Home
RUSKA 7615
Contents
1. Calibration RUSKA 7615 Hydraulic Pressure Controller Calibrator Users Manual PN 3952199 November 2010 2010 Fluke Corporation All rights reserved Printed in USA Specifications are subject to change without notice All product names are trademarks of their respective companies LIMITED WARRANTY AND LIMITATION OF LIABILITY Each Fluke product is warranted to be free from defects in material and workmanship under normal use and service The warranty period is one year and begins on the date of shipment Parts product repairs and services are warranted for 90 days This warranty extends only to the original buyer or end user customer of a Fluke authorized reseller and does not apply to fuses disposable batteries or to any product which in Fluke s opinion has been misused altered neglected contaminated or damaged by accident or abnormal conditions of operation or handling Fluke warrants that software will operate substantially in accordance with its functional specifications for 90 days and that it has been properly recorded on non defective media Fluke does not warrant that software will be error free or operate without interruption Fluke authorized resellers shall extend this warranty on new and unused products to end user customers only but have no authority to extend a greater or different warranty on behalf of Fluke Warranty support is available only if product is purchased through a Fluke authorized sales outlet o
2. cccccccccssecceceeeeceeeeeeeeeeeeeeeeeeees Preventive Maintenant susini S Initiating the Calibrator s Self Test 0 cccececcecceceeeeeeeeeeeeeeeeeeeeeeeees Removing the Calibrator s Cover ccccccccccccscccccccccccecceeceeeeeeceeeeeeeeeeeeeeeeeeees PEO CCSSOR Dalry ernn E OS OE O sc cerca E N E N E Calibration Instructions Single and Dual Sensor Storing th Coefficients seraresnsiier inr A ARE Calibration Instructions Multi Ranged Sensor ccccccccccccsecececeeeeeeeeeees PED AUC ace eraec pecs resect ete ceces spelen cate teens daetedeate peaeeeoentueszenaee Storing the Coefficients 5 5212 0s213s lt socssaseseaeqeesossaassseredeadsosesase sored E areek n n a es Editing the Calibration Coefficients neneneenenenennnnnnnnnennssnsssressrsrrrrrrsren iii RUSKA 7615 Users Manual Zeroing Cleaning 7 Preparation for Storage amp Shipment Disconnecting the Calibrator Packing Instructions Shipping Appendices A Summary of Specifications B Summary of Error Messages Instructions List of Tables Title Page SAA 116 0 ke ce E E ee ee ee ee eee 1 3 TOISDPC 9 0c tae rs vm re A s EEAS 1 5 Conversion AC CONS sce shes ce cine ice ctieheseinines E E aN T N PEE General Specifications amp Parameters ccccccccccccsccecccccceeeeeeeeeeeceeeeeeeeeeeeeeeeeeeeeeees ESA RS 232 Pin PMO CATIONS ecese a N 5 2 RUSKA 7615 Users Manual vi List of Figures Figure Title Page 25k
3. e Calibration Repair USA 1 888 99 FLUKE 1 888 993 5853 e Canada 1 800 36 FLUKE 1 800 363 5853 e Europe 31 402 675 200 e China 86 400 8 10 3435 e Japan 81 3 3434 0181 e Singapore 65 738 5655 e Anywhere in the world 1 425 446 5500 Or visit Fluke s website at www fluke com To register your product visit http register fluke com To view print or download the latest manual supplement visit http us fluke com usen support manuals 1 1 RUSKA 7615 Users Manual Safety Information Safety Summary The following are general safety precautions that are not related to any specific procedures and do not appear elsewhere in this publication These are recommended precautions that personnel must understand and apply during equipment operation and maintenance to ensure safety and health and protection of property Keep Away From Live Circuits Operating personnel must at all times observe safety regulations Do not replace components or make adjustments inside the equipment with the voltage supply connected Under certain conditions dangerous potentials may exist when the power control is in the off position due to charges retained by capacitors To avoid injuries always remove power from discharge and ground a circuit before touching it Do Not Service or Adjust Alone Do not attempt internal service or adjustment unless another person capable of rendering aid and resuscitation is present Resuscitation Perso
4. Program F4 Use the arrow keys to highlight the current name Press Edit F4 The program editing screen will appear displaying the first step Press Name F6 Use the arrow keys to highlight a character from the character set Press Add F3 to add the character to the scratchpad To correct a mistake press Clear F4 and return to step 5 Repeat steps 5 and 6 until the name is complete Press Enter F5 to store the contents of the scratchpad as the new name of the program 10 Press PREV twice to return to the Named Programs screen Changing an Existing Program Instructions for changing an existing sequence are given below Both manually and automatically generated programs may be edited l 2 Programs are changed from the Program menu From the Main Menu press PREV until the Main Menu appears press Menu F6 Program F4 Use the arrow keys to highlight the name of the program 4 9 RUSKA 7615 Users Manual 4 10 Press Edit F4 The program editing screen will appear displaying the first step The Next F1 and Prev F2 keys may be used to move through the program To go directly to a specific step use the Arrow keys to highlight go to step use the numeric keypad to enter the step number and press ENTER Note Next F1 will actually display one step past the end of the program Step 6 of 5 This is to allow adding a step to the end of a program The step does not actually exist until ENTER is pr
5. rubber foam and flexible polyurethane foams A Caution Styrofoam poured foam in place mixtures and other rigid foams are not suitable Even polyfoam or rubber foam should be cut into strips so that it will not present a large rigid surface to the Calibrator Fluke has found that corrugated cardboard boxes provide the best packing The boxes sometimes arrive damaged but the contents are usually intact A minimum of 3 inches of foam with at least an N95 impact rating should separate the inner surface of the inner box and any portion of the Calibrator The same is true for the inner and outer box 7 1 RUSKA 7615 Users Manual A Caution Wood or metal boxes do not absorb shock when dropped and therefore are not recommended If the original packaging and shipping materials have been retained use them for packing the Calibrator If the Calibrator is being packed for long term storage more than 30 days place a desiccant bag inside the box In general prepare the Calibrator for shipment as follows l Fluke Calibration has an RMA procedure in place Please contact the Customer Service Center to obtain an RMA number prior to returning any equipment to Fluke Have the following information available when contacting Fluke the part number the serial number the purchase order number the billing and ship to address and the buyer s name and telephone number This information plus the RMA number must be attached
6. 120 220 240 VAC This outputs supply voltages of 5 VDC 12 VDC 12 Vdc and 24 VDc which are distributed to the Back Plane Board and Control Board Measurement While Control The Calibrator simultaneously displays the commanded pressure the actual pressure and the difference between the two A bar graph shows the user how close the actual pressure is to the commanded pressure as well as how close the commanded pressure 1s to the Calibrator s full scale pressure 1 3 RUSKA 7615 Users Manual 1 4 Friendly Display The Calibrator s vacuum fluorescent display combines a bright low glare readout with a wide viewing angle During normal operation the measured pressure is easily visible from a distance of 10 feet 3 meters Adjustable Pressure Display The pressure display can be adjusted to show one decimal greater than or less than the default resolution Ease of Operation An intuitive menu driven interface makes the Calibrator easy to use Frequently used selections such as the units of measure are restored to memory each time the Calibrator powers up Easily Programmable The Calibrator s powerful microprocessor provides the basis for smart electronics With a few simple keystrokes the user can set limits on the system pressure create unique units of measure program a test sequence and more Attractive Desktop Packaging A sturdy aluminum case houses all of the Calibrator s hydraulic pneumatics electronics
7. Calibrator s thermal gradients and therefore reduces accuracy If it becomes necessary to remove the Calibrator s cover follow the instructions below 6 1 RUSKA 7615 Users Manual 6 2 AA Warning The Calibrator should only be opened by qualified electrical mechanical service technicians Lethal voltages are present and exposed in the power supply and display 1 Turn off the Calibrator and disconnect the power cord from the power supply 2 Locate the screws that secure the cover 3 Unscrew these screws and remove the cover 4 Replace the cover before resuming operation Processor Battery The processor board uses a lithium battery to maintain time and date information This battery has a varying life If the instrument is left on 24 hours a day it will last 5 10 years If the instrument is stored it will last one year It is recommended to replace it every year To do this follow the instructions below 1 Remove cover see section above Chapter 6 Preventative Maintenance Removing the Calibrator s Cover 2 Remove processor card by removing one screw and rocking upward Remove battery a round silver object by carefully pulling on battery while holding card 4 Plug in new battery part number 4 725 Reassemble in reverse order 6 The time and date may have to be re entered See Chapter 4 Configuration Time Date Calibration To keep the Calibrator operating within its specified accuracy Appendix A the c
8. E SPP PO e E N R servoir Select Valve cts ie dcp eterna En E S 3 Installation aaannnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnn nn O O a A EE EEA Unpacking the Calibrator 33 5 os3ceccasnedseorsenneonsteashouedanmseteadvenstenneonotensenedanmonses COIS e a aetna vosaneeautedashoiessedsudsnaeern E Powerne Up th Calibratot os oxccsvacesscavnctodeazacteasacine nies acres aa i Hydraulic Pneumatic Connections ccccccssssssssesssscescsssssssssscceeeeeeeeeeeeeeeeeees Alr SOO POT ses tice ccesedis Hes oneeassea R TST OE ace once A A A N E E T AE E TE RONO a N E E at TmneT Eee Teter era Purge yy Gr AUNTS 60S ec cdeessiorectsnasonctrostsioncesaionaciosaeauionatenta te anvorcunanenaceaavorononaes SPUN EA T sewn uu non as E E EI deen Senet nen bea E mon T E 4 Local Operation isinisi iaaa Local Operation Sosrer Wea a Ea E E A E E A A A A TEA oiaren ani E a E E E EE T A E E E ANON TRC a EE EEE E E EE ET A E ES ee L P AO aa ree nn een meen ener meer Measurine IPE CSU 255 cade asocamseassesnnnoiesesssoteasseannecacuassesmesuiesedesoicoiseaoieaneecnieareeay Multi Range Sensor Options ccccccccccsscsccceeceeeeeceeeeeeeeeeeeeeeeeeeeeeeeeeeeeeees Selecting Press re WIS 5 ssseseresoneaeaesseeneia soseanavoradudesatesacasendaeacaatesecasereaedaaes Defining a New Pressure Wil scscsconcxnscdasencvevas avtessdesteasdoeusoeasnessdeaansssaedsSertes Changing the Number of Decimals cccc
9. MEASURE PRESSURE Measure pressure gt MeAsUrE pReSsUrE meas pres measure meas MEAS To set the control pressure set point to 50 all of the following commands are equivalent SOURCE PRESSURE LEVEL IMMEDIATE AMPLITUDE 50 SOUR PRES LEV IMM AMPL 50 0 PRESSURE 50 PRES 50 SCPI Status Registers Status Byte Register STB Service Request Enable Register SRE Bit 7 Operation Stus Summary Set when an event enabled in OPER ENABLE occurs Bit5 EBS Event status bit Set when an event enabled in ESE occurs Bit4 MAV Message Available Set when a response is ready to be sent Bit3 Questionable Status Summary Set when an event enabled in QUES ENABLE occurs Bit2 Error Event Queue Not Empty Bit1 Always 0 BitO Always 0 Standard Event Status Register ESR Standard Event Status Enable Register ESE Bit 7 Power on set at power up Bit6 User request Always 0 Bit5 Command Error Error in command syntax Bit4 Execution Error Error in command execution Bit 3 Device Dependent Error Device error independent of commands Bit 2 Query Error Output queue empty when request received Bit 1 Request Control Always 0 Bit0 Operation Complete Set for OPC command Operation Status OPER EVENT OPER CONDITION OPER ENABLE BitO Calibrating Currently performing a calibration Bit 1 Settling Waiting for control to stabilize Bit2 Ranging Pressure reading is from High Speed Low Accuracy Sensor Bit3 Sw
10. The DPG is always in Remote mode Byte 0 Bit 2 2 All TI strip outputs read as OFF zero and must be written as OFF 3 No special functions are implemented 4 Any message written to the 7000 which starts with a colon as the first character 1s interpreted as a SCPI command To change from SCPI to Interface Panel Emulation via the remote interface send the following message SSYSTem LANGuage 6000 To change from Interface Panel Emulation to SCPI via the remote interface send the following message SSYSTem LANGuage SCPI Serial Operation The RS 232 ports accept the same SCPI commands as the IEEE 488 port The commands can be terminated by a carriage return hexadecimal OD or a line feed hexadecimal 0A The responses are always terminated by a carriage return followed by a line feed The serial ports also support XON XOFF When the XOFF hexadecimal 13 command is received the Calibrator will stop transmitting Transmission is restarted when the XON hexadecimal 11 command is received When only one unit is attached the Control C hexadecimal 03 command will clear the transmit and receive buffers and disable addressing When addressing is disabled the unit will respond to commands without being addressed 5 7 RUSKA 7615 Users Manual 5 8 Chapter 6 Maintenance Introduction Very little maintenance is normally required for the Calibrator The following sections discuss some of the suggested procedures O
