Home

CS Technical Report No 5-07

image

Contents

1. Validating data Aquatic plant survey General principle Survey technique Species identification Assessing and recording physical variables IRIS Inputting survey data Field Survey check list Quality control and assurance Transit and storage of macroinvertebrate and plant specimens References POND CONDITION ASSESSMENT METHOD Overview Steps in carrying out the pond condition survey Taking the water chemistry sample and readings Overview Estimating turbidity Meter readings Water chemistry sample for SRP TON and alkalinity Carrying out the environmental survey including amenity use Overview Identifying the outer pond boundary Sketch the pond outline Estimating pond area Measuring drawdown height Estimating the proportion of water present in the pond Measuring sediment and water depths Estimating composition of sediment and pond base Estimating the extent of pollution in the pond Describing inflows and outflows Recording pond management iii 30 32 34 35 35 35 39 39 42 43 47 47 49 51 52 53 53 53 54 54 54 55 55 55 55 55 56 56 56 57 57 57 58 58 Evidence of use by water birds Evidence of fish Evidence of amphibians Recording surrounding land use Amenity value view of pond Amenity value public access to pond Amenity value evidence of amenity use Macrophyte survey method Overview Carrying ou
2. For the purposes of macroinvertebrate sampling the sample area must be a single continuous area of stream bed whose major habitat types can be sampled within the recommended sampling period It will normally vary from 5 to 15m according to stream width It must not be a collection of separate sampling points within an extended length of river for instance to include both riffles and pools in an attempt to increase the variety of animals captured Each habitat in the sampling area must be sampled with an effort proportional to its cover Within the limitations imposed by this procedure as many different taxa in the sampling area as possible should be collected On average about 6046 of families present will be collected in a single three minute kick sample excluding the manual search The sample shall be collected using a standard 25 cm pond net with a 900 um mesh net Wash the net thoroughly before and after taking samples Check that it is neither damaged nor contaminated with animals from previous samples Damaged pond nets must not be used Wherever possible collect samples by sampling for three minutes with a pond net and one minute of manual searching Fig 4 The manual search is mandatory although it will not always be fruitful The sampling area should not encompass such a wide range of features along the river that it includes both deep and shallow areas There is no limit to the amount of material collected only the sampling time
3. SUBSTRATUM IN SAMPLE AREA Please give details for the full width of river at the sampling area SUBSTRATE TYPE mm BOULDERS amp COBBLES PEBBLES amp GRAVEL SAND SILT amp CLAY gt 2 64 mm 20 0625 2mm lt 0 004 0 0625 mm OTHER HABITATS Rock pavement lin t Filamentous algae Higher plants WATER CHEMISTRY pH Conductivity units Jj Figure 6 Form for recording environmental data in the macroinvertebrate sample area 18 The following measurements must be made at a point along the sample area which is typical of that area i e representing the modal condition The graduated pond net handle can be used for width depth and surface velocity measurements Water width Water depth Surface velocity The stream width should reflect the predominant conditions in the sampling area Measure the stream width at right angles to the channel Measure the width of the water surface not the stream channel and include water under overhanging banks If temporary islands form in the channel because of low flow include them in the measurement Choose a place to measure the width that gives an approximately modal value for the site Alternatively where the modal width is difficult to estimate and it is safe and easy to cross the river an average of more than one measurement from the vicinity of the sampling area can be used although this should no
4. 350 525 2525 0 8 0 8 8 8 20 20 40 40 80 80 200 200 400 400 600 2600 0 9 0 9 9 9 22 5 22 5 45 45 90 90 225 225 450 450 675 2675 10 1 1 10 10 25 25 50 50 100 100 250 250 500 500 750 gt 750 Species identification from Holmes et al 1999 Identification should be to species level where possible We have produced a list of 351 plant taxa that we believe contains all the aquatic macrophytes that are likely to be recorded during CS2007 This list also acts as the standard for the taxonomic level to which specimens should be taken when being identified For example we would expect Carex to be identified to species level but would not expect Salix to be taken beyond genus We would hope that the vast majority of specimens could be taken to species Use a field identification guide If identification to species level is expected but cannot be achieved due to the absence of key seasonal features e g flowers then record it only to the level to which you are confident If you are unable to confidently identify a species in the field due to being unfamiliar to you then you should take a representative sample back to the laboratory for confirmation This should be a placed in a plastic bag or tube without water and labelled with the CS Square number and temporary ID code e g 160_01 and date This coding should match that recorded on the MTR form so that the confirmed identification can be linked back to the appropriate survey
5. of the distance across transect B If it is not possible to take some of the readings then put a cross through the relevant boxes 56 Transect A Maximum Transect water level B Estimating composition of sediment and pond base Most ponds have a layer of sediment consisting of soft or hard substances such as organic debris silt sand This sits on top of the pond base which is usually a natural material e g gravel clay rock peat and occasionally may be man made e g puddled clay or artificial liner Note that puddled clay pond bases are quite rare most ponds with clay bases are located on naturally occurring clay geology Examine the sediment and pond base to work out its composition Wearing long sleeved gloves take a small handful of sediment and feel the base material at various positions around the pond both in and out of the water Use the net pole to feel in deeper water to feel the extent of soft and hard material Estimate the proportion of the total area of the sediment that is made up of each of the following i organic debris leaves and twigs ii ooze non particulate and fine silts iii gravel sand often stream borne or others specify what they are For each of these write a 1 on the fieldsheet if that element makes up 0 to 32 of the total 2 for 33 to 66 and 3 for 67 to 100 For the pond base record using the same system of categories the proportion of the pond base area which consis
6. orchard bracken canal railway Amenity value view of pond Are there any public rights of way near the pond from which it could be visible Score each on a scale from 1 pond totally obscured to 5 significant part of the pond clearly visible Score separately for A roads B roads minor roads footpaths bridle paths or other state what they are If there is more than one of any type of right of way record the highest score Amenity value public access to pond Record whether or not the pond is in area of open public access e g Common village green i e could a member of the public access the pond without needing permission A public footpath passing alongside a pond does not count as it being in an area of open public access Amenity value evidence of amenity use Tick the appropriate boxes if there is evidence of any of the following amenity uses e Fishing fishing platforms pegs swims embayments e Ornamental fish e g goldfish Koy carp e Ornamental pinioned wildfowl nesting boxes feeders platforms e Pond dipping and other wildlife interests dipping platforms bird hides e Shooting hides blinds e Boating and other water sports boat boathouse e Golf hazard e Other please state 60 Macrophyte survey method Overview The aims of the macrophyte survey are to e record all species of wetland plant present within the outer boundary of the pond and estimate their abundan
7. 100 m Macroinvertebrate sample area 10 15 m Water chemistry RHS spot check 6 Figure 1 The nested spatial arrangement of sampling stretches for the different tasks at each headwater sampling site Macroinvertebrate sample V 2250m 2250m gt o gt flow A B 2 500m oo gt Source A lt 250m B gt 250m lt 250m lt 500m O S O O Source gt 500m lt 250m A B lt 500m Source A B gt Underground No problem standard arrangement Survey from source for 500 m downstream Survey the strongest upstream tributary If equal strength take right hand trib looking upstream Sample available length either sea or end of ditch drain Survey from confluence upstream for 500m Survey from the source along the watercourse and then down the Bigger river to a total length of 500 m The culverted underground section will be part of the 500 m section Assume that the culverted section flows in a straightline between disappearing and re appearing and record that the stecth is part culverted Figure 2 Rules for surveying 500 m stretches of standard and non standard watercourses Distribution of duties The two assigned freshwater surveyors in a team will be designated as person A and person B for the purposes of this section The following allocation of duties is a recommendation but may be varied according to local circumstances Having e
8. Evidence of Recent Management 9 9 9 9 2 Animals ee RENE REI REI REI pp cou cce syr Other significant observations C IDE ecord even Alders 9 Diseased Alders 9 Figure 16 Screen shot of lower half of Page 4 form in RAPID 33 Validating data Once you have completed the survey you must validate the form while still at the site in order that any omissions can be accurately corrected RAPID has an in built validation routine that can be activated by pressing the Check data button at the top left hand corner of the window RAPID will check sequentially from the start of the form to the finish for data fields that have been left empty by mistake and where possible for inconsistencies in the data entered RAPID will only display one error at a time so that you have the opportunity to correct the problem Once you have corrected the problem you must press the Check Data button again to find the next error if there is one Once the validation is successfully finished RAPID produces a message This RHS survey appears to be complete Fig 17 You can now close down RAPID by returning to the main menu and clicking EXIT Gara EManmenu Z Page 1 Page2 Z Page3 A Page 4 Survey Notes SS RHS manual a Check Data Debris dam s Marsh es Leafy debris P Flush es E Fringing reed bank s P Natural open water E Quaking bank s P Others state Sink hole s Is 33
9. This is particularly important when more than one macrophyte from the same survey needs further investigation Particular care should be taken over the identification of Ranunculus species as it is known that mis identification of Ranunculus species is a common cause of surveyor error If in doubt a representative sample should be taken back to the laboratory for confirmation of identification or identification confirmed by an expert Where you are confident that two or even more species or apparently differing forms of Ranunculus are present but you cannot be confident about the precise species then it is preferable to take sample specimens for confirmation back in the laboratory Representative samples of algae and bryophytes should be taken to the laboratory for closer examination so that their identification can be confirmed Assessing and recording physical variables from Holmes et al 1999 After recording the macrophyte information re traverse the survey length recording details of the survey length physical variables water width depth bed stability substrate composition habitats channel shading and water clarity The assessment of physical variables is NOT expected to be as precise as the macrophyte assessments but merely an important element which should be used to help in 1 Assessment of how comparable sites are to one another ii Providing information which in the future may help in more rigorously assessing the rel
10. Use the Select Square drop down list Enter the date and the name of the surveyor in the river actually carrying out the survey not the recorder holding the tablet PC Also record the NGR of the mid point of the site This should also be the mid point of the macroinvertebrate sampling area IF FOR WHATEVER REASON YOU CANNOT CARRY OUT THE PLANT SURVEY AT A SQUARE THEN YOU SHOULD STILL SELECT THAT SQAURE IN IRIS ENTER THE DATE SURVEYOR NAME AND IN THE SURVEY NOTES PROVIDE A REASON FOR NOT COMPLETING THE SURVEY You then proceed to complete the form as normal complying with standard MTR protocols described above and ensuring that all fields are completed You add species to the list from the drop down menu as you find them within the 100 m site and you then allocate a cover category to each species based on its cover within the survey Site Species are listed according to major group Fungi Algae Moss Liverworts Horsetails amp Quillworts Ferns Monocotyledons and Dicotyledons and then within a group they are alphabetically ordered A species entry can be deleted by right clicking on the grey squares to the left of the species name and selecting Cut and then clicking Yes Se IRIS 2 0 About database Main Menu 72 Page 1 2 Page2 Survey Notes lt i Check Data _ Square River Survey Site SCLERDER ABBEY Date B2 Feb 07 today Surveyor name 8 Mid SiteNGR 9 1 should be at th
11. and will be necessary for apportioning the sampling effort After the rest of the biological sample has been collected walk over the whole sampling area before making the final estimates It is difficult to judge the composition of the river bed in deep or turbid water The substratum visible at the water s edge the feel of the stream bed under foot the contents of the sampling net previously recorded data and local knowledge may all be used as guides 20 Other habitats Water chemistry Table 2 Substratum particle size categories recorded for RIVPACS Category Longest axis mm Description silt clay lt 0 06 soft in texture and not abrasive to the hands when rubbed Sand 0 06 2 smaller than coffee granules and unlike silt clay abrasive to the hands when rubbed pebbles gravel 2 64 coffee granule to half fist size Boulders cobbles gt 64 half fist size or larger The percentage cover of four other categories of habitat is required for the full width of the sample area for the full length sampled biologically Bedrock Enter the proportion of the total stream bed in the sample area covered with bedrock Include areas under plant growth Filamentous algae Enter the proportion of the total stream bed in the sample area obscured by filamentous algae This category excludes diatom growth on stones Moss Enter the proportion of the total stream bed in the sample area covered by mosses of all kinds Higher plants Ente
12. aquatic plant community will be surveyed MTR method 5 An indicative water chemistry sample will be taken and analysed for pH conductivity alkalinity SRP TON For 25 of the 425 squares we will be sampling a new site on a smaller watercourse to replace the CS2000 site which has been found to be on gt 3 order stream This will ensure that for CS2007 and future surveys the sampling effort is more effectively focussed on headwater streams The location of the headwater sampling site within a square was generally chosen to maximise the length of RHS that could be conducted within the square while also being as close as possible to the exit point from the square This approach also tended to maximise the proportion of the site s catchment which lay within the bounds of the square The length of the headwaters sampling site is 500 m of watercourse This 500 m defines the limits of the RHS survey area The 100 m aquatic plant survey stretch is located within this stretch centred on the macroinvertebrate and water chemistry sampling point which in turn are where possible located at RHS spot check 6 Figure 1 However it is not always possible to ensure that the sampling locations adhere to the ideal arrangement A number of reasons for this are envisaged and rules for dealing with each circumstance have been devised Fig 2 If there is any uncertainty about what to do then please contact CEH staff RHS Aquatic plant survey
13. box on left P cut amp click Yes Water Width m Depth m Bed Stability Substrate mm Channel shading 9o L Water Clarity Photo taken S NB When facing downstream the left bank is on your left Form View NUM Figure 22 Screen shot of the Page 2 form in IRIS 45 IRIS will only display one error at a time so that you have the opportunity to correct the problem Once you have corrected the problem you must press the Check Data button again to find the next error if there is one Once the validation is successfully finished IRIS produces a message This plant survey appears to be complete Fig 23 You can now close down RAPID by returning to the main menu and clicking EXIT Eli Channel shading 9 o D This plant survey appears to be complete Photo taken Y NB When facing downstream the left bank is on your left a start 3 8 C 4 9 P wro72c Further queries B Documenti Microsoft internal Business Use inis 20 11 Figure 23 Screen shot of the data export form in IRIS Field Survey check list Upon completing all the tasks at the headwater stream site and before leaving the site it is very important that both surveyors together complete the field survey check list Fig 24 to ensure that all tasks have in fact been completed It is quite easy to over look a task especially if field and or weather conditions are difficult Quality control and
