Home
Multi mode safety control module
Contents
1. asafety control module installed on the mobile vehicle and connected to the automation assembly the mechanical components the emergency stop buttons and the main power circuit the safety control module including a mode selector switch for altering the mobile vehicle s mode of operation 20 25 30 18 5 The system of claim 4 wherein the mechanical compo nents are connected to control circuits 6 The system of claim 4 wherein the emergency stop switches are configured to disrupt a flow of current to the mechanical components and the automation assembly in response to actuation of the emergency stop buttons 7 The system of claim 6 wherein the central control assembly retains power in response to actuation of the emer gency stop buttons 8 A power control system comprising a safety control module enclosed at least partially in a housing comprising mounts for mounting the safety control module to a surface the housing also comprising connectors and plugs configured to mate with external assemblies and connect with circuits of the safety con trol module a mode switch circuit having a mode selector switch designed to change an operative mode of the safety control module in response to actuation thereof a main power circuit connected to a power source and configured to provide power to a central control assem bly included in an external automation assembly and an emergency stop switch configured to activate a shut
2. down process when actuated the shutdown process removing power from a manual assembly redirects a power signal provided to the automation assembly and energizes the central control assembly wherein the mode switch circuit is configured to distribute power to the safety control module according to the operative mode
3. Kit Automation 1 Kit Automation Kit lac Ld i US 8 237 389 B2 Page2 U S PATENT DOCUMENTS FOREIGN PATENT DOCUMENTS 5 508 689 A 4 1996 Rado et al EP 0 601 728 6 1994 5 511 147 A 4 1996 Abdel Malek EP 0 681 230 11 1995 5 555 503 A 9 1996 Kyrtsos et al EP 0 835 797 4 1998 5 586 030 A 12 1996 Kemner et al EP 1 481 945 12 2004 5 646 843 A 7 1997 Gudat et al GB 2128842 A 8 1983 5 652 849 A 7 1997 Conway et al GB 2 332 286 6 1999 5 675 229 A 10 1997 Thorne GB 2 339 869 2 2000 5 698 823 A 12 1997 Tanahashi GB 2 400 454 10 2004 5 774 069 A 6 1998 Tanaka et al JP 3 282712 12 1991 5 784 023 A 7 1998 Bluege JP 8 156641 6 1996 5 906 645 A 5 1999 Kagawa et al JP 9 258826 3 1997 5 984 880 A 11 1999 Launder et al JP 11149315 A 6 1999 5 987 364 A 11 1999 Le Gusquet et al JP 2000094373 A 4 2000 6 037 901 A 3 2000 Devier et al WO WO 99 05580 2 1999 6 038 496 A 3 2000 Dobler et al WO WO 01 26338 A2 4 2001 6 059 063 A 5 2000 Shimizu et al WO WO 2004 086084 10 2004 6 072 248 A 6 2000 Muise et al 6 088 020 A 7 2000 Mor OTHER PUBLICATIONS 6 108 031 A 8 2000 King et al A 6 113 395 A 9 2000 Hon Yamauchi Brian All Weather Perception for Small Autonomous 6 151 239 A 11 2000 Batra UGVs In Proceedings of SPIE Defense and Security Conference 6 169 940 Bl 1 2001 Jitsukata et al Orlando FL Mar 2008 NY S Bl 2 2001 Grumstrup et al Lenser Scott et al Practical problems in slidin
4. control assembly 10 distribute power to the manual assembly 56 according to the operative mode Further the connection between the automation assembly 20 and the safety control assembly 10 can be a power and data connection such that circuits within the safety control assembly 10 distribute power and data to the automation assembly 20 according to the operative mode and according to data generating events and statuses In accordance with certain embodiments of the present teachings the manual assembly 15 and the automation assembly 20 can include one or more components One or more manual components 35 included in the manual mode assembly 15 can correspond to the various electrical and mechanical assemblies included in the vehicle 5 to enable a user to operate the vehicle manually Exemplary manual com ponents 35 can include for example circuitry dedicated to a fuel shut off solenoid a steering motor and a throttle assem bly These components can be powered and controlled by the automation assembly 20 when the vehicle 5 operates in an autonomous mode However when in a manual mode the manual components 35 can be controlled by a user and pow ered via a connection with a manual relay 224 included in the safety control module 10 The manual mode of operation can allow a user to operate the vehicle 5 as they would without US 8 237 389 B2 7 robotic control and an emergency backup system Alternative embodiments of the system can incl
5. tion can require the user to turn the dial 345 to the preferred mode In various embodiments of the present teachings the instrument display panel 350 can comprise displays 315 con figured to display the status of assemblies included in the vehicle 5 The displays can be installed within the housing 305 and the instrument display panel 350 and can be con nected internally to the display panel circuit 242 Each dis play 315 can correspond to a separate and distinct electro mechanical assembly included in the vehicle 5 and can change state according to output from the display panel cir cuit 242 Exemplary displays include those that display the vehicle s engine oil pressure water temperature gear oil temperature and engine rpms In certain embodiments included on the instrument panel display 350 are connectors 310 able to mate with external connectors and provide a physical and electrical connection between an external assembly and the safety control module 10 Additional connectors 335 and plugs 330 can be installed on the surface of the housing 305 Each of the connectors 335 and plugs 330 can be configured to mate with external con nectors and plugs and provide a physical and electrical con nection between an external assembly and the safety control module 10 The connectors and plugs can be installed accord ing to industrial or military specifications and can be indus trial or military rated connectors and plugs The emergency
6. can be included on the safety control module 10 to connect the emergency shutdown assembly 25 to the safety control module 10 Inclusion of multiple E Stop buttons 45 is optional and the connector 54 can include an industrial grade spring loaded contact that terminates and closes a circuit included within the safety control module 10 when no additional E Stop buttons 45 are connected to the safety control module 10 Alternatively the spring loaded connector 54 can open the circuit and connect additional E Stop buttons 45 when additional E Stop buttons 45 are connected to the safety control module 10 via the connector 54 When connected the E Stop buttons 45 can be placed in series with an E Stop switch 220 included in the safety control assembly of the safety control module 10 Safety Control Module In certain embodiments the safety control module 10 can bea stand alone system fully enclosed within a rugged hous ing 305 Individual circuits and assemblies included within the safety control module and configured to receive signal inputs from external circuits and assemblies can be con nected to connectors and plugs 52 54 56 58 that connect external wires and other communication links to the safety control module 10 Anexemplary embodiment ofthe safety control module 10 is illustrated in FIG 2 The mode switch circuit 202 installed at the center of the safety control module 10 can control the module s operative mode by re distributing po
7. circuit to the mechanical components emergency stop buttons installed on the mobile vehicle and connected to emergency stop switches responsive to actua tion ofthe emergency stop buttons and a safety control mod ule installed on the mobile vehicle and connected to the automation assembly the mechanical components the emer gency stop buttons and the main power circuit the safety control module including a mode selector switch for altering the mobile vehicle s mode of operation The present teachings further provide a power control sys tem comprising a safety control module enclosed at least partially in a housing comprising mounts for mounting the safety control module to a surface the housing also compris ing connectors and plugs configured to mate with external assemblies and connect with circuits of the safety control module a mode switch circuit having a mode selector switch designed to change an operative mode of the safety control module in response to actuation thereof a main power circuit connected to a power source and configured to provide power to a central control assembly included in an external automa tion assembly and an emergency stop switch configured to activate a shutdown process when actuated the shutdown process removing power from a manual assembly redirects a power signal provided to the automation assembly and ener gizes the central control assembly The mode switch circuit is configured to distribute powe
