Home
SKF @ptitude Observer (v9.1) User Manual
Contents
1. ececesererereneeeeereeereneeeaeenenaeceeeaeeegeneaeenanen 4 37 Diagnoses Tab errereen ee anini rae Sesvessnndadeesadencsieseeuesiendnedeseeds denseers 4 38 Attachments TaD air aaa is 4 38 Advanced TaD ara a ia E i ra eaaa a a nied 4 39 Creating OPC Server and OPC Channels eccecceeeeeeeeeeeeeneeeeeeeaeeeeeeenaeeeeneaaaes 4 40 IntermalOPG Servers aa svapteatsdvadiesecdaehecaguiasiucedeanthuwaaviaye 4 41 External OPC TVS anto aa a daea ERE 4 42 Addingian OPE Servere ea ee aire ale aged 4 42 Editina an OPC Servera ida dd aii 4 48 Removing an OPC Server cccnicaioni canica did aae aani 4 48 Creating OPC Chanmelssasiniai ia ds 4 48 OPC Server Status Tag Value ceeccssscsssessseesssesssseessseeessesssseeeeesseeseseees 4 45 Setting up Measurement Points and Alarms c ocoonoccccccnnocinonanacnnnnnnnana narran cnn rana 4 48 Gen ral Tab reiii ira int doo 4 52 ACQUISITION Jl o OPERA O PER O IES O O ienai EATE TAA wecteses lt 4 55 Operating and Storage Conditions Tab ccomccnnocncnononnnonannnanananoonnnonacnnnnnnnnon anos 4 60 Shaft Properties Tapsi icsse a A E lactea died 4 64 Monitoring Tabpacsisieccvesssnccecassncadevedsaceccasseaccecnsdatsedeavsncdasasvinesduedacescuasboceestiss 4 65 Adaptive Alarming TaD e a ee sshd sace cue a ae aaa ee Taa AEE EAEE AAEE ESen iE 4 68 Transient Tab ro ara T cadet N A aR CE E E 4 69 Observer Display Options Tab cccococcccnocnnnnnnnnnonnnonnanonacnnananaroonnnnnacnncnncnnrnnnos 4 70 Machine
2. e Delete deletes a template from the machine template library e Export exports a machine template to a file with the file extension of omt e Import imports a machine template from a file into the machine template library Create Machine Template It allows to create a machine template with the selected machine from the hierarchy view lt then will reside in the machine template library Note that in order to create a machine template of your own first the machine has to be configured with all the properties and measurement points Optitude Observer User Manual 6 159 Observer 9 1 Revision J Menu Items Database Export Export Export interface allows to export structure data from the database Exported data are stored as xml files Wind ComDemo E i lt P Wind power a W Windeos lg TELIGA Speed G Integrated Main Bearing Vert ge Integrated Main Bearing Wert Env 1 a Integrated Main Bearing Wart Env 2 a SE Planet stage Vert Low Speed Gat GB Planet stage 1 Vert Low Speed Env a GE Planet stage 1 Hor Low Speed Gb GE Planet stage Hor Low Speed Envi fa GH Planet Stage 2 Wert Low Speed GB Planet Stage 2 Wert Low Speed Ere D GE Planet Stage I Vert Low Speed Em3 a GB High Speed Stages Hor y GB High Speed Stages Hor Envi Gh GE Adal High Speed AR A ik Fed PS Figure 6 87 Example of ptitude Observer export structure data Database is where the structure data which you are to export reside Dat
3. 6 184 ptitude Observer User Manual Observer 9 1 Revision J Menu Items Portables Microlog Marlin Communication Database Observer840_On_CMC2 Status Download Upload Communication Communication Type Sel o Port COM1 115200 Figure 6 108 Example of ptitude Observer communication settings for Marlin The communication setting is used to change the settings as how to communicate with the Microlog or Marlin These settings will be saved until the next time you open the communication settings e Type can be USB or Serial e Port is required for the serial type only It specifies which port to use for serial communication e Baud rate is also required for the serial type only It specifies which speed to use for serial communication The default is 115200 Coded Notes Coded notes interface allows to configure the coded notes that should be sent to the Microlog or Marlin devices when downloading routes A coded note is an pre configured comment to apply to a certain measurement ptitude Observer User Manual 6 185 Observer 9 1 Revision J Menu Items Window Window Window menu item provides the following interfaces Cascade Tile Vertically Tile Horizontally Close all Cascade Cascade interface organizes all opened windows in a cascade Tile Vertically Tile vertically interface arranges all opened windows vertically Tile Horizontally
4. Daily backup of database f Enabled Time 20 17 00 wic Path for backup file at Monitor PC Backup history Date Time UTC 2 Description Signature Default settings Figure 6 98 Example of ptitude Observer options backup settings e Database is the database to which backup options are to be applied e Enabled causes daily backup of the database e Time indicates when the backup job should be executed e Path for backup at Monitor PC for Oracle server only specifies the location where the backup files should be saved on the monitor computer e Backup history displays the history of backups done e Backup now causes an immediate backup Backups are stored by ptitude Observer SQL Server Database Administrator 6 172 ptitude Observer User Manual Observer 9 1 Revision J Menu Items Database Options Note that with SQL Server Express this is the only way to automate backups of ptitude Observer databases With the full version of Microsoft SQL Server 2005 2008 and 2012 it is still possible to configure the backups with ptitude Observer SQL Server Database Administrator Alarm and Relays Tab Options Database SKF WindCon Mi q Auto alarm 3 Default v Incoming alarms Relay for new alarms Relay lt None gt Relay for system alarm Relay lt None gt Default settings Figure 6 99 Example of ptitude Observer options alarm and relays settings e Database is the da
5. The type of the value to be moved from one buffer to next is determined by the Rolling buffer field in the Scheduled Trend Storage above e Interval alarm is the desired interval for data capturing when the level is in warning or alarm condition e Exception based storage is a setting of what to store if the trended values changes e Save allows to decide which format of the captured data should be stored in the system Spike filter e Enabled box allows to enable or disable the Spike filter function The spike filter is useful to avoid alarming on high peak readings that could be picked up by the sensors caused by other sources rather than the machine itself These measurements are not the ones that should raise alarms and should not be stored in the database either For example setting this value to 20 m s will set the system to ignore any measurements above this level completely However when the system detects high peak reading the measurement will display the status of Outside measurement range t indicating that the values coming from this measurement point are outside of the acceptance range Scheduled Dynamic Data Storage e Enabled box allows to enable or disable the Scheduled Dynamic Data Storage function Dynamic Data Storage is calculated with the help of the measurement points specified in the Simultaneous measurements of the Acquisition tab settings For example if you select speed as an active range type
6. Copyright 2014 by SKF Reliability Systems All rights reserved Aurorum 30 977 75 Lulea Sweden Telephone 46 0 31 337 1000 Fax 46 0 920 134 40 ptitude Observer Part No 32170900 Revision J Observer 9 1 User Manual SKF Reliability Systems SKF Condition Monitoring Center Aurorum 30 977 75 Lulea Sweden Telephone 46 0 31 337 1000 FAX 46 0 920 134 40 For technical support contact TSG EMEA skf com for customers in Europe Middle East and Africa Telephone 46 0 31 337 6500 or TSG Americas skf com for customers in North America South America and Asia Telephone 1 800 523 7514 Telephone in Latin America 55 11 4448 8620 Visit us at our web site www skf com cm SKF is a registered trademark of the SKF Group Table of Contents Introduction 1 9 Technical Specification 2 13 Hardware Connectivity t a tivi te ae tae 2 13 Data Processing miii a iene 2 13 Configuration FE dturES deta hss coun TEANA 2 13 A E A R 2 14 User Interfaces a AA A A AA tia Ai 2 15 Graphic Displays a A AA 2 15 A N A AAA A A AA Avene 2 16 RO ia Ad da AA A ida 2 16 System Intl a 2 16 Getting Started 3 17 Database Connection iii 3 17 LN E A a ee eee nee ON 3 17 DASHBOAR Discreta 3 18 System Configuration 4 19 Building a Hierarchy View E a fatalities 4 20 Database A dc A 4 20 A NN 4 20 Machine crdairiita lada baaa 4 21 Sub Machines dd idad cdvadana edwnees 4 22 Meas POE EA dye ut tuys 4
7. J 2012 08 24 13 55 48 Data miner view Diagnose Comparison by type Approved SKF CMC Lulea 2012 08 24 13 22 32 Data miner view Data storage size and IMx buffer duration calculation Approved SKF CMC Lulea J 2012 07 10 13 23 56 Bearing New bearing Approved Anonymous O 2012 07 10 13 22 52 Bearing New Bearing Approved 2012 07 10 13 22 39 Bearing New bearing Approved O 2012 07 10 13 22 25 Bearing New bearing Approved O 2012 04 19 10 24 49 Bearing BC2 0204 Approved J 2012 04 19 10 24 26 Bearing Bearing FAG NJ2232E Approved 2012 04 19 10 23 41 Bearing NCF18 600 FAG Approved C 2012 04 19 10 23 24 Bearing bearing Approved Anonymous C 2012 04 19 10 22 51 Bearing SKF NJ 2330 ECMA Approved MCC AB C 2012 03 04 20 11 35 Bearing NTN LH 24038B Approved RDC Houston C 2012 03 04 20 10 28 Bearing NTN T E 93825 BEARING Approved SKF C 2012 03 04 20 10 05 Bearing NTN E LM665949 Bearing Approved SKF C 2012 02 29 13 09 51 Bearing Dragline P amp H 9020 Approved SKF C 2012 02 29 13 02 29 Bearing BEARING UPDATE Approved SKF J 2012 02 29 13 00 58 Bearing NSK 809092 Approved Houston RDC im 2012 02 29 12 09 19 Rearing NSK F 8NG712 Sonmved RNAF Hastan Figure 6 110 Example of ptitude Observer SKF OR updates e Available updates are updates that are available but have not been downloaded and installed yet e Installed updates are updates that have been installed through the SKF OR e Submitted updates are updates that have b
8. No Trend Alarm levels set Outside active range unstable indicates that not only the conditions specified by active ranges on the measurement point are not met by the system but the measurement is varying too much and triggers the maximum allowed delta value of the active range making it unstable Transient indicates that the measurement point is in transient mode which means that a run up or coast down is currently occurring Once the run up or coast down of the machine is completed the machine will release the transient status Outside active range indicates that the conditions specified by active ranges on the measurement point are not met by the system One or more active ranges can be configured on measurement points in the spectra settings and trend settings ptitude Observer User Manual Observer 9 1 Revision J 4 47 System Configuration Setting up Measurement Points and Alarms Setting up Measurement Points and Alarms The system allows to add new measurement points and edit or delete existing measurement points on machines and sub machines To add a measurement point 1 First select a machine or a sub machine to which a measurement point is to be added in the hierarchy view 2 Click on the right mouse button select Add then Meas point To edit a measurement point 1 First select a measurement point to be edited in the hierarchy view 2 Perform one of the following options e Click on the right mou
9. v Recommendation of actions that needs to be taken in response to the assessment ptitude Observer User Manual 5 127 Observer 9 1 Revision J System Operation Maintenance Planner Maintenance Planner Maintenance planner interface allows to configure maintenance tasks such as lubrication replacements maintenance schedule etc by keeping track of machine assets running hours or calendar time To get to Maintenance planner screen perform one of the following options e Right click on a machine from the hierarchy view or workspace then select Maintenance planner e Select a machine then click on Bfe Maintenance planner icon on the toolbar A alee plow Carl epee a w mii mart brah ee Figure 5 65 Example of ptitude Observer Maintenance planer Asset management allows to add edit or delete assets along with assets maintenance task actions Note that an asset has to be assigned first before a maintenance task action can be added edited or deleted History displays the executed maintenance tasks of the selected asset History items can be edited or deleted 5 128 ptitude Observer User Manual Observer 9 1 Revision J System Operation Measurement Date Measurement Date Measurement date interface lists measurement date of the selected measurement point It allows to configure the storage information of the selected measurement data from the list e Measurements list displays d
10. Password Figure 3 5 Observer Logon A default user called admin with the password admin can be used to start the system However It is strongly recommended to create individual user accounts for those who have the access to the system It is necessary to have individual user accounts and rights in order to keep track of configuration changes The system will remember the user name and the password if Remember me checkbox is marked Optitude Observer User Manual 3 17 Observer 9 1 Revision J Getting Started DASHBOARD DASHBOARD After a successful logon DASHBOARD screen will provide Notifications News Feed and Message Center interfaces Refer to Dashboard under Show in Menu Items section 3 18 ptitude Observer User Manual Observer 9 1 Revision J System Configuration 4 System Configuration This chapter describes the configuration of ptitude Observer how to get the analysis work started quickly and how ptitude Observer works as a condition monitoring system The configuration of ptitude Observer is usually performed when the system is installed however changes can be easily made Prior to analyzing measurement data ptitude Observer must be configured according to the particular plant and its machinery It is important that all machine parts as well as measurement points are located at the correct positions Recommended System Configurations To get a system up and running prop
11. Version History ptitude Observer 8 5 Plots e Margins and minor changes have been made to the plots in order to improve readability and usage of space on the screen e The measurement date list now displays the total number of measurements available for the measurement point and also the number of measurements listed e The diagnosis plot can now use process and speed on the x axis like the trend plot can e Diagnosis Curve fit is now possible to apply to the diagnosis plot e The measurement date list now displays two decimals for Process and speed value columns e Diagnosis can now have a configurable search range or tolerance e ltis now possible with a user preference to set if spectra or spectra time waveform combination plot should be opened when clicking on a domain data indication in the trend or diagnosis plot e ltis now possible to set the device displayed for time waveform as a graph setting Previously this was following the same setting in which the FFT was displayed e ltis now possible to use ctrl select and shift select in the measurement date list and open these specific measurements in the history and 3D plot e Live trend values now is send by the monitor service only when there is a new live value available User configuration e Anew user right read notes has been introduced which when not enabled hides the notes in the trend plot and the notes list e The user can now select to see fractions of sec
12. Workspace manager ES Database Tuina EA Figure 6 70 Example of ptitude Observer workspace manager e Database is where the workspace you would be working with resides e Open displays the selected workspace from the workspace manager screen in the workspace view of tree view window e New allows to create a new workspace e Edit allows to change the currently selected workspace e Remove allows to delete the workspace from the database e Cancel closes the workspace manager window ptitude Observer User Manual 6 135 Observer 9 1 Revision J Menu Items Edit Workspace Editing a Workspace Workspace Johns Sees Instructions for editing 1 Empty Workspace Drag new elements from the hierarchy and drop them on the root node 2 Non empty workspace Drag elements from the hierarchy and drop them on the wanted element in tree M Bearing 1500 Axial A2 O Gbox In Planet 1500 Vert A3 PFE coon Planet 1500 Env2 43 Gbox In 1500 Vert Down 44 Gbox In 1500 Vert Down Env2 A4 Gbox Out 1500 Hor A5 O Gbox Out 1500 Hor Env3 A5 0 Gbox Out 1500 Axial AS 6 Gbox Out Axial 1500 Env3 A6 0 Gen DE 1500 Rad 47 Gen DE 1500 Rad Env3 A7 7 0 Gen DE 1500 Axial A8 0 Gen DE 1500 Axial Env2 A8 M Bearing 1500 Vert Env2 A1 M Bearing 1500 Axial Env 2 42 Ls 0 Speed Figure 6 71 Example of ptitude Observer workspace In order to configure
13. computer aided design drawing Right clicking on a machine part in the working area provides the following options Calculate gear allows to calculate the speed of the selected machine part This is also done automatically when closing the machine parts window Delete allows to delete the selected machine part Bring to front brings the selected machine part to the front of the others when machine parts are staggered on top of each other Bring to back takes the selected machine part to the back of the others when machine parts are staggered on top of each other Properties brings up the properties of the selected machine part and let you configure the characteristics of the machine part Right clicking on the working area provides the following options Calculate gear allows to calculate the speed of all the machine parts This is also done automatically when closing the machine parts window e Copy from existing machine overrides existing machine parts if any with the selected machine parts or creates machine parts with the selected existing machine Copy from existing machine allows to delete the selected machine part 100 75 50 25 allows zooming of the machine parts window by the selected scale 4 72 ptitude Observer User Manual Observer 9 1 Revision J System Configuration Setting up Process Overview Setting up Process Overview Process overview is a human machine interface HMI tool that c
14. 1 IMxM21 S PROTECTION Circuit fault 1 0 Slave 3 OK 2014 02 19 10 23 06 2014 02 19 10 39 49 1 IMM 21 S PROTECTION Circuit fault 1 0 Slave 4 OK 2014 02 19 10 23 06 2014 02 19 10 39 49 1 IMxM21 S PROTECTION Circuit fault 1 0 Slave 5 OK 2014 02 19 10 23 06 2014 02 19 10 39 49 1 IMxM21 S PROTECTION Circuit fault 1 0 Slave 6 OK 2014 02 19 10 23 06 2014 02 19 10 39 52 1 IMxM21 S PROTECTION Circuit fault 1 0 Slave 2 OK 2014 02 19 10 23 06 2014 02 19 10 39 52 1 IMxM21 S PROTECTION Circuit fault 1 0 Slave 1 OK 2014 02 19 10 23 06 2014 02 19 10 39 49 1 IMxM21 S PROTECTION Circuit fault 1 0 Slave 7 OK 2014 02 19 10 23 06 2014 02 19 10 39 50 1 IMxM21 S PROTECTION Circuit fault Relay Master 64 40 0 8h0 CF_24VB 2014 02 19 10 23 06 2014 02 19 10 39 51 1 IMxM21 S PROTECTION Circuit fault Relay Slave 3 OK gt 4 m Figure 6 104 Example of ptitude Observer Event log Class S CM system fault A alarm If Auto refresh is enabled the event log will be refreshed according to the value set for Event Log update rate in User Preferences ptitude Observer User Manual Observer 9 1 Revision J 6 181 Menu Items Portables Portables Portables menu provides the following interfaces e Microlog e Marlin e Coded notes Microlog Marlin Interface for Mirolog and Marlin consists of four different settings where users can execute different actions Upon opening Microlog or Marlin screen ptitude Observer automatically trie
15. 4 17 2005 1 15 27 PM Speed 1510 486 cpm Process 609 0796 4 17 2005 1 15 27 PM Speed 1510 486 cpm Process 609 0796 EM Bearing 1500 Vert A1 0 095 M Bearing 1500 Vert A1 0 5 0 04 E d a o amp 0 02 E E o 0 5 O 6 SiO 12 1416 180 20 20 40 60 80 Hz Seconds Spectra Vertical 4 463 Hz 0 03304 m s2 Rms Time waveform Vertical 42 71484 s 0 462 m s2 4 15 2005 11 03 01 PM Speed 1511 461 cpm Process 633 4322 4 15 2005 11 03 01 PM Speed 1511 461 cpm Process 633 4322 M Bearing 1500 Vert A1 0 127 M Bearing 1500 Vert A1 1 2 0 04 nS ce e amp 0 02 co E 0 5 0 0 2 4 6 6 410 42 14 6 18 20 20 40 60 80 Hz Seconds Spectra Vertical 6 463 Hz 0 03111 m s2Rms Time waveform Vertical 61 23047 s 0 2712 m s2 4 12 2005 2 05 04 PM Speed 1511 075 cpm Process 614 9039 4 12 2005 2 05 04 PM Speed 1511 075 cpm Process 614 9039 M Bearing 1500 Vert A1 0 065 M Bearing 1500 Vert A1 0 5 0 04 I 1 Figure 5 45 Example of ptitude Observer History display ptitude Observer User Manual 5 105 Observer 9 1 Revision J System Operation Graphic Displays and Tools 3D Plot 3D Plot S Use this icon to generate a 3D waterfall display of a selected measurement point or multiple selected points when available 3D illustrates vibration spectra or envelopes as a function of time shaft speed power temperature torque or any other DC parameter It is commonly used during run up and coast
16. Bode plot Trend list Multi trend Diagnosis Polar NX Aa x Combination lot gt E fed Shaft centerline E Graphic Features e Multi point analysis is possible in most displays by dragging and dropping more measurement points onto the same graph Holding ctrl key down while releasing a measurement point on a graph adds the measurement point on the display overlaying the data if the graph supports it e Legend is included in all displays and gives information on selected values cursor positions type of data and more Legend can be repositioned and enabled in all graphs lt can be enabled by checking the Visible field lt also has an option to have display positioned at Top Bottom Left or Right of a graph e Buffer setting sets the depth and conditions on which data to retrieve and display in the graphs The access to buffer setting can be done by clicking on the buffer icon on the toolbar after opening a graph The graph will be updated with the new data from the buffer settings automatically Refer to Buffer in System Operation 5 96 ptitude Observer User Manual Observer 9 1 Revision J System Operation Graphic Displays and Tools Graph Settings Graph Settings To get to graphic settings Click on the right mouse button on the graphic display screen then select an option from the pop up menu It is also possible to update graphic settings of many measurement points at the same time by right click
17. DC Isol isolated for a device with an external signal as an input e g motor load e System log is a record containing all the historical configuration changes made to the device e Edit TSI Config is available for IMx R devices only It allows to configure IMx R TSI part and MVB For more information refer to IMx R User Manual Edit Edit function allows you to change settings of an existing device of the selected database The definitions of attributes are the same as in Initiate in Creating IMx MasCon Devices and Channels from above You may edit any settings except Number field The following attribute is available only for Edit function e Convert to IMx converts an existing MaxCon16 to an IMx device NOTE that after the conversion the device type cannot be reversed ptitude Observer User Manual 4 25 Observer 9 1 Revision J System Configuration Creating IMx MasCon Devices and Channels Delete Delete Delete function allows you to delete an existing device of the selected database However before a device can be deleted all the attached measurement points to the device must be deleted first Copy Copy function allows to copy all the settings of an existing device to a new device However you must select a unique device number for the new device from the list of system generated numbers Synchronize Synchronize function allows to synchronize the IMx MasCon device of the selected database by sending
18. Enable all measurement points Block alarm on all measurement points Remove alarm blocking on all measurement points Add note allows to add a note for the selected machine or sub machine Refer to Notes in System Operation section Add event case allows to add a document report information and history regarding a specific event tied to the selected machine Refer to Event Cases in System Operation section 5 88 ptitude Observer User Manual Observer 9 1 Revision J System Operation Tree View Hierarchy View e Add attachment allows to attach any file to the selected machine Refer to Machine Properties under Creating IMx MasCon Devices and Channels e Tag allows to categorize the selected machine with a specifically defined tag from the Tag Library e Refresh updates the current hierarchy view with the new status if any e Properties allows to edit the properties of the selected machine Interfaces Available on Sub Machine Level These are accessible by right clicking on a sub machine e Add allows to add a measurement point Refer to Meas Points under Building a Hierarchy View in System Configuration section e Process overview allows to create user defined mimic displays with measurement points and links to other displays on top of graphic pictures like drawings digital photos etc Refer to Process Overview in System Configuration section e Report allows to generate documents that contain text based i
19. J System Configuration Creating OPC Server and OPC Channels External OPC Servers Editing an OPC Server Click on Edit in the OPC servers window The settings available for editing an OPC server are the same as in Adding an OPC Server from above Removing an OPC Server Select an OPC server from the list of OPC servers then click on Remove in the OPC servers window It allows to remove an OPC server from the list Creating OPC Channels Select an OPC server you wish to use from the list of OPC servers then click on Add in OPC channels window aa OPC Channel Sm OPC Server SkfSimServer Channel Name fl Y Enabled Type Input z Tag infomation a Spiral System log Cancel Figure 4 21 Example of ptitude Observer create an OPC channel e OPC Server is the name of OPC server you selected in the previous screen This value is not editable e Channel name is the name you want to use for this OPC channel e Enabled indicates the status of the channel whether it is enabled or disabled e Type Input a channel that sends data from an OPC server to ptitude Observer Output a channel that sends data from the ptitude Observer to an OPC server and subsequently to another system e Source specifies which measurement point to retrieve data values from ptitude Observer and send data to the OPC server It is available only when the type is set to Output ptitude Observer User Manua
20. MasCon Devices and Channels Connect Connect Connect function is used to connect an IMx MasCon16 device to the ptitude Observer Monitor within the assigned duration of time in minutes This can be useful when you would like to change the configuration or check vibration data of the device before the next scheduled connection time Forced connection Ex Duration 30 Minutes Use this ip address 214 67 13 12 Port 1000 Ok Cancel Figure 4 12 Example of ptitude Observer forced connection To communicate with the device between scheduled connections the connection must be established manually from the server side through ptitude Observer IMx MasCon16 devices initiate communication to ptitude Observer Monitor on TCP port 1000 which is the default port However do not confuse this with the ptitude Observer Monitor port configured through Observer On line Device Configurator For example use port forwarding to access devices behind a router e 11 22 33 44 port 1001 gt 10 0 0 101 port 1000 for IMx 1 e 11 22 33 44 port 1002 gt 10 0 0 102 port 1000 for IMx 2 e 11 22 33 44 port 1003 gt 10 0 0 103 port 1000 for IMx 3 IP Configuration IP Config function allows to send a network configuration file to the selected IMx MasCon16 device The configuration file is generated by ptitude Observer IMx MasCon16 Configurator To create an IP configuration that can be sent to a DAD data acqu
21. Sensing channels can be freely configured using the measurement groups and sub machine setup This is useful in analyzing gearbox problems in constant variable speed and load application as well as steady state applications It is effective in detecting broken or damaged gear teeth problems loose or warn gears shaft problems oval gears and other cyclic related problems The below is an example of gear inspector display TT oo E TA erg Figure 5 50 Example of Optitude Observer Gear inspector display 4 5 110 ptitude Observer User Manual Observer 9 1 Revision J System Operation Graphic Displays and Tools Trend Trend EA Use this icon to generate a trend display of a selected measurement point Trend shows any type of data such as vibration amplitude phase or process data as a function of time speed or other process data It is also possible to show the data as a function of nothing by simply selecting x axis and values which will cause the graph to display the data in the order that values were taken The x axis setting is preferred when viewing live data Not only can the graph display data as a function of speed and process data but it can also display bias process phase speed and digital data on extra axes In addition trend displays spectra and notes flags in the plot shown as diamonds and circles respectively These flags can be set by clicking the mouse which then the corresponding spectra d
22. Tab Eh Semas gl doo E Cr ancl ga Coriaria E Laciana J semper Aararg A raa apy piona Proy mol Es ll era Fog d Call Caste hard Gasau Gra EA J Euba mone r Ara berg bomi bi ep Kine E Aiea ME Sar geen ble gem 7 ee yor birao r leir kiri 5 D eTa ra Chari monin Aly ci Breii Hora r Pim epy Haro r me i doe relay Hora m iym iiy prn I la 0 Dmi Figure 4 27 Example of ptitude Observer Dynamic measurement point Monitoring settings General General settings e Enable automatic alarms box enables the automatic alarm functionality when checked Automatic alarm enables the measurement point to use automatic levels for the selected active trend alarms The system will automatically calculate the alarm and warning level after a minimum specific number of historical values have been stored in the database For Microlog measurement points the minimum number of trend values to calculate the automatic alarm levels is five and it will be based on a maximum of 40 measurements For IMx MasCon measurement points the minimum number of trend values to calculate the automatic alarm levels is 20 and it will be based on a maximum of 100 measurements The calculation algorithm uses a specific number of standard deviations from the average level to determine the warning level The number of standard deviations is determined by Auto alarm setting at Alarm and relays tab for Options under Database in Menu Items To determine t
23. The vector is described with amplitude and phase Polar display is a strong tool for detecting changes in phase domain and changes in amplitude or phase It is often used to analyze run ups and coast downs but is also useful in analyzing steady state conditions as well It is possible to set alarm circle and warning circles facilitating the process of making sure that the system keeps track of the stable phase It is also possible for the user to add custom markers to specific readings to highlight The below is an example of polar display of trend data type with live data but no overlay data Pole Tarna Dorbiae Testi Tartare G1 Gen beg EEE EAN a E A brat pu LES ALA ae O A bid pa AL LAA Figure 5 55 Example of ptitude Observer Polar display ptitude Observer User Manual 5 115 Observer 9 1 Revision J System Operation Graphic Displays and Tools Shaft Centerline Shaft Centerline aa Use this icon to generate a shaft centerline display of a selected measurement point The shaft centerline display shows the rotor position dynamically and is useful at run up Before the machine starts rotating the shaft centerline display shows the shaft position to ensure that the shaft has an appropriate clearance at each bearing When the shaft starts to rotate the shaft position can be watched as the speed increases To display shaft centerline data a shaft centerline measurement point with two channels need to be configured in pti
24. Version History ptitude Observer 8 4 ptitude Observer 8 4 New features Buffer setting can now be stored between sessions for an individual user Alarm hysteresis can now be configured for diagnosis Automatic alarm settings for trend alarms After a specific number of historical values Observer can apply an automatic alarm level based on a calculation of the historical values Torsion and Time difference type of measurement point now available for IMx Marlin support with serial communication interface Software process measurement point type The user can now enter manually read values and enter them into a software process measurement point Full 64 bit operating system support Observer now ships with both 32 bit and 64 bit SQL Server express R2 With SQL Server Express R2 no separate installation of SQL Management studio is required and each database can be up to 10 Gigabytes in size instead of 4 Gigabytes Improvements Enhancements to Current Functionality Spectra flags in the trend plot now open up the spectra plot time waveform plot or the combination plot spectra time depending on the contents of the spectra flag that was clicked System alarms that are related to a physical position in a setup for example a cable fault system alarm can now also display the path to the node for the system alarm When importing data it is now possible to import data to existing measurement points if the points were previous
25. Wind power Windcon TF138 A Ge 7 8 Gen DE 1500 Axial Env2 48 SKF WindCon SKF Wind power Windcon TF138 7 8 Gen DE 1500 Rad A7 SKF WindCon SKF Wind power Windcon TF138 7 8 Gen DE 1500 Rad Env3 A7 SKF WindCon SKF Wind power Windcon T m a M Bearing 1500 Axial A2 SKF WindCon SKF Wind power Windcon TF138 A 7 e M Bearing 1500 Axial Env 2 A2 SKF WindCon SKF Wind power Windcon TF W M Bearing 1500 Vert 41 SKF WindCon SKF Wind power Windcon TF138 A W e M Bearing 1500 Vert Env2 41 SKF WindCon SKF Wind power Windcon TF1 7 a M Bearing Vert Continuous Env1 A1 SKF WindCon SKF Wind power Windcon 7 a MasCon Derived point SKF WindCon SKF Wind power Windcon TF138 A Mas W O Power Output SKF WindCon SKF Wind power Windcon TF138 A Power Output Figure 4 11 Example of ptitude Observer measurement points status You can enable or disable individual measurement point by checking or un checking each box You can also change the status of all the measurement points at once by using Enable all or Disable all buttons NOTE The maximum active measurement points per 16 channel device also apply to an IMx M Slot is 100 points The maximum active vibration measurement points per 16 channel device also apply to an IMx M Slot is 80 points ptitude Observer User Manual 4 27 Observer 9 1 Revision J System Configuration Creating IMx
26. a speed measurement point must be selected in the simultaneous measurements section as well Important The following specified conditions must be met in order for the measurement point to collect and store data in the database The assigned conditions have to be met before the system raises any alarms If both conditions are specified both conditions must be met before system raises any alarms e Type is the type of gating which can be set to one of the following values Same as Operating Condition configures the dynamic data storage range to be same as the Operating Condition range Speed means that the dynamic data storage range check is determined by the speed measurement point readings selected in Simultaneous measurements of Acquisition tab settings Process means that the dynamic data storage range check is determined by the process measurement point readings selected in Simultaneous measurements of Acquisition tab settings Digital means that the dynamic data storage range check is determined by the digital measurement point readings selected in Simultaneous measurements of Acquisition tab settings e Condition is the gating parameter range with minimum and maximum values 4 62 ptitude Observer User Manual Observer 9 1 Revision J System Configuration Setting up Measurement Points and Alarms Operating and Storage Conditions Tab e Max allowed delta is maximum accepted change of the gating pa
27. a static process signal such as load sensors temperature sensors pressure flow or any other static signal Speed is a measurement of the rotational speed of a shaft It is used to measure rotational speed of a shaft with a speed sensor Running hours is a measurement point for IMx MasCon devices It provides an effective usage for Observer s Maintenance Planner feature It keeps track of running hours of a machine Digital is a measurement of an input that reacts like a digital signal for IMx MasCon48 devices This means that the input signal basically has only two states a digital 1 and a digital O or relay closed and relay opened A digital measurement point can be used to control when to take trend vibration data and when to take spectrum data Shaft centerline is a measurement that uses information from two radial displacement sensors located in the same axial position 60 to 120 degrees from each other in IMx devices Gear inspector is useful when analyzing impact energy as a function of shaft gear revolutions in wind turbines Airgap measurement point can be configured for 4 6 8 or 10 channels in order to display eccentricity and ovality of machines such as generators in hydro power stations Counter is a measurement that counts digital pulse changes which produces a value with the total amount of digital value changes It can be reset and the value will start from zero again It is currently available for IMx MasCon16devices on
28. a trend is stored in the database by ptitude Observer Monitor software E O SKF WindCon 5 0 I SKF Wind power Figure 5 37 Example of Optitude Observer hierarchy view ptitude Observer User Manual 5 83 Observer 9 1 Revision J System Operation Tree View Hierarchy View Status in the Hierarchy View Not active indicates that the measurement point is disabled and is on hold No data will be collected for this measurement point Cable fault indicates that the IMx MasCon device has detected a cable fault on the channel of which this measurement point uses The detection is done by bias ranges which are set in the cable check field under the setting analogue channels section for IMx MasCon devices measurement point are outside of the acceptance range The bias on the channel is Ok but the produced values are too high or too low The measurement range is set in the active range condition field with minimum and maximum values of the trend settings of measurement points GF sic measurement range indicates that the values coming from this Alarm indicates that this measurement point has received values that triggered an alarm The values can be High alarms Low alarms Relation alarms or Vector alarms The alarm status can be confirmed by acknowledging the alarm from the alarm list refer to Alarm list under Show in Menu Items section After the alarm has been acknowledged and new data have been stored in t
29. and Channels Analogue Channels gt For IMx M CM virtual channels when transferring data from Protection part to CM part see the table below Note that if this device s External communication type was set to Protection when initiating the device then this functionality is not available IMx M Protection Part Channel Analog Virtual Channel Number Analog channel 1 Analog channel 16 Analog channel 1 DC GAP Analog channel 16 DC GAP Table 4 1 Mapping of IMx M CM virtual channels Note that the parameter values of E U and minimum and maximum scale values of Calculation have to reflect the parameter values of the corresponding protection channel This Protection part channel must have been configured already through IMx M Manager Important The minimum and maximum scale values of Calculation in CM part must always be symmetrical Even if an asymmetrical scale was set up for a Protection part channel the corresponding virtual channel in CM part must have a symmetrical scale In such case CM part should use the greater value of the two absolute values absolute value of minimum and maximum to set the symmetrical scale value Example 1 Protection part channel has the scale min and max set up as 100 and 200 The corresponding virtual channel in CM part must have the scale min and max set up as 200 and 200 Example 2 Protection part channel has the scale min and max set up as 300 and 100 The corres
30. changed to the user s own application directory instead of common application directory Reference spectra confirmation has been changed Major Multi trend plot enhancements made DiagX wizard has been enhanced Runout compensation has been added The speed value is now visible in the Orbit plot The planet shaft is now visible also in the Gear Inspector and Profile plots The speed of the Order analysis shaft as well as the tacho speed are now visible in the FFT graph Improved Gear Inspector calculations It is now possible to invert the scale in the 3D plot Scale options 0 0005 0 0002 and 0 0001 have been added to the graphs The Orbit graph has been enhanced with several features It is now possible to add temporary notes to diagrams The trend plot cursor has been changed when using speed or process values on the x axis Configuration Other TBU Temp option has been removed When creating an IMx M Unit the default External configuration is now set to Protection It is now possible to have Automatic alarms enabled or disabled for new measurement points with a user setting It is now possible to right click on a machine and create a machine template It is now possible to export and import diagnosis rules Default BPS for Modbus communication has been changed to 19200 It is now possible to zoom in the machine parts It is now possible to set the speed of a measurement in the FFT window It is no longer possible to se
