Home

TTM 100 user manual REV17

image

Contents

1. 8 mA value 100 of the scale of input 1 mA value at 100 of the scale of input 8 value in engineering units at 0 of the scale of input 1 value in engineering units at 0 of the scale of input 8 value in engineering units at 100 of the scale of input 1 value in engineering units at 100 of the scale of input 8 10 3 Tank parameters 10 3 1 Tank dimensions Hiank Hetweitz Hetweitt Hsupport Hakeott Hp14 WROOF Tank Height mm Height of the primary level stilling well mm Height of the secondary level stilling well mm Height of the temp probe stilling well mm Height of roof support in floating roof tanks mm Height of level in stilling well when roof is lifted from its support mm Height of pressure transmitter mm Height of pressure transmitter P1B mm Roof Weight kg Total Tank volume m Maximum capacity of the storage tank m Note that all heights are related to a reference height near the bottom of the tank 10 3 2 Other tank related parameters REFTEMP REFTEMPsec STWEC SEC D TB PSWHIGH PSWLOW g Ki K Reference temperature C Reference temperature for shell expansion calculation C Reference temperature for stilling well expansion calculation C Stilling well expansion coefficient C 7 Shell expansion coefficient C 7 Density of air kg m Bulging cor
2. Sort Hrn ______ Sort 000 002 Sorted T3 element height Sorted T4 element height 5003 5004 5005 Sorted T5 element height 5006 Sorted T6 element height 5 2 H 5 H 007 008 H 3 5 H 014 5015 5031 _ TempofTiSoredPti00 5033 TempofTiSoredPti00 5035 __ TempofTiSotedPti00 15037 Temp Temp ofT1 Sorted Ptt00 4 5039 Temp ofT1 Sorted Ptt00 5043 __ TempofTiSotedPti00 5049 ptused countofactiveusedPtelements _______ 5062 Stilling well correction factor vapour part 5064 float Stilling well correction factor part 5066 CTu Stilling well correction factor water part 5068 dHsw flat __ Stilling well correction primary level 5070 dHsw Stilling well correction secondarylevel ______ 5072 dHsw float Stilling well correction temp probe _______ 5074 Level corrected for primary level stilling expansion 5076 Interface corrected for primary level stilling well expansion 5078 CorrLevel2 Level corrected for secondary level stilling well 71 of 98 5009 5010 5011 5012 5013 Sot Hu Uit E oo Communication keme we Unit Descript
3. AA 11 AA 11 315 11 4 Technical FRI uu uuu u 12 put uuu uu usus 12 s Na BI APA 12 Temperate ProDE 12 Analogue TO uui 12 BET rm NS RE TR 12 AI NONG um 13 SPIRI 13 SCR 13 l as icit ocaeca str ctc ecc 13 Rem 18 Gn AA 13 APA AN 18 len Rei EROR TRIER 14 kapal DESEE ect reet at Fas bs a a E cba Fa Rl abc v GR a Cz oed Zr Rn 14 XEM 14 FERIIS cic consec oda id oo A aia sad ER A dioe 14 ae seien nee ae 14 ABO Terminal Connections rinnen GAGA KAG een 15 T aasawa 15 Idcm 16 5 Installation 17 aa 12 3 of 98 1 Introduction O Measuiinhg uu RR 18
4. 1008 und des Multiplexers 100A ist 40 C bis 65 C Die Verwendung der Ger te in einer Umgebungstemperatur unter 20 C ist zul ssig wenn f r diese Temperatur gecignete Leitungen und f r diesen Einsatz geeignete Kabel oder Leitungseinf hrungen verwendet werden Seite 3 von 3 zu BVS OS E 124 X Dieses Zertifikat darf our unvertinden weierverbreiset wenden DinnemdahlstraBe 9 44809 Bochum Telefon 0234 3696 105 Telefax 0234 3696 110 84 of 98 1 2 3 4 5 6 7 8 9 10 11 12 C ATEXA V EXAM BBG Pr f und Zertifizier GmbH Translation EC Type Examination Certificate Directive 94 9 EC Equipment and protective systems intended for use in potentially explosive atmospheres BVS 05 ATEX E 124 X Equipment Temperature sensor multiplexer and Transmitter type TTM 100 Manufacturer LBS BatchControl GmbH Address 50170 Kerpen Germany The design and construction of this equipment and any acceptable variation thereto are specified in the schedule to this type examination certificate The certification body of EXAM BBG Pr f und Zertifizier GmbH notified body no 0158 in accordance with Article 9 of the Directive 94 9 EC of the European Parliament and the Council of 23 March 1994 certifies that this equipment has been found to comply with the Essential Health and Safety Requirements relating to the design and construction of equipment and p
5. 29 752 Volume cocco for floating PODES LLL AA cta ag 30 2 99 CORTO edi icd AA 31 7 55 Observed a maa a GG LP a AG 31 p DON MEME 7 6 1 From level and pressure measurement U ene meret 32 7 82 From level and pressure medasuremenl ua can nia cri raa tinci naa a redis uo ode 33 ZEN ARA AA 33 7 2 Standard Vome and Maga an 35 VIP AA AA _ 36 aa ME 36 Bo 37 i2 1 POO 37 8 2 2 Analogue input 2 37 CD ONCE ev 38 EE UTI si ee eee 38 8 47 au oo oru ae ie 40 AA GA 40 9 Miscellaneous lt 2 42 ST 11 6 AA 42 92 Alarm Masking and Relay OUI cu iani ca tato
6. product kg m kg m 7 6105 10750 _ 613973 0 Gasoline 630 7700 534642298 0438 0 788 0 838 5 594 5418 839 0 1075 0 186 9696 0 4862 0 770 5 787 5 2680 3206 7 0 0 00336312 Free fill 500 0 2000 0 The correction for pressure is 1 P 1 F Px10 Where P Pressure in bar g F factor F is calculated as follows 1 2 3 4 rounded to the nearest 0 0001 1 1 62080 34 of 98 7 Calculations TERM 2 0 00021592 TEMP rounded to the nearest 0 00001 0 87096 TERM 3 5 rounded to the nearest 0 00001 10 0 0042092 TEMP TERM 4 7 5 rounded to the nearest 0 00001 pis 10 Where TEMP Temperature C rounded to the nearest 0 25 pis Density at reference conditions rounded to the nearest 2 kg m3 015 10 6 Rounded to the nearest 0 00001 g cm3 2 7 7 2 Standard Volume and Mass The volume at reference condition is GSV GOV VCF With Density Mass is calculated GOV ACTDENS GSV REFDENS 35 of 98 8 Alarms 8 Alarms 8 1 Instrument alarms Measured values alarms and status bits coming from BM100 and BM70 instruments are being transferred via Modbus by data transfer blocks These Modbus blocks are one to one translated from the communication protocol with the connected instruments
7. 125 122 1 2 po T a a Ea 1 J x UNSTAVW aii a ge X X X ASINTI X X X X x X X j Xx k 2 1 59 ASACTD ASRERDEZ qi c p x d x x x lt gt x gt x gt x gt x x x lt DK gt x gt 52 of 98 10 Configuration Note ASACTD being set to From pressure 12 implies that the Hybrid calculation is being performed The actual density is calculated from pressure values P1 and P3 and the distance between the height of the P1 transmitter in use and the corrected level measurement 10 5 3 HART devices HART instruments are described by the Manufacturer Code and Device Code Known instruments are Manufacturer value Manufacturer Code CET Aa Optiflex Ku CN The HART devices are specified by dev bit0 7 Manufacturer code input 1 bit8 15 Device code input 1 hart2 dev bit0 7 Manufacturer code input 2 bit8 15 Device code input 2 hart3 dev bit0 7 Manufacturer code input 3 bit8 15 Device code input 3 hart4 dev bit0 7 Manufacturer code input 4 bit8 15 Device code input 5 The specific Device ID s are set in hart1 id Device ID input 1 hart2 id Device ID input 2 hart3 id Device ID input 3 hart4 id Device ID input 4 Primary values coming from HART can be scaled by using hart1 span span factor for measured value on input 1 h
8. raw long ma7 raw _ long SP S EIN 1 1 1 1 2 ma 8 raw ong current raw reading of mA input 8 2 Loc t raw ong current raw a d reading of local temperature sensor 3 5 6 6 7 7 7 5 pti filt ong current filtered reading of Pt100 1 8 pt3 filt ong current filtered a d reading of Pt100 3 6 2 4 016 filt ong current filtered a d reading of Pt100 6 ot7 current filtered reading of Pt100 7 0 pt2 filt long current filtered a d reading of Pt100 2 018 current filtered reading of Pt100 8 014 filt current filtered reading of Pt100 4 ong long 2 N ot5_filt ong current filtered a d reading of Pt100 5 long ong 8 8 1 current filtered reading of mA input 1 4 8 2 88 E filt long current filtered a d reading of mA input 2 ma3 filt long current filtered a d reading of mA input 3 ong current filtered a d reading of mA input 4 ong current filtered a d reading of mA input 5 ong current filtered a d reading of mA input 6 current filtered a d reading of mA input 47 ma8 filt current filtered reading of mA input 8 0 1 102 Block Primary 70 Data Name Type umo Deseription 0000002 2001 __ lt lt cha t6 0 ____ 2009 2017 2025
9. ssa vas LAG NG a ta 42 42 gA Level Instrinent tu Rese alas aed n cl 42 93 LT IS IIS OESTE DRIN ETUR 43 40198 1 Introduction TO ERREUR 45 AA AA 45 NA ana 45 10 21 Input iii ae cicli ata Ee ti 45 TUS CO aan aller oca 45 1023 SONO uuu uuu io et ux ota oi coi ois cc oce 46 REESE Me rette 46 10 25 Communication line termination resistor aa aaa uuu eme sentes ias 49 aa m 49 10 2 Anslogug aa a 49 10 2 qa AA AN 50 10 3 1 rk ll HAAAY 50 10 3 2 tank relsted soo AA 50 102 Alanin sk id 51 sls le l re i c iM cr cc 51 1031 51 1034 Pressure meastrome Ni ende 54 10 5 5 Tank related calculations configuration aarasssssasssssassssssssssana 54 10 5 6 Product related calculations configuration eee 54 WISE UE AA 55 IRE iB time 57 MER ong es ee e 58 AJ BM
10. E 124 XINI Dieses Zertifikat darf nur unver ndert weiterverbreilel werden Dinzendahlsirale 9 44509 Bochum Telefon 0234 3696 108 Telefax 0234 3696 110 90 of 98 C Approval V EXAM BBG Pr f und Zertifizier GmbH Translation 1 Supplement Supplement in accordance with Directive 94 9 EC Annex III number 6 Equipment Manufacturer Address Description to the EC Type Examination Certificate BVS 05 ATEX E 124 X Temperature sensor multiplexer and Transmitter type TTM 100 IBS BatchControl GmbH 50170 Kerpen Germany The transmitter type 1008 can be modified according to the descriptive documents as mentioned in the pertinent Test and Assessment Report The Essential Health and Safety Requirements of the modified equipment are assured by compliance with EN 50014 1997 A1 A2 EN 50018 2000 1 EN 50020 2002 General requirements Flameproof enclosure d Intrinsic safety i The marking of the equipment shall include the following 2 EEx ib ia T4 100A 2 EEx d ib T4 tor type 1008 Not changed Parameters Transmitter Typ TTM 100B Mains circuit terminals 18 and 19 Nomnat voltage Max voltage AC DC 24 Um AC DC 250 lt lt Page 1 062 BVS 05 ATEX 24 X NI This certificate may only be reproduced in its entirety and without change Dinneadahlstasse 9 44809 Bochum Germany Phong M9 2343696 105 49 234
11. 2540 calculation alarms 6014 Spare dlit a7 Jis _ _ 5 6015 jit Limitalarmon 00 6016 00 6017 ALTAVVAP TAVVAP 6018 ALTAVPROD TAVPROD 4 6019 ALTAVWATER TAVWATER 6020 56 Limitalamonavgpressue 00 6021 P gloHwEror Primary BM70HardwareErors 0 6022 P gloEror 1 Primary BM7OEmos 1 6023 gloWarning Primary BM70 Markers Warnings 00 6024 vcoStatus _ Primay 70 Status 6025 5 gloHwEror int SecondaryBM70Hardware 0 6026 S gloEror 1 int SecondarpBM7OErmos 6027 5 gloWaming _ Secondary BM70 Markers Warnings 0 6028 5 vcoStatus Secondary BM70 Status 0 6020 P hw eror Int _ Primary 100 Hardware Errors 6030 P sign er Primary BM100 Signal Errors 0 00 6031 warnings it Primary 100 Markers Warnings _______ 6032 S hw eror Int Secondary 100 Hardware Errors 6033 S sign Int SecondaryBMtO0SignalErmors 6034 5 warnings 15 Secondary BM100 Markers Warnings 70 of 98 Communication 2 8 Diagnostics Block Diagnostics Sort Hr Sorted T1 element height Sort Hr Sorted T2 element height
12. 57 of 98 Communication Communication 70 100 Protocol See 70 100 documentation A 2 Modbus Protocol A 2 1 General Some Modbus blocks contain holding registers and others input registers Holding registers are used for settings and are read write Modbus functions applicable for holding registers are e 3 read holding registers e 6 write single holding register e 16 hexadecimal 10 write multiple holding registers Input registers are use to read data Modbus functions applicable for input registers are 4 read input registers Blocks with holding registers modbus functions 3 6 16 are e System Variables start at 0 Calibration start at 1000 e System Parameters start at 2000 e Tank Parameters start at 3000 e Alarm Limits start at 4000 e Configuration start at 5000 e Override Values start at 6000 Strapping tables start at 10000 Blocks with input registers modbus function 4 are Raw Data start at 0 e Measured Data start at 1000 e BM70 Data start at 2000 e BM100 Data start at 3000 Calculated Data start at 4000 Diagnostics start at 5000 e Alarms start at 6000 e HART Diagnostics start at 7000 58 of 98 Communication 2 2 Calibration Block calibration data sensor 3 sensor 4 sensor 5 sensor 6 sensor 7 sensor 8 sensor 9 sensor 10 sensor 11 sensor 12 sensor 13 sensor 14 sensor
13. CO N NO NO NIN IN NO N IN IN NIN NO N PO PO NO IN NS N RD N N N S OSO CO CO 00 00 00 00 OD GD O O17 01 01 5 O O1 00 OO G9 CO H4 OT O O N O1 C2 CO 63 of 98 Communication Block Configuration Description 5001 5002 5003 5004 5005 5006 5007 5008 5009 5010 Lro Distancetoflange 1 10 1 5011 1 _ Unt Distance to flange 1 10 0 5012 1 Unt Distance to flange 0 1 10 1 5013 Distancetoflange 10 10 10 5014 14 Unt Distance to flange 111 5015 1 Distancetoflange 1 10 1 5016 1 Distancetoflange 10 10 11 5017 Om Off status of Pt100 5018 ASPIA jit lnputassignment 5019 ASPIB j nt nputassigoment 0 0 5020 2 npuassigomen 0 0 0 0 5021 ASP3 nputassigomnt 2 5022 j int _ nputassigoment 10 0 5023 ASTAVP 5024 _ nputassigomet 0 5025 ASLVL1 nputassigomet 0 0 0 5026 ASINTT jit nputassigpment 5027 2 j nt nputassigoment 0 0 5028 ASINT2
14. The alarms in these blocks cannot be masked by the TTM100 They are simply available on the Modbus and the 100 acts as a transparent unit between the supervisory system and the level instruments Some of the alarms are used to determine the reliability of the level measurement see 7 3 1 The transferred alarm bits coming from the instrument can be used to provide detailed information to an engineer to solve level measurement problems BM70 Alarms transferred from a BM70 are Bit 0 1 2 3 4 6 13 0 1 2 8 9 14 15 0 1 3 4 5 7 0 1 2 3 10 CPU error NN EPROM error checksum error write read check Interrupt error NN Counter timer error NN EEPROM error current output not calibrated No signal No peak Microwave error Current output error Status Switch output error Status Hardware error general flag Fatal Error general flag Signal weak Signal strong Spectrum poor Sweep too small Empty Tank spectrum wrong Value outdated Error Integrator characteristic not rising Error VCO range Error sweep not reached Error voltage increase too high Warning voltage increase Hardware error flags HWBM70 General error flags GEBM70 Microwave flags MFBM70 36 of 98 8 2 8 2 1 8 Alarms 100 Alarms transferred from 100 ADC Reference Error ROM Error RAM Error EEPROM Factory Error EEPROM User Error DAC E