8. of emergency stop E Stop buttons and corresponding switches able to break the connection between the mode selection circuit and addi tional safety control module circuitry when actuated Dis rupting the connection between the mode selection switch and the circuits and assemblies included in the safety control assembly further causes a disruption of current to these cir cuits and assemblies The net effect can be removal of power from the circuits and assemblies that are dependent on their physical connection with the mode selection circuit for power Various embodiments contemplate a connection with the mode selection circuit characterized by a wire while other embodiments may include an alternative physical connection such as an integrated circuit or a non physical connection established via an electrical pulse or created via a software routine configured to redistribute power throughout the safety control module In accordance with certain embodiments removal of power accomplished via actuation of an E Stop button serves to shut down substantially all systems included in the mobile vehicle and in assemblies and modules connected to the mobile vehicle including the safety control module Although the mobile vehicle may operate in a manual mode certain embodiments of the robotic system may retain a level of autonomy after an E Stop button is actuated This level of autonomy can be accomplished by the main computer circuit which can be di
9. of switches is connected at one end to the automatic mode pin 206 in the mode selector switch 345 and at the other end to Relay 1 228 of the redun dant E Stop relay assembly 222 In the automatic mode of operation power can flow from the vehicle main power cir cuit 30 through the automatic mode pin 206 and through the serial string of emergency stop switches to Relay 1 228 Furthermore in the automatic mode of operation the induc tance coils of Relay 1 228 and Relay 2 226 of the redundant E Stop relay assembly 222 can be energized such that each relay s switch is closed creating a circuit whereby the manual mode relay 230 can receive power from the vehicle main power circuit 30 to power the manual mode assembly 15 via the circuit created by the closed emergency stop relays 228 226 Actuation of the E Stop switch 220 or any one of the emergency stop buttons 45 while in the automatic mode of operation can break the physical and electrical connection between the automatic mode pin 206 and the redundant E Stop relay assembly 222 The resulting open circuit can therefore be unable to energize the inductance coils included in Relay 1 228 and Relay 2 226 causing the relays 228 226 to open and further breaking both the physical and electrical connection created by the wire 262 connecting the main power circuit 30 to the E Stop relay assembly 222 and the wire 256 connecting the A1 pin of relay 1 228 to the manual relay 224 This break can stop
10. pro vides no alternative to removing power from the entirety of the system Additionally safety systems that integrate the circuits and mechanical systems necessary to implement an emergency stop safety system can be application specific not versatile and require costly and often complicated installa tion Electro mechanical systems similarly utilize emergency stop safety sub systems that remove all power from the main system when an emergency event is detected It may be inap propriate to design an autonomous vehicle that responds to an emergency event by removing power from all components within the autonomous vehicle Such a design would fail to address the need for an autonomous vehicle to retain a level of autonomy despite encountering an emergency event that causes a power loss Autonomous vehicles rely on control systems included within vehicle to continue collecting data and to further provide the user and vehicle with a system through which the autonomous vehicle can communicate SUMMARY The present teachings provide a mobile vehicle compris ing mechanical components configured to operate the mobile vehicle in a manual mode of operation a main power circuit in the mobile vehicle for distributing a power signal to the electromechanical components and to external modules installed on the mobile vehicle an automation module con nected to the mechanical components and operable to control and operate the mechanical components a
11. substantially similar to those carried out by the circuits and assemblies included in the safety control module 10 FIG 5 illustrates an exemplary method by which the reset mode can reset the state ofthe hold down relay 216 When the mode selector switch 345 is moved to the automatic position 402 the switch 345 is in a position from which it can momen tarily move to the reset position 414 The reset pin 208 is a momentary switch that can remain in the reset position for a very short period of time before returning the mode selector switch 345 to the automatic mode position While the mode selector switch 345 is in the reset position current can pass from the vehicle main power circuit 30 voltage source through the mode switch circuit 202 through the reset mode pin 412 as an instantaneous pulse of current A connection wire installed between the reset mode pin 208 and the reverse energizing prevention diode 212 can transmit instantaneous pulse through the diode 410 to the hold down relay 216 to energize the hold down relay s inductance coil 408 A mag netic field can be created when a current passes through the inductance coil This magnetic field can cause the pins in the hold down relay s switch to change positions from an open position to a closed position 406 The hold down relay 216 can be a latching relay meaning that the relay retains is most recent position when current is removed from the relay s inductance coil The instantaneous puls
12. the flow of current to the manual relay 224 and to the manual assembly 15 Thus by actuating an E Stop switch power can be removed from the manual components included in the vehicle 5 This configu ration can provide a circuit where actuation of an emergency stop button or switch causes power to be removed from all electrical and mechanical systems included in the vehicle Furthermore the configuration can allow the user to install multiple emergency stop buttons on the vehicle and to have a level of control over the placement of those emergency stop buttons In certain embodiments the mechanical assemblies included in the vehicle 5 can be designed to include mechani cal safety systems that fail safe when power is removed from the mechanical assemblies An example would include a mechanical clutch that implements a safety brake when power is removed from the vehicle 5 In this example when an E Stop button is depressed power is removed from the manual assembly 15 and further from the mechanical com ponents and assemblies 35 included in the manual assembly 15 When this occurs the mechanical clutch would activate the mechanical safety brake which would retard movement of the vehicle 5 and eventually cause the vehicle 5 to stop moving Alternative embodiments can include a safety con trol module 10 that includes mechanical assemblies for retarding motion of the vehicle 5 when the emergency shut down system is activated The follow
13. two states which is configured to remain in an existing state when current is removed from the induc tance coil Elimination of the magnetic force produced by the charged inductance coil causes the relay s pins to remain in the position they were in immediately before current was removed An example of this would be a normally open hold down relay 216 that closes when current is applied to the hold down relay 216 and remains closed when current is removed from the hold down relay 216 The hold down relay 216 can be connected to the reverse energizing prevention diode 212 via for example a wire connecting the diode 212 to the C4 pin on the hold down relay 216 The C5 pin on the hold down relay 216 can be tied to the output of the C4 pin via for example a wire while the C6 pin can be tied to the output of the C2 pin via for example a wire The redundant E Stop relay assembly 222 can be connected to the hold down relay 216 via for example a wire connected from the output of the inductance coil in Relay 2 226 in the redundant E Stop relay assembly 222 The automation relay 218 can be connected to the hold down relay 216 via for example a wire connecting the C3 pin of the hold down relay 216 to the D1 pin included in the automation relay 218 In various embodiments the hold down relay 216 can route power through the safety control module 10 according to the chosen mode of operation and according to whether or not the emergency stop system
14. use a microprocessor or other control circuit to accomplish the logical decision making processes accomplished by the safety control module 10 In such and embodiment a microprocessor microcontroller single board computer logical gate array or other control unit can input power from the vehicle s main power circuit 30 and distribute the power according to the mode of operation the state of the emergency stop button and the state ofthe main power switch circuit 210 FIG 4 is a flow diagram of events that can occur following actuation of an emergency stop button at step 472 When any one of the emergency stop buttons are depressed and the button s corresponding switch is activated the connected circuits can check the state ofthe mode selector switch 345 to verify that the module 10 is operating in an automatic mode 474 If the module 10 is not in the automatic mode then no action is taken 494 Otherwise when in automatic mode the flow of current to the E Stop relay assembly 220 can be disrupted 476 causing the switches included in the assem bly s relays to change position When the module 10 detects that neither of the relays included in the E Stop relay assem bly changed position 478 an E Stop relay fault can be gen erated 496 If at least one ofthe relays included in the E Stop relay assembly changes position to an open position an open circuit can be created removing power from the manual mode assembly 480 and disrupting current