31. current measurement point should be connected linked The selected process measurement point will be taken simultaneously with the current measurement point s data Digital meas is a digital measurement point in which the current measurement point should be connected linked The selected digital measurement point will be taken simultaneously with the current measurement point s data Settings for Microlog and Marlin only E U is the engineering device in which this measurement is to be displayed Scaling allows to change how to display the scaling detection of the measurement Pulses rev is the number of pulses the device receives per shaft revolution Full scale is used to scale the values in the Microlog only Full scale Env is used to scale the values for Envelop Full scale Veloc is used to scale the values for Velocity Full scale Temp is used to scale the values for Temperature No decimals is the number of decimals supported by Marlin devices only Min scale is used to scale the values in Marlin Zero level is the value that should be equal to zero in the measurement device Sensitivity specifies the sensor sensitivity Envelope filter is a pre processing type such as Envelop for an example ICP current feed indicates whether the sensor is fed with current or not Frequency type can be Fixed freg range or Order tracking No of lines is for the FFT taken for extracting trend values Save specifies what kind of
32. cursor adds a band cursor to the graph It allows by dragging the handles of the band to position and resize the band freely A single band cursor can be moved with left arrow key or right arrow key shift left arrow key or shift right arrow key causes a cursor move in bigger steps A band cursor has three handles at the top of the band First handle makes the band cursor bigger or smaller by clicking and dragging Third handle makes the band cursor bigger or smaller by clicking and dragging Middle handle repositions the band by clicking and dragging ion Harmonics produces a harmonic cursor of the currently selected frequency This cursor can also be moved with shift key or ctrl key in combination with left arrow key and right arrow key or by clicking and dragging with the mouse Harmonic cursors can be between 20 and 200 which can be set in User Preferences in Edit menu item 5 100 ptitude Observer User Manual Observer 9 1 Revision J System Operation Graphic Displays and Tools Tools for Graph Display at Sidebands allows to insert a side band marker marking 5 side bands below and 5 above a X marker There are two modes of a side band marker First mode is the default mode X is selected The arrow keys allow you to move the sideband marker but keep its size Second mode is set by selecting 1 to 5 or 1 to 5 The arrow keys allow you to resize the side band cursor Amplitude
33. down but can also be used for all types of data stored in the system A 3D plot can be rotated and elevated freely by the user in order to increase visibility and the user can select to display 3D plot as transparent or filled by the user preferences settings As in time waveform display and spectrum display the device can be recalculated between acceleration velocity and displacement 3D plot can also have a z axis also known as depth axis setting which allows to display it as a depth function of date time speed or process An option even spreading displays the FFT data with even spreading on the z axis is also available The below is an example of 3D plot of binary data type with overlay data and live data Cabra DEF Wires DE ind perro inde er TELA Berg 1500 rt LAL ID Piri erica SEP Brie AE dl pr Warsidi ie TEA EA rar LM Ferl LAN 1b O 1 es E LSS 120 00 AM ADDERE Soo od AH A A nad er a rar Lj a ie Bas 311512005 LIJM AM Mi TI R A aa rarer MENZIS bee a init A a O IATA 31000 A SKE LD AM Bik ypas raa an lie 5205 LI AM j W rpa EEE m LZA IEIS 2100100 AA pr O 1 ti LIDO Pinto Am rain Fite a i ij ii jk i J Figure 5 46 Example of ptitude Observer 3D plot display 5 106 ptitude Observer User Manual Observer 9 1 Revision J System Operation Graphic Displays and Tools Topology Topology EY Use this icon to generate a topology display of a selected mea
34. e Speed is the running speed in rpm revolution per minute e Deviation is the percentage the speed can vary during the measurement of the machine This is used in the diagnosis calculation when obtaining the fault frequencies lt sets the search range of frequencies for the diagnosis calculation e Deviation time tells the tolerance time when calculating a value depending on parameters A deviation time of 5 minutes means that the parameter values collected from IMx MasCon or OPC should be maximum 5 minutes old Optitude Observer User Manual 4 57 Observer 9 1 Revision J System Configuration Setting up Measurement Points and Alarms Acquisition Tab Simultaneous Measurements Speed meas is a speed measurement point in which the currently selected measurement point should be connected linked The selected speed measurement point will be taken simultaneously with the current measurement point s data Speed controlled sampling indicates whether to use speed controlled sampling or not If it is checked then all the samples during one revolution of the shaft will be used to calculate the average position of the shaft If unchecked then the samples during 0 1 second will be used to calculate the average position of the shaft lt is used to get a better reading of the shaft position Therefore for measuring the shaft position it is strongly recommended to enable this field Process meas is a process measurement point in which the
35. for each sensor the eccentricity and ovality of the machine Combination plots facilitates the analysis by combining displays into one graph showing related data There are a variety of alarm features such as level alarm trend alarm vector alarm diagnostics alarm and circle alarm Upon alarm notifications can be automatically sent to the designated user s by e mail or SMS short message service Report Speed dependent alarm conditions can be up to 15 primary alarms for each measurement point These alarms can be at a fixed frequency fixed frequency range speed dependent frequency or speed dependent frequency range Speed or load dependent alarm level can be fixed or set as a function of shaft speed or any DC measurement point for each alarm level For each alarm condition there are two alarm levels for vibration measurement points and four alarm levels for DC measurement points Alarm group can be created if a user wishes to collect data from other measurement points When an alarm is raised the measurement data at that measurement point is saved in the database If one of the measurement points in the alarm group generates an alarm data on all the measurement points in that alarm group will be saved PDF based and Word reports containing alarm lists notes manual conclusions trend data diagnosis reports and condition monitoring statistics can be produced by Report Wizard System Integrity System alarms via e m
36. list of IMx MasCon devices to get the list of all the corresponding digital channels 2 Select a channel to edit then click on Edit All the fields in edit mode are the same as in Initiating a Digital Channel from above You may edit any setting except MasCon and Number attributes Deleting a Digital Channel 1 First select a device from the list of IMx MasCon devices to get the list of all the corresponding digital channels 2 Select a channel to delete then click on Delete Note that a channel cannot be deleted if it is in use by measurement point s Copying a Digital Channel 1 Select a device from the list of IMx MasCon devices to get the list of all the corresponding digital channels 2 Select an existing channel to copy to a new channel then click on Copy 3 Choose a channel number for the new channel from the drop down list then click on Ok ptitude Observer User Manual 4 35 Observer 9 1 Revision J System Configuration Creating IMx MasCon Devices and Channels Machine Properties Machine Properties Setting up machine data can be done at the machine properties screen This information is only text based and is not used by analysis tools in ptitude Observer However this information can be included in reports and other printouts To get to machine properties screen perform one of the following options e Create a machine from scratch Refer to Machine under Building a Hierarchy View in System Confi
37. parts from another machine is possible Click on the right mouse button on the blank area of Machine parts working screen and select Copy from existing machine This will override existing machine parts with the copied machine parts e Simply drag and drop the desired parts from the parts toolbox window to the working area on the right Dragging and dropping parts close to each other will create a link between them For example to link one gear wheel to another simply drag and drop a wheel on top of the other Optitude Observer User Manual 4 71 Observer 9 1 Revision J System Configuration Machine Parts It is important that the first part should always be a shaft to which the remaining parts are connected To link the model to the pre selected machine drag speed from the Parts toolbox window This speed is used to calculate the defect frequencies for bearings gears and other parts In addition it is also possible to link diagnosis and vibration spectra to the model By using bearing from the parts toolbox window you can obtain bearings from the drop down list of bearing database In total the bearing database can hold approximately 20 000 bearings from SKF and a number of other vendors It is also possible to add new bearings if bearing pitch diameter roller diameter number of rollers and contact angle are known The model of the machine created in this way is a schematic illustration and should not be seen as a scaled CAD
38. peaks cursor displays the highest peaks in the graph It consists of a horizontal line stretching across the graph The horizontal line is movable in the vertical axis by clicking and dragging the line Peaks found above this line are marked with a number Select measurement date allows to select a date to see the measurements from that date Double clicking on a date refreshes the graph with the data from the selected date Clear clears the graph of all tools cursors and other custom markers that have been added D Es 4 Zoom is available on almost all graphs It allows to zoom in only once at a time Once the graph has been zoomed in the graph is no longer in the zoom mode You must re instate zoom mode by clicking the zoom icon each time you want to zoom in Click and drag the mouse button to the desired area It is also possible to scroll the zoomed graph while pressing shift key click and drag the mouse Ep 4 Zoom out brings a graph back to its original size Delete deletes a measurement from the database Spectra time waveform and phase are considered as a single measurement which means that deleting a spectra will also delete the corresponding time waveform and phase data if there are any Save saves the current live measurement from the graph to the database The measurement will be marked with the storage reason manual because it was manually saved and not by the time based schedule Ze 6 Live reads data immediat
39. plot shows any type of data such as vibration amplitude phase or process data as a function of speed A Bode plot is identical to that of trend display with x axis set to speed and phase is always visible For an example of bode plot refer to Trend diagram Trend List J Use this icon to generate a trend list display of a selected measurement point or measurement points which were selected in the hierarchy Trend list shows the raw trend data values in a tabular format The data can be sorted by clicking on a header of any column The data can also be printed as a report Tren is Meas point Date Time Speed EU Overall 1x N Amp 1xN Phase 2xNAmp 2x2 Main Brg Radial ACC 1kHz 2010 09 16 00 28 53 00 163 gP 0 7 Main Brg Radial ACC 1kHz 2010 09 16 00 29 53 00 163 gP 0 f Main Brg Radial ACC 1kHz 2010 09 16 00 30 49 00 163 gP 0 a Main Brg Radial ACC 1kHz 2010 09 16 00 31 41 00 326 gP 0 Main Brg Radial ACC 1kHz 2010 09 16 00 32 40 00 326 oP 0 01 Main Brg Radial ACC 1kHz 2010 09 16 00 33 41 00 326 gP 0 01 Main Brg Radial ACC 1kHz 2010 09 16 00 34 33 00 326 gP 0 Main Brg Radial ACC 1kHz 2010 09 16 00 35 29 00 326 gP 0 01 Main Brg Radial ACC 1kHz 2010 09 16 00 36 24 00 326 gP 0 01 Main Brg Radial ACC 1kHz 2010 09 16 00 37 20 00 326 gP 0 01 Main Brg Radial ACC 1kHz 2010 09 16 00 38 12 00 326 gP 0 Main Brg Radial ACC 1kHz 2010 09 16 00 39 07 00 326 gP 0 Main Brg Radial ACC 1kHz 2010 09 16 00 40 05 00 326 gP 0 Main Brg Radial ACC 1k
40. privileges Lock to process overview allows the user to only review and monitor Process overview Configure process overview allows the user to review monitor and configure Process overview Transfer measurement data allows the user to transfer measurement data as well as route lists Edit Event Cases allows the user to edit event cases for machines Config Attachment allows the user to add and edit attachments to machines Config Node Tags allows the user to set and change tags in the hierarchy Edit route list allows the user to create and edit route lists Read Notes allows the user to view notes in the system Edit notes allows the user to create and edit notes Edit diagram boxes allows the user to create and edit the content in diagram boxes Reset maintenance interval allows the user to reset the maintenance interval in the Maintenance Planner MVB Configuration allows the user to be able to edit MVB Configuration which is available for IMx R devices only Read Event Cases allows the user to read event cases for machines Read Attachments allows the user to open attachments saved on machines Read Node Tags allows the user to see the node tags set in the hierarchy 6 146 ptitude Observer User Manual Observer 9 1 Revision J Menu Items Database Users Linked Database Access grants access to the selected database s Notifications Tab Send Alarm notific
41. prompt is the prompt shown to the Marlin user when this point is about to be collected in the Marlin For example it could be Do you see any oil leakage e Inspection result is the yes or no response to the inspection prompt ptitude Observer User Manual 4 59 Observer 9 1 Revision J System Configuration Setting up Measurement Points and Alarms Operating and Storage Conditions Tab Operating and Storage Conditions Tab This is where the information on when the measurement should be taken can be set II o a H Eh Semani pl opata BL Cipsa md Storage Cocina oe Moras ee A ra ap Dpat Upei Cordio T dll a w A q Wit Mis rt Paige I raped in b A Mae mi P a a 2 eee der Ttek frend Sica J Eie Galieginde Fi rev 1 Fimis kieran siara i Hram Tiai Enebi Jara F Scheduled Dyer Die aaga a el Frida 2P T Sera n prang Lor T Tho Sere n paang Conic T iiaiai Fic Miror Il Irri Tre sarees riera 7 Co iier der 1 Die z AAA AA A CO AO a AA O ah ET CACAO ahe ile AAA pits T Ir E eno aa pais ing lala ome Figure 4 25 Example of ptitude Observer Dynamic measurement point Operating and Storage Condition settings Operating Condition Operating condition is calculated with the help of the measurement points specified in the Simultaneous measurements of the Acquisition tab settings For example if you select speed as an active range type a speed measurement point must be s
42. static value 4 50 ptitude Observer User Manual Observer 9 1 Revision J System Configuration Setting up Measurement Points and Alarms Derived is a general measurement point that is also called ptitude Observer derived measurement point A derived measurement is a calculation point that uses other measurement points to calculate what to trend For example you can trend the sum of all vibrations of a machine or the average efficiency of four different turbines The ptitude Observer derived measurement can take data from IMx MasCon and OPC measurement points The measurement value is calculated in the ptitude Observer Monitor every 10 seconds MCD is a multi parameter measurement point type where envelope vibration and temperature are measured at the same time Available for Marlin only Inspection is a manual and visual inspection measurement point where the user enters data manually based on readings of external instruments Available for Marlin only Protection This is a measurement point displaying data from the IMx M Protection Module These points can t be created manually in Observer but are created in the IMx M Manager software These point types can however be edited in Observer with the limitation that only a few of the parameters on the point properties can be changed Most of the properties cannot be changed The Protection points are connected to virtual channels for the IMx M and are created in the Observer Hierar
43. tab e Message Center enables the user to send receive messages to from other users within Observer It is also accessible via Message Center under Show menu tab First time access to Dashboard displays Notifications The subsequent access to Dashboard displays one of three above interfaces that has been accessed most recently Optitude Observer User Manual 6 143 Observer 9 1 Revision J Menu Items Database Database Database menu provides the following interfaces e Users Database information System log Pictures Diagnoses Libraries Export Import Alarm group Measurement_groups Options Delete data Data miner Users This interface brings up the Users window which displays existing users If you have the right to configure users it is possible to add new users and edit or delete existing users Role Last name First name Dormia Wind Admin SuperUser admin admin Iv Jocke SuperUser Joakim Bergstrom OD John John Deer Vv Figure 6 74 Example of ptitude Observer users list 6 144 ptitude Observer User Manual Observer 9 1 Revision J Menu Items Database Users Configuring a User users x User User rights Notifications User Details User DiMundo Oz Password re First name En Last name Grebbe ts E mail Erik Grebbe ACME com Figure 6 75 Example of ptitude Observer user configuration User Details e User name is the logi
44. the desired interval for data capturing It depends on the application Interval alarm is the desired interval for data capturing when the level is in warning or alarm condition ptitude Observer User Manual 4 63 Observer 9 1 Revision J System Configuration Setting up Measurement Points and Alarms Shaft Properties Tab Shaft Properties Tab ri Bies papiri OSCR Mini cert Y Shan postion courier Cesare bra Charai X Coll gap har i a q AGO al De dro rot OA al ee Ue DE erg Cab pap rar Syan co Lorca m a Figure 4 26 Example of Optitude Observer Dynamic measurement point Shaft properties settings Shaft position is the position of the shaft which can be Top Bottom Left Right or Center Clearance is the maximum clearance in the bearing Channel X Y Cold gap is the cold gap for the shaft in the bearing for the sensors This value should be measured with a tool and entered here Get cold gap allows the system to measure the cold gap automatically instead of measuring it with a tool manually If you press the get cold gap button the system will ask the ptitude Observer Monitor software for the current reading of the two sensors and will calculate the cold cap for each channel Note that a connection to the monitor software is required 4 64 ptitude Observer User Manual Observer 9 1 Revision J System Configuration Setting up Measurement Points and Alarms Monitoring Tab Monitoring
45. the options form The case number in combination with the report number can be printed on the event case report documents that can be generated e Status of the report e Defect category can be used to group this specific case to a specific type of defect e Title can be used to group this specific case with a specific title e Description is a custom description that can be entered for the case Of all the above information only the case number will be printed on any document generated from an event case report Reports Tab Existing report s can be added edited or deleted A document can be generated by selecting a report and click on Create document History Tab It lists all the related history of the selected event case report New history can be added or existing history can be edited or deleted Measurements Tab Any measurements which are related to the selected event case report can be added edited or deleted ptitude Observer User Manual 5 125 Observer 9 1 Revision J System Operation Event Cases Editing an Existing Event Case Report Editing an Existing Event Case Report a Report General Pictures _ General settings Machine lA L Date Time 2012 0913 13 2855 UIC 2 Status In progress Report number 1 Modified 2012 09 13 13 32 45 UTC Description bearing cracked Created by y Demo a2 Approver admin admin Assesments Component Clas
46. the tolerance how far apart correlated measurements can be in order for them to be drawn Valid values can be set to Exact or ranging from 1 second up to 1 hour Curve fitting applies an approximation of a curve fit to the data currently displayed in the plot Options are 1st Degree 2nd Degree 3rd Degree and None DiagX allows to select machine parts that have the selected frequency from a list This edit is temporary See DiagX in Tools for Graph Display below Exclude from diagnosis calculation allows to exclude an FFT from diagnosis Export is available on all graphs in ptitude Observer It brings up an export dialog where you can select data to export in several different formats including Excel and text files Frequency device allows to switch frequency device between Hz cpm and Order The change made to frequency device can be saved on the measurement point Fault frequencies brings up a dialog where the user can choose machine parts from the machine that the user is currently analyzing When one or more machine parts are selected the frequencies for them are drawn in the graph In this way the user can clearly see if any of the machine parts are rendering high readings The frequencies displayed for the machine parts are automatically calculated by the running speed ptitude Observer User Manual 5 97 Observer 9 1 Revision J System Operation Graphic Displays and Tools Graph Settings Go to Double click for dia
47. 02 19 10 39 43 1 IMx M 20 S PROTECTION Circuit fault 1 0 Slave 5 OK 2014 02 19 10 23 25 2014 02 19 10 39 43 1 IMx M 20 S PROTECTION Circuit fault 1 0 Slave 7 OK 2014 02 19 10 23 25 2014 02 19 10 39 43 1 IMc M 20 S PROTECTION Circuit fault Relay Master 64 340 0 amp h0 CF_24VB 2014 02 19 10 23 25 2014 02 19 10 39 44 1 IMxM20 S PROTECTION Circuit fault Relay Slave 2 OK 2014 02 19 10 23 25 2014 02 19 10 39 42 1 IMxM20 S PROTECTION Circuit fault Relay Slave 3 OK 2014 02 19 10 23 25 2014 02 19 10 39 43 1 Mx M 20 S PROTECTION Circuit fault Relay Slave 0 OK 2014 02 19 10 23 25 2014 02 19 10 39 42 1 IMx M 20 S PROTECTION Circuit fault Relay Slave 4 OK 2014 02 19 10 23 25 2014 02 19 10 39 42 1 IMx M 20 S PROTECTION Circuit fault Relay Slave 5 OK 2014 02 19 10 23 25 2014 02 19 10 39 43 1 IMM 20 S PROTECTION Circuit fault Relay Slave 6 OK 2014 02 19 10 23 25 2014 02 19 10 39 43 1 IMeM20 S PROTECTION Circuit fault Relay Slave 7 OK 2014 02 19 10 23 25 2014 02 19 10 39 44 1 IMxM20 S PROTECTION Circuit fault Relay Slave 1 OK 2014 02 19 10 23 07 2014 02 19 10 39 52 1 IMxM21 S PROTECTION Relay status Relay 1 Not Active 2014 02 19 10 23 06 2014 02 19 10 39 51 1 IMxM21 S PROTECTION Circuit fault 1 0 Master 512 amp h200 0 8h0 CF_24VB 2014 02 19 10 23 06 2014 02 19 10 39 52 1 IMxM21 S PROTECTION Circuit fault 1 0 Slave0 576 amp h240 0 80 CF_CH_1ICF 2014 02 19 10 23 06 2014 02 19 10 39 51 1 IMxM21 S PROTECTION Circuit fault 1 0 Slave 0 OK 2014 02 19 10 23 06 2014 02 19 10 39 52
48. 197 Version History ptitude Observer 8 5 ptitude Observer 8 5 Monitor changes Complete new monitor service New application Monitor manager is used to configure and set up monitor services on the local computer Monitor is now run as a service only and not as application Monitor can now run several instances of the monitor service on the same computer simultaneously The monitor service can now log all events and store them into a log file with a user selectable detail level The monitor service no longer requires an ini file with settings entered manually these settings are now configured from Observer and stored in the database The monitor application now only uses one port default 1 000 both for connections from Observer and devices The monitor service events are now be categorized in Received Send Internal Error Unrecoverable error Stored Socket Event and Run Time Error Reboot on error has been removed and should now be configured through the windows service manager interface The monitor service now keeps track of the sequence number for IMx devices and logs if packages are missing The monitor service now keeps track of when the Connection to the IMx was opened The monitor service no longer has a user interface since true services can t have a user interface windows forms but the interface of the monitor service can be viewed from the Monitor manager application or from
49. 22 Creating IMx MasCon Devices and Channels ccsccccssecessececsseceeeecesseeessaeeseaaees 4 23 Witte saat tset Sc sitet cane o o Na 4 24 A E E EE E E E 4 25 DEE A E ii E A E 4 26 EU a A A 4 26 SA I T E E E Vaeedveee 4 26 RETS E l a E AA E AE E EIE TEE EAE E T edn Gee on Na ahd 4 26 O O O 4 26 Eanna E E T A T TE A 4 26 Measurement Pots ati ai aA 4 27 COMME A da ida 4 28 ptitude Observer User Manual TOC 3 Observer 9 1 Revision J IP GOnfiQurationisssssscse s O ATAN EErEE RA 4 28 4 20 MA Duplicado 4 28 Firmware iaaa ia DAA a a a a 4 29 Analogue Channels sirere aea ti 4 30 Initiating an Analogue Channel ssesssssssrssersserssersssrnssressersssressrnesrnsssens 4 30 Editing an Analogue Channel cssssscscsssssssseessseesesessseeeeessesassceuenseeeeesas 4 33 Deleting an Analogue Channel mcocccncccnnonnnonnnnnnnonnnonnnnnnnacnnonnnnnnranannannnnnos 4 33 Copying an Analogue Channel mccccnoncnninnnnnnncnnnannnonncannane nara aaa 4 33 Digital Channels vacia dad 4 34 Initiating a Digital Channel vostro cin abc donates 4 34 Editing a Digital Channel ssic csscsscocchvcsciaccesotacenecstendsncesadecstsneacdersveace cette 4 35 Deleting a Digital Channel siinana dai cautehductt cuss 4 35 Copying a Digital Channel cmcocnnccnnnannnnnncnnanncnanannnonoconcnna nara rn nana c naaa nara 4 35 Machine POPertiES coria a A id 4 36 General Tabs is sete ste cteasheckes ina a aachudees af 4 36 Extended Information Tab
50. 474 160 6983 Not active Not active Bearing CRB Hollow Shaft 350 No 2996 05 1997366 Not active Not active Bearing CRB Intermediate Shaft 450 No 349 2525 232 835 Not active Not active Bearing CRB Intermediate Shaft 450 No 285 7046 190 4697 Not active Not active Bearing Gen Bearing DE No 278 8659 185 9106 Not active Not active Deflection No Not active Not active Not active Not active 2 MyPeakcounter Yes Auto Auto Not active Not active z Attach Edit Remove Used points Name Baseline values al Gbox In 1500 Vert Down 44 0 1881904 O Gbox In Planet 1500 Vert A3 0 08119185 O Blade Monitoring 1500 42 O Mm Bearing 1500 Vert 41 O M Bearing 1500 Axial 42 O Gbox Out 1500 Hor 45 O Gbox Out 1500 Axial 46 M Gen DE 1500 Rad 471 x Figure 4 18 Example of ptitude Observer diagnoses settings e Name identifies each diagnosis e Private Privately attached diagnoses do not have a link to any diagnosis rules e High alarm High warning Low warning Low alarm are the alarm warning level set in the diagnosis rules when configuring a diagnosis Refer to Diagnosis Rules under Database in Menu Items e Edit allows to edit settings of the selected diagnosis Refer to Diagnosis Rules under Database in Menu Items section for the description of settings e Remove allows to delete the selected diagnosis from the list of diagnoses e Attach allows to add a diagnosis from a list
51. 71 Menu Items Database Options Normal default Severe and minor errors are logged Detailed Store events in addition to severe and minor errors are logged Full Every events that occur are logged This setting can be used for error tracking e Store incoming data can turn on and off the data storage in the database This checkbox should normally always be checked Under certain circumstances such as during service or during commissioning this can be unchecked in order not to store invalid data e Limit the maximum number of simultaneous DAD connections can be used to prevent all DADs in the system from connecting at the very same time to upload the collected data to the database This can be useful when having a system setup where the DADs connect on a regular interval for example once per day and upload their data and then disconnect again e Enforce a minimum connection interval between DAD connections to monitor service can be used to spread out the workload of the monitor service on sensitive computers Backup Tab Backup allows to automate daily backups for SQL Server not available for Oracle The backups are done by the ptitude Observer Monitor software at the specified interval Therefore ptitude Observer Monitor has to be running for the backups to be created Options Database SKF WindCon do General settings E Data p E mal settings Default settings EE Monitor service J Backup Y Alarm and relays
52. Analogue Channel from above You may edit any setting except MasCon Number Sensor type and E U attributes Deleting an Analogue Channel 1 First select a device from the list of IMx MasCon devices to get the list of all the corresponding analogue channels 2 Select a channel to delete then click on Delete Note that a channel cannot be deleted if it is in use by measurement point s Copying an Analogue Channel 1 First select a device from the list of IMx MasCon device to get the list of all the corresponding analogue channels 2 Select a channel to copy to a new channel then click on Copy 3 Choose a channel number for the new channel from the drop down list then click on Ok ptitude Observer User Manual 4 33 Observer 9 1 Revision J System Configuration Creating IMx MasCon Devices and Channels Digital Channels Digital Channels Digital channels interface provides a list of all the configured digital channels of the selected device along with their settings It also allows to initiate new digital channels and edit copy and delete any existing digital channel from the list Initiating a Digital Channel Select a device from the list of IMx MasCon devices then click on Initiate in the digital channels window Digital channel eS General MasCon 2 MasCon 2 Number 1 Name Speed Enabled v Pulses rev 1 o Trans angle 0 degrees 90 270 180 os Lana Figure 4 15 Example of ptit
53. Average Mode GAP Piston Rod Drop Average Mode GAP Complementary Differential Expansion GAP Complementary Differential Expansion GAP Casing Vib BOV Radial Shaft Vib GAP Axial Position Eccentricity Radial Shaft Vib Temperature Temperature Piston Rod Drop Triggered Mode Piston Rod Drop Triggered Mode Piston Rod Drop Average Mode Piston Rod Drop Average Mode Speed shaft 2 Speed shaft 1 Speed 1 Speed1 Accel 16 Accel 15 Accel 14 Accel 13 Harmonic 11812 Harmonic 9410 Harmonic 7 amp 8 Harmonic 586 SCL3 4 SCL 1 2 Harmonic 3 amp 4 Harmonic 182 Harm 2 ch SCL 1 2 Harmonic 384 E 2014 03 19 15 49 14 4 m Type Description m Name from Speed 1to Speed shaft 1 Name from Speed to Speed 1 Operating And Storage Conditions Scheduled Dynamic Operating And Storage Conditions Scheduled Dynamic Operating And Storage Conditions Scheduled Dynamic Operating And Storage Conditions Scheduled Dynamic Operating And Storage Conditions Scheduled Dynamic Operating And Storage Conditions Scheduled Dynamic Operating And Storage Conditions Scheduled Dynamic Operating And Storage Conditions Scheduled Dynamic Operating And Storage Conditions Scheduled Trend Sto Operating And Storage Conditions Scheduled Trend Sto Operating And Storage Conditions Scheduled Dynamic Operating And Storage Conditions Scheduled Dynamic Acquistion E U from Acc m s2 to Disp um Operati
54. Cable check will raise a system alarm from a cable fault if the signal goes outside of the range Enabled check the box to allow the system to perform a cable check on the channel before a measurement is taken Min the minimum output range of the sensor Max the maximum output range of the sensor Time the duration of the cable check measurement Sensitivity and Zero level are properties of the sensor which also can be calculated by filling in the lower part of the screen and pressing Calculate button Sensitivity specifies the volt or amp ratio to the measurement device Zero level which value in volt or amp should be equal to zero in the measurement device Correction Tab You have the possibility to compensate the sensor faults with four different frequencies under transaction correction This function is mostly used for MasCon48 turbine monitoring Frequency four frequencies needed for correction Phase phase value for each frequency Amplitude amplitude for each frequency 4 32 ptitude Observer User Manual Observer 9 1 Revision J System Configuration Creating IMx MasCon Devices and Channels Analogue Channels Editing an Analogue Channel 1 First select a device from the list of IMx MasCon devices to get the list of all the corresponding analogue channels 2 Select a channel to edit then click on Edit All the fields in edit mode are the same as in Initiating an
55. Creating a New Editing an Alarm Group Ub Alarm group Name Alam interval for members Static Min time 32 s Figure 6 90 Example of ptitude Observer alarm group Edit e Name is the name of the Alarm group to be created or edited e Alarm interval for members allows to select a scheduled storage setting by Operating and Storage Conditions Tab under Setting up Measurement Points and Alarms in System Configuration None uses uses the normal scheduled storage setting on other measurement points Static uses the alarm scheduled storage setting on all measurement points in the group to store static values with alarm intervals Static and Dynamic uses the alarm scheduled storage setting on all measurement points in the group to store static and dynamic values with alarm intervals e Min time is the duration of time in seconds that has to pass without any alarm in order to store all measurement points data of the specified alarm group The recommended minimum time is 30 seconds ptitude Observer User Manual 6 163 Observer 9 1 Revision J Menu Items Database Measurement Groups Measurement Groups A measurement group is a logical grouping of measurement points that will collect data at the same time and synchronously on a specific IMx MasCon device E Measurement groups Database SKF WindCon x Measurement groups O Name 2 y IM group 3 IMx Sim 3 Mx Tra
56. Hz 2010 09 16 00 41 55 00 326 gP 0 Main Brg Radial ACC 1kHz 2010 09 16 16 12 36 00 170 gP 0 Main Brg Radial ACC kHz 2010 09 16 16 13 31 00 208 gP 0 Main Brg Radial ACC 1kHz 2010 09 16 16 14 24 00 208 gP 0 Main Brg Radial ACC 1kHz 2010 09 16 16 15 26 00 208 gP 0 Main Brg Radial ACC 1kHz 2010 09 16 16 16 23 00 391 gP 0 01 Main Brg Radial ACC 1kHz 2010 09 16 16 17 16 00 400 gP 0 01 Main Brg Radial ACC 1kHz 2010 09 16 16 18 14 00 400 gP 0 01 Main Brg Radial ACC 1kHz 2010 09 16 16 19 12 00 557 gP 0 01 Main Brg Radial ACC 1kHz 2010 09 16 16 22 27 00 600 gP 0 01 Main Brg Radial ACC 1kHz 2010 09 16 16 23 24 00 600 gP 0 01 ype tesa are tn ananonsnsnzannn man n mm Pi Figure 5 52 Example of Optitude Observer Trend list display 5 112 ptitude Observer User Manual Observer 9 1 Revision J System Operation Graphic Displays and Tools Multi trend Multi trend Use this icon to generate a multi trend display of a selected measurement point or any other node type in the hierarchy view Multi trend offers extended functionality to the normal trend plot as it is possible to overlay data from different measurement points or sources making it easier to compare data and distinguish if machines behave differently from each other This display consists of two parts one trend display and the other bar display The trend display shows historical data in the device that the measurements have in percent of warning level or simply witho
57. It is used for example when using ISDN integrated services digital network routers e External communication type is available for MasCon16 and IMx devices It is to configure the functionality of the selected external communication type on the device Type can be None Modbus Modbus RTU MVB TSI Protection or Vogel The available types vary depending on the type and model of the selected device Note that if type is set to Protection then the virtual channel functionality will not be available Bps defines the speed of Modbus Parity provides Modbus data validation which can be set to No Parity Odd Parity or Even Parity Stop bits defines the number of stop bits in use for Modbus It can be 1 or 2 Mode is either Modbus Slave or Modbus Master Slave address is the Modbus slave address with which the Modbus master communicates Therefore it is important to have the common Slave address for the Modbus master slave pair Parameter is application specific and is required only for MVB TSI and Protection types e Interface card is a hardware configuration card which is required for MasCon48 only Four different cards can be selected and each card has 8 channels AC DC 25 V for analogue inputs e g when a device is equipped with Bentley probes AC DC 15 V for analogue inputs e g when a device is equipped with accelerometers DC for a device with temperature and pressure sensors
58. J System Configuration Multiple Point Update Wizard Multiple Point Update Wizard The multiple point update wizard is a tool for updating several measurement points with one or several properties It can be anything from a simple edit such as changing an active status on a few measurement points in a machine to more complex edits such as updating a frequency range and number of lines on all IMx MasCon vibration measurement points in the entire database You can filter out specific measurement point types based on the selection of your choice To get to multiple point update wizard e To update a certain set of measurement points 1 First select a database a node a machine or a sub machine in which these points reside in the hierarchy view 2 Click on Edit on the toolbar then select Multiple point update wizard e To update all the measurement points in all the databases No need to select any node Click on Edit on the toolbar then select Multiple point update wizard In the Wizard select All measurement point sin all databases Utilization of Multiple Point Update Wizard A 1 Selecting data to modify r a Multiple point update wizard pnt Selecting data to modify Select if you wish to update the entire database or update what is currently selected in the hierarchy and select the type of measurement point you wish to update Meas point type i O o Oo e O O
59. Menu Items section ptitude Observer User Manual 5 89 Observer 9 1 Revision J System Operation Tree View Hierarchy View e Event log displays all the events of the selected measurement point of IMx M or IMx R device Refer to Event Log under On line in Menu Items e Copy the selected measurement point e Paste the copied measurement point to a new location e Delete the selected measurement point e Trend automatic alarm levels for the selected measurement point e Diagnose automatic alarm levels for the selected measurement point e Recalculate diagnoses of the selected measurement point e Add note for the selected measurement point Refer to Notes in System Operation section e Tag allows to categorize the selected measurement point with a specifically defined tag from the Tag Library e Refresh the current hierarchy view with the new status if any e Properties allows to edit the properties the selected measurement point 5 90 ptitude Observer User Manual Observer 9 1 Revision J System Operation Tree View System View System View The System view shows the database from the system point of view with IMx MasCon devices sensors channels and measurement points To get to the system view screen e Click on Show on the toolbar then select System e lf the tree view window has been opened already select System directly from the tree view window Below is an example of a system view gj
60. Mx MasCon16 E Time Harmonic Process Running hours Wavefo a e 2 o MasCon48 OPC Server Digital Shaft Gear inspector Airgap Counter Counter rate centedine Data source Based on my current selection in the hierarchy D All measurement points in all databases Measurement points to update Additional filter by name Apply Name Location Y VibbAEE SKF WindCon JOL Test VibbAEE Y Vib 2ch SKF WindCon JOL Test Vib 2 ch Y Order SKF WindCon JOL Test Order 2 Sim Fixed SKF WindCon JOL Test Sim Fixed Z Sim Order SKF WindCon JOL Test Sim Order Il anaa SKF WindCan I0I Tect AAAA ne Select al Unselect all lt Prev Net gt Cancel k A Figure 4 35 Example of ptitude Observer selecting data for Multiple Point Update Wizard e Measurement point type allows to select a type of hardware and a type of measurement point to be updated Only one type of measurement point can be updated at a time ptitude Observer User Manual 4 79 Observer 9 1 Revision J System Configuration Multiple Point Update Wizard e Data source allows you to select a measurement point in the database that should be updated Based on my current selection in the hierarchy a list of measurement points that you selected in the hierarchy view before you entered the multiple point update wizard screen All measurement points in all databases a list of all the measurement points in all the d
61. N Relay status Relay 1 Not Active 2014 02 19 10 23 26 2014 02 19 10 39 45 1 IMxM20 S PROTECTION Relay status Relay 3 Not Active 2014 02 19 10 23 26 2014 02 19 10 39 45 1 IMxM20 S PROTECTION Relay status Relay 5 Not Active 2014 02 19 10 23 26 2014 02 19 10 39 45 1 IMxM20 S PROTECTION Relay status Relay 7 Not Active 2014 02 19 10 23 25 2014 02 19 10 39 45 1 IMx M 20 S PROTECTION Circuit fault 1 0 Slave 1 192 amp hCO 0 bho CF_CH_3CF 2014 02 19 10 23 25 2014 02 19 10 39 45 1 IMx M 20 S PROTECTION Circuit fault VO Slave ld 192 amp hCO 0 8h0 CF_CH_1ICF 2014 02 19 10 23 25 2014 02 19 10 39 44 1 IMx M 20 S PROTECTION Circuit fault 1 0 Master 768 amp h300 0 8h0 CF_24VAICF _ 2014 02 19 10 23 25 2014 02 19 10 39 45 1 IMxM20 S PROTECTION Circuit fault 1 0 Save0 128 amp h80 0 80 CF_CH_2l E 2014 02 19 10 23 25 2014 02 19 10 39 45 1 IMxM20 S PROTECTION Circuit fault 1 0 Slave 1 128 amp h80 0 8h0 CF_CH_4J 2014 02 19 10 23 25 2014 02 19 10 39 44 1 IMxM20 S PROTECTION Circuit fault 1 0 Slave 0 OK 2014 02 19 10 23 25 2014 02 19 10 39 44 1 IMxM20 S PROTECTION Circuit fault 1 0 Slave 1 OK 2014 02 19 10 23 25 2014 02 19 10 39 43 1 IMxM20 S PROTECTION Circuit fault 1 0 Slave 4 OK 2014 02 19 10 23 25 2014 02 19 10 39 44 1 IMxM20 S PROTECTION Circuit fault 1 0 Slave 2 OK 2014 02 19 10 23 25 2014 02 19 10 39 43 1 IMxM20 S PROTECTION Circuit fault 1 0 Slave 6 OK 2014 02 19 10 23 25 2014 02 19 10 39 43 1 IMx M20 S PROTECTION Circuit fault 1 0 Slave 3 OK 2014 02 19 10 23 25 2014
