Home
Airborne User Manual
Contents
1. 7 In the ENVI Images tab select the desired resolution and RGB bands 8 In the main screen select Process Files The table below lists the FOV of the Pika II with different objective lenses This information is necessary for the georectification software It is not exact and may have to be adjusted for your particular imager Focal Length mm 70 50 23 17 12 8 6 Pika II FOV deg 3 9 5 5 12 00 16 00 22 50 33 00 43 5 Pika II IFOV mrad 0 2 0 3 0 65 0 88 1 25 1 88 2 5 Focal Length mm 70 50 23 17 12 8 6 Pika XC FOV deg 7 2 10 0 21 5 29 0 40 0 57 5 72 0 Pika XC IFOV mrad 0 36 0 5 1 1 15 21 3 1 4 2 Focal Length mm 75 50 25 Pika NIR FOV deg 7 3 11 22 Pika NIR IFOV mrad 0 4 0 6 12 3 15 1 GeoReg Biases If there are angular offsets between the GPS IMU and the spectral imager they can be entered into GeoReg s Sensor Model section These angles are measured from the GPS IMU to the imager following the GeoReg sign convention right wing up is positive roll nose up is positive pitch and clockwise looking down is positive yaw The effect on the georectified image is the following Positive roll bias shifts image to left direction of flight is foward Positive pitch bias shifts image back again relative to flight direction Positve yaw bias rotates lines counterclockwise There is
2. 37 3 8 Uploading Error logs i s p ks Se PAA eS Sh Se Robe Be ew ey Bw 37 5 9 Changing Default Cube Length sss vs ky ae Ae ONU RY xs RORIS ee PDAs 38 ox Troubleshooting 3 x uev sears eo kee ee du See ast eee 4S ceu Ree ey wei ak dps 38 CHAPTER ONE INTRODUCTION The Resonon Airborne Spectral Imaging System is a compact high fidelity digital imaging spectrometer for airborne applications The system consists of a Pika imaging spectrometer a Flight Computer a GPS IMU an optional down welling irradiance sensor an optional external USB LCD display Spectronon data analysis software and the Resonon Ground Station software This User Manual covers the installation and use of the hardware and software Topics covered in this manual include Installing the Spectral Imaging Hardware Installing and Configuring the Ground Station Software Configuring the Airborne Spectral Imaging System Flight Operations Data Download Georectification 1 1 Data Modes Airborne hyperspectral data from the Resonon imaging system can be utilized in three forms as summarized below Raw data This data is spectrally calibrated but contains the instrument response and illumination functions This is the least useful form as the spectral curves do not have real units or real physical meaning Radiance The data can be post processed to radiance This requires the imager to be specially calibrated by Resonon at
3. The Flight Tab The Flight Tab Fig 3 3 groups functions that may be useful during flight under a single tab View Frame This function will request and display a raw imager data frame It is rarely used in normal operation It can provide the operator with feedback regarding the exposure settings but is much harder to interpret than the Histogram function View Last Cube This function will request and display a highly compressed greyscale preview of the last cube recorded Note To download a preview of an imager frame and last cube remotely the signal strength of the Radio Modem connection must be high If the signal strength is low low Signal To Noise ratio the command will timeout before the preview download can be completed Frame Stats This function will request and display the minimum pixel value maximum pixel value and average values for a new frame of data intended to assist in confirming exposure settings Frame Histogram This function will request and display a histogram of a new imager frame The histogram feature is likely the most useful for determining if the correct exposure settings are used Interpreting this histogram is the same as any digital image histogram the height of the bars show the number of pixels for each brightness level 3 5 Flight Tab 13 Airborne User Manual Release 1 7 Record This button will force the system to record a datacube It will record continuously until the Stop b
4. 1 Launch GeoReg Geo correct and convert to radiance Use the Calibrated Sensor Data option in GeoReg to convert to radiance again producing ENVI Khoros data Geo correct to IGM and convert to radiance Use the Calibrated Sensor from the airborne system s Data option in GeoReg to FLAASH module of ENVI to SSD bip hdr icf times convert to radiance convert the radiance data producing only the IGM to reflectivity then file georectify the reflectivity Select file or folder of files to geo correct Go to Settings Select desired output data products Classify analyze data Use Spectronon or ENVI to analyze data Spectronon can export results to KMLs Use ENVI to link IGM file to radiance data or any other data produced with original radiance data cube For example use the data with the IGM file Use Spectronon Enter in the instruments FOV and any known angular biases see below for infomation on calculating biases wR wo If units of radiance are required select the radiance calibration file supplied with the imager in the Calibration field Use the Logo Left or Logo Right calibration file depending on the direction of the installed unit 6 GeoReg is installed with a world DEM which can be used as well as a flat earth model or a user supplied DEM 28 Chapter 3 Using the Airborne Spectral Imaging System Airborne User Manual Release 1 7
5. DB9 serial connection connect the serial cable to COM1 of the Flight Computer See Ground Station Connection in Fig 2 4 2 2 3 Installing the Flight Computer The Flight Computer needs airflow do not completely enclose the unit or block airflow around it Keep power cables to the Flight Computer as short as possible The unit draws a substantial amount of current at boot long cables or wires of too small a gauge can prevent the computer from booting The external USB LCD display is used to diagnose any errors with the system It is optional If used connect to USB port of Flight Computer Note The external LCD can be connected and disconnected at will while the flight computer is running Mount external SSD in an accessible location Velcro is useful for mounting as the drive is removed from the aircraft for data downloading Connect the drive s USB cable to the Flight Computer s USB 3 0 port that is labeled Drive See Hard Disk Connection in Fig 2 3 Warning It is very important to plug the drive into the correct USB port See Hard Disk Connection in Fig 2 3 2 2 4 Installing the Downwelling Irradiance Sensor The optional downwelling irradiance sensor s fiber input needs to be mounted straight up with a clear unob structed view of the sky Do not excessively bend the optical fiber The NIR downwelling sensor CANNOT be placed under plexiglass polycarbonate as it is not transparent in tha
6. Interest is for dark backgrounds with sparse areas of bright regions of interest desert background with sparse bright objects of interest Water is for imaging water or other scenes containing highly specular reflections glare For custom settings select the Custom item The Handle and Target sliders will then become available The Handle parameter determines the which percentage brightness image pixel the AutoExposure algorithm will try to force to the Target percentage value For instance a Handle setting of 98 and a Target setting of 90 will try to force the 98th percentage brightest image pixel to 90 of the maximum brightness value This would then allow 2 percent of the image pixels to be brighter than 90 of the maximum value and be in risk of saturation but also allow the majority of the scene to possess good signal to noise ratios In the case of ocean imaging where a high percentage of glint is probable a smaller Handle setting might be preferred These settings can be adjusted fine tuned by utilizing the Frame Histogram feature found in the Flight Tab Fig 3 3 An illustration of the Handle and Target settings is shown in figures Fig 3 5 and Fig 3 6 98th Percentile 3300 4095 DN 80 Count 0 500 1000 1500 2000 2500 3000 3500 4000 Brightness DN Fig 3 5 Histogram before autoexpose Assume a Handle setting of 98 and a Target of 90 The imager grabs a frame and analyzes it It finds the 98th percentil