15. 008 0121097 Al 5 2008 Rudakevych et al 89 28 05 Technologies LLC copyright 2008 undated US 8 237 389 B2 Page3 SafeStop User Manual Revision 2 1 SafeStop ES 220 Wireless Emergency Stop TORC Technologies LLC copyright 2007 undated De Campos Institute of Electrical and Electronics Engineers Per ception Planning as a Distributed Decision Making Process Oct 17 20 1993 vol 3 pp 611 616 Corbett G K et al A Human Factors Tested for Ground Vehicle Telerobotics Research Southeastcon 90 Proceedings vol 2 pp 618 620 1990 Shimoga et al Touch and Force Reflection for Telepresence Sur gery IEEE pp 1049 1050 1994 Mair Telepresence The Technology and Its Economic and Social Implications JEEE pp 118 124 1997 Ohashi et al The Sensor Arm and the Sensor Glove II Haptic Devices for VR Interface JEEE p 785 1999 Green P S et al Telepresence Surgery JEEE Engeneering in Medicine and Biology pp 324 329 May Jun 1995 Nakai et al 7 DOF Arm Type Haptic Interface for Teleoperation and Virtual Reality Systems Proceedings of the 1998 IEEE RSJ INTL Conference on Intelligent Robots and System pp 1266 1271 1998 cited by examiner US 8 237 389 B2 Sheet 1 of 7 Aug 7 2012 U S Patent PA uoneuuoins JM uoieuroinv PNAD JOG UIE 9pieA Ww uoijewolny U jueucduo Z 1uauoduioo jenuew jenug SISIUSA 9IGolN
16. Current Flow to the Automation Assembly Relay 488 Remove Power From the Automation Assembly 490 Remove Power No lt LN From the Central mx ERS s x f Power Switch On Control Assembly a 499 A Yes 492 Power the Central Control Assembly FIG 4 US 8 237 389 B2 Sheet 5 of 7 Aug 7 2012 U S Patent R 913 109 1o39np l s e o Umog ploH eu u amp nouu sassed aung 80r apolg ey uBnolu S9sSEd HIND 90r L pesoip oj uedo WOH YoWAS Hid SPON Jessy ay yfnosyL 01 Ara UMOO PIOH ul Sully sasneo piaia ONSUBEN sasseg Ju ALND UOWISOq 13893 3U 0 SAAD prejueulojA uos 40199Jes ann Das uleula Std Ajay UMOCI PJOH vor uonisog ONeWOINY BU UL uos lojoajas apo cop U S Patent Aug 7 2012 Sheet 6 of 7 US 8 237 389 B2 305 Instrument Panel Man Reset Engine Oil aa Water 315 Piessute Mode Select Temp 0 150 PSI 0 250 F Win ule RPM x 100 0 50 uini Gear Oil Temp 10 39 0 250 F U S Patent Aug 7 2012 Sheet 7 of 7 US 8 237 389 B2 x E T E a 5 FIG 7 US 8 237 389 B2 1 MULTI MODE SAFETY CONTROL MODULE INTRODUCTION This invention relates generally to circuits and assemblies for controlling the flow of power through a semi autonomous mobile vehicle In particular embodiments of this invention relate to multiple mode control modules that control the flow of power through the electr
17. IE vol 6561 Mar 2007 6 633 800 B1 10 2003 Ward et al Jones Chris et al Sentinel An Operator interface for the Control of 6 694 260 Bl 2 2004 Rekow Multiple Semi Autonomous UGVs In Proceedings of the Associa pus iced a S M et al P po E Vehicles Systems International Orlando FL 6 778 097 Bl 8 2004 Kajita et al Y 8 hi B ian A Urban H T Using M 6 789 014 Bl 9 2004 Rekow et al amauchi Brian utonomous rban Reconnaissance Using Man 6 813 557 B2 11 2004 Schmidt et al Portable UGVs In Proceedings of SPIE Unmanned Ground 6 845 297 B2 1 2005 Allard Vehicle Technology VIII Orlando FL Apr 2006 6 873 911 B2 3 2005 Nishira et al Yamauchi Brian Wayfarer An Autonomous Navigation Payload 6 882 155 B2 4 2005 Lazzaro 324 418 for the PackBot In Proceedings of AUVSI Unmanned Vehicles 6 898 542 B2 5 2005 Ott et al North America 2005 Baltimore MD Jun 2005 6 901 319 Bl 5 2005 Nelson et al Barnes Mitch et al ThrowBot Design Considerations for a Man 6 902 021 B2 6 2005 Kikuchi et al Portable Throwable Robot In Proceedings of SPIE vol 5804 Mar 6 945 346 B2 9 2005 Massen et al 2005 6 950 882 Bl 9 2005 Weber et al Rudakevych Pavlo et al PackBot EOD Firing System In Pro 7 010 450 B2 3 2006 Law et al di f SPIE vol 5804 Mar 2005 7 015 831 B2 3 2006 Karlsson et al HES Ob TE Ve nnd ee 7 079 021 B2 7 2006 Snowbarger et al Yamauchi Brian The Wayfarer Modular Navigatio
18. L jueuoduloo jenue NW US 8 237 389 B2 Sheet 2 of 7 Aug 7 2012 U S Patent OE UNAS pued Aejdsig 3400 MOJ JeAMog Jamcules uie Yomg Yyoume dois 3 DEl s ejoy dols 3 Juepunpay r ee t ee y voc einpojy jondon ejes Alquiassy 2e umopjnys AouaHisug quassy enuen SL UZ fjgulsssy 0 uoneuiojny UK jgiuassy euog INAO 19M04 Ly UBR MUSA U S Patent Aug 7 2012 Sheet 3 of 7 US 8 237 389 B2 430 Wait for Vehicle Power Switch to Turn On Main Vehicle Power Switch On In Manual Power the Manual Mode Assembly In Automatic Mode Stop Button Depressed Power the Automation Momentarily Assembly In Reset Energize the Mode Hold Down Relay 450 Power the Manual Assembly 452 Power the Emergency Shutdown Assembly 454 FIG 3 U S Patent Aug 7 2012 Sheet 4 of 7 US 8 237 389 B2 472 Emergency Stop Button Depressed No In Automatic 414 End Mode 494 Aro Yes Disrupt Current Flow to the E Stop Redundant Relay Assembly At least one relay in the E 478 Stop Redundant Relay Assembly Open E Stop Relay No Fault Yes S 480 Remove Power From the Manual Assembly Disrupt Current Flow tothe Hold Down Relay 482 Hold Down Relay 484 Hoid Down Relay No Open Fault 498 Yes 486 Disrupt
19. US008237389B2 az United States Patent 10 Patent No US 8 237 389 B2 Fitch et al 45 Date of Patent Aug 7 2012 54 MULTI MODE SAFETY CONTROL MODULE 5 229 941 A 7 1993 Hattori et al 5 245 422 A 9 1993 Borcherts et al A s 5 400 864 A 3 1995 Winner et al 75 Inventors Osa Edward Fitch Nashua NH US 5448 479 A 9 1995 Kemner etal Eddie Williams Los Osos CA US 5 469 356 A 11 1995 Hawkins et al 5 471 560 A 11 1995 Allard et al 73 Assignee iRobot Corporation Bedford MA US 5 485 892 A 1 1996 Fujita et al Continued Notice Subject to any disclaimer the term of this patent is extended or adjusted under 35 FOREIGN PATENT DOCUMENTS U S C 154 b by 834 days DE 3404202 Al 5 1987 Continued 21 Appl No 12 269 868 Conn OTHER PUBLICATIONS 22 Filed Nov 12 2008 Murray Sean et al Continued Research in EVA Navigation Net 65 Prior Publication Data working and Communications Systems SAE Proceedings Interna tional Conference on Environmental Systems Jun 2008 US 2010 0117585 A1 May 13 2010 Continued 51 Int CI G05B 9 02 2006 01 Primary Examiner Walter Benson 52 DS A 318 563 318 568 12 180 271 Assistant Examiner Antony M Paul 701 45 74 Attorney Agent or Firm O Brien Jones PLLC 58 Field of Classification Search 318 563 318 568 11 568 12 590 591 701 36 45 57 ABSTRACT 701 52 180 271 361 1 A robotic assembly comprises a mobile vehicle inclu
20. an automation assembly connected to the safety control module and in part from the safety control module The safety control module provides a system for operating the circuits and mechanical assemblies included in the safety control module the autonomous vehicle and the modules and assemblies connected to the safety control module in a user defined mode Alteration of the mode of operation is accomplished by actuating a mode selection switch When in an automatic mode the safety control module distributes a power signal to an automation assembly connected to the safety control module where the automation assembly fur ther controls the operation of substantially all the systems included in the automated mobile vehicle to automate the operation of the vehicle and the assemblies connected to the vehicle The safety control module further provides a system for initiating an emergency shutdown ofthe vehicle and the vehi cle s associated components when an emergency stop button connected to the safety control module is actuated The emer gency shutdown is facilitated by an emergency shutdown system configured to disrupt the flow of power to the electri cal and mechanical systems included in the autonomous vehicle to shut down the vehicle and the vehicle s compo nents 20 25 30 35 40 45 50 55 60 65 4 The safety control module also provides a system for ini tiating an emergency shutdown of the vehicle and the v
21. be powered 450 The manual relay 224 can transmit the power signal to the manual assembly 15 to power the manual assembly 452 In certain embodiments installed between the mode switch circuit 202 and the E Stop relay assembly 222 are the E Stop switch 220 and the emergency shutdown assembly 25 which are pow ered by the transmitted power signal 454 When not in manual mode 434 and not in automatic mode 436 the hold down relay 216 can be responsive to a change in the mode selector switch s position to a reset mode position If a reset mode position is sensed 438 a power signal can be transmitted to the hold down relay 216 causing the relay s switches to change position The reset mode pin 208 can be a momentary switch that returns to the automatic mode posi tion immediately after the power signal is transmitted to the hold down relay 216 Should the switch not be in a reset position the circuits in the safety control module 10 can continue to wait for the vehicle power switch to turn on 430 and periodically check whether this switch is on 432 At any point in time power flow to any one of these components can be interrupted by a change in position of the mode selector switch 345 Response to a change in mode can be substan tially instantaneous While FIG 3 illustrates an exemplary method of distribut ing power through the safety control module 10 using circuits and assemblies an alternative embodiment of the safety con trol module 10 can