62. O J Completed OK Eror suspected Reset Cancel Figure 6 73 ptitude Observer pointer filter e Name is the name of the filter to use e Type is the type of points you would like to see which can be selected from the drop down list e Status is the status of points you would like to see which can be selected from the drop down list e Description is the description of the points you would like to see e Enabled displays points according to the value you decided None displays all the points regardless of whether they are enabled or disabled Yes displays only the points which are enabled No displays only the points which are disabled e Tag is used to filter by the selected tag s e Reset sets filter settings back to the system generated settings Hierarchy Hierarchy view brings up the hierarchy view in the tree view window Refer to Hierarchy under Tree View in System Operation ptitude Observer User Manual 6 141 Observer 9 1 Revision J Menu Items Show System System System brings up the system view in the tree view window Refer to System under Tree View in System Operation Workspace Workspace brings up the workspace in the tree view window Refer to Workspace under Tree View in System Operation Diagram View Diagram View brings up the hierarchical view of saved diagram boxes in the tree view window Refer to Diagram under Tree View in System Operation Protection View
63. O uv sacnoatie atsnsesanacegeasaedecees 4 71 Setting Up Process Overview ccccccceeeeeeeeeeneeceeeeeeeesesecaeaaeceeeeeeeseeeecniaeeeeeeteess 4 73 Machine Copy Wild ia tt 4 75 Multiple Point Update Wizard sectorial 4 79 System Operation 5 82 TOC 4 ptitude Observer User Manual Observer 9 1 Revision J Stabila VIGW a ti adi a 5 82 A O 5 82 Hierarchy View stsesicedsWivectdiesecdsededsdecduessbeceteesdaccetedsUiecededhaabeccedsdecdevedsaccsee sd 5 83 Status in the Hierarchy View eocconoocccnnocnnonannnnnnanononcnnanacnnnncnnnonannnnrannnnannnn 5 84 Priority LiStOf Status sristi oeie idolo aa D A RES 5 86 Interfaces Available on Database Level ccoccccccccncninaninanicinicinininininnnnnncnnnos 5 87 Interfaces Available on Node Level coccccccnonnnnonononcnononancnnanarn nn nonnnnnnnnannnns 5 87 Interfaces Available on Machine Level occccccccccnononinanininicicinininanininnnnnnnnnnos 5 88 Interfaces Available on Sub Machine Level ccccccccccncninicicicicinininincnnnnnnnnnnos 5 89 Interfaces Available on Meas Point level coccccccccnononinacicicicicicinininnnnoninnnos 5 89 SA ipeni ran inein riia annene arin Ek EE ria A KRN Kiai d AAPA Tin ein ERE ENKAN EOR iA RANKEAR E 5 91 Workspace spises deirinta nea loved chase Eaa aea dai dia 5 92 Diagram VieW E E A T E E E EE TET 5 93 Protection Vi Witt a a A di 5 94 Graphic Displays and Tools sastera EAEAN EATER EEES 5 96 Graphic Features mili EA CERA E AEEA EES 5 96 G
64. Observer Monitor service viewer which means that the user interface can be viewed remotely Monitor now keeps track of the serial number of IMx and MasCon16 devices First time a device is connected the serial number is stored in the database and if another device with the same ID but with a different serial number is connected then the connection is refused and a system alarm is generated This is to avoid data corruption and prevent devices from uploading data into wrong databases The serial number is displayed in the monitor service viewer interface which makes it easy to support Performance of data storage has been increased with approximately 300 to 400 according to tests The monitor service no longer accepts requests for computer reboot from Observer this posed a threat and more damage than good lt is now an obsolete function of Observer Temporary config files for Devices no longer overwrite each other when running several instances of monitor but get unique names The check for Missing data which in turn generates system alarms for devices if they have not reported data for a long time is now remembered even if the service restarts The monitor now keeps track of invalid packages received from the Devices and will store and display in the monitor service viewer The monitor application can now store data on millisecond level instead of only second level 7 198 ptitude Observer User Manual Observer 9 1 Revision J
65. Process Overview in System Configuration section e Report allows to generate documents that contain text based information as well as diagrams and pictures of selected data Refer to Report under File in Menu Items e Event log displays all the events of IMx M and IMx R devices of the specified database Refer to Event Log under On line in Menu Items e Configure allows to configure the following functions for the selected database Trend automatic alarm levels Diagnose automatic alarm levels Recalculate diagnoses Disable all measurement points Enable all measurement points Block alarm on all measurement points Remove alarm blocking on all measurement points e Tools allows to configure the following settings Update graph settings of many measurement points at the same time for the database e Refresh updates the current hierarchy view with the new status if any e Properties allows to edit the properties of the selected database Interfaces Available on Node Level These are accessible by right clicking on a node e Add allows to add a node or a machine Refer to Node or Machine under Building a Hierarchy View in System Configuration section e Process overview allows to create user defined mimic displays with measurement points and links to other displays on top of graphic pictures like drawings digital photos etc Refer to Process Overview in System Configuration section e Report allows to g
66. Protection View brings up the IMx M Protection configuration hierarchy view in the tree view window Refer to Protection View under Tree View in System Operation Alarm List Alarm list interface brings up the alarm list for the selected item in the hierarchy view and displays all the alarms under this item and sub items in the alarm list The alarm list can also be opened by clicking on Qu list icon on the toolbar By default the alarm list is linked to the hierarchy view Therefore the alarm list gets refreshed every time a new node is selected in the hierarchy view The link status is indicated by Alarm list Linked keyword on the top of the screen The link can be turned off by clicking on link to hierarchy icon on the toolbar e Filter Not acknowledged the alarms that have not been recognized and not analyzed by any user yet Acknowledged the alarms that have been acknowledged by any user None all alarms regardless of the acknowledgement status e Acknowledge all acknowledges all the alarms e Acknowledge acknowledges only the selected alarm s e Print allows to print the alarm list Alarm list can be sorted by any column System Alarm The System alarm interface shows measurements out of range and system related alarms such as defective sensors cables etc In addition the ptitude Observer Monitor startups and a loss of contact between MasCon device and the ptitude Observer Monitor are registered as well This is a goo
67. SKF WindCon a i 00 WindCon 1 4 wa1 001 Accel 1 Haaf 002 Accel 2 aal 003 Accel 3 mal 004 Accel 4 aai 005 Accel 5 mal 006 Accel 6 aal 007 Accel 7 mal 008 Accel 8 a 009 Power Output ma 016 Turbine Output aal 001 Speed 00 WindCon 1 Hf 00 IMx M 21 Figure 5 38 Example of ptitude Observer system view H H E tl tl ade S F By right clicking on a database node machine channel and measurement point you may choose to Refresh data or open the Property settings of the selected node and edit By right clicking on a measurement point you may also choose to open a graphic display Diagram to edit Delete the selected measurement point or set a Tag on the measurement point ptitude Observer User Manual 5 91 Observer 9 1 Revision J System Operation Tree View Workspace Workspace The Workspace is an individual work space consisting of user selected machines hierarchy view It is used to keep track of only machines for which the user is responsible Note that a workspace cannot span over several databases To open Workspace screen e Click on Show on the toolbar then select Workspace e lf the tree view window has been opened already select Workspace directly from the tree view window Below is an example of a Workspace gecesesvcescnaceecensensceseees Rusessansccsvossossvennnecssens E 0 E Drive End A A Gbox Ou
68. Saine jj DIA 0 a YA YA r a amiee Bain ien ima Detin Varona Eras bom hiss o Pime baie toma tia Figure 5 40 Example of ptitude Observer Diagram view In order to bring up the graphic display with the saved settings double click on a selected diagram box ptitude Observer User Manual Observer 9 1 Revision J 5 93 System Operation Tree View Protection View Protection View The Protection view is for IMx M device only Protection view manages the handling of Protection module configurations created with the external tool IMx M Manager To open Protection view screen e Click on Show on the toolbar then select Protection view e f the tree view window has been opened already select Protection directly from the tree view window Below is an example of a Protection view System Workspace Diagram Protection gt IMM Protection Configuration EL SKF WindCo y dr Device number Rack Machine PrM Synchronized Fle CRC Last Syncthonized CRC Device CRC _PrM Measurement CF Sy Area 52 20 Rack 52 SKF WindCon Aberdeen MxM 20 Aberdeen Ox2FABI36F 0 Ox2FAB336F 5 Rack 52 al Slot1 IMic M 20 Device No 20 Sot2 IMM 21 Device No 21 Slot3 Not in Use Slot4 Not in Use Detats Refresh Create Prm Measurements Am J Disarm Synchronize PrM Config Get Pr Contig Figure 5 41 Example of ptitude Observer Protection view Getting Protection Configuration File f
69. Storage interval for Trend fi Minutes Freq unit Hz Y FFT Settings ace Env 3 500 10 kHz y fo Trend alt A No of lines Same as spectra y Unit sag No decimals a y Detection Auto Alarm Vv Jace a he Peak b Default Settings Figure 6 96 Example of ptitude Observer options default settings Default settings allow you to configure settings for new measurement points of the selected database When a new measurement point is created these settings will be automatically selected for the new measurement point on the measurement point screen For more information refer to Setting up Measurement Points and Alarms in System Configuration Monitor Service Tab Options Database SKF WindCon do General settings E mal settings Default settings Monitor service Log detail level Normal Store incoming data Limit the maximum number of simultaneous DAD connections C Enabled Enforce 4 minimum connection inteval between DAD connections to Monitor service C Enabled Default settings Figure 6 97 Example of ptitude Observer options Monitor service settings e Log detail level decides which type of event s can be stored in the monitor event log There are five levels to choose from None Nothing is logged in the event log Minimal Only severe errors are logged ptitude Observer User Manual Observer 9 1 Revision J 6 1
70. Tile Horizontally interface arranges all opened windows horizontally Close All Close all interface closes all the opened windows 6 186 ptitude Observer User Manual Observer 9 1 Revision J Menu Items Help Help Help menu provides the following interfaces Contents F1 Search Enter new license key News in Observer SKF Online Depository SKF CMC Homepage SKF Reliability Forum About Contents Contents interface opens up the help file for ptitude Observer Search Search interface opens up the ptitude Observer help file in search mode Enter New License Key A new license key is required if a new upgrade to the ptitude Observer software suite has been purchased The software has to be restarted after the registration Refer to Getting Started News in Observer News in Observer contains information on the new features in the currently released version Optitude Observer User Manual 6 187 Observer 9 1 Revision J Menu Items Help SKF Online Repository SKF Online Repository Through the SKF Online Repository SKF OR it is possible to share application logic and system design with other ptitude Observer users Currently it is possible to share bearing information machine templates and data miner views When adding a new bearing to the system it is possible to share this bearing information to other observer users After the submission has been approved other users will automati
71. a newly generated complete setup file from the local database where setup changes are stored to a remote device such as a remote controlled IMx MasCon16 device The transmission is done by the ptitude Observer Monitor program If this fails because of an error or a lack of time then the IMx MasCon device will be indicated as not synchronized Not synchronized means that the system is yet to download the newer setup to the device Restart Restart function forces the device to perform a self diagnostics boot up stage and reinitialize all the channels and setup information Set Time Set time function allows to set up a time on a IMx MasCon16 device of the selected database and adjust any incorrect date and time Since IMx MasCon16 devices do not use local computer time this function is the way to synchronize devices time to that of the computer from where the function was executed Connections Connections function produces a log of connection histories of the device The log can be used to solve intermediate connection problems for an IMx MasCon device There are different types of messages e Comm error indicates that a communication error exists It can be that the communication between the device and the ptitude Observer Monitor is not stable or is unreliable e Unknown indicates that the ptitude Observer Monitor software has been closed down unexpectedly e g because of a power loss of the ptitude Observer Monitor e pti
72. a source is the node s that should be included in the export process Description is a custom description about the export file which will be displayed to the user when importing the data Content is the export content which can be only the structure of the hierarchy or the structure of the hierarchy along with measurement data from the specified date and time 6 160 ptitude Observer User Manual Observer 9 1 Revision J Menu Items Database Import Import Import interface allows to import xml export files generated by Optitude Observer bel Import _ Tea Cistabage Turbine Filename le Data Ala infomation Vermon Created by Dessdation a Jl Soret Figure 6 88 Example of ptitude Observer import data Filename can be selected from the drop down list of all ptitude Observer export files xml If the measurement data should be imported as well then mark Data If a machine included in the import file has been imported before the system automatically merges the data into the existing hierarchy Important The export and import interfaces should be used only to export or import minor parts of the database in order to get the same measurement hierarchy as in other database or to send small pieces of data for someone external to analyze them It should not be used under any circumstances to transfer data between databases ptitude Observer User Manual 6 161 Observe
73. a when the operating mode of the machine is stable which may be the only way to capture the accurate and trustworthy data This is an important setting when performing a process measurement point on variable speed machines This is not important for a speed measurement point It depends on your application e g for measuring bearing temperature this function can be deactivated by setting it to 0 Valid Measurement Range You can force the system to take data only when the amplitude reading is at a certain level by assigning a minimum and a maximum value of the measurement range If the measured value is outside the measurement range then the system alarm will be generated instead of an alarm on the measurement point System alarms are displayed in the system view or system alarm window from the icon bar instead of in the alarm list For example if the range is set to O to 300 C and the temperature sensor output is above 300 C then this value will be treated as an unrealistic value and the IMx MasCon system will generate a system alarm in the system alarm list instead of in the alarm list The cause of this alarm could be a bad earth connection or surrounding interference that disturbs the output signal from the sensor e Enabled is the status of this measurement range enabled or disabled e Min is the minimum value of the measurement range e Max is the maximum value of the measurement range Scheduled Trend Storage e Enabl
74. ail relays or SMS messages User defined system privileges and preferences for each individual user Database management tool for database backup and database replication Automatic hardware serial number verification Error logs Tracking of TCP IP communication package errors Hardware sequence number tracking Missing data alarm 2 16 ptitude Observer User Manual Observer 9 1 Revision J Getting Started 3 Getting Started To start ptitude Observer select a language first at Select language screen If you have not registered your copy of ptitude Observer yet the Unregistered version of Observer screen will appear for you to take a necessary action If you click on Enter license key button the License Key screen will appear for you to enter the license key You may continue the session by clicking on Continue unregistered button However you will be prompted by the Enter license key screen time to time throughout the session until you register the product Note that once you have done the selection of language and the license key the selected language and the license key are saved and will not be required to enter them again Next time you start Optitude Observer you will be prompted to select a database to be connected Database Connection In order to run ptitude Observer a database must be connected Refer to Manage Databases under File in Menu Items section Logon User name
75. also important that the sensors are mounted at approximately 90 degrees from each other For two or three axis sensors this is always the case NOTE This means if using separate sensors they can be mounted at the exact same location Trigger pulses in the orbit window are shown if the orbit is made from time signals which have trigger pulse information stored The trigger pulses are represented by small round circles The below is an example of orbit graphic display of binary data type with live data but no overlay data Time wavefor 0 4832031 0 5035156 s 0 02031249 s 49 2308 Hz E 1 27 18 PM Orbit SKF WindCon Camaro Engine Compartment Power Filtered Orbit 31 25 71 875 Hz Acc_1 and Acc_2 Acc_1 and Acc_2 Start position Ll DIS LI UA IL mm s 8 6 4 2 0 2 4 6 8 10 0 0 1 0 2 0 3 0 4 0 5 0 6 0 7 0 Seconds Time wavefor 0 4832031 0 5035156 s 0 02031249 s 49 2308 Hz 11 27 2008 1 27 18 PM mm s 8 6 4 2 0 2 4 6 8 10 Figure 5 48 Example of ptitude Observer Orbit display 5 108 ptitude Observer User Manual Observer 9 1 Revision J System Operation Graphic Displays and Tools Profile Profile Use this icon to generate a profile display of a selected measurement point Profile is a powerful tool which uses triggered acceleration time signal data to represent an unroundness of any circular object Examples
76. an be configured to create an easy to use and understand display for control rooms and operators This display illustrates the current status of the machine through bars and process values The process overview is directly linked to the hierarchy which means that upon opening a machine all the measurement points on the machine are automatically added for you On the top of process overview screen you can see a header displaying the total status of the process overview To get to process overview screen perform one of the following options e Select a node machine or sub machine from the hierarchy view then click on S Process overview icon on the toolbar e Click right mouse button on a node in the hierarchy view then select Process overview Configuration of Process Overview To be able to configure the process overview first set the process overview in edit mode This is done by right clicking in the working area and selecting Edit mode or clicking on Z Edit mode button on the right hand corner of the process overview screen Now in order to get the following configuration options right click in the working area or click on a various button on the right hand corner of the process overview screen T Enterprise Process Overview is the main process overview of the top level of the hierarchy view which includes all databases e ps Refresh updates the process overview screen e Print active window prints the currently opened win
77. an be on a different server fr J External database Properties Name ObserverWind ae Database connection settings Name IP Address local m mmm Authentication Windows authentication X Parameters Database ObserverWind mm Observer monitor Linked database access Name IP Address 4 Process Process a Pae 0 V tset test T Figure 6 68 Example of ptitude Observer add external database e Properties Name is what you would like to call the external database e Properties Description is a user entered text based information about the external database e The attributions of Database connection settings are same as in Connection interface of Add Editing a Database under Manage Databases e Linked database access grants user s with access to the specified external database Remove External Database Remove external database allows to remove the selected external database from the hierarchy view Note that It is not possible to remove the main database 6 132 ptitude Observer User Manual Observer 9 1 Revision J Menu Items File Report Report Report interface allows to generate documents that contain text based information as well as diagrams and pictures of selected data 1 Turbine SM Turbine i if Turtine 3 motor E e Turbine Gi ab Turbine beg Fi Vert p Turbine begr Lert l Generate repot Load template Sa
78. asily when moving the mouse over the cursor Alarm sound included in the installation package Observer 8 1 is now shipped on DVD instead of CD Full support for DBCS Operating systems such as Chinese and Korean Various bug fixes and enhancements A new notification message type has been introduced in order to inform the user of certain system events Order tracking improved Transient measurement group s configuration simplified News in Observer screen informs users of the new features in the currently updated version ptitude Observer 8 2 Database Support for multiple databases simultaneously in the hierarchy Support for Oracle databases The Observer DVD is now shipped with SQL Server 2008 Express including Service pack 1 Default settings for the rolling buffer lengths are changed from 800 values to 3 000 values 3 000 values will provide 2 days of minute detailed trends The trend length now applies to all buffers in the rolling buffers not only the minute buffer User gets notified when a transient starts Graphic Display Two new combination plots Trend Spectra and Diagnosis Spectra Graphs can be directly opened from the alarm list Machine name in Multi Trend plot is now visible Some of default cursor colors have changed for new users X axes scale in the trend now improved when sorting by speed or process Bode plot is now its own generic graph type instead of integrated in the normal trend window grap
79. at has been developed by a team of more than 120 different companies to produce an efficient specification for data information standardization OPC server enables the software such as ptitude Observer to route its data to OPC server In return OPC server stores and shares data that are from all the OPC clients Generally there are two different generations of OPC OPC which is generally referred to as Standard OPC and OPC UA There are two ways of working with OPC in conjunction with SKF ptitude Observer gt Using the Internal Built in OPC Server In the ptitude Observer Monitoring suite there is a built in OPC UA Server in the monitor service component It can if enabled automatically publish all data that ptitude Observer system captures gt Using External OPC Servers To be able to use OPC servers in the ptitude Observer you need to set up a configuration for the available OPC servers in the ptitude Observer so that the ptitude Observer Monitor service can recognize the OPC servers Not only can the ptitude Observer Monitor handle IMx MasCon devices but it can also be the logical data gatherer distributor for OPC Therefore you do not have to have the ptitude Observer running in order to use OPC in your application However you do need to set up OPC servers and OPC channels in the ptitude Observer while the ptitude Observer Monitor is connected to the ptitude Observer The following steps are an overview of t
80. ata and note information are displayed to the user making it easier to follow machine specific maintenance history In the legend section of the graph screen there is an option to have system log displayed System log displays all the configuration changes made by the user through the history System log is marked with red squares During run up down a reference measurement can be shown in the same display with actual values or a value calculated in of alert level Below is an example of trend display of trend data type with live data but no overlay data E Trend SKF WindCon SKF Wind power Windcon TF138 A Gbox In 1500 Vert Down A4 Trend SKF WindCon SKF Wind power Windcon TF138 A Gbox In 1500 Vert Down A4 4 5 2005 6 20 42 AM 0 9 0 8 0 7 IOMA O MM eee Me e aaow e uo uo dal m s2 Rms hd yu E PA MLA 10 20 2004 12 00 00 AM 12 19 2004 12 00 00 AM 2 17 2005 12 00 00 AM 4 18 2005 12 00 00 AM Y 1x 0 077 m s2 Rms v 2x 0 006 m s2 Rms v SunG IR 0 028r v Overall 0 374 m s2 Rms vw Spectra v Notes Power Output 605 kW Speed 1509 Cpm BIAS 11 565 V DC Figure 5 51 Example of ptitude Observer Trend display ptitude Observer User Manual 5 111 Observer 9 1 Revision J System Operation Graphic Displays and Tools Bode Bode a Use this icon to generate a bode plot of a selected measurement point Bode
81. ata information Keep forever means that the selected measurement Is set as a reference forever until it is edited otherwise e Edit allows to change the date time option to keep forever or not option to exclude from diagnosis speed and process data e Delete allows to delete the selected measurement data from the database e Add allows to add data tagging specific information for Software data tagging points only e Export ODS data allows to export a selected measurement incident to a universal file format UFF which then can be imported into a software that can do machine movement animation such as ME Scope ptitude Observer User Manual 5 129 Observer 9 1 Revision J Menu Items 6 Menu Items The following are the menu items available in ptitude Observer File Edit Show Database On line Portables Window Help File File menu provides the following interfaces e Manage databases e Add external database e Remove external database e Report e Log off e Exit Manage Databases Manage databases interface provides the ability to connect to a database or jump from one database to another within ptitude Observer without leaving the current log on session This is an important asset when you have to analyze data spread over several databases You may add an new database and edit or remove an existing database a Consacirora hs A on ioy ie Hara Tew Din Pamasa Dir Panic D eei oe DEERE iar iii Sat o
82. atabases e Measurement points to update are all the measurement points which can be updated by the wizard You can uncheck certain measurement points to exclude Additional filter by name option to filter the list of measurement points by certain name Apply enables the filtering by the entered name Select all selects all measurement points in the list Unselect all unselects all measurement points in the list For example if you enter NDE in the Additional filter by name field and click Apply button you will get the list of the measurement points with name containing the text NDE 2 Attribute selection Or A Attribute selection Select the attributes you wish to update You have the option of changing one measurement point at a time or all at once As Scaling Operating and Storage Conditions General Monitoring m Prevas _Net gt _ cancel Figure 4 36 Example of ptitude Observer attribute selection for Multiple Point Update Wizard e Attribute allows to expand the tree view and click on an attribute to change A list of all the selected measurement points with the current value of the selected attribute is shown on the right side of the screen You are now able to change the value of the attribute directly on the list one at a
83. ates vibration spectra or envelopes as a function of time shaft speed power temperature torque or any other DC parameter e Topology illustrates frequency spectra versus speed or time by using color separation e Orbit displays the shaft orbital movement by using signals from two perpendicularly mounted transducers e Profile uses triggered acceleration time signal data to represent an un roundness of any circular object e Gear inspector is used to visualize the impact energy as a function of shaft gear revolutions e Trend shows vibration amplitude phase or process data as a function of time speed or other process data e Bode plot shows any type of data such as vibration amplitude phase or process data as a function of speed e Trend list shows vibration amplitude phase or process data as a function of time speed or other process data as Trend but in a list ptitude Observer User Manual 2 15 Observer 9 1 Revision J Technical Specification Graphic Displays Alarm Multi trend overlays data from several measurement sources in a combined trend and bar graph It is also possible to view data as a function of any of the other selected points Diagnosis shows the built in prognostic and historic fault detection algorithm calculations Polar shows the vibration signal at 1 2 3 and 4 times the shaft speed in the complex domain Shaft centerline displays shaft movement inside a bearing Airgap displays the gap
84. ations lets the user receive periodic emails about alarms whenever alarms are available at a system configurable interval The alarm report interval is set at E mail settings tab within Options interface under Database Send System alarm notifications lets the user receive periodic emails about system alarms whenever system alarms are available at a system configurable interval The alarm report interval is set at E mail settings tab within Options interface under Database Send Monitor service status information lets the user receive periodic emails about the condition and status of the monitor service in addition to database condition The status report interval is set at E mail settings tab within Options interface under Database Format offers three different types HTML can be used if your email provider supports displaying HTML emails Plain sends the email as plain text completely unformatted Truncated minimizes the size of the email which in turn contains less details in the email This is especially useful if your emails are forwarded to a mobile phone as SMS Use Custom Topic is a specific topic which will be used whenever the system delivers the selected notification s to the user This is useful when a user has en email provider who offers a phone number recognition as the topic for example 46 070 XXXX XXXX In such case if the use sets the Custom Topic to 46 070 XXXX XXXX the email notification s will be auto
85. ble to copy machine parts from an existing machine ptitude Observer User Manual 7 195 Observer 9 1 Revision J Version History ptitude Observer 8 3 Possible to copy diagnoses from one measurement point to another measurement point on the same machine When setting a measurement as a reference it will set Keep forever flag on for the selected measurement It can be edited in Meas date list Possible to select log scale decades of 2 3 4 and 5 in User preferences Possible to browse a specific gear on a specific machine part when setting up alarm frequencies for a measurement point Copying a sub machine no longer start the machine copy wizard but instead copies the sub machine directly Graphic Display New combination plots are added Diagnosis Spectra Time waveform and Trend Spectra Time waveform New graphical display Airgap shows eccentricity and ovality of a machine part New graphical display Gear inspector allows to detect and visualize the impact energy as a function of shaft gear revolutions DiagX feature also works for Sideband and Band cursors DiagX can be used in Time waveform plots Possible to clear currently referenced spectra in Spectra graph In History display double clicking on a history diagram opens up the plot in full size mode Profile plot has been refreshed with new features and better visibility In diagnosis plot it is allowed to exclude an FFT from diagnosis with a right clic
86. brief description describing the diagnosis It is recommended but not necessary when creating customized diagnosis rules e Alarm type sets the alarm for the diagnosis Absolute means that the alarm values are set in engineering devices Relative means that the alarm levels are set in percent of a baseline level The baseline level is calculated based on a number of historical values e Alarm Warning sets the default alarm warning levels Setting the alarm warning levels to zero means that automatic alarm warning settings and ptitude Observer will adjust the alarm warning levels when new data arrive After five measurements have been taken ptitude Observer will save the alarm warning levels e Blocks are different types of frequencies used in the calculation Use the arrow buttons on the left side to rearrange the order of the blocks Block can be configured by adding editing or deleting Block e General settings Name Block 1 Prompt Select blade Calculation Add X Type Blade frequency Z Direction All All E Hamonics 4 Multiple 0 K Sidebands Type None v Figure 6 81 Example of ptitude Observer diagnosis block settings Name is the name of the block Prompt is what to ask the user when attaching the diagnosis If prompt is the same on the other blocks the user will be asked only once ptitude Observer User Manual 6 153 Observer 9 1 Revision J M
87. bserver User Manual 5 113 Observer 9 1 Revision J System Operation Graphic Displays and Tools Diagnosis Diagnosis Use this icon to generate diagnosis display of a selected measurement point This will open the diagnosis display for the measurement point and will display all the attached diagnoses The ptitude Observer Machine Diagnosis is a powerful tool to display and follow the progression of machine faults Sophisticated diagnosis rules can be applied using defect frequencies of the whole machine with individual alarm level for each measurement point and for each type of fault Diagnosis diagram shows calculated diagnosis parameters over time related to the alarm level There is a large amount of types of built in diagnosis available to the user in order to detect specific common machine faults like misalignment cavitation mechanical looseness electrical faults and more In the diagnosis display all the different diagnoses attached to a measurement point are shown in the trend type of display and calculated based on spectrum data stored in the database This means that diagnosis can be attached and recalculated even after the measurements have been stored to the database The below is an example of diagnosis display of binary data type with no overlay data and no live data Hag Diagnosis SKF WindCon SKF Wind power Windcon TF138 A M Bearing 1500 Vert 41 babas Diagnosis SKF WindCon SKF Wind power Wi
88. buffer size 3000 Values Use archive buffer Default settings Figure 6 94 Example of ptitude Observer options Data settings e Automatically delete old data will cause the monitor service to remove old data from the database once data is older than the specified range if Enabled is checked Specified ranges can differ for different types of data Time specifies at which time of the day the removal will take place Removing a large amount of data from the database can be time consuming In such case it is recommended to set the time to a non office hour e Trend buffer Trend rolling buffer size determines the size number of values of the built in trend rolling buffers The default size is 3 000 Use archive buffer turns the archive buffer on if checked or off if not checked The archive buffer can store up to 80 000 values for each measurement point ptitude Observer User Manual 6 169 Observer 9 1 Revision J Menu Items Database Options E mail Settings Tab Options Database SKF WindCon il Default settings Monitor service T Backup Alarm and relays E Mail settings for notifications from monitor service Sender E Mail address SMTP server C The SMTP Server requires authentication Status report interval 12 Hours 0 0ff Alarm report interval 01 Hours 0 Off Send test mail Default settings Figure 6 95 Example of ptitude Observer optio
89. cally receive a notification the next time they start their ptitude Observer system that a new bearing is available and they can choose to automatically install in their bearing database The same logic applies to machine templates and data miner views D 5 Online Repository Tha SEF Oriri Ropas ii an cnn apoa hiid and aa by Eoia Obese upen Bigund the poda Aug rena breeabedge and incarnation ls sradabls de paien man guia dormia and ras as p e inten peered n the SEF OA You oan abo choos o lados pai in the cont eo Wiii be drain oad krerabedge and speed thes radi Senora E T idan peat ir the SF Orina Fapertory E hmira mii vehen are dadas ane avadabbe Deanna Share to SRF DA Bibir anplis Us g Ehee ta SKF OA uma hidrata verre Bhare o SKF OA Figure 6 109 Example of ptitude Observer SKF Online Repository setting e Take part in the SKF Online Repository configures the system to be able to send and receive data from the SKF OR if checked e Automatically notify when new updates are available enables the system to automatically check the SKF OR if there are any new updates available when the ptitude Observer system starts 6 188 ptitude Observer User Manual Observer 9 1 Revision J Menu Items Help SKF Online Repository a SKF Online Repository Settings Updates Updates Available updates Installed updates Submitted updates Date Time UTC 2 Type Title Status Company
90. cate data to and from the server but the Observer system will not modify or use the data of these tags e Enabled indicates the status of the OPC server whether it is enabled or disabled e Publish selects which type of data that should be published The option is to publish trend data or trend data and dynamic data dynamic data are FFT Time waveform etc e Base port defines the base communication port for the internal OPC Server The default setting is 62 550 If it is set to the default it will use the base port and the base port plus 1 when the Internal OPC Server starts Which means that the Internal OPC Server will communicate on port 62 550 and 62 551 Usually the base port does not need to be changed However in the scenario of when 62 550 or 62 551 is used by another application on the same computer or in the scenario of running several monitor services on the same computer with the OPC Server enabled the base port needs to be changed e Add node adds a folder to the custom tag hierarchy e Add tag adds a custom tag to the custom tag hierarchy e Remove removes the custom selected tag or the selected folder e Properties brings up the configuration for the custom selected tag or the selected folder Optitude Observer User Manual 4 41 Observer 9 1 Revision J System Configuration Creating OPC Server and OPC Channels External OPC Servers External OPC Servers To Configure External OPC Servers in Observer Click on On l
91. channel is equal to a sensor input Note that in order to be able to initiate or edit a channel the device to which the channel will belong must be initiated and configured first Initiating an Analogue Channel Select a device from the list of IMx MasCon devices then click on Initiate in the analogue channels window Analogue channel LX General Comection MasCon 2 MasCon 2 Sensor type Acceleration m s2 Number 5 EU s2 Name Arca Trans angle 90 degrees Enabled Y 90 270 ICP Current feed 7 180 Cable check Y Enabled Min 5000 mV Max 18000 mV Time 0 1 s Sensitivity Sensitivity 10 19368 mV m s2 Zero level 0 mV Calculation 0 V m Calculate 3 w N o System log Ok l Cancel Figure 4 14 Example of ptitude Observer initiate an analogue channel General Tab e MasCon is the name of the selected device not editable e Number is a unique number for the physical input channel or virtual channel on the device you would like to configure Virtual channels are 3 digit numbers The correspondence between virtual channel numbers and data can be found in the following gt For IMx MasCon16 Modbus virtual channels refer to Modbus with IMx MasCon16 User Manual gt For IMx R CM virtual channels refer to CM Virtual Channels in IMx R User Manual 4 30 ptitude Observer User Manual Observer 9 1 Revision J System Configuration Creating IMx MasCon Devices