7. Magnetic Calibration below for details When using an Athena GPS IMU a Get Number of Satellites button appears on the GPS IMU tab Press this button to poll the Athena for the number of currently fixed satellites 3 7 1 Ellipse GPS IMU Magnetic Calibration This feature calibrates the Ellipse GPS IMUs magnetometer after installation to compensate for any magnetic field interference Warning A good in situ magnetometer calibration is mandatory If a good magnetometer calibration is not applied the GPS IMU will not compute accurate position and attitude and can severely compromise the data Note Please read the Magnetic Calibration in Airborne Applications document for a more detailed understanding of the magnetometer calibration requirements The magnetometer calibration can be done directly on a Windows computer using the sbgCenter software or on the flight computer using the Resonon Ground Station software This section details the second method It may be necessary to perform the magnetic calibration with the sbgCenter software if the procedure cannot be completed without errors Note Once the Apply button is pressed the ellipse will store the new calibration in non volatile memory The calibration does not need to be repeated on every flight unless sources of magnetic field interference are changed or the calibration is intentionally reset or overwritten 3 8 Computer Tab The Computer Tab Fig 3 9 con
8. dark current cube collecting during calibration will be used The resulting cube will be in units of microflicks 1 microwatt per steradian per square centimeter of surface per micrometer of span in wavelength Airborne Reflectance via Downwelling Data Data can be converted to reflectivity using the optional Downwelling Irradiance sensor via the following steps 1 Open the airborne datacube to convert 2 Open the downwelling irradiance spectrum that is in the same folder as the airborne datacube 3 Right click on the datacube to convert in the Resource Tree in the right hand side of the main Spectronon window Select New Cube gt Correct gt Airborne Reflectance Conversion 4 In the resulting window select the name of the radiance calibration pack for the imager and the downwelling irradiance sensor s radiance calibration pack Press OK The resulting cube will be in Reflectivity on a scale of 0 to 1 unitless Reflectance via Downwelling Data Data can be converted to reflectivity using the optional Downwelling Irradiance sensor via the following steps 1 With Spectronon open the radiometric calibration datacube as supplied by Resonon for your spectral imager Open the airborne datacube to convert Open the radiometric calibration spectrum for the downwelling irradiance sensor as supplied by Resonon Open the downwelling irradiance spectrum that is in the same folder as the airborne datacube A N Right c
9. new target will be reflected in the folder names the flight computer creates for data recorded inside this target area 3 Click points around the desired area to define a polygon Fig 3 12 Polygon fill colors border widths etc are customizable in Google Earth and have no effect on the flight computer Note Arbitrary target shapes are supported with KML target areas However it is preferable to minimize the size and complexity of the individual targets Thus when creating polygon targets Resonon recommends that you click individual points around the target area rather than dragging the mouse between those points The continuous curves created by dragging are both harder for the user to draw precisely and generate much larger files 4 Continue creating more targets in the same folder if desired 5 Right click on the folder and select Save Place As Use the drop down option to select KML as the format KMZ is not supported and save to an appropriate location on your computer Make sure to save the folder you 3 10 Targets Tab 21 Airborne User Manual Release 1 7 amp 3 Google Earth File Edit View Tools Add Help Y Search EJ RA S o e Search ex Pizza near Clayville NY Get Directions History Places amp My Places 4 WIS Temporary Places 2 amp Mission 1 targets m v Layers Earth Gallery 2 Primary Database Tour Guide Fig 3 12
10. of multiple types or if the wrong imager is somehow selected You will be prompted to reset the flight computer which you can do from the Computer tab Fig 3 9 If you are actually changing imagers select Shutdown from the Computer 3 11 Command Line 23 Airborne User Manual Release 1 7 Resonon Ground Station File Preferences Comms Targets Refresh Now Home Flight Pika Ellipse IMU Computer Storage Targets Command Line Raw Output Window 0 lt lt comm pref found starting lt lt lt dir is mnt data 06 09 lt lt lt Starting Airborne Revision source lt lt lt Waiting up to 30 seconds for Pika IIg imager lt lt lt Pika Spectral imager is go lt lt lt Imager control is go lt lt lt IMU is go lt lt lt recording started test bil lt lt lt recording stopped 100 frames at 86 883239 fps Test Cube Recorded and Removed READY Fig 3 13 The Command Line Tab tab Switch out the imager and then power up the flight computer After the flight computer restarts the Imager tab Fig 3 4 will change to reflect the new camera Units Changes the Ground Station software to use metric or english units In both cases the flight computer stores values in metric units The Ground Station software converts to english units as necessary Metric units is the preferred setting Auto Exposure Interval This parameter is the frequency th
11. tab or space delimited file then use the Correct from Spectrum plugin in Spectronon to convert the data Downwelling Irradiance sensor The recommended method for converting data to Reflectance is to use a Downwelling Irradiance sensor This sensor records the solar spectrum during flight This data is used along Airborne User Manual Release 1 7 with radiometric calibration files supplied by Resonon for both the spectral imager and downwelling sensor in the Reflectance Conversion plugin for Spectronon Atmospheric Correction Data can be converted to Reflectance data with the use of atmospheric correction algorithms such as FLAASH Fast Line of Sight Atmospheric Analysis of Spectral Hypercubes Please contact Resonon for more information 2 Chapter 1 Introduction CHAPTER TWO INSTALLATION 2 1 System Hardware The Resonon Airborne Spectral Imaging system includes Pika imaging spectrometer This may be Pika VNIR Gigabit Ethernet spectrometer Pika XC VNIR Gigabit Ethernet spectrometer Pika NIR spectrometer with iPort external frame grabber Resonon flight computer 2 1 2 SSD hard disk with SATA USB3 adapter GPS IMU Downwelling irradiance sensor optional Resonon provides ground station software to connect to and configure the flight computer This requires a computer with Windows 7 512MB of RAM Serial Port or USB gt Serial Adapter Null modem serial cable or adapter
12. the Pika or the radiometric calibration will be void An example of the Pika installed in a cylindrical fuselage is shown in Fig 2 5 with an arrow indicating the direction of flight ae Fig 2 5 Pika installed in a cylindrical fuselage Connecting the Pika 119 and Pika XC GigE imagers Pika and Pika XC GigE imagers connect to the Flight Computer via a Cat6 Ethernet cable Use the port on the Flight Computer closest to the sound jack as shown in Fig 2 3 Warning Pika GigE imagers must be connected to the correct ethernet port on the flight com puter See GigE Imager Connection in Fig 2 3 Connecting the Pika NIR imager Connect the Pika NIR CameraLink port to the iPort external frame grabber with the provided CameraLink cable The frame grabber USB connection must be made to the USB 3 0 port on the front face of the flight computer directly above the hard disk USB port Warning It is critical to connect the frame grabber to the USB 3 0 port on the computer front panel directly above the hard disk USB 3 0 port See Front panel USB 3 0 in Fig 2 3 The Pika NIR camera must also be connected via USB cable to the flight computer Use either the USB 3 0 port or the USB 2 0 port on the computer rear panel See Fig 2 4 Chapter 2 Installation Airborne User Manual Release 1 7 Note NIR systems may require a USB hub if all possible hardware is installed The camera USB connection and
