because the second pipe can be the source of air for charging the auxiliary reservoirs Open Rails software has modeled most of this graduated release car brake behavior based on the 26F control valve but this valve is designed for use on locomotives The valve uses a control reservoir to maintain the reference pressure and Open Rails software simply replaced the control reservoir with the e
157. ins reversal points the train must be in between the same reversal points as it was when it switched to Manual Mode i e same subpath If the train is moving in the direction as the path defines switching back to Auto Mode can be done while the train is moving The rear of the train need not be on the defined path only the front If the train is moving in the opposite direction it must be at a standstill in order to switch back to Auto Mode If the orientation of the train s route was somehow reversed e g by moving through a balloon line or a Y section and differs from the direction in the defined path both the front and rear must be on the defined path In this situation the orientation will switch back to the direction as defined in the path 10 3 3 Out of Control Mode This is a special mode Normally the player train should not be in this mode The out of control mode is activated when the player violates a security rule Such incidents are e when the player train passes a signal at danger SPAD e when the player train passes over a misaligned switch e when the player train runs beyond the end of the authorised path These actions will place the player train into out of control mode In this situation the emergency brake is activated and maintained until the train is stopped The player has no control over his train until it is at a standstill Once the train has stopped the player can switch to Manual Mode to try to r
158. ion The tilting of the passenger cab allows greater values of unbalanced super elevation to be used 8 10 9 Limitation of Velocity on Curved Track at Zero Cross Level The concept of maximum comfortable velocity may also be used to determine the maximum velocity at which rolling stock is permitted to round curved track without super elevation and maintained at zero cross level The lead curve of a turnout located between the heel of the switch and the toe of the frog is an example of curved track that is generally not super elevated Other similar locations would include yard tracks and industrial tracks where the increased velocity capability made possible by super elevation is not required In such circumstances the maximum comfortable velocity for a given curve may also be the maximum velocity permitted on tangent track adjoining the curve 8 10 10 Height of Centre of Gravity Operation on a curve at equilibrium velocity results in the centre of gravity of the rolling stock coinciding with a point on a line that is perpendicular to a line across the running rails and the origin of which is midway between the rails Under this condition the height of the centre of gravity is of no consequence as the resulting force Fr coincides with the perpendicular line described above When rolling stock stops on a super elevated curve or rounds a curve under any condition of non equilibrium the resulting force Fr will not coincide with the perpendicular line previo
159. ion of problem supplemented by screenshots etc e Content used Route Activity Path Consist Locomotive amp Rolling Stock choose applicable Freeware Payware Package name amp download location download link e Narrative of actions shortly before amp at time of problem supplemented by screenshots etc e Attach log file Desktop OpenRailsLog txt e Add further info only in additional posts e Be patient 19 6 2 Decided Bug e Report to Bug Tracker only if asked to do so e https ougs Launchpad net or Registration required gt Report a bug e Summary Description from the topic title of the Maybe Bug report Page 197 of 206 Look for similar already reported bugs Condense whole Maybe Bug thread into Further information field Add link to original Maybe Bug report Re upload and attach OpenRailsLog txt amp explanatory screenshots etc Add further info only in additional posts Be patient 19 7 Bug Status in Launchpad New this is where all bugs start At this point the bug has not been looked at by the right people to check whether it is complete or if more details are needed Incomplete a member of the Open Rails teams has decided that the bug needs more information before it can be fixed The person who created the bug report does not have to be the one to provide the extra details A bug remaining incomplete for 60 consecutive days is automatically removed Opinion the bug has been identified as a
160. ist If this train sometimes has some additional wagons e g during rush hours the consists can be defined as follows with c_add the definition of the additional wagons c_loco c_wagons c_add and for reverse c_loco reverse c_add reverse c_wagons reverse Clearly this can save on the definition of the total required consists and in particular saves the tedious task of having to define reverse consists When using multiple units this is even more useful Suppose there are two sets of multiple units running either as single trains or combined Normally six different consists would be required to cover all trains but now only two will Page 155 of 206 suffice set_a and set_b The various combinations are set_a reverse set_a reverse set_b reverse set_b reverse set_a set_b reverse set_b reverse set_a reverse Consist strings which contain or can be used in timetables but must be enclosed by lt gt For instance lt loco wagon gt lt loco wagon gt reverse e Start row The start row defines the time at which the train is started It must be defined as HH mm and the 24 hour clock must be used This field is compulsory Use of start time for Al trains When a train is formed out of another train and this other train is included to run in the timetable the time defined in start is only used to define when the train becomes active Use of start time for player train T
161. iting points can only be used in Activity mode e Al trains throw switches not lined properly before engaging them e In activity mode Al trains can perform shunting actions provided the Extended Al shunting option has been selected e Priorities Al trains should start as scheduled as long as there is no other Al train already on a conflict path Page 122 of 206 10 3 Control Mode Control Mode defines what interactions there are between the player and the control system and the level of control of the player on signals and switches There are two basic modes Auto Mode and Manual Mode Use the Ctrl M key to toggle between these modes 10 3 1 Auto Mode In Auto Mode the control system sets the train s path and signals and the player cannot change the setting of the switches or request for signals at danger to clear The train s route is taken from the path as defined in the Activity Editor or timetable definition and the system will attempt to clear the route ahead of the train according to the signalling rules and interaction with other trains No route is cleared in the reverse direction as the train is assumed not to run in reverse Selecting a reverse cab or changing the position of the reverser does not change the direction of the route In fact the route will not be reversed other than at reversal points as defined in the train s path At these reversal points the route will reverse automatically as soon as the train
162. itor This option is described in detail here theory and also here OR application 6 4 6 Tunnel dependent resistance When this option is selected OR takes into account the fact that trains in tunnels are subject to higher air resistance and therefore need a higher effort at invariant speed This option is described in detail here theory and here OR application 6 4 7 Override non electrified route line voltage This option allows running in a non prototypical way electric locomotives on non electrified routes 6 4 8 Steam locomotive hot start This option allows starting the game with the boiler water temperature already at a value that allows running the locomotive If the option is not selected you will have to wait until the water temperature reaches a high enough value Page 23 of 206 6 5 Keyboard Options xi General Audio Video Simulation Keyboard pata logger Evaluation Content Updater Experimental Pause Menu Esae tt ssts SOOCS T Save Roo qitfat F4 i C Pause Pause ss sS Screenshot PrintSaeen Fullscreen Alt Enter ss swtchAhead e oS Switch Behind Shift 6 Switch Picked jees 0 i sSCSSCis signal Picked convoi 6 SSCS Switch With Mouse ft Uncouple With Mouse booo Change Cab Control E o o Check Defaults In this panel you will find listed the keyboard keys that are associated with all OR commands You can modify them by cl
163. ius rigid wheel base track gauge and super elevation The curve resistance has its lowest value at the curve s optimal speed Running at Page 70 of 206 higher or lower speed causes higher curve resistance The worst situation is starting a train from zero speed The track gauge value can be set by ORTSTrackGauge parameter otherwise 1435 mm is used The rigid wheel base can be also set by ORTSRigidWheelBase otherwise the value is estimated Further details are discussed later When running on a slope uphill or downhill additional resistance is calculated based on the car mass taking into account the elevation of the car itself Interaction with the car vibration feature is a known issue if the car vibrates the resistance value oscillate 8 1 2 Coupler Slack Slack action for couplers is introduced and calculated the same way as in MSTS 8 1 3 Adhesion of Locomotives Settings Within the Wagon Section of ENG files MSTS calculates the adhesion parameters based on a very strange set of parameters filled with an even stranger range of values Since ORTS is not able to mimic the MSTS calculation a standard method based on the adhesion theory is used with some known issues in use with MSTS content MSTS Adheasion sic parameters are not used in ORTS A new set of parameters is used instead ORTSAdhesion ORTSCurtius_Kniffler A B C D The A B and C values are coefficients of a standard form of various empirical formul
164. l amp scripting capabilities are supported e Speedpost dat file Supported e Spotter dat file Supported Page 6 of 206 e Ssource dat file Supported e Telepole dat file Supported e Tsection dat file Supported e Ttype dat file Supported e Hazards haz file Supported 4 6 Environment Open Rails software does not support advanced water dynamic effects at this time while it supports first level player driven dynamic weather effects Open Rails provides two types of environment representation that can be selected by the player at game start a MSTS compatible one and a native one In the native version Open Rails software uses its own sky cloud sun moon and precipitation effects developed exclusively for it In activity mode the starting parameters for time of day and weather are read from the activity file to determine the starting display in Open Rails software 4 7 Activities Open Rails software runs without problems a great percentage of the passenger and freight activities created using the MSTS activity editor It also offers some OR_ specific options to add interesting features to existing activities 4 8 OR Folder Structure Open Rails uses a subset of the MSTS folder structure to run The following folders together with their related sub folders are needed at root level e GLOBAL e ROUTES e TRAINS e SOUND At root level no files are needed Within the GLOBAL folder the fo
165. l affects the design and operation of trains and they are a source of energy losses noise vibrations and aural discomfort for passengers These problems are even worse when two or more trains are in a tunnel at the same time Aural comfort is one of the major factors determining the area of new tunnels or the maximum train speed in existing tunnels Page 113 of 206 8 12 3 Importance of Tunnel Profile As described above a train travelling through a tunnel will create a bow wave of air movement in front of it which is similar to a piston effect The magnitude and impact of this effect will principally be determined by the tunnel profile train profile and speed Typical tunnel profiles are shown in the diagrams below Train Cross Train Cross Section Area Section Area Train Cross Section Area As can be seen from these diagrams the smaller the tunnel cross sectional area compared to the train cross sectional area the less air that can escape around the train and hence the greater the resistance experienced by the train Thus it can be understood that a single train in a double track tunnel will experience less resistance then a single train in a single track tunnel 8 12 4 Calculation of Tunnel Resistance Wt AL pali 1 P G where y 0 000 033 18yF F FY A 2 B 174 419 1 F I FY c 2 907 E Fd 4F R F tunnel cross sectional area sqm Fy train cross sectional
166. l crossings If a horn blow is also desired for a simple road crossing the feature Al Train Horn Blow described above must be used 10 16 4 Activity Location Sound File An activity file can be modified so that a sound file is played when the train reaches a location specified in an EventTypeLocation event in the act file Add the line ORTSActSoundFile Filename SoundType to the EventCategoryLocation event where Filename name in quotations of a wav file located in the SOUND folder of the route Soundtype any one of the strings Everywhere sound is played in all views at the same volume without fading effects Cab sound is played only in the cab Pass sound is played only in the active passenger view Ground sound is played externally from a fixed position the one that the locomotive has reached when the event is triggered The sound is also heard in internal views in an attenuated way and becomes attenuated by moving away from the position For example EventCategoryLocation EventTypeLocation ID 7 Activation Level 1 Outcomes DisplayMessage This message won t be shown because ORTSContinue 0 Name Location6 Location 146 14082 1016 56 762 16 10 TriggerOnStop 0 ORTSContinue 0 ORTSActSoundFile x Next stop MiClei wav Pass Including the ORTSContinue line explained above inhibits the normal
167. l enterprises open to the community and best of all an open door to the future 3 2 About Open Rails To take advantage of almost a decade of content developed by the train simulation community Open Rails software is an independent game platform that has backward compatibility with MSTS content By leveraging the community s knowledge base on how to develop content for MSTS Open Rails software provides a rich environment for both community and payware contributors The primary objective of the Open Rails project is to create a railroad simulator that will provide true to life operational experience The Open Rails software is aimed at the serious train simulation hobbyist someone who cares about locomotive physics train handling signals Al behavior dispatching and most of all running trains in a realistic prototypical manner While the project team will strive to deliver an unparalleled graphical experience eye candy is not the primary objective of Open Rails software By developing a completely new railroad simulator Open Rails software offers the potential to better utilize current and next generation computer resources like graphics processing units GPUs multi core CPUs advanced APIs such as PhysX and widescreen monitors among many others The software is published so that the user community can understand how the software functions to facilitate feedback and to improve the capabilities of Open Rails software Ope
168. l wagons e Speed the speed of the train around the curve will impact upon the value of resistance typically above and below the equilibrium speed i e when all the wheels of the rolling stock are perfectly aligned between the tracks See the section below Impact of superelevation The impact of wind resistance on curve friction is ignored 8 8 3 Impact of Rigid Wheelbase The length of the rigid wheelbase of rolling stock will impact the value of curve resistance Typically rolling stock with longer rigid wheelbases will experience a higher degree of rubbing or frictional resistance on tight curves compared to stock with smaller wheelbases Steam locomotives usually created the biggest problem in regard to this as their drive wheels tended to be in a single rigid wheelbase as shown in Fig 1 In some instances on routes with tighter curve the inside wheels of the locomotive were sometimes made flangeless to allow them to float across the track head Articulated locomotives such as Shays tended to have their drive wheels grouped in bogies similar to diesel locomotives and hence were favoured for routes with tight curves The value used for the rigid wheelbase is shown as W in Fig 1 Diagram Source The Baldwin Locomotive Works Locomotive Data 1944 Figure 1 Example of Rigid Wheelbase in steam locomotive 8 8 4 Impact of Super Elevation On any curve whose outer rail is super elevated there is for
169. lCam and PassengerCam in general OR does not consider which cameras are explicitly activated within the sms files Instead it uses a sort of implicit activation that as a general rule works as follows e when in an inside view cabview or passenger view the related inside sms files are heard plus all external sms files with the exception of those related to the trainset where the camera is in that moment the volume of those external files is attenuated by a 0 75 factor e when in an external view all external sms files are heard For an sms file to be heard it must be within the activation distance defined in the related instruction A hack is available so as to hear only in the cabview some sms files residing outside the cabview trainset This can be used e g to implement radio messages For this to work the related sms file must be called within a wag file must contain an Activation CabCam statement and the related wagon must be within a loose consist within a not yet started Al train or within the consist where the cabview trainset resides The ScalabiltyGroup instruction behaves differently from MSTS for Al trains While MSTS uses ScalabiltyGroup 0 for Al trains OR uses for Al trains the same ScalabiltyGroup used for player trains This way Al train sound can profit from the many more triggers active for Al trains in ORTS For instance Variable2 trigger is not active in MSTS for Al trains while it is in ORTS
170. lCock BleedOff 0 0 1P 10 psi 90 psi 90 psi 90 psi Release T A B 0 1 1P 10 psi 90 psi 90 psi 90 psi Release A B 32884 0 1P 0 psi 90 psi 90 psi 90 psi Release A B 32884 1 1P 0 psi 90 psi 90 psi 90 psi Release A B 32884 2 1P 0 psi 90 psi 90 psi 90 psi Release A B If you don t want to wait for the train brake line to charge pressing Shift in English keyboards executes Brakes Initialize which will immediately fully charge the train brakes line to the final state However this action is not prototypical and also does not allow control of the brake retainers The state of the angle cocks the hose connections and the air brake pressure of individual coupled cars can be manipulated by using the F9 Train Operations Monitor described here This will permit more realistic shunting of cars in freight yards 8 6 1 2 Uncoupling Cars When uncoupling cars from a consist using the F5 HUD Expanded Brake Display in conjunction with the F9 Train Operations Monitor display allows the player to set the handbrakes on the cars to be uncoupled and to uncouple them without losing the air pressure in the remaining cars Before uncoupling close the angle cock at the rear of the car ahead of the first car to be uncoupled so that the air pressure in the remaining consist is not lost when the air hoses to the uncoupled cars are disconnected If this procedure is not followed the train braking system will go into Emergency state and
171. lling takes place as the key is held down If the locomotive is further away then the distance to the nearest pickup is given instead 7 3 5 Specific Features to Optimize Locomotive Driving You are encouraged to read the chapter on Open Rails Physics to optimize your driving capabilities and to achieve a realistic feeling of what happens in a real moving train 7 3 6 Examples of Driving Controls for content developers For continuous throttle see MSTS model TRAINS TRAINSET ACELA acela eng For a notched non smooth throttle see TRAINS TRAINSET GP38 gp38 eng For a combined throttle and dynamic brake see TRAINS TRAINSET DASH9 dash9 eng For a combined throttle and train brake see MSTS TRAINS TRAINSET SERIES7000 series7Q eng Page 35 of 206 7 4 Driving aids Open Rails provides a large number of driving aids which support the player during train operation 7 4 1 Basic Head Up Display HUD By pressing F5 you get some important data displayed at the top left of the display in the so called Head Up Display HUD If you want the HUD to disappear press F5 again The HUD has 6 different pages The basic page is shown at game start To sequentially switch to the other pages press Shift F5 After having cycled through all of the extended HUD pages the basic page is displayed again To hide or redisplay the current extended HUD data while continuing to show the basic HUD press Alt F5 The basic page shows fu