15. ________ currentraw a d reading of Pt100 7 11 8 pt9raw 39393 currentraw a d reading of Pt100 9 ___ 000 9 ___ 3 3 currentraw a d reading of Pt00 10 current raw a d reading of mA input 2 47 of 98 10 Configuration index Variable o O 60 ___ 7 Interface used and corrected for stilling well expansion Selected instrument LevelUsed product level 0 primary 1 secondary bit1 interface level 0 primary 1 secondar 66 Vol Weighted Average Temperature of vapourroom _______ 68 PressureUsed 73 Selected pressure transmitter 1 2 Height of selected pressure transmitter Average product pressure 80 7 pDensityatibC 2 86 MANT 7 Tankinmaintenanceoroperation 89 HART2PV HART 2 Process variable 90 ____ PV HART 3 Process variable O j Parameters with formats dsp11_for line 1 of display 1 display format bits 3 0 variable display position right justified bits 6 4 precision applicable only to floating point variables single double dsp210_for line 2 of display 10 display format Parameters with background text dsp11_txt line1 of display 1 background text 48 of 98 10 Configuration dsp210 txt line2 of display 10 background text The display contrast is configurable with parameter dsp contr 10 2 5 Communication line termination resistor
16. GA 18 BERN B AA erra 18 612 OPTIWAVE 3000 71800 tot E erc chr tata 18 BI ITA Lc mE E S 18 8 21 Multipoint Temperature masasama tua en e duae eq agen cedi 19 8 2 2 nde qua tud enden 20 62 tl Se MICE 20 T 21 73 Calculation VEDI estre ctis On cd aaa 21 2 121 GSC 21 Te ME REUS TYO 25 2 2 1 Hagh wagMod ave CIE occ sim Pe Tne cef oe Cr TR acti a 25 2 22 Volume weiunted vel ua o Dac aoc ets A agua vaca a d 26 Io RUE s c dI S M M EE I E E 27 7 2 1 Level metri iso u cabin t Rd auam o a SL RE 27 7 3 2 Level correction for stilling well or tank height 27 a AA FTN CEDERE 28 742 AE LAU EE Re ORE Ee ee er eT Pen eRe Pen ere er re ie eer 28 Z S uu kir pa NA BA a AG NG an 29 TER TE AA 29 7 5 2 Volume correction for shell expansion due to
17. J 7067 Int Controlvariableforsendstate machine 7068 2 nt O 7069 Raw PV 1 Process variable read from device last succesful scan 7071 Raw PV 2 7073 Scan Status a Status of scanned device last successful scan 7074 Scan Device Device code and manufacturer code of scanned device last successful scan 7075 Bl sua ID of device last successful 7077 SaPV Process value of scanned device last successful scan Block System Variables Modbus us 9 19 100 device identifier reading value 601 connected with a TTM100 ver num Software version Current software version is 100 t be interpreted as 1 00 Ra He number for future use as unique unit number dev num Ho m porarily val 0 initialisation status CRC error reading first copy of calibration table from EEPROM bit1 CRC error reading second copy of calibration table if bit O and 1 are set TTM has loaded default calibration values bit2 CRC error reading first copy of parameter table from EEPROM bit3 CRC error reading second copy of parameter table if bit 2 and 3 are set TTM has loaded default parameter table bit4 tank parameters table bad default loaded bits alarm parameters set bad default loaded bit6 config parameters bad default loaded bit7 Display access error this bit is set if
18. calculation error F P 104 1 bit4 Density Product type mismatch 8 5 Limit Alarms Limit alarm are raised when process values are out of the normal operation range The limits are given by parameters The alarm values for process alarms are defined as LoLo alarm bit1 Lo alarm bit2 Hi alarm bit3 HiHi alarm bit4 Parameter conflict The alarm check cannot be performed when the alarm limit parameters are configured wrong In this case bit4 is set to notify the user A parameter conflict occurs when 40 of 98 8 Alarms hystereris functionality is explained in the next diagram HiHi HiHi Hyst Hi Hi Hyst Lo Hyst Lo LoLo Hyst LoLo T Value decreases Lo alarm limit gt Lo alarm B Value decreases LoLo alarm limit gt LoLo alarm C Value increases LoLo alarm limit Hysteresis gt Lo alarm D Value increases Lo alarm limit Hysteresis gt Normal No alarm E Value increases Hi alarm limit gt Hi alarm F Value increases HiHi alarm limit gt HiHi alarm Value decreases HiHi alarm limit Hysteresis gt Hi alarm H Value decreases Hi alarm limit Hysteresis gt Normal No alarm The next process values are checked for process alarms Name Description ALLVL Limit alarm on level ALINT Limit alarm on interface ALTAVVAP Limit alarm on TAVVAP ALTAVPROD Limit alarm on TAVPROD ALTAVWATER Lim
19. 15 sensor 16 sensor 2 sensor 3 sensor 4 sensor 5 sensor 6 sensor 7 sensor 8 sensor 9 sensor 10 sensor 11 sensor 12 sensor 13 sensor 14 sensor 15 sensor 16 Physical value corresponding to the 1st calibra tion point of 1063 Pt100 sensor 1 sensor 2 sensor 3 sensor 4 sensor 5 sensor 6 sensor 7 sensor 8 sensor 9 sensor 10 sensor 11 sensor 12 sensor 13 sensor 14 sensor 15 sensor 16 59 of 98 Communication Physical value C corresponding to the 2nd calibra tion point of 60 of 98 Communication Modbus 2 3 Configuration Block system parameters 203 Spar lin 202 Spare iling O Count of display switching 2024 dsp_count int i e dsp_count 3 means display is switched between dsp1 dsp2 dsp3 and back to dsp0 je 1 of display 1 variable index 1 for text only displa 61 of 98 Communication 2039 2040 2041 2042 2043 2044 line 1 of display 1 display format bits 3 0 variable display position right justified 2049 n bits 6 4 precision floating point variables 2046 int 2047 int 2048 int 2049 int 2050 int 2051 int 2052 int 2053 int 2054 int 2055 int 2056 int 2057 int 2058 int 2059 2060 2061 2062 2063 2064 2065 2074 2083 2092 2101 2110 2119 2128 2137 2146 2155 2164 62 of 98 Communication Address eme Typa
20. 2033 2045 2053 gloHwError int ___7 C OO 2041 __ 7 LEE DERE 7 76 0198 Communication Modb Databl LA 2056 2 al 2057 7 2058 vcoStatus 70 2 209 sysHags int 2060 2061 02 2062 junitVolume lit dbo o doo SOS Block Secondary BM70 Data HU AM U T NNNM ene fe 2079 tagName 0 2087 seiaNo char 16 2095 Commission char 16 2103 j valVoume double 7 Cl 2107 valLevel double 7 Levelinm 2111 j valDitane 7 2 2115 geHwEmo 7 02 216 fit 7 __ _ 2117 gloWaming 7 02 218 geStatus 7 2 219 veoStatus 7 2120 vcoStatus 7 ___ 02 2121 sysHags nt 4 2122 dipUnt lint 7 2123 junilengh fit J SO 2124 junitVolume ll Block Primary BM100 Data hax je 3001 j deviden 0 3009 sw_versin 0 3014 tagNam char 16 322 3030 Commission L O 71 of 98 Communication Databl TA 3055 3056 3057 BM100 Status Block Secondary BM100 Data Modb Databl Description a ooo 3071 tagName char6 050000 3079 __ j cha l6 059005090 3087 Commision char 16 ot O 78 of 98
21. 4 0 S 5053 MSKICPRS Mask pres calc alarms 5054 MSKISTRP Relay 1 Mask strapping table alams 5055 MSKIFRC Relay 1 Mask Floating roof alarms 5056 MSKICDNS Relay 1 Mask dens calc alarms 5057 __ ___ nt Relay 1 Mask API calc alarms 05 in Fr EEE 5059 MSKILVL Relay 1 Mask level alarms 5060 MSKIINT Relay 1 Mask interface alarms 5061 MSKITAVVAP Relay 1 5062 int jRelayfMaskTAVPROD 5063 ___ Relay 1 Mask TAVWATER 5064 MSKIPRES Relay 1 Mask pressure alarms 5065 MSK2PTOPEN Relay 2 Mask pt100 open 5066 MSK2PTSHORT Relay 2 Mask pt100 short 5067 MSKZAER Relay 2 Mask analog input errors 5068 MSK2CLVL Relay 2 Mask level calc alarms 5069 __ 5 2 ____ Relay 2 Mask temp calc alarms 5070 ___ 2 100 5071 Spre 57 5073 MSK2CPRS Relay 2 Mask pres calc alarms _ _ 5074 MSKOSTRP Relay 2 Mask strapping table alarms 5075 MSK2FRC it ___ Relay 2 Mask Floating roof alarms 5076 MSK2CDNS Relay 2 Mask dens calc alarms 5077 MSK2CAP ___ Relay 2 Mask API calc alarms 5078 Spre fia 427
22. 5079 MSKOLVL ___ Relay 2 Mask level alarms 5080 MSK2INT Relay 2 Mask interface alarms 5081 MSK2TAVVAP _ Relay 2 5082 MSK2TAVPROD int Relay 2 Mask TAVPROD_ 5083 ___ MSK2TAVWATER Relay 2 Mask 5084 MSK2PRES Relay 2 Mask pressure alarms 5085 ___ Supervisory Mask pt100 open 5086 MSK3PTSHORT Supervisory Mask pt100 short 5097 MSKSAIER ____ Supervisory Mask analog input errors 5088 MSKSCLVL int Supervisory Mask level calc alarms 5089 MSKSCTMP ____ Supervisory Mask temp calc alarms 5090 int Supervisory Mask TTM100initer unc 5092 Spre 5093 MSKSCPRS ____ Supervisory Mask pres calc alarms 5094 ____ Supervisory Mask strapping table alarms ws S l i i Supervisory Mask level alarms 1 Supervisory Mask interface alarms SupewisoyMasKTAVVAP Supervisory MasKTAVPROD Z _ Supervisory Mask TAVWATER _____ i 5103 MSK3TAVWATER Supervisory Mask pressure alarms 5104 MSK3PRES 65 of 98 Communication 2 4 Parameters Block Tank Parameters Height of the primary level stilling well 3006 Height of level in stilling well when roof is lifted from its support ep 3007 Spare
23. BBG Pr f und Zertifizier GmbH Appendix to EC Type Examination Certificate BVS 05 ATEX E 124 X 15 15 1 Subject and type Temperature sensor multiplexer and transmitter type 100 Instead of the in the complete denomination the letter A or B will be inserted to characterize different apparatus 5 2 Descripti The temperature sensor multiplexer type TTM 100A and the transmitter type TTM 100B which work together are connected by up to 200 m long cable The apparatus are used for level control and volume calculation of a storage tank The transmitter consists of an enclosure type MH 300 EEx KEMA 03ATEX2527 U and the electronic circuitry mounted inside the enclosure The external non intrinsically safe circuits will be led into the connection enclosure by separately certified cable glands Inside the transmitter enclosure a heating device may be mounted to keep the temperature inside the enclosure at 0 even at minus outside temperatures In the enclosure of the multiplexer an electronic circuitry for supply and evaluation of transmitter and PT100 circuits and for data transmission is fastencd 15 3 Parameters 15 31 Transmitter Typ 100 15 31 1 Mains circuit terminals 18 and 19 Nominal voltage AC 115 voltage um 125 Nominal voltage AC 230 voltage Um AC DC 250 v 15 3 1 2 non intrinsically safe relay contact terminals 13 and 14 and 15 and 16 Switching
24. Enclosure IP 65 4 1 2 TTM100 B Analogue Inputs Standard 4 times 4 20mA active analogue inputs Option 2 times 4 20mA active analogue inputs 2 times 4 20mA active analogue inputs with HART Modem Resolution of all inputs 0 001 mA Relay Output Two Relay outputs Nominal switching capacity 30V DC 0 5A 125 V AC Interfaces Comport 1 RS 485 Interface with Modbus for Supervisory system Comport 2 RS 485 Interface with Krohne protocol for BM70 100 level instruments Comport 3 RS 485 Interface with Modbus for Supervisory system Analogue input 1 2 HART communication for OPTIWAVE OPTIFLEX level instruments HART communication for Yokogawa pressure transmitters Power Supply Standard 230 VAC Um AC DC 250 V Options 115 VAC Um AC DC 125 V 24 AC DC Um AC DC 250 V Power consumption Standard 10W With optional heater 50W 13 of 98 4 Technical Data Ambient conditions Standard 20 C to 60 C 13F 140 Option with heater 40 to 60 40F to 140F Local Display Dot Matrix LCD Display with 2 x 16 characters Connections M20 Cable glands option Standard Nickel plated brass for 6 to 12 mm cable Option Stainless steel Approvals ATEX approval 12 G Ex d ib IIC T4 Gb for TTM 100 B EMC approval 89 336 EG EN61326 EN61326 A1 Enclosure Housing Aluminium with electrostatic powder coating IP 65 14 of 98 4 2 4 2 1 4 Terminal connectio
25. Selection calculation calculation HTG 4 GOV P1B pressure transmitter GOV Y Y Volume Reference Standard Weighted density y E Average calculation gt Ba GSV Temperature API VCF _________ 5 a Configuration settings for this option are i e ASP1A 1 Liquid pressure P1A on analogue input 1 ASP1B 2 Liquid pressure P1B on analogue input 2 ASP3 3 Vapour pressure P3 on analogue input 3 ASACTD 12 Calculated from pressure inputs ASREFD 0 No input value available VCFtype 2 Temperature and pressure correction The reference density can come via Modbus from an external source The API calculation is no longer needed in this alternative case The same configuration settings are used except for ASREFD 14 Modbus override The next diagram shows the calculations 23 of 98 7 Calculations ACTDENS pressure transmitter Corrected Level P1 Actual transmitter density Mass MAS selection calculation calculation HTG GOV P1B pressure transmitter GOV y Y VCF Standard Modbus REFDENS gt gt Volume calculation calculation VCF REFDENS Ce In many cases pressure readings are not available Either reference density or actual density must be available to calculate the volume under referenc
26. There are 3 switches build in the TTM100 to switch on termination resistors on the communication line Parameter rel stat relay status bit0 termination for com1 bit1 termination for com2 bit2 termination for com3 RS485 communication line must be terminated at the end and at the beginning of the line The termination must be switched on in the TTM100 at the end of the communication line Other TTM100 s on the same communication line should have their termination switched off 10 2 6 Sensor break limit The TTM100 detects broken Pt100 series a Pt100 is assumed to be OK when the measured temperature is within following limits sbr pt min Pt100 sensor break limit low in degrees Celsius sbr pt max Pt100 sensor break limit high in degrees Celsius Note Broken sensors are left out of the average temperature calculations Similar limits are applicable to analogue inputs br ma min Analogue input sensor break limit low in mA br ma max Analogue input sensor break limit high in mA An open circuit is detected when the input current is less than the minimum limit a short circuit is detected when the input current exceeds the maximum limit 10 2 7 Analogue input scaling The next parameters are used for this scaling from mA values to engineering units scph0 mal mA value at 096 of the scale of input 1 scph0 ma8 mA value at 0 of the scale of input 8 49 of 98 10 Configuration 1 mal sceu0 sceu0 ma8