13. the desired aperture This data form does not include the instrument response function It has the advantage of possessing real units and physical meaning If you have the calibrated radiance cube provided by Resonon post flight correction can be performed by using the Radiance Conversion tool in Spectronon Reflectance In reflectance mode both the instrument and illumination functions are removed This leaves the data in absolute Reflectance Data can be converted to Reflectance with one of four ways White reference pre or post flight Data can be processed to Reflectance with a quick calibration against a reflection standard pre or post flight The highest quality reflection standard is Spectralon but Teflon is acceptable for many applications Note Teflon needs to be sanded with 100 grit sandpaper on an orbital sander to eliminate any specular properties This calibration is done with the Record Correction Cube feature as described later in this document It is important to note that Reflection values are only accurate if the solar illumination clouds sun angle etc does not change between the collection of the correction cube and the collection of datacubes Data can be converted to Reflectance using Spectronon s Correct from Cube plugin Known spectral reference in scene Once the data is in radiance the spectrum of a reference object in the scene can be used to correct the rest of the cube The reference spectrum must be known and in a
14. the external LCD may be made to a USB 2 0 or USB 3 0 hub The SSD hard disk the external frame grabber and the GPS IMU must not be connected to a USB hub 2 2 2 Installing the GPS IMU The Ellipse by default should be mounted with the labeled Z arrow pointed nadir and the X arrow pointed in the direction of flight The edges of the unit should be as parallel as possible with the airframe and the Pika There are alignment holes in the base of the Ellipse that can be used to align the unit to reference pins See the Ellipse user manual for the location of these holes The unit should be vibration isolated if possible but in the same inertial frame as the Pika The GPS antenna should be screwed into the appropriate SMA terminal and the antenna itself should be mounted with a clear view of the sky Use brass screws to mount the unit The unit should be positioned as far away from any potential source of magnetic interference as possible GPS reception is sensitive to electro magnetic interference EMI The GPS antenna should be placed as far as possible away from radios other GPS antennas the Flight Computer spark plugs and any other potential source of EMI Try to avoid running the GPS antenna parallel to other wires or cables for much distance A ground plane under the antenna helps significantly Connect GPS antenna to GPS IMU unit Connect the Ellipse USB cable to any of the USB ports of the Flight Computer If using a GPS IMU with a
15. 2 2 Installing the Hardware The Spectral Imaging hardware should be mounted in the airframe with the following considerations 2 2 1 Installing the Spectral Imager The Pika should be sighted straight down through the airframe preferably with a protective window for belly landed UAVs If the Pika has a turning mirror mounted the cone of the turning mirror can face forwards or backwards relative to the direction of flight The Pika should be square with respect to the GPS IMU system there should be zero angle in pitch roll and yaw between the two The Pika should be mounted in a manner to reduce high frequency vibrations but rigidly to low frequency vibrations with respect to the GPS IMU Airborne User Manual Release 1 7 Flight Computer Pika Ilg Hyperspectral Imager 9 G ji 2 External LCD Downwelling GPS GPS Irradiance IMU Antenna Sensor Ocea SSD Hard Disk Fig 2 1 Standard system components Pika NIR Hyperspectral Imager External Frame Grabber Fig 2 2 Pika NIR imager with external frame grabber 4 Chapter 2 Installation Airborne User Manual Release 1 7 WDT HOD RESET Connection Drive DIO GPIO Lan GigE Imager Optional Connection Fig 2 3 Computer front panel Ground Station Connection Fig 2 4 Computer rear panel 2 2 Installing the Hardware 5 Airborne User Manual Release 1 7 Do not attempt to adjust aperture F of
16. Airborne User Manual Release 1 7 Resonon Inc August 03 2015 CONTENTS Introduction 1 MOdES s s doom Moe eoe m REA IUS Sa ete eee 5 1 Installation 3 221 System Hardwates i o seme e RR Race a ake EUR UR ec 3 2 2 Instalhngthe Hardware bb oA ee he mom m yo Romo Rok RR b Roe E DU 3 2 3 I Gonheuring the SBG BIDE x erst REG BE Rae Be we aeter d EAA awd 8 2 4 Installing and Connecting to the Ground Station Software 8 2 5 Installing drivers for reading Ext4 drives in Windows lees 9 Using the Airborne Spectral Imaging System 11 3 1 Powering Up the Flight Computer Se ee E om m 11 3 2 Launching the Software i ex 002 ee eRe oe ee eee Row Y 11 3 3 Refresh Now Button s xs gen a AS Ba ROE RE a Ow 12 34 Home sois t e eeose iku Bae PEASE LG DAR ee SEES ES 12 Jo 22436 to od TIT 13 93 0 esed A Ae cee US IIBER RUNS Res M 14 Sel JOPS MU Tab tote Rad Sos Ere de 9 d tete te et dera ES T War a RAE s de 16 3 0 Computer Tab x 4 dak Ut SL de Rods fet gne Ba pedore wr ds Rep domne amp di 18 3 0 Storage Tab suolo bees eee oue URS ACRES ee oec HR 20 3 100 Targets Lab so aga eS Berk hw UR al fo om dnd Bee Re elec mr HE Ge e dp s 20 3 1 Comman
17. KML target definitions in Google Earth 22 Chapter 3 Using the Airborne Spectral Imaging System Airborne User Manual Release 1 7 created which will include all of the contained targets in the KML file 6 Upload the KML target file using to the flight computer using the gound station Upload KML button shown in Fig 3 11 A file dialog will be presented allowing you to select your saved KML file 7 Examine the Remote Targets section of the targets tab Fig 3 11 Verify each target you defined is listed under Targets found If a target is not shown or if a target is listed under Ignored features something is wrong with the uploaded target file Fix it in Google Earth and try again Features may be ignored if they were created as paths rather than polygons for example To clear these targets from the system either upload a new KML target file or use the Clear KML button 3 10 2 Legacy Target Areas Legacy target areas are a less powerful target definition method KML targets are now the preferred target type To use legacy targets select Targets gt Use Legacy Targets from the main menu To create a legacy target select Targets gt Legacy Targets gt New Local Target from the main menu Each field of the new target Name Lat Long etc are editable by clicking in the field Enter in the name Latitude and Longitude in Decimal Degrees a minimum AGL altitude and a diameter The system will collect data anytime it is in
18. a small time offset usually needed in the Interpolation field typically 05 for non triggered systems This offset can be determined by looking at higher frequency roll effects and determining if the GPS IMU data is ahead or behind the image data If adjusting this value the txt file in the data folder must be deleted between runs 3 15 Using GeoReg 29 Airborne User Manual Release 1 7 30 Chapter 3 Using the Airborne Spectral Imaging System 4 1 CHAPTER FOUR OPERATION SUMMARY AND CHECKLIST Mission Setup Upload the Target KML Set Framerate Cross Track Pixels and Bands settings Record test cubes to ensure the flight computer can handle the data rate If not verify that the external SSD is plugged into one of the front panel USB 3 0 ports Do not use either the USB 2 0 or USB 3 0 port on the rear panel Set AutoExposure Class and Interval Perform Check Disk function for routine maintenance 4 2 Pre Flight Normal pre flight operations are summarized below Please see the preceding section for more details on these opera tions 1 M A U N Power up system Ideally the system should be still during power up and remain still until GPS IMU has been initialized Launch Ground Station software Verify all systems are operational Delete existing data Check that the system time matches GPS time If necessary match the system time to GPS time Set Ground Level altitude if
19. al SSD hard disk View Current Files This button will show all of the data files on the solid state drive Offload Data This button is only used for transferring data to a external USB drive after the aircraft has landed and is typically not used instead just shutdown the system and unplug the external SSD that contains the data If using this function the external drive must be formatted as FAT32 and using a high end high speed flash drive is encouraged To use plug in the external drive and power it on Wait 10 15 seconds for the Flight Computer to recognize the drive Then press this button Click on the following dialog Depending on the amount of data collected this may take some time When the files have been transferred a message dialog will appear asking you to verify all files are present Please do verify all data is copied to the USB drive before clearing the data disk Check Disk This function will perform a system check and disk maintenance It should be performed periodically after a power loss while recording data or if the system is reporting errors It may also be prudent to perform after completed flights to prevent problems arising for the next flight Clear Data Disk Deletes all of the spectral imaging data on the system Do not delete data until you have offloaded it to your computer 3 10 Targets Tab The Target Tab Fig 3 11 allows the operator to create save and upload target regions to the fligh