14. is moving mark a cross in the box 57 Recording pond management Tick the appropriate boxes if there is any evidence of the following pond management having been carried out Ignore any management which has obviously been carried out over 10 years ago or is at such a distance that it is unlikely to impact the pond The options to record are as follows e the pond has been fully dredged e the pond has been partly dredged e more than 5 of the pond vegetation has been removed e some but less than 5 of the pond vegetation has been removed e trees have been planted e trees have been felled e trees have been partly cut back e the pond has been changed in its shape or size e plants have been introduced e g obvious species that should not be in this geographic locations baskets etc e plants on the pond bank have been mown e straw has been added to the pond e structural work has been carried out e g to dam the pond Evidence of livestock grazing This section refers to evidence of grazing by livestock defined as cows sheep and horses not grazing by wild animals e g rabbits or deer If there is evidence that the pond is grazed by livestock e g ground is poached tick the box on the fieldsheet and record the percentage of the pond perimeter that is grazed This will usually be all of the perimeter unless access is restricted in some parts e g by fencing trees or if an area is too steep If there is evidence of gr
15. s 1m 67 Number of seconds taken to flow 1m If no flow is detectable put a cross in the box 68 CS2007 Pond Condition Survey Recording Sheet 2 Environmental Survey page 2 of 2 CS square number Date Name of surveyor Pond management tick where relevant Fully dredged Trees planted Plants introduced Other list Partly dredged gt 5 vegetation removed lt 5 vegetation removed Trees felled Trees partly cut back Pond changed in shape size Bank plants mown Structural work e g to dam Straw added Grazing Tick if there is evidence that the pond is grazed by livestock of pond perimeter grazed Grazing intensity rank 1 5 1 infrequent or low intensity 5 pond margins heavily poached and almost bare List grazing livestock if known Waterbirds Tick if there evidence that the pond is used by waterbirds e g ducks geese coots moorhens swans Intensity of impact rank 1 5 1 little evidence of impact 5 duck pond with little vegetation Record any further information e g species evidence of nesting Fish Tick if fish are known to be present Tick if fish are likely to be present e g fishing pegs turbid water Record any further information e g species abundance Amphibians Tick if present Record as far as possible species life stage and appro
16. score each on a five point scale 1 totally obscured 5 significant part of pond clearly visible A road Footpath B road Minor road Bridle path Other public road or track please state 2 Is the pond located in areas of open public access Tick No Yes 3 Is there evidence of formal amenity use If so tick Fishing fishing platforms pegs swims embayments Shooting hides blinds Ornamental fish e g goldfish Koy carp Ornamental pinioned wildfowl nesting boxes feeders platforms Boating and other water sports boat boathouse Golf hazard Pond dipping amp other wildlife interests dipping platforms bird hides Other please state 69 CS2007 Pond Condition Survey Recording Sheet 3 Macrophyte Survey CS square number Date Name of surveyor for macrophyte Cross through all wetland plants within the outer boundary of the pond upper winter water level For each species present record its abundance 0 5 Rare 6 20 Occasional 21 50 Frequent 51 90 Abundant 91 100 Dominant Submerged plants Apium inundatum Aponogeton distachyos Cabomba caroliniana Callitriche brutia s s Callitriche hamulata s 1 C hermaphroditica Callitriche obtusangula Callitriche palustris Callitriche platycarpa Callitriche stagnalis Callitriche truncate Callitriche sp Ceratophyllum demersum C submersum Chara spp list Crassula aquatic
17. syringe chamber again with sample water and attach a new disposable filter cartridge Then empty the water in the chamber through the filter into the 50 ml plastic sample bottle Rinse the sample bottles out with this water Do not exert excessive pressure as this might rupture the filter Fill the syringe chamber once more with some of the water sample re attach the same filter cartridge and fill the 50 ml plastic sample bottle Screw on the lid tightly and place in the appropriate pre addressed and postage paid padded envelope If the filter cartridge becomes blocked during filtration then change and continue with more of unfiltered water sample After filtering check the filtered sample for suspended material e g from a ruptured filter paper If suspended material is present then discard the filtered sample and start again Tick the boxes on the fieldsheet to confirm the samples have been taken 54 Carrying out the environmental survey including amenity use Overview In summary the procedure is as follows o Take a photo of the pond o Identify the outer boundary of the pond o Walk the pond perimeter noting relevant features on the fieldsheet as you go e g presence of inflows surrounding landuse and waterbodies etc o Draw a sketch of the pond outline and estimate pond size o Fill in the rest of the fieldsheet Filling in some sections will require you to enter the pond and so disturb the sediment make sure water qualit
18. these for reference for example an A4 sheet 0 06 m Suggested techniques for estimating overall macrophyte percentage cover Option 1 Imagine moving all the macrophytes to the one end of the survey length The area covered will correspond to the overall percentage cover for example in a 100m survey length an area of macrophytes completely covering a section which is 25m long x channel width will have 25 cover Option 2 If the majority of the vegetation is confined to strips along the margins of the river the overall percentage cover may be estimated in the following manner Marginal area covered m length of marginal vegetation cover x width of marginal vegetation Total area covered m marginal area other areas Total percentage cover total area covered total area of survey length x 100 Suggested techniques for estimating indivdual macrophyte species percentage cover Square meter method 1 Estimate the approximate average width of the channel 2 Calculate the equivalent m areas that need to be covered in order for a macrophyte to be awarded a particular species cover value Refer to Table 4 highlight the most appropriate channel width column and use this as a guide 3 Estimate the m cover of each species within the survey length and allocate the appropriate species cover value Example For a 100m survey length channel width 5 m a macrophyte must cover the following areas Species Cover Value P
19. 96 or more of the channel choked with vegetation Na To Update all to None tick box Iv Bankface Banktop to 50m Giant Hogweed E Japanese Knotweed P Himalayan Balsam P Other state Ez To Update all to None tick box 1 2 3 4 5 6 Major impacts uw J mu J Po Jeroan J ove rM Evidence of Recent Management RREHB RREHB WEEDC WEEDC BKMOW WEEDC Animals mum sf a mmc mink Other significant observations THERE suryey appears ts be comais Alders P Diseased A Form View Start G 2 C c 9 amp wroz2c further queries Internal Business Use nar zo t1 Figure 17 Screen shot of the completed form in RAPID 34 Aquatic plant survey General principle The aquatic plant macrophytes and bryophytes survey method used in CS2000 will be repeated for CS2007 The simple field protocol is based on that described for the Mean Trophic Rank MTR bioassessment method Holmes et al 1999 The MTR system is a biological method to assess the trophic status of streams and rivers in the UK and was primarily developed to monitor the impacts of eutrophication The MTR system is based on the presence and abundance of species of aquatic macrophyte A macrophyte is defined as any plant observable with the naked eye and nearly always identifiable when observed Holmes amp Whitton 1977 This definition includes all higher aquatic plants vascula
20. CS Technical Report No 5 07 Freshwater Manual v1 0 re Countryside Survey CS Technical Report No 5 07 Freshwater Manual John Murphy and Anita Weatherby Centre for Ecology and Hydrology Natural Environment Research Council November 2008 Centre for Ecology and Hydrology Maclean Building Benson Lane Crowmarsh Gifford Wallingford Oxfordshire OX10 8BB UK Pond Conservation Oxford Brookes University Gipsy Lane Headington Oxford OX4 2PD Current address CEH Wallingford Contents INTRODUCTION EQUIPMENT HEADWATERS Introduction Distribution of duties Photographs Water chemistry sampling and recording Conductivity and pH measurement SRP TON and alkalinity Macroinvertebrate community sample General principle Three minute kick sample Kick sampling from gravel or cobbles Sampling from soft sediments Sampling from boulders Sampling from vegetation Sampling from still or slow flowing water over gravel or cobbles Sampling from deep waters Manual searching Sample fixing and labeling Site environmental data Water width Water depth Surface velocity Substratum Other habitats Water chemistry Sketch map River Habitat Survey General principle Inputting survey data Page 1 Page 2 Spot checks vo Oo oc 0 NA 11 13 13 13 13 14 14 14 15 15 17 19 19 19 20 21 21 24 25 25 26 27 27 Page 3 500 m Sweep up Page 4 Dimensions and Influences
21. Embanked Set back embankment _ 9 9 TREES ASSOCIATED FEATURE Left Right Shading of channel E e Fe Overhanging boughs e Exposed bankside roots 9 Underwater tree roots e Fallen trees Large woody debris CHANNEL AND BANK I If none tick box Free fall flow Chute flow Broken standing waves Exposed bedrock Exposed boulders Vegetated bedrock boulders Unvegetated mid channel bar s Vegetated mid channel bar s Unbroken standing waves Rippled flow Upwelling Smooth flow Mature island s Unvegetated side bar s Vegetated side bar s Unvegetated point bar s Vegetated point bar s No perceptible flow No flow Dry Marginal deadwater Eroding cliff s Stable cliff s Unvegetated silt deposit s Discrete unvegetated sand deposit s bel ie ie al ele ie fl el be PPP PEPE EEREEE Discrete unvegetated gravel deposit s Figure 14 Screen shot of lower half of Page 3 form in RAPID 31 Page 4 Dimensions and Influences Section L Channel Dimensions This section does not differ in content from the paper form and has a similar layout Use the numerical drop down lists to record the measured dimensions Fig 15 Section M Features of Special Interest This section does not differ in content from the paper form and has an almost identical arrangement of the options Fig 15 You should first tick the box near the top left of the section which will turn all the 9s in the
22. ON and alkalinity Conductivity and pH measurement Please familiarize yourselves with the Hanna Combi pH amp conductivity meter prior to use Read the manufacturer s instructions and understand the operational protocols Ensure that the meter is well rinsed since use at the previous site and is properly calibrated two point calibration for the pH meter The manufacturer s instructions for calibrating the meter are provided in the meter box Ideally the meter should be checked against the standards before every square and re calibrated if necessary You toggle between pH conductivity and total dissolved solids display on the meter by pressing the SET HOLD button Conductivity Submerge the probe end of the meter in the collected 1 L sample bottle immediately after the sample has been taken Select uS mode with the SET HOLD button The measurements should be taken when the stability symbol a stopwatch icon on the top left of the display screen disappears Please note the units pH Submerge the meter in the collected 1 L sample bottle immediately after the sample has been taken stirring gently Select pH mode with the SET HOLD button The measurement should be taken when the stability symbol a stopwatch icon on the top left of the display screen disappears Record the readings on the RIVPACS Sample Area Form SRP TON and alkalinity A filtered water sample is needed for the analysis of these parameters Filtering wil
23. a Crassula helmsii Egeria densa Elatine hexandra Elatine hydropiper Eleogiton fluitans Elodea callitrichoides Elodea canadensis Elodea nuttallii Eriocaulon aquaticum Fontinalis antipyretica Groenlandia densa Hippuris vulgaris Hottonia palustris Hydrilla verticillata Isoetes echinospora Isoetes lacustris Juncus bulbosus Lagarosiphon major Littorella uniflora Lobelia dortmanna Ludwigia palustris Myriophyllum aquaticum M alterniflorum M spicatum M verticillatum Najas flexilis Najas marina Nitella spp Oenanthe fluviatilis Potamogeton acutifolius alpinus berchtoldii coloratus compressus crispus epihydrus filiformis friesii gramineus lucens nodosus obtusifolius pectinatus perfoliatus praelongus pusillus rutilus trichoides Ranunculus aquatilis baudotii circinatus fluitans peltatus penicillatus trichophyllus tripartitus Ranunculus sp Ruppia cirrhosa Ruppia maritima C CVCVCUCUCUCU VOV VCUCU UCUCU VOV OU R R R R R R R Sagittaria latifolia Sagittaria rigida Sagittaria sagittifolia Sparganium angustifolium Sparganium emersum Sparganium natans Sphagnum sp Stratiotes aloides Subularia aquatica Tolypella spp list Utricularia australis U intermedia s 1 Utricularia minor Utriculara ochroleuca Utricularia stygia Utricularia vulgaris s 1 Utricularia vulgaris s s Vallisneria spiralis Zannichellia palustris Floating leaved plants Azol
24. a Trichophorum cespitosum Triglochin palustre Typha angustifolia Typha latifolia Valeriana dioica Vallisneria spiralis Veronica anagallis aquatica Veronica beccabunga Veronica catenata Veronica scutellata Viola palustris Viola persicifolia Trees and shrubs Alnus glutinosa Frangula alnus Populus spp Salix spp Algae Filamentous algae Blue green algae Other wetland taxa total cover of Submerged species Floating leaved spp Emergent species Tree overhang Note any specimens sent for identification as voucher specimens and note any areas of the pond you are unable access to survey LP Legally protected species WCA Schedule 8 and CRoW Rare species Red List or recorded in lt 100 10 x 10 km squares in Britain rey Countryside Survey This report is the Copyright of the Natural Environment Research Council Copyright enquiries should be addressed to Knowledge Transfer Team Centre for Ecology and Hydrology Maclean Building Benson Lane Wallingford OX10 8BB This publication excluding logos may be reproduced free of charge in any format or medium for research private study or the purposes of internal use within an organisation This is subject to it being reproduced accurately and not being subject to any treatment that could be considered derogatory The reproduced material must be acknowledged as NERC Cop
25. abitat Survey completed amp validated Which RHS spot check transect contains the invert sampling site Conductivity and pH recorded SRP TON Alkalinity 50 ml filtered water sample taken Aquatic plant survey completed amp validated Plant specimens for ID confirmation bagged and correctly labelled Macroinvertebrate site photographs taken RHS site photographs taken Aquatic plant survey site photographs taken Figure 24 Check list of task to be completed at each headwater stream site 48 HALE UU OO OO OH Transit and storage of macroinvertebrate and plant specimens Clearly labelled macroinvertebrate sample pots should be stored while in transit in the back of the van in the grey storage boxes provided The storage box itself should also be labelled with a Transport Emergency TREM card Fig 25 The TREM card provides important relevant information on the nature of the liquids contained within the box and any hazards that may be associated with them It also provides information on what action to take in case of TREM CARD CENTRE FOR ECOLOGY amp HYDROLOGY TRANSPORT EMERGENCY CARD Road NATURE OF HAZARD PROTECTIVE DEVICES EMERGENCY ACTION FIRST AID In severe cases PLEASE CONTACT JOHN MURPHY Tel FORMALDEHYDE SOLUTION 4 IN PLASTIC CONTAINERS Colourless solution odour of formaldehyde Harmful if ingested in quantity or of esposure is prolonged by inhalation Irritating to skin a
26. alium palustre Galium uliginosum Geum rivale Glyceria declinata Glyceria fluitans Glyceria maxima Glyceria notata Gnaphalium uliginosum Hammarbya paludosa Hydrocotyle vulgaris Hypericum elodes Hypericum tetrapterum Hypericum undulatum Impatiens capensis Impatiens glandulifera Impatiens noli tangere Iris pseudacorus Isolepis cernua Isolepis setacea Juncus acutiflorus Juncus ambiguus Juncus articulatus Juncus bufonius s 1 Juncus bufonius s s Juncus compressus Juncus conglomeratus Juncus effusus Juncus foliosus Juncus inflexus Juncus pygmaeus Juncus subnodulosus Lathyrus palustris Leersia oryzoides Limosella aquatica Liparis loeselii Lotus pedunculatus Luzula luzuloides Luzula sylvatica Lychnis flos cuculi Lycopus europaeus Lysimachia nummularia Lysimachia terrestris Lysimachia thyrsiflora Lysimachia vulgaris Lythrum hyssopifolia P Lythrum portula Lythrum salicaria Mentha aquatica Mentha pulegium Mentha suaveolens Menyanthes trifoliata Mimulus guttatus Mimulus luteus 70 Mimulus moschatus Minuartia stricta Molinia caerulea Montia fontana Myosotis laxa Myosotis scorpioides Myosotis secunda Myosotis stolonifera Myosoton aquaticum Myrica gale Narthecium ossifragum Oenanthe aquatica Oenanthe crocata Oenanthe fistulosa Oenanthe lachenalii Oenanthe pimpinelloides Oenanthe silaifolia Osmunda regalis Parnassia palustris Pedicularis palustris Persicaria hydropiper Persi
27. and heath Improved semi improved grassland e E9 Rock scree or sand dunes Not visible f i Ed ed e ed ed i ed EESTI IS IIS 7 If none tick box I Natural unmodified Vertical with toe Nes e e Reinforced Wie o Steep gt 45 deg we e e Reinforced top only Gentle a e e Reinforced toe only Composite 9 9 Artificial two stage Natural berm e 8 E Poached bank Embanked Set back embankment SESE P FASEEEES gt J EXTENT OF T If none tick box T TREES ASSOCIATED FEATURE Left Right Shading of channel E Figure 13 Screen shot of upper half of Page 3 form in RAPID Section J Extent of Tress and Associated Features This section does not differ in content from the paper form but does have a slightly different arrangement of the options Fig 14 If there are 30 no trees or none of the associated features present at the RHS site then you can just tick the box in the top left hand corner of the section to move all the 9s to zeros Alternatively you just complete each of the drop down boxes appropriately Section K Extent of Channel and Bank Features This section does not differ in content from the paper form and has an almost identical arrangement of the options Fig 14 You should first tick the box near the top left of the section which will turn all the 9s in the section to zeros Then you can enter data for those features that are present RAPID 2 0