172. llowing sub folders are needed if global shared among more than one route shapes and textures are used e SHAPES e TEXTURES Within the GLOBAL folder only the file tsection dat is absolutely needed Files sigcfg dat and sigscr dat are needed if there are routes that don t have their own specific files with the same names in their root folder Page 7 of 206 4 9 Which Original MSTS Content Files Are Usually Needed To Run MSTS Compatible Content Generated by Third Parties A general summary of which original MSTS content files within the Train Simulator root folders are usually used by MSTS compatible content follows e GLOBAL root folder Many routes use specific track sets like XTRACK UK finescale etc Routes which solely use such sets do not need any of the original MSTS files from GLOBAL as all required files come from the relevant track set There are however also many routes using original MSTS track sets These routes will need part or all the files contained in the SHAPES and TEXTURES subfolders within the GLOBAL folder e ROUTES root folder In principle to run a route only that specific route folder is required However many routes in particular freeware routes use much material from the original MSTS routes and therefore the original MSTS routes need to be available in order to properly install these routes e TRAINS root folder Requirements are similar to routes Again only the folders for the trainsets which a
173. ly valid as a passing location if at least one of the trains fits into the shortest of the available passing paths e The order in which passing paths are selected If no train is approaching from the opposite direction through route Train s own path Main path Any alternative path If train is to pass another train approaching from the opposite direction passing route Train s own path if not the same as main path Alternative path Main path However in the situation where the train does not fit on all paths for the first train to claim a path through the area preference is given to the paths if any where the train will fit The setting of the deadlock trap the logic which prevents trains from getting on a single track from both directions has also been changed In the old version the trap was sprung as a train claimed its path through a possible passing area However this often lead to quite early blocking of trains in the opposite direction In this version the trap is sprung when a train actually claims its path in the single track section itself One slight flaw in this logic is that this can lead to the train which is to wait being allocated to the main path while the train which can pass is directed over the loop This can happen when two trains approach a single track section at almost the same time each one claiming its path through the passing areas at either end before the deadl
174. ly increased the heating area of the locomotive Geared Locomotives In industrial type railways such as those used in the logging industry spurs to coal mines were often built to very cheap standards As a consequence depending upon the terrain they were often laid with sharp curves and steep gradients compared to normal main line standards Typical main line rod type locomotives couldn t be used on these lines due to their long fixed wheelbase coupled wheels and their relatively low tractive effort was no match for the steep gradients Thus geared locomotives found their niche in railway practice Geared locomotives typically used bogie wheelsets which allowed the rigid wheelbase to be reduced compared to that of rod type locomotives thus allowing the negotiation of tight curves In addition the gearing allowed an increase of their tractive effort to handle the steeper gradients compared to main line tracks Whilst the gearing allowed more tractive effort to be produced it also meant that the maximum piston speed was reached at a lower track speed As suggested above the maximum track speed would depend upon loads and track conditions Page 85 of 206 As these types of lines were lightly laid excessive speeds could result in derailments etc The three principal types of geared locomotives used were e Shay Locomotives e Climax e Heisler 8 4 2 Steam Locomotive Operation To successfully drive a steam locomotive it is
175. ly sharing the rolling stock weight or coming to a complete stop on curves Under such circumstances excess super elevation may lead to a downward force sufficient to damage the inside rail of the curve or cause derailment of rolling stock toward the centre of the curve when draft force is applied to a train Routine operation of loaded freight trains at low velocity on a curve superelevated to permit operation of higher velocity passenger trains will result in excess wear of the inside rail of the curve by the freight trains Thus on these types of routes super elevation is generally limited to no more than 6 inches 8 10 7 Limitation of Super Elevation in High Speed Passenger Routes Modern high speed passenger routes do not carry slower speed trains nor expect trains to stop on curves so it is possible to operate these routes with higher track super elevation values Curves on these types of route are also designed with a relatively gentle radius and are typically in excess of 2000m 2km or 7000m 7km depending on the speed limit of the route Parameters France Germany Spain Korea Japan Speed km h 300 350 300 350 300 350 350 Horizontal curve radius 10000 7000 7km 7000 7km 7000 4000 4km m 10km 7km Super elevation mm 180 170 150 130 180 Max Grade mm m 35 40 12 5 25 15 Cant Gradient mm s 50 34 7 32 N A N A Min Vertical radius m 16000 14000 24000 N A 10000 16km 14km 24km 10km Table 1 Curve Parameters
176. main Open Rails window and Alt Tab switches between it and the Open Rails window See the related option Fast full screen Alt Tab Through this window you can monitor train movements and also influence them by setting signals and switches A complete description of the dispatcher window can be found here o a DispatchViewer mem Res 2091 m Draw Path IV Pick Signals I Pick Switches See in Game 3 w Follow a EA ae Regiv da_Lecco_Monza 4 aAstaManovracorta Prece lenze Sud staManovra AstaManovracorta 6 1 3 Graduated release air brakes Selecting this option allows a partial release of the brakes Generally speaking operating with the option checked is equivalent to passenger standard and unchecked is equivalent to freight standard A complete description of this option can be found here 6 1 4 Large address aware binaries It is suggested to leave this option checked When it is unchecked Open Rails can use a maximum of 2 GB of RAM When it is checked the maximum is 4 GB for 64 bit Windows systems and 2 or 3 GB for 32 bit Windows systems To increase the maximum RAM used by OR in 32 bit Page 14 of 206 Windows systems from 2 to 3 GB see the information found here Take note that the RAM increase from 2 to 3 GB in 32 bit systems can slow down computer operation when not using OR Following MSTS practice whenever you make adjustments to the train controls e g open the
177. mergency reservoir Increasing the Brake Pipe Charging Rate PS Second value controls the charging rate Increasing the value will reduce the time required to recharge the train while decreasing the value will slow the charging rate However this might be limited by the train brake controller parameter settings in the ENG file The brake pipe pressure cannot go up faster than that of the equalization reservoir The default value 21 should cause the recharge time from a full set to be about 1 minute for every 12 cars If the Brake Pipe Charging Rate PSI Second value is set to 1000 the pipe pressure gradient features will be disabled and will also disable some but not all of the other new brake features Brake system charging time depends on the train length as it should but at the moment there is no modeling of main reservoirs and compressors 8 6 1 Using the F5 HUD Expanded Braking Information This helps users of Open Rails to understand the status of braking within the game and assists in realistically coupling and uncoupling cars Open Rails braking physics is more realistic than MSTS as it models the connection charging and exhaust of brake lines When coupling to a static consist note that the brake line for the newly added cars normally does not have any pressure This is because the train brake line hose has not yet been connected The last columns of each line shows the condition of the air brake hose connections of each unit i
178. mpulsory out_time optional Page 165 of 206 In combination with forms out_path compulsory out_time optional in_path compulsory in_time optional runround optional rrtime optional only valid if runround is set rrpos compulsory if runround is set otherwise not valid In combination with triggers out_path compulsory out_time optional in_path compulsory in_time optional 11 5 Additional Notes on Timetables 11 5 1 Static Trains A static train can be defined by setting static in the top row e g as the name of that train Consist and path are still required the path is used to determine where the consist is placed rear end of train at start of path No start time is required The train will be created from the start of the timetable but it cannot be used for anything within a timetable It cannot be referenced in any command etc as it has no name At present it is also not possible to couple to a static train see below for details Note that there are some differences between timetable and activity mode in the way that static trains are generated In activity mode the train is an instance of the Train class with type STATIC In timetable mode the train is an instance of the TTTrain class as are all trains in timetable mode with type Al movement Al_ STATIC This difference may lead to different behaviour with respect to sound smoke and lights 11 5 2 Processing
179. ms flightsim com vbts e UK Train Sim http forums uktrainsim com index php e Elvas Tower http www elvastower com forums index php index For users interested in multiplayer sessions a forum is set up for you to seek and announce hosting sessions http www tsimserver com The Open Rails team is NOT planning on hosting a forum on the Open Rails website We believe that the best solution is for the current train simulation forum sites to remain the destination for users who want to discuss topics relating to Open Rails software The Open Rails team monitors and actively participates in these forums Page 4 of 206 3 5 Highlights of the Current Version 3 5 1 Focus on Compatibility With this release the announced goal has been reached to make as much of the existing MSTS content as possible run in Open Rails The development team s initial focus has been to provide a fairly complete visual replacement for MSTS that effectively builds on that content achieving all the compatibility that is worthwhile at the same time delivering a system which is faster and more robust than MSTS 3 5 2 Focus on Operations Release 1 0 clears the way to improving on MSTS in many ways which can be summed up as moving from Foundation to Realism and eventually to Independence and already includes features that are beyond MSTS Non player trains can already have a first release movement orders i e pickups drop offs based on files in MSTS format Deadlocks betwe
180. n 100 000 polys have been developed and displayed without problems 2 Thanks to the additional physics description parameters a much more realistic behavior of the rolling stock is achieved 3 3D cabs add realism 4 OR graphics renders the results of the rolling stock developers at higher resolution 5 Rolling stock running on super elevated track improves gaming experience 17 2 Routes 1 Routes are displayed in higher resolution 2 Extended viewing distance yields much more realism 3 Double overhead wire increases the realism of electrified routes 4 Extended signaling features provide more realistic signal behavior 17 3 Activities 1 Timetable mode is a new activity type available only in Open Rails that allows for development of timetable based gaming sessions 2 By using the dispatcher monitor window the dispatcher HUD and the ability to switch the camera to any Al train the player can more closely monitor and control the execution of conventional activities 3 Extended Al shunting greatly increases the interactions between trains 4 New ORP specific additions to activity act files enhance activities 17 4 Testing and Debugging Tools As listed here a rich and powerful set of analysis tools eases the testing and debugging of content under development Page 192 of 206 17 5 Open Rails Best Practices 17 5 1 Polys vs Draw Calls What s Important Poly counts are still important in Open Rails software
181. n Initially dynamic braking was applied in mountainous territory where conventional freight car brakes were prone to overheating on long downgrades It was also limited to speeds above 10mph Dynamic braking controls are usually notched In OR the dynamic brake controlled by the keys and is not available unless the throttle is fully closed similarly the throttle is not available unless the dynamic brake is fully released off As defined in the CVF file the tractive and braking forces may be shown on two different instruments on one instrument with two needles or on a single instrument where the braking is shown as a negative value Page 34 of 206 7 3 3 Combined Control Some locomotives are fitted with a combined control where a single lever is used to provide throttle and brake control together with negative throttle positions used to apply the brake The brake element may be either dynamic or conventional train brakes There may be a delay changing between throttle and brake operation representing the time required to change the operation of the traction motors from motors to generators 7 3 4 Refill Diesel and steam locomotives must refill their supplies of fuel occasionally perhaps daily but steam locomotives need water more frequently and have a range of little more than 100 miles Use the T key to refill with fuel or water If the locomotive or tender is alongside the pickup point e g a water tank then the refi
182. n To directly select which train is to be shown use the Dispatcher Window In this window locate the train that you wish to view and click the mouse on it until the block representing it turns red then click on the button Show in game in the Dispatcher Window and then return to the Open Rails window e Key 9 resets the target train for the Key 2 3 4 5 and 6 views to the Player train Holding the Shift key with any motion command speeds up the movement while the Ctrl key slows it Note that view direction control using the mouse with right button pressed differs slightly from using Alt plus the arrow keys the view direction can pass through the zenith or nadir and the direction of vertical motion is then reversed Passing back through the zenith or nadir restores normal behavior Whenever frame rates fall to unacceptable levels players are advised to adjust camera positions to cull some models from being in view and to adjust the camera again to include more models when frame rates are high 7 9 Toggling Between Windowed Mode and Full screen You can toggle at any time between windowed mode and full screen by pressing Alt Enter 7 10 Modifying the Game Environment 7 10 1 Time of Day When in activity mode Open Rails software reads the StartTime from the MSTS act file to determine what the game time is for the activity In combination with the longitude and latitude of the route and the season Open Rails computes the actual sun
183. n Rails is published under the GPL license which is copyleft to ensure that the source code always remains publicly available http www gnu org copyleft Page 3 of 206 3 3 Does Open Rails Need MSTS to Run This is not a correctly set question Open Rails is able to run a vast majority of MSTS content routes trains activities Open Rails does not need MSTS executable files e g exe or dll files neither does it need ini files However if the MSTS content uses content files originally delivered with MSTS such as tracks or general sounds this applies in particular to routes obviously to run such content OR needs such files If instead and there are examples of this the MSTS content does not use such original content files again obviously OR does not need original MSTS files Read here for further detail In both cases MSTS content files original and not must be organized in an MSTS compatible folder structure Such a structure is described here In this manual such a folder structure will be called an MSTS installation for clarity even if this wording is not completely correct A proof that Open Rails itself does not need an MSTS installation at all to run is e g this route 3 4 Community At the present time Open Rails software is offered without technical support Therefore users are encouraged to use their favorite train simulation forums to get support from the community e Train Sim Com http foru
184. n be route linked The actual use is defined in the related script and the related shape definition Example 2 SignalType SpeedReset SignalFnType SPEED SignalLightTex Itex SignalDrawStates 1 SignalDrawState 0 Red SignalAspects 1 SignalAspect STOP Red signalflags OR_SPEEDRESET SignalNumClearAhead 2 This example resets the speed to the limit as set by the last speed sign overruling any speed limits set by signal aspects 10 15 3 Approach control functions Approach control signals are used specifically in the UK to keep a signal at danger until the train is within a specific distance ahead of the signal or has reduced its speed to a specific value Such control is used for diverging routes to ensure the speed of the train is reduced sufficiently to safely negotiate the switches onto the diverging route Two script functions for use in OR have been defined which can be used to control the signal until the train has reached a specific position or has reduced its speed Page 140 of 206 These functions are e APPROACH_CONTROL_POSITION position e APPROACH_CONTROL_SPEED position speed These functions are Boolean functions the returned value is true if a train is approaching the signal and is within the required distance of the signal and for ARPPROACH_CONTROL_SPEED has reduced its speed below the required values Parameters position required distance of train a
185. n is identified by the PLAYER string or by a 0 if autopilot mode is enabled Al trains are identified by their OR number that is also shown in the Extended HUD for Dispatcher Information followed by the service name Static consists are identified as in MSTS The state of the signals is shown only three states are drawn that is e Stop drawn in red e Clear_2 drawn in green e while all signals with restricting aspect are drawn in yellow The state of the switches is also shown A switch shown with a black dot indicates the main route while a grey dot indicates a side route When the Draw path is checked the first part of the path that the train will follow is drawn in red If a trailing switch in the path is not in the correct position for the path a red X is shown on it When left or right clicking on a signal a pop up menu appears System Controlled i Sto Using the mouse you can force the signal to Stop Approach paas or Proceed Later you can return it to System Controlled mode Proceed By left or right clicking on a switch a small pop up menu with the two selections Main route and Side route appears By clicking on them you can throw the switch provided the OR Al dispatcher allows it With respect to Al trains as a general rule you can command their signals but not their switches because Al trains are not allowed to exit their path The two checkboxes Pick Signals and
186. n opinion meaning that it isn t clear whether there is actually a bug or how things should be behaving Invalid a member of the team believes that the report is not actually a bug report This may be because Open Rails is working as designed and expected or it could just be spam The bug may be put back to the new state if further information or clarity is provided in comments Won t Fix a member of the team has decided that this bug will not be fixed at this time If the bug report is a feature request then they have decided that the feature isn t desired right now This status does not mean something will never happen but usually a better reason for fixing the bug or adding the feature will be needed first Confirmed a member of the team has been able to experience the bug as well by following the instructions in the bug report Triaged a member of the team has assigned the importance level to the bug or has assigned it to a specific milestone Bugs generally need to get to this state before the developers will want to look at them in detail In Progress one or more members of the team are currently planning to or actually working on the bug report They will be identified by the assignee field Fix Committed the fix for the bug report or feature request has been completed and checked in to the source control system Subversion Once there the fix will usually appear in the next experimental release Fix Released The c