20. at the flight computer runs the image autoexpose proce dure The flight computer will not run autoexpose while it is actually recording data An interval of 10 seconds is recommended View Output In Separate Window Moves the Command Line Tab to a separate window to enable viewing up down messages and ground station controls side by side 3 12 3 Comms Connect This button is used to try to reconnect to the serial port if the wrong port was specified in the batch file Baud Rate Sets the baud rate of the connection The correct baud rate for current systems is 115200 baud Comm Port Sets the ground station communication port to use This depends on your computer hardware setup Note This is the port you have chosen to use on your computer not the port connected to on the flight computer 3 12 4 Targets Use KML Target File Configures the flight computer and the ground station software to use a KML target file This is the default 24 Chapter 3 Using the Airborne Spectral Imaging System Airborne User Manual Release 1 7 Use Legacy Targets Configures the flight computer and the ground station to use the legacy target system This is no longer recommended Legacy Targets A submenu used to configure legacy targets Available submenu commands are New Target File Creates a new blank local target file Open Target File Opens an existing local target file Save Target File Saves a target file locally Save Tar
21. atus Latitude Longitude Alt MSL Meters Alt AGL Meters GPS IMU Status Time Current GPS Time Current System Time 45 6864551077 111 03034465 1478 88267796 18 88267796 OO 2015 06 09 21 15 28 Match System Time to GPS 2015 06 09 21 15 28 Downloaded 2356 chars Ready Fig 3 7 The GPS IMU Tab 3 7 GPS IMU Tab 17 Airborne User Manual Release 1 7 press the Refresh Now button to be sure the information shown is the most current If they still differ press the Match System Time to GPS button to set the system clock to the correct UTC time When using an Ellipse GPS IMU two extra controls appear in the Current Status section of the GPS IMU tab The GPS IMU Status field mirrors the GPS IMU field on the Home tab Possible values are 1 FAIL in red The system did not find the Ellipse or was unable to initialize it Correct the problem and restart the flight computer 2 INITIALIZING in orange The Ellipse is activated but has not yet fixed it s position and attitude This will update automatically when the Ellipse is ready 3 OK in green The ellipse is ready for flight provided a proper magnetometer calibration has been done Warning A proper magnetomer calibration is mandatory Even if the GPS IMU status is OK the Ellipse will not track it s position correctly without this calibration Data loss can result See Ellipse GPS IMU
22. ce and reflectivity conversion via downwelling data as these methods are more accurate for the Pika XC and Pika NIR imagers These methods use Radiometric Calibration Pack files with a zip extension The other plugins available are the Radiance and Reflectivity Conversion not airborne specific plugins These plugins use the GeoReg Radiometic Calibration file Airborne Radiance 1 With Spectronon open the airborne datacube to convert 2 Right click on the datacube to convert in the Resource Tree in the right hand side of the main Spectronon window Select New Cube gt Correct gt Airborne Radiance Conversion 3 13 Transferring Data 25 Airborne User Manual Release 1 7 3 In the resulting window select the name of the radiometric calibration pack then press OK The resulting cube will be in units of microflicks 1 microwatt per steradian per square centimeter of surface per micrometer of span in wavelength Radiance 1 With Spectronon open the radiometric calibration datacube as supplied by Resonon for your spectral imager 2 Open the airborne datacube to convert 3 Right click on the datacube to convert in the Resource Tree in the right hand side of the main Spectronon window Select New Cube gt Correct gt Radiance Conversion 4 In the resulting window select the name of the radiance calibration cube then press OK Optionally supply a dark current cube If no dark current cube is supplied the
23. d Line 2 ooo pom ROO eor moe eoe Vo Ux Pose oe al e qe RS Y 23 3 12 Menu Items id uc eh oe SG RD URN Ba UR BR Ee a PR 23 3 13 Transferring Data hb ba 3x 6 ROS RR E boh S c EUR he mo cR ee OS ox E d ee d 25 3 14 Post Processing Data with Spectronon s s sc soson eer 25 3 5 UsngGeoReg exo RE RR ARERR eee Ad eX SE AG S 28 Operation Summary and Checklist 31 d z 4 ioo 4 66 bbe ee 0 be bebo Sd du RAUS debt Wie Ss 31 42 ee heb ee ede m Eee XS we ad Hed Sew 31 43 Flight All operations are optional w eri crees IR RE ES 31 44 Post ENOR 2205 ds ee ke SAS RSE Re ake SARS BAe RR RD ens 32 45 DataFiles and Structure o rs ccoa ae o9 ee m on 32 4 6 Keys to Obtaining Quality Data 0 0 32 Advanced Operation 35 5 1 Sending Special Commands to the Flight Computer 35 5 2 Connecting the Flight Computer toa Network 35 23 3 Updating Firmware s sos ng o eA ebd RE ee deb SS 36 5 4 Pairing a New Imager with the Flight Computer 36 5 3 Paring aGPS IMU with a Flight Computer Sw 37 5 6 Pairing Unpairing a Downwelling Irradiance sensor with a Flight Computer 37 5 7 Reformattins Disks 44 5 o ke x elc eo Oe oe ae ee baw eee ed
24. d Station File Preferences Comms Targets Refresh Now Home Fight Pika Elipse IMU Computer Storage Targets Command Line Systems GPS IMU Imager Storage Single Point Summary Temperature C 42 0 Disk Space MB 273394 Downloaded 11 chars Fig 3 2 The Home Tab The Home Tab Fig 3 2 displays useful information regarding the status of the system The Systems section shows the most important status components of the system to be used as quick visual confirma tion that the system is operating properly This information is mirrored on the external LCD if it is connected The operator should check all fields in this section at startup See Troubleshooting for information on procedures if any of these sections are marked Fail in red The downwelling irradiance sensor labeled as Single Point in the Home tab is optional and the system will operate normally without it The Summary section shows temperature of the flight computer and the disk space available 12 Chapter 3 Using the Airborne Spectral Imaging System Airborne User Manual Release 1 7 3 5 Flight Tab Resonon Ground Station File Preferences Comms Targets Flight Pika Elipse IMU Computer Storage Targets Command Line Review Summary Recording Last Cube Size Control Downloaded 2358 chars Fig 3 3
25. d to contact DHCP server Bringing interface down lt lt lt Failed to bring up ethl interface 35 Airborne User Manual Release 1 7 5 3 Updating Firmware The firmware of the spectral imaging system can be updated via the Internet This update should only be done under the request and guidance of Resonon personnel 1 Create an account at downloads resonon com 2 Resonon personel must enable your account enabled to view and download airborne software Please provide your account username when you contact us 3 Connect the flight computer to the Internet See Connecting the Flight Computer to a Network 4 Use checkForUpdates to see the most recent software version gt gt gt checkForUpdates lt lt lt You are running version 1 0 The most recent version is 1 0 5 On the advice of Resonon staff use upgradeSystem username password to upgrade the airborne flight computer Replace username and password with the username and password you created in step 1 gt gt gt upgradeSystem username password lt lt lt Upgrading to version 1 0 Please wait lt lt lt Downloading airborne lt lt lt Installing airborne lt lt lt Upgrade finished Restarting lt lt lt exited lt lt lt comm pref found starting lt lt lt Starting Airborne Revision 1 0 The system installs the new software and restarts automatically N