28. and water depths Put X in box if cannot measure 14 Transect A Sketch outline for shape and area estimate Estimate from your sketch map Drawdown height height difference between maximum amp current water Transect B D 34 V4 34 Water depths cm Total depth silt water cm Composition of sediment 120 3296 2233 6696 3 67 100 Organic debris leaves and twigs Ooze non particulate amp fine silts Gravel sand often stream borne Others specify Pollution Dumped rubbish and rubble present Road run off If so rank 1 5 where 12 minimal input 5 major input e g drain from major road to small pond Other physical evidence of pollution e g oil presence of field drains List Inflows and outflows None negligible tick e g chewing gum wrappers Dry inflows number Wet inflows Average water width Average water depth Transect Composition of pond base B 120 3246 2233 6696 3 67 100 Clay silt Gravel sand cobbles Rock Peat Others specify Transect A Maximum water level L Fills more than 146 pond estimate Tick if there is potential for road run off to enter the pond Dry outflows number Wet outflows Average water width Flow s 1m Average water depth Flow
29. arable pasture factory waste set aside e Extent of macroinvertebrate sampling area e Location from where photos were taken e Any potential hazards 24 River Habitat Survey General principle An assessment of the hydromorphological diversity and condition of river reaches was carried out as part of CS2000 using the 1997 version of the River Habitat Survey form Raven et al 1998 Since then the RHS protocols has been updated and a 2003 version of the method is now available Environment Agency 2003 and will be used for CS2007 The changes between the two versions affect the way the RHS indices are calculated but values will still be comparable between the two versions The 2003 RHS protocol is described in detail in the guidance manual provided along with the training course and therefore will not be covered in detail here All CS2007 surveyors will receive RHS training and accreditation in the2003 version from the Environment Agency RHS team We will be using a field digital data entry system called RAPID to record the RHS data on site This will reduce the likelihood of errors associated with transferring data from paper copy to a database and will allow more effective use of staff time There is also the added benefit of being able to validate the entered data while the surveyor is still on site thus improving data quality A copy of the 2003 RHS field survey guidance manual will be easily accessible from RAPID on the Tablet PC T
30. assurance The following quality control measures will operate All surveyors undertaking River Habitat Surveys will be holders of the Environment Agency certificate for this technique All field surveyors will be trained in the techniques of RIVPACS compliant macroinvertebrate sampling MTR compliant aquatic plant surveying and chemical sampling prior to undertaking the survey The component members of field survey teams will be regularly swapped to make sure that teams do not diverge with time in terms of the sampling techniques that they use Approximately 7 of all headwater sites will be audited by an experienced CEH staff member All tasks will be repeated by the auditor Teams may also be accompanied while in the field by an experienced CEH staff member to discuss progress and assess the quality of their work directly 47 Headwaters field survey checklist Surveyor A RHS macroinvertebrate sampling Surveyor B aquatic plants Is this one of the 25 squares with a new headwater sampling site 146 161 234 269 331 366 433 494 503 535 569 572 602 626 631 644 648 699 887 910 958 998 1113 1212 1241 The watercourse is a Natural headwater stream Artifical drain or ditch This information should also have been recorded on Page 1 in RAPID Is running water present at the site Macroinvertebrate sample taken Number of sample pots Site map drawn on reverse side of RIVPACS Sample Area Form River H
31. ational grid reference e g 5Y12345678 Recorders Enter the initials of both surveyors Sample method Enter either Kick sweep disturbing the substratum with feet plus sweeping amongst plants Kick substratum disturbance but no sweeping Sweep sweeping amongst plants but no substratum disturbance Sample time Enter time of active pond netting i e exclude search time In almost all or all cases the time will be three minutes Proportionality Answer No if the full width of the river for the full length of the sample area is not sampled Only a simple explanation is required e g Not left hand bank Too deep NOTE left right banks are determined looking downstream Photograph A photograph is required of each sampling site The photograph should include a numbered site board If possible it should also include a fixed natural or man made feature of the site which can be helpful in re location 17 RIVPACS SAMPLE AREA FORM CS2007 SQUARE No DATE NGR RECORDERS SAMPLE METHOD KICK KICK SWEEP SWEEP SAMPLE TIME should be 3 mins active sampling plus 1 min manual search Is sampling proportional to occurrence of habitats Yes No i 2 Give details if NO PHOTOGRAPH OF SAMPLE AREA TAKEN vs No WATER DEPTH IN SAMPLE AREA cm AT 14 12 and 4 OF STREAM WIDTH ESTIMATED SURFACE VELOCITY IN MAIN CHANNEL cms CATEGORY 1 CATEGORY 2 CATEGORY 3 CATEGORY 4 CATEGORY 5 e eT
32. ationship between macrophytes and physical variables Orientation of the left and right banks is determined by the direction of flow When facing downstream the left bank is on your left hand side and the right bank on your right hand side Recording of features which are present in less than 196 of the survey area will not usually be required unless that particular habitat type contains the only occurrence of a particular macrophyte species If this is necessary then use the survey notes to record the feature with a cover of 196 Water width The width is the channel width for which macrophyte species have been recorded including any area of substratum above the actual water level that has been surveyed If the width varies noticeably along the survey length then several width measurements should be made Record varying widths by entering the percentage of the 100 m survey length in each width category The total must sum to 100 39 Depth Measure the depth to the nearest cm at various points along the survey length the number and exact location of the measurement points should depend on the variability of depths encountered when surveying for macrophytes Record the percentage of the survey length in each of the depth category The total must sum to 100 Bed stability The following 4 classes are used to define bed stability effect Solid firmly bedded eg bedrock compacted clay increased flow has little Stable eg bould
33. ay be missed Turbid Strongly discoloured carrying a heavy load of suspended solids and having greatly restricted light penetration The channel bed is obscured and submerged macrophyte species are indistinguishable from substrate and water This will lead to a reduction in accuracy and efficiency of the method 41 IRIS We will be using a field digital data entry system called IRIS to record the aquatic plant survey data in the field This will reduce the likelihood of errors associated with transferring data from paper copy to a database and save staff time The design of IRIS is based on that of the paper forms used for carrying out standard MTR surveys IRIS is an MS Access database designed to capture and store aquatic plant cover data in the field using a tablet PC You simply double click the IRIS icon on the desktop to open the application Then you select from the opening form whether you wish to input survey data for a new site export data from an existing site or exit the database Fig 19 TRIS Gountrysig survey PA Pl nt Sutvdy a Y i 5 Hp Su A Figure 19 Desktop icon and screen shot of the opening menu screen of IRIS the aquatic plant survey field digital data entry system The data entry form consists of 2 pages Page 1 gathers general survey information and the plant cover data Fig 20 Page 2 is where the physical site data is entered You can switch between the pages using the page butto
34. azing then estimate grazing intensity from 1 infrequent or low intensity to 5 pond margins heavily poached and almost bare If possible list the types of grazing livestock Evidence of use by water birds This section refers to use and over use by water birds such as ducks geese coots moorhens and swans If there is evidence that the pond is used by these birds either the birds themselves or signs such as trampling feathers faeces food left by humans then tick the box on the fieldsheet Then estimate the intensity of their impact from 1 little evidence of impact to 5 little vegetation duck pond Record any other information e g species evidence of nesting Evidence of fish Record a 1 on the fieldsheet if fish are known to be present i e if you or your colleagues have seen fish in the pond during the survey or if a someone who knows the pond has seen fish in it this year Record 2 if there is evidence that fish are likely to be present e g fishing pegs 58 turbid water Record 3 if there is no evidence that fish are present If possible record any further information such as species or estimates of abundance Evidence of amphibians Tick the box if you see any amphibians If possible record any further information on species life stage and approximate number Recording surrounding land use Estimate the percentage of surrounding land use or land cover in each of the following categories in two distan
35. caria lapathifolia Persicaria minor Persicaria mitis Petasites hybridus Petasites japonicus Peucedanum palustre Phalaris arundinacea Phragmites australis Pilularia globulifera Pinguicula alpina Pinguicula lusitanica Pinguicula vulgaris Potentilla erecta Potentilla palustris Pulicaria dysenterica Pulicaria vulgaris Pyrola rotundifolia Ranunculus ficaria Ranunculus flammula Ranunculus hederaceus Ranunculus lingua Ranunculus omiophyllus R ophioglossifolius Ranunculus reptans Ranunculus sceleratus Rhynchospora alba Rhynchospora fusca Rorippa amphibia Rorripa islandica Rorippa microphylla Rorippa nasturtium aquaticum s 1 Rorippa nasturtium aquaticum s s Rorippa palustris Rorripa islandica Rumex aquaticus Rumex hydrolapathum Rumex maritimus Rumex palustris Sagina procumbens Sagittaria subulata Samolus valerandi Scheuchzeria palustris Schoenoplectus lacustris Schoenoplectus pungens S tabernaemontani Schoenus ferrugineus Schoenus nigricans Scirpoides holoschoenus Scirpus triqueter Scorzonera humilis Scrophularia auriculata Scrophularia umbrosa Scutellaria galericulata Scutellaria minor Senecio aquaticus Senecio fluviatilis Senecio paludosus Sium latifolium Solanum dulcamara Sonchus palustris Sparganium erectum Stachys palustris Stellaria palustris Stellaria uliginosa Symphytum officinale Teucrium scordium Thalictrum flavum Thelypteris palustris Tofieldia pusill
36. ce e estimate the total plant cover in terms of submerged floating leaved and emergent species and e record the amount of shade from overhanging trees and woody plants Carrying out the macrophyte survey Make sure you are aware of the position of the outer boundary of the pond The aim is to record all species of macrophyte within this area The recording sheet gives a list of all plant species to be considered as wetland plants for this survey Nomenclature follows The New Atlas of the British and Irish Flora 2002 Taxa such as hybrids sub species exotics and cultivars have been omitted to save space If they are identified they should be noted in the space provided Terrestrial plants and wetland plants growing outside the pond boundary should not be recorded Rare species IUCN Red List status or recorded in less than 100 10 x 10 km squares in Britain have been marked with an asterisk If any of these are found confirmation is needed Guidance for this is given in the section Rare species confirmation below Plants should be surveyed by walking and wading all safely accessible areas within the outer boundary of the pond Deeper water areas should be surveyed by regularly throwing a grapnel to collect submerged plants In larger waterbodies look for plants blown from deeper water and deposited on the strand line In ponds with inorganic substrates e g new ponds ponds with a sand or gravel base check the very shallow areas
37. ce zones from the perimeter of the pond 1 0 to 5 m and ii 0 to 100m see figure below This can include land outside the kilometre square 0 to 100m from maximum winter water level of pod N 0 to 5m from maximum winter water level of pond Category Examples Trees amp woodland Deciduous and coniferous woodland individual trees scrub hedgerow Heathland amp moorland Dwarf shrub heath sub arctic mountain Unimproved grassland Herb rich calcareous acid and moorland grassland plant quality indicators usually present Rank vegetation Unmanaged grass neglected amp abandoned land set aside verges golf course roughs buffer strips Improved grassland Fertile agricultural grass mown grass golf course greens plant quality indicators absent Arable All crops includes flower and fruit crops e g strawberries and ploughed land Urban buildings amp gardens Areas in curtilage includes glass houses farm yards Roads tracks paths Including car parks and footpaths 59 Rock stone gravel Cliffs rock outcrops gravel pits quarries areas of sand gravel or stone Bog fen marsh flush Wetland vegetation blanket bog Ponds amp lakes Permanent and seasonal waterbodies Streams amp ditches River stream ditch spring Other state Where the land use does not fit into any of the above categories e g maritime vegetation saltmarsh sand dune
38. controls the volume of the sample Material collected in the net must be removed periodically to prevent the mesh becoming blocked and the sample being washed out of the net As a minimum this must be done after every minute of sampling with a pond net and more frequently if the net is filling rapidly or becoming blocked Wash fine sediment through the net more frequently than this to minimise the amount retained in the sample Large stones and pieces of vegetation that may damage the net can be discarded but before doing so agitate them vigorously in the collecting net whilst it is half submerged to wash any animals back into it Check that no animals are still attached before discarding this material Retain only enough water to keep the sample damp This reduces the amount of fixative or preservative that has to be added to it and reduces damage All specimens captured in the net must be retained in the sample for identification in the laboratory However you do not retain fish amphibians and readily identified rare species in the samples such as large specimens of the freshwater pearl mussel Margaritifera margaritifera and crayfish but return them to the water with care and unharmed Record their presence in the sample on the RIVPACS Sample Area Form If removed live for identification then return them only to the site where they were collected Bear in mind that it is particularly important to identify rare taxa correctly e g
39. differentiating native from introduced crayfish because of their high conservation value and need for protection so if there is any doubt then retain the specimen in the sample Avoid sampling during and immediately after spates Samples collected in these conditions will not accurately reflect the underlying environmental quality of the site 11 1st part MANUAL SEARCH Seek and collect individual animals from the water surface Spend a total of one minute on the manual search split between parts 1 and 3 2nd part MAIN SAMPLE Collect by either A B or C A shallow wadeable 3 minute active pond net sample collected by a combination of kicking and sweeping depending on the nature of the substratum current and habitats for benthos and free swimming animals All habitats sampled in proportion to their cover B too deep to kick sample whole site but possible to sample at least some of the main channel with pond net 3 minute active pond net sample collected by a combination of kicking and sweeping for benthos and free swimming animals Attempt to sample all habitats in proportion to their cover although this may not be possible for habitats in the main channel C impossible to sample material from the main channel using a pond net 3 minute sweep with pond net to collect free swimming animals and those from vegetation but not the benthos 3rd part MANUAL SEARCH Search and collect individual animals from submerged
40. e 3 for each species and the overall percentage cover of macrophytes If you estimate that the percentage cover for a species is exactly on the boundary between two species cover values then you should record it as the higher greater cover of the two categories Table 3 Species cover categories for a 100 m MTR survey Species Cover Value Percentage cover range 1 0 196 2 0 1 196 3 1 2 596 4 2 5 596 5 5 10 6 10 2596 7 25 5096 8 50 7596 gt 75 36 When assigning percentage cover to species and estimating overall percentage cover it is strongly recommended that you use a systematic approach to make the process easier and more accurate Percentage cover should be estimated by imagining a bird s eye view of the channel For estimates of individual species it is necessary to imagine the cover of each regardless of whether several species are intermingled or overlap Percentage cover estimation of filamentous algae can be particularly difficult Determine whether the algae are forming a continuous or broken covering of the substrate For both overall percentage cover and individual species cover estimation it is useful to calculate what a one metre square patch of macrophyte represents for each survey length eg 0 01 0 5 etc before commencing surveying As a double check when estimating small areas of cover it may be useful to work out beforehand the area of pieces of survey equipment and use