22. can allow the user to communicate with the vehicle 5 despite an emergency shutdown and can provide data indicative of the status of the vehicle s systems by allowing the central control assembly 252 to operate a communication 20 25 30 35 40 45 50 55 60 65 12 system and further record and store system data Alternative embodiments of the system can include a central control assembly 252 that can mobilize mechanical assemblies reset the safety control module 10 or provide some other autono mous ability Further connected to the automation assembly 20 via con nectors 52 installed on the housing 305 is for example an LED 244 connected via a wire 250 installed between the automation assembly 20 and the LED 244 The LED 244 can be installed on the safety control module 10 and can be configured to illuminate when the computer power switch included in the computer power circuit 210 is in an on posi tion Also connected to the automation assembly 20 for example via a wire 246 is a display panel circuit 242 able to accept data sent to the display panel circuit 242 from the automation assembly 20 regarding the state of various sys tems installed in the vehicle 5 This status data can be dis played to the user via displays 315 installed on the safety control module display face 350 Exemplary systems moni tored by the display panel circuit 242 can include the vehicle engine oil pressure sensor the vehicle water tem
23. dicated by the following claims What is claimed is 1 A mobile vehicle comprising mechanical components configured to operate the mobile vehicle in a manual mode of operation a main power circuit in the mobile vehicle for distributing a power signal to the electro mechanical components and to external modules installed on the mobile vehicle an automation module connected to the mechanical com ponents and operable to control and operate the mechanical components and a power circuit configured to distribute power to the mechanical components and the external modules a safety control module installed on the mobile vehicle and connected to the main power circuit the automation module and the mechanical components a mode selector switch included in the safety control mod ule and connected to the main power circuit and emergency stop switches connected to corresponding emergency stop buttons and the mode selector switch and configured to prevent a flow of current to substan tially all of the mechanical components and external modules in response to actuation of the emergency stop buttons wherein an operational mode of the mobile vehicle changes in response to actuation of the mode selector switch and wherein the automation module comprises a central con trol assembly connected to a main computer circuit and configured to receive a power signal from the main com puter circuit and the main computer circuit is configured t
24. ding See application file for complete search history mechanical components configured to operate the mobile vehicle in a manual mode of operation a main power circuit 56 References Cited for distributing a power signal to the electromechanical com U S PATENT DOCUMENTS 2 466 375 A 4 1949 Carbon 3 665 945 A 5 1972 Ottenstein 3 952 759 A 4 1976 Ottenstein 4 155 417 A 5 1979 Ziems 4 202 037 A 5 1980 Glaser et al 4 361 202 A 11 1982 Minovitch 4 897 640 A 1 1990 Rapoen et al 4 911 192 A 3 1990 Hartfiel et al 4 986 384 A 1 1991 Okamoto et al 5 076 382 A 12 1991 Vaughn et al 5 170 352 A 12 1992 McTamaney et al 5 198 973 A 3 1993 Steutermann 5 204 814 A 4 1993 Noonan et al 1 Manual ponents and to external modules an automation module con nected to the mechanical components and operable to control and operate the mechanical components and a power circuit configured to distribute power to the mechanical components and the external modules a safety control module connected to the main power circuit the automation module and the mechanical components a mode selector connected to the main power circuit and emergency stop switches configured to prevent a flow of current to substantially all of the mechani cal components and external modules in response to actuation of the emergency stop buttons Claims 7 Drawing Sheets Component 1 Vehicle Main Power Circuit 30 Mobile Vehicle k Automation
25. e can exist for a mini mum time duration needed to cause the relay 216 to close and a minimum time period needed to ensure that the relay 216 remains in a closed position 404 Alternative embodiments of the safety control module 10 canimplement the exemplary reset method illustrated in FIG 5 using a central control circuit configured to execute a soft ware routine able to substantially reproduce the method steps outlined in FIG 5 Such embodiments of the safety control module 10 can include a microprocessor microcontroller single board computer logical gate array or other control unit able to execute a stored software routine able to reset the hold down relay 216 Safety Control Module Housing and Mounting A rugged housing 305 can encase the internal components of the safety control module 10 so that the safety control module 10 can be installed as a stand alone component An exemplary embodiment of a housing 305 is illustrated in FIG 6A and comprises industrial or military rated material pro viding a significant amount of protection to the internal com ponents ofthe safety control module 10 The housing 305 can be sealed according to industrial and military specifications to prevent liquids and particles from entering the housing internal chamber Proper ventilation can be included via a mechanical vent assembly to facilitate the movement of air through the housing internal chamber and to prevent over heating the safety control m
26. ehi cle s associated components while providing a minimum level of autonomy Included in the safety control module is a main computer circuit powered directly by the vehicle s power source and unconnected to the emergency shutdown system Connected to the main computer circuit is a central control assembly configured to record system data and further provide a control system able to communicate remotely with a user and provide a minimum level of autonomous control over the vehicle and its associated components The safety control module further provides a system where the safety control module is contained within a rugged hous ing such that the safety control module can be mounted on the surface of the vehicle and interface with the vehicle via a system of external cables and connectors Certain embodiments of the present teachings provide a safety control module used in combination with an automated mobile vehicle for responding to emergency events by remov ing power from all non essential systems and assemblies while continuing to provide power to essential control sys tems within the vehicle s automation module Mechanical assemblies installed in the mobile vehicle to facilitate manual operation ofthe vehicle can be connected to the safety control module such that when the safety control module operates in a manual operation mode a user can operate the mechanical assemblies Automation ofthe mobile vehicle can be accom plished by an automa
27. ency stop button is depressed FIG 5 is a flow diagram illustrating an exemplary embodi ment of a method implemented when the reset mode is cho sen FIG 6A illustrates an exemplary embodiment of a safety control module housing and display panel in accordance with the present teachings FIG 6B illustrates an exemplary embodiment of mounting brackets included on a safety control module base in accor dance with the present teachings FIG 7 illustrates an exemplary embodiment of a safety control module mounted to a dashboard of a mobile vehicle DETAILED DESCRIPTION Reference will now be made in detail to the present exem plary embodiments of the present teachings examples of which are illustrated in the accompanying drawings The safety control module provides a system for control ling distribution of power throughout an automated vehicle Included within the safety control module is an assembly of circuits and mechanical systems designed to distribute power to the modules and assemblies connected to the safety control module In particular the assembly of circuits and mechani cal systems distribute power to mechanical systems included in the autonomous vehicle and necessary to operate the autonomous vehicle manually These mechanical systems receive power from the safety control module when the safety control module operates in a manual mode When operating in an automatic mode the mechanical systems receive power in part from