11. of the front panel under the numeric keypad The display will return to the Menu Setup screen with the current units 6 Press PREV to return to the MENU screen 7 Press PREV again to return to the Main Menu The second part of this tutorial illustrates how to set up the Calibrator to generate pressure The system must be fully charged with fluid the air supply connected and the test port connected to a closed volume full of fluid 8 From the Main Menu use the numeric keypad to enter the set point pressure The pressure is entered in the units set in the previous illustration As you enter the pressure each digit will be displayed in the numeric scratchpad the highlighted box in the middle of the display If you make a mistake press the CLEAR key under the numeric keypad and the numeric scratchpad will be cleared 9 When the entry is correct press the ENTER key The scratchpad will be cleared and the value will appear to the left of the scratchpad 10 Now that the starting pressure is entered we can now enter Control mode Press CONTROL the F2 key The highlight will move from MEASURE to CONTROL and the message Press Enter to Confirm will appear above the function key definitions Notice that the upper left corner still shows MEASURE The Calibrator stays in Measure mode until the change is confirmed MEASURE ABSOLUTE 2 16 Psi Set Point 50 00 Press ENTER to Confirm Measure Vent Step Step Menu 11 Press
12. procedures mentioned in this Chapter be strictly adhered to in order to prevent damage to the instrument 1 2 Appendix A Summary of Specifications Accuracy Specifications of pressure transducer instrumentation can be divided into three categories Input Specifications General Specifications and Performance Specifications Each of these categories in turn consists of parameters which are usually specified by minimum and or maximum numeric limits Almost all of these parameters can have an effect on what is generally referred to as the instrument s accuracy Therefore the accuracy of pressure instrumentation can be varied either beneficially or detrimentally by controlling the Input Specifications operating within the General Specifications or knowing the actual Performance Specifications For example if Input Specifications have not been met for the line voltage the unit may not have a catastrophic failure but errors may be present in the transducer measurement As another example if the requirement for the Pressure Source Flow Capacity has not been met the DPC may not be able to achieve a final steady state controlled pressure within the settling time specification Finally if the DPC is commanded to a pressure outside of the Applicable Control Pressure Range the nonlinearity in the pressure output may be greater than that specified Performance Specifications give the user the most flexibility and control over his acc
13. the sensor being calibrated requested by the Calibrator As pressure is admitted into the Test Port the Measured pressure on the Calibrator s screen will change accordingly 2 When the Measured pressure stabilizes use the Calibrator s numeric keypad and OK to enter the actual pressure applied by the calibration standard Do not enter the Measured pressure reported by the Calibrator If necessary use the CLEAR key to correct a mistake in the edit field If the actual pressure applied is acceptable the Calibration step 3 screen will appear Note If the actual pressure applied is outside of the tolerance for the requested high point pressure Error 222 Data out of range will occur Acknowledge this error by selecting OK then re enter the actual pressure repeating Step 3 number 1 if necessary 1 To begin Step 3 use the calibration standard to Apply the high point pressure of the sub range of the sensor being calibrated requested by the Calibrator As pressure is admitted into the Test Port the Measured pressure on the Calibrator s screen will change accordingly 2 When the Measured pressure stabilizes use the Calibrator s numeric keypad and OK to enter the actual pressure reported by the calibration standard Do not enter the Measured pressure reported by the Calibrator If necessary use the CLEAR key to correct a mistake in the edit field If the actual pressure applied is acceptable the Calibration Step 4 screen w
14. to the unit when it is shipped to Fluke Calibration There will be a minimal charge for inspection and or evaluation of returned goods Enclose the Calibrator in plastic or any good water barrier material Anti static material is advisable Interior Carton size 31 x 22 x 19 inches Cover bottom and sides with no less than 3 of polyfoam Use four strips 4 to 6 wide and 50 to 60 long Arrange strips to cross each other inside carton Cover sides and top completely filling entire carton Tape carton closed The Exterior Crate 34 x 27 x 29 on pallet made of wood Use four 3 x 3 x 84 inch strips of polyfoam crossing each other inside the carton Place interior carton inside making sure exterior carton is completely filled Do not close the carton yet Inside the exterior carton include the following a Statement of the problem or service needed Be specific Include the name and telephone number of a knowledgeable technician for consultation b The part number serial number return address and purchase order number c Seal the carton using gummed tape Address the carton to FLUKE CALIBRATION 10311 WESTPARK DRIVE HOUSTON TX 77042 Labels recommended are THIS SIDE UP HANDLE WITH CARE DO NOT DROP and FRAGILE Shipping Instructions Fluke recommends the use of air freight for transportation Surface transportation subjects the shipment to more frequent handling and much more intense shock Again it is essential that the
15. varies its position through a 0 to 100 psi pneumatic control utilizing high speed supply and exhaust control valves The pump has a position sensor which tracks the position of the pump plunger The pump and the system is protected from the over pressure by a rupture disc The pump pressure is monitored by a high response pressure transducer 2 3 RUSKA 7615 Users Manual OILYANSNd M4 ONA ddAH 140d LIN HY a a lHa JAWA HH i SAATVA AVM ON Sd 08 US YOL YINIAY lOd IS3L LSAY HXS ISM HXI SIATYA iE 8 Avie FN AH Sy IF MIGAMASIY Jolok Ol NYNLJH YOSNAS AQYYNIIY HOIH SONYA HOH Q3Ll usd0 aly SASLSAS SaAWA a E qalvaado aly FONE MOT e YOSNAS T JANICA AOWHNDOY HAH aud J NYH MOT TAL NY HIOAHISIY OL NYNLIY te ee ee ee J NOlldG YOSNIS YNA YIOAYAS IY TWNYSLXS Sd OZI OS JATYA Janay SATA gaddo aly yOAXISAY SS ee Ct Nani Lf ta a i Al JATYA D Sd LS JIONJTOS 1 ji HOLWIND TY TOMINOD 7 df CWNALNI YIOANSSHY aae JAWA JATA is IONS 10S CIONT105 Al E aunssaue TOULNOD SESES I NMO peim Doo SERERE GIONS 10S i wa ISNYHX3 ig Nanay e ISN HX3 TMT LSM HXS w YIHISNIINI INNYYJAHZJILYANINd HOSN3S AYNIY MOT WaLSAS gko002 bmp Figure 2 2 RUSKA 7615 Calibrator Hydraulic Pneumatic Diagram Reservoir Valve The reservoir valve isolates the pump from the reservoir It is a high pressure v
16. without storing the calibration coefficients in memory press Cancel To store the calibration coefficients select OK Step 6 Maintenance 6 Calibration Press Prev to return to the main screen Once the calibration procedure is complete the user is advised to record several pressure readings If there are any significant errors at these points then an error was probably made in generating one of the calibration pressures and the calibration procedure should be repeated Calibration Instructions Multi Ranged Sensor To calibrate the RUSKA 7615 the user simply connects a calibration standard to the Calibrator s Test Port then follows the 4 step calibration procedure on the Calibrator s display Optional pressure ranges are available with the 7615 provided up to six ranges in a single instrument Each independent range would be calibrated as a separate pressure range On multi ranged sensor versions of the 7615 when activating the calibration procedure after completing zero the operator is instructed to select one of the multiple available pressure ranges that the operator wished to calibrate The operator then has the option to define the number of calibration points that they wish to set in an up scale and a downscale direction The menu driven calibration procedure then steps the user through the pressures that are required to calibrate the selected pressure range The user generates the defined pressures utilizing an adequate
17. Be sure that you have accounted for any hydraulic head pressure that may exist in the system between the reference plane of the system and the actual height of the fluid head where it is opened to atmosphere Wait until the zero procedure completes This may take several minutes When the Calibrator completes it will return to the CAL screen Cleaning When necessary clean externally using a damp lint free cloth and mild liquid detergent Chapter 7 Preparation for Storage amp Shipment Disconnecting the Calibrator A Caution The procedures given in this Chapter must be strictly adhered to in order to prevent damage to the instrument Failure to follow these procedures will likely result in damage to the Calibrator during shipment This damage is not covered by the carrier s insurance Relieve all hydraulic pneumatic pressure from the RUSKA 7615 Turn the 7615 power switch off Disconnect the power cable from the RUSKA 7615 s power receptacle Disconnect all pneumatic lines and fittings from the 7615 s back panel a oe ie o Plug all ports Packing Instructions The instructions below must be strictly followed in order to prevent damage to the instrument The main principle behind a successful shipment is that of minimizing shocks This is accomplished by cradling the device within two boxes such that the RUSKA 7615 is restrained but still has resilience The two most successful materials for this purpose are
18. DE MEASure CONTrol VENT MODE PROGram CATalog SELected DEFine lt program block gt DEFine DELete SELected ALL NAME lt program name gt STATe RUN PAUSe STOP CONTinue STATe CONFigure RECall SAVE SENSE PRESSure RESolution lt number gt AUTO lt boolean gt ONCE MODE RANGE UPPer lt number gt current units LOWer REFerence HEIGht lt number gt SGRavity lt numbers gt SOURCE PRESsure LEVel IMMediate AMPLitude lt number gt AMPLitude MODE FIXed LIST TOLerance lt number gt SLEW lt number gt CONTrol lt number gt MODE CYCLE FAST NORMal LIST PRESsure lt number gt s lt number gt POINtsS DWELI1 lt numbers lt number gt POINtsS TOLerance lt number gt lt number gt POINts DIRection UP DOWN COUNt lt number gt STATUS OPERation EVENT CONDition ENABle lt number gt QUEStionable EVENT CONDition ENABle lt number gt PRESet SYSTem DATE lt year gt lt month gt lt day gt gt ERROr KLOCk ON OFF 1 0 TIME lt hour gt s lt minute gt s lt second gt VERSion LANGuage 6000 SCPI gt PRESet TEST ELECtronic UNIT Remote Operation Device Messages 9 sets mode returns mode string returns list of defined programs Define program press1 toleri toler2 read program definition dwelll maxi press2 deletes current pr
19. DPC Block Diagrami ee ne 2 2 2 2 RUSKA 7615 Calibrator Hydraulic Pneumatic Diagram ccccccccccccceeeeeeeees 2 4 4 1 RUSKA 7615 Front Panel ccccsssssssssssssssossesssssssssssssssessssessssssseesssssesssssesesssneeeeen 4 1 i IVC DS e E A au nas anonsenssuanesaese E EEE 4 2 vii RUSKA 7615 Users Manual viii Chapter 1 General Information Introduction This manual contains operation and routine and preventive maintenance instructions for the 7615 Hydraulic Pressure Controller Calibrator Calibrator manufactured by Fluke This section of the manual provides general information about the Calibrator and presents its features and options General Information The RUSKA 7615 Calibrator uses transducers to provide the precise measurement of pressure During normal operation the Calibrator performs in either Measure Mode or Control Mode In Control Mode the Calibrator simultaneously measures and controls pressure Control Mode is commonly used in the calibration and testing of pressure gages transducers pressure switches and production pressure instruments In Measure Mode the Calibrator measures pressure Typically Measure Mode finds applications in research laboratories testing of gages and transducers How to Contact Fluke To order accessories receive operating assistance or get the location of the nearest Fluke distributor or Service Center call e Technical Support USA 1 800 99 FLUKE 1 800 993 5853
20. ENTER to confirm the mode change The upper left corner will change to CONTROL and the pressure will start moving towards the set point ABSOLUTE 38 2 PSI Set Point 50 00 Difference 11 73 Press ENTER to Confirm Measure Vent Stepa Step Menu 3 3 5 RUSKA 7615 Users Manual 12 After the pressure is stabilized press the Step T or Step J key The scratchpad will be updated with a new set point The step size defaults to 10 of full scale The step size is set to other values in the MENU SETUP LIMITS screen 13 Press ENTER to accept the new set point The controller will move to the new set point 14 Press MEASURE the F1 key The Calibrator will change to Measure mode No confirmation is necessary to leave Control mode 3 6 Chapter 4 Local Operation Local Operations The local interface consists of a vacuum fluorescent display and a set of keys The display shows the system status and menu options The keys are separated according to their function A EA gt Ce ER PRESSURE a ae ma eo o CAL gko009 eps Figure 4 1 RUSKA 7615 Front Panel Numeric Keypad This includes the numeric digits the decimal point and the change sign key The CLEAR key will clear the numeric entry field The ENTER key accepts the entered number or confirms a command Function Keys The F1 through F6 keys are used to navigate the menus and perform pre defined functions The name of the function is dis