187. n pictorially in the following graph Open Rails uses the Page 104 of 206 following formula to model the speed impact on curve resistance SpeedFactor ABS EquilibriumSpeed TrainSpeed EquilibriumSpeed ResistanceFactor start Resistance Empty wagons Loaded wagons Speed Figure 3 Generalisation of Variation of Curve Resistance With Speed 8 8 7 Further background reading http en wikipedia org wiki Curve resistance railroad 8 9 Curve Resistance Application in OR Open Rails models this function and the user may elect to specify the known wheelbase parameters or the above standard default values will be used OR calculates the equilibrium speed in the speed curve module however it is not necessary to select both of these functions in the simulator options TAB Only select the function desired By studying the Forces Information table in the HUD you will be able to observe the change in curve resistance as the speed curve radius etc vary 8 9 1 OR Parameter Values Typical OR parameter values may be entered in the Wagon section of the wag or eng file and are formatted as below ORTSRigidWheelBase 3in ORTSTrackGauge 4ft 8 5in also used in curve speed module Page 105 of 206 8 9 2 OR Default Values The above values can be entered into the relevant files or alternatively if they are not present then OR will use the default values described below Rigid Wheelbase as a defa
188. n the consist BRAKE INFORMATION Main reservoir 135 psi Car Type BrkCyl BrkPipe AuxRes ErgRes MRPipe RetValve TripleValve Handbrk Conn AngiCock BleedOff 0 0 1P 11 psi 90 psi 90 psi 90 psi Release T A B 0 1 1P 11 psi 90 psi 90 psi 90 psi Release A B 32884 0 1P 0 psi 0 psi 0 psi 0 psi Emergency 100 A B 32884 1 1P 0 psi 0 psi 0 psi 0 psi Emergency 100 T A B T 32884 2 1P 0 psi 0 psi 0 psi 0 psi Emergency 100 A B The columns under AnglCock describe the state of the Angle Cock a manually operated valve in each of the brake hoses of a car A is the cock at the front B is the cock at the rear of the car The symbol indicates that the cock is open and the symbol that it is closed The column Page 98 of 206 headed by T indicates if the hose on the locomotive or car is interconnected T means that there is no connection I means it is connected to the air pressure line If the angle cocks of two consecutive cars are B and A respectively they will pass the main air hose pressure between the two cars In this example note that the locomotive air brake lines start with A closed and end with B closed before the air hoses are connected to the newly coupled cars All of the newly coupled cars in this example have their angle cocks open including those at the ends so their brake pressures are zero This will be reported as Emergency state 8 6 1 1 Coupling Car
189. n the files sigcfg dat and sigscr dat in a way that is highly compatible to MSTS 10 14 1 SignalNumClearAhead Specific rules however apply to the sigcfg dat parameter SignalNumClearAhead that is not managed in a consistent way by MSTS If for a SignalType only one SignalNumClearAhead is defined as is standard in MSTS files such a parameter defines the number of NORMAL signal heads not signals that are cleared down the route including the signal heads of the signal where the SignalType resides If for a SignalType a second SignalNumClearAhead parameter is added just before the existing one OR interprets it as the number of NORMAL SIGNALS that are cleared down the route including the signal where the SignalType resides MSTS will skip this first SignalNumClearAhead and will consider only the second In this way this change to sigcfg dat does not affect its use in MSTS However instead of modifying the copy of the file sigcfg dat residing in the route s root the approach described in the next paragraph is recommended 10 14 2 Location of OR specific sigcfg and sigscr files OR specific sigcfg and sigscr files must be put into a subfolder OpenRails created within the main folder of the route Sigcfg dat must maintain its name while the sigscr files can also have other names provided that within sigcfg dat there is a reference to such other names 10 15 OR specific Signaling Functions A set of powerful OR spe
190. n the next paragraphs OR adds support for the ETCS circular speed gauge as described here 15 2 High resolution Cab Backgrounds and Controls In MSTS the resolution of the cab background image is limited to 1024x1024 this limitation does not apply in OR as the result of OR s better handling of large textures 2D cab backgrounds can reach at least to 3072x3072 however very fine results can be obtained with a resolution of 2560x1600 The image does not have to be square 2D cab animations have also been greatly improved you are reminded here that there are two types of animated rotary gauges i e normal gauges and general animations using multiple frames In this second case in MSTS all of the frames had to be present in a single texture with a max resolution of 640x480 In OR these frames can be as large as one likes and OR will scale them to the correct size In general it is not necessary to use a resolution greater than 200x200 for every frame The syntax to be used in the cvf file is the standard one as defined by MSTS To clarify this the position parameters of a sample needle block are described here In the Position statement the first 2 numbers are the position of the top left hand side of the needle texture in cabview units with the needle in the vertical position In the Dial type the last 2 numbers are the size of the needle texture The last number 50 in the example controls the scaling of the needle texture i e changing
191. n the rear two cases are possible either the decoupled part reverses or the decoupled part continues in the same direction In the first case a reversal point has to be put anywhere in the section where the decoupling occurs better towards the end of the section and OR will move it to the right place so that the train reverses at the point where decoupling occurred moreover it is also advised to put a WP of some tens of seconds so that the train does not restart immediately This WP must be located logically after the reversal point and in the same track section OR will move it under the decoupled Page 137 of 206 train If the decoupled part continues in the same direction neither WP nor RP are needed This train part will wait that the part ahead will clear the path before starting Activity run hints When you run as player you have to uncouple the train where foreseen by the activity the uncoupled train must lay in a route section present in its path If you don t uncouple on a track section present in the path of the uncoupled train the uncoupled train will become a static train because it s not on its path You can run the train formed by the original train plus the incorporated train from any cab also in a cab of the incorporated train However before uncoupling splitting the trains you have to return to a cab of the original train 10 14 Signal related files for content developers OR manages signals as defined i
192. ncing When the option is checked in cases where multiple instances of the same object have to be drawn only a single draw call is sent to the GPU This means lower CPU load It is suggested to always check this option Page 18 of 206 This option will enable or disable display of the overhead wire When this option is selected the OR update rate cannot be higher than the monitor vertical sync frequency typically 60 Hz This reduces CPU energy consumption in fast PCs OR manages not only cab interiors using 2D images in a MSTS compatible way but also supports 3D models Most 2D cab images follow MSTS practice being 1024 x 768 pixels to suit monitors with a 4 3 aspect ratio So the problem arises how to display these 4 3 cabs on a 16 9 or 16 10 monitor One possibility is to stretch these images horizontally to match other aspect ratios as shown in the image below To respect the proportions however by default OR does no stretching and shows the full width of the cab interior thus losing a portion from the top and bottom of the image You can use the Up and Down Arrow keys to pan and reveal these missing portions Therefore the setting for Cab 2D Stretch has a default value of 0 providing no stretching and a maximum value of 100 which stretches the picture so as to cover the complete display Intermediate values provide a blend of panning and stretching Page 19 of 206 This option defines the maximum distance at
193. ndamental information The other pages go into more detail and are used mainly for debugging or to get deeper information on how OR behaves They are listed in the Analysis tools subchapter The following information is displayed in the basic display e Version The version of the Open Rails software you are running e Time Game time of the Activity e Speed the speed in Miles Hr or Kilometers Hr e Gradient Route gradient in in that point e Direction Position of the Reverser Electric Diesel and Steam e Throttle Displays the current position of the throttle expressed as a percentage of full throttle Throttle correctly uses Notches and configured of power for Diesel engines or of throttle for steam engines e Train Brake Shows the current position of the train brake system and the pressure value of the train brakes Braking correctly reflects the braking system used hold release self lapping or graduated release The Train brake HUD line has two Brake Reservoir pressure numbers the first is the Equalization Reservoir EQ and the second is the Brake Cylinder BC pressure The two BP numbers report the brake pressure in the lead engine and in the last car of the train The unit of measure used for brake pressure is defined by the option Pressure unit e Engine Brake percentage of independent engine brake Not fully releasing the engine brake will affect train brake pressures e Dynamic brake if engaged
194. nds or let the system work out the passing locations using the passing paths 11 5 6 4 Wait Commands and Permissive Signals The wait and follow commands are processed through the blockstate of the signal control If at the location where the train is to wait permissive signals are used and these signals allow a proceed aspect on blockstate JN OBSTRUCTED the wait or follow command will not work as the train will not be stopped 11 5 6 5 Running Trains Around Midnight A timetable can be defined for a full 24 hour day and so would include trains running around midnight The following rules apply for the player train e Train booked to start before midnight will be started at the end of the day but will continue to run if terminating after midnight e Trains formed out of other trains starting before midnight will NOT be started if the incoming train is delayed and as a result the start time is moved after midnight In this situation the activity is aborted e Trains booked to start after midnight will instead be started at the beginning of the day The following rules apply for Al trains e Trains booked to start before midnight will be started at the end of the day but will continue to run if terminating after midnight e Trains formed out of other trains starting before midnight will still be started if the incoming train is delayed and as a result the start time is moved after midnight e Trains
195. ning their relative pulling ability a theoretical approximate value of tractive effort is calculated using the boiler gauge pressure and includes a factor to reduce the value of M E P Thus our formula from above becomes TE Cyl 2 x 0 85 x BP x d2xs D Where BP Boiler Pressure gauge pressure psi 0 85 factor to account for losses in the engine typically values between 0 7 and 0 85 were used by different manufacturers and railway companies Factor of Adhesion The factor of adhesion describes the likelihood of the locomotive slipping when force is applied to the wheels and rails and is the ratio of the starting Tractive Effort to the weight on the driving wheels of the locomotive FoA Wd TE Where FoA Factor of Adhesion TE Tractive Effort lbs Wd Weight on Driving Wheels Ibs Typically the Factor of Adhesion should ideally be between 4 0 amp 5 0 for steam locomotives Values below this range will typically result in slippage on the rail Indicated HorsePower IHP Indicated Horsepower is the theoretical power produced by a steam locomotive The generally accepted formula for Indicated Horsepower is I H P Cyl 2 x M E P x L x A x N 33000 Where IHP Indicated Horsepower hp Cyl number of cylinders M E P mean effective pressure of cylinder psi L stroke of cylinder piston ft A area of cylinder sq in N number of cylinder piston strokes per min NB two piston strokes for every
196. nly Friction Davis A journal Asper icaspere or roller bearing f ORTSDavis_A 502 8N RTSD A WA N Ibf FCal N ORTSDAVIS AER mechanical ae use Peace to ew ORTSDavis_A 502 8lb sgt calculate friction As per loco specs z F Davis A flange ORTSDavis_B 1 5465Nm s ORTSDavis B x WAG friction Nm s Ibf mph P Mew ORTSDavis_B 1 5465Ibf mph Page 92 of 206 As per loco specs Davis A air Nm s42 ORTSDavis_C 1 43Nm s 2 ORTADAN EAk WAG resistance friction Ibf mph 2 ase rea Men ORTSDavis_C 1 43lbf mph 2 calculate Roller Friction Roller defaults ORTSBearingType Roller ORTSBearingType x WAG Bearing type ON i to friction New NB leave out if not known or a friction bearing bearing Total weight on ORTSDriveWheelWeight x ENG the locomotive Mass As per loco specs New SUPENA RIENE aa a NB can be left out if not known driving wheels Curve Speed Limit Determines the fC louise ani ORTSUnbalancedSuperElevation 3in DaHcleney As per vehicle ORTSUnbalancedSuperElevation ORTSUnbalancedSuperElevation x WAG Unbalanced Distance p New p SuperElevation specs 0 075m p NB can be left out if not known applied to carriage ORTSTrackGauge 4ft 8 5in ORTSTrackGauge 4 708ft ORTSTrackGauge 1 435m A ORTSTrackGauge x WAG Track gauge Distance s per railway Rie specs NB can be left out if not known
197. nt unit to accepts accepts Mass kg kg kg t t metric tonne 1 000 kg lb lb t uk Imperial ton 2 240 Ib t us US ton 2 000 Ib Distance mm cm cm m m m km in in in 2 in 2 half inch historic unit for tyre diameters ft mile Area m 2 m 2 m 2 ft 2 ft 2 Ft 2 FtA2 diesel Volume 1 fuel 1 litres m 3 m 3 in 3 in 3 ft 3 other ft 3 ft 3 e g BoilerVolume g uk Imperial gallons g us US gallons gal US gallons gals gals US gallons Page 205 of 206 Measure Default Applies OR MSTS Comment unit to accepts accepts Time second s m h Current amp a amp Voltage volt v kv Mass Rate of g h Change kg h lb h lb h lb h Speed m s other m s m s metres per second km h kph kph kilometres per hour kmh kmh misspelling accepted by MSTS mph dynamic mph mph miles per hour brake Frequency hz hz Hertz rps revolutions per second rpm Force N n n Newton kn kn lbf Pounds force lb Power w w Watt kw hp horsepower Stiffness n m n m n m Newtons per metre Resistance n m s n m s n m s Newtons per metre per second ns m Newton seconds per metre Angular n rad s n rad s Resistance Page 206 of 206 Measure Default Applies OR MSTS Comment unit to accepts accepts air Press
198. nt and how far away you are from others You can also look if you are acting as dispatcher the server always is the dispatcher or as client QO A player joined will have the same weather time and season as the server no matter what are the original choices The player train may join the world and find that it is inside another train Don t panic you have two minutes to move your train out before OR thinks you want to couple with that train Al trains are added by the server and broadcast to all players As a client do not start an activity with Al trains moreover it is recommended that you start in Explore mode on the client You can jump to see other trains in sequence by pressing Alt 9 OpenRails will cycle through all trains active on the server with each key press As some trains may be far away OpenRails may need a few seconds to load the surrounding scenery Thus you may temporarily see a blank screen You can press F7 to see train names You can press 9 to return to seeing your own train Locations of trains from other players are sent over the Internet Because Internet routings vary moment to moment there may be some lag and trains may jump a bit as OpenRails tries to update the locations with information received Page 173 of 206 You can couple decouple as usual As coupling is controlled in the server a player needs to drive slowly so that the server will have accurate information of train positions If two playe
199. o place limits on the power of a locomotive depending upon the design factors used 8 4 1 3 Locomotive Types During the course of their development many different types of locomotives were developed some of the more common categories are as follows e Simple simple locomotives had only a single expansion cycle in the cylinder e Compound locomotives had multiple steam expansion cycles and typically had a high and low pressure cylinder e Saturated steam was heated to only just above the boiling point of water e Superheated steam was heated well above the boiling point of water and therefore was able to generate more work in the locomotive e Geared locomotives were geared to increase the tractive effort produced by the locomotive this however reduced the speed of operation of the locomotive Superheated Locomotives In the early 1900s superheaters were fitted to some locomotives As the name was implied a superheater was designed to raise the steam temperature well above the normal saturated steam temperature This had a number of benefits for locomotive engineers in that it eliminated condensation of the steam in the cylinder thus reducing the amount of steam required to produce the same amount of work in the cylinders This resulted in reduced water and coal consumption in the locomotive and generally improved the efficiency of the locomotive Superheating was achieved by installing a superheater element that effective
200. o report a Decided Bug on our Bug Tracker before a developer has declared your Maybe Bug a real bug 19 5 Additional Notes Please do not post feature requests as a Maybe Bug to the Bug Tracker on Launchpad Please do not report the same bug multiple times just because the first report did not get attention within a short time Sorting out the resulting confusion can slow things down even more Please do not report Bugs directly to the Bug Tracker when you are not 100 sure it s a real significant bug or have not been asked to do so Don t be offended by bug statuses they often sound harsher than they really mean like Invalid Don t expect a speedy response in general issues will get looked at as and when people have the time Be prepared to expand upon the initial report it is remarkably easy to forget some crucial detail that others need to find and fix your bug so expect to be asked further questions before work can begin Try to avoid comments that add no technical or relevant detail if you want to record that the bug affects you Launchpad has a dedicated button at the top Does this bug affect you If you wish to follow the progress of someone else s bug report and get e mail notifications you can subscribe to bug mail from the sidebar 19 6 Summary Bug Report Checklists 19 6 1 Maybe Bug e New topic in appropriate sub forum e Topic Title Open Rails V lt version gt Bug lt description gt e Descript
201. ociated graphical representations of Open Rails are the property of openrails org All other third party brands products service names trademarks or registered service marks are the property of and used to identify the products or services of their respective owners 1 3 Copyright Acknowledgment and License 2009 2015 openrails org This document is part of Open Rails Open Rails is free software you can redistribute it and or modify it under the terms of the GNU General Public License as published by the Free Software Foundation either version 3 of the License or any later version You should have received a copy of the GNU General Public License as part of the Open Rails distribution in Documentation Copying txt If not see http www gnu org licenses Page 1 of 206 2 New in This Release Here are the features which have been added or substantially changed since v0 9 was released Extremely high compatibility with MSTS content Train operation accordingly to timetables in csv format entered with a specific editor Support for languages other than English Support of 3D cabs Train physics far more realistic than in MSTS Some experimental features have been added which you can turn on some of them may affect performance Compatibility with MSTS environment files Extended Al train shunting Adhesion linked to weather Support for DDS textures Extended viewing distance Page 2 of 206 3 Introduction 3 1 What is Open R
202. ock trap is actually sprung If a passing location contains platforms and there are passenger trains which are booked to stop there OR will try to locate an alternate platform on the passing path and if it can find it this Page 131 of 206 platform will replace the original one as the stop platform This behavior occurs only if the Location linked Passing Path Processing option has been checked Selecting this type of passing path with the related experimental option processing can lead to considerable changes in the behaviour of trains on single track routes and behaviour that is certainly significantly different from that in MSTS 10 12 Other Comparisons Between Running Activities in ORTS or MSTS 10 12 1 End of run of Al trains Al trains end their run where the end point of their path resides as in MSTS 10 12 2 Default Performance and Performance Parameters If the Al train does not make station stops its maxspeed not considering signal soeedpost and route speed is given by the first MaxVelocity parameter in the con file expressed in meters per second multiplied by the Default performance parameter divided by 100 that can be found and modified in the MSTS AE in the Service editor Such parameter divided by 100 is written by the AE in the srv file as Efficiency If the Al train makes station stops its maxspeed depends from the Performance parameter for every route section as can be seen and defined in the