27. 309 Spare jo 3011 REFPRESS pm pressure As an absolute value default 3013 REFTEMP Reference temperature 3015 REFTEMPssc float Reference temperature for shell expansion calculation 3017 float Reference temperature for stilling well expansion calculation 325 D j Densiyofar 050902 327 TB Bulgngcorecion 2004 3037 Maintenance 0 operation 1 in maintenance 4 308 Spre 3039 Gravity acceleration 004 3041 Ko float K factor for free fillin 00 3045 Ki K factor for free fillin 0004 349 K factor for free filin 000 Lower limit dead band temperature calculation 3063 chante Name of stored product Block Alarm Limits Modb Pm Addr Description Lolo alarm limit for level Lo alarm limit for level Hysteresis alarm limit for level HiHi alarm limit for level 4011 LoLoINT mm Lolo alarm limit for interface mm 66 of 98 Communication Description Lo alarm limit for interface Hi alarm limit for interface HiHi alarm limit for interface Addr oat at 4021 LoLoTAVVAP float oat oat temperature of vapour temperature of vapour temperature of vapour HiHi alarm limit for volume weighted average Hysteresis alarm limit for volume weighted average temperature of vapour Lolo alarm limit for volume weighted average temperature o
28. 4 5 6 7 8 9 10 1 12 2 1 2G EEx d ib T4 fir Typ TTM 1008 EXAM Pr f und Zertifizier GmbH EG Baumusterpr fbescheinigung Richtlinie 94 9 EG Ger te und Schutzsysteme zur bestimmungsgem en Verwendung in explosionsgef hrdeten Bereichen BVS 05 ATEX 124 X Ger t Temperatursensor und Transmitter Multiplexer Typ TTM 100 Hersteller IBS BatchControl GmbH Anschrift 50170 Kerpen Die Bauart dieses Ger tes sowie die verschiedenen zul ssigen Ausf hrungen sind in der Anlage zu dieser Baumusterpr fbescheinigung festgelegt Die Zertifizierungsstelle der EXAM Pr f und Zertifizier GmbH benannte Stelle Nr 0158 gem Artikel 9 der Richtlinie 94 9 EG des Europ ischen Parlaments und des Rates vom 23 M rz 1994 bescheinigt dass das Ger t die grundlegenden Sicherheits und Gesundheitsanforderungen f r die Konzeption und den Bau von Ger ten und Schutzsystemen zur bestimmungsgem en Verwendung in explosionsgefihrdeten Bereichen gem Anhang II der Richtlinie erf llt Die Ergebnisse der Pr fung sind in dem Pr fprotokoll BVS PP 05 2092 EG niedergelegt Die grundlegenden Sicherheits und Gesundheitsanforderungen werden erf llt durch bereinstimmung mit EN 50014 1997 A1 A2 Allgemeine Bestimmungen EN 50018 2000 1 Druckfeste Kapselung d EN 50020 2002 Eigensicherheit 1 Fails das Zeichen hinter der Bescheinigungsnummer steht wird in de
29. Housing Dimensions B Housing Dimensions 3 S 3 EN il N Hi IN ISI 1 4 PET N SS 4 Now SING i SII OLED mu d T 1 227272 D Y a Y 1m Z Z Z 79 98 Housing Dimensions coated 80 RAL 5005 rat OOF eri FOV HED ET NIG 257977510 coated 20 RAL 5005 AISI9M 0 5Fe 3 300 Q window lid Modular Housin apanan ee SSSR __ lt OCPD NIQ HS aXOTIN wo 8275 9 5005 coated 30 RAL Modular n terminal li ka Ir Por tying ty sa emm es C 33152801 80 of 98 Housing Dimensions An example of a probe HE Z rama rama os oo EE a a SHRINKABLE TUBING I SUPPORT WRE 5 1 ky WIRE TEX 28F CU te WE e Lt MULTI RTD ASSEMBLY LENGTH 4 26 EEve NC 75 ACC T Aud Nr 2244 X XPSI 81 of 98 Approval Atex Approval 1 2 3
30. Pt100 s within the dead band are not used Mark this PT100 as Not used Upper Limit Lower Limit Volume weighted averages are calculated in a similar way The difference is in the weighing of the reading instead of the layer heights the layer volumes are used The volumes are calculated from a strapping table _ 2 LayervolumeTX ReadingTX LayervolumeTX Calculated volume weighted temperature averages TAVWATER Sediment and water part TAVPROD Stored product part TAVVAP Vapour room 26 of 98 7 3 7 3 1 7 Calculations Note The height weighted and volume weighted averages are the same for ideal vertical cylindrical tanks Difference are found when the volume height relation is not linear Level Level instrument selection The readings from the primary instrument are used in normal operation The secondary instrument takes over when the readings of the primary instrument are not reliable and the readings from the secondary instruments are reliable The reliability depends on the communication status and instrument alarms The following alarms result in unreliable measurements and are therefore switch over criteria BM70 100 Hardware error Hardware error CPU error NN ADC reference error EPROM error checksum RAM error write read check Interrupt error NN Counter timer error NN EEPROM error General error No signal No peak Microwave error Current output error Statu
31. Zertifizier GmbH 1 Nachtrag Erg nzung gem Richtlinie 94 9 EG Anhang III Ziffer 6 zur EG Baumusterpr fbescheinigung BVS 05 ATEX E 124 X Temperatursensor und Transmitter Multiplexer Typ TTM 100 IBS BatchControl GmbH 50170 Kerpen Der Transmitter Typ TTM 100B kann auch nach den im zugeh rigen Pr fprotokoll aufgef hrten Pr fungsunterlagen gefertigt werden Die grundlegenden Sicherheits und Gesundheitsanforderungen der ge nderten Ausf hrung werden erf llt durch bereinstimmung mit EN 50014 1997 AI A2 Allgemeine Bestimmungen EN 50018 2000 A1 Druckfeste Kapselung d EN 50020 2002 Eigensicherheit i Die Kennzeichnung des Ger tes muss die folgenden Angaben enthalten 2G EEx ib ia T4 f r Typ 100A H 2G EEx d ib T4 Typ 1008 Unver ndert Kenngr en Transmitter Typ TTM 100B Netzstromkreis Klemmen 18 und 19 Bemessungsspannung max Spannung 24 um AC DC 250 vos 2 zu BVS 05 ATEX E 124 X N1 Dieses Zertifikat darf mur unver ndert weiterverbrehet werden Dinmendanistra e 9 44509 Bochum Telefon 0234 3696 105 Telefax 0234 3656 110 89 of 98 V EXAM BBG Pr f und GmbH Pr fprotokoll BVS PP 05 2092 EG Stand 11 11 2005 EXAM BBG Pr f und Zertifizier GmbH Bochum den 11 November 2005 Cr Zeftifizierungsstelle Seite 2 von 2 zu BVS D
32. display not connected or damaged bit 8 primary level controller access error bit 9 secondary level controller access error bit 10 HART chan 1 communication failed bit 11 HART chan 2 communication failed failure description in reg 14 bit12 strapping table bad default loaded bit13 modbus overwrite table bad default 20 loaded bit 14 sensor ID bad parameter write request flag writing 0 into this 5 param wr int RAW variable cause saving current parameter settings into this is reset after parameter write complete 74 of 98 Communication calibration write request flag writing 0 into this variable cause saving current calibration settings into EEPROM this flag is reset after calibration write complete Tank parameters write request flag writing 0 into this variable cause saving current tank parameter settings into EEPROM this flag is reset after tank parameters write complete alarm parameters write request flag writing 0 into this variable cause saving current tank parameter settings into EEPROM this flag is reset after alarm parameters write complete configuration parameters write request flag writing 0 into this variable cause saving current tank parameter settings into EEPROM this flag is reset after configuration parameters write complete strapping table write request flag writing 0 into this variable cause saving current tank parameter settings into
33. line without repeaters is 32 e Bad RS485 line Maximum length without repeaters is 1200m It must be a twisted pair type to minimize disturbance and the right impedance to minimize distortion 10 of 98 3 Service Maintenance 3 3 5 HART Communication 3 4 3 5 The TTM100 can be equipped with HART communication to connect pressure transmitters or level instruments with HART communication Possible causes of failure are e Wrong Manufacturer code Check with TTM Monitor e Wrong Device type code Check with TTM Monitor e Wrong Device ID Check with TTM Monitor e Wrong configuration Assignment configuration parameters must be set right set to 9 for HART on Analogue input 1 and 10 for HART on Analogue input 2 e Wrong connections HART communication is not working Check the electrical circuit Basic Servicing There is no basic servicing required after commissioning other than checking the connections and the internal temperature every now and than Fault Clearing An extensive set of errors alarms and status flags are available in the Modbus alarm block The supervisory computer uses this block to collect alarms Checking the raised alarms on the supervisory computer is the first thing to look for to find what causes a problem The TTM100 has the option to mask irrelevant alarms in the Modbus alarm block The Modbus diagnostics block contains all unmasked alarms and intermediate calculation results This is the next thin
34. not apply when there is accurate pressure measurement available Either actual or reference density must be known in order to calculate the other In most cases the reference density is an external value provided via Modbus The actual density is calculated with the volume correction factor ACTDENS REFDENS VCF The volume correction factor can be calculated according to API D2540 standards Note The API calculation applies for standard condition of 15 degrees Celsius and 1 01325 bar absolute pressure Reference conditions for a particular application can differ from the standard conditions The TTM100 can calculate VCF GSV and REFDENS user defined reference conditions Standard Density API D2540 The volume correction factor to calculate from observed volume to standard volume consists of a correction for temperature and a correction for pressure VCF C The correction for temperature to the 15 referenc base EXP oT TEMP 15 1 0 8 aT TEMP 15 33 of 98 7 Calculations Temperature correction factor aT Thermal expansion coefficient The calculation of aT depends on the type of product API classified different product groups with different K factors to calculate aT K K oT P s P s Where pis Density at reference 15 6 Ko Ki K Constants depending on the type of the product The API table for the 15 reference base is PP GG
35. stilling well Selected instrument bitO product level 0 primary 1 4017 LevelUsed int secondary bit1 interface level 02 primary 1 secondar CER pressure transmitter 1 2 m Volume Correction Factor between REFDENS 4037 P2 reading future 4039 4041 ACTDENS Actual Densit 4043 REFDENS Density at reference conditions When calculated 4045 DENSs float j DenstyatibC 80 4051 prod it ____ copy of reg 5044 Producttype 93 MM malo 69 of 98 Communication Ada mo Description if 5037 BCType 0 then copy of 3027 4064 float tank par 84 Ses 0 we pae EA for local display use 0 tank in operation 1 tank in maintenance for local display use A 2 7 Alarms Block Alarms 601 lit Error status of Pt100 Open 6002 Error status of Pt100 Shortcut 6008 int Error status of analog input 6004 ALCALCLEVEL int Levelacquisition alarm 6005 ALCALCTEMP Temperaturecalculation alarm 00 6006 inter initialisation status 607 6008 Spre 17 _ 6009 jPressurecalcuationerors 00 6010 ALSTRAP Strapping table alarms 6011 jit ____ roof correction alarms 00 6012 jDensitycalculationalarms ________ 6013 ALAPI2540 1 ____
36. 2000 points can be loaded into the TTM100 Volumes are calculated by a linear interpolation method Mises Strappingvolume Strappingvolume Strappingvolume Vues Strappingvolume ues With Viank Total tank Volume 7 5 2 Volume correction for shell expansion due to temperature The volumes calculated from the strapping table have to be corrected for the temperature expansion of the tank shell material The sediment and water part the product part and the vapour room can have different temperatures and therefore different expansion factors The next formula is used to calculate the expansion factors for all 3 compartments AT REFTEMP 1 2 SEC SEC With SEC Linear material expansion coefficient of the tank shell Reference temperature for the tank shell Note The expansion is calculated as a square expansion and not as a cubical expansion The expansion in the vertical dimension is not relevant because the actual level is measured and corrected for stilling well expansion 29 of 98 7 Calculations Calculated from TAVVAPL Ftherm product IS calculated from TAVPRODL Finerm water is calculated TAVWATERL 7 5 3 Volume correction for floating roofs The weight of a floating roof causes a level offset in the level in the stilling well The effect is that there is less product in the tank than measured by the level A
37. 3696 110 91 of 98 V EXAM BBG Prif und Zertifizier GmbH Test and assessment report BVS PP 05 2092 EG as of 11 11 2005 EXAM BBG Pr f und Zertifizier GmbH Bochum dated 11 November 2005 Signed Dr Jockers Signed Dr Eickhoff Certification body Special services We confirm the correctness of the translation from the German original In the case of arbitration only the German wording shall be valid and binding 44809 Bochum 11 11 2005 BVS Schu Mi A 20050313 EXAM BBG Pr f und Zertifizier GmbH 26 body Page 2 072 to 505 ATEX E 124 X NI This certificate may only be reproduced entirety and without change Dimnendahlstrasse 2 44809 Bochum Germany Phone 49 234 3696 10 Fax 49 234 3696 110 92 of 98 Approval 2 Nachtrag zur EG Baumusterpr fbeschein jung 2 Ger te und Schutzsysteme zur bestimmungs Ben Verwendung In explosionsgefahrdeten Bereichen Richtinie S4 S EG Erg nzung gem Anhang Il Ziffer 6 3 der EG Baumusterpr fbescheingung BVS 05 ATEX E 124 X 4 Temperatursensor u Tranamitter Multiptexor 5 IBS BstchControl GmbH 8 Anschrift 0170 Kerpen 7 Die Bauart dieser Ger te sowie die verschiedenen zul ssigen A diesem Nachtrag festgelegt 8 Die Zertifzierungsstelle der DEKRA EXAM GmbH benannte Richtlinie SU WEG des Europ ischen Parl