41. e a sample from the pond net is to wash the catch into one corner of the net first by dipping the net into the water and gently shaking it from the opposite corner as it is lifted out of the water Then by gradually everting the corner of the net the bulk of the sample can be dropped into a labeled sample container or polythene bag Material clinging to the net can be shaken or flicked off from the other side of the net into the container Repeat this process until the net is clear of material Recalcitrant specimens may be picked off the net by hand Always wash the collecting net thoroughly to prevent contaminating subsequent samples It is very easy to cross contaminate samples from residual specimens retained on nets from previous site visits Always wash pond nets as thoroughly as possible after sampling at each site and also before sampling the next site 15 Fill the sample containers to no more than about two thirds full with collected material This will leave sufficient room for fixative or preservative and an air space Never cram material into a sample container and never fill it completely use an additional container instead Then 40 formalin solution should be added to the sample bag until the liquor in the bag is equivalent to 4 aqueous formaldehyde The precise amount of formalin needed varies from sample to sample but is in the region of 50 100ml per plastic bag It is better to err on the side of excess A clear penc
42. e same location as the macroinvertebrate sample Species To delete a plant press amp hold grey box on left gt cut amp click Yes No of samples taken Figure 20 Screen shot of the aquatic plant survey field digital data entry system IRIS 43 IF THERE ARE NO PLANTS RECORDED IN 100M STRECTH THEN SELECT NO SPECIES ENTERED FROM THE DROP DOWN SPECIES LIST YOU MUST STILL RECORD THE PHYSICAL DATA ON PAGE 2 OF THE FORM EVEN IF NO PLANTS ARE FOUND Specimen samples of any plants that you have been unable to identify need to be taken for identification by experts These samples need bagged and labelled correctly to ensure that once identified the information can be inserted into the right survey IRIS has pre named entries in the drop down list for indeterminate mosses algae and others e g Algae 01 Moss 01 Other 01 Further details of the number of Algae Moss and Other sample specimens taken and how they were labelled needs to be entered for reference at the bottom of page 1 Fig 21 IRIS suggests a consistent format for labelling sample specimens i e 15 Main Moss 1 where the first number is the CS square and the second term is the number of that moss specimen from that survey IRIS 2 0 About database main Menu 2 Pagel 72 Page2 _ survey Notes e Check Data Square River Unnamed Survey Site SCLERDER ABBEY Date H2 Feb 07 reser Mid Site NGR 7 should be at the same location as the macroinv
43. e species place on a piece of A4 clean white paper and put this between two more sheets Put this between c 10 sheets of newspaper and store with a weight on top e g under a heavy book Change the surrounding paper as necessary to ensure the plant is completely dry and so does not rot 64 To press plants with finely divided floating leaves e g Ranunculus Potamogeton species float the plant in clean water in a small shallow tray Place a piece of thin white card under the plant and lift out of the water gently so the structure of the plant can be seen then treat as described above When the pressed plants are dry store in the plastic wallets in the box file provided To preserve in alcohol pickle e g Charophytes put a specimen of the plant into a 25ml Sterilin tube and fill with 80 alcohol provided for preservation of the invertebrate sample Return pressed and preserved plant specimens to Pond Conservation Filling in the fieldsheet Record the plants found by drawing a line in pencil through their names on the fieldsheet Estimate abundance for each species in terms of the area of the pond it covers using the following scale and note this next to the species name e g amp erestis stelenifera F D Dominant 91 100 cover A Abundant 51 9096 cover F Frequent 2 5096 cover O Occasional 6 2096 cover R Rare 0 596 cover Record in the boxes provided the total percentage of the area of
44. e spot check data is entered You can switch between the four pages using page buttons at the top of the window Fig 10 Most data fields are drop down lists This reduces the amount of text that needs to be entered using the Tablet PC stylus and also improves data quality because it means that inappropriate codes cannot be entered By default all data fields are set at 9 or missing value until you interact with them and enter an appropriate piece of information In completing an RHS form all 9s and missing value selections are replaced by data RAPID 2 0 About database E Man Menu 72 Pagel 22 Page2 Z Page 3 72 Page 4 Survey Notes Ex RHS manual lt i Check Data Square River Survey man Site TREJON 8 0 0 0 0 Spot check 1 Grid Ref 4 Spot check 6 Grid Ref FQ psPs Surveyor name Pete Scarlett End of Site Grid Rf 9s Is the site part of a river or an artificial channel s Help Adverse conditions affecting survey 9 If yes state condition 9 Is bed of river visible E Number of photos 9 Photo references FQ Site surveyed from 9 LEFT bark Face downstream RIGHT bark B PREDOMINAT NT VALLEY A no obvious valley sides M ee c concave bowl F shallow vee asymmetrical ar at c deep vee M gen c valley UE E c U shaped valley gorge E Missing Value Distinct flat valley bottom E Natural terraces 9 Fo
45. ebrate sample with assistance on timing fixing and bagging of sample from Surveyor B e Surveyor A and B to complete the recording of RIVPACS site environmental data together e Surveyor B to undertake the aquatic plant survey calling out the information to Surveyor A who will enter the data into IRIS while following along on the bankside The aquatic plant survey should extend for 50 m upstream and 50 m downstream of the centre of the macroinvertebrate sampling area e Surveyor A to undertake the RHS calling out the information to Surveyor B who will enter the data into RAPID while following along on the bankside The RHS should if possible be located along the identical stretch of watercourse as was covered in CS2000 but see RHS section of handbook for more detail The limits of the CS2000 RHS site are indicated on the map and on the tablet PC Photographs Photographs are required of both the macroinvertebrate sampling area and any other features of interest along the RHS reach The macroinvertebrate photograph will be used to relocate the site for future Countryside Surveys and should be sufficiently wide angled and composed to show any prominent natural or man made features that will identify the location accurately for future surveyors The marker board should be in the photograph and should be marked with the letter M for macroinvertebrate sample and the square number and should be of the form M 457 The RHS photographs sh
46. eet the mapper will select the one pond in every square that contains ponds for condition assessment This consists of a survey for macrophytes environmental characteristics and water chemistry This pond is named the survey pond Once mapping of all the ponds in the square is complete and the mapper has identified the survey pond they will give you the Pond Mapping Recording Sheet It contains data on all the ponds in the square and it is your responsibility to return this to Pond Conservation with the other paper forms Details of how to do this are at the end of this section Two surveyors will need to work together to carry out the pond condition assessment to minimise Health and Safety risks associated with working with water Standard Health and Safety guidelines for fieldwork with water apply In addition surveyors should be aware of the additional risks in ponds particularly from i floating mats of emergent plants and floating fen or bog which should always be avoided i1 false bases of surface dried mud or submerged plant mats iii uneven bases ponds often have holes rapid changes in slope and underwater objects which are not visible in turbid water iv deep silt which can be dangerous A strong pole e g a pond net should always be available as a safety aid for testing the pond base when wading in the water and if the surveyor is in any doubt they should not proceed The two surveyors should decide how to split the surv
47. el vegetation or less than 1 channel vegetation at the spot check then select No plants from the Update all to drop down to the right in the blue section header bar Fig 11 This will enter NO in all the boxes If the water is too turbid to make a judgement on the presence of submerged vegetation forms then you should select Submerged plants not visible from the Update all to drop down This will enter NV in the boxes for the three submerged vegetation types If it is not possible to see the channel from your position at this spot check and you therefore cannot make any judgement on the presence of vegetation in the channel you can select Whole channel not visible from the Update all to drop down This will enter NV in boxes for all vegetation types The last spot check tab on page 2 Overall tab is for entering extra channel substrates that were not not recorded in any of the 10 spot checks but are present in gt 1 of the whole 500 m site Fig 12 A summary of the substrates that were recorded at the 10 spot checks is provided to the right of the drop down boxes If there are no extra substrates to record then you must still interact with all three boxes entering None The Overall tab on Page 2 also contains a section for recording the overall presence of vegetation types present along the whole 500 m site Fig 12 This could also include types not recorded in any of the spot checks Only
48. er in identifying the sample and ensuring that the subsequent measurements are assigned to the correct waterbody in the correct CS square SAMPLE INFORMATION SHEET ENVIRONMENTAL ANALYSIS GROUP CEH LANCASTER Customer Name Countryside Survey 2007 Affiliation CEH Address Sampler contact BATCH NUMBER lab use only Sample type 50 ml 0 45pm filtered stream pond water Risk Assessment Required YES NO Storage conditions posted immediately after sampling Samples to be returned YES NO Samples will be disposed of 3 months after reporting date unless customer advises otherwise Project no C03259 Project name Countryside Survey 2007 Quote number Responsible Analyst Analytical requirements Soluble reactive phophorus Total oxidisible nitrogen Results due date 2 weeks after receipt of sample Alkalinity CS Square Stream name pond name date and any other information TO NN 2 _ 2 w amp Figure 3 Water sample information sheet to be completed for water samples from each CS square 10 Macroinvertebrate community sample General principle modified from Murray Bligh 1999 The primary objective is to collect the widest range of animals possible from within the sample area using a sampling method that is comparable to that used in CS1990 CS2000 and that is compatible with the RIVPACS bioassessment method
49. ercentage cover range Equivalent area m 0 196 0 5 0 1 1 0 5 5 1 2 5 5 12 5 2 5 5 12 5 25 5 1096 25 50 10 25 50 125 25 5096 125 250 50 7596 250 375 9 gt 75 gt 375 A macrophyte covering 6m would be recorded as species cover value 3 These figures need to be recalculated for ANY DIFFERENCE in channel width oo 10 tn fF wWN 37 Table 4 An aid to converting surface areas m within a 100m MTR survey length to percentage cover and ultimately a species cover value for channels of different widths s Equivalent Value cover 1 0 1406 2 0 1 1 3 1 2 5 4 2 5 5 5 5 10 6 10 25 7 25 50 8 50 75 9 gt 75 Note 0 1 m 32cm x 32cm 0 2 m 45cm x 45cm 0 5 m 2 71cm x 71cm 0 8 m 90cm x 90cm 0 1 0 1 1 1 2 5 2 5 5 5 10 10 25 25 50 50 75 gt 75 0 2 0 2 2 2 5 5 10 10 20 20 50 50 100 100 150 gt 150 0 3 0 3 3 3 7 5 7 5 15 15 30 30 75 75 150 150 225 gt 225 2 m 1 4mx 1 4m 5 m 2 2m x 2 2m 9 m 3mx 3m 20 m 4 5m x 4 5m 0 4 0 4 4 4 10 10 20 20 40 40 100 100 200 200 300 gt 300 Average channel width m 0 5 0 5 5 5 12 5 12 5 25 25 50 50 125 125 250 250 375 gt 375 0 6 0 6 6 6 15 15 30 30 60 60 150 150 300 300 450 gt 450 30 m 5 5m x 5 5m 50 m 7m x 7m 75 m 8 5m x 8 5m 90 m 9 5m x 9 5m 38 0 7 0 7 7 7 17 5 17 5 35 35 70 70 175 175 350
50. ers pebbles gravel unlikely to be significantly altered by increased flows Unstable eg gravel sand silt mud likely to be dislodged by increased flows Soft sinking eg deep silt mud makes channel unwadeable bank stick penetrates easily into substrate Record the percentage of the channel in each of the above bed stability categories The total must sum to 100 Substrate Estimates should be based on a birds eye view and should only include particles which are visible and the equivalent superficial layer under macrophytes If shapes of underlying larger particles are distinct under a layer of fine particles such as silt or clay then the larger particles should be recorded When the shapes of underlying particles are not distinct then the fine particles should be recorded If you feel this is not sufficient then extra information can be recorded in the Survey Notes Record the percentage cover for each substrate type present in the survey length The total must sum to 100 The substrata classes are Bedrock exposure of underlying rock not covered by alluvial deposits Boulders Cobbles gt 64mm half fist size or larger Pebbles Gravel gt 2 64 mm half fist to coffee granule size Sand gt 0 0625 2mm smaller than coffee granules and unlike silt clay abrasive to the hands Silt Clay lt 0 0625mm have a soft texture Peat dead vegetation undergoing bacterial decay in stagnant deoxygenated water strictly pu
51. ertebrate sample Sample Codes e g 450 Main Moss 1 2 3 No of samples taken Mosses 1 7 lS MamWosi Mee 7877 SL ssa Figure 21 Screen shot of page 1 of IRIS On Page 2 of IRIS you record the physical data for the survey length Fig 22 For each of the seven physical features for which you are recording data water width depth bed stability substrate composition habitats channel shading and water clarity you simply select the category present at the site from the drop down list and assign a percentage cover value to the category from the adjacent drop down list IRIS will tally up the percentages automatically to 44 ensure that the total 100 The SUM boxes go from red to grey when the total equals 100 You should also record how many photographs you have taken and provide some accompanying notes Once you have completed the survey you must validate the form while still at the site in order that any omissions can be accurately corrected Click the Check Data button to validate the data you have entered IRIS will check sequentially from the start of the form to the finish for data fields that have been left empty by mistake and where possible for inconsistencies in the data entered IRIS 2 0 About database EEjMain Menu 72 Page 1 Page2 Survey Notes lt i Check Data _ Squar i5 River Survey Site SCLERDER ABBEY To delete a record press amp hold grey
52. et will become blocked rapidly Instead skim the bottom edge of the net gently through the top few centimetres of the substratum which is where most of the animals will be found Alternatively stir up the surface of the sediment by foot or with the back of the net and pass the open net through the clouded water Rinse the silt away through the net frequently by agitating the net in the current or at the water surface Sampling from boulders It is not easy and sometimes impossible to take a kick sample amongst boulders Most of the invertebrates will be in the finer deposits that accumulate under the boulders To reach them boulders may have to be moved by hand though small ones may be prised away by foot Move boulders away at right angles to the current or upstream and away from feet so that the net can be held downstream from the area disturbed Sample the exposed river bed by kicking in the normal way 13 It is impossible to sample effectively where the stream bed is dominated by large boulders particularly near waterfalls or where the gradient is steep Replace these sites by ones that can be sampled effectively Figure 5 Kick sampling from a shallow fast flowing stream The sampler is facing at right angles to the current and is moving diagonally to the right and towards the photographer for safety The sampler is dislodging the substratum using his left foot and is holding the net close by in the plume of disturbed sedimen
53. ey tasks between them and one should take responsibility for checking all fieldsheets are complete storing fieldsheets plant specimens and water samples and dispatching them as agreed A copy of the pond condition survey fieldsheet is included at the end of this manual 52 Steps in carrying out the pond condition survey 1 Obtain from mappers the completed CS2000 Pond Mapping Recording Sheet which will identify the survey pond 2 Write the square number pond identification code number and GPS location on the condition survey recording forms Take a photo of the pond with the square number written on chalkboard 4 If there is enough water in the pond take the water chemistry sample and meter readings and make turbidity estimate before the water is disturbed The survey pond may contain little or no water at the time of survey If it is completely dry or just contains wet mud it will not be possible to take a water chemistry sample Carry out the environmental survey including amenity use Carry out the macrophyte survey Check all sections of fieldsheet are complete and stapled together Dispatch water samples NO oos SN TON 0A Gather and store all fieldsheets and plant specimens and dispatch at least monthly Ponds on the boundary of a square Where a pond falls on the boundary of a square so only part of it is inside the square this will have been included in mapping the square for the number of ponds but only