26. e brightness value to be 3300 out of a maximum 4095 12 bit resolution 4095 DN as shown in Fig 3 5 This is 80 of the maximum Thus the exposure time is increased or more gain is added and another frame is grabbed and analyzed This process repeats until the Target value of 90 is reached as shown in Fig 3 6 3 7 GPS IMU Tab The GPS IMU Tab Fig 3 7 shows the information relevant to the GPS IMU system and serves as a check to the proper operation of the GPS IMU system The tab title reflects the actual imager type in use commonly the Ellipse The Ground Altitude must be set for proper operation This altitude is the Mean Sea Level MSL altitude of the ground If set incorrectly data may not be collected in the desired target regions Latitude longitude altitude above mean sea level altitude above ground current GPS time and current system time are reported The flight computer clock is set to UTC and should match the current GPS time If they are different 16 Chapter 3 Using the Airborne Spectral Imaging System Airborne User Manual Release 1 7 98th Percentile 3700 4095 DN 90 Count 0 500 1000 1500 2000 2500 3000 3500 4000 Brightness DN Fig 3 6 Histogram after autoexpose Resonon Ground Station File Preferences Comms Targets Home Flight Pika Elipse IMU Computer Storage Targets Command Line Settings Ground Altitude Meters aJe 1460 00 Current St
27. fore adjusting the aperture GPS Latitude and Longitude are incorrect Reposition GPS antenna away from any potential sources of The Ellipse GPS may not show the correct position until it s status changes from initializing to Poor Geo rectification performance Have aircraft fly straight and level before entering target area which allows the GPS IMU to settle Also check GPS reception and reposition antenna if necessary 38 Chapter 5 Advanced Operation
28. get File As Saves a target file locally New Local Target Creates a new target in the current local target file Clear Local Targets Clears the current target fields Upload Local Targets Uploads the current local target file to the Flight Computer Download Local Targets Downloads the target file in the Flight Computer to the local file 3 13 Transferring Data The fastest way to transfer data is to 1 Shut down the Flight Computer Unplug the SSD drive Plug the SATA drive into computer gt N Use Ext4Fsd to read the drive and copy data See the secction Installing drivers for reading Ext4 drives in Windows for more information It is also possible to plug the Flight Computer into a DHCP network and transfer the data via Ethernet either through Windows Network sharing service or with a SCP client See Advanced Operation for instructions on putting the Flight Computer on a network The last alternative is to plug in an external USB drive formatted as FAT32 to a USB port of the flight computer and press the Offload Data button in the Storage Tab 3 14 Post Processing Data with Spectronon Spectronon Resonon s free spectral image analysis software can be used to process airborne data from arbitrary units to Radiance or Reflectivity There are a variety of Spectronon plugins available for each conversion The Airborne Radiance Conversion and Airborne Reflectance Conversion are the preferred methods for radian
29. here are no shadows glare present when recording this cube 32 Chapter 4 Operation Summary and Checklist Airborne User Manual Release 1 7 The GPS IMU s attitude solution is less accurate after turns When creating a flight plan allow the aircraft to travel straight for a short time before entering areas to be recorded This increases the accuracy of the georectification If AutoExposure returns a Not Enough Light warning the framerate can be turned down smaller FPS setting This will increase the integration time of the system allowing more light to enter Decreasing the framerate will decrease the along track spatial resolution if this is not desirable the system can still be flown after a Not Enough Light warning but the images may be dark and or noisy Alternatively the aperture of the Pika s objective lens can be adjusted Please contact Resonon for consultation on this procedure Warning Adjusting the Pika s aperture setting will void the radiometric calibration Contact Resonon before adjusting this setting 4 6 Keys to Obtaining Quality Data 33 Airborne User Manual Release 1 7 34 Chapter 4 Operation Summary and Checklist CHAPTER FIVE ADVANCED OPERATION 5 1 Sending Special Commands to the Flight Computer Many of the following sections require sending special commands to the flight computer This is done through the ground station software via serial cable With the
30. ill be discussed in more detail below Microhard radios 1 3 Make sure that the airborne radio is connected to the COM2 port of the Flight Computer using a normal serial cable and that the radio is properly powered See Ground Station Connection in Fig 2 4 Connect the second radio to the laptop serial port or USB gt serial adapter using a normal serial cable The Resonon Ground Station software will utilize this serial port so note the name of this port COM1 COM2 etc The baud rate of this connection is 115 2 k Launch the Resonon Ground station software The software will attempt to open the default port COM1 at the default baud rate 115 2 This will fail unless COMI is the correct port In the Comms menu item set the correct port Then select Comms Connect to establish the connection Direct connection 1 Connect the laptop serial port or USB gt serial adapter to the Comm2 port of the Flight Computer using a normal serial cable The Resonon Ground Station software will utilize this serial port so note the name of this port COMI 2 etc The baud rate of this connection is 115 2 Launch the Resonon Ground station software The software will attempt to open the default port COM1 at the default baud rate 115 2 This will fail unless COMI is the correct port In the Comms menu item set the correct port Then select Comms Connect to establish the connection Ground station COM p
31. itle reflects the actual imager type in use by the flight computer Pika Pika NIR or Pika XC Shutter This sets and displays the shutter setting of the imager as a percentage of the maximum exposure time for the current frame rate AutoExpose will adjust the shutter upward in preference to adding gain If there is not enough light available as shown by the Frame Histogram button Fig 3 3 you may need to decrease the framerate to allow longer exposure times Gain This sets the gain of the imager If AutoExpose is used it is not necessary to manually change the gain settings It should be noted that excessively high gain settings add noise to the images AutoExpose will decrease the gain in preference to decreasing the shutter setting If AutoExpose is setting the gain above zero consider decreasing the framerate to allow for longer exposure times Note The Pika NIR imager does not support a gain setting When using a Pika NIR the gain control will not appear Framerate This sets the framerate of the system and with it the along track spatial resolution Use the Resonon Airborne Calculator to determine optimum frame rate Slower frames rates mean lower along track spatial resolution but better signal to noise ratios If the AutoExpose routine returns a Not Enough Light warning or if it sets gain above zero the framerate may be lowered to improve signal to noise ratios Cross Track Pixels This sets the cross track spatia
32. l resolution normally set at its maximum value Smaller numbers mean lower cross track spatial resolution but increase signal to noise ratios and produce smaller data files Bands This sets the spectral resolution Lower band numbers increase signal to noise ratios and result in smaller file sizes but decrease spectral resolution Note For the Pika this parameter is 80 for normal operation Imager Orientation This parameter sets the direction of the imager relative to the direction of flight Set the param eter to Logo Right if the Resonon label side of the imager is facing the right starboard side of the plane and Logo Left is the Resonon label is facing the left port 14 Chapter 3 Using the Airborne Spectral Imaging System Airborne User Manual Release 1 7 Framerate fps 87 00 Auto Expose Class Advanced Auto Exposure Tuning Auto Expose Handle ET 95 00 Fig 3 4 The Imager Tab 3 6 Imager Tab 15 Airborne User Manual Release 1 7 Auto Expose Settings The Auto Expose class selection fine tunes the autoexposure routine for a variety of imaging scenarios Normal is the most versatile and serves as a starting point for most applications Darker areas of Interest is for bright backgrounds with sparse areas of darker regions of interest glacier background with sparse dark pools of water of interest Bright Areas of