38. 70 BM100 Krohne PINGGA nade nn abarca nai 58 Aa Modbus L u uu 58 Der i 58 no iq ttm 59 A2 e Conigu uuu Lebe re dae a d aer B ke Fa tr TT 61 Ard 66 Aa Messer ETE een 68 C eon Me EIECTUS 69 Der C CHO ERRORES 70 RS DSL RR a 71 50198 1 Introduction 1 2 1 3 1 4 1 5 of this Document This document contains all relevant information concerning the TTM100 for operators process engineers or service and maintenance engineers Range of Application The TTM100 can be used in a wide range of measurement applications but is specifically designed as a data acquisition and computing device for storage tanks metering systems The configuration options are chosen to cover most tank management applications in the petrochemical industry Scope of supply The TTM100 is supplied as a set of hardware software and documentation consisting of TTM100 A optional o Electronics optional o Temperature probe optional TM100 B User Manual Monitor configuration tool Calibration report optional Material certificates optional Certificate of origin optional ATEX certificate optional Approval 89 336 EG EN61326 EN61326 A1 optional Product liability and warranty 100 is designed for multipoint temperature measurement and
39. 99 110 cam 94 0198 118 117 15318 Umgebungstemperaturbereich 1532 Mulbplexer Typ 100A Multiplexer type 1004 15321 Transmitterspeisestromkresse in der Z ndschutzart Ex ia IIC Klemmen 20 Ausgangsspannung Ausgangsstromst rke Max Ausgangsleistung Ausgangskennlinie Ta DG Lo 145 3 2 2 PT100 tromkreise 1 bis Klemmen A1 bis A18 und B bis 16 in der Z ndschutrart Ex ia IC Werte Kleemenenblock Ausgangsspannung Max Ausga Max Ausgangsleistung Max au ere Kapazitat Induktivit t 15323 Umgebungstemperaturbereich Pr fprotokos BVS PP 05 2082 EG Der zulassige U 1008 und Typ in einer Umgebungstemperatur geeignete Letungen petet ret rte 1 anon verwendet werden 582 55 I von 9 zu BS 36 124 X NS Dieses Zenit aur EXAM D 44809 Bochum Ti we TAP 234 06 108 43 234 2600 1 10 com 95 of 98 Approval m 9 10 ny 12 Translation 2 Supplement to the A EC Type Examination Certificat Equipment and protective systems intended for use in potentially explosive atmospheres Directive 94 9 EC Suppl
40. Deserpuon i mA reading scaling point 2 input 6 value E U scaling point 2 input 1 value E U scaling point 2 input 2 value in E U scaling point 2 input 3 f value in E U scaling point 1 input 6 value in E U scaling point 2 input 4 float HART 1 device description bits 0 7 manufacturer code bits hart1 dev int 8 15 device code hart2 dev int 2 description bits 0 7 manufacturer code bits 8 15 device code HART 1 device identifier bits 0 23 id long int en 0 automatic recognition HART 2 device identifier bits 0 23 hart2_id long int A 0 automatic recognition har apan float span factor for hart PV accommodation SP for HART chan 1 default 1 000 hart2 span float span factor for hart PV accommodation Sp for HART chan 2 default 1 000 Baar float offset factor for hart PV accommodation for HART chan 1 default 0 000 zero float offset factor for hart PV accommodation for HART chan 2 default 0 000 N IS NO NO NO NO N NO NO N N O N O NO D 4 DA O O
41. EEPROM this flag is reset after strapping table write complete modbus overwrite table write request flag writing 0 into this variable cause saving current modbus overwrite settings into EEPROM this flag is reset after table write complete temperature controller output status bitO heater 1 bit1 heater 2 active level control devices bit 8 primary controller bit9 secondary controller Address calib wr 20 7 20 alarm wr d4 20 20 modb wr 10 11 12 Spare 13 t ctrl out 14 Spare bm active int Block Raw Data Pt100 sensor unit identifier reading value 600 the TTM100 sensor is connected ver int software version of TTM100 sensor current version is 100 sens ver int interpreted as 1 00 int 3 unique number not supported yet for raw long _ cumentrawa dreadingofPtiO0 1 raw long cumentrawa dreadingofPti00 47 ___ _____6 ppt9 raw long _ cumentrawa dreadingofPti00 9 8 raw long current raw a d reading of Ptt00 10 9 75 of 98 Communication Addr Name Type Description current raw a d reading of Pt100 13 pti raw 0114 raw current raw a d reading of Pt100 14 current raw a d reading of Pt100 15 W O 12 13 i 14 ppti6 raw long currentrawa dreading ofPti00 416 15 6 7 8 9 0 1 2 3 ong ma3 raw _ long
42. Multipoint Temperature Measurement and Tank Volume Computations TTM100 Programming installation manual BVS 04 ATEX E 172 Revision 1 7 14 07 2011 Construction Year see type plate BS B a tc h IBS BatchControl GimbH Marie Curie Str 8 Tel 49 0 22 73 60 370 50170 Kerpen Fax 49 0 22 73 60 37 22 Germany www ibs batchcontrol de User Manual 2 of 98 1 Introduction 1 Introduction 11 Table of Contents Dus 3 11 Tableof eR 3 12 Purpose gr uds P uu us aza 6 13 Rango BT EET 6 IA Su se ee TORT ee esse 6 uu uuu ANA ee 6 PAG GU AA AWA Fi 2 User an TRUE 8 3 Service and e ee nnn nnn nnn 9 UM EE LU SIC 9 UESTRE IC ER EUM 9 ST ERREUR 9 322 4 20 MA Analogue MUN Sia uu ull isi KG coda sedan ciat 9 32 23 intemal EI RR D D I E c T 9 9 u ucl uy a LM AA 9 gt u u s 10 2 22 Configuration and Parameter U ULU 10 3 3 4 R5485 uuruuu AA 10 32 HART heats os
43. a configurable time base when more than 2 lines are configured The display can be configured to show text and calculated and measured values in a configurable format 8 of 98 3 Service Maintenance 3 Service and Maintenance 3 1 3 2 3 2 1 Test functions The instrument performs a parameter check during start up An initialisation error is set when the checksum over a parameter set is not right The cause of an initialisation error can be parameters downloaded Happens when the T TM100 is switched on the first time software version download into the TTM100 The initialisation errors will disappear after downloading all parameters and configuration Calibration Pt100 Input Standard Pt100 385 curves are implemented in the software for each Pt100 input A 2 point calibration with certified calibrator is done for each input to get the best fit of the curve Offset parameters can be used to correct for the inaccuracy of a Pt100 elements 3 2 2 4 20 mA Analogue Inputs 3 2 3 3 3 3 3 1 A 2 point calibration with certified calibrator is done for each analogue input Internal Temperature The internal temperature of the instrument is measured This temperature can be used to monitor the instrument and to control an internal heater for use in cold environments Trouble Shooting Pt100 Errors Temperature elements are connected as 2 loops of 8 Pt100 s each A broken connection or element wi
44. ach terminal block Voltage Uo DC 53 Current lo 13 7 mA Power Po 23 mW Max external capacitance Co 3 HF Max external inductance Lo 50 mH 5 323 Ambient temperature range Ta 40 C up to 65 C Test and assessment report BVS PP 05 2092 EG as of 30 08 2005 Special The permissible ambient temperature range for the transmitter type TTM 100B and for the multiplexer is 40 up to 65 The use of the transmitter at an ambient temperature below 20 is only admissible if the cables and cable entries are suitable for that temperature and use Page Jof 4 05 ATEX 124 X This certificate may only be reproduced in its entirety and without change Dinuendshlstrussc 9 44809 Bochum Germany Phone 49 214 3696 105 Fax 49 234 2696 110 87 of 98 Approval V EXAM BBG Pr f und Zertifizier GmbH We confirm the correctness of the translation from the German original In the case of arbitration only the German wording shall be valid and binding 44809 Bochum 30 August 2005 BVS Schu Kw A 20050390 EXAM Priif und Zertifizier GmbH 4 ft Certification body Page 4 of 4 BVS 05 ATEX 124 X This certificate may only be repeoduced in its entirety and without change Dinmendahisirasse 9 44809 Bochum Germany Phone 49 234 3696 105 49 234 3696 110 88 of 98 Ger t Hersteller Anschrift Beschreibung ATEX Approval Ww EXAM BBG Pr f und
45. additional tank measurement data acquisition The TTM100B is designed for tank measurement data acquisition and computation Special codes and regulations apply to its use in hazardous areas Responsibility as to suitability and intended use of this instrument rests solely with the user Improper installation and operation may lead to loss of warranty In addition the General conditions of sale found on the back of the invoice and forming the basis of the purchasing contract are applicable 6 of 98 1 Introduction 1 6 Definition of terms Term D Description BM100 70 Calibration Checksum Configuration Setting parameters that influence the behaviour of the instrument Download EEPROM EPROM HART Initialisation Interface Separation level between two liquids Modbus OPTIFLEX OPTIWAVE Pt100 RAM Computer meant for HMI for operators computer TTM100 Temperature measurement device and tank computer TTM100A TTM100 part connected to the temperature probe TTM100B TTM100 part with embedded computer Voltage Controlled Oscillator 7 of 98 2 User Interface 2 User Interface The TTM100 is configurable via a serial link there are no buttons on the instrument itself to configure it The TTM100 B is equipped with a display to show required data in the tank field Physically there are 2 lines with 16 characters 20 lines with 16 characters can be configured to show text and data The display will scroll on
46. age volume AR MAXC TOV With MAXC Maximum capacity of the tank the part that can be filled safely 7 6 Actual Density 7 6 From level and pressure measurement The actual density of the liquid can be calculated from pressure and level readings by the following formula ACTDENS BE iS m D 8 With g gravity Measured Level m Height of Pressure sensor P1 in use m D Density of air kg m P1 Product pressure in kPa P3 Vapour pressure in kPa Note The variations in vapour pressure will be small and can be measured in an accurate way by one pressure transmitter P3 32 of 98 7 Calculations The pressure at Hp will vary due to the level and density of the liquid The provides in using two pressure sensors with different ranges to maintain an accurate measurement for a wide range in level The reference density can be calculated from the actual density by an iterative VCF calculation according to API D2540 Alternatively the reference density is an external value provided via Modbus Note The API calculation applies for standard condition of 15 degrees Celsius and 1 01325 bar absolute pressure Reference conditions for a particular application can differ from the standard conditions The TTM100 can calculate VCF GSV and REFDENS for user defined reference conditions 7 6 2 From level and pressure measurement 7 4 7 7 1 previously described method does
47. aments und dass dese Gerste bagong Konzeption und den Bau Web eu chub Verwendung in explosionsg en MW Ergebnisse der Pr fung sind in dom CENE 9 Die grundlegenden Sicherheits und nga Ubersinstermung mit EN 60079 0 2009 Allgemeine Anforderungen EN 60079 1 2007 y EN 60979 11 2007 Eingensicherheit i 10 Falls das Zeichen X hinter Ger Bescheinigung aid 11 Dieser Nachtrag zur F r Herstellung und Inverkehrbringen der Ger te sind wesite Anford erf llen nicht durch diese Bescheinigung abgedeckt sind SH fey T NA 12 Die Kennzeichnung Gerates muss die folgenden Angaben entnaren if 126 Ex ibfia IC TA Gb f r Typ TIM 100A ll 126 Ex T4 Gb f r 1098 ocer Il 2G Ex ib ia IIC T4 f r Typ TTM 100A Il 2G Ex db ib T4 f r TTM 1008 DEKRA EXAM GmbH Bochum den 13 10 2011 FA CUY Zertifizierungsstele Fachbereich Bete 1 on 3 zu BVB DS ATEK 124 X Ng Dieses Zetian rur wayang und urka werde TENRA EXAM Danandanaiaka Q 4400 Bacher Tamaan 47 234 Mb6 508 napana 3094 110 DON 93 of 98 13 14 15 Anlage zum 2 Nachtrag zur EG Baumusterpr fbescheinigung BVS 05 ATEX E 124 X 1 1 Gegenstand ung Temperatursensor u Trensmitter Mulbiplex
48. art2 span span factor for measured value on input 2 hart3 span span factor for measured value on input 1 hart4 span span factor for measured value on input 2 53 of 98 10 Configuration hart1_zero offset for measured value on input 1 hart2_zero offset for measured value on input 2 hart3 zero offset for measured value on input 1 hart4 zero offset for measured value on input 2 10 5 4 Pressure measurement Pressure transmitters can measure absolute pressure or differential pressure against atmospheric pressure As long as the transmitters are all the same kind there is no difference for the actual density calculation but there is a difference for the average pressure being used in the API calculations The next setting tells the TTM100 what kind of transmitters is used PressType 0 differential pressure measurement 1 absolute pressure measurement 10 5 5 Tank related calculations configuration Since the TTM100 is a very flexible instrument some parameters are needed to select the required calculations to perform with the required options The type of tank determines if there is a vapour room or not Parameters Tanktype Shape of the tank 0 2 Fixed roof 1 Floating roof 2 Sphere FRCtype Roof weight correction 0 No floating roof correction calculated 1 Floating roof correction Note Both Tanktype and FRCtype must be set correctly if a floating roof correction is required The floating roof correction will not be calc
49. ay 2 MSK3INST Instrument alarms masked for Modbus Supervisory The following list describes the alarm masking parameters The masking parameters perform a bitwise AND function on the related alarm status An OF function of all alarms filtered by MSK1xxx controls relays output 1 An OF function of all alarms filtered by MSK2xxx controls relays output 2 The alarms filtered by MSK3xxx are communicated via the Modbus alarm block The unmasked alarms are available on Modbus block diagnostics 55 of 98 10 Configuration next table shows the masking parameters the related alarm variable 1 Maskreays2 Modbus Alarm variable 56 of 98 11 Ordering Information 11 Ordering Information TTM100 B O No O Yes Power Supply O 230VAC O 115VAC O 24VDC Heater O No O Yes HART communication O No O Yes TTM100 A O No O Yes Temp Probe O No O Yes Pt100 Accuracy OClassA 1 10 length Number of Pt100 s Distance of each Pt100 to the Flange face Pt100 no 1 mm Pt100 no 2 mm Pt100 no 3 mm Pt100 no 4 mm Pt100 no 5 mm Pt100 no 6 mm Pt100 no 7 mm Pt100 no 8 mm Pt100 no 9 mm Pt100 no 10 mm Pt100 no 11 mm Pt100 no 12 mm Pt100 no 13 mm Pt100 no 14 mm Pt100 no 15 mm Pt100 no 16 mm Flange size and material Element material Counterweight Yes standard O Yes special size Diameter mm Height mm