28. flow 482 to the hold down relay 216 Disruption of current flow 482 to the hold down relay 216 can cause the switches included in the hold down relay to change position If the switches fail to change position 484 a hold down relay fault can be generated 498 When the hold down relay 216 switch properly changes posi tion to an open position current flow to the automation assembly relay can be disrupted 486 causing power to be removed from the automation assembly 488 A check can be performed to determine whether the main computer power switch in the main computer power switch circuit is closed and in an on position 490 If the switch is closed the central 20 25 30 35 40 45 50 55 60 65 14 control assembly 252 in the automation assembly 20 can be energized 492 with power redistributed by the main computer power switch circuit 210 When the main computer power switch is open and no current is flowing into the main com puter power switch circuit 210 power can be removed 499 from the central control assembly 252 Alternative embodiments of the safety control module 10 can include a central processor configured to execute a rou tine that substantially emulates the logical process repre sented by the flow diagram in FIG 4 This embodiment ofthe module 10 can include a central control circuit able to execute a stored software routine able to respond to depression of an emergency stop button by carrying out steps
29. g scale autonomy A 198 992 Bl 3 2001 Winslow M A 6 223 110 Bl 4 2001 Rowe et al case study In Proceedings of SPIE Defense and Security Confer 6 233 504 B1 5 2001 Das etal ence Orlando FL Mar 2008 6 249 215 Bl 6 2001 Dilz et al Cheung Carol et al UAV UGV Collaboration with a PackBot UGV 6 253 161 Bl 6 2001 Arias Estrada and Raven SUAV for Pursuit and Tracking of a Dynamic Target In 6 259 980 Bl 7 2001 Peck et al Proceedings of SPIE Defense and Security Conference Orlando FL 6 292 725 Bl 9 2001 Kageyama etal Mar 2008 S S iss nee al Schoenfeld Erik et al Door Breaching Robotic Manipulator In 6 434 462 Bl 8 2002 Belvy et al Proceedings of SPIE Defense and Security Conference Orlando FL 6 438 491 B1 8 2002 Farmer Mar 2008 6 442 476 Bl 8 2002 Poropat et al Yamauchi Brian Daredevil Ultra Wideband Radar Sensing for 6 445 983 Bl 9 2002 Dickson et al Small UGVs In Proceedings of SPIE Unmanned Systems Tech 6 453 223 Bl 9 2002 Kelly et al nology IX Orlando FL Apr 2007 6 480 762 Bl 11 2002 Uchikubo et al Rudakevych Pavlo et al Integration ofthe Fido Explosives Detector 6 535 793 B2 3 2003 Allard 4 c 6 549 130 Bl 4 2003 Joao onto the PackBot EOD UGV In Proceedings of SPIE vol 6561 6 577 909 BL 6 2003 McGowan et al Mar 2007 6 600 986 B2 7 2003 Steinle et al Rudakevych Pavlo et al A man portable hybrid UAV UGV sys 6 631 882 B2 10 2003 Mack tem In Proceedings of SP
30. has been activated The hold down relay 216 can be a normally open relay that closes when a current is passed through the inductance coil The induc tance coilin the hold down relay 216 can receive current from an output wire 264 originating in the E Stop relay assembly 222 Actuating the E Stop switch 220 or an adjunct E Stop button included in the emergency shutdown assembly 25 can cause the relays included in the E Stop relay assembly to close and can generate a current that energizes the inductance coil in the hold down relay 216 The hold down relay 216 can respond to activation of the emergency shutdown system by removing power from the automation assembly 20 Referring to the embodiment of FIG 2 the emergency shutdown system can include the emergency shutdown assembly 25 E Stop buttons 45 included in the emergency shutdown assembly 25 the E Stop switch 220 and the redun dant emergency stop E Stop relay assembly 222 The E Stop switch 220 can be connected on one end to the auto matic mode pin 206 in the mode switch circuit 202 and at the other end to the emergency shutdown assembly 25 Each E Stop button 45 included in the emergency shutdown assem bly 25 can be for example a switch that is connected in serial to both prior and subsequent E Stop buttons 45 What results 20 25 30 35 40 45 50 55 60 65 10 is astringofemergency stop switches starting with the E Stop switch 220 where the serial string
31. ical and mechanical systems included in a semi autonomous vehicle according to a chosen mode and a control module that further provides an emer gency stop assembly for removing power from substantially all of the electrical and mechanical systems of the semi autonomous vehicle BACKGROUND Safety control systems are included in most process con trolled assemblies to provide the assemblies with the ability to shut down Multiple types of safety systems exist Emergency stop safety systems typically operate to remove power from the entire assembly while other safety systems may stop the flow of liquid or gas or otherwise stop the process being controlled Emergency stop safety systems typically found in industrial applications are connected directly to the main system s source of power Sensors included in the safety system are able to detect failure conditions within the assem bly and responsively activate the safety system which in turn removes power from the assembly Industrial applications that employ an emergency stop safety system rely on the system s ability to interact with the applications components to stop current flow through the application and further safely redistribute all power out of the assembly Furthermore these applications typically integrate the components necessary to implement the emergency stop safety system into the larger process controlled application Such a configuration can be disadvantageous because it
32. ing 305 that does not have an additional mounting or rail system installed along the housing s bottom panel An exemplary dashboard 382 and safety control module 10 assembly are display in FIG 5 This illustration depicts a control console 380 installed in a mobile vehicle and com prising a display panel gauges a throttle a steering wheel and other components typically included on a mobile vehi cle s control console 380 The safety control module 10 is mounted to the console s dashboard 382 via the mounts 325 included on the housing 305 An additional E Stop button 45 is installed on the dashboard 382 and is connected to the safety control module 10 via an external connector 310 The E Stop button 45 is included in the E Stop button assembly 25 and is connected in series with the E Stop button 320 mounted to the top of the safety control module 10 The E Stop button 45 is also connected internally to the E Stop switch 220 When the E Stop button 45 is depressed the emergency stop system can be activated creating an open circuit and further removing power from substantially all of the vehicle s electro mechanical assemblies Other embodiments of the present teachings will be appar ent to those skilled in the art from consideration of the speci fication and practice of the embodiments disclosed herein It is intended that the specification and examples be considered as exemplary only with a true scope and spirit of the teach ings being in
33. ing example illustrates an exemplary embodi ment of an operation of the emergency stop assembly An emergency stop button 15 installed next to a steering wheel and on a navigation console included in the mobile vehicle 5 The emergency stop button is included in the emergency shutdown assembly 25 which is in series with the E Stop switch 220 While in the automatic mode of operation a user depresses the emergency stop button which causes the attached switch to open thereby creating a break in the con nection between the E Stop switch 220 and relay 1 228 The break can cause the inductance coil in Relay 1 228 to de energize which can cause the inductance coil in Relay 2 226 to de energize In response to the elimination ofthe magnetic US 8 237 389 B2 11 field in Relay 1 228 and Relay 2 226 each relay s switch moves from the energized position of A2 B2 to the de energized position of A3 B3 The movement of Relay 1 s switch to the A3 pin position and Relay 2 s switch to the B3 pin position creates an open circuit where current no longer flows from the vehicle main power circuit 30 to the manual mode relay 230 via wires 262 and 256 The resultant open circuit removes power from the wire 258 connecting the manual mode assembly 15 to the safety control module 10 which further removes power from the components included in the manual mode assembly 15 Removing current from the inductance coils included in the relays included in the red
34. l circuits necessary to retain a minimum level of autonomy when the emergency shutdown system is activated In such an embodiment connected to the central control assembly 252 is a wire 248 connected through a connector on the automation assembly 20 to the central control assembly 252 and further connected to the on position of the main computer power switch in the main computer power circuit 210 via a connec tor 52 installed on the safety control module s housing The main computer power circuit 210 can include a main com puter power switch connected to the vehicle main power circuit 30 via an internal wire 254 such that when the vehicle is powered the computer power circuit 210 can distribute power to assemblies connected to the computer power switch In particular when the vehicle 5 is powered and the switch included in the main computer power circuit 210 is in an on position the central control assembly 252 can be powered The main computer power circuit 210 may not be connected to the emergency shutdown system and so when the emer gency shutdown system is activated the main computer power circuit 210 remains unaffected This configuration can ensure that a control circuit will remain powered despite an emergency shutdown and provided that the vehicle s main power switch remains in an on position Ensuring operation ofthe central control assembly 252 can provide the vehicle 5 and the user with a minimum level of autonomy This autonomy