21. Head Height 7 Use the numeric keypad to enter the height Use a negative value if the DUT is below the Calibrator 8 Press ENTER to accept the entry 9 Press PREV to exit the menu Press CANCEL to return all edited fields to their original values Set Tare Mode The tare mode provides instant zeroing at the push of a button The tare mode also allows switching from absolute to gage pressure for a short term tests 1 The tare mode is set from the Tare menu From the Main Menu press PREV until the Main Menu appears press MENU MODE TARE 2 In this menu press TARE F4 to toggle between Tare mode and Absolute mode Tare value is displayed in the highlighted area Controlling Pressure The 7615 is designed to control pressure to a commanded set point From the main menu it is first recommended to enter a desired set point See Chapter 4 Setting the Pressure Set Point Then select the CONTROL key and you will be prompted to hit ENTER to continue The system will then control the pressure to the commanded pressure value Control Modes The standard control modes of operation are Normal and Cycle To select the control mode select the MENU MODE key To enter the cycle Mode hit the F4 key labeled cycle Normal Mode This control mode suits high performance sensor calibration where overshoot is to be minimized The control parameters and slew rates are optimized to give the fastest rate of change that is commensurate with m
22. Messages SCPI Command Format SCPI mnemonics have two forms long and short The short form is all in capital letters The long form is the entire mnemonic Commands may use either the short form or the entire long form No other forms are accepted SCPI ignores case uppercase and lowercase are equivalent A SCPI command is made by following the command tree as presented in the command summary Each level adds a mnemonic to the command separated by colons Mnemonics enclosed in square brackets are optional and may be omitted Some mnemonics are followed by an optional numeric suffix If omitted the suffix defaults to 1 Multiple commands may be placed in a single message separated by semi colons Each command starts at the same level of tree where the last command stopped unless the command starts with a colon The first command in a message and any commands starting with a colon start of the root of the command tree IEEE 488 2 commands may occur between SCPI commands without affecting the tree level Command parameters are separated from the command name by or more spaces Multiple parameters are separated by commas SCPI accepts numeric parameters with optional sign decimal point and exponent OFF is equivalent to zero and ON is equivalent to one Floating point numbers are rounded to the nearest integer for commands accepting integer values only A message is terminated by a Line Feed hexadecimal 0A Carriage Returns Tabs and ot
23. Repeat steps 4 and 5 until all four coefficients are correct Note In addition to saving the calibration coefficients to the Calibrator s memory the user is advised to separately record the calibration coefficients and store this backup in a safe place 8 To exit the editing procedure without storing the calibration coefficients in memory press CANCEL To store the calibration coefficients in memory select OK 9 Press PREV to return to the main screen Once the calibration coefficients are input the user 1s advised to record several pressure readings If there are any significant errors at these points then the calibration procedure should be performed Zeroing Step Step 2 Step 3 Step 4 The zero procedure may be performed by itself without requiring a full calibration e Verify that the Calibrator s test port is open to atmosphere e Verify that the Calibrator has been at stable operating temperature for at least two hours e Verify that the Calibrator is in MEASURE mode Enter the calibration screen by selecting MENU CAL Select ZERO The recessed CAL button should not be pressed If the CAL button is pressed a full calibration will be selected Use the numeric keypad to enter the pressure at the test point It is acceptable to zero the unit at the current atmospheric pressure by entering the current barometric pressure as the zero reading Press OK when the measured pressure is stable Note
24. TL interface message is received or the REN Remote Enable line is unasserted This method cannot be used on the serial interfaces 2 Issue the SCPI command SYSTEM KLOCK ON to lock the local keyboard The Calibrator will disable the local keyboard until the command SYSTEM KLOCK OFF is received 3 Issue the SCPI command DISPLAY ENABLE OFF or DISPLAY TEXT lt string gt These commands will disable the local display in addition to locking the keyboard The command DISPLAY ENABLE ON will restore the local display and keyboard operation Local operation may also be restored by powering the Calibrator off and back on Remote Operation 5 Configuration Configuration The remote interface is configured using the local interface before the remote is connected The parameters needed varies with the interface used IEEE 488 Address Protocol RS 232 Baud Rate Data Bits Parity Stop Bits To configure the remote interface follow these steps 1 The remote interface is configured from the Setup Remote Menu From the Main Menu press PREV until the Main Menu appears press Menu F6 Setup F2 Remote F4 2 Use the up and down arrow keys to highlight the desired parameter Use the numeric keypad to enter the address use the Left and Right arrow keys to change the other parameters The ENTER key must be pressed after entering the address 4 Repeat steps 2 and 3 to set all parameters needed Device
25. XCLUSIVE REMEDY AND IS IN LIEU OF ALL OTHER WARRANTIES EXPRESS OR IMPLIED INCLUDING BUT NOT LIMITED TO ANY IMPLIED WARRANTY OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE FLUKE SHALL NOT BE LIABLE FOR ANY SPECIAL INDIRECT INCIDENTAL OR CONSEQUENTIAL DAMAGES OR LOSSES INCLUDING LOSS OF DATA ARISING FROM ANY CAUSE OR THEORY Since some countries or states do not allow limitation of the term of an implied warranty or exclusion or limitation of incidental or consequential damages the limitations and exclusions of this warranty may not apply to every buyer If any provision of this Warranty is held invalid or unenforceable by a court or other decision maker of competent jurisdiction such holding will not affect the validity or enforceability of any other provision Fluke Corporation Fluke Europe B V P O Box 9090 P O Box 1186 Everett WA 98206 9090 5602 BD Eindhoven U S A The Netherlands 11 99 To register your product online visit register fluke com Table of Contents Chapter Title 1 General Information wisiecisccsescescccicedracsccccvavesccsarscuneactceiaciaereanesanianseancees Malana aior i PAE EE EEE EN EAT EEEN EET EET General Informati n escrin ernennen Ein ennekin E n EEN E E EN EEN EEN E RENS Hon CO GO liC PU na A N BUY Informa ol ssn O Ea E OEE Eaa Saloy SUNA er N OS a r Keep Away From Live Circuitts ccccccccccccccccccccceccececcececeeeeeeeeeeeeeeeeeeeeeeeeeees Do Not Service or Adjust AION ccccccc
26. ain Menu appears press Menu F6 Program F4 Use the arrow keys to highlight the name of the program Press Run F1 The program run screen will appear Stop will be highlighted showing that the program is not currently running Press Run F2 The configuration of the Calibrator stored with the program is restored the pressure set point is set to the pressure value in the first step and Calibrator is placed in Control mode Run will now be highlighted and the program will proceed through its steps Local Operation 4 Configuration 5 To pause the program press Pause F3 Pause will now be highlighted and the Calibrator will continue controlling to the current setpoint Press Cont F4 to resume the program 6 To stop the program press Stop F5 The program will stop running but the Calibrator will continue controlling to the current setpoint Configuration Test Access Code The test access code allows the user to protect access to Calibrator configuration and programs Once set the test access code is required before the user is allowed to change the limits control parameters or programs Setting the test access code to zero disables the limited access l 2 3 4 The test access code is set from the Limits menu From the Main Menu press PREV until the Main Menu appears press Menu F6 Setup F2 Limits F1 Use the up and down arrow keys to highlight Access Use the numeric keypad to enter the new access co
27. alibration procedure described below must be performed Use appropriate DWG such as RUSKA 2485 Note The calibration procedure automatically generates coefficients which are stored in memory on the Calibrator s Control Board Chapter 2 If these constants are lost for any reason the calibration procedure must be performed regardless of the last calibration date If the calibration coefficients are known they may be restored to the Calibrator at any time by editing the coefficients Chapter 6 Subsection under Storing the Coefficients Editing the Calibration Coefficients Maintenance 6 Calibration Calibration Instructions Single and Dual Sensor Step Step 2 To calibrate the RUSKA 7615 the user simply connects a calibration standard to the RUSKA 7615 s Test Port then follows the 4 step calibration procedure on the Calibrator s display On dual sensor versions the operator would be instructed to select one of the two sensors to be calibrated The calibration procedure is a menu driven procedure that steps the user through the pressures that are required to calibrate each pressure range that is included in the Calibrator The user generates the defined pressures utilizing an adequate standard to calibrate the RUSKA 7615 The pressure steps will vary based on the pressure range and number of sub ranges that are included with the Calibrator Typically for a single range instrument the operator would be prompted t
28. alve actuated by a pneumatic dome valve This pneumatic dome valve has a diaphragm operator which is driven be an internally regulated 80 psi air pressure which is sourced from the air supply port The air is controlled to this valve through a three way normally open solenoid valve 2 4 Theory of Operation The Hydraulic Pneumatic Module Fluid Reservoir The reservoir supplies system fluid to the pump through the reservoir valve The reservoir has a 1000 cc capacity and is provided with a low level sensor System Valve The system valve isolates pump from the system It is a high pressure valve actuated by a pneumatic dome valve This pneumatic dome valve has a diaphragm operator which is driven be an internally regulated 80 psi air pressure which is sourced from the air supply port The air is controlled to this valve through a three way normally open solenoid valve High Speed System Transducer The High Speed system transducer is used for the pressure measurement during high speed pressure control This is indicated by the system by labeling the pressure reading as High Speed just below the measured pressure value on the main screen Once the pressure has stabilized the High Accuracy Sensor see next section 1s then displayed This is indicated by the system by replacing the High Speed label with the word Precise The high speed system transducer is periodically compared and automatically aligned to the high ac
29. and then switching a three way valve to isolate the vacuum pump and open the line to a fluid reservoir allowing the fluid to fill the manifold This will minimize the air in the system 3 Same as option 1 above but using an optional higher flow capacity pump to fill the system quicker than what the 7615 primary control pump can 3 3 RUSKA 7615 Users Manual 4 Another method to fill or purge the device under test is to use the system s purge fill option To use this option from the front panel main menu press MENU TEST PURGE and FILL PUMP Enter the number of Fill Cycles Charge discharge you would like to run Break loose the connection at the top of manifold holding device under test and then press ENTER to start the operation This will fill and drive out the air from the loose connection Stop the system as soon as clear fluid starts coming out of the loose connection and then tighten the connection Tutorial 3 4 At this point the Calibrator should be in the power up state and the hydraulic pneumatic connections ready The Calibrator should be displaying a screen similar to the one shown below If the bottom line of the display is not showing these options press F6 if an error message is displayed then press Prev MEASURE ABSOLUTE 2 16 Psi Set Point 0 00 CONTROL VENT STEP STEP MENU This is the Main Menu It is at the top level of the menu tree and all descriptions in this manual start from this poi
30. and user controls Power On Self Test POST Upon power up the Calibrator quickly tests its hardware and software After the Calibrator completes this test the user can select more extensive self tests for the hydraulic and electronics Ease of Calibration A menu drive calibration procedure can be performed either remotely or entirely from the front panel No disassembly is required and there are no potentiometers to tune Automatic Zero Adjust At the user s request the Calibrator s software automatically performs the zero adjustment with no potentiometers to tune Automatic Head Correction The Calibrator automatically corrects for head pressure between the Calibrator and the DUT Device Under Test taking into account the density of the test fluid Choice of Medium The hydraulic Calibrator can be used with various non corrosive fluids as pressure media Choice of display units Standard units include inches of mercury at 0 C and 60 C kiloPascals bars pounds per square inch inches of water at 4 C 20 C and 25 C kilograms per square centimeter millimeters of mercury centimeters of mercury at 0 C and centimeters of water at 4 C Altitude and airspeed units include feet meters knots and kilometers hour In addition to these predefined units four user defined units are programmable Communications Interface RS 232 serial interface and IEEE 488 interfaces are standard The user s computer communicates with the Calib