203. ode as there are no Al trains when running in this mode If an alternative path is defined using the Passing Path definition in MSTS Activity Editor and the train is setting a route to the start node of this alternative path it will check if a deadlock is set for the related end node If so and the alternative path is clear it will take the alternative path allowing the other train to use the main path If the alternative path is already occupied the train will wait short of the node where the path starts or the last signal in front if any this is to prevent blocking both tracks which would leave the opposite train nowhere to go Further rules for the use of alternative paths e Trains from both direction must have the same main path through the area Page 127 of 206 e f only one train has an alternative path defined and the trains are to pass that train will always use the alternative path the other train will always use the main path regardless of which train arrives first e f both trains have an alternative path defined and the trains are to pass the first train to clear its route will take the alternative path Note that this need not always be the first train to arrive it could be that the train which first clears its path takes much longer to actually get to the passing loop 10 6 Reversal Points If a reversal point is defined the path will be extended beyond that point to the end of the section this is to the n
204. ode containing the bug fix has been released in an official release 19 8 Disclaimer Having posted a bug report in a forum or in Launchpad does not generate any obligation or liability or commitment for the OR development team to examine and fix the bug The OR development team decides whether it will examine and fix the bug on a completely voluntary and autonomous basis Page 198 of 206 20 Open Rails Software Platform Inside view 20 1 Architecture To better understand how the Open Rails game operates performs and functions the architecture diagram below lays out how the software code is organized The architecture of the Open Rails software allows for modular extension and development while providing standardized methods to customize the simulation experience amp Please note that this diagram includes many capabilities and functions that are yet to be implemented 3D Viewer scenery track terrain appearance sky water sun moon Dispatch time of day effects weather season effects Board shadows lights vi forest regions AR appearance of interactive objects behaviour and appearance of animated objects hazards ete appearance of signals behaviour and annearance of smoke Simulation Loco Viewers Controls Cab Viewer Camera Controls Player Simulator Engine Controls i Simulation State Ihe modules torAl and Signals can be replaced on a per TE Signals route
205. on English keyboards just after your train is coupled or uncoupled or when you just gain back the control of your own train 9 Use Shift E to gain control of your own train after uncoupling 10 Use other communication tools such as Ventrillo or Skype to communicate with other players 11 Always completely stop before uncoupling trains with two players coupled together 12 9 Possible Problems e A server may not be able to listen on the port specified Restart the server and choose another port e f you cannot connect to the server verify sure you have the correct IP address and port number and that the server has the port opened e f other player have rolling stock you do not have that train will automatically replace cars from your own folder and this replacement may make the consist interesting e You may join the game and see you ve selected the same start point as someone else and that your train is inside another train Move the trains apart within two minutes and it will be fine e f your train is moving too quickly when trying to couple the process may not work and weird things can happen e As the server has absolute control clients may notice the switch just changed will be changed back a few seconds later if the server controlled train wants to pass it e Coupling uncoupling the same set of trains may end up with weird things e Ctrl E locomotive switch may have train cars flipped Page 176 of 206
206. on is within the platform boundaries is different for player trains and Al trains For player trains an individual check is made on every passenger wagon to check if it is within the plaform boundaries it is assumed that this is OK if at least two thirds of the wagon are within For Al trains instead the number of wagons engines within the platform is computed and all of them up to the number of the passenger wagons in the consist are considered as Page 132 of 206 passenger wagons The player or Al train boarding time is added to the real arrival time giving a new departure time this new departure time is compared with the scheduled departure time and the higher value is selected as the real departure time Al freight trains stop for 20 seconds at stations A train is considered to be a passenger train if at least one wagon or engine carries passengers Al real freight trains 0 passenger cars stop 20 seconds at stations as in MSTS if scheduled starting times are not present If they are present the freight trains will stop up to the scheduled starting time or up to the real arrival time plus 20 seconds whichever is higher A special behaviour has been introduced for trains with more than 10 cars and having a single passenger car This type of train has been used in MSTS to have the possibility of also defining schedules for freight trains These trains are managed like MSTS as passenger trains with the rules defined above However a
207. on must be deleted manually otherwise the program will still use this older version If a route is edited such that the tdb might have been changed all binary paths must be deleted Consist row The consist row defines the consist used for that train This field is compulsory However if the train is run as an Al train and it is formed out of another train see below the consist information is ignored and the train uses the consist of the train out of which it was formed For the player train the consist is always used even if the train is formed out of another train The consist definition must be a con file as defined by the MSTS Activity Editor and must be stored in the defined consist directory Also a more complex syntax of the consist definition is possible as described below This allows a consist definition to be not just a single string directly referring to a file but a combination of strings with the possibility to use part of the consist in reverse The general syntax is consist reverse consists reverse Example a loco hauled train using the same set of coaches running in both directions Two consists are defined c_loco and c_wagons The consist definitions which can now be used are c_loco c_wagons and for reverse c_loco reverse c_wagons reverse Please note that reverse always applies only to the sub consist with which it is defined not for the complete combined cons
208. or is similar in function to MSTS It records the required Arrival time of your train and the actual arrival time as well as the required Depart time and the actual departure time A text message alerts the engineer as to the proper departure time along with a whistle or other departure sound Next Station Binario 2 10 08 25 Distance Arrive Actual Depart Actual 09 59 00 09 59 00 10 02 00 2 5 km 10 07 00 10 12 00 7 4 13 Odometer The odometer display appears in the centre of the main window toggled on or off by the keys Shift Z The direction of the count is toggled by the keys Shift Ctrl Z and the odometer is reset or initialized by Ctrl Z When set for counting down it initializes to the total length of the train As the train moves the odometer counts down reaching zero when the train has moved its length When set for counting up it resets to zero and measures the train s total movement For example if the odometer is set for counting down and you click Ctrl Z as the front of the train passes a location then when it reaches zero you will know without switching views that the other end of the train has just reached the same point e g the entrance to a siding etc Page 46 of 206 7 5 Dispatcher Window The dispatcher window is a very useful tool to monitor and control train operation The Dispatcher window option must be selected The dispatcher window is actually created by pressing Cirl 9 The window is
209. or the runtime they can run on any platform that supports the XNA Framework with minimal or no modification of the Game engine A A license fee is payable to Microsoft to use XNA Game Studio for Xbox 360 games At this time the Open Rails team has not investigated whether the Open Rails software is suitable for Xbox 20 3 Frames per Second FPS Performance For the current release the Open Rails development team has untethered the FPS rate from the sync rate of the monitor This allows the development team to more easily document performance improvements The Open Rails team at a later date may decide to limit FPS to the sync rate of the monitor 20 4 Game Clock and Internal Clock Like other simulation software Open Rails software uses two internal clocks a game clock and an internal clock The game clock is required to synchronize the movement of trains signal status and present the correct game environment The internal clock is used synchronize the software process for optimal efficiency and correct display of the game environment The Open Rails team is dedicated to ensuring the game clock properly manages time in the simulation so that a train will cover the proper distance in the correct time The development team considers this vital aspect for an accurate simulation by ensuring activities run consistently across community members computer systems 20 5 Resource Utilization Because Open Rails software is designed for Micr
210. ore the description for train cars physics is also valid for locomotives because a locomotive is a special case of a train car All parameters are defined within the wag or eng file The definition is based on MSTS file format and some additional ORTS based parameters To avoid possible conflicts in MSTS the ORTS prefix is added to every OpenRails specific parameter such as ORTSMaxTractiveForceCurves The wag or eng file may be placed as in MSTS in the TRAINS TRAINSET TrainCan folder where TrainCar is the name of the train car folder If OR specific parameters are used or if different wag or eng files are used for MSTS and OR the preferred solution is to place the OR specific wag or eng file in a created folder TRAINS TRAINSET TrainCanOpenRails see here for more 8 1 Train Cars WAG or Wagon Part of ENG file The behavior of a train car is mainly defined by a resistance resistive force a force needed to pull a car Train car physics also includes coupler slack and braking In the description below the Wagon section of the WAG ENG file is discussed 8 1 1 Resistive Forces Open Rails physics calculates resistance based on real world physics gravity mass rolling resistance and optionally curve resistance This is calculated individually for each car in the train The program calculates rolling resistance or friction based on the Friction parameters in the Wagon section of wag eng file Open Rails identifi
211. ose Main Route or Side Route to switch They can also click on a signal green red or orange dot and choose to change the light The Dispatcher can choose a player and give the player right to throw switches and change signals by clicking the button Assist The right can be revoked by click the Normal button The Dispatcher can choose a player from the avatar list and remove that player from the game You can send a text message by typing in the top left text input area and view the most recent 10 messages from the viewing area One can send message to all after finishing it or select some avatars and send a message to those selected Page 175 of 206 12 8 Summary of Multi Player Procedures 1 Server can start an activity or Explore Clients must choose to Explore the route or start with an activity without Al trains 2 Missing rolling stock in other players consists will be automatically replaced by existing cars from local directory 3 You have two minutes after joining the game to move your train out of other trains 4 Use Alt 9 to see other trains 9 to see your own train Ctrl 9 to view hide the dispatcher window Use the mouse wheel to zoom and left mouse button to pan the dispatcher window 5 We can send and read messages from the dispatcher window 6 Use Ctrl Alt F11 to see the path trains will follow and F7 to see train names 7 Move trains slowly when trying to couple 8 Use and Shift
212. osofts XNA game framework it natively exploits today s graphics cards ability to offload much of the display rendering workload from the computer s CPU 20 6 Multi Threaded Coding The Open Rails software is designed from the ground up to support up to 4 CPUs either as virtual or physical units Instead of a single thread looping and updating all the elements of the simulation the software uses four threads for the main functions of the software Thread 1 Main Render Loop RenderProcess Thread 2 Physics and Animation UpdaterProcess Thread 3 Shape and Texture Loading Unloading LoaderProcess Thread 4 Sound There are other threads used by the multiplayer code as each opened communication is handled Page 200 of 206 by a thread The RenderProcess runs in the main game thread During its initialization it starts two subsidiary threads one of which runs the UpdaterProcess and the other the LoaderProcess It is important that the UpdaterProcess stays a frame ahead of RenderProcess preparing any updates to camera sky terrain trains etc required before the scene can be properly rendered If there are not sufficient compute resources for the UpdaterProcess to prepare the next frame for the RenderProcess the software reduces the frame rate until it can catch up Initial testing indicates that stutters are significantly reduced because the process LoaderProcess associated with loading shapes and textures
213. otive it is suggested that the following settings be considered for selection in the Open Rails options menu e Break couplers e Curve speed dependent e Curve resistance speed e Hot start e Tunnel resistance dependent NB Refer to the relevant sections of the manual for more detailed description of these functions Locomotive Starting Open the cylinder cocks They are to remain open until the engine has traversed a distance of about an average train length consistent with safety The locomotive should always be started in full gear reverser up as high as possible according to the direction of travel and kept there for the first few turns of the driving wheels before adjusting the reverser Page 87 of 206 After ensuring that all brakes are released open the regulator sufficiently to move the train care should be exercised to prevent slipping do not open the regulator too much before the locomotive has gathered speed Severe slipping causes excessive wear and tear on the locomotive disturbance of the fire bed and blanketing of the spark arrestor If slipping does occur the regulator should be closed as appropriate and if necessary sand applied Also when starting a slow even increase of power will allow the couplers all along the train to be gradually extended and therefore reduce the risk of coupler breakages Locomotive Running Theoretically when running the regulator should always be fully open and the speed of the
214. p development is shown on the pictures below The Wheel slip value is displayed as a value relative to the best adhesion conditions for actual speed and weather The value of 63 means very good force transition For values higher than Wagon ORTSadhesion ORTSSlipWarningThreshold or 70 by default the Wheel slip warning is displayed but the force transition is still very good This indication should warn you to use the throttle very carefully Exceeding 100 the Wheel slip message is displayed and the wheels are starting to speed up which can be seen on the speedometer or in external view 2 To reduce the wheel slip use throttle down sanding or the locomotive brake FORCE INFORMATION Wheel slip Axle drive force Axle brake force Step dividing ac Solver Stability correctidn Axle out force 63 1 5 185948 N ON desteps frame RungeKutta4 164784 N 1269 kW Wheel slip warming BORAN KORATO Wheel slip 519 Axle drive force Axle brake forceO Step dividing aci i2 steps frame Solver RungeKutta4 Stability correctidn Axle out force 177617 N 1576 kW 0 5 Page 72 of 206 Wheel slip FORCE INFORMATION Wheel slip 59 Axle drive force 18458 Axle brake force p dividing aci Stability correctidn Axle out force 152464 N 3646 kW The actual maximum of the tractive force is based on the Curtius Kniffler adhesion theory and can be adjusted by a following paramet
215. path the starting time the season and the weather with the relevant buttons To select the consist you have two possibilities either you click under Consist and the whole list of available consists will appear or you first click under Locomotive where you can select the desired locomotive and then click under Consist where only the consists led by that locomotive will appear If you instead select a specific activity you won t have to perform any further selections If you have selected the related Experimental Option at runtime you can switch Autopilot mode on or off which allows you to watch OR driving your train as if you were a trainspotter or a visitor in the cab Page 10 of 206 5 4 2 Timetable Mode If you select the radio button Timetable the main menu window will change as follows ix Installation profile What s new Update to X2901 E GTA TIR Mactier be Route Greater Toronto Area V1 5 Route Canadian National Greater Toronto Area V1 5 Greater Toronto Area V1 5 Subdivisions indude Mode Union Station Rail Corridor USRC 4 miles C Activity Timetable Timetable Timetable set Georgetown GO Create Georgetown GO Create Player Timetable Georgetown GO Create Timetable Georgetown GO Create hd Player Train Train 206 Selected train 206 Start time 6 35 create 6 00 ahead 208 Consist GOTransitWestR Season Summer Locomotive F59PH GO 523 The EMD F59PH Passenger
216. pect is active the speed limit will not be changed This can for instance be used if a route linked speed limit is required This aspect can then be set for a route for which no speed limit is required An aspect can also be set to not have an active speed limit but with a special signal flag OR_SPEEDRESET If this flag is set the speed limit will be reset to the limit as set by the last speed limit sign This can be used to reset any limit imposed by a specific signal aspect Note that this does not overrule any speed limits set by another SPEED signal as those limits are processed as if set by a speed limit sign Example SignalType SpeedSignal SignalFnType SPEED SignalLightTex litex SignalDrawStates 5 SignalDrawState 0 speed25 SignalDrawState 1 speed40 SignalDrawState 2 speed50 SignalDrawState 3 speed60 Page 139 of 206 SignalDrawState 4 speed70 SignalAspects 5 SignalAspect APPROACH_1 speed25 SpeedMPH 25 SignalAspect APPROACH_2 speed40 SpeedMPH 40 SignalAspect APPROACH_3 speed50 SpeedMPH 50 SignalAspect CLEAR_1 speed60 SpeedMPH 60 SignalAspect CLEAR_2 speed70 SpeedMPH 70 SignalNumClearAhead 2 Notes e The SignalNumClearAhead value must be included to satisfy syntax but has no function e The actual speed can be set either using fixed aspect selection through user functions or ca
217. pen Rails Source Trunk Documentation folder When System is selected OR automatically selects the language of the hosting Windows if the language is available 6 1 9 Pressure unit The player can select the unit of measure of brake pressure in the HUD display see here for HUD information When set to automatic the unit of measure is the same as that used in the cabview of the locomotive 6 1 10 Other units This selects the units displayed for length mass pressure etc in the F5 HUD of the simulation The option Player s Location sets the units according to the Windows Language and Region settings on the player s computer The option Route set the units based on the data in the route files The other options are self explanatory The F5 HUD uses the abbreviations stn for short tons 2000 Ib and t or tn for metric tons tonnes Note that the units displayed by the F4 Track Monitor e g velocity and distance are always based on data read from the route files Page 16 of 206 6 2 Audio Options options jj x General Audio video simulation Keyboard Data logger Evaluation Content Updater Experimental JV MSTS Bin compatible sound 10 lt i sound volume 5 Ea Sound detail level Except for very slow computers it is suggested that you leave the MSTS Bin compatible sound option checked and set the Sound detail level to 5 The soun