54. f active sampling supplemented by a manual search Manual searching The manual search is similar whatever methods are used to collect the main sample Unlike the main sample in which animals are collected without seeing them individual animals seen by the sampler are collected in the search and added to the main sample The search is in two parts which together last one minute The first part is to seek and collect animals living on the water surface such as whirligig beetles water crickets and pond skaters This must be done before any other sampling because these animals are easily disturbed and will either leave the sampling area or be much more difficult to find later They are best caught with a pond net Most surface dwellers are very active and they should be secured in a tied bag or vial immediately after capture Whilst searching for these animals note the area occupied by different habitats within the sampling area so that you can apportion the sampling effort amongst them in the main sample The second part of the search is for animals from habitats that are not sampled effectively by the methods use to collect the main sample Pick off animals attached or clinging to the submerged stems of emergent plants rocks logs or other solid objects with forceps or a stiff paint brush Examine rocks at several places across the river to cover the different biotopes and areas covered by different sized substrata Always search for animals at
55. for collecting and analysing macroinvertebrate samples Environment Agency Bristol UK Raven P J Holmes N T H Dawson F H Fox P J A Everard M Fozzard I R and Rouen K J 1998 River Habitat Quality the physical character of rivers and streams in the UK and the Isle of Man Environment Agency Bristol UK 51 POND CONDITION ASSESSMENT METHOD Overview Before the pond condition assessment can be carried out all ponds in the square including any new ponds need to have been identified and had their basic attributes recorded This will be done by mappers This information will be recorded on the paper CS2007 Pond Mapping Recording Sheet and given to freshwater surveyors Further information on identifying ponds is included in the habitat mapping handbook in the section headed Further information on identification and mapping of ponds In summary the definition of a pond used for CS2007 is a body of standing water 25 m to 2 ha in area which usually holds water for at least four months of the year The area is based on the outer pond area defined by the maximum winter water level which may be different from the current area of water The definition includes all types of water bodies including temporary ponds ponds which are dry at the time of survey will be recorded on the CS2007 Pond Mapping Recording Sheet and should be included as survey ponds Once details of all ponds are recorded on the Pond Mapping Recording Sh
56. for stoneworts and fine leaved pondweeds Stoneworts in particular are often under recorded Better quality ponds often support more than one species of stonewort so if stonewort plants are found look around for other plants with a different morphology or colour Note on the fieldsheet any areas of the pond you are unable to access to survey Plant identification Most wetland plants can be identified in the field using a hand lens All plants should be identified to species level wherever possible except for Populus and Salix which can be recorded as sp If you are not sure of an identification collect a sample in a sealed labelled plastic bag to examine later using your identification keys A list of identification keys for wetland plants is given in the box below If you are unable to identify a species you can send a specimen for identification This will be likely for many Callitriche Potamogeton Ranunculus and charophyte species See table below for guidance 61 Recommendations for plants to routinely send off for identification Group Recommended routine Method Comments collection Callitriche All species but only if Pressed This group has always caused significant fruits present confusion and even the translucent leaved species have sometimes been mis recorded due to the spread of C truncata Vegetative material can only rarely be identified reliably and usually needs to be reco
57. g Sheet 1 Water quality sample CS square number Pond code number GPS reading for pond from mapping from mapping or Grid Reference if not available Date Name of surveyor for water quality sample Water quality Is there enough water to take a water sample Y Yes N No Turbidity tick Clear Moderately clear Moderately turbid Turbid Estimate turbidity by looking down into c 30cm depth of water in the pond pH Conductivity uS cm Tick to confirm water sample taken for SRP TON AIk 50 ml filtered Any additional notes When all pond survey work is complete tick here to confirm e all sections of fieldsheet have been filled in all four parts have been stapled together gt Pond mapping recording sheet Water quality fieldsheet Environmental survey fieldsheet 2 sides Macrophyte survey fieldsheet 66 CS2007 Pond Condition Survey Recording Sheet 2 Environmental Survey page 1 of 2 Name of surveyor for environmental survey CS square number Date Location information to make it easy to find the pond again Tick to confirm photo taken m Drawdown height Maximum winter water level N cm Current water level Proportion of water area present in the pond relative to maximum area Maximum water level Sediment
58. he design of RAPID and the format of data entry mimics the 2003 RHS form and therefore should be easily understood by an accredited RHS surveyor The RHS section will be 500 m long and will be centred wherever possible on the selected macroinvertebrate sampling site The survey will be undertaken irrespective of whether there is flow or not in that section of the watercourse and hence whether or not a macroinvertebrate sample was collected In some circumstances it may not be possible to centre the survey on the macroinvertebrate sampling site nor to survey a full 500m A number of reasons for this are envisaged and rules for dealing with each circumstance have been devised Fig 2 Field surveyors should seek advice from senior CEH staff if any other circumstances are encountered RAPID is an MS Access database designed to capture and store RHS data in the field using a Tablet PC You simply double click the RAPID icon on the desktop to open the application Then you select from the opening form whether you wish to input survey data for a new site export data from an existing site or exit the database Fig 9 E a Figure 9 Desktop icon and screen shot of the opening menu of the River Habitat Survey field digital data entry system RAPID 25 Inputting survey data The data entry form consists of 17 sections across 4 pages Pages 1 3 and 4 gather general survey information and data for the sweep up part of the RHS Page 2 is where th
59. ht Maximum winter water level Current water level Estimating the proportion of water present in the pond Estimate the proportion of the area of water present in the pond at the time of survey relative to the area covered when the pond is full to the maximum water level It may help to draw the actual water level on your sketch The figures below show 75 50 and 25 of the area of the pond covered with water Check that the water quality survey has been carried out before you enter the pond and disturb the sediment Maximum water level Measuring sediment and water depths Water depth and sediment depth are measured using the length markings on the handle of your pond net To measure water depth put the pole into the water net end upwards and note the depth at which the pole touches the top of the sediment In most ponds you will feel resistance from the sediment at this point but where the sediment is very fine you will need to do this by eye You may see bubbles of gas released as the sediment is disturbed To measure the total depth of sediment plus water push the pole down further until you reach the solid base of the pond If itis possible to walk safely to the middle of the pond then measure sediment and water depth at the five positions shown in the diagram below Transect A is the longest dimension of the pond Take readings at 1 4 and 4 along it Transect B is perpendicular to this Take readings at 4 and
60. il written label should be placed in the sample bag The label should contain the following information Type of sample macroinvert Square number Square number e g 38 Date day month year e g 07 08 07 The plastic bag should be firmly tied and placed inside a 1 3 1 storage pot and the lid of the pot tightly closed An extra sharp twist of the lid is then recommended Apply PVC tape around the lid to form a seal and to prevent the lid becoming loose during transport The pot should be clearly labeled on the outside using a permanent marker with the same information as given on the internal label The sample may be split into two or more bags pots if too large to fit within a single container All parts of the sample should be labeled as above together with the additional information Part one of two or Part two of two or Part one of three etc Samples should very rarely require more than one container Single containers should be adequate for the large majority of sites THOROUGH LABELLING OF SAMPLES IS ESSENTIAL Surveyors should take at least six polythene bags two sample pots and two bottles of 40 formaldehyde to the survey square in case the macroinvertebrate sample is very large For transport samples should be stored upright in the grey stacking trays provided 16 Site environmental data modified from Murray Bligh 1999 Site environmental data should be recorded for each macroinvertebrate sa
61. isely three minutes With two people on site one should time the sampling with the stopwatch while the other collects the sample The sampler should call out to the timekeeper when to start and stop the watch and the timekeeper can remind the sampler when each sampling burst should end Kick net samples collected with less effort in an attempt to prevent denuding sites on very small watercourses are not compatible with RIVPACS A longitudinal extension of the site will be required in these streams In general more material will be collected from lowland streams than from stony mountain streams Kick sampling from gravel or cobbles When kick sampling hold the net vertically with the frame at right angles to the current downstream from your feet and resting firmly on the river bed disturb the stream bed vigorously by kicking or rotating the heel of your boot to dislodge the substratum and the fauna within it to a depth of about 10 cm Hold the net close enough for the invertebrates to flow into the net with the current but far enough away for most of the sand and gravel to drop before entering the net Hold the net further away where the substratum is finer or the current swifter to prevent it clogging Move large stones by hand if they cannot be shifted by foot and sample the finer sediment that collects beneath them Sampling from soft sediments Where the stream bed is soft silt or clay kick sampling is ineffective because the n
62. k for small patches 25 cm of species Such patches are easily overlooked but their omission can result in substantial error in the final site assessment 35 Right Bank Flow Figure 18 Diagrammatic representation of wading technique that should be adopted for every 10 m of an MTR survey Detached macrophyte material except for actual floating macrophyte species such as Lemna sp and Azolla should be disregarded If a macrophyte is stranded above the water e g in low flow conditions then it should not be recorded on the standard list A note of the species should however be made in the survey notes along with observations of the amount stranded and any obvious reasons for stranding Specimens attached to artificial structures should be recorded but with a note made in the survey notes stating the nature of the structure Once all macrophyte species in the survey length have been recorded wade walk back along the the survey length specifically observing the amount of each species present and the overall percentage of the channel covered by macrophyte growth For all percentage cover estimates of species the whole survey area surveyed equals 100 i e the individual species percentage cover estimates are a percentage of the whole survey area and NOT of the overall percentage cover estimate It is good practice to consult with the other surveyor when estimating percentage cover Record the agreed species cover value Tabl
63. l be done on site using disposable 0 45 um pore size 33 mm diameter syringe filters A 50 ml plastic sample bottle will need to be labeled externally before becoming wet using a black marker pen Project CS2007 Type of waterbody Stream or Pond Square number square number e g 38 Date day month year e g 07 08 07 Wash the syringe by twice filling the syringe chamber with some of the water sample and emptying it on to the ground Then fill the syringe chamber again with sample water and attach a new disposable filter cartridge Then empty the water in the chamber through the filter into the 50 ml plastic sample bottle Rinse the sample bottles out with this water Do not exert excessive pressure as this might rupture the filter Remove the filter fill the syringe chamber once more with some of the water sample re attach the same filter cartridge and fill the 50 ml plastic sample bottle If filter cartridge becomes blocked during filtration then change and continue with more of unfiltered water sample After filtering check the filtered sample for suspended material e g from a ruptured filter paper If suspended material is present then discard the filtered sample and start again Screw on the lid tightly and place in the pre addressed and postage paid padded envelope along with the pond water sample if there is one Complete the sample information form Fig 3 giving details to aid the laboratory chemists at CEH Lancast
64. l estimates of four categories of particle size are required Table 2 Fig 7 Estimates must be based on a bird s eye view of the superficial stream bed layer and should include both particles which are visible and those which would be visible in the absence of plant growth The percentage cover of the stream bed occupied by each of the four size categories should be recorded THE FOUR VALUES SHOULD ALWAYS TOTAL 100 Estimates should exclude bedrock which is recorded on a separate part of the recording form A peat stream bed should be recorded as silt Clay can either be areas of soft fine particles or a continuous sheet A fine layer of silt or clay through which the shape of the underlying stones can be seen should be typed according to the underlying substratum but if the shapes of the underlying stones are not distinct the silt or clay should be recorded instead Compacted clay should be recorded as clay even when broken up into gravel sized fragments Experience has shown that cover estimates are improved if both surveyors estimate percentage cover at the same site and compare results Fig 8 may be used as a guide to how best to estimate cover Copies of the figure could be attached to the back of clipboards and used as an aid in the field Walk along the river bank and make a preliminary note of the substratum after any surface living animals have been collected These initial evaluations will be particularly useful at silty sites
65. la filiculoides Hydrocharis morsus ranae Hydrocotyle ranunculoides Lemna gibba Lemna minor Lemna minuta Lemna trisulca Luronium natans Menyanthes trifoliata Nuphar advena Nuphar lutea Nuphar pumila Nymphaea alba Nymphoides peltata Nymphacae sp exotic Persicaria amphibia Potamogeton natans P polygonifolius Riccia fluitans Ricciocarpus natans Spirodela polyrhiza Wolffia arrhiza Emergent plants Achillea ptarmica Acorus calamus Agrostis canina Agrostis stolonifera Alisma gramineum Alisma lanceolatum A plantago aquatica Alopecurus aequalis Alopecurus borealis Alopecurus geniculatus Anagallis tenella Andromeda polifolia Angelica archangelica Angelica sylvestris Apium graveolens Apium nodiflorum Apium repens Baldellia ranunculoides Berula erecta Bidens cernua Bidens connata Bidens frondosa Bidens tripartita Blysmus compressus Bolboschoenus maritimus Butomus umbellatus Calamagrostis canescens Calamagrostis epigejos Calamagrostis purpurea Calamagrostis stricta Calamogrostis scotica Calla palustris Caltha palustris Cardamine amara Cardamine pratensis Carex acuta Carex acutiformis Carex appropinquata Carex aquatilis Carex curta Carex diandra Carex dioica Carex disticha Carex echinata Carex elata Carex elongata Carex flacca Carex hostiana Carex laevigata Carex lasiocarpa Carex limosa Carex magellanica Carex nigra Carex otrubae Carex panicea Carex
66. ments should refer to the surface velocity in the main flow channel The time that it takes for a floating object e g a leaf of a twig to travel a known distance can be used to measure the velocity If the object is thrown into the current measurements should not be started until initial inertia of the object is overcome Results should be measured in cm s For preference the object should be measured over a 10 metre run with a relatively constant current speed This may not be possible in small streams or where the character of the river changes rapidly In this case the same guiding principles recommending for selecting the position of depth measurements should also apply to current velocity and the object can be timed against the pond net handle It is important that current velocity is measured accurately as possible Poor runs of the floating object should be discarded and the estimated category 19 Substratum should ideally be based on the modal or median value of at least three timed runs on each visit Current velocities are recorded using the categories shown in Table 1 Table 1 Velocity categories for RIVPACS Velocity category Current velocity cms 1 lt 10 2 210 25 3 gt 25 50 4 gt 50 100 5 gt 100 The composition of the stream bed must be assessed over the whole sampling area i e the full width of river along the whole length sampled even if some parts of it are inaccessible for sampling Visua