31. ation procedure is complete the user is advised to record several pressure readings If there are any significant errors at these points then an error was probably made in generating one of the calibration pressures and the calibration procedure should be repeated Editing the Calibration Coefficients If the Calibrator s memory is erased but the calibration coefficients are known the user can restore the coefficients to the Calibrator by following the directions below A Caution Never randomly adjust the calibration coefficients Only qualified personnel with valid backup data should be allowed to edit the coefficients If the backup coefficients are questionable perform the calibration procedure in its entirety 1 Verify that the Calibrator is in Measure mode Chapter 4 2 To go to the Calibration screen select MENU CAL To edit the calibration coefficients press the recessed CAL button beneath the vacuum fluorescent display If the calibration access code is enabled enter it at the prompt The Calibration Step 1 screen will appear RUSKA 7615 Users Manual 6 8 Note To exit the calibration procedure before the calibration coefficients have been changed press CANCEL any time during the procedure 4 Select the range to be edited Use the arrow keys to highlight the coefficient to be edited 6 Use the numeric keypad and ENTER key to enter a new value To correct a mistake in the edit field use the CLEAR key 7
32. bration standard Do not enter the Measured pressure reported by the Calibrator If necessary use the Clear key to correct a mistake in the edit field If the actual pressure applied is acceptable the Calibration Step 4 screen will appear Note If the actual pressure applied is outside of the tolerance for the requested high point pressure Error 222 Data out of range will occur Acknowledge this error by selecting OK then re enter the actual pressure repeating Step 3 number 1 if necessary To begin Step 4 use the calibration standard to again Apply the mid point pressure of the range of the sensor being calibrated requested by the Calibrator As pressure is admitted into the Test Port the Measured pressure on the Calibrator s screen will change accordingly When the Measured pressure stabilizes use the Calibrator s numeric keypad and OK to enter the actual pressure reported by the calibration standard Do not enter the Measured pressure reported by the Calibrator If necessary use the CLEAR key to correct a mistake in the edit field If the actual pressure applied is acceptable the Calibration complete screen will appear Storing the Coefficients Step 5 6 4 Note In addition to saving the calibration coefficients to the Calibrator s memory the user is advised to separately record the calibration coefficients and store this backup in a safe place Calibration is complete To exit the calibration procedure
33. bserving the Calibrator s Full Scale Rating Instructions for observing the Calibrator s full scale rating are given below 1 Ifnecessary press PREV several times to return the display to the Main screen 2 Select MENU CAL The Calibrator s full scale pressure rating FS will appear on the screen in the current units of measure 3 Press PREV to return to the previous screen Observing the Software Version Number Follow the steps below to observe the Calibrator s software version number 1 Ifnecessary press PREV several times to return the display to the Main screen 2 Select MENU SETUP SYSTEM The software version number will appear on the screen 3 Press PREV to return to the previous screen Preventive Maintenance Although the Calibrator is designed to be nearly maintenance free occasional preventive maintenance is required to keep the Calibrator s performance optimal Initiating the Calibrator s Self Test To test the Calibrator s hardware software and pneumatics follow the steps below 1 Ifnecessary press PREV several times to return the display to the main screen 2 Select MENU TEST SELF The electronics self test will run and display the results 3 Press Pneu to run the pneumatic test 4 Press PREV to return to the previous screen Removing the Calibrator s Cover The Calibrator should be kept clean and completely assembled at all times Operating the Calibrator without its cover affects the
34. ccccccccccsseeeeeeeeeeeeeeeeeeeeeeeeeeeeeeees Seting the Alarmi LINIS crcr Using Head Pressure Correction c0c0cccceceseseeeesesssesseesessesssseeseeseeeeegs STRO MO e nE EE R E Controlling PCS SUS 5 52sec cescscasiececeroetericsieonseon Erini OTOL IOC CS eine E Normal MOC wos 0 sconsacisesescsedasaceanneaonsaeneoaieoeteionesedasadeaunsoonaaenoaseoesaseneaesanes CNS MOUE sae pecans aes y tease E E youedeeevstienevsaeestovens Setting th Pressure SelMOIUAL serisinin nr i n aiaia e iTi Entering Exiting Control Mode nnnsnnnseessssesesssrrrrrerrrererrrrrrrrrrrerrreren Seme Slew RAE areis E i Stepping and Jogging seserian aa TaS a aan a Contents continued Programming CGC CS ioien nn aE E AE N 4 7 Storing a Sequence in Memory ccccceeeesseesssssssssseseeseeeseseeeeeeeeeeeeeeeees PEA Preparmg t9 Propra orrn E aS 4 7 PrO AIT Da e RT 4 7 COn OO a EET A eevee teecseeeee so saes peseaeesaess 4 7 Number of Set Points cccsssoscsesasassanneseraceiesonsecsasgaaseadsasaonseseracedesonseetasoneseantes a Set Point Pressure and Tolerance cccccceeeesesessssssssesssssesesseeseeeeens 4 8 Ny UI E eoa E 4 8 IN VASE a A E E E 4 8 Modol eniya E 4 8 Entering a New Progr ain eresraniricennnnan ian aa 4 8 Automatically Generating a Program 000000ososeseseseeneessssssssssnnesssssnsssssnns 4 9 Changing the Name of a Program cccccccccccccccccccccceceeeeeeeeeeeeeeeeeeeeeeee
35. ccssccceceeccceecceeceeeeceeeeseeeeeeeeeess Reso O eacsetecoccueaciesaaeioteaeeatteseneeaecemsesssesens ioneauseaeienroaieeaes Electrostatic Discharge Sensitive Parts Compressed ATE 5 ccscaninssacsncasqscatacaoinonngseacanseooseauiasnnaseansoniaunesonaaeacsommameniaeeaes Personal Protective Equipment cccccccsssssscscsccscccsscsceeeeeeeeeeeeeeeeeeeeeeees MINCE GSS EE EE A T E T E ETE T Symbols Used in this Manual 5 1 530 lt asassdessvsvevecseaddasseatavacdearssesieanesesaeeriserw aren I AEC a E AOFI an a A E PONO r ODDI erT Measurement While Control sesrmrssnnen i A Friendly Display ccnscsorseeresoseoanesnesees nine EENE E E ETRE E E Ra E Eiei Adjustable Pressure Display 00000000000000nnnnnonsonnnnnnnnnnnsnsnssnessssssssssnssnsssssnnns Ease of Operation sesers EERE ENEE Fasily Programmable srecen Attractive Desktop Packaging cc cccccccscscccccececceeceeeceeceeeeeeeeeeeeeeeeeeeeeeees Power On Self Test POST ieccsccinacancueunacwonadiactenssaaceesmeasdacaouatabsusdenseemesetedensts Pase of Calibra on sesienierr in o TEEN Automatic Zero Adjust ecssenspnres n piasseoneteeze es Automatic Head Correction cccccccccscscssssccssssssssccceeeeeeeeeceeeeeeceeeeeeeeeeeeeeeeees Choiceof Medini osaisin naa AA Aa Choice OF display UNIS sesine rinio nrin iE OER Communications Miera tE siessscacoecs cecasecesiwivncasehasbcasieee te eeanpieoivnareapeaomniis Standard Equipment amp Options ccccccceeesss
36. curacy pressure sensor High Accuracy Pressure Sensor The system transducer is used for the high accuracy measurement of pressure This transducer should be calibrated at regular interval to maintain its stated accuracy An optional dual sensor version is also available in which case there would be two system transducers each of which has an accompanying isolation valve and pressure relieving mechanism for sensor protection See next section Chapter 2 Optional Second High Accuracy Sensor Optional Second High Accuracy Sensor The system is also available with an optional second High Accuracy Sensor The second sensor 1s provided with a lower full scale pressure range than the primary High Accuracy Sensor This is provided in order to allow the system to operate through a wider pressure range while maintaining high accuracy pressure measurements This transducer should be calibrated at regular interval to maintain its stated accuracy This sensor is isolated from the system when the system is operating at pressures higher than its full scale operating range It is also protected by its own pressure relief mechanism When a second sensor is installed into the system the system can automatically switch between the two sensors Test Port The device under test is connected to this port Supply Port The supply air is connected to the supply port The supply air should be regulated between 100 to 110 psi The pneumatic side is protected b
37. d be satisfied with a tolerance as high as 5 psi Dwell time Once the pressure gets within the specified tolerance the Calibrator starts a timer that runs for a certain number of seconds As long as this timer is running the Calibrator will not continue to the next set point unless the max time elapses see below Usually dwell time has a value of a few seconds but a value of 0 can be used to create a pause in the program When the dwell time is set to 0 the Calibrator switches to manual control once it gets within the tolerance value of the set point pressure The operator must then press a key on the front panel to continue the exercise Max time The max time is the maximum time in seconds including the dwell time that the Calibrator can spend on one step of the program After the max time elapses the Calibrator will automatically proceed to the next set point in the program even if the current set point has not been achieved Thus the max time selection limits the amount of time that the Calibrator can spend on any one set point Mode of entry If the upscale portion of the sequence and the downscale portion of the sequence both have the same highest and lowest set points and consist of evenly spaced steps the lt Auto gt option can be used to automatically generate the program However if any part of sequence includes unevenly spaced steps or the starting and ending set points are not the same each step must be programmed
38. d to change the name of the selected unit Use the arrow keys to highlight the desired character in the matrix b Press Add F3 to add the character to the name entry box c Repeat steps a and b until the desired name is entered Press Clear F4 to Start Over d Press Enter F5 to accept the name 4 Use the numeric keypad to enter the conversion factor and press Enter to accept 5 Press PREV to return to the Units Menu The new unit definition may be selected Changing the Number of Decimals Each unit has a default number of decimal places used for pressure display This may be adjusted up or down by 1 decimal place 1 The decimal digits are set from the Setup User Menu From the Main Menu press Prev until the Main Menu appears press Menu F6 Setup F2 User F2 2 Press the down arrow key until the label Display digits is highlighted 3 Use the Left and Right arrow keys to change the number of decimal digits 4 Press PREV to exit the menu Press CANCEL to return all edited fields to their original values Setting the Alarm Limits The Calibrator continually checks the measured pressure against high low and slew rate limits If the measured pressure exceeds the high limit falls below the low limit or changes faster than the slew rate limit an alarm is generated 1 The alarm limits are set from the Setup Limits menu From the Main Menu press PREV until the Main Menu appears press Menu F6 Setup F2 Limit
39. de Press ENTER Press Yes F4 to acknowledge changing the access code Bargraph Maximum The bargraph on the Main Menu screen can be scaled to match the device under test by setting the full scale value of the bargraph k 4 Key Click The bargraph maximum is set from the Setup User Menu From the Main Menu press PREV until the Main Menu appears press Menu F6 Setup F2 User F2 Use the up and down arrow keys to highlight Bargraph Max Use the numeric keypad to enter the bargraph maximum value in the current pressure units Press ENTER The Calibrator can be configured to click each time a key is pressed l 2 3 Date Time The Key Click is set from the Setup User Menu From the Main Menu press PREV until the Main Menu appears press Menu F6 Setup F2 User F2 Use the up and down arrow keys to highlight Key click Use the left and right arrow keys to select on or off The Calibrator s system clock is continuously updated even through power off and on l The Date and Time are set from the Setup System menu From the Main Menu press PREV until the Main Menu appears press Menu F6 Setup F2 System F5 To set the system date press Date F1 Use the numeric keypad to enter the current month date and four digit year All digits must be entered Press ENTER to accept To set the system time press Time F2 Use the numeric keypad to enter the current hour minute and second Al
40. dure completes This may take several minutes When the 7615 completes Step 1 the Calibration step 2 screen will appear 1 To begin Step 2 use the calibration standard to Apply the mid point pressure of the range of the sensor being calibrated requested by the 7615 As pressure is admitted into the Test Port the Measured pressure on the 7615 s screen will change accordingly 6 3 RUSKA 7615 Users Manual Step 3 Step 4 2 When the Measured pressure stabilizes use the 7615 s numeric keypad and OK to enter the actual pressure applied by the calibration standard Do not enter the Measured pressure reported by the Calibrator If necessary use the CLEAR key to correct a mistake in the edit field If the actual pressure applied is acceptable the Calibration Step 3 screen will appear Note If the actual pressure is outside of the tolerance for the requested mid point pressure Error 222 Data out of range will occur Acknowledge this error by selecting OK then re enter the actual pressure repeating Step 2 number if necessary To begin Step 3 use the calibration standard to Apply the high point pressure of the range of the sensor being calibrated requested by the 7615 As pressure is admitted into the Test Port the Measured pressure on the Calibrator s screen will change accordingly When the Measured pressure stabilizes use the Calibrator s numeric keypad and OK to enter the actual pressure reported by the cali