218. pilot mode to player driven mode The jerky movements of the levers in autopilot mode are the result of the way that OR pilots the train 7 8 Changing the View Open Rails provides all of the MSTS views plus additional view options e A 3D interior cabview option where a 3D cabview file is available e Control of the view direction using the mouse with the right hand button pressed e The exterior views keys 2 3 4 6 and the interior view key 5 can now be attached to any train in the simulation by the new Ctrl 9 key operation All of the required key presses are shown by the F1 Help key in the game Note that some of the key combinations are different in Open Rails than in MSTS For instance in Open Rails the cab Headout views from the cab view are selected by the Home and End keys and the view direction is manipulated by the four arrow keys or the mouse with the right hand button depressed The commands for each of the views are described below e Key 1 opens the 2D driver s view from the interior of the controlling cab of the player locomotive The entire cab view can be moved to other cabs if available in the player train by successive presses of Ctrl E the train must be stopped and the direction switch in Neutral The view can be changed to the fixed left front or right view by clicking the left up or right arrow keys The 2D view is constructed from three 2D images so the actual camera position
219. position in the sky This provides an extremely realistic representation of the time of day selected for the activity For example 12 noon in the winter will have a lower sun position in the northern hemisphere than 12 noon in the summer Open Rails game environment will accurately represent these differences Once the activity is started Open Rails software allows the player to advance or reverse the environment time of day independently of the movement of trains Thus the player train may sit stationary while the time of day is moved ahead or backward The keys to command this depend from the national settings of the keyboard and can be derived from the key assignment list obtained pressing F1 In addition Open Rails offers functionality similar to the time acceleration switch for MSTS Use Alt Page Up or Alt Page Down keys to change the speed of the game clock Page 53 of 206 In a multiplayer session all clients time weather and season selections are overridden by those set by the server 7 10 2 Weather When in activity mode Open Rails software determines the type of weather to display from the Weather parameter in the MSTS Activity file In the other modes the weather can be selected in the start menu 7 10 3 Modifying Weather at Runtime He following commands are available at runtime keys not shown here can be found in the key assignment list obtained pressing F1 e Overcast increase decrease increases and decreas
220. pproaching the signal in meters speed required speed in meters sec Note that the speed is checked only when the train is within the defined distance Important note although the script uses float to define local variables these are in fact all integers This is also true for the values used in these functions if direct values are used these must be integer values The values may be set directly in the signal script either as variables or as numbers in the function call However it is also possible to define the required limits in the sigcfg dat file as part of the signal definition The syntax definition for this is ApproachControlLimits lt definitions gt Allowed definitions e Position e Positionm position in meters e Positionkm position in kilometers e Positionmiles position in miles e Positionyd position in yards e Speed e Speedkph speed in km hour e Speedmph speed in miles hour These values are referenced in the script file using the following variable names e Approach_Control_Req_Position e Approach_Control_Req_Speed These variables must not be defined as floats etc but can be used directly without prior definition Note that the values as defined in the sigcfg dat file will be converted to meters and meters sec and rounded to the nearest integer value Page 141 of 206 Example This example is for a three head search light signal which uses Approach Control if the rout
221. psi series indicated of x amp y values horsepower increases Notes Existing means a parameter in original MSTS or added through MSTS BIN New means added as part of OR development Possible Locomotive Reference Info Page 95 of 206 i Steam Locomotive Data http orion math iastate edu jdhsmith term slindex htm ii Example Wiki Locomotive Data http en wikipedia org wiki SR_ Merchant Navy class Testing Resources for Open Rails Steam Locomotives http coalstonewcastle com au physics Page 96 of 206 8 5 Engines Multiple Units in Same Consist or Al Engines In an OR player train one locomotive is controlled by the player while the other units are controlled by default by the train s MU multiple unit signals for braking and throttle position etc The player controlled locomotive generates the MU signals which are passed along to every unit in the train For Al trains the Al software directly generates the MU signals i e there is no player controlled locomotive In this way all engines use the same physics code for power and friction ig This software model will ensure that non player controlled engines will behave exactly the same way as player controlled ones 8 6 Open Rails Braking Open Rails software has implemented its own braking physics in the current release It is based on the Westinghouse 26C and 26F air brake and controller system Open Rails braking will parse the type of braking from the
222. r at Launchpad in order to be able to report a bug Once that is done follow the steps the software takes you through In Summary copy and paste the quick description of the bug you also entered as a forum thread name for the Maybe Bug report Next look through the list of topics Launchpad thinks your bug may be related to maybe your issue has already been reported If you cannot relate to any of the suggested bugs click the No need a new bug report button and continue In the Further Information field enter the same info you also gave in the Maybe Bug report copy and paste Screenshots may need to be added as attachments and you will also need to re upload the OpenRailsLog txt file Do not forget to include all info you added in additional posts to the original Maybe Bug report and also add a link to the latter at the bottom of the Further Information field Once your bug has been submitted keep adding further information only in additional posts in order to avoid the risk of developers missing the additional info The above description is available in a condensed checklist form below Important Do not say All information is included in the linked thread as skimming through a Page 196 of 206 thread for the crucial bit of information is a really annoying task Instead please provide a concise but complete summary of the Maybe Bug thread in the Further Information field Important Please do not rush t
223. r trains couple together one of them will become a helper and a message will be shown on the left indicating that the player is in Helper mode A player in Helper mode cannot control their consist as it falls under control of the lead locomotive By pressing Shift E you can swap Helper status with another player on the train Always press and Shift to reset brakes each time after coupling uncoupling Players can uncouple their own trains Players in the uncoupled trains may need to press Shift E to gain control otherwise the uncoupled trains may become a loose consist Always stop completely before uncoupling otherwise weird things may happen Players may also need to press keys for resetting brake state after uncoupling see here Players can throw switches by pressing G or Shift G and the switch state will change for all players on the server The server has a choice to disallow clients to throw switches manually Both switches and signals are synchronized through the server default every 10 seconds Player actions such as sounding the horn or bell turning on or off headlights moving the pantograph up and down opening and closing doors moving the mirrors are broadcast to other players Currently only the player controlled train has the cone of light shown A separate Dispatcher Window also shown below showing the route signals and trains can be activated by pressing Ctrl 9 By default it is minimized and you must click on
224. rain too far ahead will immediately have an effect on the running of a timetable If signals clear too far ahead on a single track line for instance it means trains will clear through passing loops too early which leads to very long waits for trains in the opposite direction This in turn can lead to lock ups as multiple trains start to converge on a single set of passing loops Similar situations can occur at large busy stations if trains clear their path through such a station too early it will lead to other trains being kept waiting to enter or exit the station If forms or triggers commands are used to link reversing trains the problem is exacerbated as any delays for the incoming train will work through on the return working 11 5 6 2 Call On Signal Aspect Signalling systems may allow a train to call on i e allow a train onto a section of track already occupied by another train also known as permissive working Page 167 of 206 The difference between call on and permissive signals STOP and PROCEED aspects is that the latter is also allowed if the train in the section is moving in the same direction but call on generally is only allowed if the train in the section is at a standstill When a signal allows call on Al trains will always pass this signal and run up to a pre defined distance behind the train in the section In station areas this can lead to real chaos as trains may run in
225. re actually used are required but many third party trainsets refer to original MSTS files like cabviews and in particular sound files Many consists refer to engines or wagons from the original MSTS routes but those can be easily replaced with other engines or wagons e SOUND root folder Only very few routes provide a full new sound set so the original files included in this folder are usually needed Page 8 of 206 5 Getting Started After having successfully installed Open Rails see the Installation Manual to run the game you must double click on the Open Rails icon on the desktop or on the OpenRails exe file The OpenRails main window will appear This displays your available MSTS installations Hix Installation profile What s new Update to X2901 Default a 7 Route Marias Pass Route Location Montana USA Marias Pass w Route length 163 miles 270 km Mode Railroad The Burlington Northern and Santa Fe Railway Company BNSF Activity C Timetable Locomotive Dash 9 Activity The GE 9 44CW commonly called the Dash 9 a modern diesel electric locomotive most effective pulling loads over long stretches at moderate speeds Explore Route mz Locomotive type Diesel Electric Locomotive ae Dash 9 Consist 2 Dash 9 30 mixed bad Starting at Bison Y Heading to Grizzly Time fiz00 Duration Season Summer Difficulty Weather Clear m Singleplayer Multiplayer an Options
226. reen One could of course use two different states for yellow at C but that soon gets rather complicated and also one might soon run out of available aspects With the new function it becomes simpler if B is at yellow A can directly check the state of C and so decide if it can clear to green or must show yellow Suppose state SIGASP_STOP shows red SIGASP_APPROACH_1 shows yellow and SIGASP_CLEAR_1 shows green for all signals the related part of the script could be as follows if next_sig_Ir SIGFN_NORMAL SIGASP_APPROACH_1 if next_nsig_Ir SIGFN_NORMAL 2 SIGASP_STOP state SIGASP_APPROACH_1 else state SIGASP_CLEAR_1 The function is also very useful when a distant signal is to reflect the state of more than one home signal but dist_multi_sig_mr cannot be used because there is no distant signal further on 10 15 8 Signalling Function HASHEAD This function can be used for any optional SIGNAL_HEAD as defined for the relevant signalshape in sigcfg dat to check if that has been selected for this signal or not Using DECOR dummy heads this allows these heads to be used as additional user settings and as such are kind of an extension to the four available SIGFEAT_USER flags Please note that this function is still experimental Function call state HASHEAD headname Function returns 1 if head is set else 0 Page 148 of 206 10 16 OR Specific Additions to Activity Files The additions described
227. release utilizes a peer to peer mode thus each player must start and run OR on their computer A special server was deployed so you may not need to set up a server from your own computer 12 2 Getting Started One player starts as the server and then the others connect as clients Each player will choose and operate their own consist and locomotive but also can jump to watch others consists or couple with others to work as lead and DPU through a tough route or even act as a dispatcher to control signals and switches manually 12 3 Requirements The server can start an activity or choose to explore Clients MUST choose to explore or a simple activity with timetable but no Al trains The client must select the same route played by the server It is not required for everyone to have the same set of paths rolling stocks and consists 12 4 Technical Issues If you start the server at home it will be necessary for you to learn your public IP address You may also need to configure your router for port forwarding Details to accomplish these are given in sections that follow It is recommended that you do not run a server for a prolonged period as the code has not been tightened for security Only tell people you trust that you have a server started 12 5 Technical Support You can ask questions in the following forums trainsim com elvastower com uktrainsim com etc A web forum has been set for you to post questions and announce serv
228. reset the adhesion model If you experience such behavior most of time use the basic adhesion model instead by pressing DebugToggleAdvancedAdhesion Ctri Alt X keys by default Another option is to use a Moving average filter available in the Simulation Options The higher the value the more stable the simulation will be However the higher value causes slower dynamic response The recommended range is between 10 and 50 To match some of the real world features the Wheel slip event can cause automatic zero throttle setting Use the Engine ORTS ORTSWheelSlipCausesThrottleDown Boolean value of the ENG file Page 73 of 206 8 2 Engine Classes of Motive Power Open Rails software provides for different classes of engines diesel electric steam and default If needed additional classes can be created with unique performance characteristics 8 2 1 Diesel Locomotives in General The diesel locomotive model in ORTS simulates the behavior of two basic types of diesel engine driven locomotives diesel electric and diesel mechanical The diesel engine model is the same for both types but acts differently because of the different type of load Basic controls direction throttle dynamic brake air brakes are common across all classes of engines Diesel engines can be started or stopped by pressing the START STOP key Y in English keyboards The starting and stopping sequence is driven by a starter logic whic
229. routes where this effect has already been natively introduced for these this option is not recommended 6 10 8 Extended Al train shunting When this option is selected further Al train shunting functions are available This allows for more interesting and varied activities If an activity is run which makes use of these function this option must be selected This option has no effect in Timetable mode The following additional shunting functions are available e Al train couples to static consist and restarts with it e Al train couples to player or Al train and becomes part of it coupled Al train continues on its path e Al train couples to player or Al train and leaves to it its cars coupled and coupling train continue on their path e Al train couples to player or Al train and steals its cars coupled and coupling train continue on their path Page 31 of 206 e Al train uncouples any number of its cars the uncoupled part becomes a static consist With the same function it is possible to couple any number of cars from a static consist for content developers A more detailed description of this feature can be found under Extended Al Train Shunting under Open Rails Train Operation for content developers Selecting this option also enables the waiting points to declare an absolute time of day instead of a waiting point duration A more detailed description of this feature can be found in the related paragraph in the chap
230. rrrnrrnnnneet 178 14 Open Rails Sound Management ssssssnnneneeeeseenrrrrrrrsstrtttrrrntttstttttttnntteserttnerrnnenssennenn eee 182 15 Oper Rails 721 9 arene naan re eee ene aaaea ee ee AEEA ENAA Aa EE eee 186 16 OR specific Route Features xiascccrcccierniciesctetenretertiacens wienertheneieiaratiehnrermereanamienesereeerecetioacenares 191 17 Developing OR Content eens ae eete renee eeer Tome aera area meee meter eon rea eee ete ee ee 192 18 In Case Of Malfunction civiatsran see Sacauzccceainen accotexatecaaven siaeoutctdeceerassdesuta tocerveadadeneatdaeven nnne Ennn nenet 195 19 Open Rails Software Platform 0 0 0 0 cceeecceccee eee eeeeeeeenaeeeeee eee eeeeaaaaaaaaeeeeeeeeeaaaaaaaaaeeeeeeeeeneeaaaaes 199 20 Plans and ROddMapiccciieonicnehnmihinnminnsinnmumh Rae 202 21 Acknowledgements ae ae eee re eee eae ee eee ee EEE EEE EEEn 203 22 APPEndiCe Senna eee ae eee ee ee ee ee oe a ee er ree eee ae 205 1 Cover picture by Max Brisben 1 Legal 1 1 Warranty NO WARRANTIES openrails org disclaims any warranty at all for its Software The Open Rails software and any related tools or documentation is provided as is without warranty of any kind either express or implied including suitability for use You as the user of this software acknowledge the entire risk from its use See the license for more details 1 2 Properties Acknowledgment Open Rails Open Rails Transport Simulator ORTS openrails org Open Rails symbol and ass
231. running train will be shown inclined towards the internal part of the curve 2 When the cab view is selected the cab itself will be shown as inclined towards the internal part of the curve while the external world will be shown as inclined towards the external part the ratio of these two inclinations can be changed at runtime by repeatedly pressing Alt R Four possible ratios are possible Page 29 of 206 Pause Menu Quit Open s Alt F4 Pause Menu Quit Open Rails Alt F4 Save your game F2 Continue playing Escape mnane ji 3 f f i K 9 i a OR implements super elevated tracks using Dynamic Tracks You can change the appearance of tracks by creating a TrProfile sft in the TrackProfiles folder of your route The document How to Provide Track Profiles for Open Rails Dynamic Track docm describing the creation of track profiles can be found in the OpenRails Trunk Source Documentation folder Forum discussions about track profiles can also be found here Page 30 of 206 6 10 2 Automatically tune settings to keep performance level When this option is selected OR attempts to maintain the selected Target frame rate FPS Frames per second To do this it decreases or increases the viewing distance of the standard terrain If the option is selected also select the desired FPS in the Target frame rate window 6 10 3 Double overhead wires MSTS uses a single wire for electrified routes you
232. s These problems are not due to programming errors but to route signal script errors Example part of script only if enabled amp amp route_set if block_state BLOCK_CLEAR normal clear e g state SIGASP_CLEAR_1 else if block_state BLOCK_OCCUPIED amp amp TrainHasCallOn clear on occupied track and CallOn allowed state SIGASP_STOP_AND_PROCEED else track is not clear or CallOn not allowed state SIGASP_STOP Page 146 of 206 10 15 5 TrainHasCallOn_ Restricted Function This function has been introduced because signals with call on aspects can be used not only as entrance signals for stations but also on free line sections that is away from stations TrainHasCallOn always allows call on if the signal is on a free line section This is to allow proper working for USA type permissive signals Some signal systems however use these signals on sections where call on is not allowed For this case the TrainHasCallOn_ Restricted function has been introduced When approaching a station both functions behave the same but on free line sections the TrainHasCallOn_Restricted will never allow call on So in a nutshell Use on approach to stations e TrainHasCallOn and TrainHasCallOn_Restricted e Activity call on not allowed e Timetable call on allowed in specific situations with callon stable or attach commands Use on free l
233. s Also note that immediately after coupling you may also find that the handbrakes of the newly added cars have their handbrakes set to 100 see column headed Handbrk Pressing Shift Shift plus semicolon in English keyboards will release all the handbrakes on the consist as shown below Pressing Shift Shift plus apostrophe on English keyboards will set all of the handbrakes Cars without handbrakes will not have an entry in the handbrake column If the newly coupled cars are to be moved without using their air brakes and parked nearby the brake pressure in their air hose may be left at zero i e their hoses are not connected to the train s air hose Before the cars are uncoupled in their new location their handbrakes should be set The cars will continue to report State Emergency while coupled to the consist because their BC value is zero they will not have any braking The locomotive brakes must be used for braking If the cars are uncoupled while in motion they will continue coasting If the brakes of the newly connected cars are to be controlled by the train s air pressure as part of the consist their hoses must be joined together and to the train s air hose and their angle cocks set correctly Pressing the Backslash key in English keyboards please check the keyboard assignments for other keyboards connects the brake hoses between all cars that have been coupled to the engine and sets the interme