92. chy when the user clicks on the Create PrM Measurements button in the Protection view These points are clearly visible in the Hierarchy tree as they will appear as pink shield icons Q indicating protection system instead of the normal blue icon Protection points are not able to display any dynamic data such as FFT or Time waveform but only Trend based data is available ptitude Observer User Manual 4 51 Observer 9 1 Revision J System Configuration Setting up Measurement Points and Alarms General Tab General Tab In this section general attributes required in order to create various measurement points are described There are different settings available for different types of devices as well as different attributes available for different types of measurement points The following is an example of general tab settings for a vibration measurement point r i E Se al Bio pete BEF A ra i i F Dr Gesn gl ca os B Operating and Storage Condon fb koriona Ml Acree diera A Otros Dapy Option Fara wa oaren Plan 1 75 Ve y Baii Et q rar Poi bape Dyan jbj ra Dee ed har edge Drix 15 los 150 a l Ma era a Charme Y Dli eT Se pg Order rahm ta an yacen log o ae a Figure 4 23 Example of ptitude Observer Dynamic measurement point general settings System log is a record of all the changes made to the measurement point Name and comment e Name is a short desc
93. cnnnnnnnnnnos 6 154 TOC 6 ptitude Observer User Manual Observer 9 1 Revision J O NN 6 155 Bearing ibid a dt 6 155 Report bratty APA OOO nn a eie iri e bE 6 156 RECO diia 6 156 Tag libra ainia 6 157 Data Tagging Group siscecesccccssstcaccccevsnacends teat sebadsnedcnstetaasccpsdatacdssesedsccess 6 159 Machine Template Library ssessesrsssrsssersserssennsrensrenssennerensrensrenseeense 6 159 Create Machine Template cooomconnnnnnnnnnnanencnnnncannnrann nano na rn nrnnc arcano on 6 159 Export iii o 6 160 DOTT nna A deacesesd E A E 6 161 Alarmi A cleseseadancassnesshecsaatdecdsesdeaehs 6 162 Measurement Groups taria ti easi asian adeins rnar aien 6 164 Optimal Settings for Transient Group eoccccnnnonccnnnnonononnnnnnocnnnnanoncnnnnnnnnnnos 6 167 Opt Stein ld 6 168 Delete Data sinirini ranno a a iaa RARA asta TIRA naa 6 174 Data Miner aaa 6 174 O e ee ee e ees aoe 6 175 IMx Mas Com DeViceS 2icceikere stcctecbecpeaieateeS cavtenstitieetesducet ott tagvbetetelianioh appeeed 6 175 OPC Seria a da Aia cet 6 175 Monitor Service Viewer score 6 175 Relay Card E E ETE AE E iacs Seed leces tesa A daban dees 6 176 Balancing metio idean reine eende een baire un ieseni Keira i aiaee 6 177 Balbina da ti bal 6 178 Mii a e cre eer erence a e cee 6 179 Event oa PO PO ES O idgderteeth sasstea ueactens 6 181 Portables inmaterial canas de 6 182 Microlo Mili 6 182 Coded NOtes dt diia 6 185 WINKOW sete ea
94. command If you need a help accessing the screen refer to To edit a measurement point in Setting up Measurement Points and Alarms 3 Select the IMx MasCon device to which this point is assigned 4 Select a Measurement group to use from the drop down list of measurement groups Optimal Settings for Transient Group The following recommendations are to optimize the performance of a transient group Use only vibration measurement points of Harmonic type Do not use other dynamic measurement points in the same IMx device regardless of whether they are on different channels or not Unrelated slow points should be in a separate IMx 16 channel device In dynamic data setting select Save Time waveform only Spectra is calculated from the waveform automatically The setting applies for all dynamic data e g alarm delta but is placed in the scheduled dynamic data storage box When using order tracking keep number of revolutions and maximum frequency as low as required With non order tracked harmonic measurement points the harmonic calculation in transient should be done using an average of 2 revolutions unless the speed is sufficiently high For high speed configure the number of revolutions to be approximately 0 1 seconds With order tracked harmonic measurement points in transient 2 measurements sec are expected with 16 channels 16 single channel points or 8 dual channel points up to 25x and 8 revs average Points us
95. currently displayed in this graph as reference data for the future The below is an example of spectra display of binary data type with overlay data and live data ee Spectra Vertical SKF WindCon SKF Wind power Windcon TF138 A M Bearing 1500 Vert A1 400 Hz 0 00263 m s2 Rms 4 18 2005 8 50 14 PM Speed 1511 459 cpm Process 636 0215 0 05 0 048 mee 7 7 PA ya Spectra SKF WindCon SKF Wind power Windcon TF138 A M Bearing 1500 Vert A1 0 046 0 044 0 042 0 04 0 038 0 036 0 034 0 032 0 03 0 028 0 026 0 024 m s2 Rms 0 022 0 02 0 018 0 016 0 014 0 012 0 01 0 008 0 006 0 004 0 002 0 Planet Carier Shaft CRB Hollow Shaft 351 FTF Hollow Shaft 355 tet CA T 2 3 4 T 6 7 8 A Gen Bearing NDE FTF Intermediate Shaft 400 CRB Hollow Shaft 351 BSF CRB Intermediate shaft 455 FTF IA 9 10 11 12 13 14 15 16 17 18 19 20 Hz M Bearing 1500 Vert A1 0 075 Figure 5 42 Example of ptitude Observer Spectra display 5 102 ptitude Observer User Manual Observer 9 1 Revision J System Operation Graphic Displays and Tools Time Waveform Time Waveform PU Use this icon to generate a time waveform display of a selected measurement Time waveform display shows the vibration magnitude as a function of time Regardless of the signal type the amplitude can be shown in acceleration m s2 or g velocity mm s
96. d ptitude Observer User Manual 6 151 Observer 9 1 Revision J Menu Items Database Diagnoses e Add Edit Delete allows to create change configuration delete a diagnosis with user defined rules Creating a custom rule xv FA Diagnosis rules Deflection Detection Select Bearing Speed following Figure 6 80 Example of ptitude Observer creating custom diagnostic rule e Diagnosis type is the categorization type of this rule e Name is a user defined name to use for this rule e Title is displayed for all measurement points that implement this particular diagnosis e Unit defines the devices in which this diagnosis should be trended e Type selects a type of data upon which the calculation is based e Calculation Rms calculates the Rms value for the selected frequencies Sum calculates the sum of the selected frequencies of Overall calculates the Rms of the selected frequencies and divides it by the overall Peaks counts the number of peaks in the selected frequencies Frequency finder finds the highest peak and trends its frequency 6 152 ptitude Observer User Manual Observer 9 1 Revision J Menu Items Database Diagnoses e Noise reduction applies a filter that removes the noise from the spectra before the calculation begins if checked e Search range performs a search for maximum amplitudes within this range e Description is a
97. d Storage Conditions Tab under Setting up Measurement Points and Alarms in System Configuration Pre Post Event Tab It is used to control how data is stored before and after alarm event Transient Setup Tab Simple configuration mode available only when creating a new Transient Measurement Group e Speed ranges for the run up can define different stages of the run up coast down e Static data storage Delta CPM is the setting for maximum speed change before storing static values Delta time is the setting for maximum time fore storing static values e Dynamic data storage Delta CPM is the setting for maximum speed change before storing dynamic values ptitude Observer User Manual 6 165 Observer 9 1 Revision J Menu Items Database Measurement Groups Delta time is the setting for maximum time fore storing dynamic values Transient state timeout specifies how long the transient will remain in transient state for the specified timeout when moving from transient state to normal state Transient closure time Transient Setup Tab Advanced configuration mode available only when creating a new Transient Measurement Group Transient state timeout specifies how long the transient will remain in transient state for the specified timeout when moving from transient state to normal state Transient closure time is the timeout used before closing the transient and set its final type Rpm min cpm indicat
98. d and sensor values are collected using the Get runout compensation Values can thereafter be viewed with or without compensation 4 70 ptitude Observer User Manual Observer 9 1 Revision J System Configuration Machine Parts Machine Parts Different machine parts compose a machine or a sub machine With the help of Machine parts tool models of machines can be created including shafts gear boxes engines fan casings blades generators etc The machine parts tool is used to calculate the disturbance frequencies specific to a particular machine such as gear and bearing frequencies etc by using the defined machine data In this way the task of finding out which machine component is generating a certain anomaly in the frequency spectra is facilitated It is possible to go back to the machine parts and edit as often as changes are needed Important Speed measurement point must be configured first before you can use the running speed To get to machine parts screen perform one of the following options e Select a machine from the hierarchy view then click on the right mouse button and choose Machine parts ara e Select a machine from the hierarchy view then click on Machine parts icon on the toolbar Creating a Model with Machine Parts A Figure 4 31 Example of ptitude Observer create a model with machine parts To create machine parts perform one of the following options e Copying machine
99. d on a train e Exp averaging exponential averaging is a setting to perform an automatic trend curve smoothing or to stop the system from giving alarms when intermittent disturbances occur The function applies the following formula new calculated measured 1 exp value last calculated exp value e Compensate for speed is available for running hours measurement points only It compensates the running speed of a machine by comparing the active speed of the machine against a nominal speed of the machine The Nominal speed of the machine is entered by the user For example if the active speed of the machine is 1 000 cpm and the nominal speed is set to 2 000 cpm then after the machine has been run for two hours because of the difference between the active speed and the nominal speed the running hours value will be one hour instead of two hours e Compensate for load is available for Running hours measurement points only It enables a compensation for the active load or any other process signal compared to a Nominal load value entered by the user Compensate for load works the same way as Compensate for speed e Spectra source is the measurement point where that maximum amplitude is being searched to get the speed reading e Min speed Max speed is the start and stop search range of the spectra source e Machine part can be a gear or a shaft that helps to get more precise speed reading by using its fault frequency
100. d over 360 degrees Between O and 5 is a normal range whereas 5 to 10 is unstable and greater than 10 is a corrupt phase If the phase is corrupted the balancing is most likely going to fail In such case go back and perform a normal analysis of the machine and determine what the problem is and remove the problem first A large number of test weight can also cause a corrupt phase 6 178 ptitude Observer User Manual Observer 9 1 Revision J Menu Items On line Balancing Step 5 Now you get the balancing result after all the possible combinations have been ICM calculated and optimized The improvement shows how much of the vibration has been eliminated The biggest value is 100 In order to minimize the mounting weight one of the combinations may have lesser weight than the others It is also possible to input own weights to calculate expected deflection This can be used if there is any plane that could not be mounted for some reason or maybe the weights mismatch the result After weights are mounted it is strongly recommended to go back to the eliminating screen step 4 and collect some new live data It is most likely that the elimination of unbalance can continue until a very small unbalance is left ICM influence coefficient matrix interface allows to create an ICM for the selected database Created ICMs are used for further on line balancing Follow the steps below in order to create an ICM Step 1 Choose s
101. d place to start for troubleshooting a hardware error System alarm list can be sorted by any column The attributes of the system alarm settings are the same as in Alarm List above 6 142 ptitude Observer User Manual Observer 9 1 Revision J Menu Items Show Maintenance Overview Maintenance Overview vel Maintenance overview interface allows to review the maintenance tasks scheduled in the future You can review the maintenance tasks whether they have been notified but not yet executed or they are overdue The description on how to set maintenance tasks is found in Maintenance Planner under System Operation section Message Center Message Center interface enables the user to send receive messages to from other users within Observer This can be a helpful tool for those som work on a same database to notify and communicate with each other Refresh This interface forces to refresh the hierarchy view system view or workspace view Refresh can also be accessed by clicking on Refresh icon on the toolbar DASHBOARD DASHBOARD screen provides Notifications News Feed and Message Center interfaces which can be navigated by clicking on icons on the upper right hand corner of the dashboard screen e Notifications displays whether there are any notifications of which the user should be aware e News Feed informs users of new features in the currently released version It is also accessible via News in Observer under Help menu
102. d positions are available for different types of graphs If the specified position is not available for a specific graph then the software will choose and appropriate position for you automatically Num decimals for phase sets the number of decimals to display for phase in the Trend Polar and Trend List graphic displays No of decades in logarithmic scale allows to change the way the logarithmic scale works for graphs It can be between 2 and 5 decades Labels allows to choose how to display labels in graphs Labels can be set to be displayed as transparent as well Cursor point size sets the size of the cursor points for single cursors and other tools mostly for the phase spectrum and time waveform graphs Anti aliasing allows to decide if graphs should be displayed with smoothing anti aliasing On or Off Some users prefer to display graphics in any application as anti aliased However in order to analyze data sometimes it is easier to detect a problem with anti aliasing off Harmonics allows to set the number of harmonics for the harmonic cursor It can be between 20 and 200 Filled 3D plot True fills the spectrum area as shown in the 3D plot graph display False makes the areas transparent Inverted 3D Plot inverts the depth scale of the 3D plot Zero degree position is the position of 0 in Polar type of plots Angular rotation determines which direction of the angle increase in Polar type of plots Shaft cente
103. data have been stored in the database the measurement point will release the warning status 16 Low Alarm acknowledged indicates that this measurement point has received values that triggered a low alarm and the alarm status has been confirmed After new data have been stored in the database the measurement point will release the alarm status 32 High Alarm acknowledged indicates that this measurement point has received values that triggered a high alarm and the alarm status has been confirmed After new data have been stored in the database the measurement point will release the alarm status 64 Low Warning active indicates that this measurement point has received values that triggered a low warning 128 High Warning active indicates that this measurement point has received values that triggered an high warning 00 00 008 065 Optitude Observer User Manual 4 45 Observer 9 1 Revision J System Configuration Creating OPC Server and OPC Channels OPC Server Status Tag Value Icon o est E 500 DO Numeric Value 256 512 1024 2048 4096 8192 16384 32768 65536 262133 1048576 8388608 16777216 Description High Alarm active indicates that this measurement point has received values that triggered an high alarm Low Alarm active indicates that this measurement point has received values that triggered a low alarm Outside measurement range indicates that the values coming from this m
104. data that should be collected and stored Choose between FFT Time waveform or both Data called FFT and Phase are also avallable for order tracking Window can be Uniform Hanning or Flattop Speed Sets a static speed value that will be stored with the measurement End freq is the highest frequency that should be measured Low freq is the lowest frequency that should be measured 4 58 ptitude Observer User Manual Observer 9 1 Revision J System Configuration Setting up Measurement Points and Alarms Acquisition Tab e No of averages is the number of measurements the Microlog should measure in order to get the average reading by combining all measurements However this number is ignored if the averaging is Off e Averaging is a type of averaging method which the system has to perform on the data before it is stored to the database e Speed meas point allows to select a speed measurement point which will be measured and the value will be stored as the speed for this measurement point This overrides the static speed setting e Order analysis shaft is the shaft on the machine that should be used for order analysis in the spectrum history and 3D plot Conditional point for Marlin only e Meas point is the specified measurement point for which the data should be collected e Criteria is used to determine when to collect data The criteria can be in alarm above etc Inspection for Marlin only e Inspection
105. designed with crystal reports software which is available for purchase at many software vendors A new layout for event case report can be added Existing layout for event case report can be edited or deleted as well e Event case report layout Name and comment Name Description Crystal report design file File Figure 6 83 Example of ptitude Observer e Name for the layout e Description for the layout e File is the crystal report design file rpt to use for the layout Receivers Receivers interface allows to create edit or delete a group of receivers for the selected database This group is used when selecting a receiver for notes Refer to Notes in System Operation By naming each group meaningfully it can be served as a better distribution method of notes 6 156 ptitude Observer User Manual Observer 9 1 Revision J Menu Items Database Libraries Tag Library In Observer it is possible to tag measurement points or machines with specific customized tags These tags are configured in the tag library There can be several tags configured in the library ranging from A to Z When configuring a tag you can select a letter A to Z that should be used as a graphical identifier of the icon and the color of the icon Tag library Tag library Icon Value Color Description Power Output Figure 6 84 Example of ptitude Observer Tag library Setting the color of th
106. dive E E E E E teeny geriner een aed 6 135 Multiple Point Update Wizard ssssscssccssscsseceseccsecseeseessaeeseenseenseeeaeeaees 6 135 W OnkS Pace ssiss exes bizscccnanisdes A E E co cantedhek cascode daseh vk S 6 135 Copy NOdesssseccccsssatsenestsbederessenesenessecsiveassadsechsdabedinsesbedepdsdsadscpessecddeeesseacceys 6 136 Pt dee ele il La tele 6 136 Notes trail lille cba 6 136 Event Cases iii A a aa 6 136 User Preferences o aia 6 137 PrODErtlES sssscccesssnedevenvedisedssabecepedsscidsessyadidupssbecedessshesinedusuadenedsecddendegedeiees 6 139 MM a 6 140 TES bd e tet uae eva lr hac 6 140 Elli AR 6 141 Hiera Ny eas TEAT E AA TSAS 6 141 A E E EE E 6 142 Workspace cocinada lencia inerte EEEa E eei edades dienes 6 142 AAA 6 142 Protection View iseinu ida iaa Aida dd 6 142 A teil al ae ei Sale A eerie 6 142 System Alain ido cacao deal iia alain 6 142 Maintenance Overvie Wisin tad ida eee 6 143 Message Center orario niesie t ren oE A ENRE AAN ATAA EATE EEOAE E TATAN 6 143 RETROSH seit a ete dee ie a Oe at 6 143 DASH BOAR Dai oie a ia ee ec 6 143 Database nata earn 6 144 A dc heretic ere et oe a od eee be ot tes a 6 144 COmfiQuring a USEF adesiessesscssccaadediessesdeceseesscenesas cides cdi bandido 6 145 Database Informaticas 6 148 SE A A E Jastdsel ents 6 149 eN e Di Senasa 6 150 E E E E is 6 151 DECI EE y E E E E 6 151 List Diagnoses That Needs Attention occococnnncconnnnnoooonnnnonocnnnnnnnn
107. dow LO Back brings back the previous screen Up brings to one level up on the hierarchy view e Split horizontal Split vertical splits the working area horizontally or vertically The working area can be split into several different sections This can be efficient when you have several machines under a specific node and would like to browse through them simultaneously Each time the working area is split the child or children of the first item of the screen in where the split command was issued appear in the newly opened screen e Remove split removes split screen s e Load layout allows to load a layout from the layout list e Save layout allows to save delete or rename an item from the layout list e Picture allows to export picture s from the pictures list LZ Edit mode toggles back and forth between edit mode and non edit mode ptitude Observer User Manual 4 73 Observer 9 1 Revision J System Configuration Setting up Process Overview q Full screen allows to toggle between full screen mode and partial screen mode Exit ends process view Snap allows to snap items when dragging them to a hidden grid Visible objects allows to select which points to display Editing a Measurement Point in the Working Area You can also manipulate the items in the process overview working area during the edit mode by clicking right mouse button on an item e Diagram allows to choose an associated diagram to plot e Dele
108. e Copy wizard rx Configuring units Units and channels Dad Unit number Name New unit number Select new name 11 WindCon 1 5 WinCon5 Choose new unit number 5 X Select new name WinCon5 Figure 4 34 Example of ptitude Observer configuring devices for Machine Copy Wizard Based upon the measurement points selected from the previous screen the wizard gathers all the corresponding information from the IMx MasCon device and channels Unit number displays the unique device number of the selected existing machine Name displays the name of the selected machine New device number number assigned in the choose new device number field from below Select new name new name generated by the system You may change it if desired Choose new device number select a unique device number from the list 4 Finish Click Finish to save the changes made 5 Summary It displays the details and allows to print the summary Example Scenario You have a wind turbine with one IMx MasCon system with measuring data If you would like to add a second wind turbine to your ptitude Observer database you can copy the entire setup of your existing wind turbine to the new one by using the machine copy wizard The only thing you need to do is to choose a new device number and name for the new IMx MasCon device which will be asked by the wizard 4 78 ptitude Observer User Manual Observer 9 1 Revision
109. e Measurement points The following are the measurement point types that can be configured Dynamic based measurement points Dynamic Dynamic AEE Dynamic Envelope Dynamic Process Harmonic SEE spectral emitted energy Time Waveform Analysis Time Waveform Analysis AEE Trend based measurement points Airgap Counter Counter rate Data tagging Derived Derived point ptitude Observer User Manual 2 13 Observer 9 1 Revision J Technical Specification Configuration Features Digital Gear inspector HFD high frequency domain Inspection MCD OPC object linking and embedding for process control Process Running hours Shaft centerline Speed Speed from spectra Time difference Torsion Analysis Features FFT fast fourier transform analysis is the classical way of analyzing vibration data where the vibration signal is shown as a function of frequency Frequency ranges from O to 10 Hz up to O to 40 kHz and resolutions from 100 to 6 400 lines can be used DPE digital peak enveloping analysis is an excellent method to detect small impulses such as bearing defect in a noisy environment Bearing database stores geometrical data from approximately 20 000 different bearings from several different manufactures It is used for automatic defect frequency calculation Machine diagnostics expert system uses a rule based diagnostic system for automat
110. e access libraries have been upgraded Database administrator does not hide the selected database anymore when executing an action against the database SQL Server 2008 Support Observer 8 1 is now shipped with SQL Server Express 2008 Graphic Display Orbit Filtered orbit can now be calculated from time waveform as well as from spectrum phase data Orbit now states above the time waveforms not only the direction of the time waveform but also which sensor X or Y that captured the data Orbit bug fixes addressed Orbit now displays flash blank for the time waveforms as well Profile Profile plot calculation method updated Profile plot can now display not only displacement but also Acceleration and Velocity and Envelope Profile plot is more detailed and cursor is more accurate Cursors in FFT and time waveform graphs now visible in the legend ptitude Observer User Manual Observer 9 1 Revision J 7 193 Version History ptitude Observer 8 1 Others Bias BOV in trend now shows in dark blue color The format of the markers in the diagnoses and trend has been aligned so now the values in the diagnoses are shown as diamonds previously circle Now this looks the same as in the trend Notes are now correctly shown in the trend Flags for sideband and harmonics easier to spot Active cursor in the spectra now highlights other parts of the cursor to spot sub components of the cursor e
111. e icon is done by clicking on the edit text in the Color column Setting the description of the tag is done by clicking in the description column and entering the description of the tag Once a tag has been created in the library the tag can be used to tag measurement points or machines Tagged measurement points and machines will be marked with a tag after the name of the node as displayed in the following screenshot ptitude Observer User Manual 6 157 Observer 9 1 Revision J Menu Items Database Libraries Hierarchy view System view Workspace la T SKF WindCon E mi SKF Wind power B mi Windcon Be TF138 A ue Power O Output La che Gen DE 1500 Axial Env2 48 Figure 6 85 Example of ptitude Observer hierarchy view with a tag To tag a specific measurement point or machine open the properties form and click on the inactive tag icon Display text Power Output Figure 6 86 Example of ptitude Observer setting a tag Select a tag to set it on the selected measurement point or a machine 6 158 ptitude Observer User Manual Observer 9 1 Revision J Menu Items Database Libraries Data Tagging Group It allows to create edit or delete a data tagging group Note that in order to be able to create a data tagging measurement point there must be an existing data tagging group Machine Template Library It displays machine templates and allows to perform the following interfaces
112. e that the user is currently analyzing When one or more machine parts are selected the frequencies for them are drawn in the graph In this way the user can clearly see if any of the machine parts are rendering high readings The frequencies displayed for the machine parts are automatically calculated by the running speed Nina Previous fault frequency moves the active cursor to the previous machine part ctrl right arrow key also moves the active cursor to the previous machine part iv gt ls Next Fault frequency moves the active cursor to the next machine part ctrl left arrow key also moves the active cursor to the next machine part ds DiagX is an intelligent part of the system build in diagnostic system To use it select a frequency in the graph that looks interesting and click DiagX button A dialog will appear listing all the machine parts and the probability that the selected frequency including harmonics belong to a specific machine part It is an easy way to find out which part of the machine causes a high peak at a specific frequency DiagX feature also works for Sideband and band cursors t Single Cursor adds a single cursor to the graph Once a single cursor has been added you can switch between cursors by clicking on them which makes cursors active A single cursor can be moved with the left arrow key or right arrow key shift left arrow key or shift right arrow key causes a cursor move in bigger steps A Band
113. easurement point are outside of the acceptance range The bias on the channel is Ok but the produced values are too high or too low The measurement range is set in the active range condition field with minimum and maximum values of the trend settings of measurement points Cable fault indicates that the device has detected a cable fault on the channel of which this measurement point uses The detection is done by bias ranges which are set in the cable check field under the setting analogue channels section for the devices Not active indicates that the measurement point is disabled and is on hold No data will be collected for this measurement point Vector Alarm active indicates that this measurement point has received values that triggered a vector alarm Vector Warning active indicates that this measurement point has received values that triggered a vector warning Vector Alarm acknowledged indicates that this measurement point has received values that triggered a vector alarm and the status has been confirmed After new data have been stored in the database the measurement point will release the alarm status Vector Warning acknowledged indicates that this measurement point has received values that triggered a vector warning and the status has been confirmed After new data have been stored in the database the measurement point will release the alarm status Pre Post data capture in progress Trip in progress Relation Alar
114. ed as simultaneous speed and process parameters should not be in the group These parameters are stored anyway together with the points in the group By keeping them outside they will be stored also when below the low speed cutoff In case of missing data it is useful to have something like speed always being stored to help us determine whether the IMx has been online without speed input or the data acquisition has been unavailable Note There might be issues with using a laptop when testing especially with a mechanical drive not an SSD getting enough SQL Server performance Lots of small file access like running a backup software on the same disk should be avoided ptitude Observer User Manual 6 167 Observer 9 1 Revision J Menu Items Database Options Options Options interface offers different system settings for the ptitude Observer application and database These settings include everything from new measurement point settings to backup settings The settings in the options interface are typically applied to all users in the database General Settings Tab Database SKF ran ho Corea seta Y Data Emel some GB Delak satinga Mortar service LI Backup del Aarm and seba Daal Company SEF Windilon Cual re 2 Catas renato Evert cams potro Pala TT OKE Ciam dban are iir i Tiras Lee a daloraing lime nore he IC Anneden ban ban Homs Sheckhobn isra r Id eel ge qe wet Figure 6 93 Example o
115. ed box allows to enable or disable the Scheduled Trend Storage function e Rolling buffer determines which trend value should be stored in the buffer whenever trend data capturing occurs The timing of the trend data capturing is determined by Interval below Max stores the maximum value captured Min stores the minimum value captured First stores the first value captured e Interval is the desired interval for data capturing which depends on the application The selection made here affects how fast data has to be moved from short term buffers to long term buffers in the database There are four different buffers in the ptitude Observer database a minute buffer an hour buffer a day buffer and a week buffer In each buffer 3 000 values can be stored as default For example if the measurement interval is set to 1 minute the length of the minute buffer will be 3 000 minutes 50 hours As more data comes in values are move to the hour buffer For a specific hour all values in the minute buffer are analyzed and the system will move one of the values during this time period to the hour buffer This logic works same for the hour to day buffer and so on The default of 3 000 values for each buffer can be configured in the ptitude Observer Monitor software ptitude Observer User Manual 4 61 Observer 9 1 Revision J System Configuration Setting up Measurement Points and Alarms Operating and Storage Conditions Tab
116. ee the values in 3D plots e Start stop markers hides shows the start and stop markers for displays The markers typically show the first and the last value drawn in the graph e Type allows to select a certain type of orbit graph to display e Unit is the measurement device of the data displayed which can be changed temporarily Changes can be made between velocity acceleration and displacement The device of the measurement point is set back to the original value when you are done with the particular graph e X axis allows to change the x axis value to date time speed process or values temporarily For multi trend plot it is also possible to set the x axis to another measurement point which will correlate the measurements of measurement points with each other e Y axis allows to change the y axis value to amplitude or percent temporarily e Z axis is available for 3D plot only It allows to change the z axis value to date time speed process or even spreading temporarily e Zero padding allows to use zero padding temporarily ptitude Observer User Manual 5 99 Observer 9 1 Revision J System Operation Graphic Displays and Tools Tools for Graph Display Tools for Graph Display There are a vast number of tools available in the graphs to facilitate data analysis The tools appear as green icons located on the toolbar ka Fault frequencies brings up a dialog where a user can choose machine parts from the machin
117. een submitted but not yet approved ptitude Observer User Manual 6 189 Observer 9 1 Revision J Menu Items Help SKF CMC Homepage SKF CMC Homepage This interface starts the default web browser on the local computer and navigates to SKF Condition Monitoring product information SKF Reliability Forum This interface starts the default web browser on the local computer and navigates to SKF Reliability forum You need a username and password to access the website About This interface displays version information about the currently installed version of SKF ptitude Observer 6 190 ptitude Observer User Manual Observer 9 1 Revision J Version History ptitude Observer 7 0 7 Version History ptitude Observer 7 0 General New product name ProCon is now called ptitude Observer and is now a member of the SKF ptitude Monitoring suite e MasCon server is now called ptitude Observer Monitor e MasCon16 tool is now called ptitude Observer On line device configurator e New icons and splash screens e New hierarchy status indicators e Minor bug fixes e Support for IMx added e The user can now select to show large icons in the toolbars ptitude Observer 8 0 Hierarchy e Free depth in the hierarchy has been facilitated Previously the hierarchy was limited to company site div machine and point e Implementation of workspace allows to define your own workspace with specific mac
118. elected in the simultaneous measurements section as well Important The specified conditions must be met in order for the measurement point to collect and store data in the database The assigned conditions must be met before the system raises any alarms If both conditions are specified both conditions must be met before system raises any alarms e Type is the type of gating which can be set to one of the following values All means that the active range check is disabled In other words the active range that the measurement point is using is all values Speed means that the active range check is determined by the speed measurement point readings selected in Simultaneous measurements of general tab settings Process means that the active range check is determined by the process measurement point readings selected in Simultaneous measurements of general tab settings Digital means that the active range check is determined by the digital measurement point readings selected in Simultaneous measurements of general tab settings 4 60 ptitude Observer User Manual Observer 9 1 Revision J System Configuration Setting up Measurement Points and Alarms Operating and Storage Conditions Tab e Condition is the gating parameter range with minimum and maximum values e Max allowed delta is maximum accepted change of the gating parameter during the measurement Use this setting to force the system to take dat
119. ely from the measurement point s and displays the data in the graph In order to get live data a connection to the ptitude Observer Monitor computer has to be established ptitude Observer sends a request to ptitude Observer Monitor which redirects the request to the correct IMx MasCon device which then collects the data and sends it back through the reversed path ptitude Observer User Manual 5 101 Observer 9 1 Revision J System Operation Graphic Displays and Tools Spectra Spectra WEEE Use this icon to generate spectra display of a selected measurement point Spectra display show the vibration amplitude as a function of frequency Regardless of the input signal type the amplitude can be shown in acceleration m s or g velocity mm s or ips or displacement um or mils using a linear or logarithmic amplitude scale All defect frequencies for the whole machine is automatically calculated and can be easily displayed in a plot as vertical bars Harmonics according to defect frequencies or any other frequency can be displayed by an automatic fitting function The spectra can be zoomed easily to any frequency range inside the original spectra Auto scaling or fixed scales can be applied and the frequency scale can be either Hz cpm or order In addition spectra display supports the zero padding which can be used to more easily identify specific peaks in the FFT With a simple right click it is possible to set the data
120. en Closing a Transient After the Transient closure time has elapsed without new transient values the transient will be closed The state of the transient is then changed as If it was classified as Overspeed in progress and the last reading stored also was in the overspeed range the classification is changed to Overspeed If it was classified as Overspeed in progress and the last reading stored was outside of the overspeed range the classification is changed to Overspeed Coast down 6 166 ptitude Observer User Manual Observer 9 1 Revision J Menu Items Database Measurement Groups e f it was classified as Run up in progress and the last speed reading was in the upper half of its speed range it is classified as Run up e f it was classified as Run up in progress and the last speed reading was in the lower half of its speed range it is classified as Run up aborted e f it was classified as Coast down in progress and the last speed reading was in the upper half of its speed range it is classified as Coast down aborted e f it was classified as Coast down in progress and the last speed reading was in the lower half of its speed range it is classified as Coast down To add a measurement point to a measurement group 1 Select a measurement point in the hierarchy view 2 Go to General tab settings screen of Measurement point via Properties
121. end report to printer sends the report immediately to a printer after it has been created if checked e Keep temporary files keeps all the temporary files required for the creation of the report including pictures if checked Diagram Tab Diagram allows to select desired graph settings to be included in the report along with date or value range Load template loads report settings Save template saves report settings you have created as a template Log Off Log off logs the current user off and allows another user to log on to the system Exit Exit stops the current system session 6 134 ptitude Observer User Manual Observer 9 1 Revision J Menu Items Edit Edit Edit menu provides the following interfaces e Multiple point update wizard e Workspace e Copy node Ctrl C e Paste Ctrl V e Notes e Event cases e User preferences e Properties Multiple Point Update Wizard Refer to Multiple Point Update Wizard in System Configuration Workspace Workspace interface brings up the workspace manager screen A workspace Is a specific part of the hierarchy that should be grouped together For example a workspace can be grouped by a user s responsibility The workspace manager keeps track of all the workspaces in a database and allows to create new workspaces or edit already existing ones For portable data collectors a workspace can be used as a way to define certain machines of which the user needs to keep track
122. enerate documents that contain text based information as well as diagrams and pictures of selected data Refer to Report under File in Menu Items e Event log displays all the events of the selected node of IMx M or IMx R device Refer to Event Log under On line in Menu Items e Delete allows to delete the selected node e Configure allows to configure the following functions for the selected node Trend automatic alarm levels Diagnose automatic alarm levels Recalculate diagnoses Disable all measurement points Enable all measurement points Block alarm on all measurement points Remove alarm blocking on all measurement points ptitude Observer User Manual 5 87 Observer 9 1 Revision J System Operation Tree View Hierarchy View Tools allows to configure the following settings Update graph settings of many measurement points at the same time for the current selection in the hierarchy Refresh updates the current hierarchy view with the new status if any Properties allows to edit the properties of the selected node Interfaces Available on Machine Level These are accessible by right clicking on a machine Add allows to add a measurement point or a sub machine Refer to Meas Points or Sub Machine under Building a Hierarchy View in System Configuration section Process overview allows to create user defined mimic displays with measurement points and links to other displays on top of graphic