41. e DATA POINtS VALUe lt n gt CALibration POINtS VALUe lt n gt VALue lt n gt lt number gt ZERO VALUE lt number gt INITiate INITiate RUN STOP PRESsure2 DATA lt number gt lt number gt VALue lt number gt VALue2 lt number gt POSition DATA lt number gt lt number gt DATA VALue lt number gt MODE MODE ON OFF 1 0 DISP ENABle ON OFF 1 0 TEXT lt string gt BGRaph lt number gt OUTPut STATe ON OFF 1 0 STATe returns current pressure reading return pump pressure returns pump position get set low pressure limit get set slew rate limit get set high pressure limit get set auto vent limit get set tare value set tare using current pressure read number of calibration constants read label calibration constant read number of calibration points read nominal calibration point perform calibration point performs zero calibration sets vacuum value enter zero calibration mode returns status for cal press temp ref start zero calibration abort zero calibration sets C0 C1 for pump pressure sets first calibration point sets second calibration point sets C0 C1 position reads C0 C1 sets second calibration point calibration edit enabled enable calibration edit Cal button required turns front panel display on off displays message on front panel sets bar graph maximum off MEASure on CONTrol returns 0 Measure or 1 Control MO
42. e B 2 Error Messages continued Value Description and Corrective Action 313 Configuration Data Lost The configuration data has been lost and the unit must be recalibrated 315 Configuration Data Lost The configuration data has been lost Check all parameters to be sure they are correct 521 Pressure Over range The pressure reading is outside the range of the DPC 546 Valve Error Isolation Valve Factory Data Lost Internal factory constants have been lost Contact Fluke for more information 601 Calibration Mode The CAL button must be pressed before SCPI calibration commands can be executed 702 Pump Position Out of Range Solenoid Over Temperature Control Valves
43. e Microprocessor Board Analog Digital I O Board Control Board and the IEEE Interface all plug into the Back Plane Board The 5 VDC 12 VDC and 12 VDC voltages supplied by the Power Supply is distributed from the Back Plane Board to the four plug in boards and to the front display The Microprocessor Board All of the systems software resides in non volatile programmable read only memory Flash EPROM on the Microprocessor Board This software contains all of the instructions that operate the instrument as well as the conversion factors that the instrument uses to translate the detected pressure into the units selected by the user These factors are given in Table 2 1 When the Calibrator powers up its software is loaded into random access memory RAM which is also on the Microprocessor Board At the same time the values stored in EEPROM are restored to memory Another important component on the Microprocessor Board is the lithium battery which continuously updates the Calibrator s date and time even when the unit is powered down The Microprocessor Board also supports the RS 232 serial interfaces which allow the user s computer to communicate with the Calibrator 2 1 RUSKA 7615 Users Manual The Analog Digital I O Board The Calibrator s Analog Digital I O board which plugs directly into the back plane is utilized by the Calibrator to read various analog and digital signals and to drive system solenoids T
44. e instrument s population The user is free to consult Fluke for recommended methods of minimizing error source contributions In summation total error can and should be managed by the control of the three general error sources Input Specifications which includes the user s chosen calibration standards General Specifications which includes the user s chosen processes and Performance Specifications which includes the user s chosen applications for the instrumentation The parameters and value limits listed in the following specifications indicate the product line s general acceptance limits and are not a report of any unit s specific error contribution Any parameter exceeding the specified limits should be considered in need of maintenance Specifications Standard Pressure Ranges 6K 10K 15K 20K 30K 40K Table A 1 Triple Scale Ranges psi bar 6 000 415 2000 140 4000 280 6000 415 10 000 700 3000 200 6000 400 10 000 700 35 000 1600 40 000 2750 Precision High Ranges to 20 000 psia 0 01 FS of Active Range High Ranges gt 20 000 psia 0 02 FS of Active Range Stability High Ranges to 20 000 psia 0 01 of Active Range Year High Ranges gt 20 000 psia 0 02 of Active Range Y ear Resolution 0 01 FS or better Control Stability Typically 0 01 FS for ranges less than 20K 0 02 FS for ranges greater than 20K Control Range Increasing Atm to Full Scale Decreasing Full Scale down to 400 psi a
45. e zeroing process Note To exit the calibration procedure before the calibration coefficients have been changed press CANCEL any time during the procedure 6 5 RUSKA 7615 Users Manual 6 6 Step Step 2 Step 3 1 To begin Step 1 of the calibration process select ZERO Enter the actual pressure applied and press ok a Wait until the zero procedure completes This may take several minutes When the Calibrator completes Step 1 the Calibrator will request which sub range of the triple range sensor is to be calibrated Use the arrow keys to highlight the desired range and hit OK b The system will then prompt the operator to enter the number of points that should be included in the calibration Typically it is recommended to select 3 points up and 3 points down This will generate a calibration procedure that includes atmosphere 50 100 in the increasing direction and then 50 and atmosphere in the decreasing direction for the sub range of the sensor being calibrated When the Calibrator completes Step 1 the Calibration Step 2 screen will appear Note The number of steps noted in this example is based on the operator selecting a 3 points up and 3 points down procedure If a higher or lower number of points is specified by the operator the actual pressures that the 7615 calculates will very to reflect these changes 1 To begin Step 2 use the calibration standard to Apply the mid point pressure of the sub range of
46. eeeeeees 4 9 Changing an Existing Programm cccccccccccccccccccceeeceeeeeeeeeeeeeeeeeeeeseeeeesseeeaeeas 4 9 Changing the Configuration Stored with a Program cccccceeeeeeeeeeettees 4 10 Running a Propral en 4 10 ROTA UN AOU oe E E E E E TE A T ts 4 11 Test Access Code sopesar orria E Ar a ai 4 11 PA OT AM Maximu serrr A 4 11 OLA 4 11 Derre Ei E E O E E A E T EE E ENA 4 11 Remote Operat ON sesser epar AEEA SENSEN Remote Opera 0 0 Reena Re a Aea ASEENSA IE ANAR Capan E eee ee eer ee ce E eee eee UTE o O EEE soe te sa ceo E see onan A E A eee TRS 8D ea sasoaetgs a iysge sen seaenuene A E Remote Local OP erat OM aagccccsavichcnssaiavscdtonssactvatdecestaucageseatusaedtovencebaatdeassteuoncesaens LO AO Moe seven baste a a Gestresuies EE OA EA EO ONT OTE Device Messa 5 ste terccosearte ton ia E ERS SCPLrCommand Format sssaaa aeai a aa DCP RCS ONS ee Ponda ennas E ns ANSI TEEE 488 2 1987 Command Summa r ccccccccsssssssscceeeeeeeeeeeeees SCPI Command Summary scrote sicesctssceseiesiv sid eene de seresetosendetesay eae topesiadesoatacsinie Example SCPI Commands eskerren a a SCPI Status REZISTETS cerrirnereraai ninnan Arena Erna ENSEN ENEA ROKAN ENEAN ER Interlace Panel Fow atio surrer nesre e niian ee E OOOO ETO Sa EO o All OM POPNE ONE SE A Maime NANG 6 cosi rE aro a OE R Observing the Calibrator s Full Scale Rating 0 0 0 ccccccccceeeeeeeeeeeeeeeeeeees Observing the Software Version Numbet
47. eeping Always 0 Bit4 Measuring The instument is actively measuring Always 1 Bit5 Waiting for Trigger Always 0 Bit 7 Correcting Currently performing a correction Always 0 Bit 8 Self test in progress Bit9 Always 0 Bit 10 Always 0 Bit 11 Always 0 Bit 12 Always 0 Bit 13 Instrument Summary bit Always 0 5 6 Remote Operation 5 Interface Panel Emulation Bit 14 Program Running Bit 15 0 Questionable Status QUES EVENT QUES CONDITION QUES ENABLE BitO Voltage is questionable Set when supply voltages are not within 5 Bit 1 Current is questionable Always 0 Bit 2 Time is questionable Set when the clock has not been set Bit 3 Temperature is questionable Set when the oven temperature is not within range Bit 5 Phase is questionable Always 0 Bit6 Modulation is questionable Always 0 Bit 7 Calibration is questionable Set when the unit has not been calibrated Bit 8 Pressure is questionable Set when the pressure is overranged Bit9 Always 0 Bit 10 Always 0 Bit 11 Always 0 Bit 12 Always 0 Bit 13 Instrument Summary bit Always 0 Bit 14 Command Warning Set whenever a command ignores a parameter Bit 15 0 Interface Panel Emulation The 7000 may be configured to emulate the IEEE 488 command set of the RUSKA Single Channel Interface Panel Models 6005 701 and 6005 761 See the Interface Panel manual for a description of the protocol The 7000 emulation has the following differences 1
48. er Once the pressure stabilizes the system then displays the reading from the High Accuracy sensor See Chapter 2 High Accuracy Pressure Sensor and Optional Second High Accuracy Sensor and indicates this by displaying the word Precise as shown in the example below For systems with multiple pressure ranges the full scale pressure range in the current unit of measure of the active sensor is displayed below the displayed unit of measure In the example below the active sensor range is a 10 000 psi full scale sensor 2 16 Psi Precise Range 10000 0 Set Point 0 00 ME Control Vent Step Step Menu Multi Range Sensor Options The RUSKA 7615 Calibrators are available as multi range instruments The number of sensors available in an instrument can range from one to six To select an active range from the main menu select the MENU MODE keys The F5 function key is labeled as range and by depressing the F5 key the system will cycle between the various available full scale pressure ranges The full scale ranges are displayed in the same unit of measure that the measured pressure is actively displaying Note To switch between pressure ranges the actual measured pressure must be less than 100 psi Selecting Pressure Units The Calibrator uses the conversion factors listed in Chapter 2 Table 2 1 to translate the pressure from kiloPascals to one of the Calibrator s units of measure These include inches of mercury k
49. essed To add a step to the program first move to the step after the new step For example to insert a step between steps 3 and 4 move to step 4 Press Insert F4 To delete a step in the program first move to the step to be deleted then press Delete F5 To change a step in the program move to the desired step Use the up and down arrow keys to highlight the field to be changed Use the numeric keypad to enter the new value Press ENTER to save the value When all changes have been made press PREV to return to the Named Programs screen Changing the Configuration Stored with a Program l oe E o E Programs are configured from the Program Menu From the Main Menu press PREV until the Main Menu appears press Menu F6 Program F4 Use the arrow keys to highlight the name of the program Press Config F3 The configuration screen will appear Press Recall F2 The Calibrator will be set to the configuration stored with the program Press Prev until the Main Menu appears Change the desired parameters using the normal procedures Return to the Main Menu by pressing PREV until it appears Press Menu F6 Program F4 Use the arrow keys to highlight the name of the program Press Config F3 Save F1 The changed configuration of the Calibrator is stored in the program s configuration Running a Program l Programs are run from the Program menu From the Main Menu press PREV until the M
50. f controlling the pressure to the exact set point the Calibrator will continue on to the next step once the pressure gets within the specified tolerance for that set point This gives the user a time advantage over controlling pressures manually Note The Calibrator can store up to 1 000 program steps which may be unevenly divided among a maximum of 20 named programs Additional programs can be stored on memory cards Preparing to Program Before entering a test sequence the user is encouraged to consider the items discussed below Program name Valid program names range from one to eight characters in length and can include numbers upper case letters and the and symbols For example Exer 14 and FS test are both valid names Configuration Since a program may depend upon the current setup of the Calibrator the current configuration is stored with the program The user should set the units limits control parameters etc to the desired values before creating a program Number of Set Points Before entering the sequence the user should determine the number of upscale and downscale set points required to complete the exercise 4 7 RUSKA 7615 Users Manual Set Point Pressure and Tolerance Each set point in the program requires both a pressure and a tolerance in the current units of measure For example one set point might require a tolerance as low as 0 5 min control psi whereas another set point in the same program coul