234. s also refers to the Pictures folder by the name My Pictures Page 54 of 206 7 13 Save and Resume Open Rails provides Save and Resume facilities and keeps every save until you choose to delete it During the game you can save your session at any time by pressing F2 You can view the saved sessions by choosing an activity and then pressing the Resume Replay button Open Rails X2900 Route Marias Pass Location Montana USA Route length 163 miles 270 km Railroad The Burlington Northern and Santa Fe Railway Company BNSF Locomotive Dash 9 Vv The GE 9 44CW commonly called the Dash 9 a modern diesel electric locomotive most effective pulling loads over long stretches at moderate speeds This will display the list of any Saves you made for this activity Page 55 of 206 To help you identify a Save the list provides a screenshot and date and also distance travelled in metres and the time and position of the player s train This window can be widened to show the full width of the strings in the left panel mes Settle amp Carlisle Line Short P Srm Saved At Time Distance Tile 24 04 2014 20 04 00 00 04 0 0 6112 7 24 04 2014 19 49 00 00 04 0 0 6112 7 15057 6 24 04 2014 19 27 00 00 06 0 0 6112 7 15057 6 O Saved Ga Invalid saves Delete To prevent crashes and unexpected behaviour Open Rails invalidates games saved from older versions i
235. s alternatively powered on or off At game start the engine is powered on With the keys Shift Y the helper diesel locomotives are alternatively powered on or off At game start the engines are powered on Note that by using the Car Operation Menu you can also power on or off the helper locomotives individually 7 6 2 Initialize Brakes Entering this command fully releases the train brakes Usually the train must be fully stopped for this to be allowed This action is usually not prototypical Check the keyboard assignment for the keys to be pressed The command can be useful in three cases 1 A good number of locomotives do not have correct values for some brake parameters in the eng file MSTS ignores these however OR uses all these parameters and it may not allow the brakes to release fully Of course it would be more advisable to correct these parameters 2 It may happen that the player does not want to wait for the time needed to recharge the brakes however the use of the command in this case is not prototypical of course 3 The player may wish to immediately connect brake lines and recharge brakes after a coupling operation again the use of the command is not prototypical 7 6 3 Connect Disconnect Brake Hoses This command should be used after coupling or decoupling As the code used depends on keyboard layout check the keys to be pressed as described in paragraph 6 5 or by pressing F1 at runtime More information on conn
236. s are described in detail below Some sample activities can be found here Page 133 of 206 10 13 2 Activity Design for Extended Al Train Shunting Functions Activity design can be performed with the MSTS Activity Editor and does not need post processing of the created files 10 13 2 1 Extended Al Functions 1 to 4 these all involve coupling It is not always desired that Al trains couple to other trains because of timing problems for instance in case they were designed to run separately So coupling is activated only if certain conditions are met In general the signal protection rules apply that is an Al train will find a red signal if its path leads it directly to another train So in general these functions can be used only if there are no signals between the coupling train and the coupled train However at least in some cases this can be overcome in two modes e by the activity developer by inserting a double reversal point between the signal and the coupled train this works only if the double reversal point is not in the track section occupied by the coupled train or e by the player forcing the signal to the clear state by using the dispatcher window Coupling with a static consist is not subject to other conditions since if the activity designer decided that the path would lead an Al train up to against a static consist it was also desired that the Al train would couple to it Coupling with another Al train or with
237. s can be defined using the following syntax comment column contains comment only and is ignored when reading the timetable lt blank gt column is extension of preceding column 11 3 3 Row definitions A row is defined by the contents of the first column Default the first column defines the stop location Special columns can be defined using the following syntax comment row contains comment only and is ignored when reading the timetable lt blank gt row is extension of row above path defines train path consist defines train consist Page 152 of 206 start defines time when train is started note defines general notes for this train dispose defines how train is handled after it has terminated 11 3 4 Timing details Each cell which is at an intersection of a train column and a location row can contain timing details for that train at that location Presently only train stop details can be defined Later on passing times can also be defined these passing times can be used to determine a train s delay Control commands can be set at locations where the train stops but can also be set for locations where no timing is inserted as the train passes through that location without stopping 11 4 Timetable Data Details 11 4 1 Timetable Description Although comment rows and columns are generally ignored the contents of the cell at the intersection of the first comment row and first comment column is used a
238. s such a number lt n gt section is occupied by train lt n gt lt n gt section is reserved for train lt n gt either with lt n gt or on its own section is claimed by a train which is waiting for a signal amp always in combination with lt n gt section is occupied by more than one train deadlock info always linked to a switch node possible deadlock location start of a single track section shared with a train running in opposite direction active deadlock train from opposite direction is occupying or has reserved at least part of the common single track section Train will be stopped at this location generally at the last signal ahead of this node active deadlock at that location for other train can be significant as this other train can block this train s path The dispatcher works by reserving track vector nodes for each train An Al train will be allowed to move or start only if all of the nodes up to the next potential passing location are not reserved for another train If this condition cannot be met in Timetable Mode the Al train will not spawn Page 65 of 206 There are other reasons why an Al train might not appear in Timetable Mode The current dispatcher assumes that all routes are unsignaled The dispatcher issues a track authority which is similar to a track warrant to all trains For an Al train to start the tracks it needs must not be already reserved for another train The disp
239. s the timetable description and appears as the timetable s name in the Open Rails menu 11 4 2 Train Details The train name as defined in the first row must be unique for each train in a timetable file This name is also used when referencing this train in a train command see details below The sequence of trains is not important 11 4 3 Location Details At present the possible locations are restricted to platforms as defined in the MSTS Route Editor Each location must be set to the Station Name as defined in the platform definitions The name used in the timetable must exactly match the name as used in the route definition tdb file otherwise the location cannot be found and therefore cannot be processed Also each location name must be unique as otherwise its position in the train path could be ambiguous The sequence of the locations is not important as the order in which the stations are passed by a train is defined in that train s path For the same reason a train s path can be set to just run in between some of the locations or be set to bypass certain stations 11 4 4 Timing Details Each cell at an intersection of train and location can contain the timing details of that train at that location Times are defined as HH mm and the 24 hour clock must be used If a single time is inserted it is taken as the departure time except at the final location If both arrival and departure time are to be defined these
240. se such trains can couple to other trains and so on 2 The coupling train becomes an Incorporated train after coupling that is it has no more cars or locomotives they all become part of the coupled train and is a sort of virtual train In this phase it is not shown in the Consist information HUD It will return to life when an uncoupling command automatic or manual is issued 3 To become an Incorporated train the coupling train before coupling must pass in its path a Waiting Point with value 60001 the effective waiting time is 0 seconds 4 For the coupling train to couple to the rear of the coupled train there are no particular requirements if however you want to have very short runs from coupling train start to coupling moment it could be necessary to insert a couple of reversal points in between or else the train could stop and avoid coupling Please don t disdain double reversals they are sometimes the only way to limit the authority range of a train 5 If the coupling train has to couple to the front of the coupled train obviously a reversal point is needed for the coupling train to be laid somewhere under the coupled train or even farther down in the same track section also in this case there can be a problem of authority that requires that the coupled train has a couple of reversal points after the point where it waits to be coupled 6 The incorporated train has its own path but from coupling to decoupling point it must p
241. settings the train must be fully stopped A sample F5 view with 50 LP is shown below BRAKE INFORMATION Main reservoir 140 psi Car Type BrkCyl BrkPipe AuxRes ErgRes MRPipe RetValve TripleValve Handbrk Conn AnglCock BleedOff 0 0 1P 5 psi 90 psi 90 psi 90 psi Release T A B 0 1 1P 5 psi 90 psi 90 psi 90 psi Release A B 32884 0 1P 0 psi 90 psi 90 psi 90 psi X Release 0 A B 32884 1 1P 0 psi 90 psi 90 psi 90 psi Release 0 A B 32884 3 1P 0 psi 90 psi 90 psi 90 psi Release 0 32884 4 1P 0 psi 90 psi 90 psi 90 psi X Release 0 32884 5 1P 0 psi 90 psi 90 psi 90 psi Release 0 Page 100 of 206 A B A B A B 32884 2 1P 0 psi 90 psi 90 psi 90 psi X Release 0 A B 8 6 2 Dynamic Brakes Open Rails software supports dynamic braking for engines To increase the Dynamic brakes press Period and Comma to decrease them Dynamic brakes are usually off at train startup this can be overridden by the related MSTS setting in the eng file the throttle works and there is no value shown in the dynamic brake line in the HUD To turn on dynamic brakes set the throttle to zero and then press Period Pressing Period successively increases the Dynamic braking forces If the value n in the MSTS parameter DynamicBrakesDelayTimeBeforeEngaging n is greater than zero the dynamic brake will engage only after n seconds The throttle will not work when the Dynamic brakes are on The Dynamic brake force as a
242. simplification for the player has been introduced for the player train if the train stops with the single passenger car outside of the platform the stop is still considered valid All this is compatible with MSTS operation only the fact that the scheduled departure time is considered for Al trains differs as it is considered an improvement 10 13 Extended Al Train Shunting for content developers 10 13 1 General When this option is selected further Al train shunting functions are available Note that this option is not available in Timetable mode The following additional shunting functions are available 1 Al train couples to a static consist and restarts with it 2 Al train couples to a player or Al train and becomes part of it the coupled Al train continues on its path 3 Al train couples to a player or Al train and leaves to it its cars the coupled and coupling train continue on their path 4 Al train couples to a player or Al train and steals its cars the coupled and coupling train continue on their path 5 Al train uncouples any number of its cars the uncoupled part becomes a static consist With the same function it is possible to couple any number of cars from a static consist 6 Al train couples to a player or Al train the resulting combined train runs for part of the path then stops the train is split there into two parts that continue on their own paths join and split function These function
243. ssing Path Processing for content developers Passing paths can be used to allow trains to pass one another on single track routes The required passing paths are defined per train path in the MSTS Activity Editor or in the native ORTS path editor included within TrackViewer The present version is an intermediate stage leading to complete new processing The data structure and processing have already been prepared for the next stage when alternative paths not just a single passing path but multiple paths through a certain area will be defined per location and no longer per train The present version however is still based on the MSTS activity and path definition and therefore is still based on the definition of alternative paths per train Page 130 of 206 The setup of this version is as detailed below e Passing paths defined for the player train are available to all trains in both directions The through path of the player train is taken to be the main path through that location This only applies to Activity mode as there is no predefined player train when running in Timetable mode e Each train can have definitions for additional passing paths these will be available to that train only Note that this implies that there can be more than one passing path per location e When possible passing locations are determined for each pair of trains the train lengths are taken into consideration A location is on
244. st signal If a train is moving and passes a signal in the opposite direction the route behind the train will automatically retract to that signal as that is now the next signal in the reverse route The same restrictions apply with respect to signals ahead when the train is running in reverse The route orientation will not change whatever direction the train is running It is fixed to the orientation of the route as it was the moment the player switched to Manual Mode So changing to a reverse facing cab or changing the position of the loco s reverser does not change the direction of the route orientation This is not a limitation to the train s behaviour as routes are always Page 124 of 206 cleared in both directions It does however affect the display of the F4 and F8 windows as the top bottom direction of these windows is linked to the route direction and will therefore not change if the train reverses To assist the player in his orientation in which direction the train is moving an eye has been added to these displays symbolizing the direction of the cabview and an arrow has been added to symbolize the direction of the reverser The player can set all switches in the train s path using the F8 window or the G Shift G keys The G key will set the first switch ahead of the train as defined by the route direction Shift G sets the switch behind the train It is also possible to set switches as required using the Alt Left Mo
245. stops If the train does accidentally run backward e g due to slipping or setting back after overshooting a platform only safety checks are performed for the rear end of the train with respect to signals switch alignment other trains and end of track There is no check on speed limits behind the train Setting switches using the F8 window or G Shift G is not allowed Setting switches using Alt left mouseclick is possible but is not allowed for switches in the train s path However any switches set manually will automatically be reset by an approaching train according to that train s path So in Auto Mode the train cannot deviate from the defined path A request to clear a signal ahead of the train using the Tab command is only allowed when the track ahead is occupied by another train which is at a stand still and when that track is in the train s route A request to clear a signal which would lead the train off its route is not allowed A request to clear a signal behind the train using Shift Tab is also not possible Auto Mode is intended for normal running under control of signals or traffic control Shunting moves can be performed if fully defined in the train s path using reversal points etc 10 3 1 1 Details on Auto Mode Auto Signal amp Auto Node There are two sub modes to Auto Mode Auto Signal and Auto Node Auto Signal is the normal mode on signalled routes The train s route is generally cleared from si
246. sure in the remaining consist and optionally in the uncoupled consist is maintained The remaining consist will then not go into Emergency state When working with cars in a switch yard cars can be coupled moved and uncoupled without connecting them to the train s air braking system see the F5 HUD for Braking Braking must then be provided by the locomotive s independent brakes A car or group of cars can be uncoupled with air brakes active so that they can be recoupled after a short time without recharging the entire brake line Bottling the Air To do this close the angle cocks on both ends of the car or group before uncoupling Cars uncoupled while the consist is moving that have had their air pressure reduced to zero before uncoupling will coast freely In Open Rails opening the bleed valve on a car or group of cars performs two functions it vents the air pressure from the brake system of the selected cars and also bypasses the air system around the cars if they are not at the end of the consist so that the rest of the consist remains connected to the main system In real systems the bypass action is performed by a separate valve in each car In the F5 HUD Braking display the text Bleed appears on the car s display line until the air pressure has fallen to zero More information about manipulating the brakes during coupling and uncoupling can also be found here 7 4 12 F10 Activity Monitor The Activity Monit
247. system 1P single pipe system V vacuum etc and the current state of the air brakes on the unit More information on this display can be found in Open Rails Braking and F9 Train Operations Monitor 7 15 4 Extended HUD for Train Force Information In the first part of this display some information related to the player locomotive is shown The information format differs if advanced adhesion has been selected or not in the Simulation Options The table part shows total force for up to ten locos cars in the train The first number shows the position of the car in the train The second number is the total force acting on the car This is the sum of the other forces after the signs are properly adjusted The next number is the motive force which should only be non zero for locomotives and that becomes negative during dynamic braking Next number is the brake force Follows the friction force calculated from the Davis equation The following value is the force due to gravity Next values are the friction forces due to the car being in a curve and or in a tunnel The next value is the coupler force between this car and the next negative is pull and positive is push The mass in kg and the track elevation in under the car follow All of the force values are in Newtons Many of these values are relative to the orientation of the car but some are relative to the train If applicable two further fields appear the first is True if the car is flipped wi
248. t is 90 accurate on the state level and 81 ac users indicate 60 accurate within 25 miles By default this tool will lookup the IP address that you are using Yoi his is your IP for emergency purposes tryin ire 100 accuracy This information should not be other purposes that would ri Please enter the IP a s you want to lookup below 100 0 0 1 Lookup IP Address 13 2 Port Forwarding If you are using a router at home with several computers your router needs to be told which computer on your home network should receive the network data OpenRails needs This is done by enabling Port Forwarding on the router The default port OpenRails uses is 30 000 If you change that port number in the game you ll need to change the forwarded port number in the router as well Your router must be told to forward data arriving from the internet on the correct port to the network IP address of the computer running OpenRails For more information on Network Address Translation NAT and how Port Forwarding works see this site http www 4remotesupport com 4content remote support NAT html Here The following are the steps 1 Go to http portforward com english routers port_forwarding which contains a lot of ads just focus on the center of this page 2 Locate the name of the manufacturer of your router i e Airlink and click it Page 179 of 206 2wire 3com A Link Above Cable Accton Acer ACorp Actiontec Adaptec ADDON Adv