67. mple For the purposes of environmental data collection the sample area is defined as the full width of the watercourse for the full length sampled for macroinvertebrates The significance of the different definitions of sample area given for macroinvertebrate sampling and environmental data collection is that sections of the watercourse too deep for macroinvertebrate sampling are nevertheless included in width depth and substratum evaluations When collecting environmental data the objective should be to measure the modal conditions in the Sampling Area at the time of sampling Avoid isolated features such as boulders or narrows which would cause the measurements to be atypical of the Sampling Area as a whole Choosing the best place to measure these is easier when the Survey Area is restricted to a relatively discrete range of physical conditions The environmental data shall be entered on the RIVPACS Sample Area form Fig 6 The following instructions apply Square number e g 38 River Name se river name from CS2000 data make note if you think the name is incorrect or new sites take name from map if indicated Site Name se site name from CS2000 data make note if you think the name is incorrect U F U For new sites take appropriate site name from map U U Sample date NGR se the format day month year e g 07 08 06 se GPS to record position of macroinvertebrate sampling site to at least 8 digit numeric n
68. n envelopes Stream amp Pond Chemical Survey 11 bottle for water sample Hanna Combi hand held pH amp conductivity meter pH calibration standards Conductivity calibration standards Distilled water washbottle 75 ml syringe Disposable non sterile 0 45 um filter cartridges 33 mm diameter 50ml acid washed water sample bottles Pre paid pre addressed padded envelopes Pond Aquatic Plant and Environmental Survey Grapnel Pile of A4 white paper Old newspaper for drying and pressing plant specimens Shallow plastic tray e g 35cm x 25 cem x 5 em to float plants for pressing Thin white card for lifting floating plants for pressing Weight for pressing e g plant crib A4 plastic punched wallets for keeping dry pressed specimens Box file for keeping dry pressed specimens 25ml sterilin tubes 8096 alcohol 251 drum n e e e N 72 40 20 30 0 1 HEADWATERS All 425 squares that were surveyed as part of the freshwater module of CS2000 will be re surveyed as part of the headwater stream survey in CS2007 At each of these 425 squares 1 The stream macroinvertebrate community will be sampled RIVPACS method 2 Associated RIVPACS environmental variables will be recorded Stream width amp depth velocity or discharge category substrate composition altitude distance from source and slope 3 The hydromorphological status of the site will be recorded 2003 River Habitat Survey method 4 The
69. n eyes Goggles or face shield Rubber or plastic gloves Move people away from vapours as soon as possible Eyes Irrigate thoroughly with water for at least 10 minutes Remove from exposure rest and keep warm Wash off thoroughly with water Remove contaminated clothing Mouth Wash out mouth thoroughly with water and then give plenty of water to drink Do not induce vomiting unless directed to do so by medical personnel Never give anything by mouth to an unconscious person If large quantities are swallowed call a physician immediately Lungs Skin OBTAIN MEDICAL ATTENTION 07768 507478 FOR FURTHER ASSISTANCE IN DEALING WITH AN EMERGENCY APPLIES ONLY DURING ROAD TRANSPORT spillage and emergency contact details Figure 25 Transport emergency card TREM card for samples in fixative carried by road 49 All macroinvertebrate sample pots and plant specimens should be carefully catalogued and stored at your CEH base until you have a sufficient quantity 6 8 to courier to CEH Dorset for processing The samples should be sent as soon as you have enough to fill a box Do not store the pots at your base for any longer than necessary the sooner we can start processing the samples the better Only 6 8 pots should sent per box It is sufficient to use a strong used but undamaged cardboard box Thoroughly check that all pots are tightly closed with their lids PVC taped for extra security Place each po
70. nd to contain ponds Aquatic plant community Physical characteristics of the waterbody Water chemistry EQUIPMENT Equipment will be provided as follows General Items Safety amp identification Central Number Surveyor supply per team Bivvy bags Dayglo waistcoats 2 3 2 Handouts explaining project Identity card 3 3 Personal waterproof clothing 1 3 me K SIKSIK KIKIKI KSK Maps to locate sites 1 50 000 Binoculars if available Digital camera v v v v v v v v v v v Life jacket Spare CO2 cylinders Bactericidal soap Tap water container Protek anti septic cream Antiseptic wipes Hand gloves Shoulder length gloves Penknife t N NY NY NY 02 WN Thigh waders Chest waders Permanent broad marker pens Scissors Waterproof labels Waterproof notepad A4 aquascribe laser paper box of 250 sheets Box file Pencils soft e g 3b Pencil sharpener Rubber Stapler NN FR Re Re Re RP n YY NY Standard FBA pond nets with graduated handles 2 18 x 12 plastic bags pack of 100 1 1 3 litre polythene pots with tight fitting lids 56 Toxis warning tape for small formalin transort bottles and sample pots 1 PVC tape for sealing pot lids 2 40 formaldehyde 1 Small plastic bottles for transporting formalin 4 1 Stop watch Range poles 1 Stream Aquatic Plant Survey 9 x 7 re sealable plastic bags for plants pack of 100 Small brow
71. nfirmation However care should always be taken to minimise damage to potentially rare species particularly where populations are small Where there are concerns about damage then a digital photograph can be used for confirmation if this is likely to be sufficient for identification e g flowering or fruiting Baldellia growing on muddy shores For very rare species i e RDB or Scheduled species where there are no other appropriate means of confirmation a message should be left as soon as possible for the Pond Conservation project team see contact details at the end of the pond section who will visit the site 63 List of identification keys for wetland plants non exhaustive General Blamey M Fitter R and Fitter A 2003 The Wild Flowers of Britain and Ireland The Complete Guide to the British and Irish Flora Collins Clapham A R Tutin T G and Moore D M 1988 Flora of the British Isles 3rd ed Cambridge University Press Cambridge Garrard I and Streeter D 1983 The wild flowers of the British Isles Midsummer Books London Haslam S Sinker C and Wolseley P 1975 British Water Plants Field Studies 4 243 351 Rich T C G and Jermy A C 1998 Plant Crib 1998 Botanical Society of the British Isles London particularly useful for Potamogeton Ranunculus and Glyceria spp Stace C 1997 New flora of the British Isles Second Edition Cambridge University Press Cambridge
72. ns at the top of the window Fig 20 Most data fields are drop down lists This reduces the amount of text that needs to be entered using the tablet PC stylus and also improves data quality because it means that inappropriate data cannot be entered The purpose of the other buttons at the top of the window Fig 20 is as follows About database provides basic contact details and ownership information Main menu returns you to the opening menu screen of IRIS Survey Notes opens a text box linked to a particular survey for entering necessary field notes Check Data on completion of an aquatic plant survey you must press this button to validate the data you have entered IRIS will check sequentially from the start of the form to the finish for data fields that have been left empty by mistake and where possible for inconsistencies in the data entered IRIS will only display one error at a time so that you have the opportunity to correct the problem Once you have corrected the problem you must press the Check Data button again to find the next error if there is one Once the validation is successfully finished IRIS produces a message This plant survey appears to be complete 42 This validation must be performed before you leave the site in order that any omissions can be accurately corrected Inputting survey data The first task when inputting survey data is to select the Countryside Survey square that you are in
73. oating leaved rooted 7 Submerged fineleaved 9 Free floating 7 Filamentous algae 9 Figure 12 Screen shot of the Overall tab on the Page 2 spot check form in RAPID 29 Page 3 500 m Sweep up Section H Land use within 50 m of Banktop This section does not differ in content from the paper form and has an almost identical arrangement of the options Fig 13 You should first tick the box near the top left of the section which will turn all the 9s in the section to zeros Then you can enter data for those land uses that are present Section I Bank Profiles This section does not differ in content from the paper form and has an almost identical arrangement of the options Fig 13 You should first tick the box near the top left of the section which will turn all the 9s in the section to zeros Then you can enter data for those natural and artificial modified bank profiles that are present RAPID 2 0 Square Es BW AND J SE W IT If none tick box L R Broadleaf mixed woodland semi natural Ee E9 Tilled land Broadleaf mixed plantation Ee E9 Parkland or gardens Coniferous woodland semi natural Fe E9 Suburban urban development Coniferous plantation Fa E9 Irrigated land Orchard Fe e Wetland eg bog marsh fen Scrub amp Shrubs 9 E9 Natural open water Tall herbs rank vegetation 9 E9 Artificial open water Rough unimproved grassland pasture e E9 Moorl
74. on does not differ in content from the paper form and has a similar layout Fig 16 Section O Notable Nuisance Plant Species This section does not differ in content from the paper form and has an almost identical arrangement of the options Fig 16 You should first tick the box near the top left of the section which will turn all the 9s in the section to zeros Then you can enter data for those plant species that are present Section P Overall Characteristics This section does not differ in content from the paper form However it does have a different arrangement of the options Fig 16 You should first tick the box near the top left of the section which will turn all the 9s in the section to zeros Then you can select from the drop down menu those characteristics that are present Up to six different characteristics can be recorded within each category If more are required then use the survey notes page Section S Alders This section does not differ in content from the paper form and has a similar layout Fig 16 RAPID 2 0 Leafy debris Fa Flush es Fringing reed bank s E Natural open water Quaking bank s E Others state Sink hole s 3 CHANNEL L 1 Is 33 or more of the channel choked with vegetation 9 NOTABLE NUISANCE PLANT SPE If none tick box I Bankface Banktop to 50m Giant Hogweed E Japanese Knotweed 9 Himalayan Balsam s Other state E If none tick box I Major impacts
75. onsider keeping samples Pressed Some confusion has arisen between M spicatum if the site is in an area M verticillatum and M alterniflorum due to lack where the species is of clarity of characters in some identification uncommon e g the texts particularly in the past Highlands and upland areas for M spicatum most of England for M alterniflorum most areas outside the Fens and Norfolk Broads for M verticillatum Sparganium Consider keeping samples Pressed Again there have been confusions particularly in of S natans from upland or the past between S angustifolium and S natans acidic lake situations This has resulted in some over recording of the latter Modified from Stewart 2004 Recommendations for the collection and preservation of specimens during macrophyte surveys Rare species confirmation Species that are or suspected to be rare need to be confirmed Note that rare and legally protected plants are indicated on the plant fieldsheet with an asterisk 62 The process of confirming rare plants needs to be undertaken with care because 1 there should be a general presumption against damaging plants particulalry of uncommon species ii a licence is needed to remove Wildlife and Countryside Act Schedule 8 species In practice however pieces of plants will need to be picked in order to examine them out of the water for identification These bits can then be re used to provide voucher specimens for co
76. ould show the typical character of the river along the 500 m survey section The marker board should again be included marked with the letters RHS and the square number and hence be of the form RHS 457 The aquatic plant survey photographs should show the typical character of the river along the 100 m survey section The marker board should again be included marked with the letters MTR and the square number and hence be of the form MTR 457 Record the photographs taken on the RIVPACS sample area form and in RAPID and IRIS Water chemistry sampling and recording A single indicative chemical sample will be taken at each watercourse The sample will be collected at the downstream end of the macroinvertebrate sampling area prior to any biological sampling The following elements will be measured at each headwater site Conductivity and pH field measurement e Soluble reactive phosphorus SRP total oxidisable nitrogen TON alkalinty 50 ml filtered Enter the watercourse and facing upstream rinse both 1 L wide neck bottles 3 times with river water taken from a flowing area upstream of your position Then move a few more steps upstream and fill the bottles with undisturbed stream water from the water column without disturbing the stream bed or any soft bed sediments One of the 1 L bottles will be used for the pH and conductivity measurements while the other will be used as a source for the filtered water sample to be analysed for SRP T
77. paniculata Carex pendula Carex pseudocyperus Carex pulicaris Carex riparia Carex rostrata Carex spicata Carex vesicaria C viridula ssp brachyrrhncha C viridula ssp oedocarpa C viridula ssp viridula Carex vulpina Carex spp Catabrosa aquatica Chrysosplenium alternifolium C oppositifolium Cicendia filiformis Cicuta virosa Cirsium dissectum Cirsium palustre Cladium mariscus Conium maculatum Corrigiola litoralis Crassula helmsii Crepis paludosa Cyperus eragrostis Cyperus fuscus Cyperus longus Dactylorhiza fuchsii Dactylorhiza incarnata Dactylorhiza lapponica Dactylorhiza maculata Dactylorhiza majalis D praetermissa D purpurella D traunsteineri Damasonium alisma Deschampsia caespitosa Drosera anglica Drosera binata Drosera capensis Drosera intermedia Drosera rotundifolia Dryopteris cristata Eleocharis acicularis Eleocharis austriaca Eleocharis multicaulis Eleocharis palustris Eleocharis quinqueflora Eleocharis uniglumis Epilobium alsinifolium Epilobium anagallidifolium Epilobium brunnescens Epilobium ciliatum Epilobium hirsutum Epilobium obscurum Epilobium palustre Epilobium parviflorum Epilobium tetragonum Epilobium sp Epipactis palustris Equisetum fluviatile Equisetum palustre Erica tetralix Eriophorum angustifolium Eriophorum gracile Eriophorum latifolium Eriophorum vaginatum Eupatorium cannabinum Filipendula ulmaria Galium boreale Galium constrictum G
78. r cryptograms and bryophytes together with groups of algae which can be seen to be composed predominantly of a single species Holmes et al 1999 A 100 m reach of watercourse is carefully walked by the surveyor and the presence and cover on a 9 point scale of all macrophyte and bryophyte species is recorded The 100 m reach is centred on the macroinvertebrate sampling location Supplementary information is also collected on the physical nature of the 100 m reach The surveyor is encouraged to collect samples of plants that it is not possible to confidently identify in the field These are identified in the laboratory and or passed to a designated external expert for confirmation Only those plants seen submerged or partly submerged in the river at low flow levels within the 100 m survey length are included At the sides of the channel all macrophytes rooted or attached on parts of the substrata which are likely to be submerged for more than 85 of the year are also included Holmes et al 1999 Survey technique from Holmes et al 1999 You must first define the 100 m survey length by measuring out 50 m upstream and 50 m downstream of the centrepoint of the macroinvertebrate sampling site Fig 1 You will be provided with copies of the hand drawn MTR survey length sketch maps from CS2000 which will aid you in relocating the 100 m survey length At sites where it is safe to do so the full 100 m survey length and channel width should be su
79. r the proportion of the stream bed in the sample area covered with or obscured by all kinds of plants other than algae and mosses Enter the pH and conductivity readings recorded using the hand held meters Please enter the units as well as the value for the conductivity reading 21 PEBBLE Figure 8 An aid to determining percentage covers 23 Sketch map A sketch map of the macroinvertebrate site should be drawn on the back of the RIVPACS Sample Area Form The purpose of the sketch map is to enable future relocation of the site Keep this fact in mind when drawing the map Draw a sketch of approximately 50 m of river channel indicating the general physical character of the site and incorporating the macroinvertebrate sampling area This should include permanent reference features such as a distance from a bridge or footpath sign which would enable anyone else to find the site with adequate precision in the future Main features to mark on sketch map e General form of river channel including islands flow direction and prominent bank features e Relocation features for both ends of the survey length if possible These should be near permanent landmarks such as hedgerows fence lines walls electricity pylons roads bridges buildings etc e Record distances from between features e Grid north found from OS map and estimated scale e g indicate on map what length is 10 m e Adjacent land use for example woodland