51. he IEEE 488 Interface The Calibrator s IEEE 488 GPIB Interface card which plugs directly into the Back Plane provides the Calibrator with an IEEE 488 interface This interface allows the user to automate the measurement and control processes The Front Panel The Microprocessor Board and Control Board work together to interpret all input from the Front Panel The Front Panel contains the vacuum fluorescent display and rubberized keys used to operate the Calibrator SENSORS PNEUMATIC CYLINDER POWER CONTROL MICROPROCESSOR T BOARD SUPPLY BOARD AC POWER ANALOG DISPLAY DIGITAL I O IEEE CARD PANEL BOARD gko001 eps Figure 2 1 Calibrator Block Diagram The Control Board The Control Board is used to for the pneumatic control of pressure into the Pneumatic Cylinder It drives the 24 volt high speed supply and exhaust control valves which are used to drive the pneumatic hydraulic intensifier 2 2 Theory of Operation 2 The Hydraulic Pneumatic Module Table 2 1 Conversion Factors e eraron O Eeo The Hydraulic Pneumatic Module The hydraulic pneumatic module shown on 2 2 houses components which generate and accurately measures hydraulic pressure Pneumatic Hydraulic Intensifier The pneumatic hydraulic intensifier consists of a air driven hydraulic pump which varies the system pressure by compressing and expanding system fluid The pump plunger is linked to a large area piston of a pneumatic cylinder which
52. her control characters are ignored SCPI Response Format Only commands ending in a question mark have responses Multiple values from a single command are separated by commas Responses from different commands in the same message are separated by semi colons The response message is terminated by a Line Feed hexadecimal 0A Integer responses are returned as or more digits Boolean values ON and OFF values are always returned as numbers with zero for OFF and one for ON Floating point values are returned in the format d ddddddddE dd 5 3 RUSKA 7615 Users Manual ANSIJIEEE 488 2 1987 Command Summary CLS ESE ESE ESR IDN OPC OPC RST SRE SRE STB TST WAI Clear Status Event Status Enable Query Event Status Enable Event Status Register Identification Operation Complete Query Returns 1 Operation Complete Reset Service Request Enable Query Service Request Enable Status Byte Query Self Test Query Wait No operation lt number gt lt number gt SCPI Command Summary The current value associated with a SCPI command may be read by appending a question mark to the command For example CALC LIM UPP will return the current upper pressure limit MEASure PRESsure gt PRESsure2 POSITION CALCulate LIMit LOWer lt number gt SLEW lt number gt UPPer lt number gt VENT lt number gt TARE VALue lt number gt STATe ON OFF CALibration PRESsur
53. ill appear Maintenance Calibration Note If the actual pressure applied is outside of the tolerance for the requested high point pressure Error 222 Data out of range will occur Acknowledge this error by selecting OK then re enter the actual pressure repeating Step 3 number 1 if necessary Step 4 1 To begin Step 4 use the calibration standard to again Apply the mid point pressure of the range of the sensor being calibrated requested by the Calibrator As pressure 1s admitted into the Test Port the Measured pressure on the Calibrator s screen will change accordingly 2 When the Measured pressure stabilizes use the Calibrator s numeric keypad and OK to enter the actual pressure reported by the calibration standard Do not enter the Measured pressure reported by the Calibrator If necessary use the CLEAR key to correct a mistake in the edit field If the actual pressure applied is acceptable the Calibration Complete screen will appear Storing the Coefficients Note In addition to saving the calibration coefficients to the Calibrator s memory the user is advised to separately record the calibration coefficients and store this backup in a safe place Step 5 Calibration is complete To exit the calibration procedure without storing the calibration coefficients in memory press CANCEL To store the calibration coefficients in memory select OK Step 6 Press PREV to return to the main screen Once the calibr
54. ilopascals bars pound per square inch feet meters knots and kilometer per hour In addition to these predefined units four user defined units are available 1 The pressure units are selected from the Units menu From the Main Menu press PREV until the Main Menu appears press Menu F6 Setup F2 Units F3 The current units will be highlighted 2 Use the Arrow Keys to highlight the desired pressure unit Press ENTER to accept the change Press PREV to exit without changing the units 4 3 RUSKA 7615 Users Manual Defining a New Pressure Unit In addition to the standard units of measure provided by the Calibrator four user defined units are available To create one of these units the user enters a name that is one to six characters long and a conversion factor that is a multiple of kiloPascals kPa For example a millitorr which equals one micron of mercury at 0 C is related to a millimeter of mercury by a factor of 1 000 Thus based on the conversion factors listed in Chapter 1 Table 2 1 a millitorr would have a user defined conversion factor of 7 500605 times 1 000 or 7 500 605 The user defined name for this unit could be mtorr 1 The pressure units are defined from the Units Define Menu From the Main Menu press PREV until the Main Menu appears press Menu F6 Setup F2 Units F3 Define F1 2 Press Next 4 F2 until the desired user defined unit is highlighted 3 The following sequence is use
55. individually In the example given at the beginning of Chapter 4 Measuring Pressure each step must be programmed individually since the starting set point is 30 psi and the ending set point is 20 psi Detailed instructions for entering these items are given in the sections that follow Entering a New Program To program the Calibrator the operator simply uses the keys on the front panel to change values on the Calibrator s program editing screen Instructions for entering each step of a new program are included below 1 Insure that the units limits and control parameters are at their desired values 2 The program is entered from the Program menu From the Main Menu press PREV until the Main Menu appears press Menu F6 Program F4 Use the arrow keys to highlight new 4 Press Edit F4 Since new was highlighted the Calibrator will create a new program and give a default name of NAMEnn where nn is a two digit number The program editing screen will appear displaying the first step 5 Using the numeric keypad enter the values for Pressure Tolerance Dwell time and Max time pressing ENTER after each value The up and down arrow keys may be used to skip fields 6 Press Next F1 to move to the next step 4 8 Local Operation 4 Programming Sequences 7 Repeat steps 5 and 6 until the test sequence is complete 8 When all steps have been entered press PREV to return to the Named programs screen Aut
56. inimal overshoot At the end of the calibration cycle the oil can be fast dumped to the reservoir or stepped down under control 4 5 RUSKA 7615 Users Manual Cycle Modes This mode of operation offers the fastest method of generating cyclic pressures and is ideal for fatigue testing and extended proof pressure cycling Initially the 7615 controls to the maximum pressure The pneumatic hydraulic intensifier is then isolated from the system and then driven to the end of its travel The pneumatic hydraulic intensifier is then opened back to the system and then cycled between its maximum and minimum travel limits The result is that pressure is cycled between the maximum pressure and whatever minimum pressure that is achieve by the reduction in volume caused by the pump plunger fully retracting The 7615 then logs the maximum and minimum pressures that were obtained by the pump plunger moving from the maximum to the minimum pump travel The operator has the ability to set the number of cycles dwell time and the pressure tolerance The maximum system pressure is automatically reset if it falls outside of the pressure tolerance For this reason in high speed applications it is recommended that the pressure tolerance be set to a large value such as 3000 to 4000 psi Setting the Pressure Setpoint The pressure set point is the destination of the pressure control algorithm It should be set before entering control mode The pressure set point is se
57. is a reduction of oxygen concentration Therefore it is mandatory that all exhaust gases be vented outside the work area 1 2 General Information 1 Symbols Used in this Manual Warning If the equipment is used in a manner not specified by the manufacturer the protection provided by the equipment may be impaired The AC main plug switch and power cord shall remain readily accessible for operation Symbols Used in this Manual In this manual a Warning identifies conditions and actions that pose a hazard to the user A Caution identifies conditions and actions that may damage the Calibrator Symbols used on the Hydraulic Pressure Controller Calibrator Calibrator and in this manual are explained in Table 1 1 Table 1 1 Symbols ee OOOO Do not dispose of this product as unsorted municipal waste Go to Fluke s website for recycling information Electrostatic discharge Sensitive ESDS This equipment meets the requirements of all relevant European safety directives The equipment carries the CE mark Features The following features are standard on all RUSKA 7615 Calibrators NIST Traceability All Calibrator s are calibrated using RUSKA deadweight gages which are directly traceable to the National Institute of Standards and Technology NIST All instruments are provided with a NVLAP accredited calibration certificate Power Supply The Calibrator s universal power supply accepts AC voltages from 100
58. l digits must be entered Press ENTER to accept RUSKA 7615 Users Manual Remote Operation Chapter 5 Remote Operation The Calibrator can be operated remotely by a computer Two standard interfaces are supported IEEE 488 and RS 232 Both interfaces support SCPI Standard Commands for Programmable Instruments The IEEE 488 interface additionally supports emulation of a RUSKA Single Channel Interface Panel Models 6005 701 and 6005 761 The IEEE 488 interface conforms to the following standards ANSI IEEE Std 488 1 1987 IEEE Standard Digital Interface for Programmable Instrumentation ANSI IEEE Std 488 2 1987 IEEE Standard Codes Formats Protocols and Common SCPI 1991 0 Capabilities IEEE 488 Commands Standard Commands for Programmable Instruments The following identification codes define the interface capabilities of the Calibrator Their meaning is described in the IEEE 488 standard SH1 AHI T5 L3 SRI RLI PPO DCI DTO CO Source Handshake Complete Capability Acceptor Handshake Complete Capability Talker Listener Service Request Complete Capability Remote Local Complete Capability Parallel Poll No Capability Device Clear Complete Capability Device Trigger No Capability Controller No Capability The optional IEEE 488 interface is installed next to the processor board The interface is identified by the IEEE 488 standard connector on the back panel of the unit Note Do not change any jumper
59. le 3 1 General Specifications amp Parameters parameter ae Mode Operating Humidity Range 5 to 95 RH Storage Humidity Range None Operating Temperature 5 C to 50 C Storage Temperature 20 C to 70 C Air Supply Pressure Range 100 110 psig Min Dew Point 10 C Peak Flow Capacity 300 SCFH Power Requirements 115 VAC or 230 VAC pall Note If there is any condensation the Calibrator must be thoroughly dried before power is applied Cautions The following cautions should be heeded at all times to insure safe operation of the Calibrator AA Warning Never operate the unit with the cover removed The power supply has internal voltages near 400 volts Never apply more than 110 of the unit s full scale pressure range to the test port Never try to control while a pressure source is connected to the test port Avoid thermal and mechanical shock to the instrument This will affect performance and require re zeroing A Caution Never operate the unit without a minimum volume of 3 in 50 cc attached to the test port This can result in damage to the sensor Powering Up the Calibrator 1 First plug the power cord supplied with the Calibrator into the power connector on the Calibrator s rear panel Note Grounding for the Calibrator is provided through the power cord 2 Next plug the power cord into a receptacle rated for either 115 VAC or 230 VAC check name plate If a different power cord is
60. mits i Set high low slew overshoot and access code User fn Set step size head correction and display digits ann Set display units Define user display units Set baud parity data bits stop bits GPIB address Set date and time reset machine and see software version Enter calibrate menu Auto zero calibrate primary transducer Calibration secondary transducer Program Enter Program menu Run programmed test sequences Edit program instruction pressure tolerance dwell time max time Change program name Enter Test menu Sweep pressure between two points a specificied number of times Perform self test Display remote status gt Local control of pump and valves for purging system gt Display transducer values gko012 eps Figure 4 2 Menu Tree Local Operation 4 Measuring Pressure Measuring Pressure The Main Menu displays the measured pressure in double size numbers To the right of the pressure is the current unit and type Tare or Absolute The Main Menu can always be reached by repeatedly pressing PREV Just below the measured pressure value is a label stating either High Speed or Precise This is to provide the user with an indication of which sensor is actively displaying During high speed pressure control the system displays the word High Speed to indicate that the system is display the pressure as measured by the high speed lower accuracy pressure sensor See Chapter 2 High Speed System Transduc