50. ccording to Archimedes law the weight of the replace liquid compared to the level in the stilling well is the same as the weight of the roof This results in the following correction calculation _ WROOF _ ACTDENS And RC REFDENS With WROOF Roof weight ACTDENS Actual density REFDENS Density at Reference conditions VCF Volume Correction Factor The roof correction RC will be proportionally less when the level has a value between the support height of the roof and the takeoff height in the stilling well The roof correction becomes 0 when the level drops below the support height This is calculated as lt H joy THEN measured against atmospheric pressure RC H ora H support takeoff Hon With Measured level in the stilling well Hiakeoft Level in the stilling well when the roof lift off from it s support Hsupport The height of the supports in the tank Note The will not rest on it s support under normal operation conditions 30 of 98 7 Calculations 7 5 4 Bulging correction A tank can deform due to pressure on the inside of the shell caused by the weight of the stored product The deformation has an expanding effect on the shell circumference and a lowering effect on the roof The level reading can have an error when the level instrument is mounted directly on the roof and not on a stilling well The measured level is higher than the real level in the ta
51. e conditions and the mass It is most likely that a reference density is made available via Modbus The next diagram shows the calculation for this case Modbus Volume Weighted Average Temperature acoes Mass Actual density calculation calculation mass 1 GOV Standard gt Volume calculation REFDENS Configuration settings for this option ASACTD 0 ASREFD 14 VCFtype 1 HTempMethod 2 Calculated from pressure inputs No input value available Only temperature correction Ce External Reference Density Actual density calculated The alternative to previous set up is that the actual density is available 24 of 98 7 0 7 2 1 7 Calculations ACTDENS Mass Modbus gt calculation 1 GOV Volume Reference N Standard Weighted density gt Volume 1 GSV Average calculation calculation Temperature API REFDENS a Configuration settings for this option are i e ASACTD 14 Calculated from pressure inputs ASREFD 0 No input value available VCFtype 1 Only temperature correction Notes The four calculation principles will cover most applications A supervisory computer can perform product calculations in special cases or for s
52. e probe a floating roof tank and all correction activated are i e bm stat 0x0A02 Both primary and secondary level instruments are BM100 s communicating with 9600 baud bm p adr 1 Primary BM100 address bm s adr 2 Secondary BM100 address ASTAVV 13 Average vapour temp calculated from temperature probe ASTAVP 13 Average product temp calculated from temperature probe ASTAVW 13 Average water temp calculated from temperature probe ASLVL1 11 Primary level from level instrument ASINT1 11 Primary interface from level instrument ASLVL2 11 Secondary level from level instrument ASINT2 11 Secondary interface from level instrument Tanktype 1 Floating roof FRCtype 1 Floating roof correction STWCtype 1 Stilling well correction activated SECtype 1 Tank shell correction activated BCtype 1 Bulging correction activated Detailed information about configuration is found in chapter Configuration page 45 22 of 98 7 Calculations Different options available for product calculations to cover most applications Actual density can be calculated from pressure when accurate pressure measurement is available The reference density can be calculated from actual density actual temperature and pressure according to API D2540 standards PIA ACTDENS transmitter Corrected Level Actual kd densit Mass transmitter y gt MASS
53. ement accordant with Annex 111 number 6 No of EC Type Examination Certificate BVS 05 ATEX E 124 X Equipment Temperature sensor multiplexer and Transmitter type 4 Manufacturer IBS BatchControl GmbH Address 50170 Kerpen Germany Made ragen bau maga the appendix to this supplement The certification body of DEKRA EXAM GmbH notified the Directive 94 0 of the European Parliament and the equipment nas been found to comply with the the design and construction of equipment and protec explosive atmospheres given in Annex fo the D Troe n fro and abet ap rt AVS PP 052 EN 60079 0 2009 Genera EN 60079 1 2007 Flamepro f Enclosure d EN 60079 11 20071ntrinsic Safety 11 I the sign X is placed after the number idis at conditions for safe use specified m the appendix Pis SIN This supplement to Examination sek tests of the specified equipment in accordance to Directive J Further requirements of the Directive apply fo the proce of this equipment These not covered by this certificate 1777 The marking of the equipment shall include Ihe following 126 Ex ib ia T4 Gb for type 100A 126 Ex d ib IIC T4 Gb for type TTM 1008 o 126 Ex ib ia IIC T4 for type 100A 26 Ex db ib T4 for type 1008 DEKRA EXAM GmbH Bachum dated 13 10 2011 Signed Simanski S
54. en sind Die Ger te dienen zur F llstands berwachung und Tankinhaltsberechnung eines Lagertanks Der Transmitter besteht aus dem Geh use Typ MH 300 EEx KEMA 03ATEX2527 U und der darin gesichert befestigten elektronischen Schaltung Die u eren nicht eigensicheren Stromkreise werden ber gesondert bescheinigte Leitungseinf hrungen in das Anschlussgeh use gef hrt In dem Transmittergeh use ist wahlweise eine Heizung eingebaut die die Geh useinnentemperatur auch bei Minustemperaturen auf 0 C stabilisiert In dem Geh use des Multiplexers ist eine elektronische Schaltung zur Speisung und Auswertung von Transmitter und PT100 Stromkreisen und zur Daten bertragung untergebracht 15 3 Kenngr en 15 3 1 Transmitter Typ TTM 100B 15 31 1 Netzstromkreis Klemmen 18 und 19 Bemessungsspannung 115 Um 125 Bemessungsspannung AC 230 v max Spannung Um AC DC 250 15 3 1 2 nicht eigensichere Relaiskontakt Stromkreise Klemmen 13 und 14 und 15 und 16 Schaltspannung DC 30 Schaltstromst rke 1 oder Schaltspannung AC 125 __ Schaltstromstarke 05 max Spannung Um AC DC 125 V 15 3 1 3 nicht eigensichere Transmitter Speisestromkreise Klemmen 7 und 9 8 und 9 10 und 12 und 11 und 12 Bemessungsspannung pc 28 v Stromst rke 50 mA max Spannung Um AC DC 125 Sehe 2 von 3 zu 05 E 124 X Dieses Zertifikat darf mar unver ndert weiterverbre
55. ent is possible that one instrument measures level and the other interface The temperature probe contains up to 16 Pt100 elements at different heights to measure the temperature The linear weighted average temperatures are temperatures weighted by their distances in height These average temperatures are used for the stilling well expansion correction and the shell expansion correction see below assuming that the average temperature on the tank shell has the same temperature profile in height as the products inside the tank The relation between the height and the volume depends on the tank shape and is not necessarily linear A volume weighted average temperature is needed to calculate the volume under reference conditions see product calculations The volumes in the tank are calculated with the corrected heights and a strapping table Next step is a correction for the shell expansion due temperature The weight of a floating roof causes a level offset in the stilling well The floating roof correction is a volume correction based on the roof weight A bulging correction factor can be used to correct for shell deformation of the tank All measured values can come from an instrument or as an override value via Modbus and all corrections are optional The configuration determines the source of measurement values and which corrections are performed or not The configuration settings for tank calculations with two level instruments a temperatur
56. er Typ 100 Anstelle des wird in der vollst ndigen Benennung der Buchstabe oder B unterschiedliche Geh use kennzeichnet 15 2 Beschreibung Es wurden verschiedene nderungen an eigensicherheitsrelevanten nicht oigensicheren Elektronik vorgenommen Zu dem wird die bereinstimmung mit dem Normen EN 60079 0 2009 EN 60079 11 2007 best tigt 15 3 Kenngr en 153 1 Transmitter 1008 16311 Netzstromkreis ammen 48 und JAPS Be 22 Bemessungsspann ng DADA PHA Mar Spem 15312 eigensichere Schaitspannung Schaltsromst rke oder Schaflspannung Schaftstromst rke Spannung 15313 11 Bemessungsspannung Max Spannung Um ACDC 9500 15314 Nicht eigensichere RS485 Schrsitistelle Klemmen 1 bis 6 Bemessungsspannung Stromstarke 100 mA Max Spannung um 4B V 18315 Eigensichere Ausgangsstramkreise Klemmen 1 4 in Z ndschutzart Ex ib Us GND 182 GND Ausgangsspannung DC 26 v Ausgangsstromstarke lo 58 mA RxD GND Ausgangsspannung v Ausgangsstromst rke vos 2 GS 05 ATEX 124 X ING Diosas hat rur und uramt rdert OPORA EXAM Urnarciaruha te D 44509 Token vat 234 1606 56 Telefax 541294 3
57. f product temperature of vapour 4049 HystTAVWATER float temperature of product temperature of product average temperature of product temperature of sediment and water temperature of sediment and water temperature of sediment and water temperature of sediment and water average temperature of sediment and water at __ at Lo alarm limit for volume weighted average be uU Noa temperature of product kPa Hi alarm limit pressure at HiHi alarm limit for pressure oat Hysteresis alarm limit for pressure Block Override Values Mod ue Add Name Unit Description 6001 Override for wide range pressure transmitter 6003 Override for small range pressure transmitter 6005 6007 6009 Override for volume weighted vapour temperature Override for volume weighted product 6013 Override for volume weighted water temperature 6015 for linear weighted vapour temperature 67 of 98 Communication 6017 tav float Overridefor linear weighted product temperature _ 6019 tav water Override for linear weighted water temperature fl Overideforpimarylevel 6023 interface 1 Override for primary interface 6025 level 2 Override for secondarylevel 6027 interface 2 Override for secondary interface 6029 dens flat _________ Override for act
58. g sp Set point of internal temperature controller t reg p Proportional factor of internal temperature controller t reg i Integral time of internal temperature controller t reg cyc Cycle time of internal temperature controller 10 2 4 Display configuration A total of 20 display lines can be configured Because there are physically only 2 lines available the lines are divided in 10 displays with 2 lines and the software switches from one display to the other dsp cycle display switching cycle Unit 0 1s dsp count count of display switching 1 dsp count 3 means that the display is switched between dsp1 dsp2 dsp3 and back to dsp1 The switching cycle time is determined by dsp cycle Each line can be provided with a background text A variable can be displayed as foreground text Variables are configured as indices from a list of available variables to show on the display The format used to show the variable is also configurable Parameters with variable indices dsp11 var line 1 of display 1 variable index 1 for text only display dsp12 var line 1 of display 2 variable index dsp110 var line 1 of display 10 variable index dsp21 var line 2 of display 1 variable index dsp210 var line 2 of display 10 variable index List of indices and variable that can be selected to display 46 of 98 10 Configuration Index Variable Description CT 0 _______ a d reading of Pt100 1 6
59. g to look for to find what causes a problem Checking diagnostics might not be implemented in a supervisory computer and must be done with the TTM Monitor configuration tool Other things to check are of course all parameter and configuration settings and the installation itself 11 of 98 4 Technical Data 4 Technical Data 4 1 4 1 1 Input Characteristics TTM100 A Pt100 Inputs Maximum 16 Pt100 inputs divided in 2 groups of 8 4 Wire Pt100 s connected in series Measurement range 50 to 180 C 58f 10 356 fF Standard Accuracy better than 0 2 K over the total measurement range Optional Accuracy better than 0 1 K over the total measurement range Classification Area Safety Ex ib Temperature Probe Temperature sensors Max 16x Pt100 Standard Class A Option up to Class A 1 10 Length Max 40 m 131 ft flexible version Max allowable operating pressure Standard 12 bar 174 psig Option 25 bar 362 psig Sheath probe Stainless Steel 316L Analogue Inputs Four times 4 20mA active analogue inputs Measurement range 4 20 mA Accuracy better than 0 196 over the full range Classification Area Safety Ex ib Connections M20 Cable glands Standard Nickel plated brass Option Stainless steel Probe connection Minimum flange size 1 1 2 ANSI 150 105 12 of 98 4 Approvals ATEX approval II 2G ib ia T4 Gb EMC Approval 89 336 EG EN61326 EN61326 A1
60. igned Dr Eickhoff Certificaban body Special services unit Page 1 of to BYE 05 ATEX 124 NZ This may aty be ragrociuced ke ibo and witout change DEKRA EXAM Grit 0 44809 Bochum Phone 140 214 0000 908 40 234 2096 110 mawr oom 96 0198 C Approval 13 Appendix to 14 2 Supplement to the EC Type Examination Certificate BVS 05 ATEX 124 X 15 15 1 Subiect and type Temperature sensor mullipiexer and Transmitter typo 100 Instead of the the complete denomination Ihe fetter or B will be inserted to ara different apparatus 18 2 Description Several changes to intrinsically safe relevant components and to parts of the electronic have been accomplished Beside these changes Ihe compliance with the standards EN 60079 0 and EN 60079 11 2007 is certifipd 15 3 Pargmeters 1531 Transmitier 1008 163343 Mains circuit terminals 18 and 19 Nominal voltage Maximum voltage 15 3 12 Non intrinsically relay contact MANG pague ot Switching voltage Switching current Maximum voltage 153 1 3 Non 10 and 12 11 and 12 Nominal voltage Current j Maximum voltage Um 12 15 3 14 Non intrinsically safe 95485 circults terminals 3 up to 6 ji Nominal voltage Current 100 mA Maximum voltage um 48 153 15 intrinsically safe output circuits lem