33. lick on the datacube to convert in the Resource Tree in the right hand side of the main Spectronon window Select New Cube gt Correct gt Reflectance Conversion 6 In the resulting window select the name of the radiance calibration cube for the imager the downwelling irradiance spectrum and the downwelling irradiance calibration spectrum Optionally supply a dark current cube If no dark current cube is supplied the dark current cube collecting during calibration will be adjusted for shutter differences and used Press OK The resulting cube will be in Reflectivity on a scale of 0 to 1 unitless Reflectance via In Scene Reference Spectrum If there is an object in the scene of measured reflectivity it can be used to convert the data to reflectivity via the following steps 1 Convert data to units of radiance Select ROI of object of known reflectivity and create a Mean Spectrum Select New Cube Correct gt Correct From Measured Reference A U N Press the Measured Reflectivity button and select the file containing the reflectivity measurements This file should be a tab or space delimited with wavelength units in nanometers 26 Chapier 3 Using the Airborne Spectral Imaging System Airborne User Manual Release 1 7 5 Check the Return Ints 0 1000 box since GeoReg cannot process floating point datacubes 6 Press OK If the reflectivity of the reference is spectrally flat over the wavelength range of i
34. ng a GPS IMU with a Flight Computer 37 Airborne User Manual Release 1 7 5 9 Changing Default Cube Length By default the airborne system breaks datacubes into 2000 lines When a cube nears 2000 lines it is written to disk and a new cube is instantiated This results in a small area of missing data called a data holiday For small target areas this holiday may be avoided by increasing the size of the default cube length This value can be changed by typing setCubeSize size into the Command field 5 10 Troubleshooting System Checks Imager Fail Cannot find spectral imaging unit Reset Reboot Check cabling IMU Fail Cannot find GPS IMU Check port settings and cabling Confirm proper GPS IMU firmware and configuration Storage Verify the SSD disk is connected and restart Perform Check Disk If Check Disk does not solve the problem see Reformatting Disks to reformat the disk Single Point Fail Shutdown the Flight Computer and unplug power Check cabling Wait 10 15 seconds and power back up Data problems Saturated Data Use the Custom Autoexposure class and turn down the Handle setting from the current value Dark Data Use the Custom Autoexposure class and turn up the Handle setting from the current value Noisy Data Lower the Framerate setting This will decrease along track spatial resolution Alternatively the aperture of the objective lens may be increased Please contact Resonon regarding be
35. nterest you do not need to use a Measured Reflectivity file Instead you can use the Correct from Spectrally Flat Reference plugin as follows 1 Convert data to units of radiance Select ROI of object of known reflectivity and create a Mean Spectrum Select New Cube Correct Correct From Spectrally Flat Reference Enter in the reflectivity 0 1 of the reference material A N Check the Return Ints 0 1000 box since GeoReg cannot process floating point datacubes 6 Press OK Export to KML Spectronon supports exported processed spectral image cubes to KML format data 1 Open a xv file as generated by GeoReg 2 Process the data using the normal analysis tools of Spectronon 3 Select the resultant Image and use Export Image as KML Note In order for the background pixels the buffer areas around the spectral image data used to make the image square transparent in the KML they must be black in the Image You may have to use various filters Invert Strech Threshold etc in order to make the buffer pixels black before exporting to KML Batch Scripts Spectronon supports batch scripts for processing entire folders of datacubes This can be very useful for simplifying the processing pipeline Batch scripts can be used to convert data to radiance or reflectance or analyze the data Airborne specific batch files can copy LFC and TIMES files necessary for geo correction to the same path as the resulting processed file
36. om the GPS IMU during the cube recording The first column contains the time stamps If you select to save the debug files this data can be re saved as a raw format datacube with one layer for each location data type This file will be of type ins with a corresponding ins hdr Georectification Result Files igm The IGM file is a data cube of the same dimensions as the original BIL file but with only 2 bands The data in those bands is the Latitude and Longitude for each image pixel This is used to create the GLT file Once a GLT is made this file can be deleted but if you are trying different Grid Density Multiplier values having this file will speed up that process igm hdr IGM header file XV The XV file is a georectified spectral image data cube which can be opened directly with ENVI xv hdr XV header file kml Georectified version of the current rendering True Color NVDI SAM etc for use in Google Earth or similar programs png Image used in the KML file 4 6 Keys to Obtaining Quality Data Collect data under cloudless skies or uniformly cloudy conditions between 10 am and 2 pm Use the largest spatial and spectral binning appropriate for the application f the system is operating at non zero gain signal to noise ratios can be improved by slowing down the frame rate to the slowest rate appropriate for the application e A high quality Correction Cube will improve data fidelity if using Make sure t
37. omputer is starting up It will display system information once the flight computer software is running Confirm that all systems are operational in the external LCD Fig 3 1 It is preferred not to turn off power to the system without shutting it down with the Shutdown button on the Computer Tab of the Ground Station software Fig 3 9 Fig 3 1 External LCD 3 2 Launching the Software Launch the Resonon Ground Station software The controls will be disabled until the imaging system is online and communicating If you receive the message dialog No Response there is a communication failure between the imaging system and the ground station software This has two likely causes 1 The system may still be starting In this case the external LCD displays the Resonon logo Simply wait for the system to finish starting the LCD displays system information and reconnect from the Comms menu 2 The serial port may be misconfigured Navigate to the Comms menu and try to reconnect with the correct serial port and baud rate The default baud rate is 115 2 k 11 Airborne User Manual Release 1 7 3 3 Refresh Now Button The Refresh Now button is used to manually query the Flight Computer for the most recent status and setting infor mation and update the ground station accordingly This is usually unnecessary unless communications between the flight computer and ground station have been interrupted 3 4 Home Tab Resonon Groun
38. ort selection 2 5 Installing drivers for reading Ext4 drives in Windows The external solid state drive that the data is collected on is formatted as Ext4 which Windows does not natively support Therefore drivers are needed There are a few options Paragon Ext2Explore but the Ext2Fsd drivers seem to be the best 1 2 3 Download the driver from http www ext2fsd com and install A reboot is necessary Plug the drive into your computer and launch Ext2Fsd Find the drive labeled as Ext4 If no Volume letter has been assigned right click on the drive entry Select Change Drive letter Select Add and then Automatic Mount Select Ok The drive should be available in Windows for normal file transfer 2 5 Installing drivers for reading Ext4 drives in Windows 9 Airborne User Manual Release 1 7 10 Chapter 2 Installation CHAPTER THREE USING THE AIRBORNE SPECTRAL IMAGING SYSTEM 3 1 Powering Up the Flight Computer If using a laptop or external LCD to monitor the system connect these devices to the system and then power the system on The laptop communication cable connects to 2 of the Flight Computer The external LCD connects to a USB port of the Flight Computer See Fig 2 4 Power up the system The unit should remain stationary for a few minutes while the GPS IMU acquires satellites and initializes If the external LCD is connected to the flight computer it will display the Resonon logo while the c