123. ensors number of planes and number of states from the machine of the selected database ICM Choose sensors number of planes and number of states the machine have Settings Database Name Meas points Turbine Point Path No planes No states 1 Figure 6 103 Example of ptitude Observer create an ICM settings e Database is the database to which this ICM applies e Name is the text reference to the ICM e No planes is the number of positions on which you can mount a weight ptitude Observer User Manual Observer 9 1 Revision J 6 179 Menu Items On line Balancing e No states is the number of defined speed range in which a balancing is conducted For large turbines it could be more than one Whereas for regular fans it probably would be one e Point is the selected harmonic measurement point e Path is the particular harmonic measurement point s path e Edit brings up the hierarchy view and allows to select a harmonic measurement point by checking a box of the desired point e Get lists the existing ICMs of the selected database and allows to select an ICM e Next allows to continue to the next screen where allows to name the planes and states It also allows to define balancing speed range of center frequency with a plus or minus delta speed Step 2 Name the planes states and define balancing speed range of center frequency wit
124. enu Items Database Diagnoses Calculation can add and subtract frequencies from the calculation or zero out by setting the amplitude for the selected frequency to zero Type is the type of the frequency to use Depending on your selection of type different parameters appear Direction specifies in which direction the data should be calculated Harmonics specifies the umber of harmonics that should be included in the calculation Multiple allows to enter a number to multiply the frequency Default is 1 Frequency specifies the frequency in cpm cycle per minute that should be monitored Sidebands Type selects the sidebands type List Diagnoses That Needs Attention This interface lists all attached diagnoses that are incorrectly configured for the entire database There are a few reasons why this could happen and one of the most common reason is that a machine part that a specific diagnostic are using for its calculation has been deleted or replaced from the machine The system does not know how to calculate the diagnostics and now it is flagged as a diagnosis that needs attention by the user Click on the edit button to reconfigure any diagnosis that needs attention 6 154 ptitude Observer User Manual Observer 9 1 Revision J Menu Items Database Libraries Libraries Libraries interface has the following functions available Bearing library Report library Receivers Tag library Data tagging gro
125. er User Manual Observer 9 1 Revision J System Operation Graphic Displays and Tools Graph Settings e Scale type allows to switch between Lin linear and Log logarithmic scale If Log is selected then the system will use the number of decades as the scale Number of decades in logarithmic scale is set in User Preferences interface under Edit in Menu Items section The change made to scale type can be saved on the measurement point e Scaling allows to change how to display the scaling detection of the measurement temporarily Scaling options are peak PtP peak to peak or Rms The scaling of the measurement point is set back to the original value when you are done with the particular graph e Sectors is available for gear inspector graphical display only It indicates the number of gear sectors The default is 360 which means that there are 360 sectors of 1 degree wide each where as if 180 was chosen there are 180 sectors of 2 degrees wide each e Set Speed allows for manual adjustment for the speed reading of the current measurement displayed in the Spectra plot e Shaft is available for profile display only It can be selected to determine for which shaft the profile should be calculated e Show phase is available for trend graphic display only It brings up the phase graphic display on a split screen e Show pulses is set by default which displays pulses in the graph It can be unset if needed e Show values allows to s
126. erface has the following functions e Balance e ICM influence coefficient matrix Optitude Observer User Manual 6 177 Observer 9 1 Revision J Menu Items On line Balancing Balance Follow the steps described below in order to have an accurate balancing analysis of a machine Step 1 Choose an ICM influence coefficient matrix of the selected database you would like to use ICMs are created via ICM interface The list of ICMs are shown by names and dates created ICM contains the necessary information about the machines behavior needed to eliminate unbalance which is stored in the database for new on line balancing in the future Balancing al E Choose which ICM you would like to use ICM Database Turbine Z ICM Date Figure 6 102 Example of ptitude Observer select an ICM for balancing analysis Step 2 Choose which points planes and states that this balance should use For big machines such as a turbine it is possible to balance a few of the planes It is not necessary to do a balancing of all the planes all the time Step 3 Choose a measurement point to increase the factor in the calculation The higher number yields the greater factor in the calculation Step 4 Choose data to use in order to eliminate unbalance Live data display all the measurement points with an amplitude phase and number of means collected A phase is the difference between highest and lowest and calculate
127. erline cold gap is configured on the measurement point ptitude Observer User Manual Observer 9 1 Revision J 7 191 Version History ptitude Observer 8 0 Polar t shows the end and start locations Itis now possible to add markers in the polar plot There is an icon in the polar plot showing the shaft rotation direction History It displays alarm bands It supports zero padding It supports the combining of spectra phase and time waveform Diagnosis Anew menu option Go to is available in addition to double clicking in the diagnosis plot Time waveform User can hide show the pulse train in time waveform Reporting Reports are able to print out in word and RTF format in addition to PDF format Added reporting for shaft centerline orbit and profile displays Reviews and notes are now integrated into one called notes Configuration Measurement groups added which enables the users to configure synchronous measurements for Mx devices more easily Order tracking and order tracking envelope measurement point types are added Spike filter is added which enables the user to filter out unwanted high level of readings Default FFT settings and default trend settings for new measurement points are now configurable in options section POWER in derived points formula is replaced with A machine template library has been added with the ability to import and export
128. erly the following system configurations shall be covered Build a hierarchy view by creating necessary plants mills and machines in order to organize your condition monitoring Define hardware devices such as input boards sensors signal characteristics etc for each device and channel Define machine parts by defining the drive line for each machine All shafts bearings gear wheels drive belts impellers along with other machine parts are connected to a drive line Based on these inputs the system can calculate all defect frequencies within the whole machine Set up measurement points and alarms in order to get the data into the system For on line systems such as MasCon you can define multiple measurement points per channel if needed Build a process overview on on line condition monitoring systems which can allow you to view live data as they are coming in IMx MasCon devices allow you to measure and send data faster than other on line data acquisition devices ptitude Observer allows to create user defined displays with measurement points and links to other displays on top of graphic pictures like drawings digital photos etc ptitude Observer User Manual Observer 9 1 Revision J 4 19 System Configuration Building a Hierarchy View Building a Hierarchy View The idea behind the hierarchy view is to achieve a logical grouping of all the measurements and their positions related to one another The hierarc
129. erver create a sub machine e On the properties screen enter the name of the sub machine and its description Meas Point Meas point is a measurement that should be conducted on a machine Here a type of sensor position of sensor resolution frequency range etc are specified Creating Measurement Points Refer to Setting up Measurement Points and Alarms in System Configuration 4 22 ptitude Observer User Manual Observer 9 1 Revision J System Configuration Creating IMx MasCon Devices and Channels Creating IMx MasCon Devices and Channels This section shows you how to set up and edit IMx MasCon devices and their corresponding channel layouts for the selected database Channels must be initiated before they can be assigned with measurement points The number of channels is dependent of the device type This applies to a Slot of an IMx M device e Each WindCon or MasCon16 device has 16 channels of the vibration analogue type and 2 channels of the speed digital type e An Mx device or an IMx M Slot has 16 dynamic analogue channels and 8 digital channels IMx M device can have up to 4 Slots e Each fully equipped MasCon48 device has 32 channels of the vibration analogue type and 16 channels of the speed digital type NOTE The available maximum number of active channels sum of all analogue digital and virtual channels for an IMx device is 64 To get to IMx MasCon devices screen 1 First click on O
130. erview Ss Unit and channel configuration Figure 4 32 Example of ptitude Observer data to copy Existing machine Existing machine name selected machine name in the Hierarchy view Existing machine location selected machine location in the Hierarchy view Destination New machine name required name for the new machine to be New machine code enter the specific machine code if you keep track of many machines in your machine park with a certain tag or ID number optional New machine location can be selected from the list of nodes in the hierarchy view Data Machine parts check to copy over all the machine parts Measurement points check to copy over all the measurement points Process overview check to copy over all the data from process overview Unit and channel configuration check to copy over all the device and channel configuration data 4 76 ptitude Observer User Manual Observer 9 1 Revision J System Configuration Machine Copy Wizard 2 Measurement points Meas points Select measurement points you would like to copy to the new machine Meas points Name Type EA V Speed Speed V Integrated Main Bearing Vert Vibration Y Integrated Main Bearing Vert Env 1 Envelope V Integrated Main Bearin
131. es the lower rpm revolution per minute limit for each range Rpm max cpm indicates the lower rpm revolution per minute limit for each range State defines whether this is a constant state or a run up down state Delta Trend cpm indicates the number of cycles per minute between storage of trend values If this parameter is not reached within one minute a trend will be stored Mean harm No revolutions indicates the number of revolutions of the shaft on which the mean value of the presented trend is based on Max time s is the maximum time between the storage of trend values Delta FFT cpm indicates the required change in speed between each spectra storage Max time FFT s is the maximum time between the storage of FFT values Classification of Transients When Opening a Transient When transient data arrives at the monitor service the monitor service will change if there is an active transient in progress for that measurement point If not a new transient is started and classified as following If the speed reading is in a transient range that has no other ranges above it it is classified as Overspeed in progress If the reading is in another transient range and in the lower half of that range it is classified as Run up in progress If the reading is in another transient range and in the higher half of that range it is classified as Coast down in progress Classification of Transients Wh
132. espect to the frequency Combined with the amplitude spectrum it is easy to get the phase lag for any peak in the vibration spectrum If multiple points are measured synchronously it is possible to determine the phase relationship of any peak between two different points especially if data from different measurement points are overlayed As in time waveform display and in spectrum display the device can be recalculated on the fly between acceleration velocity and displacement and can show relative to the frequency in Hz cpm or order The phase can be easily zoomed and the scaling ranges can be between 180 and 180 degrees The below is an example of phase display of binary data type with overlay data and live data Phase Vertical SKF WindCon SKF Wind power Windcon TF138 A M Bearing 1500 Vert A1 2 9 Hz 180 Acc 4 18 2005 8 50 14 PM Speed 1511 459 cpm Process 636 0215 180 160 140 120 100 80 60 40 20 s MAW 1203 10 Hz 9 if 42 43 14 15 16 17 M Bearing 1500 Vert A1 Figure 5 44 Example of ptitude Observer Phase display 5 104 ptitude Observer User Manual Observer 9 1 Revision J System Operation Graphic Displays and Tools History History El Use this icon to generate a history display of a selected measurement point History display is used to visualize the variation in machine condition over time in order to identify impending machine faults History d
133. ethod is used to filter out vibrations that are not synchronous to the speed of the shaft where vibration data are taken Note that the indication of trigger speed measurements has to be set in the general settings e Resolution describes the current resolution calculated with the currently selected frequency range and number of lines e No samples is the number of samples needed to construct the time waveform ptitude Observer User Manual 4 55 Observer 9 1 Revision J System Configuration Setting up Measurement Points and Alarms Acquisition Tab e Sampling revolutions indicate how many revolutions the trend value should be based on for shaft centerline measurements only e Max time is the time allowed for measuring a trend value for shaft centerline measurements only If it takes longer time than the specified time to measure the desired sampling revolutions the trend value will still be calculated and stored Device and channel configuration e Device is an IMx MaxCon device where the measurement point can be set up e Measurement group is a logical grouping of measurement points that will collect data at the same time and synchronously on a specific IMx MasCon device Setting up measurement groups is described in Measurement Groups under Database in Menu Items e Parameters is the same as Parameters in Formula section below e Formula is the same as Formula in Formula section below Formula e Parameters are used by the
134. ey Options A w Aree poa Fmi iepa 7 Ta ha de 450 Epia D Thin 0 5 EGO coe Wiech Harring Ham ira ET Law tre a Hal Famiho 35 Hola Teed Catar fon Fo of ia i Mo a Ra aura Es Fanii Srl AA pair id dd Presa Tiki He Cial maa a Harap Sys kg B E Lam k Figure 4 24 Example of ptitude Observer Dynamic measurement point Acquisition settings Acquisition e Pre processing is a pre processing type such as Envelop for an example e Acquisition type can be Fixed frequency or Order tracking e Trigg indicates if the selected speed measurement should be used as the trigger for the measurement point If trigger is set then the phase information will be avallable for the measurement e No of lines is the number of lines needed to construct the FFT Fast Fourier Transform e Frequency range is the maximum frequency for the FFT or time waveform You may select a frequency range from the drop down list or select Custom option to enter the end frequency in Hz The end frequency can be between 5 and 40 000 Hz in integer numbers only e Window is the window type for the FFT which can be Hanning or Uniform e Low freq is the low frequency cutoff which can be used as a filter to limit unwanted peaks or ski slopes at the start of the FFT For example setting this value to 5 will zero out all values between O and 5 Hz in the FFT e Meas time is the measurement time selected for time synchronous averaging This measurement m
135. f ptitude Observer options General settings e Database is the database to which the general settings of options are to be applied Select a database from the drop down list e Company name to which the selected database belongs e Contact information is for the company It should normally contain the name and the address of the company e Cust no is an optional text field where one can enter a customer number if desired e Event case reporting Prefix is a prefix text that is applied to the case number when creating event cases and reports If using multiple databases the prefix should be different for each database in order to create completely unique event case numbers e Company logo is used in event case reporting You may use SKF logo Observer logo or choose your own e Time zone allows to select a display of data customized to any time zone of the computer where the database is created This can be changed if you have the system configuration user right All dates in the Observer application shall be shown in this time zone for the database 6 168 ptitude Observer User Manual Observer 9 1 Revision J Menu Items Database Options Data Tab Options Database SKF WindCon y to General settings Data 5 E mal settings 0 Default settings 5 Monitor service I i Backup a Alarm and relays Automaticaly delete old data Enabled u Time Trend buffer Trend rolling
136. formula for derived point measurements There are two types of parameters Constant and Trend Constant this value never changes It can be custom created here by assigning parameter s name setting the type to constant and assigning any numeric value Trend another measurement point value in the system It can also be custom created here by assigning parameter s name setting the type to trend and selecting a measurement point from the system as the source The source selected here must be from the same IMx MasCon device e Formula is the calculation formula using the assigned parameters from above for derived point measurement The normal calculation methods 9 and mathematical functions are available to build a formula e Check verifies if ptitude Observer and ptitude Observer Monitor can understand the formula entered This is also done automatically when you click on Ok as well Trend Configuration e No of lines is the number of lines needed to construct the FFT Fast Fourier Transform e Sampling revolutions indicate how many revolutions the trend value should be based on for shaft centerline measurements only e E U Engineering Unit is the engineering device in which this measurement is to be displayed If the scale factor is set to 1 then E U will be set to degrees However if the measurement point is a counter rate this acts as a user editable text field See Time Unit below e Scale fact
137. g Vert Env 2 Envelope V GB Planet stage 1 Vert Low Speed Vibration a V GB Planet stage 1 Vert Low Speed Env2 Envelope 7 GB Planet stage 1 Hor Low Speed Vibration V GB Planet stage 1 Hor Low Speed Env2 Envelope V GB Planet Stage 2 Vert Low Speed Vibration V GB Planet Stage 2 Vert Low Speed Env2 Envelope v GB Planet Stage 2 Vert Low Speed Env3 Envelope E V GB High Speed Stages Hor Vibration GB High Speed Stages Hor Env2 Envelope V GB Axial High Speed Vibration V GB Axial High Speed Env3 Envelope GB High Speed Vert Vibration V GB High Speed Vert Env3 Envelope V GB High Speed Output Vert Vibration V GB High Speed Output Vert Env3 Envelope X m r Unselect all lt Prev J net gt cance Figure 4 33 Example of ptitude Observer measurement points to copy The measurement points window shows a list of all the measurement points on the source machine Select the ones you would like to copy over to the new machine If a measurement point is checked it will be included in the copy process Otherwise it will be excluded from the copy process Name displays the name and unique ID of measurement points Type displays the type of measurement points Select all selects all measurement points in the list Unselect all unselects all measurement points in the list ptitude Observer User Manual 4 77 Observer 9 1 Revision J System Configuration Machine Copy Wizard 3 Units and channels a Machin
138. gnosis display allows to toggle back and forth between the main diagnosis screen and the one graph selected Go to Double click for history display opens up the selected history in full screen mode Inverted allows to change the sign of all data in the plot Legend allows to set the preferred position of the legend Refer to Graphic Features for detailed information A general position of legend can be set for all graph displays at User Preferences under Edit in Main Item Line style allows to decide the style of line to graph temporarily The available line styles are Line Point and Line and point Listen to time waveform allows to listen to time waveform if you have installed a sound card in your computer Markers allows you to add markers by shift click or remove the nearest marker by ctrl click temporarily Max scale allows to select a value from a list of pre defined maximum scale settings temporarily Selecting auto will cause the system to select the most appropriate maximum scale setting for the current data Min scale allows to select a value from a list of pre defined minimum scale settings temporarily Selecting auto will cause the system to select the most appropriate minimum scale setting for the current data Mode is available for history graphic display only It allows to change the mode temporarily between spectra time waveform phase spectra time waveform and spectra time waveform phase Noise reduction al
139. guration e Click on the right mouse button on a machine in the hierarchy view then select Properties e Select a machine in the hierarchy view first click Edit on the toolbar then select Properties e Select a machine in the hierarchy view first then click to Properties icon on the toolbar General Tab Machine properties i Extended Information Diagnoses Attachments Advanced Settings Name TF138 4 Description Machine code Bonus 600 MK1 ISO class None Figure 4 16 Example of ptitude Observer general machine properties e Enter name description machine code and ISO international organization for standardization class e The ISO classes are based on SS ISO 2372 vibration and impact basic rules for vibration evaluation 4 36 ptitude Observer User Manual Observer 9 1 Revision J System Configuration Creating IMx MasCon Devices and Channels Machine Properties Extended Information Tab s Machine properties Se ETT General Extended Information Diagnoses Attachments Advanced Extended Information Driving unit Driven unit Transmission Manufacture LM 3 Bladed upwind ABB Flender AG Type 44 m 27 18rpm Async 600 120 3 stage planetary he Serial no M2BG 400XL 4 683 PEAK 4280 Coupling Flange Shrink disc Power BOOKW Gear Contact lt None gt Figure 4 17 Example of ptitude Observer extended
140. h Note flags in trend also display the note title and note information as tool tip text Clicking on FFT in the Diagnosis opens up the FFT graph with the correct fault frequencies visible If measurement point types are not capable of requesting live values on the graphs the live button will be disabled Analysis features New Time waveform analysis with two new measurement point types Time waveform and Time waveform analysis order 7 194 ptitude Observer User Manual Observer 9 1 Revision J Version History ptitude Observer 8 2 e New Time waveform analysis algorithms include crest factor kurtosis and skewness e On line Balancing available Transient Analysis nou e Measurement groups interface now lists type comment and keep forever when selecting the transient to analyze e The type of transient occurring run up or coast down is now automatically detected and does not have to be entered manually by the user e Users get notified when a transient starts Language e Now also available in traditional Chinese simplified Chinese Russian and Bulgarian Others User can now select which toolbar buttons can be visible Modern icon selection has been moved from Options to User preferences Envelop filters are renamed to DPE Multi select can now be utilized from Measurement date list Multi select is available in the hierarchy in order to make it easier to analyze data from several places at t
141. h a plus minus delta speed Step 3 Now it is time to select data Data can be collected live as well as read from the database It is important to input weight and phase of every test weight used Step 4 At this stage verify that the amplitudes or phase has changed between initial run and the test runs It is possible to see the actual number of mean values collected If the changes in amplitude and phase were too little then you probably used test weights that were too small This can cause an incorrect ICM which in turn is inappropriate to use for a good balancing Step 5 Presentation of the ICM matrix over every defined state is shown Note that the matrix condition number should not be greater than 4 6 180 ptitude Observer User Manual Observer 9 1 Revision J Menu Items On line Event Log Event Log Event log is available for IMx M and IMx R devices only It displays all the events of the selected device type DAD of the specified database For detailed information refer to IMx M User Manual for IMx M devices and IMx R User Manual for IMx R devices Filter DAD lt All gt v Type lt All gt X Refresh Date Time From 20140319 00 00 00 Number 100 H Auto refresh T 2014 03 26 00 00 00 E Occurred Stored Ended Count DAD Class Type Subtype ID Value Value Hex Compare Compare Hex Details ES 2014 02 19 10 23 26 2014 02 19 10 39 44 1 IMe M 20 S PROTECTIO
142. h can be saved for individual users A new button in connections configuration window has been added in order to enable the user to remove the default connection set if any A preview of the picture is available in the notes window Database Administrator Database administrator software can now create a new empty observer database from a script file Intelligent handling of databases has been facilitated Database administrator supports multiple languages Attaching a write protected database produces an error and the user will be prompted for the option to remove the write protection Vastly Improved Graphical User Experience New status icons for all types of states are available Completely new process overview has been implemented The update rate of live values for Process overview now can be set at User preference Itis integrated with the hierarchy You no longer have to create specific process overviews to display the information you want to show lt has the possibility to split the view up in a number of frames which can be resized freely Machine part window has been improved with better graphics ptitude Observer 8 1 Database Scanning for SQL Servers when configuring connections is more user friendly and the operation can be aborted Scanning for SQL Servers when starting database administrator is more user friendly and the operation can be aborted In order to speed up database access the databas
143. hannel and Backup channel trigger have now been removed from the point properties when configuring devices other than MasCon48 When adding bearings to a database the bearing also gets added to any external databases that are attached Microlog can now use a tri axis sensor for Single axis points Microlog now uses speed from speed point automatically if the vibration point lacks speed information Data form the database can now automatically be deleted by monitor when older than a specific date This does not apply to trend values When listening to a time waveform it is now possible to save this as a wave file Introduction of GSC services Introduction of Data miner views Machine parts can now store the part number as information field The grid lines on the print out are now thinner If creating a channel with an empty channel name the channel gets an automatic name Machine name is now displayed in the 4 20mA output selection dialog The IMx measurement configuration file now contains information about which build of Observer was used to generate it A command line parameter USE_APP_PATH can now be added to the shortcut of the Observer application which will cause the application to use the application path for reading ini files and configuration files instead of the application data folder OPC UA support Machine copy wizard now skips channel and DAD configuration when the user selects not to include measurement points in t
144. hannels currently present in the measurement group at the exact same time Note that a specific channel can be present only once in a measurement group Transient the purpose of the transient group is to group measurement points that will collect data typically during a turbine run up or coast down This was previously known as runup group or transient group in the earlier versions of ptitude Observer 6 164 ptitude Observer User Manual Observer 9 1 Revision J Menu Items Database Measurement Groups Configuring a Measurement Group Once a measurement point has been added to a measurement group some point properties are not available on the measurement point screen and the input controls for them are disabled These properties are now configured on the measurement group _ j s i Geen gl euio airg and orga Condicora PaPa Enida il Torei sin he e remen Hm Le r rer Ti lgi Oei Figure 6 92 Example of ptitude Observer measurement group configuration General Tab The attributes are the same as in General Tab under Setting up Measurement Points and Alarms in System Configuration e Transient closure time is the time to remain in the transient after reaching primary steady state Acquisition Tab The attributes are the same as in Acquisition Tab under Setting up Measurement Points and Alarms in System Configuration Operating and Storage Condition Tab The attributes are the same as in Operating an
145. he alarm level the system uses twice as many standard deviations as for the calculation for the warning level When a new trend value is stored in the database the system always checks if new automatic alarm levels should be set for the measurement point Once they are set they will not be recalculated again unless the user specifically resets the automatic alarm levels by editing the measurement point properties or by right clicking in the hierarchy and selecting Reset the automatic alarm levels ptitude Observer User Manual 4 65 Observer 9 1 Revision J System Configuration Setting up Measurement Points and Alarms Monitoring Tab When the system has calculated the warning and alarm levels for the active alarms on a measurement point the measurement point properties will be updated with the new levels and the system log for the measurement point will be updated as well When a new measurement point is created by copying an existing measurement point with the automatic alarm enabled the alarm level of the new measurement point will be set to O The automatic alarm for the new measurement point will be calculated when enough data have been stored for the new measurement point Automatic alarm cannot be combined with adaptive alarm e Alarm blocking is a setting that makes it possible to temporarily disable the alarm check e Store delta makes the system to store data if the change of the trended value since the last store e
146. he copy operation Built in messaging has been added to Observer The multiple point update wizard now displays the time it was finished If a user tries to import a file that was created with newer version of Observer than the Observer system currently in use the user will be informed about this and prompted to continue or not 3 Channel measurement is no longer possible to select into transient groups Low warning and low alarm have been removed from counter measurement points Counts and Counts rate measurement points have now been renamed to Counter and Counter rate Clicking on an item in the status bar now also functions as a shortcut and opens up functionality depending on the item clicked 7 200 ptitude Observer User Manual Observer 9 1 Revision J Version History ptitude Observer 9 0 ptitude Observer 9 0 Installation Graphs When creating a new database no need to browse for a bearing file manually It is now possible to make the Observer system remember the username and password next time the user logs in The linked databases are now configured for a user instead for everyone Groups have been added to the Online repository The licence key now also contains information about the purchase serial number which makes it easier to communicate with Customer Support All references to Registration Key has been renamed to Licence key Storage location for ini files and con files has been
147. he database the measurement point will release the alarm status a alarm indicates that an alarm has been raised by the built in intelligent machine diagnostics of the system The rules and logic of the diagnosis alarm can be defined in the diagnosis settings section of setting up measurement points and alarms Alarm levels for the diagnosis are easily set in the diagnosis trend plot refer to Diagnosis under Graphic Displays and Tools in System Operation a warning indicates that a warning has been raised by the built in intelligent machine diagnostics of the system The rules and logic of the diagnosis warning can be defined in the diagnosis settings section of setting up measurement points and alarms Warning levels for the diagnosis are easily set in the diagnosis trend plot refer to Diagnosis under Graphic Displays and Tools in System Operation E Warning indicates that this measurement point has received values that triggered a warning A warning is a pre state prior to alarm which can be High warnings Low warnings or Circle warnings The warning status can be confirmed by acknowledging the warning in the alarm list refer to Alarm list under Show in Menu ltems After the warning has been acknowledged and new data have been stored in the database the measurement point will release the warning status Ya measured indicates that the measurement data are missing for the measurement point and the system is unable to determine the conditio
148. he procedure using external OPC servers 1 Install your OPC server and set up tags correctly according to your OPC manual 2 In ptitude Observer create a connection to OPC server by adding OPC server as shown in Adding an OPC Server below 3 In ptitude Observer create OPC channels to the OPC server you created in step 2 by adding OPC channels as shown in Creating OPC Channels below Warning When using DBCS double byte character set operating systems both the OPC server and the ptitude Observer Monitor computer have to use DBCS DBCS is the character set used by Korean Chinese Japanese Windows etc 4 40 ptitude Observer User Manual Observer 9 1 Revision J System Configuration Creating OPC Server and OPC Channels Internal OPC Server Internal OPC Server To Configure the Built in OPC Server in Observer e Click on On line on the toolbar then select OPC Servers and select to configure Internal OPC Server x M Internal OPC Server 7 M Enabled Publish Trend data only y Base Port 62550 M Custom tags 1 03 Root Figure 4 19 Example of ptitude Observer Internal OPC server When enabled the Internal OPC Server will automatically publish the latest measurement for all measurement points that have been captured with the ptitude Observer system in addition it is also possible to configure custom tags that can be used The custom tags can be used by other OPC Clients to communi
149. he same time Spike filter setting also applies to trend values e Filter has been converted to point type filter e Alarm hysteresis now counts data detected by the spike filter setting The data will be stored when the condition of enter alarm hysteresis is met even though measurements are above the spike filter level e LMU and CMU support added Live values for CMU devices are not available ptitude Observer 8 3 Measurement point e Measurement points are now grouped into binary based measurement points and trend based measurement points e New measurement point types are added Airgap Data tagging Running hours e Data tagging has been added for OPC Server and Software e Running hours has been added for IMx MasCon devices for effective use with Maintenance planner Hierarchy view e Possible to enable or disable measurement points for a specific database node or machine by right clicking and selecting the option e Possible to enable or disable alarm blocking for measurement points for a specific database node or machine by right clicking and selecting the option e Possible to add notes for a specific machine sub machine or point by right clicking and selecting the option e Possible to delete data of a specific node by right clicking and selecting the option Configuration e Maintenance planner is a new configuration tool to keep track of maintenance tasks e When configuring machine parts it is possi
150. he user Parameters allows to enter any additional parameter to the database connection For example Network DBMSSOCN means that the connection should be forced to use TCP IP protocol Auto translate false can resolve DBCS character issues on systems with DBCS languages such as Korean Japanese and Chinese Database specifies which database to use You may select a database to connect from the drop down list The list includes all available ptiude Observer databases on the specific database server Observer monitor settings are Name IP address and Port of the ptitude Observer Monitor that is serving the database server you are about to select This setting assigns which port the monitor should use to communicate with ptitude Observer and IMx devices The port default value is 1000 The port setting should be the same as the TCPPortClient parameter specified in the monitor ini file of the ptitude Observer Monitor application ptitude Observer User Manual 6 131 Observer 9 1 Revision J Menu Items File Add External Database Add External Database Add external database interface allows to add an external database registration to the hierarchy In an enterprise solution where it is common that you work in several databases it is convenient to add the databases as external databases which then enables you to access all databases from the same hierarchy The external database can be a database on the same database server or it c
151. hines and measurement points e There is a new node type called sub machine e There is a new status showing the locked unstable status e There is a new status indicating that a point has no alarm levels configured e The system log now updates when using the multiple point update wizard e When creating a new machine there are three options create blank machine create from machine template and based on another machine In the hierarchy you can see when a measurement point has diagnosis alarm and diagnosis warning status Measurement point numbers are now assigned automatically by the system Graphic Display New plot types topology multi trend and combination plot All plots use the space of the screen area more efficiently with right click commands Free number of cursors are available in most plots The legend position is now a user setting and is available on all graphs The user has the possibility to switch between peak PtP and RMS directly in the plots The user can change in between peak peak to peak and rms in most of the graphs There is an option to turn on or off anti aliasing in user preferences When looking at a FFT a user can use this FFT as a reference spectrum by a simple right click Orbit New orbit plot true orbit uses exact simultaneous measurements There is an icon in the orbit plot showing the shaft rotation direction Shaft centerline It uses two channel points Shaft cent
152. hy view consists of the following attributes Database Node Machine Sub machine Meas point Database Database is the logical top level of the hierarchy view with nodes machines sub machines measurement points machine parts and machine properties underneath The main database gets added to the hierarchy view as a top level when a database is selected from the list of registered database connection on local computer via Connections interface under Manage databases in File menu item External databases can be added to the hierarchy view as a top level via Add external database interface in Flle menu item Node Node is a logical grouping of machines which can be a top node or located within any other nodes The number and level of nodes are unlimited Creating a Node e First select a node or a database in which a node is to be added in the hierarchy view e Click on the right mouse button select Add then Node e On the properties screen enter the name of the node and its description a Properties E Properties Name Description Figure 4 6 ptitude Observer create a node 4 20 ptitude Observer User Manual Observer 9 1 Revision J System Configuration Building a Hierarchy View Machine Machine Machine is located in a particular node e g Fan 2 Pump 3a etc Creating a Machine There are different ways to create a machine 1 First select a node or a database in which a machine is