35. m blies connected to the main power circuit 30 The power connector 58 can for example be rated to accept voltages within a range of 12 volts to 48 volts The connector 58 can for example be rated for military or industrial use and can include a locking mechanism configured to lock the connec tive cable s connector together with the power connector 58 Alternative embodiments of the safety control module 10 can include a power connector 58 comprising one of a ring ter minal a push on terminal a junction block a spade terminal or another type of mechanical structure able to connect an external wire or cable to the safety control module 10 Connectors can also be provided to connect the manual assembly 15 and the automation assembly 20 to the safety control module 10 The manual assembly connector 56 and the automation assembly connectors 52 can be rated for industrial or military use and can be connected to connection links included in the safety control assembly to establish a physical and electrical connection between the manual and automation assemblies and corresponding circuits in the safety control assembly While the manual assembly connec tor 56 can be configured to transmit power signals the auto mation assembly connectors 52 can be configured to transmit both power and data signals Thus the connection between the manual assembly 56 and the safety control assembly 10 can bea power connection where the circuits within the safety
36. n 206 can be responsive to a change in mode to the automatic mode of operation When the mode selector switch changes position to the automatic mode position the circuits and assemblies connected to the automatic mode pin 206 through the serial string created by the E Stop switch 220 and the emergency shutdown assembly 25 can be responsive to the position change when all E Stop buttons and their corre sponding switches remain lifted and are not depressed or actuated When any one of the E Stop buttons in the E Stop button chain created by the E Stop switch 220 and the emer gency shutdown assembly 25 is depressed power can be diverted from the E Stop relay assembly 222 causing all circuits and assemblies within the safety control module 10 and connected to the safety control module 10 to power down Also shown in FIG 3 after checking whether or not an E Stop button is depressed 446 a path can be created from the automatic mode pin 206 to the redundant E Stop relay assem bly 222 through which current may pass This path can remain present while all E Stop buttons remain lifted the power signal originating from the vehicle main power circuit 30 can US 8 237 389 B2 13 betransmitted through the E Stop relay assembly 222 to both the hold down relay 216 and the manual relay 224 The hold down relay 216 transmits the signal to the automation relay 218 which can transmit the signal to the automation assem bly 20 causing the assembly 20 to
37. n Payload for 7 278 567 B2 10 2007 Ferguson et al Intelligent Robot Infrastructure In Proceedings of SPIE vol 5804 7 305 294 B2 12 2007 Bate et al Unmanned Ground Technology VII Orlando FL Mar 2005 7 894 951 B2 2 2011 Norris etal ss 701 36 Yamauchi Brian et al Griffon a man portable hybrid UGV UAV 2001 0018640 AI 8 2001 Matsunaga In Industrial Robot An International Journal vol 31 No 5 2004 2002 0032511 Al 3 2002 Murakami et al Yamauchi Brian PackBot A Versatile Platform for Military Robot 2002 0104300 Al 8 2002 Hunt ics In Proceedings of SPIE vol 5422 Unmanned Ground Vehicle 2003 0080772 Al 5 2003 Giacomini et al Technology VI Orlando FL Apr 2004 2004 0061596 Al 4 2004 Egami Sword Lee et al Mobility Enhancements for Ballistically 2004 0114584 A1 6 2004 Patz et al Deployed Sensors In Proceedings of SPIE vol 4393 Apr 2001 2001 0158555 A1 5 2004 Holmqvist et al Rudakevych Pavlo Wave Control A Method of Distributed Con 2004 0158379 Al 8 2004 Horbaschek x yc pus 2004 0168837 Al 9 2004 Michaud et al trol for Repeated Unit Tentacles In Proceedings of SPIE vol 3839 2004 0210345 Al 10 2004 Noda et al Aug 1999 2004 0239490 A1 12 2004 Chiba et al Rudakevych Pavlo et al Micro Unattended Mobility System 2005 0092542 Al 5 2005 Turner MUMS In Proceedings of SPIE vol 3713 Jul 1998 2005 0159870 Al 7 2005 Tohdo et al SafeStop Wireless Emergency Stop System brochure TORC 2
38. nd a power circuit configured to distribute power to the mechanical components 20 25 30 35 40 45 50 55 60 65 2 and the external modules a safety control module installed on the mobile vehicle and connected to the main power circuit the automation module and the mechanical components a mode selector switch included in the safety control module and connected to the main power circuit and emergency stop switches connected to corresponding emergency stop buttons and the mode selector switch and configured to prevent a flow of current to substantially all of the mechanical compo nents and external modules in response to actuation of the emergency stop buttons An operational mode of the mobile vehicle changes in response to actuation of the mode selector switch The present teachings also provide a system for controlling the distribution of power within a mobile vehicle The system comprises mechanical components of the mobile vehicle configured to operate the mobile vehicle according to a user defined mode of operation a main power circuit ofthe mobile vehicle configured to transmit a power signal to the mechani cal components and to external modules connected to the mobile vehicle an automation assembly installed on the mobile vehicle connected to the mechanical components and to the main power circuit and configured to control and operate the mechanical components and distribute power from the main power
39. nt teachings installed within the safety control module is a mode selection circuit that includes a switch with positions corresponding to a predetermined number of for example three modes These modes can include a manual mode of operation an automatic mode of operation and a reset mode ofoperation When the switch in the mode selection circuit is actuated the safety control module and the modules and assemblies connected to the safety control module can oper ate according to the chosen mode The manual mode of opera tion can for example enable a circuit configuration whereby the mechanical assemblies and electrical circuits included in the mobile vehicle and able to operate the vehicle manually are powered via the vehicle s main power switch Thus while the safety control module is in a manual operation mode a US 8 237 389 B2 5 user is able to operate the mechanical assemblies and electri cal circuits necessary to operate the vehicle manually An automatic mode of operation can be characterized by autono mous operation of for example substantially all the mechanical assemblies and electrical circuits included in the mobile vehicle The automatic mode can enable the assem blies included in the automation module to control the opera tion of the mobile vehicle according to stored routines and according to user and system commands In accordance with certain embodiments the safety control module can further include a series
40. o receive the power signal from the main power circuit and distribute the power signal to the central control assembly 2 The mobile vehicle of claim 1 wherein the mechanical components are connected to electrical circuits US 8 237 389 B2 17 3 The mobile vehicle of claim 1 wherein the main com puter circuit continues to distribute current to the central control assembly in response to actuation of an emergency stop button 4 A system for controlling the distribution of power within a mobile vehicle the system comprising mechanical components of the mobile vehicle configured to operate the mobile vehicle according to a user defined mode of operation a main power circuit of the mobile vehicle configured to transmit a power signal to the mechanical components and to external modules connected to the mobile vehicle an automation assembly comprising a central control assembly installed on the mobile vehicle connected to the mechanical components and to the main power cir cuit and configured to control and operate the mechani cal components and distribute power from the main power circuit to the mechanical components a main computer circuit configured to receive the power signal from the main power circuit and distribute the power signal to the central control assembly emergency stop buttons installed on the mobile vehicle and connected to emergency stop switches responsive to actuation of the emergency stop buttons and