61. nd vent to Atm Control Response Values are noted into a 50 cc air free volume and reflect the typical control speeds or average time of multiple test points for the system Increased volume or air in the system will increase the control time Decreasing volume will decrease the control times Normal Control Mode Time for 10 step size 90 seconds Time to vent lt 5 seconds Pump Recycle time 10 seconds Cycle Control Mode Overpressure Protection Display Pressure Medium Air Supply Summary of Specifications A Specifications Setup time to reach initial pressure lt 30 seconds Operating time to full pressure lt 10 seconds 4 seconds typical Operating time to Min pressure lt 10 seconds 7 seconds typical Time to complete one full cycle lt 20 seconds 11 seconds typical Relief valves and rupture disk set at 110 FS Pressure port Test port Autoclave F250C Supply Port 1 4 inch Female NPT Graphical vacuum fluorescent Any non corrosive fluid 90 110 psi Dry Air Dew Point 10 C Peak Flow Rate of 300 SCFH Recommended Recalibration Interval Communications Dimensions Weight Electrical Power Humidity Temperature Ingress Protection EMC Electrical Safety Pressure Safety Year Standard RS 232C and IEEE 488 Syntax SCPI standard commands for programmable instruments 19 W x 30 D x 14 H 49 x 76 x 36 cm 150 lbs 115 VAC or 240 VAC 50 60 HZ single phase 5 to 95
62. necessary for your receptacle consult Chapter 1 Table 1 2 for available power cords 3 Finally turn on the Calibrator by flipping the POWER switch on the rear panel Jn about 10 seconds the MEASURE screen will appear on the vacuum fluorescent display and the front panel will be fully operational 3 2 Installation 3 Hydraulic Pneumatic Connections Hydraulic Pneumatic Connections Pneumatic connection to the Calibrator is straightforward The following sections discuss each port Air Supply Port The supply port must be connected to a well regulated source of dry shop air Air supply should be regulated between 100 to 110 psi Supply port is a 1 4 tube connection The air supply source should be capable of provide a peak flow rate of 150 Standard Liters per Minute 300 SCFH Note The Air Supply must be a clean air supply dried to a minimum dew point of 10 C Test Port The test port is designed to control a wide range of volumes Any leaks on the test port will cause measurement errors For best results a minimum volume of approximately 10 in 160 cc is recommended For High Speed applications further minimizing the volume significantly increases the system speed A 3 in 50 cc volume or less is recommended for high speed applications Operating the 7615 at volumes less than 3 in 50 cc could result in damage to the sensor The test port is 1 4 high pressure connection autoclave F250C Reservoir The sy
63. nnel working with or near dangerous voltages shall be familiar with modern methods of resuscitation Such information may be obtained from your local American Medical Association Electrostatic Discharge Sensitive Parts Vr GRO od fs UND N A Caution Electrostatic discharge sensitive ESDS is applied to low power solid state parts which could be damaged or destroyed when exposed to discharges of static electricity Maintenance personnel are often not aware that an ESDS part has been damaged or destroyed because electrostatic discharges at levels less than 4 000 volts cannot be seen felt or heard When the ESDS symbol appears between a paragraph number and paragraph title the entire paragraph and all subparagraphs shall be considered ESD sensitive When the ESDS symbol appears between a step number and the step test the step shall be considered ESD sensitive Compressed Air Use of compressed air can create an environment of propelled foreign matter Pressure systems safety precautions apply to all ranges of pressure Care must be taken during testing to ensure that all pneumatic connections are properly and tightly made prior to applying pressure Personnel must wear eye protection to prevent injury Personal Protective Equipment Wear eye protection approved for the materials and tools being used Inert Gases Operation of pressure equipment may be accompanied by the discharge of inert gases to the atmosphere The result
64. non condensing Operating 5 50 C 40 to 122 F Storage 20 to 70 C 4 to 158 F IP20 Indoor use Altitude lt 2000m EN 61326 EN 61010 Pressure equipment directive 98 23 EC class Sound Engineering Practice SEP A 3 RUSKA 7615 Users Manual A 4 Appendix B Summary of Error Messages Summary of Error Messages Negative error numbers are from the Standard Commands for Programmable Instruments Version 1991 0 Table B 1 Error Messages Description and Corrective Action Co foem Invalid Separator Check punctuation in the SCPI command 104 Data Type The type of parameter data is uncorrected Check for numeric versus string data Header Suffix The numeric suffix for the command name is out of range 221 Settings Conflict The command could not be executed due to the current state of the DPC Some commands cannot be executed while a program self test or calibration is in progress Out of Range The value is not within the valid range For pressures check high and low limits Cannot create program Program memory is full Illegal Program Name The name specified is not valid or does not exist Program Currently Running The command cannot be executed while a program is running Program Syntax Error The syntax of the program definition is not correct 286 Program Runtime Error An error occurred while running the program Usually the set point is out of range RUSKA 7615 Users Manual Tabl
65. nt The top center of the display shows the current pressure 27 16 psi The upper left corner shows the current mode of the Calibrator Measure or Control The right side of the screen shows a bar graph displaying the current pressure relative to a user configurable full scale value Below the pressure is the pressure control Set Point with a numeric scratchpad for entering new Set Point value The bottom line of the screen displays the current assignments of the function keys F1 through F6 that are located below the display 1 The first thing we will do is change the pressure units The units are changed from the screen MENU SETUP UNITS This means from the Main Menu press Menu the F6 key This will display the MENU screen MEASURE ABSOLUTE 2 16 Psi Set Point 0 00 Tare Setup Cal Program Test Disp 2 Now press Setup the F2 key This will display the MENU SETUP screen MEASURE ABSOLUTE 2 16 Psi Set Point 0 00 User Units Remote System Installation Tutorial 3 Press Units the F3 key This will display the Menu Setup Units screen The list of available units will be displayed with the current units highlighted kPa mmHg cmH20 4 C user feet bar CmHg inH20 4 C user2 meters inHg inH20 20C Pa knots kg cm2 inHg inH20 27C FS km hr Define 4 Use the arrow keys located on the right of the display to move the highlight bar When the unit desired is highlighted press the ENTER key on the far right side
66. o generate Atmosphere 50 100 and 50 of the Calibrator s full scale operating range of a sensor See Chapter 6 Observing the Calibrator s Full Scale Rating No disassembly is required and there are no potentiometers to tune Note The uncertainty of the final calibration must include the uncertainty of the standard being used Preparation e Verify that the calibration standard is connected to the Test Port e Verify that the Calibrator has been at stable operating temperature for at least two hours e Verify that the Calibrator is in Measure mode Chapter 4 e Verify that the head height is set to 0 e If desired change the Calibrator s units of measure Chapter 4 to match those of the calibration standard e To go to the calibration screen select MENU CAL e Verify that the air supply is connected and set to 90 110 psi To begin the calibration process press the recessed CAL button beneath the vacuum fluorescent display If the Calibration access code is enabled enter it at the prompt The Calibration step 1 screen will appear Note To exit the calibration procedure before the calibration coefficients have been changed press CANCEL any time during the procedure 1 To begin Step 1 of the calibration process select ZERO Enter the actual pressure applied and press OK Since the 7615 have absolute pressure sensors it is common to zero the 7615 at the current barometric pressure 2 Wait until the zero proce
67. ogram deletes all programs select current program set program state read program state restore saved configuration save current configuration set pressure display resolution return to default resolution returns ABSOLUTE or TARE set triple range full scale in returns o0 set head height set specific gravity sets pressure setpoint read pressure setpoint set source parameter set specifies output tolerance set slew rate set control band set control mode set list of pressure values returns number of points defined specifies dwell times returns number of dwell times specifies tolerances returns number of tolerances direction to go through list number of times to go through list read clear operation event register read operation condition register set operation enable mask read clear questionable event register read questionable condition register set questionable enable mask reset condition flags set system date returns lt error descr info gt or 0 No Error lock keyboard set system time returns 1991 0 set interface protocol to 6000 or SCPI reset system perform electronic self test RUSKA 7615 Users Manual DEFine lt n gt lt name gt lt number gt define a unit LENGth MM IN set length units for head height PRESsure lt unit name gt set pressure units Example SCPI Commands To request the current pressure reading all of the following commands are equivalent gt
68. omatically Generating a Program In order for the Calibrator to automatically generate a program the user must input the first set point pressure the last set point pressure and the number of steps in between as well as the dwell time max time and tolerance common to all setpoints l 2 8 Insure that the units limits and control parameters are their desired values The program is entered from the Program menu From the Main Menu press PREV until the Main Menu appears press Menu F6 Program F4 Use the arrow keys to highlight New If these steps are used on an existing program all program steps will be deleted and replaced with the automatically generated program Press Edit F4 Since new was highlighted the Calibrator will create a new program and give a default name of NAMEnn where nn is a two digit number The Program Editing screen will appear displaying the first step Press Auto F3 Using the numeric keypad enter the values for Start Stop Tolerance Dwell time Max time Points up and Points down pressing ENTER after each value The up and down arrow keys may be used to skip fields Press Program F1 The program will be generated and the display will show the first step Press PREV to return to the Named Programs screen Changing the Name of a Program l Se St a Se eS a ON The name is changed from the Program menu From the Main Menu press PREV until the Main Menu appears press Menu F6
69. played above the key on the bottom line of the display Arrow Keys The up and down arrows select a field for editing The left and right arrows choose between multiple choice options for the selected field The up and down arrows are also used for small pressure changes pressure jog at the main menu 4 1 RUSKA 7615 Users Manual Cancel Prev Abort These keys are used to stop undo or exit the current operation The CANCEL key will return all edited fields on the current entry screen to their original values It will also stop the current program sequence or calibration process The PREV key will exit the current menu to the previous menu The ABORT key will cause an immediate shutdown of the system Figure 4 2 is a menu tree showing the relationship between all the menus in the system To move to a lower menu press the function key with the correct label To move towards the Main Menu press the PREV key To go to one of the menus from the main menu press the F6 key The F1 key places the unit in Measure Mode The F2 key places the unit in Control Mode ENTER must be pressed to actually enter the Control Mode The F3 key places the unit in Vent Mode This opens the test port to atmosphere and rapidly reduces the pressure ENTER is required to confirm the operation The F4 and F5 keys step the control set point by the correct step amount gt Enter Menu State Set Control Mode Tare and Select Pressure Range og Enter Setup Menu Li
70. r Buyer has paid the applicable international price Fluke reserves the right to invoice Buyer for importation costs of repair replacement parts when product purchased in one country is submitted for repair in another country Fluke s warranty obligation is limited at Fluke s option to refund of the purchase price free of charge repair or replacement of a defective product which is returned to a Fluke authorized service center within the warranty period To obtain warranty service contact your nearest Fluke authorized service center to obtain return authorization information then send the product to that service center with a description of the difficulty postage and insurance prepaid FOB Destination Fluke assumes no risk for damage in transit Following warranty repair the product will be returned to Buyer transportation prepaid FOB Destination If Fluke determines that failure was caused by neglect misuse contamination alteration accident or abnormal condition of operation or handling including overvoltage failures caused by use outside the product s specified rating or normal wear and tear of mechanical components Fluke will provide an estimate of repair costs and obtain authorization before commencing the work Following repair the product will be returned to the Buyer transportation prepaid and the Buyer will be billed for the repair and return transportation charges FOB Shipping Point THIS WARRANTY IS BUYER S SOLE AND E