80. rded as Callitriche sp Potamogeton All species except Pressed Fine leaved species are critical and are P natans P polygonifolius frequently confused Broad leaved species are P crispus easier but are complicated by some frequent hybrids Ranunculus All species if aquatic and Pressed A difficult group and complicated by Sect with flowers and fruits hybridisation Most species with capillary leaves Batrachium except R hederaceus cannot be identified without flowers and fruits or R omiophyllus and when growing terrestrially These should be R circinatus recorded as R aquatilis agg Utricularia Routine collection of Pickled Separating into the three main groups is not U minor is not necessary difficult In the U vulgaris agg U australis and while the segregates of U vulgaris cannot satisfactorily be separated U vulgaris agg cannot be vegetatively Flowering material is fairly easy to separated vegetatively separate but the flowers are best preserved pickled The segregates of U intermedia agg which very rarely flower in the UK can be separated vegetatively from the internal hairs on the bladders These must be pickled not pressed Stoneworts All species Pressed or An important group because a high proportion Charophytes pickled of species are uncommon Some species require microscopic confirmation Hybrids All hybrids of aquatic Pressed species and uncommon hybrids of emergent taxa Other problem areas Myriophyllum C
81. re peat not fine peaty deposits over more substantial substrate Artificial man made substrates in the channel e g concrete bed See Fig 7 in RIVPACS site environmental data section for illustration of different substrate sizes The actual measurements given relate to the longest axis of each particle Any rock with one or more sides greater than 256mm long is classed as a boulder When irregular shaped particles are observed the longest axis length determines category assignment 40 Habitats Record the percentage cover for each habitat type present within the survey length The habitat types are POOL RUN RIFFLE and SLACK as defined below The total must sum to 100 Note that although these definitions are similar to those used for many other biological surveys they are NOT the definitions used for the River Habitat Survey methodology Environment Agency 2003 Pool Either a discrete area of slow flowing water usually relatively deeper than surrounding water or between faster flowing stretches as in a sequence of riffle pool riffle Pools are deep and often turbulent and scoured during spate flows Riffle Fast flowing shallow water whose surface is distinctly disturbed This does not include water whose surface is disturbed by macrophyte growth only Run Fast or moderate flowing often deeper water whose surface is rarely brokenor disturbed except for occasional swirls and eddies Slack Deep slow flowing
82. record vegetation types that cover gt 1 of the whole 500 m site Next to each drop down box there is a tally of the number of times that vegetation type has been recorded as present or extensive in the 10 spot checks This should assist you in completing this section Again all boxes will need to be interacted with to remove 9s RAPID 2 0 About database EEjMainMenu 72 Page 72 Page2 71 Page3 Z Page4 Survey Notes Square iss River Un named Survey 13 Main 1 _ Site TRELION PHYSICAL ATTRIBUTES Spot check 1 at Up or Down stream end 9 E CHANNEL SUBSTRATE SWEEP UP Any channel substrates that cover gt 1 of the whole river bed within the whole RHS site but are not recorded i e were not predominant in any of the ten spot checks should be entered below Additional Channel substrate 1 T9 spotcheck channel substrates Additional Channel substrate2 9 Additional Channel substrate 3 Ez G CHANN CHANNEI EL VEGETATII ION TYPES Record the overall presence of vegetation types occurring along the 500m as a whole including types that have not been recorded in the spot checks Only record vegetation that covers gt 1 of the whole RHS site spotchecks spotchecks PE PB OE Liverworts mosses lichens E Amphibious E Emergent broad leaved herbs 9 Submerged broad leaved E Emergent reeds sedges rushes grasses horsetails 19 Submerged linear leaved 9 gt H
83. rm View NUM Figure 10 Screen shot of part of Page 1 of RAPID The purpose of the buttons at the top of the window Figure 10 is as follows 26 About database provides basic contact details and ownership information Main menu returns you to the opening menu screen of RAPID Survey Notes opens a text box linked to a particular survey for entering necessary field notes RHS manual opens an electronic version of the 2003 RHS guidance manual complete with example pictures of all hydromorphological features recorded in a survey Check Data on completion of an RHS survey you must press this button to validate the data you have entered RAPID will check sequentially from the start of the form to the finish for data fields that have been left empty by mistake and where possible for inconsistencies in the data entered RAPID will only display one error at a time so that you have the opportunity to correct the problem Once you have corrected the problem you must press the Check Data button again to find the next error if there is one Once the validation is successfully finished RAPID produces a message This RHS survey appears to be complete This validation must be performed before you leave the site in order that any omissions can be accurately corrected When you select Input Survey data from the main menu you are first asked to select the CS square for which you wish to enter data Use the Select Square drop down lis
84. rocks logs or vegetation Spend a total of one minute on the manual search split between parts 1 and 3 Figure 4 Summary of sampling procedures modified from Murray Bligh 1999 12 Three minute kick sample modified from Murray Bligh 1999 The kick net can be used in different ways depending on the nature of the survey area Different habitats at the same site may be sampled by a combination of the methods described below The total sampling time must be three minutes If a site comprises discrete habitats apportion the sampling effort according to their cover in the sampling area If a site appears to be homogeneous in character continuous diagonal transects will suffice for most of the sample Always move upstream and diagonally across the stream a number of times whilst sampling rather than straight upstream Fig 5 This will ensure that a greater number of habitats are sampled even if they are not apparent and therefore a higher proportion of the taxa present at the site are collected The three minutes covers only the time spent actively sampling and excludes the time spent emptying the net or moving around the site It is recommended that sampling is done in short bursts of 15 20 seconds There will be 9 to 12 bursts in a three minute sample which is worth remembering when apportioning the sampling effort to the different habitats A stopwatch must be used to ensure that the cumulative time spent actively sampling is prec
85. rveyed by wading through the stream Wading should be in an upstream direction so that any substrate disturbed does not obscure the visibility of the survey length both for ease of observation and safety reasons Where all but a small proportion lt 20 of the survey length is accessible by wading it is acceptable to walk for a short distance along the banks observing the macrophytes and to investigate submerged macrophytes using a grapnel You should wade in a zig zag manner across the channel frequently investigating all habitat types present You should cross the channel a minimum of 4 times in each 10 m stretch Fig 18 At sites where the channel is too deep to wade if channel macrophytes can be clearly seen by walking along both banks then this is sufficient Use a grapnel to retrieve macrophyte species from the channel for identification The grapnel should not be used blindly to search for plants its use should be reserved only for retrieving specimens for identification or to determine if macrophytes are present Grapnels should be used with care as they can cause damage to plant beds this is particularly pertinent in areas of high conservation value As you wade walk you should record the species present calling out species names to the recorder following along bankside and think about the percentage of the 10 m survey areas covered by each species Take particular care to examine all small niches within the survey site to loo
86. s Then you can enter counts for those artificial features that are present if any Page 2 Spot checks The design of Page 2 differs from that of the paper form Each of the 10 spot checks and the summary channel vegetation and extra substrate section are on separate tabbed pages nested within Page 2 A blue bar underneath the tab numbers indicates which tab is currently selected Fig 11 The drop down boxes provide you with all valid options both in code and with description for each spot check attribute This design aids data entry You are reminded on the tabs for spot checks 1 6 and 10 to record the GPS readings You must record whether Spot check 1 is at the up or downstream end of the site This is recorded in the drop down box above the tabbed section Fig 11 27 Each spot check tab also features a Check button located at the right hand side of Section F which when clicked will confirm that there are no missing data or omissions for that spot check It is good practice to use this button before you move to the next spot check to ensure that you have completed all the necessary tasks RAPID 2 0 Square River Survey Il TET Site TRELION 10 Overall Material Bank modification s Marginal and bank feature s Channel substrate Channel feature s How type Braided rivers no wet sub channels Channel modification s Braided rivers no dry sub channels Land use within 5m of banktop LEFT Banktop
87. section to zeros Then you can enter data for those features that are present RAPID 2 0 About database EjMain Menu 72 Pagel 72 Page2 72 Page3 72 Page4 Survey Notes Sz RHS manual lt i Check Data Square River Ceunant Ty n y ddol suey n 517 Main Site FOELGOCH o o CHA AN NEL DIMENS SAIL INS r mea LEFT BANK CHANNEL RIGHT BANK Banktop height m 9 Bankfull width m 9 Banktop height m 9 Banktop Bankfull 9 Water width m 9 Banktop Bankfull e Embanked height m 9 Water depth m 9 Embanked height m 9 TRASHLINE If trashline lower than banktop indicate height above water m 9 Trashline bank bank width m 9 BED MATERIAL AT SITE Consolidated E Unconsolidated loose c Unknown Missing value Location of measurements 9 If Other please state fo E If none tick box T Braided channels Side channel s Natural waterfall s gt 5m high Natural waterfall s lt 5m high Natural cascade s Backwater s Floodplain boulder deposits Water meadow s Fen s Bog s Wet woodland s Marsh es Flush es Very large boulders gt 1m Debris dam s Leafy debris Fringing reed bank s Natural open water Quaking bank s Others state Sink hole s p 0 E ii Ed EI Ed E Ed Ed E E PRIERERIEEIE Figure 15 Screen shot of upper half of Page 4 form in RAPID 32 Section N Choked Channel This secti
88. stablished permission to sample the surveyors should first find the macroinvertebrate sampling point using the maps and grid references provided All other survey procedures relate to this position Health and safety Almost all CS2007 headwater survey sites have been previously sampled and therefore are not likely to be unsafe to sample However upon locating the the macoinvertebrate sample point along the watercourse both surveyors should discuss whether the watercourse is safe to sample Issues to consider include e Vehicle parking access from road e Current weather flow conditions water colour Does the watercourse appear to be in spate e River bed substrate ease of access bank stability and general condition e Obstacles to the watercourse e g fencing e Livestock in adjacent fields These factors need to be considered and if any are deemed to be HIGH RISK or more than two are deemed MODERATE RISK then do not proceed with the sampling It is also advisable to note the nearest location where there is an adequate mobile phone signal Sequence of completion of tasks If A is the senior freshwater surveyor in each team and B the assistant freshwater surveyor with aquatic plant identification skills then the allocation of tasks might be as follows e Surveyor A to collect the water sample and record pH and conductivity e Surveyor B to meanwhile begin recording RIVPACS site environmental data e Surveyor A to collect macroinvert
89. structure within 1 m Bankface structure Liverworts mosses lichens Amphibious Emergent broad leaved herbs Submerged broad leaved Emergent reeds sedges rushes grasses horsetails Submerged linear leaved Floating leaved rooted Submerged fine leaved Free floating Filamentous algae Figure 11 Screen shot of the Page 2 spot check form in RAPID Section E Physical Attributes This section does not differ in content from the paper form but has a slightly different arrangement of the options You are allowed to enter a maximum of two codes for bank modifications and marginal amp bank features on each bank If you need to enter more than two codes then use the survey notes The same applies for channel modifications and features It should be noted that you nee to interact with all the drop downs So even if you wish to record only one bank modification sat this spot check you still need to change the optional second drop down to NO none Section F Banktop Land use and Vegetation Structure This section does not differ in content from the paper form but has a slightly different arrangement of the options Section G Channel Vegetation Types This section does not differ in content from the paper form but has a slightly different arrangement of the options If there are some vegetation types present you will need to interact with all boxes even those for types not present to actively record that they are absent 28 If there is no chann
90. t to capture the animals that are dislodged Sampling from vegetation Sample from submerged and emergent vegetation and tree roots by pushing the net into them with a variety of forward upward and lateral movements Dislodge animals from dense tangles of tree roots by kicking Sample the sediment that accumulates beneath plants by kicking or skimming the surface of the sediment Do not overlook water under overhanging banks because invertebrates may be hiding there Sampling from still or slow flowing water over gravel or cobbles When sampling from still or slow flowing water a different procedure is necessary because there is no current is to carry dislodged animals into the net Disturb the substratum with your feet and catch the dislodged animals by sweeping the net through the water immediately above the disturbed area Use this technique wherever the current is weak to supplement the methods described above Sampling from deep waters In watercourses too deep for conventional kick sampling it is possible and to take a sweep sample from the marginal vegetation and wadeable shoreline with the pond net All habitats must be sampled where safe to do so If possible use a combination of sweeping and kicking Wherever pracitable collect the sample from both banks In these circumstances you should sample each habitat in proportion to its linear dominace along the river channel 14 The sampling duration shall be three minutes o
91. t in plastic sample bag Place the pots upright in the box and use some form of packaging filler e g bubble wrap to ensure that the pots cannot shift around within the box while in transit Attach a TREM card to the box The box should be sent to Dr John Murphy Centre for Ecology and Hydrology FBA River Laboraotory East Stoke Wareham BH20 6BB sssesesseesssse He ee e meme An email should also be sent to jomu ceh ac uk to inform them that samples have been sent and detailed which samples are in the box The staff in Dorset will reply to your email when the samples have safely arrived and the contents are as expected The plant specimens collected for confirmation of ID should be posted or couriered to CEH in Dorset Ensure that all bags and tubes are clearly labelled and secure Depending on the volume of material they may be sent in an envelope or box Please adhere to similar precautions and protocols as for the macroinvertebrate samples 50 References Environment Agency 2003 River Habitat Survey in Britain and Ireland Field Survey Guidance Manual 2003 version Environment Agency Bristol UK Holmes N T H amp Whitton B A 1977 Macrophyte vegetation of the River Swale Yorkshire Freshwater Biology 7 545 558 Holmes N T H Newman J R Chadd S Rouen K J Saint L amp Dawson F H 1999 Mean trophic rank a user s manual Environment Agency Bristol UK Murray Bligh J A D 1999 Procedure
92. t in the top right hand corner of the window You then proceed to complete the form as normal complying with standard RHS protocol ensuring that all fields are completed IF FOR WHATEVER REASON YOU CANNOT CARRY OUT THE RHS AT A SQUARE THEN YOU SHOULD STILL SELECT THAT SQAURE IN RAPID ENTER THE DATE SURVEYOR NAME AND IN THE SURVEY NOTES PROVIDE A REASON FOR NOT COMPLETING THE SURVEY Page 1 Section A Field Survey Details You must record the GPS derived NGR for spot check 1 6 and 50m beyond spot check 10 This can be done by returning to this section as you proceed through the survey By clicking the Today button adjacent to the box you can automatically complete the box with that day s date Select the surveyor s name and RHS accreditation code from the drop down list You are asked to decide whether the watercourse is natural or artificial The associated help button provides definitions for both types of watercourse Section B Valley Form This section does not differ in content from the paper form but has a slightly different arrangement of the options Section C Number of Riffles Pools and Point Bars This section does not differ in content from the paper form Section D Artificial Features This section does not differ in content from the paper form but has a slightly different arrangement of the options You should first tick the box near the top left of the section which will turn all the 9s in the section to zero