41. odule s internal circuits and assemblies Incertain embodiments installed proximate to edges ofthe rugged housing 305 are mounts 325 for mounting the safety US 8 237 389 B2 15 control module 10 to a surface The mounts 325 can comprise a rounded plate fused to the rugged housing 305 having an indentation through which a fastener can be placed An exem plary use of the mounts 325 is shown in FIG 7 where the safety control module 10 is mounted to a dashboard 382 of a mobile vehicle In this exemplary embodiment the mounts 325 can be placed flush with the dashboard 382 and a fastener can be placed into each mount s indentation and drilled into a surface of the dashboard 382 to anchor the mount 325 to the dashboard surface The mounts 325 can provide stability and support to the safety control module 10 by fastening the housing 305 to an additional surface Fastening can be accomplished with one or more of screws nails clips or any other mechanical component able to anchor the rugged hous ing 305 to a surface via the mounts 325 Referring to FIG 6A the safety control module 10 can comprise an instrument display panel 350 installed within the housing 305 external to the module s internal circuits and assemblies The instrument display panel 350 can include a mode selector dial and switch 345 included in the mode switch circuit 202 Each mode can be represented as a posi tion on the mode selector dial and choosing a mode of opera
42. perature sensor and the vehicle gear oil temperature sensor Operation of the Safety Control Module FIG 3 is a flow diagram depicting an exemplary embodi ment of a flow of current through a safety control module 10 when the module operates in one of the operational modes Flow of current through the safety control module 10 can be based in part on the state of the circuits and assemblies included in the safety control module 10 and based in part on the presence of a voltage source The safety control module 10 can be responsive to positional changes of the mode selec tor switch 345 when the main vehicle power switch is on 432 Operation of the safety control module 10 can be partly dependent on the power source made available when the main vehicle power switch included in the vehicle main power circuit 30 is on and the module waits until the power switch is in an on position 430 to resume operation When a voltage is present in the safety control module 10 the mode switch circuit 202 and the circuits and assemblies connected to the mode switch circuit 202 can be responsive to a mode change accomplished via actuation of the mode selector switch 345 The manual relay 224 can check whether the switch is in the manual mode of operation 434 and can direct power to the manual assembly 442 when the switch is in a manual mode position In various embodiments of the present teachings the cir cuits and assemblies connected to the automatic mode pi
43. r to the safety control module according to the operative mode Certain advantages ofthe present teachings will be set forth in part in the description which follows and in part will be obvious from the description or may be learned by practice of the present teachings The advantages of the present teach ings will be realized and attained by means of the elements and combinations particularly pointed out in the appended claims It is to be understood that both the foregoing general description and the following detailed description are exem plary and explanatory only and are not restrictive of the present teachings as claimed The accompanying drawings which are incorporated in and constitute a part of this specification illustrate one several embodiments of the present teachings and together with the description serve to explain the principles thereof US 8 237 389 B2 3 BRIEF DESCRIPTION OF THE DRAWINGS FIG 1 is a block diagram of an exemplary embodiment of circuits and assemblies included in the mobile vehicle and their interconnections and connections with a safety control module FIG 2 is a schematic diagram of an exemplary embodi ment of a safety control module in accordance with the present teachings FIG 3 is a flow diagram depicting an exemplary embodi ment of a flow of power through the safety control assembly FIG 4 is a flow diagram illustrating an exemplary embodi ment of a method implemented when an emerg
44. rectly connected to the vehicle s main power circuit and which can also be connected to the central control circuit included within the automation assembly The ability to communicate remotely with the vehicle and record essen tial system data associated with the emergency shutdown of the mobile vehicle can be facilitated by the central control circuit which can remain powered by the main computer circuit despite the emergency shutdown Displayed in FIG 1 is a block diagram illustrating an exemplary embodiment of connections between a safety con trol module 10 installed on an automated mobile vehicle 5 and additional modules and assemblies included on the mobile vehicle 5 The safety control module 10 can be in certain embodiments a stand alone structure that includes a safety control assembly enclosed within a housing that is further fitted with connectors and plugs able to mate with external wires cables and other connection links Each connector or plug included on the housing can be configured to mate with external cables with corresponding connectors to establish a communicative connection between the safety control mod ule 10 and the external modules or assemblies to which the external cables are linked The connectors and plugs can be rated for industrial or military use to ensure that the connec tors are both strong and durable Other embodiments of the safety control module 10 may include a rugged housing able to accommodate a
45. stop button 320 connected to the E Stop switch 220 included in the safety control module 10 can be mounted to the top of the housing 305 When the E Stop button 320 is depressed the E Stop switch 220 can be actuated and the emergency stop system can be further activated to remove power from sub stantially all of the assemblies included within the vehicle 5 While the illustrated exemplary rugged housing 305 is substantially rectangular in shape alternative housing shapes may be used including round triangular square or any other shape able to enclose and provide structure to the internal components of the safety control module 10 Other embodi ments of the safety control module 10 may not include a housing 305 but rather may include internal safety control module components integrated directly with the internal elec tromechanical components of the mobile vehicle FIG 4B illustrates a bottom panel of the housing 305 To further provide support and to ensure versatility the bottom panel can be fitted with mounting brackets comprising rails 340 The rails 340 can be configured according to the speci 20 25 30 35 40 45 50 55 60 65 16 fications for commercial rails such as for example Picatinny rails The rails 340 can alternatively or additionally include custom sized and configured rails able to mate with a corre sponding rail assembly Other embodiments of the safety control module 10 can comprise a hous
46. the automation relay 218 The resulting closed circuit can operate the mobile vehicle autonomously using the external control assemblies connected to the safety control module 10 via connectors included on the module s housing and using the safety control module s internal circuits and assemblies US 8 237 389 B2 9 The reset pin 208 can be connected to a diode 212 that is further connected to the hold down relay 216 The diode 212 can be included in the path between the reset pin 208 and the hold down relay 216 to ensure that current only flows from the reset pin 208 to the hold down relay 216 which can prevent reverse energizing the reset pin 208 by discouraging current flow from the hold down relay 216 to the reset pin 208 The reset pin 208 can be a momentary switch meaning that when the switch is actuated the switch s pin 208 returns to its normal position immediately after moving into a closed position Thus the reset pin 208 can be a momentary switch that is part of the larger mode selector switch 345 and is configured such that the reset pin 208 remains closed momen tarily and immediately returns to an open position Alterna tive embodiments ofthe safety control module 10 can include a reset pin 208 able to remain in a closed position for an indefinite period of time or until the switch is actuated to move the reset pin 208 back into the open position In certain embodiments the hold down relay 216 can be a latching relay with
47. the manual mode relay 224 is part of a circuit that includes all components connected to the automatic mode pin 206 and the manual mode assembly 15 can be powered by the power control circuits and assemblies included in the automation assembly An alternative circuit can be created when the manual mode relay 224 is closed such that the vehicle main power circuit 30 is connected in series with the manual mode assembly 15 This circuit layout can allow the manual mode assembly 15 to be powered and con trolled by an autonomous control system when the safety control module 10 is inan automatic mode In a manual mode however the manual mode assembly 15 can be powered directly by the vehicle s main power circuit 36 so that the user is able to manually operate the vehicle As shown in the embodiment of FIG 2 the automatic mode pin 206 can be connected to each of the E Stop switch 220 the E Stop button assembly 25 the redundant E Stop relay assembly 222 the hold down relay 216 and the auto mation relay 218 When the mode selector switch 345 is actuated such that the safety control module 10 is in an auto matic mode a closed circuit can be created that includes the vehicle main power circuit 30 the manual assembly 15 the emergency shutdown assembly 25 the automation assembly 20 the mode switch circuit 202 the main computer power switch circuit 210 the E Stop switch 220 the redundant E Stop relay assembly 222 the hold down relay 216 and