39. ote If you account at downloads resonon com has not been enabled by Resonon staff for airborne downloads this step will fail Contact Resonon for support 5 4 Pairing a New Imager with the Flight Computer In order to use a different imager than the original with the Flight Computer the calibration numbers from the imager must be entered into the Flight Computer This is done though the Command window in the Command Line tab To enter in a slope in this case a value of 1 08 do setSlope 1 08 followed by the Enter key To set the intercepts in this case 400 12 enter setIntercept 400 12 followed by the Enter key 36 Chapter 5 Advanced Operation Airborne User Manual Release 1 7 5 5 Pairing a GPS IMU with a Flight Computer To change which type of GPS IMU the Flight Computer is paired with enter one of the following commands setImu Ellipse setImu Athena setImu Novatel setImu Piccolo 5 6 Pairing Unpairing a Downwelling Irradiance sensor with a Flight Computer If a downwelling irradiance sensor is not being used the system will boot faster if the Flight Computer is instructed not to attempt to connect To do this go to the Command window and enter preferences setitem singlepoint False If you need to instruct the Flight Computer to attempt to connect to a downwelling sensor use the following preferences setitem singlepoin
40. rcraft With a UAV it may be possible to perform a 3D calibration on the ground Make sure the UAV is at least 10m away from any metal structure The 2D horizontal calibration is less accurate and is best performed on the ground due to the need to keep the aircraft level The aircraft will need to be rotated in a complete circle Make sure the aircraft is at least 10m away from any metal structure 2 Press the Begin button 3 Maneuver the aircraft as appropriate for the chosen calibration type 4 Press the Compute button to compute the calibration results 5 If no problems are reported press the Apply button to apply the calibration If problems are reported repeat this procedure Resonon Ground Station File Preferences Comms Targets Refresh Now Home Fight Pika Elipse imu Computer Storage Targets Command Line Use With Care Use With Great Care Downloaded 11 chars Fig 3 9 The Computer Tab 3 8 Computer Tab 19 Airborne User Manual Release 1 7 3 9 Storage Tab Resonon Ground Station File Preferences Comms Targets Refresh Now Home Fight Pika Elipse IMU Computer Storage Targets Command Line Data Management View Current Files Offload Data Use With Great Care Downloaded 11 chars Fig 3 10 The Storage Tab The Storage Tab contains functions that affect the data written to the extern
41. s Batch Processor Spectronon s batch processor automates the processing of multiple datacubes with a simple GUI interface See the Spectronon user manual for details 3 14 Post Processing Data with Spectronon 27 Airborne User Manual Release 1 7 3 15 Using GeoReg Recommended data processing pipeline for converting data to reflectivity and geo rectifying This pipeline is also recommended for converting data with significant dark current to radiance and geo rectifying as the dark current removal method in Spectronon is superior than GeoReg Raw Data eStart with data Convert to radiance or reflectivity data Use Spectronon s Geo correct the Sensor option Classify analyze data copied from the correction plugins ENVI Khorosdata or ENVI to analyze airborne system s or batch scripts to products with data Spectronon SSD bip hdr convert to GeoReg without Can export results Icf times radiance the Calibrated to KMLs Use the batch scripts to perform these corrections in order to copy the Icf and times files with the new corrected spectral image files Otherwise copy and rename Icf and times files manually Processing to radiance using GeoReg Raw Data eStart with data copied from the airborne system s SSD bip hdr cf times Most flexible with ENVI eStart with data copied GeoReg Operation
42. s preferable for accuracy reasons and should be performed if possible Please see the Magnetic Calibration in Airborne Applications document for instructions on performing these calibrations If using the Resonon Ground Station please see the Ellipse GPS IMU Magnetic Calibration section in the Operation chapter of this manual If using the sbgCenter sofware please see the Magnetic Calibration in Airborne Applications document for instruc tions Warning Do not change any of the Input Output or Data Output settings while using the sbgCenter 2 3 3 Microhard Radio Modem If the optional Microhard radio modems are used to communicate between the Flight Computer and the ground station computer a null modem connector must be used between the Flight Computer and the Microhard radio The modem will connect to COM2 of the Flight Computer See Ground Station Connection in Fig 2 4 2 4 Installing and Connecting to the Ground Station Software The Resonon Ground Station Software is easily installed with the provided installer Please uninstall older versions of the Resonon Ground Station software before installing newer versions then double click the installer and follow the instructions Chapter 2 Installation Airborne User Manual Release 1 7 2 4 1 Connecting to Ground Station The Ground Station software communicates to the airborne system through the Microhard data link or directly through a serial cable These options w
43. system running navigate to the Command Line tab Click in the command line box at the bottom of the window and type your command Press lt enter gt to send the command to the flight computer For example getVersion The command and any response from the flight computer command interpreter appear in the Raw Output section above gt gt gt getVersion lt lt lt Revision 1 0 5 2 Connecting the Flight Computer to a Network The flight computer comes with 2 Gigabit Ethernet ports The port nearest the sound jack is reserved for the Pika or Pika XC imager The other port can be used to connect to a network and the Internet Connect the flight computer s LAN ethernet port to a DHCP enabled Internet connection See Fig 2 3 If the network connection fails make sure the correct port is connected to your DHCP enabled network and try again If it still doesn t work the connection can be brought up manually as described below In the ground station command line use the ethlup command gt gt gt ethlup lt lt lt Bringing up secondary ethernet interface Please wait lt lt lt Success IP address is 192 168 0 181 If the flight computer successfully obtains an IP address from your network it is returned If no IP address could be acquired the connection fails gt gt gt ethlup lt lt lt Bringing up secondary ethernet interface Please wait lt lt lt Faile
44. t True 5 7 Reformatting Disks For system errors that the Check Disk function does not fix it may be necessary to reformat the external hard disk This will erase all previous data collected by the flight computer Warning Older systems store settings targets imager calibrations and GPS IMU type on the external drive Re formatting the disk will erase that data as well and should only be done after consulation with Resonon personnel Additional steps will be required to restore these settings Newer systems the flight computer looks like Fig 2 3 and Fig 2 4 with a finned metal heat sink on top are not affected by this warning To reformat the external hard disk enter the following line into the Command Line reformatDisk followed by the Enter key The system will appear unresponsive while the disk is formatting Do not shut off the system After a reformat the system will restart reformatDisk can also be used to format an additional SSD SATA data disk The choice of SSD disk is important to system performance Please consult Resonon for disk drive model recommendations 5 8 Uploading Error Logs If the system is experiencing problems Resonon personnel may request a system error log to assist in correcting the problem To do this connect the Flight Computer to a DHCP enabled internet connection see Connecting the Flight Computer to a Network Then type uploadErrorLog followed by a Enter 5 5 Pairi