153. ic frequency analysis which gives clear text messages regarding fault type Graphic tool for machine data setup is used to define all mechanical data for defect frequency calculation as well as machine diagnostics The whole drive chain is set up graphically by using drag and drop from a machine component toolbox Run up Coast down occurs when a machine is started or stopped At such occurrences the system can be configured to store transient data according to the user defined conditions like speed variations set for the actual measurement group During transients separate alarm conditions can be applied Time waveform analysis is a smart detection of time waveform signature pattern in order to identify and prevent error that would normally not be detected by FFT analysis The algorithms included are crest factor kurtosis and skewness Balancing is the on line balancing of machines especially designed for turbines with 15 planes and 5 states with a maximum of 40 measurement points simultaneously Order tracking analysis is an efficient way to analyze machines with variable speed The rotation frequency is tracked for revolution of the machine 2 14 ptitude Observer User Manual Observer 9 1 Revision J Technical Specification User Interfaces User Interfaces e Hierarchy view shows machines and their measurement points in a tree structured hierarchy with corresponding status for each object The hierarchy can display data fr
154. iews you need to have a very good understanding of the Observer database structure 6 174 ptitude Observer User Manual Observer 9 1 Revision J Menu Items On line On line On line menu provides the following interfaces IMx MasCon Devices OPC servers Monitor Service Viewer Relay card Balancing Event log IMx MasCon Devices This interface brings up the IMx MasCon devices screen Refer to Creating IMx MasCon Devices and Channels in System Configuration OPC Servers OPC Servers interface brings up the OPC Servers and channel settings screen Refer to Creating OPC Servers and Channels in System Configuration Monitor Service Viewer The monitor service viewer can be used to view the interface of the monitor service remotely from Observer It is possible to view all events occurring in the service in addition to the database status DAD status OPC status and number of clients currently connected ptitude Observer User Manual 6 175 Observer 9 1 Revision J Menu Items On line Relay Card Relay Card Relay card interface brings up the list of relay cards and relays of the selected database by its number enabled status and name Database Turbine x Relay card Relay Number Enabled Name Number Enabled Name Re No Relayc1 01 Yes relay 1 mi IC more ss Figure 6 100 Example of ptitude Observer relay card status e Relay card can be added edited or removed Figu
155. ine on the toolbar then select OPC Servers and select to configure External OPC Servers Adding an OPC Server Click on Add in the OPC Servers window Y OPC Server OPC Server Name E kfSimServer Server type OPC Enabled Computer IP 34 98 45 12 Available OPC Servers Selected OPC server Scan interval Figure 4 20 Example of ptitude Observer add an OPC server e Name is the name you want to use for this OPC server registration e Server type specifies whether this server is an OPC or OPC UA server e Enabled indicates the status of the OPC server whether it is enabled or disabled e Computer IP is the computer name or IP number for which the OPC server is located e Search is a tool to get a list of OPC servers on a specified computer for the ptitude Observer Monitor e Available OPC Servers is the result of search setting e Selected OPC server is the pre defined name of the OPC server that you are using which is not editable e Scan interval is the scan time interval in seconds The ptitude Observer Monitor uses it to scan the OPC server for current values Default is 10 seconds which means that the ptitude Observer Monitor checks for the current values of the OPC server every ten seconds e System log is a record containing all the setup activities which can be useful when investigating or tracking changes made during the setup 4 42 ptitude Observer User Manual Observer 9 1 Revision
156. information about the SQL server operations Memory information about the local computer The total number of measurement points in the database 6 148 ptitude Observer User Manual Observer 9 1 Revision J Menu Items Database System Log System Log The system log is a list of the configuration changes made to the system This includes all types of measurement points channel information and hardware configuration of IMx MasCon devices However if you want to see changes on a specific measurement point channel or IMx MasCon device it can be done by clicking on System log at the measurement point screen channel edit screen or IMx MasCon edit screen respectively Date Time 0 2014 03 07 12 13 23 2014 03 07 12 13 21 Q 2014 03 07 12 13 18 Q 2014 03 07 12 13 16 2014 03 07 12 13 13 2014 03 07 12 13 10 2014 03 07 12 13 08 2014 03 07 12 13 06 2014 03 07 12 13 04 2014 03 07 12 13 02 Q 2014 03 07 12 12 55 Q 2014 03 07 12 12 53 Q 2014 03 07 12 12 50 2014 03 07 12 12 47 2014 03 26 08 51 13 2014 03 26 08 50 35 2014 03 21 10 35 49 Q 2014 03 21 10 35 49 Q 2014 03 21 10 35 49 O 2014 03 21 10 35 48 Q 2014 03 21 10 35 48 O 2014 03 21 10 35 48 Q 2014 03 21 10 35 48 2014 03 21 10 35 48 O 2014 03 21 10 35 48 2014 03 21 10 35 48 O 2014 03 21 10 35 47 2014 03 21 08 52 28 2014 03 19 15 49 25 Name Piston Rod Drop Triggered Mode GAP Piston Rod Drop
157. ing on a node or a machine in the hierarchy view then selecting Tools and then Update graph settings Some of edited graph settings can be saved on the measurement point while the others are only temporary changes 3D settings allows to edit zoom rotation and elevation scales for 3D plots Add cursor allows to add available cursors markers one at a time in the graph temporarily Descriptions of available cursors can be found in Tools for Graph Display section below Alarm circles hides shows alarm circles for polar types of plots One warning circle yellow and one alarm circle red is drawn Annotations can be added as temporary notes for the current graph They can be useful for printouts of the current graph or screenshots To add an annotation right click on the graph and select the menu item Annotation Add An text box should now appear on the top left corner To edit the text in the text box double click on the text box and to end editing click the ESC key on the keyboard Click on the mouse and drag the annotation where you want it to be placed Auto alarm is available for diagnosis display only It is based on the data in the graph which configures the alarm settings for the built in intelligent diagnostic system Copy is available on all graphs in ptitude Observer It creates a screenshot of the graph and puts it in the clipboard Correlation tolerance is available for the multi trend plot only Correlation tolerance sets
158. is used when a warning level is reached lt can be used to trip the machine upon warning e Alarm relay on the WindCon IMx MasCon device is used when an alarm level is reached It can be used to trip the machine upon alarm 4 66 ptitude Observer User Manual Observer 9 1 Revision J System Configuration Setting up Measurement Points and Alarms Monitoring Tab Observer monitor relay card Note that you need an extra relay card for the ptitude Observer server Warning relay on the ptitude Observer Monitor is used when a warning level is reached Alarm relay on the ptitude Observer Monitor is used when an alarm level is reached Vector alarming Type is a selection of alarm type in the complex plane This setting can be either Circular or Sector Frequency Type is the type of frequency band or time waveform component to monitor For frequency Fixed frequency monitors a specific frequency with a search area around in order to trend Speed following monitors a specific frequencies related to the speed of the machine when machine speed varies It is possible to set up to monitor a specific gear on the selected machine part by choosing a machine part from the drop down list xN Level ctrl triggers the alarm levels to be automatically adjusted according to the settings and curve information provided in Adaptive Alarming Tab in Setting up Measurement Points and Alarms Channel X Enabled enables the Cha
159. isition device the tool called On line Device Configurator should be used It is available in the Observer installation package and can be started from the start menu if it is installed For more information refer to On line Device Configurator User Manual 4 20 mA Output 4 20 mA output can be configured for IMx T Channels can be initiated or edited with corresponding values of 4 to 20 mA along with an existing measurement point More information can be found in IMx T User Manual ptitude Observer User Manual Observer 9 1 Revision J System Configuration Creating IMx MasCon Devices and Channels Firmware Firmware Firmware function opens up the firmware interface for the database where it is possible to add and update firmware for the different types of data acquisition devices available in ptitude Observer such as IMx MasCon16 and MasCon48 The firmware is automatically sent to the DAD when the DAD connects to the ptitude Observer Monitor software next time This means that it is not necessary to go through every DAD and upgrade it manually If you want to force all DAD to upgrade the firmware immediately simply restart the ptitude Observer Monitor software and force a restart of DAD by clicking on Restart as described in Restart in Creating IMx MasCon Devices and Channels GE On line unit firmware Firmware Advanced Private firmware installed in the database A private firmware can be used in order to
160. isplay supports amplitude spectrum phase spectrum and time waveform or any combination of those By right clicking a mouse it is easy to change the type of data or mode parameter to be displayed If the single cursor is moved to one of the graphs by the user all other graphs with the same data type will also be updated to that position making it easier to follow specific frequencies over time The type of data selected to be displayed with the mode parameter is remembered for this measurement point the next time the history display is opened Zooming in one graph also triggers a zoom in the other graphs with the same data type Double clicking on one graph opens up the plot in full size screen mode The below is an example of history display of binary data type with no overlay data and no live data AAA A 3 History SKF WindConiSKF Wind power Windcon TF138 A M Bearing 1500 Vert Al toJto les Spectra Vertical 4 475 Hz 0 02665 m s2Rms Time waveform Vertical 57 20703 s 0 2624 m s2 4 18 2005 8 50 14 PM Speed 1511 459 cpm Process 636 0215 4 18 2005 8 50 14 PM Speed 1511 459 cpm Process 636 0215 a M Bearing 1500 Vert A1 0 075 M Bearing 1500 Vert A1 0 5 0 04 E de n 2 0 02 Bt E 0 0 5 A PA Sy Sa O as M6 SI 20 40 60 80 Hz Seconds Spectra Vertical 6 475 Hz 0 03155 m s2 Rms Time waveform Vertical 63 125 s 0 3838 m s2
161. itude Observer User Manual 5 85 Observer 9 1 Revision J System Operation Tree View Hierarchy View Priority List of Status An object in the hierarchy view can have several different states In such case the status with the highest priority is shown in the hierarchy view The following are the lists of priorities Priority Order for measurement points 1 Not active 2 Cable fault 3 Outside measurement range 4 Alarm 5 Diagnosis alarm 6 Warning 7 Diagnosis warning 8 Not measured 9 Outside active range unstable 10 Outside active range 11 Transient 12 No alarm levels set 13 Ok Priority Order for all the others such as a database node machine and sub machine 1 Alarm 2 Diagnosis alarm 3 Warning 4 Diagnosis warning 5 Cable fault 6 Out of range 7 Not measured 8 Transient 9 Outside active range unstable 10 Outside active range 11 OK 12 No alarm levels set 13 Not active 5 86 ptitude Observer User Manual Observer 9 1 Revision J System Operation Tree View Hierarchy View Interfaces Available on Database Level These are accessible by right clicking on a database e Add allows to add a node or a machine Refer to Node or Machine under Building a Hierarchy View in System Configuration section e Process overview allows to create user defined mimic displays with measurement points and links to other displays on top of graphic pictures like drawings digital photos etc Refer to
162. k In trend plot system log changes are displayed with red squares Show values option has been added to 3D plot A new graphic display tool Select measurement date has been added Listen function of Time waveform display opens in an external window which adds edit and playback capabilities The user can now select a number of harmonics for the harmonic cursor between 20 and 200 in User preferences Process overview Others Process view can be opened in full screen mode A main process overview Enterprise process overview has been added to include all databases Process overview now has Up one level button View process view only has been added as a user right Support for IMx M added 4 20 mA outputs can be configured for IMx M and IMx T devices ODS data export is possible from the Meas date list Measurement date list displays more information such as delta speed delta process data type and reference measurement Small icons are now available for the toolbar as a user preference Alarm list now displays the machine or sub machine name Alarm list and system alarm list can now be sorted by any column The system no longer waits for the news web page to be contacted before the application starts The monitor application now shows the connection ports and the current database in the status bar located in the bottom of the Observer screen 7 196 ptitude Observer User Manual Observer 9 1 Revision J
163. l 4 43 Observer 9 1 Revision J System Configuration Creating OPC Server and OPC Channels External OPC Servers e Data type is available only when the type is set to Output Overall sends the overall value to the OPC tag on the OPC server Status advanced sends the bitwise internal status of the measurement point to the OPC tag on the OPC server e Tag is the unique tag name specified by the OPC server vendor that you wish to use Note that tags have to be created in the OPC server itself For further information on how to create tags in OPC server refer to your OPC server s manual Once OPC input channels have been created the next step is to create OPC measurement points for them To do this refer to Setting up Measurement Points and Alarms in System Configuration The most common problem when troubleshooting connections to OPC servers is the security OPC makes use of DCOM which can be quite difficult to configure if you are not familiar with it Ask your T personnel to assist you when setting up the OPC configuration 4 44 ptitude Observer User Manual Observer 9 1 Revision J System Configuration Creating OPC Server and OPC Channels External OPC Servers OPC Server Status Tag Value Each OPC server status tag displays its status icon along with its numeric value When multiple statues exist on a measurement point at the same time the icon of the most priority will be displayed The priority list of sta
164. lect Order Shaft for Time Waveform Points It is now possible to register Event cases and conduct event case incident reporting It is now possible to tag machines and measurement points with custom tags The system log is now expandable making it easier to read the description of large configuration changes All date and time stamps in the application now clearly state the time zone s date and time A private firmware can now be added to roll out a firmware to a few devices instead of the entire fleet of devices ptitude Observer User Manual Observer 9 1 Revision J 7 201 Version History ptitude Observer 9 0 The Counter measurement point has been enhanced to be able to count machine stops or distance instead of only pulses List views throughout the application has been enhanced Data miner views are now encrypted Observer will now inform the user if a device is not connected to the monitor service when requesting live values Filtering is now possible in the Event log it is also possible to refresh the data without closing the window Technologies New frequency finder calculation method for diagnosis has been added Major rework of diagnosis has been done Support for Built in OPC Server has been added Support for IMx C has been added Test bench monitoring is now possible with a new feature called Conditional activation Peak counter functionality has been added as a diagnosis New Dashboard which ga
165. liness Enterprise resource planning On line surveillance protection SKF ptitude Analyst O SKF ptitude decision support SKF ptitude monitoring suite SKF ptitude Observer Figure 1 1 SKF ptitude Monitoring Suite Computerized Maintenance Management System Periodic vibration process data SKF ptitude Inspector ptitude Observer User Manual Observer 9 1 Revision J 1 9 Introduction ptitude Observer is Microsoft Windows based and supports all Windows based systems ptitude Observer supports the following data acquisition devices e MasCon16 MasCon16R MasCon48 MasCon48P IMx B IMx C IMx M IMx P IMx R IMx S IMx T IMx W WindCon RBO6 Marlin Microlog CMVA series Microlog CMXA 50 Microlog AX Microlog GX ptitude Observer Logical Architecture Data aquisition device Monitor service Th Database ptitude Observer Figure 1 2 SKF ptitude Observer logical architecture The operator interface is predominantly based on graphical communication Operator input like mechanical machine characteristics are also set up graphically and all disturbance frequencies are obtained automatically The system also has tools for machine diagnostics ptitude Observer User Manual Observer 9 1 Revision J Introduction Communication Possibilities The communication possibilities are almost unlimited Standard TCP IP interface allows easily adop
166. lows to set the noise reduction level in percentage Palette steps is available for gear inspector graphical display only It indicates the total number of different colors used for the display Reference allows to store the current active measurement in the graph as reference data for the active measurement point Or it allows to clear the existing reference data When setting a measurement as a reference the measurement will automatically be set with the Keep forever flag Keep forever flag can be edited in Meas date interface The reference data are shown in the background of this graph every time data are displayed for this measurement point Remove DC gives you an option to include the DC part as well as the AC part Normally you remove the DC part of the signal when showing time waveform data Runout compensation is used to remove the problem that un round shafts register the shape of the shaft as vibration Save to Diagram Box allows to save the current graph settings under an assigned name For detailed information refer to Diagram View under Tree View in System Operation Scale allows to select a value from the list of pre defined scale settings Selecting Auto will cause the system to select the most appropriate scale setting for the currently displayed data In most graphs the mouse wheel can be used to increase or decrease the max scale The change made to scale can be saved on the measurement point 5 98 ptitude Observ
167. ltering of digital input on or off This is applicable if the measurement point had an associated digital point configured Data tagging allows the filtering of material or characteristic related data that are marked with a specific tag Data can be tagged manually with Software data tagging point or automatically by OPC data tagging points ptitude Observer User Manual 5 121 Observer 9 1 Revision J System Operation Notes Notes A note is defined as an observation or action taken related to a machine Typical notes are maintenance activities and visual observations To get to Notes screen select a machine then perform one of the following options e Click on p Notes icon on the toolbar e Click Edit from the tool bar menu options then select Notes The notes window displays the notes for the selected object in the hierarchy Although a note is a machine specific object if an object of machine level or above is selected then all notes under that object will be displayed It is possible to filter out specific notes based on date and title of notes If a hyperlink is specified along with the note then it can be opened by clicking the hyperlink for the selected note in the notes window The notes window is automatically linked to the hierarchy Therefore selecting an item in the hierarchy updates the notes window automatically with the notes of the newly selected object You can turn off the link by clicking on link
168. ly Counter rate creates a new measurement that counts pulses per second minute hour day or week on a digital channel This measurement point can be used to Measure a particle counter Derived point is a calculation measurement point which does not use any sensor in IMx MasCon16 devices Instead it takes other measurement points to calculate the result to trend Torsion is a measurement of the torsion of a shaft using two digital channels for IMx MasCon48 devices Time difference is a measurement of the time difference between two digital pulses of IMx MasCon48 devices HFD high frequency domain is a vibration type of measurement that is similar to envelope measurement but produces only an overall value for Microlog only OPC is a measurement that is used when the system requires data from an external system with help of an OPC Server Note that before you start configuring OPC measurement point make sure that you have completed the setup for OPC server and OPC channels If not refer to Creating OPC Server and OPC Channels in System Configuration Data tagging is used to track down material related or characteristic related data lt allows to mark measurements with a specific tag such as paper quality motor brand revision number of any other property of a machine Data can be tagged manually with Software data tagging point or automatically by OPC data tagging points Speed from spectra is a manual speed measurement point with
169. ly imported The multi trend plot now displays one vertical axis per E U Alarm hysteresis is now available for count rate measurement points Count rate measurement points can now be configured to display pulses per week day hour minute or second The IMx model is now displayed in the list of On line devices Registration keys are no longer necessary to have for system commissioning The time waveform signal can now be reverted by a right click on the time waveform and the profile plots The DC part of the time waveform signal can be removed by a right click on the time waveform and the profile plots Airgap plot can now display data with or without connecting lines between points Airgap measurements are now excluded from the multi trend plot The mouse wheel can now be used to change scales in most of the graphs The fault frequencies dialog can now be sorted according to name or type The alarm list now displays the name of machine and sub machine of an alarm The colors of the trend graph s simultaneous process speed and digital curve are now fixed instead of dynamic Multiple point update wizard now supports multiple selection in the hierarchy by CTRL click and SHIFT click Chamnels are now sorted alphabetically on the measurement point properties forms Using the mouse wheel in the graphs to change scales now picks the closest scale even when using auto scale Optitude Observer User Manual Observer 9 1 Revision J 7
170. m active indicates that this measurement point has received values that triggered a relation alarm Relation Alarm acknowledged indicates that this measurement point has received values that triggered a relation alarm and the status has been confirmed After new data have been stored in the database the measurement point will release the alarm status 4 46 ptitude Observer User Manual Observer 9 1 Revision J System Configuration Creating OPC Server and OPC Channels OPC Server Status Tag Value Numeric Value E 33554432 Icon amp 67108864 134217728 9 268435456 536870912 O a 1073741824 Description Diagnosis warning indicates that a warning has been raised by the built in intelligent machine diagnostics of the system The rules and logic of the diagnosis warning can be defined in the diagnosis settings section of setting up measurement points and alarms Warning levels for the diagnosis are easily set in the diagnosis trend plot refer to Diagnosis under Graphic Displays and Tools in System Operation Diagnosis alarm indicates that an alarm has been raised by the built in intelligent machine diagnostics of the system The rules and logic of the diagnosis alarm can be defined in the diagnosis settings section of setting up measurement points and alarms Alarm levels for the diagnosis are easily set in the diagnosis trend plot refer to Diagnosis under Graphic Displays and Tools in System Operation
171. machine properties e Enter manufacture information type and serial number of each driving device driven device and transmission e Enter coupling information of each driving device and driven device e Enter power information on driving device e Enter gear information on transmission e Contact can be used to set a contact or receiver for this particular machine The contact can be used for general information who to contact when there is a problem with the machine It can also be used in Event Cases reports The contact information is selected from the receiver library For more information refer to Receivers under Libraries within Database menu item ptitude Observer User Manual 4 37 Observer 9 1 Revision J System Configuration Creating IMx MasCon Devices and Channels Machine Properties Diagnoses Tab Diagnoses tab setting allows to assign any diagnosis you want to use for the selected machine Diagnoses are attached to machines by pre defined diagnosis rules To find out how to create diagnosis rules refer to Diagnosis Rules under Database in Menu Items Each machine diagnosis that has been attached to a machine uses one or more measurement points as data input Machine properties x General Extended Information Attachments Advanced Diagnoses Alarm hysteresis 1 X Diagnoses Private High alarm High warning Low warming Low alarm Bearing CRB Hollow Shaft 350 No 241 0
172. machine templates Generating a new system configuration for IMx MasCon16 does no longer close the window when pressing the Ok button BOV has been replaced by bias Support for digital measurement points for IMx has been facilitated Password encryption for SQL server login in connection files has been implemented The internal collection of pictures now have the possibility to be grouped in categories More default options are available for setting up measurement points under options section True peak to peak analysis has been added Additional support for multi axial measurement points for IMx where you can select to use several channels on one point is available The user right to configure machine data is no longer available It has been replaced by the configure system user right If you have the right to configure the system you have the right to configure machine and machine data It is easier to select a role for a user with pre defined user rights based on that role Users are able to configure their own individual settings for plots The scale factor on the speed point has been removed since it caused a lot of confusion and frustration We recommend using a derived point instead if you want to scale the speed point 7 192 ptitude Observer User Manual Observer 9 1 Revision J Version History ptitude Observer 8 0 New user preferences interface allows users to configure a large number of personal settings whic
173. matically forwarded to the specified number as SMS ptitude Observer User Manual 6 147 Observer 9 1 Revision J Menu Items Database Database Information Database Information Database information provides detail information on the SQL server database status It is SQL specific therefore is not available for Oracle database users To get to the database information screen e Click on Database on the toolbar then select Database information Database information Database SKF WindCon KA General Details Name OBSERVERWIND Parameter Value 5 Po JOHN PC de Service Name MSSQLSERVER de Server Version Microsoft SQL Server 2008 R y Provider te Language us_english F te Time Queried 2010 06 10 07 14 18 SEE E o Max Connections 22435 Connection Wind o Total Reads 1522 Total Writ 24889 No of meas points 20 fatas d e Gaus 0 te Has Errors False X Database size o Database size 118 1875 MB te Log file size 9 MB do Database size MAX 10000 MB te Growth per day N A Cursor position Date 2004 04 07 Size 6 375 MB 2 6 375 Naw Date 2010 06 10 02 00 Size 118 1875 MB Close Figure 6 76 Example of ptitude Observer database information The database information displays the following Current database situation of the selected database Historical database growth trend with a predictive future trend if using on line systems with ptitude Observer Monitor In depth
174. n It is possible to download a section of the hierarchy as a route or a workspace as a route e Hierarchy name specifies a custom name for the route that will be assigned when the selected portion of the hierarchy is downloaded to the Microlog or Marlin It is available for the hierarchy setting only e Print prints the selected hierarchy or workspace as a route list e Download starts the download of the Microlog or Marlin ptitude Observer User Manual 6 183 Observer 9 1 Revision J Menu Items Portables Microlog Marlin Upload Database Observer840_On_CMC2 Status Download Upload Name C Non route Upload measurement history Figure 6 107 Example of ptitude Observer upload data from Marlin The upload setting is used to transfer the data collected by Microlog or Marlin and save the data in the ptitude Observer database Non route enables you to upload data that are not route based Non route is also known as brute force Upload measurement history uploads the history of measurement points for USB communication only Reset deletes all data on the specified route but keeps the route information so the route can be measured again Remove deletes the specified route and all data on the route In order to measure the route again the route has to be downloaded again to the Microlog or Marlin Upload uploads the selected route and stored the data in the ptitude Observer database
175. n full Add Rara ot Cancel k Figure 6 66 Example of ptitude Observer database connections e Set as default allows to set a database as a default database with which the system starts e Remove default allows to remove the default database setting 6 130 ptitude Observer User Manual Observer 9 1 Revision J Menu Items File Manage Databases Adding Editing a Database J Connection Name Database connection settings Name IP Address cmc3 v aan Authentication SQL Server authentication X User name sa Password Parameters Database OBSERVER910 a Observer monitor Name IP Address 127 0 0 1 Port 1000 Figure 6 67 Example of ptitude Observer database connection settings Name identifies the registered database connection on local computer Name IP Address is the server name IP address entered or selected from the list of detected servers local refers to the computer on which ptiude Observer is currently running Authentication is for SQL Server only which allows to select between Windows authentication and SQL Server authentication Windows authentication is applicable if connecting to an SQL server in the same domain as your computer with a common domain controller or if the SQL server is installed on the local computer SQL Server authentication should and can be used in all other scenarios User name is the database user name Password is the password for t
176. n line on the toolbar 2 Select IMx MasCon devices PTC e ales AA mam Sikip Te Taa me mk Eu ae ne ele ST Aer Vee at aw E Alo bo mm doo Ve ai Eip Ha 7 Acad Ti a aT 00d Jer aj a 1000 doce ua iiki me i T ir Ek hi M i Y al a ae icki rem be ici Zar Mei ba cha ie dd 4 Cats Ma aT Sel Ye E Eir hi B i T a ey A 2 rh La he Cony oar hermas ome Gerari iih Li Dras A it La Jhi Ian usr am Figure 4 9 Example of ptitude Observer IMx MasCon devices Select a database first ptitude Observer User Manual 4 23 Observer 9 1 Revision J System Configuration Creating IMx MasCon Devices and Channels Initiate Initiate Initiate function allows to initiate a new device for the selected database General External communication Number 10 Type Modbus Model IMx S vi Bps 9600 Name IMx Initiate Example Parity None Enabled Stop bits 1 Serial no Mode Slave Reference time 01 00 00 Slave address 1 Timeout comm 0 Connection interval 0 Figure 4 10 Example of ptitude Observer IMx Initiate The following attributes are available to initiate a device Note that different attributes are available depending on the type and model of the device you have selected e Number is a unique number of the device e Model is the model of IMx device you are configuring e Name is a free text name that can be used to identify the device e Enabled indicates the stat
177. n name of the user e Password sets the password User passwords are case sensitive e First name is the users real first name e Last name is the users real last name e E mail is the email address that will be used for notifications and or status information selected ptitude Observer User Manual 6 145 Observer 9 1 Revision J Menu Items Database Users User Rights Tab e Role is pre configured groupings of user rights Operator is designed for a typical system operator who does not analyze data but has the possibility to check and acknowledge incoming alarm and write new notes Analyst is designed for a typical analyst who has more user rights than an operator Super user has full access to ptitude Observer and to all of its features Custom makes it possible to configure a user with the individual specific user rights Process viewer is designed for an operator who has the possibility to monitor and or configure Process overview only e User rights are privileges of the user Privileges are assigned by the system according to the role However if the role is Custom privileges can be hand selected Acknowledge alarm allows the user to acknowledge alarms Edit alarm conditions allows the user to edit alarm conditions Configure system allows the user to configure how the system collects and stores data Configure users allows the user to create new users and edit existing user
178. n of the machine This is the default status for new measurement points 5 84 ptitude Observer User Manual Observer 9 1 Revision J System Operation Tree View Hierarchy View D active range indicates that the conditions specified by active ranges on the measurement point are not met by the system One or more active ranges can be configured on measurement points in the spectra settings and trend settings Outside active range unstable indicates that not only the conditions specified by active ranges on the measurement point are not met by the system but the measurement is varying too much and triggers the maximum allowed delta value of the active range making it unstable Transient indicates that the measurement point is in transient mode which means that a run up or coast down is currently occurring Once the run up or coast down of the machine is completed the machine will release the transient status No alarm levels set indicates that the measurement point is active and measurement data are coming in but there is no configured alarm levels for the system The system cannot determine whether the status of measurement point is acceptable or not O indicates that the measurement point has no known problems Data coming in are valid and reside within the specified active range and measurement range Alarm levels are specified for the measurement point and the data are within the specified alarm and warning levels Opt
179. ndcon TF138 A M Bearing 1500 Vert A1 Alignment Rms 0 015 0 01 0 005 mm s 0 1 18 2005 12 00 00 AM 2 17 2005 12 00 00 AM 3 19 2005 12 00 00 AM 4 18 2005 12 00 00 AM Date Time Diagnosis SKF WindCon SKF Wind power Windcon TF138 A M Bearing 1500 Vert A1 4 18 2005 6 50 14 PM 0 03 m s2 Bearing CRB Crown Gear In side 256 Rms 0 06 0 04 m s2 0 02 1 18 2005 12 00 00 AM 2 17 2005 12 00 00 AM 3 19 2005 12 00 00 AM 4 18 2005 12 00 00 AM Date Time Diagnosis SKF WindCon SKF Wind power Windcon TF138 A M Bearing 1500 Vert A1 4 18 2005 6 50 14 PM 0 01 m s2 250 0 Main Bearing Rms 0 06 a Z 0 04 E 0 02 0 1 18 2005 12 00 00 AM 2 17 2005 12 00 00 AM 3 19 2005 12 00 00 AM 4 18 2005 12 00 00 AM Date Time Diagnosis SKF WindCon SKF Wind power Windcon TF138 A M Bearing 1500 Vert A1 4 18 2005 6 50 14 PM 8 79 um 50 58 Oil Whirl and or Whip Rms 6000 4000 um 2000 0 1 18 2005 12 00 00 AM 2 17 2005 12 00 00 AM 3 19 2005 12 00 00 AM 4 18 2005 12 00 00 AM Date Time Figure 5 54 Example of ptitude Observer Diagnosis display 5 114 ptitude Observer User Manual Observer 9 1 Revision J System Operation Graphic Displays and Tools Polar Polar He gt Use this icon to generate a polar display of a selected measurement point Polar display shows the vibration signal at 1 2 3 and 4 times the shaft speed in the complex domain
180. nected ptitude Observer User Manual Observer 9 1 Revision J Technical Specification Hardware Connectivity 2 Technical Specification Hardware Connectivity e IMx is a series of on line monitoring systems with dynamic static inputs digital inputs and digital outputs with simultaneous measurement on all channels up to 40 kHz in one 19 6 U rack The available number of inputs and outputs varies depending on the type of the data acquisition device e MasCon16 is an on line monitoring system with 16 dynamic static inputs 2 digital inputs 4 digital outputs e MasCon48 is an on line monitoring system with 48 channels and 4 configurable interface cards also available as a portable device e SKF Microlog is a portable data collector for single or multi channel measurements e Marlin machine reliability and inspection data manager is a portable data collector dedicated to monitoring plant process and inspection data and machinery condition data Data Processing e On line data acquisition from IMx MasCon Ethernet TCP IP e On line process data through OPC object linking and embedding for process control Configuration Features e Hardware interface settings for each IMx MasCon device are configured by means of alarm hysteresis and types of interface cards Each channel of the hardware is configured by the type of signal gain BIAS voltage limits and correction factors for run out and linearity
181. nformation as well as diagrams and pictures of selected data Refer to Report under File in Menu Items section e Event log displays all the events of the selected sub machine of IMx M or IMx R device Refer to Event Log under On line in Menu Items e Copy allows to copy the selected sub machine to a new location directly e Paste allows to paste a measurement point that you just copied in the selected sub machine e Delete allows to delete the selected sub machine e Trend automatic alarm levels for the selected sub machine e Diagnose automatic alarm levels for the selected sub machine e Recalculate diagnoses for the selected sub machine e Update graph settings of many measurement points at the same time for the selected sub machine e Add note allows to add a note for the selected machine or sub machine Refer to Notes in System Operation section e Tag allows to categorize the selected sub machine with a specifically defined tag from the Tag Library e Refresh updates the current hierarchy view with the new status if any e Properties allows to edit the properties of the selected sub machine Interfaces Available on Meas Point level These are accessible by right clicking on a measurement point e Diagram allows to select and access to a graph display of the measurement point e Report generates documents that contain text based information as well as diagrams and pictures of selected data Refer to Report under File in
182. ng And Storage Conditions Scheduled Trend Sto Acauisition No of lines from 800 to 1600 Acauisition Fre a Figure 6 77 Example of ptitude Observer system log The list can be filtered and grouped by database object type and type ptitude Observer User Manual Observer 9 1 Revision J 6 149 Menu Items Database Pictures Pictures Pictures interface gives you the capability to manage the pictures stored in the database Pictures in the database can then be used to set up notes process overview and graph display background of user preferences ehh Le La misi Tractors EP TUABINGI ud Turban pz kii SO rr eee Figure 6 78 Example of ptitude Observer pictures interface e Database is where the pictures you are to work with reside e Add allows adding pictures to the database to be used for display purposes e Edit replaces the current picture by another one e Remove allows removing the selected picture from the database e Export allows exporting the selected picture to a selected path It can be used to transfer pictures between databases 6 150 ptitude Observer User Manual Observer 9 1 Revision J Menu Items Database Diagnoses Diagnoses Diagnosis Rules When viewing a frequency spectrum it can be a difficult task to find out which machine part causes the particular frequency To make this analysis easier there are ready made formulas which link freq