48. tion module that includes an automation assembly connected to the mechanical assemblies in the mobile vehicle The circuits and routines included in the automation module can be configured to operate and control various mechanical and electrical systems of the mobile vehicle such that the mobile vehicle operates autonomously according the automation module s circuits and routines In accordance with certain embodiments of the present teachings the safety control module can comprise a safety control assembly including circuits and mechanical assem blies enclosed within a rugged housing The housing can be rated for military or industrial use can be configured to reduce heat and shield the internal safety control assembly from electromagnetic noise and can be fitted with external mounts and rails to mount the safety control assembly to a surface Optionally installed on the housing are a plurality of connectors and plugs which can be rated for military or industrial use and can mate with a variety of communication links Communication links can include wires and cables but can alternatively include a wireless signal or other connection link ableto relay signals from an external module or assembly to modules and assemblies included in the safety control module via a communication link connected to the safety control module via a connector or plug installed on the safety control module s housing In accordance with certain embodiments of the prese
49. ude a manual mode of operation allowing the automation assembly 20 to have semi autonomous control over aspects of the vehicle s operation while the user has control over other aspects Similar to the manual mode assembly 15 the automation assembly 20 can include a number of individual automation kits 40 The vehicle 5 can be fitted with a single automation assembly 40 able to control the operation of most of the vehicle s electrical and mechanical assemblies The automa tion kits 40 can provide control circuits and routines able to automate operation of the vehicle and power the manual components 35 and other assemblies and systems included on the vehicle 5 and necessary to operating the vehicle 5 autono mously Alternative embodiments of the vehicle 5 may include multiple kits 40 where each kit 40 is dedicated to controlling vehicle component subsets Still other embodi ments ofthe vehicle 5 can include additional kits 40 dedicated to theoperation of manipulators and actuators installed on the vehicle 5 such as a head an arm or a movable neck In various embodiments the emergency shutdown assem bly 25 includes a string of emergency stop E Stop buttons 45 that can be for example connected in series and config ured to send an electrical pulse to the safety control module 54 when one of the buttons is depressed Each button 45 can be connected to a switch so that when the button 45 is depressed the switch is actuated A connector 54
50. undant E Stop relay assembly 222 per the above exemplary operation embodiment further causes current to be removed from the C2 pin in the hold down relay 216 In the automatic mode of operation the hold down relay 216 is energized such that the relay 216 is closed The hold down relay 216 can be a normally open relay that returns to the open position when current is removed from the inductance coil included in the hold down relay 216 The open position is characterized by a position in which the switches contact the C3 and C6 pin When the hold down relay 216 moves to the open position power is removed from the C2 pin and the C5 pin Tied to the C5 pin via a wire is the C4 pin which is further connected to the inductance coil included in the hold down relay 216 and the wire 232 con necting the D1 pin of the automation relay 218 to the hold down relay 216 Removal of power to the C4 pin de energizes the inductance coil included within the hold down relay 216 and removes current from the automation relay 218 Removal of current from the automation relay 218 causes the switch in the automation relay 218 to open or more specifically to move to the D3 position When in the D3 position digital signals can no longer pass from the automation assembly 20 to the automation relay 218 thereby causing the automatic mode LED 214 to power down In certain embodiments the automation assembly 20 can include a central control assembly 252 comprising contro
51. wer through out the circuits included within the safety control module 10 according to the chosen mode Modes can be chosen via the mode selector switch 345 which can be for example a three pin selector switch included within the mode switch circuit 202 and which can be operated by turning the switch s exter nal dial installed on the front panel 350 of the safety control module housing 305 Each pin within the mode selector switch 345 can represent a different mode and can include oneor more ofa manual mode pin 204 an automatic mode pin 206 and a reset pin 208 When the mode selector switch 345 is actuated via the switch s external dial the safety control module s operative mode can be altered to a mode corre sponding to the current chosen mode of operation 20 25 30 35 40 45 50 55 60 65 8 In various embodiments the mode switch circuit 202 can be connected directly to the vehicle s main power circuit 30 such that current flows from the vehicle s main power circuit 30 through the mode switch circuit 202 and further through the mode selector switch 345 When the mode selector switch 345 is actuated the path of the current can be altered such that current flows through a chosen mode pin An exemplary situation is one where the mode selector switch 345 is actu ated so that an automatic mode is chosen In this situation current can flow from the vehicle s main power circuit 30 through the mode selector s
52. wiring interface whereby external modules and assemblies would be connected directly to the safety control module s internal circuits and assemblies Still other embodiments may include a safety control assembly inte grated directly into a mobile vehicle or other module or sys tem These embodiments would include a safety control 0 ha 5 20 25 35 40 45 65 6 assembly with connectors installed directly on the circuits and assemblies included in the safety control assembly Still other embodiments may include an embodiment of the safety control module 10 where the circuits and assemblies included in the module are integrated directly into mobile vehicle and do not include connectors or plugs Further embodiments of the safety control module 10 may include connectors that are not rated for military or industrial use or connectors and plugs that are alternatively or additionally chosen based on their ability to pass various levels of current According to certain embodiments of the present teach ings the vehicle s main power circuit 30 can be connected to the safety control module 10 via a power connector 58 This circuit 30 can be the power source forthe mobile vehicle 5 the safety control module 10 the automation assembly 20 the manual assembly 15 and the emergency shutdown assembly 25 When the power switch included in the circuit 30 is in an off position no current is passed to the circuits and asse
53. witch 345 to the automatic mode pin 206 Circuits and assemblies connected to the automatic mode pin 206 can therefore receive current when the switch 345 is an automatic mode In certain embodiments a wire can connect the manual mode pin 204 to the manual mode relay 224 Within the manual mode relay 224 the wire can further connect the manual mode pin 204 to an inductance coil included within the manual mode relay 224 The manual mode relay 224 can be a normally open relay that closes a switch in response to a magnetic force created when the inductance coil is charged via the wire connecting the manual mode pin 204 to the manual mode relay 224 When closed the switch can remain closed until current is removed from the inductance coil further eliminating the magnetic flux and corresponding mag netic force A counterforce generated by a spring or other type of force storing component in response to the elimination of the magnetic flux can reposition the switch so that the relay returns to an open position In certain embodiments of the present teachings the vehi cle s main power circuit 30 can be connected to the manual mode relay 224 via a connecting wire 270 linking the power connector 58 to the closed position pin on the manual mode relay 224 A wire 256 can connect an open position pin on the manual mode relay 224 to the redundant E Stop relay assem bly 222 This configuration can operate so that when the manual mode relay 224 is open
Download Pdf Manuals
Related Search
Related Contents
Communiqué de presse DCON for DASYLab Samsung WB50F Инструкция по использованию DBR-S220I ADENDA Nº 2 - Hospital Manuela Beltran Empire Comfort Systems VFCT25-3 User's Manual User Manual ¡IMPORTANTE! Copyright © All rights reserved.
Failed to retrieve file