45. t computer These Target regions define the areas over which the system will record data When the aircraft enters a defined target area and is above the minimum altitude requirement data recording is automatically started and ends when the aircraft leaves the target area When data is recorded in a target region the name of the target region is reflected in the data folder name 20 Chapter 3 Using the Airborne Spectral Imaging System Airborne User Manual Release 1 7 Resonon Ground Station File Preferences Comms Targets Refresh Now Home Flight Pika Elipse IMU Computer Storage Targets Command Line KML Settings Min Altitude AGL Meters 0 00 0 Remote Targets Targets found 2 North Field South Field Ignored features 0 Downloaded 347 chars Fig 3 11 The Targets Tab 3 10 1 KML Target Areas Target KML files are created in Google Earth Only one target file can be uploaded at a time but each target file may define multiple target areas Note If the Targets tab does not look like Fig 3 11 your system is likely set to use legacy targets Simply select Targets gt Use KML Target File from the main menu 1 use the Add gt Folder option in Google Earth to create a folder Give it an appropriate name 2 Right click the new folder and select Add gt Polygon to create a new polygon target inside the folder The name you give the
46. t spectral range Ideally the fiber head is exposed to direct light Connect the sensor to the Flight Computer via USB 2 2 Installing the Hardware 7 Airborne User Manual Release 1 7 Once all components are installed provide power to all components of the system Pika Flight Computer and GPS IMU paying close attention to min max voltages and current requirements Device Voltage Power Pika 8 30V 3W Pika XC 5 24V 8W Pika NIR 12V 60W Flight Comp 9 35V 30W MicroINS 9 18V 3W Novatel IGM 10 30V 3W 2 3 Configuring the SBG Ellipse 2 3 1 Antenna Lever Arm Adjustment The position of the antenna relative to the body of the Ellipse needs to be entered in to the sbgCenter software Please see the Ellipse Configuration manual for instructions on applying this offset The Home position of the unit can be entered as well to speed satellite acquisition time Warning Do not change any of the Input Output or Data Output settings while using the sbgCenter 2 3 2 Magnetometer Calibration The magnetometer should be calibrated before data collection as well This can be performed on the ground or preferably in the air This procedure can be performed with the sbgCenter or if in the air with the Resonon Ground Station software It has been Resonon s experience that a 2D calibration is difficult to perform in the air due to the need to keep the wings level A 3D calibration i
47. tains functions cleanly shutting down and for recovering a malfunctioning system Reset Resets the embedded software This may repair a partially crashed or unresponsive system Use this when asked to reset the flight computer as when selecting a different imager type Reboot Reboots the system This may repair a partially crashed or unresponsive system Shutdown Shuts the system down It is best but not necessary to shut the system down before turning off power Once a shutdown is executed you will need to disconnect and reapply power to the flight computer or press the power button on the front panel Fig 2 3 to restart 18 Chapter 3 Using the Airborne Spectral Imaging System Airborne User Manual Release 1 7 Magnetometer Calibration 5 Bean 3 7 2D Compute Apply 3D GPS magnetometer calibration Be prepared to execute the manuevers described in the Magnetic Calibration section of the Airborne Applications document Press Begin Calibration Fig 3 8 Ellipse Magnetometer Calibration Window 1 To perform a calibration first press the Calibrate Magnetometer button on the GPS IMU tab Fig 3 7 The Ellipse magne tometer calibration window appears Fig 3 8 Choose a 2D or 3D calibration The 3D calibration is the most accurate See the Magnetic Calibration in Airborne Applications document for a recom mended set of maneuvers to perform during a 3D calibration with a manned ai
48. the circle actually a square defined by these parameters The minimum altitude setting prevents the system from recording data while it is on the ground of the launch landing zone if the launch landing area is within a Target region Once a target file has been created it can be saved locally for use later Once a target file has been created or loaded from a locally saved file it needs to be uploaded to the Flight Computer Select Targets gt Legacy Targets gt Upload Local Target List from the main menu This is accomplished through the Targets menu item Upload Local Targets The Remote Target List should match the Local Target List A target list can be saved locally through the Legacy Targets submenu items Save Target File or Save Target File As To clear Remote targets create a blank local target list and upload 3 11 Command Line The Command Line Tab Fig 3 13 contains an output window of messages to and from the Flight Computer as well as an input window for manually sending messages to the flight computer Please see Advanced Operation for a description 3 12 Menu Items 3 12 1 File About Ground Station This displays the version of the Resonon Ground Station software Exit Exits the Ground Station software This does not shut down the flight computer Use the Computer tab Fig 3 9 to do that 3 12 2 Preferences Camera Allows the customer to select the imager type in use This is only useful if you have imagers
49. using target area Minimum Altitude Setting Optionally AutoExpose on White Reference and Collect Correction Cube 4 3 Flight All operations are optional amp N Perform magnetic calibration if necessary This only needs to be done once as long as the plane and installation do not change Perform AutoExposure if necessary Confirm Collection of Datacubes while in Target Areas Check Histogram confirm Exposure settings are correct Optionally shut down system via Shutdown button for return flight 31 Airborne User Manual Release 1 7 4 4 Post Flight 1 Shut down Flight Computer Remove data drive and offload data using dock cable Convert data to radiance or absolute reflectance Optionally classify analyze data Geo rectify Data with Geo Reg or Parge AeA N Classify analyze data 4 5 Data Files and Structure The top level data folder is named by date Inside of the data folder are folders named by target polygon name and number Inside of these folders are the bip hdr lcf and times files A description of all data files follows Per Image Files bil The hyperspectral raw image data bil hdr The header file for the raw image data bil times Lists the timestamps for each frame in the HSI file In future versions This data may be included in the hdr file under the var name line time stamps Icf Contains the actual location data pulled fr
50. utton is pressed This allows the operator to record data over an area outside of the defined target areas discussed in the Targets Tab section Stop Stops the collection of datacubes whether the recording was started manually or because the aircraft is inside of a defined target region If this function is used to stop the collection of data within a target region collection will begin again once the aircraft is back inside a target region Record Correction Cube This button allows the collection of a Correction Cube for use with post processing data correction The cube collected in this step is used to remove the instrument response as well as the illumination function and leave the data in Absolute Reflectance more info on post processing can be found in Post Processing Data with Spectronon Before using this function place a reflectance standard in the field of view of the imager and in a manner such that the standard is fully illuminated by the sun no shadows Use AutoExposure to determine the gain settings and then record a correction cube This cube will be in the flight s root folder and named to reflect its purpose Run Auto Expose Runs the auto exposure routine Note Autoexpose will not run while recording a data cube so that while in very large target areas drastic changes in conditions will impact the data 3 6 Imager Tab The Imager Tab Fig 3 4 contains the settings relevant to the Spectral Imager The tab t
Download Pdf Manuals
Related Search
Related Contents
Sony KDL-40CX520/H LCD TV UNIVERSITI TEKNOLOGI MALAYSIA 14807-NGV Supp-FUS Philips MCM238 MP3/WMA Micro Hi-Fi System ZUG User Manual (Version V5.0) Programming - Subalpina Vending Cargar Manual de Usuario - Inglés Copyright © All rights reserved.
Failed to retrieve file