61. input no 1 bit 2 for open circuit analogue input no 2 bit3 for short circuit analogue input no 2 and so on 37 of 98 8 Alarms 8 3 Initialisation errors The init err variable indicates the initialization status of the TTM100 bitO bit If bit 0 and 1 set bit2 bit3 If bit 2 and 3 set bit4 bit5 bit6 bit7 bit8 bit9 bits 7 to 9 set bit 10 bit 11 bit12 bit13 bit14 CRC error reading first copy of calibration table from EEPROM CRC error reading second copy of calibration table TTM loaded default calibration value CRC error reading first copy of parameter table from EEPROM CRC error reading second copy of parameter table TTM loaded default parameter table tank parameters table bad default loaded alarm parameters set bad default loaded configuration parameters bad default loaded display access error this bit is set if display not connected or damaged primary level controller access error secondary level controller access error when the error occurs the other bits are set during start up and updated when parameter blocks are written to the instrument HART chan 1 communication failed HART chan 2 communication failed strapping table bad default loaded override table bad default loaded sensor ID bad 8 4 Calculation errors 8 4 Level calculation errors The ALCALCLEVEL variable is used to store level calculation errors bitO bit bit2 bit4 bit5 bit6 bit7 not any leve
62. instrument for the primary measurement and a level reading from an external system via Modbus The primary readings are used by the TTM100 under normal conditions The secondary readings are used as fallback when there are alarms that indicate an unreliable reading of the primary level and or interface The 70 and BM100 instruments are connected to comm2 of the TTM100 Instrument errors alarms and status flags from the instruments are used to determine the reliability of the instrument measurement The errors alarms and status flags from the BM70 and 100 instruments are transferred to the Modbus communication for monitoring reasons 18 of 98 6 Measuring Principle The OPTIWAVE and OPTIFLEX instruments are connected via an analogue input with HART protocol The operation is similar to the BM70 and BM100 instruments 6 2 Temperature measurement 6 2 1 Multipoint Temperature probe A Multipoint temperature probe is used to measure the average temperatures with the highest achievable accuracy A tank contains typically 3 compartments sediment and water stored product and vapour room Up to 16 temperature spots can be measured The locations of the Pt100 s in the probe can be tailored to customer needs Each measured temperature represents a part or layer inside a tank This is based on the assumption that the temperature only varies by height This profile will be close to real situation when the tank is stabilised
63. int _____ masked alarm 5160 ALTAVPROD non masked alarm ALTAVPROD 5161 ALTAVWATER non masked alarm ALTAVWATER 5162 __ ALPRESS ALPRESS _______ Block HART Diagnostics 7001 Byte CountIn 7 Low level scan variable 7002 ___ Countin Int Low level scan variable 7003 ByteCountOut 7 Low level scan variable 7004 ___ Count 7 Lowlevelscanvariabe 7005 Spare mt oo 7006 ___ Input buffer 1 0 Int ___ nputdatabuffer __6_ 6__ 1 222 RE 7030 Input buffer 49 50 Int Input data buffer 7031 Output buffer 1 0 Int Output data buffer POT 02 2 7055 Output buffer 49 48 Int Output data buffer 1 Status request 7056 Last command Int 2 PV request 7057 Channel Number Number Ca Number of last channel scanned 7058 DevicelD1 L rem parameter Ist or read from devise _____ parameter list read from device 7060 Device ID 2 scan result e 1 7062 Scan result e 0 answer 1 answer pending 2 answer error 7063 Fault Count 1 Int Fault counters for each scan 73 of 98 Communication Moe 0 7064 FautCount2 Jo ooo 7065 FautCount3 Int J 7066 FaultCount4 n
64. interfaces are Level Level dH Interface Interface dH 1 7 4 Pressure 7 4 1 Pressure selection Accurate pressure measurement is needed when the TTM 100 is configured to calculate actual density from pressure instruments Two pressure transmitters with different measurement ranges can be mounted just above the interface to provide accurate pressure measurement when the tank is full and when the tank is almost empty is the wide range pressure transmitter P1B with a small range The P1B reading is used when the pressure of P1A is within the range of the P1B If not is used Switch over levels are configurable 7 4 2 Average pressure The average pressure of the product part in the tank can be used to calculate a volume correction factor for pressure The TTM100 can calculate an average pressure although for many applications the correction for pressure is negligible The average pressure of the liquid in the tank is IF PressType differential measured against atmospheric pressure PAVPROD LER 28 of 98 7 5 7 5 1 7 Calculations ELSE PressType absolute PAVPROD 101 325 With P1 In use pressure from P1A and P1B near the bottom of the product part P3 Pressure in the vapour room PAVPROD resembles the differential pressure against atmospheric conditions in kPa Observed Volume Strapping table A strapping table with up to
65. ion 2 5080 T EOS Interface corrected for secondary level stilling well expansion 5082 CorrSTWTemp Corrected stilling well height of temp probe sa float m Volume of water plus product derived from total strapping table 5086 Volume of product derived from strapping table 5088 of vapour room derived from strapping 5092 ____ Shell expansion factor product section ______ 5094 __ 7 factor vapour section 5096 ____ Shell expansion factor water section 5098 __ float VCFbetween ACTDENS 55 _____ 5100 float Correction for pressure between ACTDENS and DENSis Correction for temperature between ACTDENS 5104 VCFares float VCF between REFDENS and DENS s 5106 float Correction for pressure between REFDENS and DENS 5 Correction for temperature between REFDENS Correction for temperature between REFDENS 512 UsedKfactor 5 45 float jUsedKfacdo 5116 518 hartt_pv float Hart 1 proc value calibrated 5120 hart2 pv float ____ Hart 2 proc value calibrated last HART communication error code for channel 1 0 all ok 1 no response 5122 last err 2 answer error 3 line busy 4 device status bad 5 invalid device manufacturer identifier different as declared 6 serial ID different OR HART communication erro
66. it alarm on TAVWATER ALPRESS Limit alarm on PAVPROD 41 of 98 9 Miscellaneous Functionality 9 Miscellaneous Functionality 9 1 9 2 9 3 9 4 Input filtering Filtering the inputs reduces noise and increase stability Every second a new filtered value is calculated by a running average calculation _ Val FF 1 Input Val FF With Val Filtered value FF Filter factor Input Latest input reading Note The filter is disabled when FF is set to 0 Alarm Masking and Relay Outputs The TTM100 is capable of generating a variety of alarms Not all alarms are important to users and not all alarms are applicable for the application used Alarms can be masked to prevent users being overloaded with unimportant or misleading alarms Alarms are routed to two relay outputs and to the Modbus for use in a supervisory system The alarms are individually represented by bits on the Modbus link The relay outputs are activated by an OF function of all alarms Three sets of masks are implemented One set is used to mask alarms on the Modbus alarm block and both relays has a set of masks Different alarm gates can be created for the relays by masking different alarms Internal Temperature Control The internal temperature can be regulated for extreme cold ambient temperatures It serves 2 purposes The local display will fail under these conditions without a heater inside Electronic circuit s last longer when
67. iter werden Dinnendahlstrale 9 44809 Bochum Telefon 0234 3696 105 Telefax 0234 3696 110 83 of 98 Approval W EXAM Pr f und GmbH 15 3 1 4 nicht eigensichere RS485 Schnittstelle Klemmen bis 6 Bemessungsspannung DC 6 Stromst rke 100 max Spannung Um AC DC 48 v 15 3 1 5 eigensichere Ausgangsstromkreise Klemmen 4 in der Z ndschutzart EEx ib Usl GND Us2 GND Spannung Uo bc 26 Stromst rke lo 58 mA RxD GND Spannung Dc 26 Stromst rke lo 8 mA 15 3 1 6 Umgebungstemperaturbereich Ta 40 C bis 65 C 15 3 2 Multiplexer 100A 15 3 2 1 Transmitterspeisestromkreise Klemmen 20 bis 27 der Z ndschutzart Spannung Uo 217 Stromstarke lo 90 mA Leistung Po 584 mW trapezf rmige Ausgangsknnlinie max u ere Kapazit t Co 148 nF max u ere Induktivit t Lo 43 mH 15 3 22 PT100 Stromkreise 1 bis 8 Klemmen Al bis A18 und 9 bis 16 Klemmen bis B18 in der Z ndschutzart EEx ia IIC Werte je Klemmenblock Spannung Uo DC 3 V Stromst rke 10 137 Leistung Po 23 max u ere Kapazit t 3 max u ere Induktivit t Lo 50 15 3 2 3 Umgebungstemperaturbereich 40 65 16 Pr fprotokoll BVS PP 05 2092 EG Stand 30 08 2005 sondere Bedingungen fur die sichere Anwendung Der zul ssige Umgebungstemperaturbereich f r den Betrieb des Transmitters
68. jit 0 0 0 5029 ASACTD _ it 10 0 5030 ASREFD 0 0 0 5031 ASProf nputassignment 10 1 5032 ASTout gt hnputassignmet 1 10 5033 Tanktype JjShapeofthetank 1 0 5034 FROtpe int Roof weight correction 505 STWCtpe Stilling well correction 5036 __ it JTankshelloorection 537 BCtype 1 1 5038 CalcMethod int Calculation method for VCF _______ 5039 PressType int Type of pressure measurement _______ 5040 Alonon jit ___ ____ status of Analogue inputs lin je Ha 5042 Refcond int Standard no standard reference conditions _ 5043 VCFipe With temperature and or pressure 5044 Productpe Typeofproductinthetank 5045 MSKIPTOPEN int jRelayfMaskptiOOopn 5046 MSKIPTSHORT int ____ 1 Mask ptt00short 5047 MSKIAIER int ____ 1 Mask analog input errors 5048 MSKICLVL ____ 1 Mask level calc alarms 5049 MSKICTMP jRelayiMasktemp calcalarms 5050 MSKIINITERR int ____ 1 Mask TTM100 inter _______ Sost Spa Tints Je a a a S 64 of 98 Communication Mom e me poemen 5052 Spare int 4 4 Lo
69. l data available calculation aborted not any interface data available interface level assumed 0 interface level higher than product level assumed interface level product level primary level source fault secondary level source fault primary interface level measurement fault secondary interface level measurement fault Bits 4 to 7 are set when the instrument errors indicate that the instrument reading is unreliable 38 of 98 8 Alarms 8 4 2 Temperature calculation errors The ALCALCTEMP variable is used to store temperature calculation errors bitO bit bit2 bit4 bit5 516 bit7 interface no temperature data for vapour room reference temp assumed no temperature data for product reference temperature assumed no temperature data for water reference temperature assumed no Pt100 measurements occurs when all inputs are marked as not used or produce errors no Pt100 sensor in the vapour room assume vapour temp product or temperature no Pt100 sensor in product room assume product temperature interface temperature or vapour temperature no Pt100 sensor in water room assume temperature water temperature product 8 4 3 Pressure calculation errors The ALCALCP variable is used to store pressure calculation errors bitO bit bit2 bit3 bit4 bit8 bito bit10 P1B bit11 P1 pressure bad or missing P2 pressure bad or missing P3 pressure bad or missing P1 lt P3 empty tank no densi
70. l result in a product volume under reference conditions and the product Mass Product calculations implemented in the TTM100 according to API standards Stilling well correction Input Values Tank Calculations GOV Product Calculations GSV MASS gt Volume Correction Factor Levels are corrected for stilling well expansion due to temperature Average temperatures are used to calculate the corrections Average temperatures are calculated using the corrected level This explains the iterative stilling well loop in the drawing above The Volume Correction Factor VCF is a result the product calculations and it is used in the tank calculations to calculate a floating roof correction when required Tank calculations Primary Stilling well Level correction instrument Instrument In use corrected rrors gt selection level and interface illing well Level gt Stilling we Secondary correction instrument Weighted Temperature Average Average Temperatures Temperatures Temperature Calculation Volume Weighted Average Temperatures 21 of 98 7 Calculations 100 has the option to connect two level instruments error status of the primary instrument determines which instrument is used for level interface measurem
71. ll result in measuring errors because there is no current in the loop the electronics will detect this and raise loop current alarm All measurements in the same loop are faulty An open loop alarm will be raised for a specific Pt100 when the measured temperature increases a configurable error limit The resistance became too high and the Pt100 is likely to be damaged A short circuit alarm will be raised for a specific Pt100 when the measured temperature decreases a configurable error limit The resistance became too low and the Pt100 is likely to be damaged or there is a real short circuit in the wiring 9 of 98 3 Service Maintenance 3 3 2 Analogue Input Errors Analogue inputs measure current in the range of 4 20 mA or 0 20 mA The measured current is compared to configurable error limits to detect open circuits and short circuits Alarms are raised when inputs are in error state 3 3 3 Configuration and Parameter Errors The TTM100 is a flexible instrument and therefore there are many configuration options and parameters available Most parameters and configuration options are set during commissioning or updated by specialised engineers when there are tank installation changes Using the TTM Monitor is no guarantee for right configuration the user is responsible to fill in a configuration that complies with the tank dimensions measurement setup and the desired calculations Process limit alarm parameters are subject to cha