71. rator through the Standard Commands for Programmable Instruments SCPI protocol The Calibrator can also be configured to accept existing software written for the RUSKA Series 6000 DPG General Information Standard Equipment amp Options Standard Equipment amp Options A standard hydraulic Calibrator comes with this manual and a power cord The standard hydraulic Calibrator is fully functional but the following options are also available Additional Power Cords Additional power cords are available for most countries of the world Table 1 2 7615 Calibrator Options List oon at 1 1 5 RUSKA 7615 Users Manual 1 6 Chapter 2 Theory of Operation Introduction The Calibrator s power supply electronics pneumatics hydraulics and sensor combine to form a complete stand alone measure and control instrument This portion of the manual breaks the Calibrator down into its component modules See Figure 2 1 and provides a general discussion of each The Power Supply The Calibrator s universal power supply accepts AC voltages from 115 230 VAC volts This outputs supply voltages of 5 VDC 12 VDC 12 VDC and 24 VDC which are distributed to the Back Plane Board and Control Board The Electronics Module The Calibrator s electronics module consists of an electronic back plane the Microprocessor Board Analog Digital I O Board Pressure Control Board IEEE interface and the Front Panel The Back Plane Th
72. s F1 Press the up and down arrow keys to highlight the desired limit Use the numeric keypad to enter the new value Press ENTER to accept the new value Default F1 Max F2 and Min F3 put standard values for the field into the numeric scratchpad 6 Press PREV to exit the menu Press CANCEL to return all edited fields to their original values a a aE 4 4 Local Operation 4 Controlling Pressure Using Head Pressure Correction The term head height refers to the vertical distance between the sensing element in the device under test and the Calibrator s sensor Once the user inputs the head height and specific gravity of fluid used the Calibrator automatically corrects for head pressure 1 Determine the PRESSURE REFERENCE line on the Calibrator s front panel This line indicates the vertical location of the Calibrator s sensor 2 Determine the vertical distance between the PRESSURE REFERENCE line and the sensing element in the device under test 3 The head height is set from the Setup User menu From the Main Menu press PREV until the Main Menu appears press Menu F6 Setup F2 User F2 4 Press Length F1 to select either inches in or millimeters mm for the head height entry The select units will appear on the Head line to the right of the number 5 Highlight specific gravity and enter the specific gravity of the fluid used in the system Press the up or down arrow keys to highlight the label
73. s or switch settings on the IEEE 488 interface board The IEEE 488 address is set by the MENU SETUP REMOTE screen 5 1 RUSKA 7615 Users Manual RS 232 The RS232 interface supports standard serial operation from a computer to a single Calibrator RS232 supports the IEEE 488 2 and SCPI commands The Calibrator allows the following port setups Baud Rate 1200 2400 9600 or 19200 Data Bits 7 or 8 Parity Even Odd or None Stop Bits 1 or 2 Handshaking XON XOFF The RS 232 connection is a DB 9P connector found on the back panel of the Calibrator The following pins are used all other pins are reserved Table 5 1 RS 232 Pin Allocations a a Transmit Data a Out RT Request to Send Remote Local Operation 5 2 In Local mode the Calibrator is operated manually through the front panel Chapter 4 Local Operation covers local operation The Calibrator always powers up in the local mode In remote mode the Calibrator is operated by a computer connected to an interface Most functions that can be performed in local mode can also be performed remotely Remote mode does not automatically disable local operation The remote interface may be active while local operations are being done In cases where full remote control is required the following methods may be used 1 Issue a Local Lockout LLO interface message via the IEEE 488 interface The Calibrator will disable the local keyboard until the Go To Local G
74. ss PREV until the Main Menu appears press Step F4 to add the step amount to the current set point Press ENTER to confirm the set point change In the same way use Step J to subtract the step amount from the current set point The up and down arrow keys may be used to jog the pressure Each press increments or decrements the pressure in the least significant digit If the up or down arrow key is held down the pressure will continue to change until the key is released The jog increment is fixed but the step amount may be changed 1 The step amount is set from the Setup User menu From the Main Menu press PREV until the Main Menu appears press Menu F6 Setup F2 User F1 2 Press the up or down arrow keys to highlight the Step Size parameter 3 Use the numeric keypad to enter a new value Press ENTER to confirm 4 Press PREV to exit the menu Press CANCEL to return all edited fields to their original values Programming Sequences Storing a Sequence in Memory Consider an exercise that requires the Calibrator to start at 30 psi go up to 50 psi then come back down to 20 psi Test sequences like this may be stored in the Calibrator s memory as a program One benefit of storing a sequence in memory 1s that the operator does not have to command each pressure separately every time the exercise is performed Another benefit is that the user can specify a tolerance for each set point pressure Once a tolerance is set instead o
75. sssseseseeseeseeseseeesseeeeeeeseeeeeeeees 2 Theory of DONATION coxsctecisee cuca caswecescecsstensesnceaesesesuenesicwsepeccueneuesseteneine PAE OIA esses cere cc E EEIE E E TEA EAEE RUSKA 7615 Users Manual The Power SUPPI eer cease steaienamoeniecancotanseenesncanen sera eneancaneaiaensmenseecooenaeacw nee The Electronics MOdU6 s csccscssccscseseaacsancsscsdavanaainasse canacedeoatnacegoonaavnesnheoaseconeaederes Tie Backe Pline sane acc cate A E E E E The Microprocessor Board ccccccccscccssssseeeeeeeeeceeeeeeceeeeceeeeceeeeeeeeeeeeeeeeeeeas The Analog Digital I O Board cccccccccsscceeceeeeeeeeeeeeeceeeeeeeeeeeeeeeeees The IEEE 488 Intertace sseni naiaren eE anain i Teron Pan ea N AR The Control Board sensro rin E The Hydraulic Pneumatic Module cccccccccccccccccsecceeeeeceeeeeeeeeeeeeeeeeeeeeeeeeeeeees Pneumatic Hydraulic Intensifier c ccc ccccesseseescesscesccssssccsssssssseeeeaeeeeeeees TRS Sy AU sas css esas sewers eae A Fiod RC SCI Y OME ace acncacsecicececeeqscneseabiesecusatessnecbsesesesonceusesoresensiancaeseaeiesaereoaieeae FAAN US as cds essences cies niocaoensdeneo ab ac aeasaasseenenecapensdestaabeaceaseesdassee beds High Speed System Transducer cccccccccsssscccccccccccccccecceeceeeeeeeeeeeceeeeeeeeeeees High Accuracy Pressure Sensor ccccccccccccccccccccccecccccccecccccccccecccccececeeees Optional Second High Accuracy Sensor MCS OU a a E E acm arsuacevessuaadeie
76. standard to calibrate the 7615 The pressure steps will vary based on the number of points the operator enters into the 7615 Typically it is recommended that the operator select a 3 point up and a 3 point down calibration adjustment procedure This would prompt the operator to generate Atmosphere 50 100 and the 50 of full scale of the range being calibrated See Chapter 6 Observing the Calibrator s Full Scale Rating Following the actual adjustment to the sensor it is recommended to perform a number of verification points to assure that the instrument was adjusted properly Note The uncertainty of the final calibration must include the uncertainty of the standard being used Preparation e Verify that the calibration standard is connected to the Test Port e Verify that the Calibrator has been at stable operating temperature for at least two hours e Verify that the Calibrator is in Measure mode Chapter 4 e Verify that the head height is set to 0 e If desired change the Calibrator s units of measure Chapter 4 to match those of the calibration standard e To goto the calibration screen select MENU CAL e Connect air supply To begin the calibration process press the recessed CAL button beneath the vacuum fluorescent display If the Calibration access code 1s enabled enter it at the prompt The Calibration step 1 screen will appear The operator will select the sub range of the sensor to be calibrated following th
77. stem reservoir must be filled with a no corrosive fluid and the system bled to remove all air from the system Any air in the system will make the pressure controller erratic In the back panel there is a three way valve to select either the internal reservoir or the external reservoir If you are selecting internal reservoir then make sure that the valve is turned to point towards internal reservoir Purge Hydraulic System There are a variety of methods to fill a system with fluid and purge it of air It is important to understand that the more air that is trapped in a hydraulic system the less responsive the system will operate A few of the common methods of purging air from the system are noted as follows 1 With a pressure port located at the end of the manifold that is believed to have air present open a port located at the highest physical location in the manifold and then start to pressurize the 7615 With the port open to atmosphere significant pressure will not build in the manifold The fluid in the system will displace the air out of the system through the open port Once fluid begins to flow from the open port the 7615 controller can be stopped and the port that 1s open to atmosphere can be closed The system in now ready for operation 2 A manifold holding the device s under test can be pre filled prior to being placed on the 7615 The best way to pre fill the manifold is to first evacuating the manifold with vacuum pump
78. t to zero at power up and whenever a pressure error occurs 1 The pressure set point is set from the Main Menu press Prev until the Main Menu appears 2 Use the numeric keypad to enter the new pressure set point in the current pressure units 3 Press ENTER to accept the entry or press CLEAR to clear the numeric scratchpad Entering Exiting Control Mode 1 The control mode is set from the Main Menu press PREV until the Main Menu appears 2 Press CONTROL F2 to enter control mode ENTER must be pressed to confirm entry into control mode Note that any entry in the numeric scratchpad will also be taken as the new pressure setpoint 3 Press MEASURE F1 to exit control mode No confirmation is necessary Setting Slew Rate 4 6 Slew rate is the maximum rate of pressure change for the control algorithm 1 The slew rate is set from the Setup Limits Menu From the Main Menu press PREV until the Main Menu appears press Menu F6 Setup F2 Limits F1 2 Press the down arrow key until the label Slew Rate is highlighted Use the numeric keypad to enter a new value for Slew rate Press ENTER to confirm 4 Press PREV to exit the menu Press CANCEL to return all edited fields to their original values Local Operation 4 Programming Sequences Stepping and Jogging In addition to entering a new value the pressure set point may also be changed by user definable steps and by jogging small amounts From the Main Menu pre
79. uracy claims The term accuracy is defined by ISA S37 1 as either the ratio of the error to the full scale output FS or the ratio of the error to the reading RDG Note that the definition of accuracy is not the summation of some or even all of the possible error source maximum limits The true accuracy of an instrument is relative to the actual error introduced by the calibration transfer standard plus the actual error not eliminated from the instrument s indicated output Therefore an instrument s accuracy can be manipulated by introducing more or less actual error through the choice of a calibration standard or its accuracy can be varied by the elimination of actual errors inherent in the instrument For example if an instrument has a known error due to being used in an attitude or tilt the FS zero shift error can be eliminated by re zeroing the instrument in the tilted position Even RDG sensitivity shifts can be eliminated mathematically or by controlling the attitude of the instrument during its calibration A 1 RUSKA 7615 Users Manual A 2 The key to eliminating an error is knowing its source and type along with its polarity and magnitude Generally the source 1s simple to detect and 1s represented by the specific parameter The type is usually a function of the instrument s design and manufacturing process Within a given instrument an error can be either random or systematic as well as random or systematic within th
80. y a relief valve Reservoir Select Valve This three way valve is located on the back panel of the instrument Internal or external reservoir is selected using this valve If external reservoir is selected then an external reservoir must be connected to the external reservoir port connection Normally this valve is set in the mid position off during shipment RUSKA 7615 Users Manual 2 6 Chapter 3 Installation Introduction This portion of the manual discusses initial installation for the RUSKA 7615 Calibrator Installing the Calibrator is a relatively simple process of unpacking the Calibrator powering it up and then using the front panel to configure the system Unpacking the Calibrator Carefully unpack all components checking for obvious signs of damage In addition to any nonstandard items ordered with the Calibrator the shipment should contain at least the following items e RUSKA 7615 Calibrator e power cord and this user s manual If necessary report any shipping damage to the freight agency Remove masking tape strings and packing materials from all components If possible save the packing materials for future use Finally install the Calibrator in a location that meets the requirements listed in Table 3 1 Note The Calibrator should not be subjected to mechanical shocks during installation or use It should be mounted on a rigid bench or in a sturdy 19 inch rack 3 1 RUSKA 7615 Users Manual Tab
Download Pdf Manuals
Related Search
Related Contents
対象品番 ー ー ペ 取扱説明書 König SEC-BLN31 Manual Stacking - Projector Point UK Juniper Networks 8 User's Manual StarTech.com 4x4 VGA Matrix Video Switch Splitter with Audio HFB 300 Jabra DIAL 550 "取扱説明書" User`s Manual 1. How can I remove a defect myself? Do not repair Copyright © All rights reserved.
Failed to retrieve file