183. nnel X Channel X Warning level Alarm level sets up normal level alarm warning and alarm for trends 1xN 2xN 3xNand4xN Overall This section is used for an overall measurement by setting up the system to display calculate the value Type is the type of frequency or time waveform component to monitor Name is the name of the alarm for the measurement point Start is the start frequency of the frequency band to monitor Stop is the end frequency of the frequency band to monitor Level ctrl triggers the alarm levels to be automatically adjusted according to the settings and curve information provided in Adaptive Alarming Tab under Setting up Measurement Points and Alarms in System Configuration Relation indicates a percentage which means that the system will trigger an alarm if the ratio exceeds the number set in this field The ratio is calculated by Total 1x N 2xN 3xN 4xN Total Relation alarm monitors the frequencies in between the frequencies 1 x N 2 x N 3 x Nand 4 x N e g sub harmonics Alarm Warning level Alarm level is the warning level alarm level of the Channel X alarm ptitude Observer User Manual 4 67 Observer 9 1 Revision J System Configuration Setting up Measurement Points and Alarms Monitoring Tab Custom band e Band is the band number e Name is the name of the band e Type is the type of frequency or time waveform component to monitor e Source is the selection of sensor multi channel poi
184. ns 3 IMx Trans Order Gok 3 JOL Sim Fixed 3 JOL Sim Fixed 3 JOL Sim Order y Members History Members Name Location sa Harmonic 182 SKF WindCon Aberdeen Simulator 1 Harmonic 384 SKF WindCon Aberdeen Simulator 1 SCL 1 2 SKF WindCon Aberdeen Simulator 1 SCL 3 4 SKF WindCon Aberdeen Simulator 1 Harmonic 586 SKF WindCon Aberdeen Simulator 1 Harmonic 7 amp 8 SKF WindCon Aberdeen Simulator 1 Harmonic 9 amp 10 SKF WindCon Aberdeen Simulator 1 Hamonic 11812 SKF WindCon Aberdeen Simulator 1 Accel 13 SKF WindCon Aberdeen Simulator 1 Accel 14 SKF WindCon Aberdeen Simulator 1 v m Figure 6 91 Example of ptitude Observer measurement group History Tab is a list of the historical run ups and coast downs currently stored in the database Here you can see all transients done for this group which can be edited deleted or set reference for the transient The list shows its from and to date type keep forever status and comment NOTE The maximum number of active transient group is 5 Adding a Measurement Group Two types of measurement groups can be created simultaneous and transient Note that the type and frequency type of the measurement group cannot be changed after the group has been created e Type is the measurement group type Simultaneous the single purpose of the simultaneous measurement group is to start measuring all the c
185. ns E mail settings e Sender E Mail address is the email address to which the monitor service will send notifications e SMTP Server is the SMTP server that should be used for sending e mail messages from the monitor service If the SMTP server requires user name and password enter them in the user name and password text boxes e Status report interval sets how often status reports from the monitor service should be sent by email The status report of the monitor service contains a number of parameters about the system including database size and condition e Alarm report interval sets how often alarm reports from the monitor service should be sent by email The alarm reports of the monitor service contains alarm information of the alarm that has occurred since the last alarm report e Send test mail sends out a test mail which can be used to confirm that the email settings are correct 6 170 ptitude Observer User Manual Observer 9 1 Revision J Menu Items Database Options Default Settings Tab options x Database SKF WindCona h do General settings T Data 1 E mail settings Default settings js Monitor service y Backup 2 Alarm and Relays M Default settings for measurement points No of lines direct 400 X Envelope filter Window Hanning 7 No of averages 1 y Low frequency cut off Ems Lin gt Storage interval Storage interval for FFT 7 Days Scale auto a
186. ns Hansson Contact information Location Lule Contact information Aurorum 30 977 75 Lulea Figure 6 72 Example of Optitude Observer user preferences settings General Tab e Show alarm notification displays a flashing alarm icon on the top right corner of Observer screen upon alarm if this field is checked e Play alarm signal upon alarm triggers the sound through the speakers of the computer upon alarm if this field is checked ptitude Observer User Manual 6 137 Observer 9 1 Revision J Menu Items Edit User Preferences Process overview update rate tells the software how often the process overview display should ask the ptitude Observer Monitor computer for new values to display in the process overview NOTE If this value is set too low then it will cause tremendous stress to the application as well as database Event Log update rate tells the software how often the Event Log window shall be refreshed if it is open and the Auto refresh is enabled NOTE If this setting is set too low then it will cause tremendous stress to the application as well as database Signature allows the user to insert ones own handwritten signature This signature can automatically be written to event case report printouts Contact information sets the contact information for the user Diagram Tab Diagram legend position sets the preferred position of the legend available in most graphs Note that different legen
187. nt point s data e Digital meas is a digital measurement point in which the current measurement point should be connected linked The selected digital measurement point will be taken simultaneously with the current measurement point s data OPC Server and channel settings for OPC measurement points only Note that in order to send data from the ptitude Observer to an OPC server a setup of an OPC measurement point is not required Instead this is completed through OPC channel setup e OPC server is a pre configured OPC server which you wish to use for this measurement point e OPC channel is a channel in which you wish to be connected e DAD is required for OPC server e Channel is a channel in which you wish to be connected e Data tagging group allows to select a data tagging group from the drop down list Data tagging group is created through Data tagging group interface under Library Database in Menu Items Source for Software Data tagging measurement points only e Data tagging group allows to select a data tagging group from the drop down list Data tagging group is created through Data tagging group interface under Library Database in Menu Items 4 54 ptitude Observer User Manual Observer 9 1 Revision J System Configuration Setting up Measurement Points and Alarms Acquisition Tab Acquisition Tab aa PP Th Desa al caos Opaning and larga Conditions Al Horiang Ml pia diera MA Camrose Dapl
188. nts e HW is the high warning level e HA is the high alarm level Adaptive Alarming Tab YE bins pool DAF Weedon Eh casara ll oo B Opamp and Dogs Condcara gl Monianng ME does dwar NA a apiy Dpto dere A Bigs kag corr Hons 7 aim m mam g f pair leg l i Dmm Figure 4 28 Example of ptitude Observer Dynamic measurement point Adaptive Alarming settings Note that in order to activate advanced settings for each trend you must set Level ctrl in Monitoring Tab under Setting up Measurement Points and Alarms in System Configuration e Alarm level contr allows to control the alarm levels e g for rotational speed or an process value such as motor load Use the graph and its settings to construct the curve to be used for altering the alarm levels during measurement e Start Stop defines the range in which the control is to take place The boxes above the graph are used to specify the alarm values in of the alarm levels which is set in Monitoring Tab 4 68 ptitude Observer User Manual Observer 9 1 Revision J System Configuration Setting up Measurement Points and Alarms Transient Tab Transient Tab T Men port EF Biri H Gonan AAA EA IM ALP E Tanta aa Ta H Erabled Lu H Enabled Chena Soaked set E Com gt Figure 4 29 Example of ptitude Observer Dynamic measurement point Transient settings e Alarm indicates whether to enable or disable alarms in transient ranges such as 1 x N 2
189. o the start time The pre defined dates may be used for this option Forward specifies a date range forward in time relative to the start time 5 120 ptitude Observer User Manual Observer 9 1 Revision J System Operation Buffer Buffer It specifies from which buffer to collect the data e Normal refers to the data stored in the rolling buffer The type of data and the storage interval are set inOperating and Storage Conditions Tab settings when creating a measurement point e Archive refers to the data stored in a special buffer called archive This buffer stores one measurement data every 10 minutes It can hold up to 80 000 measurement data which are equivalent to data collected in 1 years The type of data and the storage interval are set in trend setting when creating a measurement point Transient refers to the data captured during transient Therefore for this type of buffer a specific transient of a measurement group must be selected Data limitations Data limitations allow to enter the amount of values Static value Dynamic values and Polar values that can be retrieved Filter e Process allows filtering of process readings such as temperature and load This is applicable only if the measurement point had an associated process point configured Speed allows filtering of speed readings This is applicable only if the measurement point had an associated speed point configured Digital allows fi
190. of diagnoses Attachments Tab Attachments are simply a file any file that can be attached and stored with the selected machine It can be a PDF file Word report or even a MP3 file 4 38 ptitude Observer User Manual Observer 9 1 Revision J System Configuration Creating IMx MasCon Devices and Channels Machine Properties Advanced Tab Conditional activation can be used to activate or deactivate measurements on the machine depending on a conditional input The type of conditional input is an OPC Data tagging measurement point This is particularly useful in test bench monitoring where machine individuals and or machine types e g gearbox individuals or gearbox types needs to be tracked in a test bench environment To use the conditional activation an OPC data tagging measurement point needs to be created and collect data from a specific OPC tag from an OPC Server When conditional activation is used on a machine and the tag value changes it can take up to 30 seconds until the machine has been activated or deactivated ptitude Observer User Manual 4 39 Observer 9 1 Revision J System Configuration Creating OPC Server and OPC Channels Creating OPC Server and OPC Channels OPC stands for object linking and embedding OLE for process control It is an open flexible and plug and play software communication standard for modular software inter operability in the automation industry OPC is a specification th
191. of possible machines to use this feature are paper machine rollers and train wheels The profile display uses displacement acceleration velocity or envelope as the measuring device and the data are derived from acceleration time signal and smoothness over the round object To get an accurate profile it is necessary to make sure that the minimum number of revolutions which the time signal contains are at least 20 samples per revolution However for a good representation it is recommended that there are at least 180 samples per revolution The below is an example of profile graphic display with two shafts a i Figure 5 49 Example of ptitude Observer Profile display ptitude Observer User Manual 5 109 Observer 9 1 Revision J System Operation Graphic Displays and Tools Gear Inspector Gear Inspector ef E this icon to generate a gear inspector display of a selected measurement point Gear inspector is both a new graphical display and a new intuitive data gathering technique that helps detecting and visualizing the impact energy as a function of shaft gear revolutions It harnesses the best possible method of detecting this energy by using all channels in simulations data gathering mode One graph for each shaft is plotted in a single view using the treated simultaneous gathered data Impact energy is visualized by using a color pallet Plots are auto scale and speed deviation are compensated automatically
192. om several databases at the same time e System view shows the status from a hardware point of view which is based on IMx MasCon devices sensors and measurement points It also shows communication status e Workspace is a hierarchy view of user selected machine s It is an individual work space to keep track of only the machines for which the user is responsible A workspace can only span over one single database e Diagram overview allows the user to save all the settings of a graphic diagram including selection of measurement points as well as buffer settings This is to be able to have predefined views of the data e Protection overview allows the user to have an overview of all the Protection devices and their status It is also possible to synchronize the settings with the Protection device Graphic Displays Any graphic display can be set in live mode and be updated whenever possible The update rate is determined by the setup and time involved in capturing the actual data e Spectra shows the vibration amplitude as a function of frequency e Time waveform shows the vibration magnitude as a function of time and gives you the possibility to listen to the signal if a sound card has been installed in the computer e Phase displays the binary representation of phase data for the time waveform from 180 to 180 degrees e History displays historical data in a combined plot for spectra time waveform and phase e 3D Plot illustr
193. onds in the plots this is useful if there is more than one measurement during the same second e Longer fields 50 can be used for first name and last name e Alarm notifications is now a user preference Machine Attachments e Itis now possible to add attachments files to machines for example Oil analysis reports Emailing e Emailing now contains the path of the alarm and not only the name e Emailing is now configured from Inside Observer e ltis now possible to select HTML Plain or Truncated format for the system alarm and alarm emails e ltis now possible for each other to configure if he or she should or not receive system alarm emails alarm emails and monitor service notifications respectively e ltis now possible to configure a custom subject for each user when sending emails which makes it easier to reroute the emails such as SMS messages to phones e It is now possible to configure the alarm and system alarm reporting interval previously this was fixed to 5 minutes Database administrator e Anew function Backup now has been added ptitude Observer User Manual 7 199 Observer 9 1 Revision J Version History ptitude Observer 8 5 When attaching databases the log file is now optional This will automatically create a new log file Database Other Existing WindCon MasCon16 devices can now be converted directly from inside Observer under the properties for the MasCon 16 WindCon device Backup c
194. only This method is how you identify where you are which can be barcode or MQCID Location tag is for Marlin only It is the identity string Form type is for Marlin only It defines how you want the data to enter in Marlin The form type can be bar gauge keypad or slider Evaluation time tells the tolerance time when calculating a value depending on parameters An evaluation time of 5 minutes means that the parameter values collected from IMx MasCon or OPC should be maximum 5 minutes old OPC server is a pre configured OPC server which you wish to use for this measurement point OPC channel is a channel in which you wish to be connected Device and channel configuration Device is a IMx MasCon device in which the measurement point can be set up No channels is used by the selected measurement point e g for vibration envelope harmonic process FFT process and speed measurement points Channel Channel X Channel Y Channel 1 is the channel in which the measurement point should be performed Multiple channels can be selected However for shaft centerline torsion and time difference measurement points two different channels must be selected Note that speed channels must be configured in IMx MasCon units before you are able to select one here Trigg channel is the trigger channel which can be used for speed and torsion measurement points This can be used if channels have more than one pulses per revolution in
195. or ips or displacement um or mils If the measurement on display is triggered using a digital input the tacho pulses are shown automatically making it easier to track each revolution The time waveform can be easily zoomed and the scaling can be done automatically or manually By a simple right click on the mouse the user can listen to the time waveform using the computer speakers and can detect by listening to the sound of the machine abnormal sounds Listen function of time waveform is opened in an external window Here speed and length of the time waveform can be modified while listening It can also be played back The below is an example of time waveform display of binary data type with overlay data and live data Time waveform SKF WindCon SkF Wind powenWindcon TF13 A M Bearing 1500 Vert an flojas Time waveform Vertical SKF WindCon SKF Wind power Windcon TF138 51 48438 60 01953 s 8 535156 s 0 1171625 Hz 4 18 2005 8 50 14 PM Speed 1511 459 cpm Process 636 0215 0 5 0 45 0 4 0 35 m s2 10 20 30 40 50 60 70 80 Seconds M Bearing 1500 Vert A1 Figure 5 43 Example of ptitude Observer Time waveform display ptitude Observer User Manual 5 103 Observer 9 1 Revision J System Operation Graphic Displays and Tools Phase Phase W N vr Use this icon to generate a phase display of a selected measurement point Phase spectrum shows the phase with r
196. or is used if you want to have a different scale factor than the engineering device E U of degrees The default is 1 e Time unit is available for counter rate measurement points only It can be pulses of seconds minutes hours days or weeks Note that for counter rate measurement points E U is a user entered text that will be displayed on graph only Which means that it will not effect the measurement at all The text should reflect the selected time device for example if time device is selected as Seconds E U should be changed to Pulses second 4 56 ptitude Observer User Manual Observer 9 1 Revision J System Configuration Setting up Measurement Points and Alarms Acquisition Tab e Resettable sets whether or not the measurement point s value can be set to zero or not It is available for count measurement points only e Unit is the unit on which the trend measurement should be performed e Scaling defines how the trend values should be calculated and stored in the database e Counter type sets the calculation method that should be used for this counter measurement point Pulses The value collected is added to the previous value This is a normal counter Stops Each time a value is collected the previous value is incremented by one 1 Pulses between stops The value collected is the value used This can be used for example measuring the distance between two train stations if an IMx has been fitte
197. ord or pdf format which can automatically be sent as en email and or stored as an attachment on the machine A report contains a number of assessments which typically are used to inform customers or internal departments of important information by the data analysts in Observer An assessment consists of an assessment text and a recommendation how to handle the information detected in the assessment A severity level can be set in the form of a classification level and the assessment can be tied to a specific machine part if desired To the assessments pictures can be added which will also be printed in the document that can be produced from a report These pictures are typically screen shots of graphs in Observer indicating a defect or problem of some kind but any picture can be added Event case report layouts define how the documents should look like For more information see Report Library 5 124 ptitude Observer User Manual Observer 9 1 Revision J System Operation Event Cases El Edit Event Case General settings Case number None uy Status New o v Defect category Title Description Reports History Measurements Reports Date UTC 2 Status Number Description Figure 5 62 Example of ptitude Observer Event Cases e Case number is a unique number that can be used to track this case The case number consists of a counter and a prefix The prefix can be set in
198. order to start the measurements at the same position every time Note that a trigger channel must be selected for condition monitoring on turbines Measurement group is a logical grouping of measurement points that should collect data at the same time and synchronously on a specific IMx MasCon device Setting up measurement groups is described in Measurement Groups under Database in Menu Items Order analysis shaft is the shaft on the machine that should be used for order analysis in the spectrum history and 3D plot Rotation direction indicates the rotational direction for vibration measurement points clockwise counter clockwise or both Cable check is an alternate source for the cable check since the channel of this measurement point does not have the option to verify a statues of the bias ptitude Observer User Manual 4 53 Observer 9 1 Revision J System Configuration Setting up Measurement Points and Alarms General Tab Simultaneous measurements available only for Torsion for IMx devices e Speed meas is a speed measurement point in which the currently selected measurement point should be connected linked The selected speed measurement point will be taken simultaneously with the current measurement point s data e Process meas is a process measurement point in which the current measurement point should be connected linked The selected process measurement point will be taken simultaneously with the current measureme
199. ots The below is an example of trend and spectra combination plot la la e bee ee Pa ee MITE EE PEPE ELLE M0 80155 G2S0R0hRSO DS On gt Figure 5 59 Example of Optitude Observer Trend and Spectra combination display Optitude Observer User Manual 5 119 Observer 9 1 Revision J System Operation Buffer Buffer E This is the toolbar icon for the buffer selection and settings The buffer is used to control and filter which data should be collected from the database for analyzing You can specify date ranges filter parameters and buffer types r Buffer Name Last values Date fon To Uses only data limitations Buffer Y Normal F Archive E Transient Data limitations Max Static values to retreive 3000 Max Dynamic values to retreive 40 Max Polar values to retreive 120 Filter Process Between 0 0 Figure 5 60 Example of ptitude Observer Buffer settings Name identifies this particular settings of the buffer interface Date It allows to select a time or date from the pre defined list to be used with Backward or Forward value for the end date range e From specifies the start date and time e To specifies the range of end date and time None Now specifies the current date and time for the end range Time a specific time to define the end range Backward specifies a date range backward in time relative t
200. pictures like drawings digital photos etc Refer to Process Overview in System Configuration section Machine parts allows to compose the selected machine using different machine parts Refer to Defining Machine Parts in System Configuration Report allows to generate documents that contain text based information as well as diagrams and pictures of selected data Refer to Report under File in Menu Items section Event log displays all the events of the selected machine of IMx M or IMx R device Refer to Event Log under On line in Menu Items Maintenance planner allows to keep track of maintenance tasks Refer to Maintenance Planner in System Operation section Copy allows to copy the selected machine to a new location Refer to Machine Copy Wizard in System Configuration section Paste allows to paste a sub machine or a measurement point that you just copied in the selected machine Delete allows to delete the selected machine Tools allows to configure the following settings Update graph settings of many measurement points at the same time based on the current selection in the hierarchy or for the database Generate machine template opens a dialog for generating a Machine template of the selected machine Configure allows to configure the following functions for the selected machine Trend automatic alarm levels Diagnose automatic alarm levels Recalculate diagnoses Disable all measurement points
201. ponding virtual channel in CM part must have the scale min and max set up as 300 and 300 In order to set up an IMx M CM analogue virtual channel DC GAP set E U to mV and Sensitivity to 1 e Name of the channel can be used as a reference by the software e Enabled indicates the status of the channel whether it is enabled or disabled e Isolated is used for external signals such as measuring process parameters for MasCon16 device s channels 15 and 16 In order to perform this function uncheck ICP Current feed then check Isolated e ICP Current feed Indicates whether you would like the MasCon16 device to drive the probe or not normally on accelerometers only For MasCon48 devices this is done by dip switches on each channel on the vibration analogue card ptitude Observer User Manual Observer 9 1 Revision J System Configuration Creating IMx MasCon Devices and Channels Analogue Channels Sensor type is a sensor signal type which can be selected from the drop down list E U Engineering Unit is a measurement device which can be set only if sensor signal is set to Other e g a pressure sensor Trans angle is the angle of the sensor mounted on a device relative to twelve o clock Current shunt is available for Mx W device s channel 15 and 16 IMx T IMx S and IMx M If a resistor of 220 ohm is added to a channel input check this field in order to display the correct input device of a particular channel
202. ptitude Observer measurement points Dynamic based measurement points produces spectrum and or time waveforms Dynamic is a measurement of a dynamic signal such as vibration sensors AC current or any other dynamic signal that could change at a frequency faster than 0 1 Hz Dynamic Envelope is a measurement of repetitive frequencies It is used to detect and monitor repetitive frequencies such as bearing failure detection and monitoring Dynamic Process is a measurement similar to the Dynamic measurement point but instead of a vibration signal it uses an analogue sensor for the measurement For example it can be used for motor current analysis Dynamic AEE is a measurement of a acoustic emission signal Time Waveform Analysis is a measurement of the time waveform and applies algorithms such as crest kurtosis and skewness in order to detect failures Time Waveform Analysis AEE is same as Time Waveform Analysis but used for acoustic emission signal Harmonic is a measurement of a dynamic signal with vibration sensors or Eddy Current Probes such as vibration monitoring on turbines SEE spectral emitted energy is designed especially for measuring high frequencies for Microlog CMVA series only lt requires a special sensor kit ptitude Observer User Manual Observer 9 1 Revision J 4 49 System Configuration Setting up Measurement Points and Alarms Trend based measurement points Process is a measurement of
203. r 9 1 Revision J Menu Items Database Alarm Group Alarm Group Alarm group is used as an identifier for measurements that have a strong relationship towards one another For example if you have created an alarm group with six measurement points then any alarm on any one of the six measurement points can force the storage of data for all six measurement points of the alarm group The following display shows a created alarm group and the measurement points belonging to that group Database SKF WindCon z Alarm group Name Alam interval for members Min time s fo Turbine G1 Static 32 New Edit Delete Members Meas point Location al Speed SKF WindCon Mx 1 Speed Ham 12 SKF WindCon Mx 1 Speed Harm 34 SKF WindCon WMx 1 Speed d Ham 56 SKF WindCon IMx 1 Speed F Ham 78 SKF WindCon IMx 1 Speed Harm 910 SKF WindCon IMx 1 Speed Ham 1112 SKF WindCon IMx 1 Speed 3 Ham 1314 SKF WindCon IMx 1 Speed Harm 1516 SKF WindCon IMx 1 Speed SCL 12 SKF WindCon IMx 1 Speed SCL 34 SKF WindCon IMx 1 Speed SCI_56 SKF WindCon Wie 1 Sneed ES Figure 6 89 Example of ptitude Observer alarm group You can create a new alarm group and edit or delete an existing alarm group You can also add a new measurement point to the selected alarm group or remove an existing measurement point from the group 6 162 ptitude Observer User Manual Observer 9 1 Revision J Menu Items Database Alarm Group
204. rameter during the measurement Use this setting to force the system to take data when the operating mode of the machine is stable which may be the only way to capture the accurate and trustworthy data This is an important setting when performing a process measurement point on varlable speed machines This is not important for a speed measurement point It depends on your application e g for measuring bearing temperature this function can be deactivated by setting it to 0 Average is a type of averaging which the system has to perform on the data before they are stored to the database For example for FFT if you select frequency for the average and 4 for the number the MasCon WinCon device will take 4 FFT s average them and store the averaged FFT in the database If you select time synchronous for average the device will filter out vibrations that are not synchronous to the speed of the shaft where vibration data are taken Note that the trigger speed measurement indication Trigg has to be set in the Simultaneous measurements of the general tab settings Number is the number of averages that should be taken for the specified average type selected from the above Save allows to decide which format of the captured data should be stored in the system Storing time waveform only is the recommended setting Observer will on the fly calculate and display the FFT based on the time waveform when clicking the spectra button Interval is
205. raph Settings iii iii 5 97 Tools for Graph Displayet earna a il lata jocs 5 100 Gp trassetedsis estideetis i ia aa ete Sel niles nists 5 102 Time WVETO MT tei terrenet iaa a a e dec Ed 5 103 PHASE E E E A E E E E E E 5 104 A O 5 105 EBRE 2 SIATE tebeantes E A T A tabled codebase tibenadic 5 106 MOP A AA AAA reer ec 5 107 A 5 108 Profile aii aaa 5 109 Gear Inspector sitial id 5 110 MEA A iii 5 111 Podere aton e a ea e te de dd 5 112 A A 5 112 M lti trend ese stadecddccie ouieasszasedicnagaiabaccadedshl venta sleelcadusateapidedacaasintaccendesiwcnieed 5 113 A enact E A AST 5 114 Polaca IEA E E AAE IR TEE ES a TE 5 115 Shaft Centerline isre a di i 5 116 ATA A E A eed 5 117 Combination Plots uirinn la c 5 118 A O aiaia ea aaa a iin iein 5 120 ORES EATE E PE OE A AEA E AE A ATE E E N 5 122 Configuring Noteniiiaa a didas 5 123 EVE tad id 5 124 Editing an Existing Event Case Report e mcccnomccnnocnnonoonnnonacnnnncnnrnonnnnnananonnnannns 5 126 Maintenance PIANNET a ci cccscssinccscbedecd unisaidie inatenga iai danino 5 128 ptitude Observer User Observer 9 1 Revision J Manual TOC 5 Measurement Dat a eas ea 5 129 Menu Items 6 130 A O 6 130 Manage Databases satis iaa id added 6 130 Add External Databases dea ects 6 132 Remove External Database item iia aii 6 132 REPO ee east terie aana bodies ion a a Aar E Macasag sobs Eaa bated a AREE dees 6 133 A O 6 134 Et A is dol EL 6 134 A
206. re 6 101 Example of ptitude Observer add a relay card To create or edit a relay card enter Number Name Type and Enabled status for the relay card 6 176 ptitude Observer User Manual Observer 9 1 Revision J Menu Items On line Balancing Balancing On line balancing is a tool for multiple plane balancing designed especially for turbines However it is just as efficient to use on smaller machineries The on line balancing in ptitude Observer uses IMx MasCon16 48 devices harmonic measurement points as the data collector because of its supreme simultaneous measurement capability On line balancing supports maximum of 15 planes over 5 states with up to 40 measurement points For a successful balancing first the phase must be stable and it should be possible to make changes on the actual speed range under run up down group Polar plot can be used to determine if the phase Is stable If the phase is not stable the problem is not only unbalance but also can be something else Therefore in such case further normal analysis of the machine is required On a horizontal machine with laying shafts the best balancing direction is the weakest direction In order to have an accurate balancing analysis of a machine it should be certain that the problem lies within the unbalance characteristics The following are some of the examples of unbalance characteristics Bearing problems Bearing slip Misalignment Weak foundation Balancing int
207. ription of the measurement point All names are saved and can be used by other measurement points if desired e Enabled indicates the status of the measurement point whether it is enabled or disabled NOTE The maximum active measurement points per 16 channel device also apply to an IMx M Slot is 100 points The maximum active vibration measurement points per 16 channel device also apply to an IMx M Slot is 80 points e Description is any additional comments for the current measurement point e Point Type is the measurement point selected along with the device type e MPA code is for Microlog USB and 1 channel communication only It is used to group measurement points together e Sensor type is for Microlog only It can be accelerometer displacement probe or velocity sensor Note that once the sensor type has been set it cannot be changed e No of directions is for Microlog only 4 52 ptitude Observer User Manual Observer 9 1 Revision J System Configuration Setting up Measurement Points and Alarms General Tab Use TriAx sensor allows the use of a tri axial sensor when measuring single axis measurement points Select which axis to use for the point Orientation is a suitable sensor orientation Meas interval is for Microlog and Marlin only It is the measurement interval that the point should be measured by personnel If this time is exceeded the system will generate an alarm Location method is for Marlin
208. rite already existing channel settings on an existing device lt can however create a new IMx MasCon device for you Therefore you do not need to create an IMx MasCon device before you launch the wizard The following data can be copied Machine specific information Machine parts IMx MasCon devices Channel configuration Online measurement points Offline measurement points Diagnosis Process overview information Measurement group To get to machine copy wizard perform one of the following options Click right mouse button on a node in the hierarchy view and select Add Machine then select From machine template Click right mouse button on a node in the hierarchy view and select Add Machine then select Existing machine Select a machine in the hierarchy view first then click Edit on the toolbar and select Copy node ptitude Observer User Manual 4 75 Observer 9 1 Revision J System Configuration Machine Copy Wizard Utilization of Machine Copy Wizard 1 Selecting data to copy Machine Copy wizard Selecting data to copy Select which machine you wish to copy and the destination where the new machine should be created EDO Existing machine Machine name v90 Machine location SKF WindCon SKF Wind power Windcon V90 Destination New machine name New machine code New machine location Data a A AS s Machine pats E Meas points Y Process ov
209. rline determines if the shaft centerline plot should be visualized in circular or square format Filled markers shows the point markers as filled or transparent in some diagrams True shows the point markers as filled in some graphic displays False shows the point markers transparent in some graphic displays Use modern icons shows modern icons if checked True Otherwise older version of icons are displayed True displays modern icons False displays older version of icons 6 138 ptitude Observer User Manual Observer 9 1 Revision J Menu Items Edit User Preferences e Use large icons shows bigger icons if checked True Otherwise the system displays small icons e Time precision sets the detailed level of the second fraction of the time in the plots e Plot type for linking sets the plot type that should be opened when clicking on a measurement diamonds in the trend and diagnosis plot e Background allows to specify the background image of graphs The default is watermark image Diagram colors Tab Here are all the available options for different colors in the graph You can change everything from the background color of the graph to the color of tools Toolbar buttons Tab Here you may choose only certain toolbar buttons to be displayed Properties This interface provides properties of the selected tem in the hierarchy view system view or workspace view e For measurement point propertie
210. rom IMx M Rack Get PrM Config interface allows to store the Protection configuration file from one of the Portection modules in an IMx M Rack and store it to the local hard disk drive The Rack needs to be connected via TCP IP to perform this action Importing IMx M Configuration File to Observer Database Importing IMx M configuration file is done on the database level which means that only IMx M Master Project files mhf can be imported It is not possible to import individual Slot configuration files Right click on the database of the Protection view and select Import Select a IMx M Master Project file stored in the hardware drive Creating Protection Measurement Points Creating Protection measurement points are done on Slot level Select a Slot from the Protection view then click on Create PrM Measurements button The ptitude Observer system will create corresponding protection measurement points for the selected Slot based on the IMx M Configuration file Synchronizing Downloading Protection Configuration File In order to download the configuration file from the Observer database to the IMx M Rack clik on Synchronize PrM Config button Important System must be in disarm mode before Protection configuration synchronization procedure takes place Ensure to read Protection Configuration Update chapter in IMx M User Manual thoroughly and understand it If the synchronization is successful the IMx M Rack will restart wi
211. s of diagrams for the same measurement The individual parts of the combination plot often works cooperatively so once one part is zoomed the other is also zoomed making it easier to follow the same type of data from two or more types of displays The following combination plots are available e Spectra Time waveform Spectra Phase Trend Spectra Diagnosis Spectra Trend Spectra Time waveform this plot follows the cursor on the trend plot and displays the closest FFT and time waveform e Diagnosis Spectra Time waveform this plot follows the cursor on the diagnosis plot and displays the simultaneous FFT and time waveform The below is an example of spectra and time waveform combination plot a frmSpectrum Spectra Vertical SKF WindCon SKF Wind power Windcon TF138 A M Bearing 1500 Vert A1 4 475 Hz 0 02665 m s2 Rms 4 18 2005 8 50 14 PM Speed 1511 459 cpm Process 636 0215 0 05 0 045 0 04 0 035 0 03 M Bearing 1500 Vert A1 0 075 Time waveform Vertical SKF WindCon SKF Wind power Windcon TF138 A M Bearing 1500 Vert 667 20703 s 0 2624 m s2 4 18 2005 8 50 14 PM Speed 1511 459 cpm Process 636 0215 m s2 10 30 40 Seconds M Bearing 1500 Vert A1 Figure 5 58 Example of ptitude Observer Spectra and Time waveform combination display 5 118 ptitude Observer User Manual Observer 9 1 Revision J System Operation Graphic Displays and Tools Combination Pl
212. s refer to Setting up Measurement Points and Alarms in System Configuration e For machine properties refer to Machine Properties under Creating IMx MasCon Devices and Channels in System Configuration e For node properties refer to Node under Building a Hierarchy View in System Configuration e For database properties refer to Add External Database under File in Menu Items Optitude Observer User Manual 6 139 Observer 9 1 Revision J Menu Items Show Show Show menu provides the following interfaces Tree view Filter Hierarchy System Workspace Diagram View Protection View Alarm list System alarm Maintenance Overview Message Center Refresh Dashboard Tree View Tree view shows or hides the tree view window containing the hierarchy view system view workspace view Diagram view and Protection view Refer to Tree View in System Operation Hiding the tree view window provides more area available for graphs on the screen a Sie 1 den a os This interface can also be accessed by clicking on Show treeview icon on the toolbar 6 140 ptitude Observer User Manual Observer 9 1 Revision J Menu Items Show Filter Filter This interface filters the hierarchy view according to the set of rules specified by users Point Filter x Point Filter Name Myfter Type IMx MasConGearinspectr y Status ha Description Enabled None C Yes C No Tag DOE Needs review
213. s the status from a hardware point of view which is based on IMx MasCon devices sensors and measurement points It shows the communication status as well Workspace is the hierarchy view of user selected machine s It is an individual work space to keep track of only the machines for which the user is responsible A workspace can only span over one single database Diagram view is the hierarchy view of all the saved settings of graphic diagrams including selection of measurement points as well as buffer settings This is to be able to have predefined views of the data Protection view is the hierarchy view of all the Protection devices and their status It is also possible to synchronize the settings with the Protection device 5 82 ptitude Observer User Manual Observer 9 1 Revision J System Operation Tree View Hierarchy View Hierarchy View To get to the hierarchy view screen e Click on Show on the toolbar select Tree view to open up the tree view window then select Hierarchy view e f the tree view window has been opened already select Hierarchy view directly from the tree view window The hierarchy view displays each object s status with small icons Status indication level is Inherited upwards in the hierarchy view For example if a measurement point on a machine has an alarm status all the levels above this machine will also be upgraded to an alarm status The status in the hierarchy view is updated each time