72. movements inside the tank are minimal and the influence of outside weather conditions are minimal Weight factors for each Pt100 are calculated because spaces between Pt100 s are not necessarily equal height and volume relation is not always linear Pt100 s can fail and the interface and level can vary Linear weight factors are calculated by the height of the layers and used for stilling well and shell expansion correction purposes Volume weighted averages are T Mark this PT100 Vapour room as Not used calculated by the volume of the layers and are used for volume correction factors VCF Upper Limit Lower Limit Relatively large differences between the vapour and the liquid temperature can occur within a tank A Pt100 Product element located just above the liquid surface can show a value close to the liquid temperature due to relatively high heat conductivity in the steel hose of the temperature probe This Pt100 does not represent the vapour temperature and should not be taken in account to calculate the average vapour temperatures A dead band around the level in which Pt100 s are not used for average calculation prevents these measurement errors The dead band limits are configurable 19 of 98 6 Measuring Principle 6 2 2 Single spot temperatures 6 3 6 3 Single spot temperatures can be connected and configured as a 4 20 mA inputs for the water product and vapour part C
73. nals 1 4 type of protection Ex ib IIC Us1 GND Us2 GND Maximum output uo Dc SB THIN Maximum output current lo 56 mA RxD GND Maximum output voltage Ua Dc 25 Maximum output current 8 mA hii ING UUKRA EXAM Dnnerdateiesss 9 tend Bochum paagi ens rr puro room 97 of 98 Approval 15 3 1 6 Ambsent temperature range 1532 Mullipiexer Type 1004 183 21 Transmitter supply crouits terminals 20 up to 27 of protection EEx ia IIC Maximum output voltage Uo Maximum output current lo Maximum output power Trapezoid output characterisbc Maximum external capacitance Maximum external inductance Lo 15 3 22 PT100 circuits t up to B terminals At up lo A18 and 9 up type protection Ex ia Values for each terminal black Maximum output veltage Maximum output current Maximum output power Maximum externa capacitance Maximum external inductance 1532 3 Ambient temperatur fange 2 a 59255 16 Test und assessment report BVS 06 2092 EG as of 13 102011 17 conditions for safe use The permissible ambient temperature 2 Mae vti preside yd temperatura below 20 C rs only admissible if the cables and temperature and use MI TH We confirm the correctness of the transtation from the German In the case of arbitration
74. nge more frequently than other parameters Changing these parameters will not affect measurement and calculation results It is likely that these parameters changeable by operators a supervisory system The 100 will check for restrictions on alarm limit parameters and raise an alarm if the settings are invalid 3 3 4 RS485 Communication The TTM100 has 2 Modbus communication ports and one port using the Krohne protocol to connect to BM100 and BM70 level instruments A TTM Monitor program is used to configure and check the instrument it uses the Modbus protocol The TTM Monitor program is an easy to use program to test the TTM100 communication Causes of communication failures are in general Wrong selection of the communication port of the PC where the Monitor runs Try another one easy to select in the TTM Monitor program e Mismatch in baud rate between Monitor program and 100 Try another one easy to select in the TTM Monitor program Default setting in the TTM100 is 9600 baud e Wrong Device ID selected Try another one easy to select in the TTM Monitor program Default device ID in the TTM100 is 1 e Wrong RS485 connection e g crossed wires e 5485 load too high too many instruments or too many instruments with termination resistors Make a one to one connection with the instrument under test Make sure that termination is only set at the ends of the line Maximum amount of instruments on 1
75. nk The expansion of the shell will result in more liquid being stored at the same level The two effects create errors in opposite directions and they both are influenced by the level the density and the construction of the tank The total effect is hard to predict or calculate A simplified correction can be made by using a bulging factor TB for the tank deformation This factor will be based on experience A bulging factor does not apply when the strapping table is determined by filling the tank with a liquid with the same density as in normal use 7 5 5 Observed Volume Finally the observed volumes are calculated with all correction in it Vapour Room Volume Floating roof tank VRV 0 Other tanks VRV T With Ftherm vap Shell expansion correction vapour room Vvapour Vapour volume calculated from strapping table Product volume Floating roof tank Vaaa Be E RC Other tanks V produet RC V adus E erm piis And GOV V produet RC 1 With Finerm product Shell expansion correction Vproaut Product volume calculated from strapping table 31 of 98 7 Calculations Sediment Water volume FWV V er F water therm water With FWV Free Water Volume Fiherm product Shell expansion correction V water Water volume calculated from strapping table Other volumes Total Observed Volume Sediment Water and product TOV GOV FWV Available Room or Ull
76. ns TTM100 A 8 4 Trararretae y p Nora NG au ans KLAS _ PH006 5 KLAiO Pti004 KLBIO PPti0012 KLAS Pti001 094 KLAi6 Pti001 KLB16 PPti009 Supply KLB17 Joo KLAi8 Supply 0 0 15 of 98 4 Technical Data 4 2 2 TTM100 Ex d Exi Exdpat 2 0 5 RS485 Compot 3 6 ____ 85485 Compot 3 AO 1 8 22 JAMN2 0 16 of 98 5 Installation Guidelines 5 Installation Guidelines 5 1 Tank installation Vapour room Sediment and Water Sediment and Water The counterweight should not touch the bottom of the tank to let the probe hang straight in the tank The temperatures measured by a Pt100 in the probe should represent the average temperature of the whole area at the height of the Pt100 The ambient temperature might have too much influence when the probe is mounted close to the tank side 17 of 98 6 Measuring Principle 6 Measuring Principle 6 1 6 1 1 Level measurement BM70 100 The BM70 Radar instrument measures the distance to a liquid surface by sending a frequency sweep radio wave and compare it with the reflection from the liquid surface It calculates the distance from the frequency spectrum The advantage of a BM70 compared to a BM100 is that there is no physical contact wi
77. of Pt100 Bit 0 0 Pt100 1 is Off 1 Pt100 no 1 is On Bit 15 0 Pt100 no 16 is Off 1 Pt100 no 16 is On 51 of 98 10 Configuration 10 5 2 Input assignment Process values can be assigned to a certain input to meet different setup needs in field instrumentation A table with numbers determines the input assignments 0 None Not used 1 8 Analogue input 1 8 9 Analogue input 1 HART protocol 10 Analogue input 2 HART protocol 11 Level instrument 12 From pressure 13 Temperature probe 14 Modbus override from supervisory system Assignment parameters are ASP1A Input assignment Pressure ASP1B Input assignment Pressure P1B ASP2 Input assignment Pressure P2 ASP3 Input assignment Pressure P3 ASTAVV Input assignment Average vapour temperature ASTAVP Input assignment Average product temperature Input assignment Average water temperature ASLVL1 Input assignment Primary level ASINT 1 Input assignment Primary interface ASLVL2 Input assignment Secondary level ASINT2 Input assignment Secondary interface ASACTD Input assignment Actual density ASREFD Input assignment Reference density A matrix shows the valid assignments for the TTM100 input value Analog Hart Level From pressure Temperature Modbus pi input input instrument instrument Probe override assignment 1 9 10 ASP1A X X TITE Xx O ASP1B X X T J Xx _ gt gt gt
78. only the German wording shall be valid and binding n DEKRA EXAM GmbH 44809 Bochum 13 10 2011 BVS Ste Her A 20110509 LA U Page 3 0f 3 to BS OE E 124 X N net be m ite erty wil hus change DEKRA EXAM Dinendahisraew 44003 Bachar Phara 140 234 3600 06 Fan 4234 3098110 cnm 98 0198
79. onnecting a Pt100 a single spot temperature to a Pt100 input is another possibility Note that the Pt100 inputs are meant for a temperature probe the right height value must be configured to make sure that the used Pt100 always calculates to the right average Average temperatures from external sources can be used via the Modbus link Pressure measurement Pressure transmitters The TTM100 is able to read Yokogawa pressure transmitters type EJA 430 via HART communication on analogue input 1 or 2 Other transmitters with 4 20mA signals can also be used Pressures from external sources can be used via the Modbus link Pressures can be measured as an absolute pressure value or as a differential pressure against atmospheric pressure A configuration setting is provided to set the used pressure transmitter type The average pressure calculated by the TTM100 is always against atmospheric conditions 1 01325 bara as standard atmospheric pressure when absolute pressure measurement is used 20 of 98 7 Calculations 7 Calculations 7 1 7 1 1 Calculation Overview Calculations are divided in tank related calculations and product related calculations Tank calculations depend on level and temperature measurements and a set of parameters describing the physical dimensions of the tank The result of the tank related calculations is an observed volume under actual temperature and pressure conditions The product calculations wil
80. pecial products where the API D2540 calculation doesn t fit Apart from the configuration settings mentioned there are more options to choose from These options can have an effect on the results but do not really change the sequence of calculations The product calculation always follows the principle of one of the four alternatives Average Temperatures Height weighted averages A tank is built up in 3 compartments sediment and water stored product and a vapour room Each compartment is built up in layers for each input This is based on an assumed temperature profile in the tank where the temperature only varies by height It is determined for each used 00 in which compartment it is located using interface and level readings For each compartment a weighted average by height is calculated D LayerheightTX ReadingTX id a gt LayerheightTX 25 of 98 7 Calculations Vapour room Layer height boundaries are the bottom of the tank the interface level the top of the tank when 2 more elements are within the same compartment layer boundaries are in SORN pooo om a a e e the middle of the used oo De Product Vapourroom Product Sediment Water Calculated height linear weighted temperature averages are TAVWATERL Sediment and water part TAVPRODL Stored product part TAVVAPL Vapour room 7 2 2 Volume weighted averages Pt100 locations
81. r Anlage zu dieser Bescheinigung auf besondere Bedingungen f r die sichere Anwendung des Ger tes hingewiesen Diese EG Baumusterpr fbescheinigung bezieht sich nur auf die Konzeption und die Baumusterpr fung des beschriebenen Ger tes in bereinstimmung mit der Richtlinie 94 9 EG F r Herstellung und in Verkehr bringen des Ger tes sind weitere Anforderungen der Richtlinie zu erf llen die nicht durch diese Bescheinigung abgedeckt sind Die Kennzeichnung des Gerates muss die folgenden Angaben enthalten 2G T4 f r 100A I EXAM BBG Pr f und Zertifizier GmbH Bochum den 30 August 2005 LAP Fachbereich ifizierungsstelle von 3 zu BVS 05 ATEX B 124 X Dieses Zertifikat darf nur unverdaden weiterverbreitet werden Dienendahlstrafie 9 44809 Bochum Telefon 0234 3696 105 Telefox 0234 3696 110 82 of 98 _ 13 14 15 V EXAM Pr f und Zertifizier GmbH Anlage zur EG Baumusterpr fbescheinigung BVS 05 ATEX E 124 X 15 1 Gegenstand und Typ Temperatursensor und Transmitter Multiplexer Typ TTM 100 Anstelle des wird in der vollst ndigen Benennung der Buchstabe A oder B eingef gt der unterschiedliche Geh use kennzeichnet Der Temperatursensor und Transmitter Multiplexer besteht aus dem Transmitter Typ 1008 und dem Multiplexer Typ 100A die ber eine bis zu 200 m lange Leitung miteinander verbund
82. r code for channel 5123 last hart2 err E as for channel 1 act density calculated from pressure last error code for TTM BM70 100 communication bit0 message to long buffer ovr bit1 checksum bad 5126 last bmerr int bit2 bad device ID bit3 bad device address bit4 bad device version bit5 incorrect message length bit6 unknown function 5127 Actual current at an input 1 5129 Actual current at an input 2 72 of 98 Communication float 5133 mad float float cu float ma7 ______ cu 7 float NM _____ masked alarm Topen 005 5144 ___ _____ masked alarm 00 5145 NM Ale non masked alarm Alene 51 46 NM ALCALCLEVEL int 7 masked alarm ALCALCLEVEL _______ 5147 NM_ALCALCTEMP ____ masked alarm ALCALCTEMP 15148 NM inter ____ masked alaminit er _______ 5149 Spre CENNE E a a 15151 NM ALCALCP 1 5152 NM ALSTRAP 7 masked alarm ALSTRAP 5153 NM ALFRC ___ jnonmaskedalamALFRC 5154 NMALDENS jnonmaskedalamALDENS gt 5155 ALAPI2540 masked alarm ALAPI2540 11 DL OENECO a lim MI 5157 __ j int non masked alarm ALLVL 5158 NM_ALINT ___ non masked alarm ALINT 5159 NM ALTAVVAP
83. rection Pressure P1B high switchover 96 Pressure P1B low switchover 96 Gravity acceleration K factor for free fill in K factor for free fill in K factor for free fill in 50 of 98 10 Configuration DBT Cuprer Upper limit for dead band in average temperature calculation DBT Lower limit for dead band in average temperature calculation 10 4 Alarm Limits Alarm limits are in to determine 4 alarm level for the next process values Level in use Interface in use Volume weighted average vapour temperature TAVVAP Volume weighted average product temperature TAVPROD Volume weighted average water temperature TAVWATER Average pressure A hysteresis value is provided to prevent unstable alarms Parameters LoLoLVL LoLoINT LoLoTAVVAP LoLoTAVPROD LoLoTAVWATER LoLVL LoINT LoTAVVAP LoTAVPROD LoTAVWATER HiLVL HilNT HiTAVWATER HiHiLVL HiHiINT HiHiTAVVAP HIHITAVPROD HiHiTAVWATER HystLVL HystINT HystTAVVAP HystTAVPROD HystTAVWATER 10 5 System Configuration 10 5 1 Probe dimensions LoLoPRESS LoPRESS HiPRESS HiHiPRESS HystPRESS The heights of the Pt100 elements are calculated from the stilling well height and the distance of each element to the flange Parameters Lr Distance flange to Pt100 no 1 mm Lris Distance flange to Pt100 no 16 mm A status word determines which Pt100 inputs are used or not Parameter Tionott On Off status