93. t normally be necessary Use the accurately marked kick net handle to measure width On deep watercourses either estimate the stream width making use of nearby bridges although sites should not be in the immediate vicinity of bridges or use a rangefinder Wherever possible width should be measured rather than estimated As a minimum estimate widths of less than one metre to the nearest 10 cm widths of between one and two metres to the nearest 20 cm and widths between two and ten metres to the nearest 50 cm and widths greater than ten metres to the nearest metre The depth should reflect the predominant conditions in the sampling area Depth should be based on the average of measurements from approximately a quarter half and three quarter distance along a transect across the stream in the sampling area Do not measure depth where it is atypical of the site for instance over or close to boulders When a temporary island appears in mid channel the depth there will be zero and should be recorded as such Where the stream is wadeable record the depth to the nearest centimetre Where the depth has to be estimated record depths to 1 m to the nearest 10 cm and greater depths to the nearest 50 cm Current velocity must be measured only in Scotland and its offshore islands The measurements refer to the typical surface velocity in the main flow channel Dead water areas and atypically fast flowing areas should be avoided The measure
94. t the macrophyte survey Plant identification Rare species confirmation Sending specimens for identification Filling in the fieldsheet Completing the survey Checking survey data is complete Returning samples and fieldsheets for analysis iv 58 58 59 59 60 60 60 61 61 61 61 62 64 65 65 65 65 INTRODUCTION Countryside Surveys in 1990 CS1990 and 1998 CS2000 included a survey of running watercourses There were 360 squares surveyed for freshwater in CS1990 and 425 surveyed in CS2000 In 1996 the Lowland Pond Survey was undertaken at 150 CS squares in environmental zones 1 2 and 4 Following the success of LPS96 the assessment of pond biological condition will now be fully integrated into CS2007 at all CS squares not just lowland areas For CS2007 the biological condition of headwater streams and ponds will be surveyed Countryside Survey is the only national freshwater survey that has the potential to deal with a range of water body types across the entire GB landscape For headwater streams the following elements will be re surveyed in each of the 425 squares visited for CS2000 Macroinvertebrate community Aquatic plant community Hydromorphological characteristics of the watercourse River Habitat Survey Physical characteristics of the watercourse Water chemistry The following elements will be surveyed in a randomly selected pond in each of the 629 CS2007 squares fou
95. tached to floating leaved plants Inspect the under surfaces of floating leaves as well as the upper surface and stems The whole search must last one minute It is standardised by time alone and not by searching a certain number of rocks or locations This period only covers the time spent actually searching and excludes the time spent moving around the site A stopwatch or watch with second hand must be used to ensure that the cumulative time spent actively searching is one minute At some sites the search will be fruitless either because no suitable or accessible places to search are found within the minute or because no animals are found in the places that are searched Even where the sampler suspects that nothing will be found the search must be undertaken honestly to maintain consistency Sample fixing and storage On completion of sampling the sample should be emptied into a medium gauge 18 x 12 polythene bag as provided Intermediate emptying of the net after each minute s active sampling is strongly recommended and is essential if the net becomes so full as to preclude efficient sampling Rinse the sample where possible by shaking the pond net vigorously in the stream without risking loosing any animals to remove silt and clay Discard stones wood and large fragments of vegetation before removing the sample from the net but take care to remove any clinging animals and drop them back in the pond net The easiest way to remov
96. the area inside the square will have been included in the area measured For the condition survey you should survey the entire pond including the area outside the square Filling in the fieldsheet Complete the fieldsheet in pencil The identification number of the survey pond will be on the Pond Mapping Recording Sheet Record any location information that will make it easier to find the pond again for the next Countryside Survey Taking the water chemistry sample and readings Overview If there is sufficient water in the pond and before the water is disturbed estimate the water turbidity and take water chemistry sample and meter readings If there is not sufficient water to do this record this in the box on the fieldsheet A single chemical sample will be taken from a typical area of the pond using the same methods as used for headwaters Avoid taking samples near to inflows If there is an outflow present take the water sample at this point The following elements will be measured at each pond site e Conductivity and pH field measurement e Soluble reactive phosphorus SRP total oxidisable nitrogen TON alkalinity 50 ml filtered 53 Estimating turbidity Estimate the turbidity of the water by looking down into c 30cm depth of water in the pond Classify the turbidity of the water into one of the following four categories clear moderately clear moderately turbid or turbid Take the meter readings for conductivit
97. the pond covered by e submerged plant species species in the submerged plant list e floating leaved plant species species in the floating leaved plant list e emergent plant species species in the emergent plant list e tree overhang imagine looking down on the pond from above assess the proportion of the area of the pond that is directly overhung by woody vegetation Completing the survey Checking survey data is complete Check all relevant boxes on the fieldsheet have been filled in and that separated field sheets i e pond mapping recording sheet environmental survey macrophyte survey and water quality fieldsheets have been stapled together Tick the box on the fieldsheet to confirm this has been done Returning samples and fieldsheets for analysis One member of each survey team will be responsible for overseeing storage of water samples plant specimens and fieldsheets When convenient aim for at least once per month fieldsheets should be photocopied and posted with plant specimens to Pond Conservation Photos can be copied onto CD and posted with fieldsheets or emailed with square and pond numbers so long as emails do not exceed 20Mb each The delivery details will be Pond Conservation c o BMS Oxford Brookes University Gipsy Lane Headington Oxford OX4 2PD any queries contact Penny Williams address as above email pwilliams brookes ac uk phone 01865 483278 65 CS2007 Pond Condition Survey Recordin
98. ts of each of the following 1 clay or silt 11 gravel sand or cobbles iii rock iv peat or v others specify Estimating the extent of pollution in the pond Examine the pond for dumped rubbish and rubble If there is none or a negligible amount e g a few chewing gum wrappers less than 1 of a small pond affected tick the box otherwise estimate the area covered Assess visually whether there is potential for road run off to enter the pond If there is then score the likely impact on a scale from 1 minimal input to 5 major input e g drain direct from major road into small pond Take into account factors such as the proximity of the road whether it drains a large area of road as for example when the pond takes road run off from a hill the probable route taken by water draining from the road and the size of the pond List any other physical evidence of pollution such as oil or presence of field drains Describing inflows and outflows Identify any inflows into or outflows from the pond even if they are dry at the time of survey Note the number of dry inflows and outflows For each wet inflow and outflow record the average water width and depth Measure the rate of flow in terms of the time in seconds it takes for the water to travel one metre This is most easily done by stirring up the sediment and timing how long it takes to travel a measured distance If you cannot tell whether the water in the inflow or outflow
99. useful new data and key for Callitriche spp There is also a field version of this book See also other BSBI guides on specific families Grasses and Sedges Hubbard C E 1968 Grasses Penguin Books Middlesex Jermy A C Chater A O and David R W 1982 Sedges of the British Isles Botanical Society of the British Isles London Rose F 1989 Colour identification guide to the grasses sedges rushes and ferns of the British Isles and north western Europe Viking London Ferns and Horsetails Merryweather J and Hill M 1992 The fern guide Field Studies 8 101 188 Charophytes Moore J A 1986 Charophytes of Great Britian and Ireland Botanical Society of the British Isles London Stewart N F and Church J M 1992 Red Data Books of Britain and Ireland Stoneworts JNCC Peterborough Sending specimens for identification To send a specimen for identification take a small amount of the plant e g 15 cm minimum if possible including any features likely to help identification e g flowers fruit branched stems underwater and surface leaves Write a label in pencil on waterproof paper Include the square number and pond identification number your name and the date and make sure the information on the label is transferred with the specimen as it is pressed or preserved Place the wet plant in a sealable plastic bag and press or preserve within a few hours To press most plants e g Callitrich
100. water uniform in character Channel shading Record the percentage of the channel area affected by shading NOT the percentage of the bank on which vegetation causing shade stands The shading for each bank is recorded separately Estimate the percentage of the whole channel area surveyed that is shaded by vegetation structures from the left bank when the sun is directly overhead ie at 12 noon In a similar manner estimate the percentage of the whole channel shaded from the right bank The total for each bank must sum to 100 Three shade categories none broken and dense are defined None no shading Broken some direct sunlight hits the water surface in the shade affected area when the sun is directly overhead Dense 5 or less of the shade affected area receives direct sunlight when the sun is directly overhead Water clarity Record the percentage of the channel in each water clarity category More than one category may be present as a survey length may be clear in the shallow margins and progress through cloudy to turbid as the water depth increases Clear Channel substrate is clearly visible at all depths as are macrophyte species Cloudy Slightly discoloured with a moderate load of suspended solids and partially reduced light penetration All clumps of macrophyte species can be located on the substrate of the river channel but the view of them is partially distorted A small piece single shoot of a macrophyte species m
101. which will help identify the pond again e g wall hedge inflow Draw an appropriate scale bar e g 10 m long and indicate north Estimating the area of the pond In order to estimate the area of the pond you need to know the length of your standard pace and have practiced and checked your accuracy in pacing distances Pace the length and width of the outer area of the pond maximum winter water level Calculate the area by treating the pond as a simple shape such as a circle or rectangle or a number of joined shapes and adjusting the result to account for the difference between the actual pond shape and the shape used for calculation For example if the pond is an oval approximately 10 metres long and 5 meters wide you could treat it as a rectangle of 50 m then decide to record an area of 45 m to account for its oval shape 55 Remember the pond definition to be used for CS2007 is a body of standing water from 25m e g 5 m x 5 m to2 ha e g 200 m x 100 m in area which usually holds water for four months of the year or more Measuring the drawdown height The drawdown height is the vertical distance between the height of the maximum winter water level and the actual water level at the time of survey It is not the horizontal distance or the distance along the ground Measure this height using the distance markings on the handle of your pond net This is easiest at a steep edge of the pond Drawdown heig
102. ximate number Surrounding land use Estimate the percentage of surrounding land use in two distance zones from the perimeter of the pond Habitat 0 5m 0 100m Examples Trees amp woodland Deciduous and coniferous woodland individual trees scrub hedgerow Heathland amp moorland Dwarf shrub heath sub arctic montain Unimproved grassland Herb rich calcareous acid and moorland grassland plant quality indicators usually present Rank vegetation Unmanaged grass neglected amp abandoned land set aside verges golf course roughs buffer strips Improved grassland Fertile agricultural grass mown grass golf course greens plant quality indicators absent Arable All crops Includes flower and fruit crops e g strawberries and ploughed land Urban buildings amp gardens Roads tracks paths Areas in curtilage Includes glass houses farm yards Including car parks and footpaths Rock stone gravel Cliffs rock outcrops gravel pits quarries areas of sand gravel or stone Bog fen marsh flush Ponds amp lakes Wetland vegetation blanket bog Permanent and seasonal waterbodies Streams amp ditches River stream ditch spring Other state E g maritime vegetation saltmarsh sand dune orchard bracken canal railway Amenity value 1 View of the pond Is there a clear view of the pond from the following public rights of way If so
103. y and pH Enter the water and rinse the two 1 1 wide neck bottles 3 times Then move a few steps away from the disturbed area and fill the bottles with undisturbed water without disturbing any sediments Avoid collecting plant material Using the hand held meter provided measure the pH and conductivity note units conductivity should be in uS cm by placing the probes in one of the collected 1 1 sample bottle immediately after the sample has been taken Both meters will need a few minutes to stabilise and may need to be stirred as the readings settle Record the readings on the fieldsheet Prior to measurement ensure that the pH and conductivity probrs have been well rinsed since use at the previous site and are properly calibrated Taking the water chemistry sample for SRP TON alkalinity and DOC Use the second 1L bottle of water from the pond to obtain the filtered water sample needed for the analysis of these parameters Filtering will be done on site using disposable 0 45 um pore size syringe filters Use a black indelible marker to label the outside of a 50 ml SRP TON AIK plastic sample bottle with the following information before it gets wet type of habitat POND type of water sample SRP TON AIK kilometre square number date as day month year e g 07 08 06 Wash the syringe by twice filling the syringe chamber with some of the water sample and emptying it on to the ground Then fill the
104. y survey has been carried out before you do this Photographing the pond Take a photograph of the pond showing the square number written on the chalkboard Include the whole area of the pond if possible and any visible features which will help identification of the same site in future Tick the box on the fieldsheet to confirm a photo has been taken Identifying the outer boundary of the pond The outer edge of the pond is defined as the upper level at which water stands in winter It will usually be dry at the time of the survey The outer boundary can be identified from one or more characteristics It is often identified by a change in the distribution of wetland plants particularly by a rapid transition to terrestrial species often marked by a fringe of soft rush Where solid features such as trees walls or pipes occur within the water area a water mark will usually be evident In some cases where willow trees are present a thick bundles of fine roots out of the water can indicate the depth to which the roots have been submerged In some cases a break of slope will be present at the winter waterline In ponds with outflows the level of the outflow will usually determine the upper winter water level Sketch the outline of the pond Sketch the outline of the outer pond boundary This will help you estimate the pond area and help confirm the identity of the pond in future surveys Note on the sketch any obvious nearby features
105. yright except where otherwise stated and the publication named in full Disclaimer Any decisions or actions informed by this Technical Report are taken entirely at your own risk In no event shall NERC be liable for any damages including loss of business loss of opportunity loss of data loss of profits or for any other indirect or consequential loss or damage whatsoever arising out of the use of or inability to use the material presented in this report For further information on Countryside Survey see www countrysidesurvey org uk Or contact Countryside Survey Project Office Centre for Ecology and Hydrology Lancaster Environment Centre Library Avenue Bailrigg Lancaster LA1 4AP Telephone 01524 595811 Email countrysidesurvey ceh ac uk Countryside Survey in 2007 was funded by a partnership of government funded bodies led by the Natural Environment Research Council NERC and the Department for Environment Food and Rural Affairs Defra ENVIRON e Ecology amp Hydrol q LS ENVIRONMENT cology amp Hydrology RESEARCH COUNCIL NATURAL ENVIRONMENT RESEARCH COUNCIL defra NATURAL The Scottish Depart T and Rural Ata iovernmen SCOTTISH NATURAL HERITAGE WAS DUALCHAS NADAIR na h ALBA 4 NIZA tg k Northern Ireland An Agency within the Department of the Environment is Environment Agency www doeni gov uk Forestry Commission 71

Download Pdf Manuals

image

Related Search

Related Contents

Galactic RGY-140 MKII  POWERSHRED® DS-1200Cs S-1200Cs  Prénom : DNI : Lieu et Date  Solution Ultima 862 Operators Manual  Medisana BU-90E    ËÛgÜD®Œ tél 03 88 671414 tél 056 260 260  HP25/56 Potato Peeler Instruction Manual  Timex Expedition Trail Mate  A Bioinformatics Tool for an Integrated Analysis of Proteomic and  

Copyright © All rights reserved.
Failed to retrieve file