249. tead of the inner rail and thereby reviving the extra flange friction It should be emphasized that the flange friction arising from the play of the forces here under discussion is distinct from and in excess of the flange friction which arises from the action of the flanges in forcing the truck to follow the track curvature This excess being a variable element of curve resistance we may expect to find that curve resistance reaches a minimum value when this excess reduces to zero that is when the car speed reaches the critical value referred to This critical speed depends only on the super elevation the track gauge and the radius of the track curvature The resulting variation of curve resistance with speed is indicated in Fig 3 Centre of Gravity mT B tt J J U Ee A Fr vas co Figure 2 Description of forces on rolling stock transitioning a curve 8 8 5 Calculation of Curve Resistance R WF D L 2r Where R Curve resistance W vehicle weight F Coefficient of Friction u 0 5 for dry smooth steel to steel wet rail 0 1 0 3 D track gauge L Rigid wheelbase r curve radius Source The Modern locomotive by C Edgar Allen 1912 8 8 6 Calculation of Curve Speed Impact The above value represents the least value amount of resistance which occurs at the equilibrium speed and as described above will increase as the train speed increases and decreases from the equilibrium speed This concept is show
250. ter Open Rails Train Operation 6 10 9 Autopilot With this option enabled and when in activity mode it is possible to stay in the cab of the player train but to let Open Rails move the train respecting path signals soeeds and station stops It is possible to switch the player train between autopilot mode and player driven mode at run time The Autopilot mode is described here 6 10 10 ETCS circular speed gauge When this option is selected it is possible to add to the cabview a circular speed gauge accordingly to the European standard train control system ETCS 7s OO0ES000H0 ogogo Oponppo0an For content developers The gauge is added by the insertion of a block like the following into the cvf file Digital Type SPEEDOMETER DIGITAL Style NEEDLE Position 160 255 56 56 ScaleRange 0 250 Units KM PER HOUR 6 10 11 Extend object maximum viewing distance to horizon With this option selected all objects viewable up to the viewing distance defined in the Video Options are displayed As a default ORTS only displays objects up to 2000 m distance Selecting this option improves display quality but may reduce frame rate 6 10 12 Load DDS textures in preference to ACE Open Rails is capable of loading both ACE and DDS textures If only one of the two is present it is loaded If both are present the ACE texture is loaded unless this option has been selected Page 32 of
251. tes on the Track Monitor Distance value is displayed for first object only and only when within distance of the first fixed marker Distance is not shown for next station stop When no signal is within the normal display distance but a signal is found at a further distance the signal aspect is displayed in the advance signal area The distance to this signal is also shown This only applies to signals not to speedposts For Auto mode if the train is moving forward the line separating the Backward information area is shown in red and no Backward information is shown If the train is moving backward the separation line is shown in white and Backward information is shown if available For Manual mode if the train is on its defined path and toggling back to Auto control is possible the own train symbol is shown in white otherwise it is shown in red The colour of the track lines is an indication of the train s speed compared to the maximum allowed speed Dark green low speed well below allowed maximum Light green optimal speed just below maximum Orange slight overspeed but within safety margin Dark red serious overspeed danger of derailment or crashing Note that the placement of the display objects with respect to the distance offset is indicative only If multiple objects are placed at short intermediate distances the offset in the display is increased such that the texts do not overlap As a result only
252. th respect to the train or False otherwise while the second field signals coupler overload Page 61 of 206 FORCE INFORMATION Wheel slip Conditions 38 Axle drive force 425953 N Axle brake force 140000 N Num of substeps 50 filtered by 10 Solver RungeKutta4 Stability correction 2 Axle out force 265651 N 2019 KW Car Total Motive Brake Friction Gravity Curve Tunnel Coupler Mass Elev Notes 67940 265651 140000 2145 351 98 0 00 552147 1154999 0 00 44139 218399 70773 1596 228 68 0 00 1568774100700 0 00 42189 61009 90000 1552 443 27 0 00 837 03 1296250 0 00 27351 0 55000 1210 14170 0 00 0 62400 0 00 The upper graph displays the motive force in of the player locomotive Green colour means tractive force red colour means dynamic brake force The lower graph refers roughly speaking to the level of refinement used to compute axle force The next extended HUD displays Dispatcher Information It is very useful to troubleshoot activities or timetables The player train and any Al trains will show in the Dispatcher Information a line for each train DISPATCHER INFORMATION Train Travelled Speed MES Al mode Al data Mode Auth Distance Signal 0F Oyd 0 0mph 0 0mph 310G OOPA 33 7mi 29 0mph 30 0mph RUN 044 amp 000 SIGN CLR2 11 86mi 38 2mph 40 0mph RUN 050 amp 000 SIGN CLR2 F F A detailed explanation of the various columns follows e Train Internal train number with P Passenger and F Freight e
253. the end of the path must match the start of the path for the new train in_time time time definition when the inward run must be started Time is defined as HH mm and must use the 24 hour clock runround lt path gt lt path gt is the path to be used by the engine to perform the runround For details see the forms command definition of the time at which the runround is to take place The time must be defined in HH mm and must use the 24 hour clock rrtime time time is the definition of the time at which the runaround is to take place The time must be defined in HH mm and must use the 24 hour clock rrpos lt runround position gt the position within the stable move at which the runround is to take place Possible values out the runround will take place before the outward move is started stable the runround will take place at the stable position in the runround will take place after completion of the inward move static train will become a static train after completing the outward move forms lt train gt train will form the new train after completion of the inward move See the forms command for details triggers lt train gt train will trigger the new train after completion of the inward move The train will change to the consist of the new train at the stable position See the triggers command for details Use of command qualifiers In combination with static out_path co
254. the execution of some functions in ORTS and MSTS are given here 10 1 1 Player Paths Al Paths and How Switches Are Handled If the player path requires a switch to be aligned both ways the alignment that is the last on the path is used If an Al train crosses the player path before the player train gets there the Al train will leave the switches aligned for the main route the default setting for most switches If you throw a switch to move into a siding the switch at the far end of the siding is aligned to let you leave when your train first occupies the siding But after that it is not changed back to its original setting If the switch gets thrown the other way you can leave the siding with the switch aligned incorrectly If you uncouple and re couple to the train while it occupies the misaligned switch the rear end of the train will switch tracks 10 2 Open Rails Al 10 2 1 Basic Al Functionality e OR supports Al trains In time the Al system will become more advanced with new features e OR supports two distinct ways of controlling trains it supports traditional activities in compatibility with MSTS and it also supports Timetable mode Note that various options and settings are sometimes limited to either activity or Timetable mode e Al trains can meet if both paths have passing sections defined at the same place e Waiting points and reverse points work Reverse points can be used in both Activity and Timetable modes while wa
255. the first object is always shown at the correct position all train other objects are as close to their position as allowed by other objects closer to the Page 42 of 206 g anc I al Hit the F6 key to bring up the siding and platform names within a region These can be crowded so hitting Shift F6 will cycle through showing platforms only sidings only and both Hitting F6 again removes both siding and platform names Open Rails a __ saaa e Ee Hitting the F7 key displays train service names player train always has Player as identification Hitting Shift F7 displays the rolling stock IDs Coupler force namic brake ntograp FPS Page 43 of 206 In a multiplayer session player controlled trains will have the id specified by the player PYUVEMUWIES WERE agin 32768 32770 21 fevel 18607 L KEDD oat 32708 32770 22 Hesel flow 7 Uh 34 g 32768 32770 20 siling 768 32770 17 32768 32770 15 32768 32770 13 32768 32770 10 32768 32770 7 32768 32770 5 fang l0sTangi u 7 4 10 F8 Switch Monitor Use the Switch Monitor enabled by the F8 key to see the direction of the turnout directly in front and behind the train fF Switch Eye indicating Cab direction ee aai Arrow indicating reverser direction yp lt _ Switch backward There are 4 ways to change the direction Click on the turnout icon in the Switch Monitor Press the G key
256. the player train is subject to the following conditions Either e the coupling happens in the last path section of the coupling Al train and the path end point is under the coupled train or beyond it in the same section or e the coupling happens in the last section before a reverse point of the coupling Al train and the reverse point is under the coupled train or beyond it in the same section In this way undesired couplings are avoided in case the Al train has its path running in the same direction beyond the coupled train Just after coupling OR performs another check to define what happens next In the case where the coupled train is static e if there is at least one reverse point further in the path or if there are more than 5 track sections further in the path the coupling train couples with the static train and then the resulting formed train restarts following the path of the coupling train or e if not the coupling train couples with the static train and becomes part of the static train itself is absorbed by it stopping movement In case the coupled train is a player train or an Al train e if there is at least one reverse point further in the path of the coupling train the coupling train couples with the coupled train at that point there are two possibilities 1 The trainset coupling to the coupled train is a wagon in this case the coupling train leaves to the coupled train all the cars between its locomotive and the
257. the train is too long for the platform it will stop at the signal But if the train length is more than double the platform length the signal will not be held Al trains will adhere to the speed limits Al trains will stop at a signal approximately 30 m short of a signal at danger At waiting points the Al trains will stop at the waiting point Any signal beyond the waiting point is kept at danger until the required departure time Where Al trains are allowed to follow other trains in the same section passing permissive signals the train will adjust its speed to that of the train ahead and follow at a distance of approx 300m If the train ahead has stopped the train behind will draw up to a distance of about 50m However if the train ahead is stopped in a station and the train behind is also booked to stop at that station the train will draw up behind the first train up to a distance of a few metres The control of Al trains before the start of an activity is similar to the normal control during an activity except that the update frequency is reduced from the normal update rate to just once per second But all rules regarding speed limits station stops deadlock interaction between Al trains signals etc are followed The position of all Al trains at the start of an activity therefore is as close as possible to what it would have been if the activity had been started at the start time of the first Al train 10 11 Location linked Pa
258. this changes the size of the needle that OR displays Dial Type SPEEDOMETER DIAL Position 549 156 10 50 Graphic Speed recorder needle 2 01l ace Style NEEDLE ScaleRange 0 140 ScalePos 243 115 Units KM PER HOUR Pivot 38 DirIncrease 0 Page 186 of 206 O MAN GiM OASM LigmMTs t Y wo Page 187 of 206 Shown above are two pictures of one hi res 2D cabview one showing the whole cab and the other one showing the detail of some controls In this example the cab background image used was cut down to 2560x1600 The texture for the Speed Recorder needle is 183x39 and for the brake gauge needles is 181x29 Note the odd number for the width This is required as OR and MSTS assume the needle is in the center of the image The Reversing and Headlight switch animation frames are 116x116 There are as yet no specific tools to create these cabviews a standard image manipulation program to do all textures is required and to create any new items e g the gauge faces a standard drawing program can be used To actual set up the cabview and to position the animations the cvf file is modified with a standard text editor and OR is used as a viewer using a straight section of track on a quick loading route Through successive iterations one arrives quite quickly at a satisfactory result 15 2 1 Configurable Fonts OR supports a configurable font family with font
259. ties Boiler Evaporation Area consisted of the part of the firebox in contact with the boiler and the heat tubes running through the boiler This area determined the amount of heat that could be transferred to the water in the boiler As a rule of thumb a boiler could produce approximately 12 15lbs h of steam per sq ft of evaporation area Boiler Superheater Area Typically modern steam locomotives are superheated whereas older locomotives used only saturated steam Superheating is the process of putting more heat into the steam without changing the pressure This provided more energy in the steam and allowed the locomotive to produce more work but with a reduction in steam and fuel usage In other words a superheated locomotive tended to be more efficient then a saturated locomotive Cylinder Work done To drive the locomotive forward steam was injected into the cylinder which pushed the piston backwards and forwards and this in turn rotated the drive wheels of the locomotive Typically the larger the drive wheels the faster the locomotive was able to travel The faster the locomotive travelled the more steam that was needed to drive the cylinders The Page 84 of 206 steam able to be produced by the boiler was typically limited to a finite value depending upon the design of the boiler In addition the ability to inject and exhaust steam from the cylinder also tended to reach finite limits as well These factors typically combined t
260. tilities In most cases the Open Rails software will ignore the error in the file and run properly Open Rails software logs these errors in a log file on the user s desktop This log file may be used to correct problems identified by the Open Rails software 4 1 Trainset The software currently supports Shape s Shape Definition sd Sound sms Cab cvf and texture Ace ace files including displaying the correct LOD alpha and transparency attributes Moreover it supports the file types Engine eng Wagon wag It substitutes MSTS style physics to enable the user to operate trains 4 2 Consists Open Rails software reads and displays Consist files con used for Player Train Al Train and Loose Consists in activities 4 3 Services Open Rails software supports MSTS Service files srv for the creation of both Player and Al services 4 4 Paths Open Rails software supports MSTS Path files pat for determining the path of both Player and Al Trains 4 5 Routes Open Rails software supports the following MSTS Route files with the limitations noted e Route Database file rdb CarSpawner is supported e Reference File ref Open Rails does not provide a Route Editor in the current release e Track Database file tdb supported e Route File trk Level Crossings and overhead wires are supported e Sigcfg dat file Signal amp scripting capabilities are supported e Sigscr dat file Signa
261. tion Keyboard Data logger Evaluation content Updater Experimental I Log trainspeed 30 l Interval sec Time Train Speed Max Speed Signal State Track Elevation Direction Control Mode Distance Travelled Throttle Brake Cy Press Dyn Brake Gear Setting OOOOOOUOU 68 IV Logstation stops When data logging is started see preceding paragraph data selected in this panel are logged allowing a later evaluation on how the activity was executed by the player Page 26 of 206 Options mmm General Audio Video Simulation Keyboard Data logger Evaluation Content Updater Experimental Installation profiles tell Open Rails whereto look for game content Add each full and mini route MSTS installation Default E Program Files 2 Microsoft Games Train Simulator E London amp Port Stanley E Miniroutes LPS301 E Monon 16 E Miniroutes Monon 16 E Miniroutes Monon 17 E Miniroutes GTA TIR E Miniroutes Train Simulator PRR Fix06 E Miniroutes Dominion_Atiantic E Miniroutes LGVMed E Miniroutes NEC V4 E Miniroutes Pocohontas E Miniroutes Surfliner F Miniroutes Backup Monon 17 F MSTS Installs Miniroutes GTA TIR MSIS Installs Miniroutes surtin 6 8 Content Options This window allows you to add remove or modify access to additional MSTS installations or miniroute installations for Open Rails Installations located on other drives or on a USB key c
262. tion for the developer trying to solve your problem Once your post has been submitted keep adding further information only in additional posts in order to avoid the risk of people not noticing your edits Also please be patient with developers responding to your report Most forums are checked only once a day so it may take some time for a developer to see your report Important The more information a developer gets from the first post the quicker he will be able to locate identify and eventually resolve a bug On the other hand reports of the form I have problem XYZ with recently installed Open Rails Can you help me are of little use as all required information must be asked for first Important Please do not rush to report a Decided Bug on the Bug Tracker before a developer has declared your problem a real bug The above description is available in a condensed checklist form below 19 4 Decided bugs Most bug reports never even make it to the status of a Decided Bug due to either being resolved too quickly to be worthy of an entry on the Bug Tracker or being a content or user error Some Maybe Bugs however will eventually be declared Decided Bugs Such secured bugs should be reported at our Bug Tracker when the developer taking the report asks you to The Open Rails Bug Tracker is found at https ougs Launchpad net or following the Report a bug link in the upper half to the right of the screen You will need to registe
263. to depart Other situation are for freight trains light engines and empty stock which also usually do not wait for the signal to clear but draw up to the signal so as to take as little as time as possible to exit the station The nowaitsignal qualifier can be set per station in the station column or per train If set per station it can be overruled by waitsignal per train terminal The terminal command changes the calculation of the stop position and makes the train stop at the terminating end of the platform Whether the platform is really a terminating platform and at which end it terminates is determined by a check of the train s path If the platform is in the first section of a train s path or there are no junctions in the path leading up to the section which holds the platform it is assumed the train starts at a terminal platform and the end of the train is placed close to the start of the platform If the platform is in the last section if the path or there are no junctions beyond the section which holds the platform it is assumed the platform is at the end of the train s path and the train will run up to near the end of the platform in its direction of travel If neither condition is met it is assumed it is not a terminal platform after all and the normal stop position is calculated The terminal option can be set for a station or for individual trains If set for a station it Page 162 of 206 cannot be overrule