214. s to get the status of the connected Microlog or Marlin Status gt Marlin Database Observer840_On_CMC2 Status Download Upload Communication Status Parameter Value Intemal clock 2010 06 10 13 27 05 Firmware 4 000 Hardware 4 600 Free RAM Battery 8v Serial no Figure 6 105 Example of ptitude Observer Marlin status The status setting shows information retrieved from the Microlog or Marlin such as firmware version current date time total number of points stored currently total amount of free memory temperature inside the device and battery voltage e Status retrieves the status from the connected Microlog or Marlin e Clear removes all routes and data from the memory of the connected Microlog or Marlin e Reset deletes all the data from the existing routes on the connected Microlog or Marlin For Microlog USB communication only the clock is set to the PC internal clock 6 182 ptitude Observer User Manual Observer 9 1 Revision J Menu Items Portables Microlog Marlin Download Microlog Database Observer840_On_CMC2 Status Download Upload Communication Download Hierarchy Workspace S L SKF WindCon S SKF Wind power a windcon 1F138 4 DOS Microlog Speed v Hierarchy name Hierarchy Download Figure 6 106 Example of ptitude Observer download routes to Microlog The download setting is used to download routes to the Microlog or Marli
215. se button then select Properties e Double click on the measurement point e Click on Edit on the toolbar then select Properties e Click on to Properties icon on the toolbar To delete a measurement point 1 First select a measurement point to be deleted from the hierarchy view 2 Click on the right mouse button then select Delete You can also use any one of the following wizards to help you with add and edit measurement point processes e Machine copy wizard Refer to Machine Copy Wizard in System Configuration e Multiple point update wizard Refer to Multiple Point Update Wizard in System Configuration 4 48 ptitude Observer User Manual Observer 9 1 Revision J System Configuration Setting up Measurement Points and Alarms Measurement Points Different types of measurement points are available depending on the selected device The following figure is an example of measurement points available for an IMx device in ptitude Observer Nea maar par E Faar paini hoas Cen bre deine erare band meirant prani aah D a ra A 16 2 e e i Maori E Dyna Dira Dyna Drui ARE Tira Tras Errar Torsa Brea Aralar a a Mr Hemra Pe edkr daia collector Teed buried neuer pacers y Y Peca Shah Mirig Mar n d Running har D Tn ragain cantada ther ay far 5 iP pa 8 8 8 Y Y Fon AA Correr Cards mme id past Taty Tras er CAC Serer Tiere Figure 4 22 Example of
216. sification Assessment O Speed on High side Figure 5 63 Example of ptitude Observer Report e Machine displays the machine for which this event case report was created e Date Time sets the creation date and time of the report e Status indicates the status of the report Options are In progress To be approved Rejected and Released When a report status is set to Released the report can t be edited any more e Report number is an automatic number incremented by 1 each time a new report is created for the specific event case e Description is a custom description that can be entered for the report e Assessments lists all assessments created for the report A new assessment can be added Existing assessments can be edited or deleted 5 126 ptitude Observer User Manual Observer 9 1 Revision J System Operation Event Cases Editing an Existing Event Case Report Assesment Assesment Classification 1 v Machine part Speed on High side Assessment Recommendation Figure 5 64 Example of ptitude Observer Assesment v Classification is used to classify the severity assessment in a scale from one to ten v Machine part can be selected from the existing machine parts of the machine if this assessment applies to a machine part It is also possible to enter a free text machine part v Assessment is the data analysis detected or description of the event
217. surement point Topology shows the frequency versus the time or speed and the amplitude color coded This is a useful display to study transient data like run ups or coast downs A topology plot is similar to a 3D plot but the user is looking at the data from above With the color encoding it is easier for the eye to identify patterns in the data As in other displays the data can be recalculated on the fly to display data in acceleration velocity or displacement and in the depth of date time speed or process Just like in 3D plot even spreading of date time on the z axis is also possible The below is an example of topology display of binary data type with no overlay data and no live data MT fi 1 11 i Figure 5 47 Example of ptitude Observer Topology display ptitude Observer User Manual 5 107 Observer 9 1 Revision J System Operation Graphic Displays and Tools Orbit Orbit SY l S Use this icon to generate an orbit display of a selected measurement point or multiple selected points when available An orbit display is one of the best ways to analyze shaft movement By combining phase and amplitude data from two sensors and plotting them together it is possible to determine unbalance and alignment problems ptitude Observer uses two measurement points to generate an orbit display For the best result the measurement points must be measured simultaneously or measured with a trigger pulse It is
218. t 1500 Hor A5 i 8 Gbox Out 1500 Axial AS Gen DE 1500 Axial A8 Gbox In 1500 Vert Down 44 i 8 Gbox In 1500 Vert Down Env2 44 Gbox Out 1500 Hor Env3 A5 9 Gbox Out Axial 1500 Env3 A6 Gen DE 1500 Rad A7 Gen DE 1500 Rad Env3 47 Lm Gen DE 1500 Axial Env2 A8 Figure 5 39 Example of ptitude Observer workspace The configuration of workspace can be done by selecting Workspace from Edit menu Refer to Workspace under Edit in Menu Items section ptitude Observer User Manual Observer 9 1 Revision J System Operation Tree View Diagram View Diagram View The Diagram view is a list of saved diagram boxes Diagram boxes are predefined views of the data which contain specified graphic settings including selection of measurement points as well as buffer settings To open Diagram screen e Click on Show on the toolbar then select Diagram view e f the tree view window has been opened already select Diagram directly from the tree view window Below is an example of a Diagram view Do pa pa temes eee M finas gt gt a j 2 A P ue 2 DIOBO A E amp to 20 010 0 04 aa 10 EN ES 00 0 ET s b Al A 16855455 SESERBUBRESE One Bud Ants ae R eee tee Bertoni OO Barr a tees y ST li e Vee Poet 3 Geert IDA a i LID wee or o woman on ate a 7 ou om Lm y meg
219. tabase to which alarm and relays options are to be applied e Auto alarm value is the setting for the diagnosis auto alarm It sets the alarm level between 3 default level and 10 conservative level for the auto alarm in the diagnosis graph 3 Default sets the auto alarm level fairly close to previous measurements 10 Conservative sets the auto alarm level to high e Relay configuration is possible if the ptitude Observer Monitor computer is fitted with a relay interface card it allows to configure the system to open relays on alarm and warning status This is if any warning or alarm has been generated for the entire database ptitude Observer User Manual 6 173 Observer 9 1 Revision J Menu Items Database Delete Data Delete Data Delete data interface allows to delete measurement data based on certain criteria or filter settings for the selected database Data Miner The data miner interface is a statistical producing facility that allows for complex data mining from the Observer database which can be shown in three different formats table trend and bar This interface makes it possible to compare measurement points machines or even specific diagnosis between each other Expert users can also design their own statistical views and if approved the statistical views can also be shared with other Observer users around the world through SKF Online Repository SKF OR In order to create your own statistical v
220. te allows to delete the selected item from the current working area e Properties allows to configure the measurement point how to be displayed by editing the following fields Name name of the selected measurement point which is displayed when choosing Name as Text Short name user configured name which is displayed when choosing Short name as Text Type is the display type that determines which type to represent the data The options vary depending on the type of measurement point Text determines how the text of the item in the process overview will be displayed Name displays the full length of the measurement point Short name displays the customized short name for the measurement point None displays no name Instead it displays the icon Width allows to enter the value of width manually instead of changing it with the mouse Height allows to enter the value of height manually instead of changing it with the mouse Show values determines which components of the measurement point should be displayed in graph Visible is used to display the selected measurement point or not to display 4 74 ptitude Observer User Manual Observer 9 1 Revision J System Configuration Machine Copy Wizard Machine Copy Wizard The machine copy wizard is a guide that helps you to copy a machine with all the machine information from an existing machine to a new machine Note that the wizard cannot overw
221. ted communication through TP cable fiber optics two lead copper wire wireless LAN GPRS ISDN etc The system works in a separate network as well as in an existing factory network Internet can also be a link between IMx MasCon devices and the ptitude Observer Monitor as well as between the ptitude Observer Monitor and ptitude Observer clients ptitude Observer Monitor el GE ani Antennas i Internet L oe Building to building bridges Mobile Phone Network a MasCon16 MasCon48 GPRS Router IMx MasCon16 MasCon48 IMx MasCon16 z MasCon48 Soe IMx Figure 1 3 SKF ptitude Observer communication possibilities Remote Monitoring Possibilities The ptitude Observer system allows to be close to the vibration analysis expert With a ptitude Observer Monitor and an Internet connection it is possible to set up ptitude Observer clients anywhere in the world Gptrrede Obosmer diente vide Obeemer sde eds Meden Bw Botts de Odrerve chent VPM Gateway eptreesty Mets da Oboe ree Morbo Cette ee E Mail Observer Monitor Figure 1 4 SKF ptitude Observer remote monitoring possibilities IMx MasCon devices are linked to a network which is connected via a modem or LAN to a ptitude Observer Monitor connected to an SQL or Oracle database The ptitude Observer Monitor in turn can be connected to e g a LAN network Several ptitude Observer clients may be linked to this network The ptitude Obser
222. ted note e Receiver allows to specify which group of users to receive the note Groups are created by Receivers interface in Libraries under Database e Comment is the information text or content of the note e Signature is the person who created the note ptitude Observer User Manual 5 123 Observer 9 1 Revision J System Operation Event Cases Event Cases y F Event cases can be created in the Observer system in order to keep track and document reports information and history regarding a specific event tied to a specific machine New event cases can be created on machine level e Right click on a machine from the hierarchy view then choose Add Event case e or select a machine click on the Event cases icon on the tool bar then click on New button on the Event cases window The event cases window displays the event case reports for the selected object in the hierarchy Although event cases are machine specific if an object of machine level or above is selected then all event case reports under that object will be displayed Reports can be created to inform a customer or a department of actions that need to be taken care of regarding the event The reports are stored to the event case and can be reviewed and followed up at a later time The report is editable until the report is released by setting the status of the report to released Each report in the event case can produce a document at any time in w
223. th the new IMx M Protection configuration file Ensure that there are no circuit faults before the IMx R Rack can be armed again Wait at least 30 seconds before you arm the IMx R Rack 5 94 ptitude Observer User Manual Observer 9 1 Revision J System Operation Tree View Protection View Arm This interface is used to arm the IMx M Rack Disarm This interface is used to disarm the IMx M Rack Important In order to perform Arm Disarm the user needs to specify the PIN code which is currently in the Slot configuration in the Slot The default PIN code is 0000 ptitude Observer User Manual 5 95 Observer 9 1 Revision J System Operation Graphic Displays and Tools Graphic Displays and Tools There are a number of graphical displays available in ptitude Observer to facilitate data analysis The accessibility of graph display depends on the selected item To get to a graphic display screen 1 First select a measurement point a sub machine or a machine in the hierarchy view system view or workspace 2 Select one of the following graphic display icons on the toolbar Or if a measurement point has been selected you may click on the right mouse button on the measurement point then click on Diagram and choose a graphic display Spectra Time waveform O ke 8 fij LS a U F mM Wn D T v ce o 09 J o e e Topology Orbit Profile Gear inspector Trend a ozz at FEE 8 EE
224. the workspace contents drag an element from the hierarchy view to the workspace on the location where the node should be positioned then drop it Available Interfaces for different level of nodes are the same as in Hierarchy View Copy Node Copy node Ctrl C interface allows to copy a selected node in the hierarchy to memory If a machine or a submachine is selected the machine copy wizard will start and guide you through the copy process Refer to Machine Copy Wizard in System Configuration Paste Paste Ctrl V interface allows to paste the copied measurement point from the memory to the selected location in the hierarchy view Notes This interface displays a list of notes for the selected object in the hierarchy Refer to Notes in System Operation Event Cases Event cases can be created in the Observer system in order to keep track and document reports information and history regarding a specific event tied to a specific machine Refer to Event Cases in System Operation section 6 136 ptitude Observer User Manual Observer 9 1 Revision J Menu Items Edit User Preferences User Preferences User preferences interface is where all the customized settings for the individual users are set General Diagram Diagram colors Toolbar buttons Show alarm notification E Play alarm signal upon alarm Automatic updates Process overview update rate Event Log update rate sens Seconds Signature IS Hars stoneson_ a
225. thers useful information for the user has been implemented ptitude Observer 9 1 Major features It is now possible to use SKF Acceleration Enveloping for order tracking measurement points in IMx A simplified user interface has been added for setup of Transient measurements AEE has now been added as engineering unit and measurement points and incorporated to diagnoses Measurement point settings have been reorganized to make the user interface of measurement point setup more user friendly It is now possible to use SidebandPart1 as diagnostic title when creating rules This gives the possibility to have automatically extended titles when attaching diagnoses System alarms are generated if the maximum number of measurement points for an IMx has exceeded Possibility to use SQL Server replication has been tested and routines for this have been added IMx devices have now a possibility to set user defined end frequencies for the frequency range Alarm events are now included in the export and import routines Support for IMx B device has been added The setup of Shaft centerline point is now more intuitive Spectra data can now be calculated directly from time waveform This means that there is no need for storing FFT data if no averaging is done in frequency domain Alarm schedules have been added to measurement point setup to make the system possible to store more data when in alarm The transient measurements can now ha
226. time or all at once One by one updates only the current measurement point that you are editing All updates all the measurement points with the edited value 4 80 ptitude Observer User Manual Observer 9 1 Revision J System Configuration Multiple Point Update Wizard 3 Finish This is the final confirmation to proceed with updating measurement points When you click Finish the wizard starts saving the configuration and you cannot undo any changes made 4 Summary Summary gives you the list of how many measurement points were updated and how many measurement points could not be updated If there were any measurement points could not be updated the reasons are stated in the Details section ptitude Observer User Manual 4 81 Observer 9 1 Revision J System Operation Startup View Startup View 5 System Operation ptitude Observer remembers each user s departure view and brings you back to where you have left from the previous session However if you are a new user after a successful logon the ptitude Observer will start with the hierarchy view in the tree view window as the default view Tree View Tree view window consists of the following types of user interfaces Hierarchy view shows machines and their measurement points in a tree structured hierarchy with the corresponding status for each object The hierarchy can display data from several databases at the same time System view show
227. tin athe Ge ARO PEER cda 6 186 Cascade Ai AAA es el IA EEE AAA LIE 6 186 Mile Vertically cosita intacta thus E AES EENAA 6 186 Tile Horizontally eiere a a E A ATSA 6 186 Close Alli A E AT 6 186 O 6 187 Contents A a Gl a DA ala 6 187 Ea aii ia ia deat 6 187 Enter New License Key isis iii 6 187 News TM Observar tad did 6 187 SKF Online Repository miii dida 6 188 SKE CMG Homepage sts inside osas 6 190 SKF Reliability Foru Mei ii a 6 190 ADO mere T reper er Perper err reer ec eereseee crea cerereeer er reeeeere tere 6 190 ptitude Observer User Manual TOC 7 Observer 9 1 Revision J Version History 7 191 ptittide Observer LD id Sheen 7 191 Optitude Observer SU td Ia a As 7 191 ptitudeObsenver A A ae 7 193 ptitude Observer B2 oaro vacate iets dd 7 194 Optitude Observer G3 eaten suisse EAA la ia 7 195 ptitude Observer Brerna a a AA cack ssndacde shan haces saben taesa daa scales 7 197 ptittide Observer a dic 7 198 ptitude Observer FU retea da tenis eee 7 201 ptitude Observer Vu e a iia i 7 202 TOC 8 ptitude Observer User Manual Observer 9 1 Revision J Introduction 4 Introduction ptitude Observer is a core platform in a family of reliability software applications that work together as SKF ptitude Monitoring Suite It is for data management and analysis of measurement data for condition monitoring internationally acknowledged for its versatility performance and user friend
228. to be added 2 Click on the right mouse button select Add then Machine New machine O Blank machine E From machine template S Rvs Existing machine y Figure 4 7 ptitude Observer create a machine e Creating a machine from scratch Click on Blank machine then Ok Enter the machine properties in General and Extended Information screens Refer to Machine Properties under Creating IMx MasCon Devices and Channels in System Configuration e Creating a machine from a template Click on From machine template Choose a template from the drop down list Clicking Ok will bring you to Machine Copy Wizard to help you with the process of copying a machine to a new location Refer to Machine Copy Wizard in System Configuration e Creating a machine by copying an existing machine Click on Existing machine and select a machine from the displayed hierarchy view Follow the instructions at Machine Copy Wizard section in System Configuration ptitude Observer User Manual 4 21 Observer 9 1 Revision J System Configuration Building a Hierarchy View Sub Machine Sub Machine Sub machine is a part of a machine Creating a Sub machine 1 First select a machine in which a sub machine is to be added in the hierarchy view 2 Click on the right mouse button select Add then Sub machine Properties Properties Name P e Description Figure 4 8 ptitude Obs
229. to hierarchy icon on the toolbar Use New Edit or Delete option to configure notes 5 122 ptitude Observer User Manual Observer 9 1 Revision J System Operation Notes Configuring a Note Configuring a Note Note Es Properties B Location Turbine Turbine Turbine Turbine Turbine G1 Title Alignment X Add Date 10 4 2006 Ey 7 04 23 Ah Priority None EA Picture Hyperlink Receiver Y lt All gt Content Comment Turbine aligned Signature 2 Signature Demo OK Cancel Figure 5 61 Example of ptitude Observer Notes settings e Location indicates for which machine or measurement point the note is being configured e Title allows to categorize the notes and select which a type of note To add a new title to the system click Add next to the title which brings up the new note title screen where you can enter a title e Date sets the date and time for the note When creating a new note the current date and time is set as default However the date and time may be altered if you are registering an event from the past e Priority allows to categorize the notes in severity level e Picture is a picture in the database associated with the note e Hyperlink is a document or webpage associated with the note where more information regarding the note can be found This document or hyperlink can be accessed from the notes list window by clicking the hyperlink of the selec
230. try a new firmware on one single unit or a few units It enables you to try the new firmware and evaluate the features before applying it to all on line units in the database This feature should only be used in conjuction with SKF Personel If a private firmware is enabled for a specific online device the private firmware will have priority over the normal firmware C Enable Private Firmware y Name Type Enabled O 4411 WindCon1 MasCon16 No Figure 4 13 Example of ptitude Observer Private Firmware Private firmware can be used in order to try a new firmware on a single device or a few devices It is mostly used to try out new firmware progressively before applying the firmware across all devices or to try features specifically designed for specific application Private firmware overrides normal firmware In order to utilize this interface Enable Private Firmware box has to be checked Once the box is checked private firmware settings can be added or deleted for the selected online devices Optitude Observer User Manual 4 29 Observer 9 1 Revision J System Configuration Creating IMx MasCon Devices and Channels Analogue Channels Analogue Channels Analogue channels interface provides a list of all the initiated analogue channels of the selected device along with their settings It also allows to initiate new analogue channels and edit copy and delete any existing analogue channel from the list A
231. tude Observer Setting the shaft centerline cold gap is done on the measurement point properties of the shaft centerline point The below is an example of shaft centerline display of trend data type and live data but no overlay data in a circular format Shaft centerline can also be displayed in a square format The selection is set at the User Preferences setting PAIDOS IA PH E ile Oy TA pa PERSA heft panterieg Durban Reed or os ar T arera Geeereior E ranma biha gt E Ro out ih Sac 3 Figure 5 56 Example of ptitude Observer Shaft centerline display 5 116 ptitude Observer User Manual Observer 9 1 Revision J System Operation Graphic Displays and Tools Airgap Airgap ae Use this icon to generate an airgap display of a selected measurement point Airgap displays the gap for each sensor the eccentricity and ovality of the machine It is done by measuring the air gap between the stator and the rotor in a generator of a hydro power station for example The below is an example of airgap display E E e hie A A e Pa Pr T 0 a E Ba ieee ee ee ee E Figure 5 57 Example of ptitude Observer Airgap display ptitude Observer User Manual 5 117 Observer 9 1 Revision J System Operation Graphic Displays and Tools Combination Plots Combination Plots LA Use this icon to display a list of available combination plots in the system Combination plots show two or more type
232. tude Observer Monitor restart indicates that the ptitude Observer Monitor software has been closed normally e MasCon restart indicates that the IMx MasCon device has been restarted normally 4 26 ptitude Observer User Manual Observer 9 1 Revision J System Configuration Creating IMx MasCon Devices and Channels Measurement Points Measurement Points Meas points function allows to change the enabled status of measurement points from the list of all measurement points available on the selected device This is a useful function especially for MasCon48 Portable system to be able to change the status of measurement points using the same channels Meas point 7 a Blade Monitoring 1500 A2 SKF WindCon SKF Wind power Windcon TF138 A 7 8 Gbox In 1500 Vert Down 44 SKF WindCon SKF Wind power Windcon TF138 W Gbox In 1500 Vet Down Env2 44 SKF WindCon SKF Wind power Windcon 7 8 Gbox In Planet 1500 Env2 A3 SKF WindCon SKF Wind power Windcon TF13 7 8 Gbox In Planet 1500 Vert A3 SKF WindCon SKF Wind power Windcon TF138 7 8 Gbox Out 1500 Axial A6 SKF WindCon SKF Wind power Windcon TF138 A G Y 8 Gbox Out 1500 Hor A5 SKF WindCon SKF Wind power Windcon TF138 A G 7 8 Gbox Out 1500 Hor Env3 A5 SKF WindCon SKF Wind power Windcon TF138 Y 8 Gbox Out Axial 1500 Env3 A6 SKF WindCon SKF Wind power Windcon TF13 7 8 Gen DE 1500 Axial 48 SKF WindCon SKF
233. tus for measurement points is listed in Priority List of Status under Tree View in System Operation chapter As an example if you have Vector Alarm and Trend Alarm at the same time then the Alarm icon O will be showing along with the numeric value of 8449 8449 1 Ok 256 Trend Alarm 8192 Vector Alarm Numeric Description Icon Value 0 Unknown indicates that the measurement data are missing for the measurement point and the system is unable to determine the condition of the machine This is the default status for new measurement points 1 Ok indicates that the measurement point has no known problems Data coming in are valid and reside within the specified active range and measurement range Alarm levels are specified for the measurement point and the data are within the specified alarm and warning levels 2 Not measured indicates that the measurement data are missing for the measurement point and the system is unable to determine the condition of the machine This is the default status for new measurement points 4 Low Warning acknowledged indicates that this measurement point has received values that triggered a low warning and the status has been confirmed After new data have been stored in the database the measurement point will release the warning status High Warning acknowledged indicates that this measurement point has received values that triggered a high warning and the status has been confirmed After new
234. ude Observer initiate a digital channel e MasCon is the name of the selected IMx MasCon device not editable e Number is a unique number for the physical input channel or virtual channel on the device you would like to configure Virtual channels are 3 digit numbers v The correspondence between MasCon16 Modbus virtual channel numbers and data can be found in Modbus with IMx MasCon16 User Manual v The correspondence between IMx M virtual channel numbers and data is as the following table Note that if this device s External communication type was set to Protection when initiating the device then this functionality is not available Protection Part Channel Digital Virtual Channel Number e ame M Table 4 2 Mapping of IMx M Protection part channels to digital virtual channels e Name is the name of the channel which the software can use as a reference e Enabled indicates the status of the channel whether it is enabled or disabled Enabled status activates the channel for measurement points 4 34 ptitude Observer User Manual Observer 9 1 Revision J System Configuration Creating IMx MasCon Devices and Channels Digital Channels e Pulses rev is the number of pulses this device receives per shaft revolution e Trans angle is the angle of the sensor mounted relative to twelve o clock e Sensor feed indicates whether to do a sensor feed or not Editing a Digital Channel 1 First select a device from the
235. uencies and harmonics together with the correct machine part and correct cause of error These formulas are called diagnosis in ptitude Observer and are an excellent tool to use which allows the system to automatically and intelligently diagnose machine and machine parts for possible fault modes The machine diagnostics are built from a specific set of rules which are called diagnostic rules There are two types of diagnostic rules those defined by SKF are called Standard diagnostic rules and those defined by the user are called Custom Diagnosis rules To select which diagnosis rule to attach to a specific machine refer to Machine Properties x Database SKF WindCona wi Type Standard B o nn nn e Bearing Belt drive Blade Vanes Cavitation Electrical AC Electrical DC Envelope e a a o Gear wheels Mechanical Overall Sleeve bearing Turbulence Unbalance loosness Diagnosis rules Vertical shaft Horizontal shaft Export Import List attached Share to SKF OR Figure 6 79 Example of ptitude Observer diagnosis handling screen e Export allows to save the selected diagnosis to a local file e Import allows import of a previously exported diagnostic rule e List attached displays a list of any attached diagnosis in the system built from the selected diagnostic rule e Share to SKF OR allows to share the selected diagnosis rule to SKF Online Repository Users Only custom diagnosis rules can be share
236. up Machine template library Create machine template Bearing Library Bearing library allows you to edit the bearing database of ptitude Observer and find information on any of the listed bearings When building machine parts the system only allows for the selection of bearing available in this database However you can add user defined bearings to the system e Bearing library Database SKF WindCon Manufacturer SKF o Search bearing 02800 SKF Beating data 1 2 351571 SKF Speed 10401 SKF 10401ETN9 SKF 10402 SKF Bearing code 10402ETN9 SKF i 10403 SKF Manufacturer 10403ETN9 SKF T 10404 SKF Description 10404ETN9 SKF i 10405 SKF Outer race 10405ETN9 SKF 10406 SKF HEAD DAOBETNI SKF OZ OOOO O 10407 SKF E Cage Share to GSC Figure 6 82 Example of ptitude Observer bearing library Inner race The bearing database contains data for the bearings used in diagnosis and frequency calculations in ptitude Observer This makes it easy to identify and detect bearing defects and damages ptitude Observer User Manual 6 155 Observer 9 1 Revision J Menu Items Database Libraries Report Library The report library contains layouts for event case reports The layouts are design files generated with crystal reports If you wish to generate new layouts to use in the event case reporting interface these can be
237. us of the device whether it is enabled if checked or disabled e Serial no available for IMx MasCon16 only displays the serial no that this device should have This is to enforce data integrity When a device is set up it will get the serial number 0 When a device connects for the first time the serial number of that device will be stored automatically in the database The next time any device connects with the specific device number the device is challenged for a serial number match If serial numbers mismatch the device is not allowed to connect to the monitor service and a system alarm will be generated to the user If the device is replaced or the CPU board of the device is replaced it is necessary that the serial number is reset by clicking the reset button e Reference time is a parameter that can be used to spread out workload in ptitude Observer environment by setting the execution time of daily based work e Timeout comm communication is an interval of time in minutes used to generate a system alarm if there was no communication between the device and the ptitude Observer Monitor for the duration of the given interval of time 4 24 ptitude Observer User Manual Observer 9 1 Revision J System Configuration Creating IMx MasCon Devices and Channels Initiate e Connection interval is an interval of time in hours when a connection should be established between a IMx MasCon16 device and ptitude Observer Monitor
238. ut any device at all The bar graph shows the current cursor value in the trend graph where it is easier to compare values against each other for the data selected The legend here differs from the legend in other graphs because it is grouped by different types of measurement devices available in all the measurements that are displayed and un checking any of the devices will hide all the measurement points that use this specific measurement device The multi trend can have one active measurement point at a time The trend graph line for the active measurement point is thicker and the text for the Y scale that the active measurement point uses will be made bold To switch active measurement point use the TAB and the SHIFT TAB keys Once a measurement point is selected the selected measurement point can be navigated with the arrow keys just like in the normal trend plot The multi trend plot has the ability to correlate measurement data between the measurement points in the graph by setting the x axis scale to a specific measurement point and stetting a correlation tolerance in time device The below is an example of multi trend display of trend data type with overlay data and live data Ball ireid pak did raid H WE ri Ha T HEA Hina Pida rar iria ee e a TA ad Es 1 rl a pri Elena bn 1554 da bal Figure 5 53 Example of ptitude Observer Multi trend display ptitude O
239. ve lower resolution than the measurements taken at operating speed This will make the system faster when in transients Sector alarms have been added as an option to the circle alarm for vector monitoring Multi channel measurement points now have separate trend values and alarm levels for each sensor Interface to IMx M Protection has been extended 7 202 ptitude Observer User Manual Observer 9 1 Revision J Version History ptitude Observer 9 1 Custom bands have been added to IMx vibration measurement point types A possibility to take more data before and after an alarm has been added This feature is called Pre Post data capture Diagram boxe functionality has been added Support for Microlog FW version 4 has been added Support for Oracle databases has been dropped Minor features New time zone handling Attachment s names can be longer Path and machine name are now shown in the System log Number of decimals in the phase plot is now a user preference Tooltip functionality has been added to the trend plot Title and subtitles can now be added to screen printouts It is possible to disable alarms but keep the alarm level SQL Server 2012 is now available on the installation DVD Auto refresh functionality has been added to the Event log Transient classifications have been improved Optitude Observer User Manual 7 203 Observer 9 1 Revision J
240. ve template Cancel Figure 6 69 Example of ptitude Observer select data for report Database is the database from which this report will be generated ptitude Observer User Manual 6 133 Observer 9 1 Revision J Menu Items File Report Data Selection Tab Data selection enables you to select exactly which machines and measurement points to include in the report General Tab General allows to set formatting rules for the report and to select types of machine information that should be included Different types of lists like alarm lists can also be included e Content prints the Table of contents at the beginning of the report if checked e Machine data prints the extended machine information for each machine included in the report if checked e Notes includes all the notes related to the selected machines during the date time range entered if checked e Overall level includes the overall value list related to the selected measurement points from the date time entered if checked e Alarm list includes alarm information related to the selected measurement points during the date time range entered according to the filtering option and status option if checked e Page break between machines forces a page break on the printout between machines if checked e Show report automatically when generating shows the report in the selected format after the creation of the report has been finished if checked e S
241. ver can also be installed on the same computer as the ptitude Observer Monitor software ptitude Observer User Manual 1 11 Observer 9 1 Revision J Introduction Through a general interface such as OPC it is possible to link the ptitude Observer Monitor to an existing control or processing system The ptitude Observer Monitor ptitude Observer clients and the database can be separated physically from each other as long as they are on the same network where ODBC open database connectivity calls can travel freely Network Connectivity Requirements e Each IMx MasCon device needs a communication path to the ptitude Observer Monitor which must be TCP IP compatible e The following connection technologies are some of the examples that can be used Fiber optics Pair copper wire lt 1 Km ADSL asymmetric digital subscriber line DSL digital subscriber line Internet 128K ISDN intergrated services digital network dial up connection GPRS general pocket radio services Standard Ethernet network Important An on line condition monitoring system like IMx MasCon together with ptitude Observer can only be successfully operated on an installed and tested network infrastructure Even though the IMx MasCon devices as well as the ptitude Observer monitor are equipped with several fault tolerant routines and procedures they can ultimately be only as reliable and effective as the network to which they are con
242. x N and Overall in the measurement group Optitude Observer User Manual 4 69 Observer 9 1 Revision J System Configuration Setting up Measurement Points and Alarms Observer Display Options Tab Observer Display Options Tab This setting contains information related to the display of information to the user but which has nothing to do with the measurement itself Eh Semn pi dogo H Cir ancl Donga Corner oia M Aapon Arg MA Sener Chapin Opens Cirer Dacia Opora Chet ate 1 israel 7 He decima e Ronen dec heck at og ae Figure 4 30 Example of ptitude Observer Dynamic measurement point Observer Display Options settings Observer Display Options e Orientation is a suitable sensor orientation which can be 1 Horizontal 2 Axial 3 Vertical 4 Tangential 5 Radial or 6 Axial Vertical e No decimals is used when displaying the measurement in order to control the accuracy of the measurement e Rotation direction indicates the rotational direction which can be clockwise counter clockwise or both e Order analysis shaft is the shaft on the machine that should be used for order analysis in the spectrum history and 3D plot Runout compensation Runout Compensation settings are available for harmonic measurement points only The runout compensation is used to remove the problem that un round shafts register the shape of the shaft as vibration To set the compensation the shaft is rotated at low spee
243. xceeds the Store delta value e Exception based storage is a setting of what to store if the trended values changes Alarm This section is to set up the alarm levels for the measurement Individual alarms can be disabled as applicable e High alarm is the status of high alarm which can be enabled or disabled e High warning is the status of high warning which can be enabled or disabled e Low warning is the status of low warning which can be enabled or disabled e Low alarm is the status of low alarm which can be enabled or disabled e Condition triggers the alarm to be raised The options are none opened and closed e Eccentricity is set for warning and alarm level for airgap measurement points e Ovality is set for warning and alarm level for airgap measurement points Alarm hysteresis This section controls how many times a value can be over and under the alarm limits before ptitude Observer goes into or releases the alarm state e Enter alarm is the number of consecutive measurements that have to be over the alarm level before an alarm is reported Default is set to 2 e Leave alarm is the number of times that a value has to be under the alarm level before ptitude Observer releases the alarm state Default is set to 5 Alarm group It is a setting that makes the system to store data for all the members in the group if one of the member triggers alarm Device internal relays e Warning relay on the WindCon IMx MasCon device
Download Pdf Manuals
Related Search
Related Contents
manuale Uso Acreditação e qualidade da educação superior: abrindo a caixa Philips AJ 3150/00W User's Manual Icom 200 User's Manual LOGEMENT ET COHÉSION SOCIALE Targus Laser Ultra-Portable Mouse Mode d`emploi Kensington SafeStand 27” iMac® Locking Station Copyright © All rights reserved.
Failed to retrieve file