84. rotective systems intended for usc in potentially explosive atmospheres given in Annex II to the Directive The examination and test results are recorded the test and assessment report BVS PP 05 2092 EG The Essential Health and Safety Requirements are assured by compliance with EN 50014 1997 A1 A2 General requirements EN 50018 2000 A1 Flameproof enclosure d EN 50020 2002 Intrinsic safety i If the sign X is placed after the certificate number it indicates that the equipment is subject to special conditions for safe use specified in the schedule to this certificate This EC Type Examination Certificate relates only to the design examination and tests of the specified equipment in accordance to Directive 94 9 EC Further requirements of the Directive apply to the manufacturing process and supply of this equipment These are not covered by this certificate The marking of the equipment shall include the following amp 2 T4 f r Typ TTM 100A H 2G EEx d ib T4 tir Typ 1008 EXAM BBG Pr f und Zertifizier GmbH Bochum dated 30 August 2005 Signed pr Jockers Signed pr Eickhoff Certification body Special services unit Page of 410 05 E 124 X This certificate may ooly be reproduced its entirety and without change Dinnendahlstrasse 9 44809 Bochum Germany Phone 49 234 3695 105 Fax 49 234 3696 110 roval 85 of 98 Approval W EXAM
85. rror Strap table Error Microwave Error No End Of Scan Pulse Error No Reference Pulse Error No Level Pulse Error No Interface Pulse Error Dead Zone Error No Reference pulse No Level pulse Level frozen No Interface pulse Interface frozen Communication Error Hardware errors HWBM100 Signal errors SEBM100 Markers Warnings WABM100 Input errors Pt100 errors The TTM100 detects broken Pt100 series a Pt100 is assumed to be OK when the measured temperature is within sensor break limits Pt100 input value lower than the sensor break low limit sbr pt min are caused by a low resistance and are therefore marked as a short circuit errors Pt100 input value higher than the sensor break high limit sbr pt max are caused by a high resistance and are therefore marked as a open circuit errors The error bits are stored in variable Topen and Tshort Bit 0 is Pt100 no 1 for Pt100 no 2 and so on 8 2 2 Analogue input errors The TTM100 detects analogue inputs errors An analogue input is assumed to be OK when the measured temperature is within sensor break limits An open circuit error is raised when the input current is lower than the sensor break low limit br ma min A short circuit error is raised when the input current is higher than the sensor break high limit br ma max The error bits are stored in variable Ali error Bit 0 for open circuit analogue input no 1 for short circuit analogue
86. s Switch output error Status Hardware error general flag Fatal Error general flag Microwave flag set Integrator characteristic not rising VCO range Sweep not reached Voltage increase too high ROM Error RAM Error EEPROM Factory Error EEPROM User Error Signal error Microwave Error No End Of Scan Pulse Error No Reference Pulse Error No Level Pulse Error No Interface Pulse Error Marker set No Reference pulse No Level pulse Level frozen No Interface pulse Interface frozen Communication Error 1 Only when Interface measurement is applied 7 3 2 Level correction for stilling well or tank height expansion The height of the mounted level instrument varies due to temperature variations in the stilling well The expansion of the stilling well is calculated based on the 3 compartments in the tank The correction factors are 27 of 98 7 Calculations 1 STWEC VVAPL REFTEMPSTWEC uia 1 STWEC TAVPRODL REFTEMPSTWEC CT puer 1 STWEC TA VWATERL REFTEMPSTWEC With STWEC Linear material expansion coefficient of the stilling well REFTEMPSTWEC Reference temperature for the nominal stilling well height A height correction is calculated for both primary and secondary level instrument dH sry CT Interface add Level Interface mua 7 Level H wi With Nominal stilling well height The corrected levels and
87. th the liquid The BM100 instrument sends an electromagnetic pulse over a wire or rod dipped into the liquid A pulse is reflected from the liquid surface The distance to the liquid surface is calculated from the time delay of the reflected pulse Because the wire is hanging in the liquid it can also measure a separation of two liquids as long as there is a clear separation and the dielectrical constant differs enough The separation of two liquids is called interface The advantage of a BM100 is the capability to measure the interface between oil and water in a storage tank The level and interface are measured by a BM70 or BM100 Krohne instrument These instruments are equipped with an RS485 serial link and a Krohne protocol 6 1 2 OPTIWAVE 7300C 1300C The OPTIWAVE 7300 C is a new radar instrument based on the same principles as a 70 The OPTIFLEX 1300 C is a new instrument based on the same principles as a BM100 The instrument has a 4 20mA output with HART communication protocol 6 1 3 Other level sources Levels from other measurement devices can be used via 4 20mA analogue inputs or via Modbus from a supervisory computer 6 1 4 TTM100 Level reading The TTM100 is capable of handling two level instruments One instrument is used as primary level instrument and a secondary level instrument can be used as fallback when the primary instrument fails The level and interface readings can come from different sources e g a BM100
88. ttings to configure the instrument 10 2 System Parameters 10 2 1 Input filtering Filtering the inputs can reduce noise and increase stability Every second a new filtered value is calculated by a running average calculation Parameters are filter pt Filter factor for Pt100 inputs s filter ma Filter factor for mA inputs s 10 2 2 Communication settings Parameters for the Modbus port comport 1 are com addr Modbus interface address com baud Modbus interface baud rate index 0 2400 baud 1 4800 baud 2 9600 baud default 3 19200 baud Default address is 1 and the default baudrate is 9600 Changing the settings with the TTM Monitor forces the user to make the same changes in the TTM Monitor setting to maintain communication devi name TTM100 device name can be used to give the TTM100 a tag name The setting for communication with BM70 and BM100 instruments on comme are bm stat bm70 bm100 status bit2 bitO baud rate 000 2400 baud 001 4800 baud 010 9600 baud 011 19200 baud bit9 bit8 primary level controller 00 none 01 70 10 100 45 0198 10 Configuration bit11 bit10 secondary level controller 00 none 01 BM70 10 BM100 bm_p_adr Primary BM70 100 address bm_s_adr Secondary BM70 100 address bm p ver Primary BM70 100 version bm s ver Secondary BM70 100 version 10 2 3 Internal temperature control Parameters for the internal temperature controller are t re
89. ty calculation pressure switch over parameters mismatch PSWHIGH lt PSWLOW pressure bad or missing P1B pressure bad or missing in use pressure lt PSWLOW reduced accuracy compared to 1 in used and P1B gt PSWHIGH unreliable measurement 8 4 4 Strapping table calculation errors The ALSTRAP variable is used to store strapping table errors The strapping table is used to calculate a volume by linear interpolation The points in the strapping table must be loaded in the instrument in ascending order so possible errors are bitO bit decreasing height segment found decreasing volume segment found 39 of 98 8 Alarms 8 4 5 Floating roof calculation errors The ALFRC variable is used to store floating roof correction calculation errors bitO Takeoff height lt Support height bit Reference density 0 bit2 VCF 20 8 4 6 Density calculation errors The ALDENS variable is used to store density calculation errors bitO HTG ACTDENS calculation error when g 0 or He bit calculation error loop doesn t converge bit8 no actual density measurements data or calc error bit9 no reference density measurements data or calc error 8 4 7 API D2540 calculation errors The ALAPI2540 variable is used to store API calculation errors bitO C4 alpha calculation error 5 0 bit Cu K factors error K K 0 bit2 Cy F calculation error pis 0 bit3
90. ual 7 6031 Override for reference densit 6021 Block Strapping Table o number of points 04 0 amp FREE kit o o point 1999 cumulative height point 0 cumulative volume point 1 cumulative volume Br sia Eee has 15998 1998 point 1998 cumulative volume 16000 1999 point 1999 cumulative volume A 2 5 Measured data Block Measured Data Description 100 reading ___________ 24 TIMIOOreadng 25 TIMIOOreadng 096 TTM100 reading 27 100 reading 100 reading 209 TTM100 reading 950 TTM100 reading 351 TTM100reading 92 TTM100 reading 33 100 reading 84 TTM100 reading 55 TTM100 reading 56 100 reading 37 TTM100 reading 38 100 reading 939 40 41 42 43 44 45 46 47 68 of 98 Communication ER Pagan _ 1049 temp int float Temperature of TTM100 electronics A 2 6 Calculated data Block Calculated Data pa me Unt 28 4001 Wide range P1 reading 48 4003 Small range P1 reading 49 4005 4007 voline Weighted Average Temperature of 4009 TAVVAP Volume Weighted Average Temperature of vapour room 4011 TAVWATER Volume Weighted Average Temperature of water layer Level used and corrected for stilling well 9 Interface used and corrected for
91. ulated when the Tanktype is not Floating roof The next parameters determine other correction to be carried out or not STWCtype Stilling well correction 0 No 1 Yes SECtype Tank shell correction 0 No 1 Yes BCtype Bulging correction 0 No 1 Yes 10 5 6 Product related calculations configuration CalcMethod describes which method is used to calculate VCF 54 of 98 10 Configuration CalcMethod Calculation method for VCF 0 No Density calculation 1 Standard with 15 degrees Celsius as reference VCFtype describes which options are used for VCF calculation VCFtype 0 No correction 1 Only temperature correction 2 Temperature and pressure correction Refcond parameter is used to tell the TTM100 that the reference conditions are the same as standard conditions 15 degrees Celsius and 1 01325 bara Refcond Standard or no standard reference conditions 0 No 1 Yes Product type describes the product group to be used for the API calculations Ko K and K must be configured when Free fill in option is chosen Product type Type of product in the tank 0 No selection 1 Crude 2 Gasoline 3 Trans area 4 Jet group 5 Fuel oil 6 Free fill in 10 5 7 Alarm masking masking parameters start with MSK lt number gt The number is related to the output for which alarms are masked Example MSK1INST Instrument alarms masked for Relay 1 MSK2INST Instrument alarms masked for Rel
92. very low temperature are prevented Level Instrument Configuration The user configuration of Krohne level instruments can be done remotely via the TTM100 Modbus interface The TTM100 translates the Modbus messages to Krohne protocol and vice versa Note Factory settings can only be changed by using dedicated configuration tools 42 of 98 9 Miscellaneous Functionality 9 5 Diagnostics A set of data is available via Modbus to investigate the instrument behaviour in detail lt shows intermediate results of calculations and unmasked alarms Name Description ____ gt Z gt O avr vapour temp vol weighted Stilling well correction factor liquid part 43 of 98 9 Miscellaneous Functionality Name Description O 1 1 1 1 therm product LACTIS lt lt O O density calculated from pressure last error code for TTM BM70 100 communication bit0 message to long buffer ovr bit1 checksum bad Pete bit bad device ID bit3 bad device address bit4 bad device version bit5 incorrect message length bit6 unknown function g N non masked alarm init err NM ALSTRAP non masked alarm ALSTRAP NM ALPRESS non masked alarm ALPRES 44 of 98 10 Configuration 10 Configuration 10 1 General All configurations are done the Modbus interface A special tool TTM100 Monitor is provided to configure the instrument The next paragraphs describe the different se
93. voltage DC 30 v Switching current 1 Switching voltage AC 125 v Switching eurem voltage Um AC DC 125 15 3 1 3 non intrinsically safe transmitter supply circuits terminals 7 and 9 8 and 9 10 and 12 and 11 and 12 Nominal voltage DC 28 Current 50 mA Max voltage Um AC DC 125 Page 2 of 410 05 ATEX 124 X This certificate may only be reproduced im its entirety and without Dinnendahistrasse 9 44809 Bochum Germany Phone 49 234 2696 105 Fax 49 234 1696 1 10 86 of 98 Approval 16 Ww EXAM BBG Pr f und GmbH 15 3 1 4 non intrinsically safe RS485 circuits terminals 1 up to 6 Nominal voltage DC 6 v Current 100 mA Max voltage Um AC DC 48 v 15 3 1 5 intrinsically safe output circuits terminals 1 4 type of protection EEx ib Usl GND Us2 GND Voltage Uo DC 26 v Current lo S8 mA RxD GND Voltage Uo DC 26 Current lo 8 mA 15 3 1 6 Ambient temperature range Ta 40 C up to 65 15 32 Multiplexer 100A 15 3 2 1 Transmitter supply circuits terminals 20 up to 27 type of protection EEx ia IIC Voltage Uo DC 217 Current To 90 mA Power Po 584 mW Trapezoid output characteristic external capacitance Co 148 nF Max external inductance Lo 4 3 mH 15 3 22 PT100 circuits up to 8 terminals Al up to A18 and 9 up to 16 terminals up to B18 type of protection EEx ia values for e

Download Pdf Manuals

image

Related Search

Related Contents

TOS5200 - Tormatic AS  Samsung HMX-F80BP Manual de utilizare  Philips BDM4065UC  HTC Mini+ BL R120 User Guide    Byron バイロン(日本語)    les passeports : mode d`emploi  Operating Instructions  GE PVM1970 User's Manual  

Copyright © All rights reserved.
Failed to retrieve file