264. to platforms occupied by other trains such that the total length of both trains far exceeds the platform length so the second train will block the station throat stopping all other trains This can easily lead to a complete lock up of all traffic in and around the station To prevent this calling on should be blocked in station areas even if the signalling would allow it To allow a train to call on when this is required in the timetable the callon command must be set which overrules the overall block This applies to both Al and player train In case the train is to attach to another train in the platform calling on is automatically set Because of the inability of Al trains in MSTS to stop properly behind another train if called on onto an occupied track most signalling systems do not support call on aspects but instead rely on the use of permission requests Al trains cannot issue such a request therefore in such systems callon will not work In this situation attach commands can also not work in station areas Note that the runround command also requires call on ability for the final move of the engine back to the train to attach to it Therefore when performed in station areas also the runround can only work if the signalling supports call on Special signalling functions are available to adapt signals to function as described above which can be used in the scripts for relevant signals in the sigscr
265. two trains cannot reference the same train in the ahead parameter as that would cause conflict If the total length of all trains exceeds the length of the sidings the trains will spill out onto Page 156 of 206 whatever lies beyond Note that a train referenced in an ahead parameter must be created before or at the same time as the train which uses that reference Note row The note row can be used to defined control commands which are not location related but apply to the full run of the train It can also be used to set commands for trains which do not stop at or pass through any defined location This row is optional The following commands can be inserted in the note field of each train acc n dec n These commands set multiplication factors for the acceleration acc and deceleration dec values used for that train The program uses average acceleration and deceleration values for all trains difference values for freight passenger and high speed trains But these values are not always adequate especially for modern trains This can lead to delays when trying to run to a real life timetable Using the acc and dec commands the values used can be modified Note that these commands do not define an actual value but define a factor the default value will be multiplied by this factor However setting a higher value for acceleration and deceleration does not mean that the trains will always accelerate and decel
266. ty file act Scrolling is accomplished by clicking on the arrows at the left or right bottom corners of the window Train Operations Clicking on the coupler icon between any two cars uncouples the consist at that point You can also uncouple cars from your player train by pressing the U key and clicking with the mouse on the couplers in the main window By clicking on any car in the above window the Car Operation Menu appears By clicking in this menu it is possible e to apply and release the handbrake of the car e to power on or power off the car if it is a locomotive This applies for both electric and diesel locomotives e to connect or disconnect locomotive operation with that of the player locomotive e to connect or disconnect the car s air hoses from the rest of the consist e to toggle the angle cocks on the air hoses at either end of the car between open and closed e to toggle the bleed valve on the car to vent the air pressure from the car s reservoir and release the air brakes to move the car without brakes e g humping etc i Car Operation Menu Toggle Handbrake Toggle Power Toggle MU Connection Toggle Brake Hose Connection Open Close Front Angle Cock Open Close Rear Angle Cock Open Close Bleed Off Valve Close window Page 45 of 206 By toggling the angle cocks on individual cars it is possible to close selected angle cocks of the air hoses so that when the cars are uncoupled the air pres
267. u are in the loco s cabview with the train moving autonomously accordingly to path and station stops and of course respecting speed limits and signals You still have control over the horn bell lights doors and some other controls that do not affect train movement The main levers are controlled by the autopilot mode and indications are correct You can at any moment switch back to player driven mode by pressing Alt A and can again switch to autopilot mode by again pressing Alt A When in player driven mode you can also change cab or direction However if you return to Page 50 of 206 autopilot mode you must be on the train s path other cases are not managed When in player driven mode you can also switch to manual but before returning to autopilot mode you must first return to auto mode Station stops waiting points and reverse points are synchronized as far as possible in the two modes Cars can also be uncoupled in autopilot mode but check that the train will stop in enough time otherwise it is better to change to player driven mode A static consist can also be coupled in autopilot mode The Request to Clear signal Tab key works in the sense that the signal opens However in autopilot mode at the moment that the train stops you must switch to player driven mode to pass the signal and then you can return to autopilot mode Note that if you run with Advanced Adhesion enabled you may have wheelslip when switching from auto
268. ult OR uses the figures shown above in the Typical Rigid Wheelbase Values section The starting curve resistance value has been assumed to be 200 and has been built into the speed impact curves OR calculates the curve resistance based upon the actual wheelbases provided by the player or the appropriate defaults It will use this as the value at Equilibrium Speed and then depending upon the actual calculated equilibrium speed from the speed limit module it will factor the resistance up as appropriate to the current train speed Steam locomotive wheelbase approximation the following approximation is used to determine the default value for the fixed wheelbase of a steam locomotive WheelBase 1 25 axles 1 DrvWheelDiameter 8 9 3 Typical Rigid Wheelbase Values The following values are used as defaults where actual values are not provided by the player Rolling Stock Type Typical value Freight Bogie type stock 2 wheel 5 6 1 6764m bogie Passenger Bogie type stock 2 8 2 4384m wheel bogie Passenger Bogie type stock 3 12 3 6576m wheel bogie Typical 4 wheel rigid wagon 11 6 3 5052m Typical 6 wheel rigid wagon 12 3 6576m Tender 6 wheel 14 3 4 3434m Diesel Electric Locomotives Similar to passenger stock Steam locomotives Dependent on of drive wheels Can be up to 20 e g large 2 10 0 locomotives Modern publications suggest an allowance of approximately 0 8 lb p
269. ult in better regulation where maxdelay or owndelay parameters are used 11 5 5 No Automatic Coupling There is logic within the program which for any stopped train checks if it is close enough to another train to couple to this train It is this logic which allows the player train to couple to any static train However this logic contains some actions which do not match the processing of timetable trains Therefore this has now been disabled for timetable mode Presently therefore coupling of trains is not possible in timetable mode except for runround commands in dispose options Also uncoupling through the F9 window could be disabled in the near future for timetable mode In due course new attach detach functions will be included in the timetable concept to replace the existing functions 11 5 6 Signalling Requirements and Timetable Concept 11 5 6 1 General The timetable concept is more demanding of the performance of the signalling system than normal activities The main reason for this is that the timetable will often have Al trains running in both directions including trains running ahead of the player train in the same direction as the player train There are very few activities with such situations as no effort would of course be made to define trains in an activity which would never be seen but also because MSTS could not always properly handle such a situation Any flaws in signalling e g signals clearing the path of a t
270. ure psi pressure psi pounds per square inch bar atmospheres kpa Kilopascals inhg vacuum inhg inches of mercury Pressure Rate of psi s psi s Change bar s kpa s inhg s Energy kj kg kj kg Kilojoules per kilogram Density j g btu 1b Board of Trade Units per pound Temperature degc degc Difference degf Angle radians deg Angular Rate rad s rad s Other lb hp h e g CoalBurnage Page 207 of 206
271. useclick command Switches can be set even if they are in the train s path and a signal has been cleared over that path Switches of course can not be set if already set as part of a cleared route for another train The following rules apply to the setting of switches e all switches will remain in the position in which they were set by the last train passing over that switch If no train has yet passed over the switch it is in its default position e when in Manual Mode trailing switches will not be automatically aligned for the approaching player train except e when a route is cleared through a signal while in Manual Mode any trailing switches in the train s path up to the end of authority e g next signal will be aligned Note that in this case trailing switches in the path cleared by the signal can no longer be reset Signals which the train approaches will not be cleared automatically The player must request clearance of all signals encountered by using the Tab or Shift Tab keys The Tab key will clear the signal ahead of the train according to the route direction the Shift Tab key will clear the signal behind the train Repeated use of Shift Tab will clear the next signal beyond the first cleared signal etc but only up to the maximum clearing distance Signals will always clear on request except when the section immediately behind the signal is already cleared for a train from the opposite direction The normal ro
272. usly described and the height of the centre of gravity then becomes significant in determining the location of the resulting force Fr relative to the centre line of the track The elasticity of the suspension system of rolling stock under conditions of non equilibrium will introduce a roll element that affects the horizontal displacement of the centre of gravity and that must also be considered when determining the location of the resulting force Fr 8 10 11 Calculation of Curve Velocity The generic formula for calculating the various curve velocities is as follows V EgrG Where E Ea track super elevation Ec unbalanced super elevation g acceleration due to gravity r radius of curve G track gauge 8 10 12 Typical Super Elevation Values amp Speed Impact Mixed Passenger amp Freight Routes The values quoted below are typical but may vary from country to country Track super elevation typically will not be more than 6 inches 150mm Naturally depending upon the radius of the curve speed restrictions may apply Normally unbalanced super elevation is typically restricted to 3 inches 75mm and is usually only allowed for passenger stock Tilt trains may have values of up to 12 inches 805mm Page 110 of 206 Typical Super Elevation Values amp Speed Impact High Speed Passenger Routes Cant D Cant deficiency Unbalanced SuperElevation SuperElevation mm I mm CEN draft Tilting trains 180
273. usted in Kg series of x amp generation y values Page 94 of 206 Multiplication factor for steam As per loco specs ORTSCylinderEfficiencyRate 1 0 ad F N a nde ne MICIEMEyateLE7G ENG cylinder force aqar unlimited NB leave out if not used output x coal burning Tabular input rate per hour describing the Ibs ft y ORTSBoilerEfficiency x y ENG efficiency ofthe boiler As per loco specs New NB leave out if not used boiler against coal efficiency combustion series of x amp y values Point at which the As per loco specs RTSCyl ExhaustO 10 0 ORTSCylinderExhaustOpen x ENG cylinder exhaust Factor between 0 1 New ORTAN erR ieee pen NB leave out if not used port opens 0 95 As per loco specs i ORTSCylinderPortOpening x ENG alee evn Factor between 0 05 New RTS yina tat Ope Rink 0083 port opening 0 12 NB leave out if not used Tabular input s wheel describing the initial pressure speed MABE y ORTSCylinderlInitialPressureDrop x y ENG pressure drop As per loco specs New NB leave out if not used drop as TO i factor series of locomotive speed x amp y values increases Tabular input Ana da x indicated Increase in back HP y i li BackP 10 ORTSCylinderBackPressure x y ENG PESE aa backpressure As per loco specs New PRVINE TASANE Pa locomotive NB leave out if not used nee atm
274. ute setting limitations etc are ignored The signal will only clear to the first available most restrictive aspect above Stop Note that in contrast to the situation in Auto Mode as the signal will clear even if the full route behind the signal is not available a cleared signal is no indication of the cleared distance beyond that signal It may be that the first switch beyond the signal is already cleared for another train Therefore when in Manual Mode use of the F4 window or the Dispatcher window to check on the route availability is essential when running in an area with Al traffic When in Manual Mode deadlock prevention processing is switched off This is because the changes in the train s route and direction which are likely to occur in Manual Mode could jeopardise the stability of the deadlock processing So care should be taken when using Manual Mode in an area with Al traffic specifically on single track sections The only requirement to switch from Auto Mode to Manual Mode is that the train be at a standstill The Ctrl M key toggles between Auto Mode and Manual Mode When switching from Auto Mode to Manual Mode all signals already cleared will be reset and new routes are cleared ahead of and Page 125 of 206 behind the train for the maximum distance if possible or up to the first signal To switch back from Manual Mode to Auto Mode the front of the train must be on the path as defined in the Activity Editor If the path conta
275. ved games may not be compatible with newer versions as described here Clicking the link What s new in the upper centre part of the main menu window will connect to a website that summarizes the most recent changes to the OR program 5 3 Preliminary Selections Firstly under Route select the route on which you wish to play If you check the Logging checkbox Open Rails will generate a log file named OpenRailsLog txt that resides on your desktop This log file is very useful to document and investigate malfunctions At every restart of the game that is after clicking Start or Server or Client the log file is cleared and a new one is generated If the Windowed checkbox is checked Open Rails will run in a window instead of full screen If you wish to fine tune Open Rails for your system click on the Options button See the Chapter Open Rails Options which describes the extensive set of OR options It is recommended that you read this chapter 5 4 Gaming Modes One of the plus points of Open Rails is the variety of gaming modes you can select 5 4 1 Traditional Activity and Explore mode modes As a default you will find the radio button Activity selected in the start window as above This will allow you to run an activity or run in explore mode If you select Explore Route first entry under Activity you will also have to select the consist the
276. ving in opposite direction in that case there should always be a misaligned switch in the train s path e For B a signal will never clear when the train ahead is moving in the opposite direction nor will the Tab request be granted e A B the train s defined path terminates short of the next signal or there is a reversal point short of the next signal and there is at least one switch between this point and the next signal The control mode changes to Auto Node End of Path Note that if there is no switch between the terminating or reversal point and the next signal the route is automatically extended to the next signal A B the train has passed the last signal before the end of the track or the train has reached the end of track without encountering any signal The control mode changes to Auto Node End of Track Changes from Auto Node to Auto Signal and vice versa are automatic and cannot be influenced by the player 10 3 2 Manual Mode When it is required that a train move off its defined path a player can switch his train to Manual Mode This will allow the player to set switches and request to clear signals off its path However there are a number of restrictions when running a train in Manual Mode In Manual Mode a route is cleared from the train in both directions ahead of and behind the train The route is cleared to a shorter distance as compared to Auto Mode and is never cleared automatically beyond the fir
277. w and the tractive force falls to 10 of the previous value By reducing the throttle setting adherence is regained This is called the simple adhesion model Page 71 of 206 The second adhesion model advanced adhesion model is based on a simplified dynamic adhesion theory Very briefly there is always some speed difference between the wheel speed of the locomotive and the longitudinal train speed when the tractive force is different from zero This difference is called wheel slip wheel creep The adhesion status is indicated in the HUD Force Information view by the Wheel Slip parameter and as a warning in the general area of the HUD view For simplicity only one axle model is computed and animated A tilting feature and the independent axle adhesion model will be introduced in the future The heart of the model is the slip characteristics picture below 0 km h 50 km h 150 km h av km h The wheel creep describes the stable area of the characteristics and is used in the most of the operation time When the tractive force reaches the actual maximum of the slip characteristics force transition falls down and more power is used to speed up the wheels so called wheel slip To avoid the loss of the tractive force use the throttle in combination with sanding to return to the stable area wheel creep area A possible sequence of the wheel sli
278. wheel revolution Page 82 of 206 As shown in the diagram below IHP increases with speed until it reaches a maximum value This value is determined by the cylinder s ability to maintain an efficient throughput of steam as well as for the boiler s ability to maintain sufficient steam generation to match the steam usage by the cylinders Mean Effective Pressure Indicated Horse Power Tractive Effort Locomotive lt Speed gt Hauling Capacity of Locomotives Thus it can be seen that the hauling capacity is determined by the summation of the tractive effort and the train resistance Different locomotives were designed to produce different values of tractive effort and therefore the loads that they were able to haul would be determined by the track conditions principally the ruling gradient for the section and the load or train weight Therefore most railway companies and locomotive manufacturers developed load tables for the different locomotives depending upon their theoretical tractive efforts The table below is a sample showing the hauling capacity of an American 4 4 0 locomotive from the Baldwin Locomotive Company catalogue listing the relative loads on level track and other grades as the cylinder size drive wheel diameter and weight of the locomotive is varied Lead ia Tons 2000 Pounds of Cars and Lading Weight tn e 2 e t Working Onder Wheel ase Ss pf a ste Oe a Grade per Mile of fie rh
279. which terrain is displayed At higher distances Distant Mountains will be displayed see below This parameter increases CPU and GPU load Also some routes are optimized for the standard MSTS maximum viewing distance 2000m Page 20 of 206 6 3 9 Distant Mountains Distant mountains are supported in a way that is compatible with MSTS Distant mountains are present in the route if it has a folder called LO_TILE You may turn the feature on by checking the Distant Mountains checkbox In addition to MSTS capability you can select the viewing distance of the distant mountains Open Rails e oa gt a bo uas 6 3 10 Viewing vertical FOV This value defines the vertical angle of the world that is shown Higher values correspond roughly to a zoom out effect The default is 45 degrees 6 3 11 World object density This value can be set from 0 to 10 when 10 is selected all objects defined in the route files are displayed Lower values do not display some categories of objects 6 3 12 Window size This pair of values defines the size of the OR window There are some preconfigured pairs of values however you may also manually enter a different size to be used 6 3 13 Ambient daylight brightness With this slider you can set the daylight brightness Page 21 of 206 6 4 Simulation Options The majority of these options define train physics behavior x General Audio Video Simulation Keyboard

Download Pdf Manuals

image

Related Search

Related Contents

Samsung B2710 2" 116.12g Black    PLENÁRIO - Tribunal de Contas da União  SA-AK410LB-S  Model ACC34AC Signal Conditioner/Converter (AC)  Sikafloor®-220 W Conductive  仕様書 - 東京都農林水産振興財団  Customer Spotlight: Cessna Service Center and Mobile Service Unit  user manual - Philips SM30  CATVディジタル セット トップ ボックス リモコンの説明  

Copyright © All rights reserved.
Failed to retrieve file