Home

CS4/CSL - temperature variation of susceptibility

image

Contents

1. cryostat is properly mounted in the notch if the tube for output the liquid nitrogen is not damaged Check also if the temperature sensor is connected a Switch on the Kappabridge the power switch EA PS must be always ON it is remotely controlled by CS4 m Run program SUFYTE EXE 7 After the program is started the communication of the instrument with the computer via the serial channel RS 232 COM1 or COM2 is tested automatically 7 If the communication is O K and initialization of Kappabgidge is successful the program initializes the CS4 unit and tests the current connected device furnace or cryostat and required confirmation or change m If there is no initialization problem the initial menu appears after entering the file output path specimen file name and name of empty furnace cryostat for later correction m If everything is O K prepare the specimen and insert the measuring tube with the thermometer into the cryostat 7 The calibration procedure is available only if the temperature in the cryostat is higher than 5 C If you wish to calibrate the instrument perform it at the beginning of daily session O gt 21 Follow the instruction on the computer screen Fill liquid nitrogen very slowly and wait for required temperature Do not fill more nitrogen than the level where the teflon white body is decreasing its diameter After the minimum temperature is reached the computer beeps it means be ready to apply
2. susceptibilities are stored in the file and displayed on the screen If one is interested in bulk susceptibilities one has to enter the data of the specimen volume or mass and density or the bulk susceptibility of the measured specimen at the room temperature into the file This can be made after measurement using the program CUREVAL which enables the thermomagnetic curves to be presented in various ways correction for empty furnace smoothing etc n The way of determination of the Curie temperature from measured curve is illustrated on the following figure It should be noted that this way is not the only one The inflexion point is also sometimes used as Curie temperature point In this case its value is a little bit lower 2500 2000 1500 p 1000 Calibration During this procedure follow the instruction on the screen This calibration is made as for the bulk susceptibility value along the vertical axis of the calibration standard Before the calibration install the adapter for manual holder The standard is fixed in the manual holder vertically in the first measuring position Perform the calibration after at least 10 minutes of warm up time Generally it is recommended to calibrate the bridge every day before beginning the work However since the gain changes of the instrument are usually very small and in the case the absolute value of susceptibility is not precisely important like in temperatur
3. 2 3 ene hos aed eect ie een Rte Rh a ee ee O 20 Preface This Supplement is intended for Users who already have Kappabridge MFK1 FA or MFK1 A and extend the instrument by CS4 and or by CSL Apparatus Ol The Part 2 of the User s Guide MFK1 FA MFK1 A Apparatus CS4 CSL describes the measurement of temperature variation of magnetic susceptibility using the high temperature furnace CS4 and low temperature cryostat CSL CS4 CSL Description The CS4 and CSL High Low Temperature Apparatuses have been designed for measurement in connection with new models Kappabridges MFK1 FA or MFK1 A The CS4 High Temperature Furnace Apparatus is used for measurement of the temperature variation of low field magnetic susceptibility of minerals rocks and synthetic materials in the temperature range from ambient temperature to 700 C The apparatus consists of non magnetic furnace with a special platinum thermometer CS4 temperature control unit laboratory power supply EA PS cooling water reservoir with pump and argon flow meter The specimen is placed in a measuring vessel which is heated by a platinum wire in three selectable heating rates The temperature is measured by special platinum thermometer The protective argon atmosphere can be applied during heating to prevent oxidation of measured specimen In order to perform susceptibility measurement at a chosen temperature range the equipment moves automatically the furnace into and out of the pick up c
4. Ver 4 0 Mar 2009 APPARATUS CS4 CSL User s Manual Supplement to MFK1 FA MFK1 A User s Manual Apparatus for measuring temperature variation of magnetic susceptibility AGICO Advanced Geoscience Instruments Co Brno Czech Republic Contents CONTENTS ode dl dali redee 2 PREPA aseado olaa A AA EENE EE E A A ATEO bess BORE 3 CS4 CS E DESCRIPTION A ltda dica 4 ES4 ACES SPRCIFICA TON Sit A lt ne eae ee 5 INSTALLING AND OPERATING THE CS4 COSL cccccecccccccsscccesscccesscsccsscecessseccsssescssseecesseccsssescesseecessseceseeecssseeceseecesseesesnatecs 6 High Temperature Furnaces 2 5 0 6 a a dd diodes cad 6 Temperature SENSO and PA serres nnee eat spenovssnziae diss tehvercesneiecsetevveceenaeslesuieessesenestis ite sateetecdd enstvengeetee is 8 Argon Flow Meten sss sce e o o e 9 Measuring T EE AEE cite titan cielo seller le dl oct a ta dol coos ds hes ayo lo tee Sled cage tanta Ms sien O 10 Low Temperature Cry Ostat atar A A e ESSERE 11 MEASURING HIGH TEMPERATURE VARIATION OF MAGNETIC SUSCEPTIBILITY ccccccscscscscccscsccccccesessssssssesescsessscnsssssssscssssscseceseeess 12 Running the Progra esrar boc A A a Seen RAE ve ees 12 Cali rat Onices2sce2 i veces ok estes sce ia cae ees ch es eB Ee eS a EE pL EES 16 Data File Descrip a ee eee anes 17 MEASURING Low TEMPERATURE VARIATION OF MAGNETIC SUSCEPTIBILITY cccccccccccssesesssssesesecessnsescsscssessssscseseceseseseseseeeeeeens 20 Running th Programs 24
5. am tests the water circle In case of BAD COOLING error message water flow lt 0 3 l min persisting more than one minute check if water pump is connected to the CS4 unit and if water tubes are not pressed somewhere and if the water tubes are properly connected The tubes between the furnace and outlet inlet on upper part of pick up unit must not be crossed If the water flow is not sufficient and in the furnace is air it is necessary to deaerate the cooling system The most easiest way how to deaerate the cooling system is the following Loose the cap of the water container and raise the cap with the pump approximately 30 40 cm the pump should remain immersed in the water and wait for regeneration of proper water flow Then immerse the pump to its normal position and fix the cap Check if the tubes are not twisted In case the water container is placed for example under the table and picking up the cap of water container is not possible you can use the another way Be careful during this operation and cover the pick up coils to protect them Press the water input tube to stop running of water for a while going from outlet on the upper part of the pick up coils denoted as OUT to the furnace open water circle by pulling the tube from inlet IN on the upper part of pick up coils release the pressed water input tube and wait until water without air is running out from the opened tube Then press the water input tube agai
6. argon gas to force out the nitrogen out of the cryostat Wait for the message Apply Argon and Start Measurement then use argon gas flow about 20 l min for approx 3 sec wait a few seconds and apply argon once again two or three times When the argon is flowing into the cryostat press the front hole by finger at the same time to increase the pressure of the argon inside the cryostat to achieve easier deplenishing of the cryostat If there is no liquid nitrogen inside the cryostat start measurement by pressing START Key F5 During measurement you can change the value Tmax and the scale for susceptibility axis in SI unit Examples of Low Temperature Measurement with CSL Ktot 105 Last Revision 02 Mar 09 E 6 SI Ktot E 6 SI 10 gt MORIN TRANSITION IN HAEMATITE EMPTY CRYOSTAT after smoothing antiparallel spins canted spins 2 r r r r T T t T T T 1 100 50 o 200 150 100 50 Oo Temperature C Temperature C Ktot E 6 SI 10000 VERWEY TRANSITION IN MAGNETITE 9000 8000 7000 6000 5000 cubic structure rhombic structure 4000 4 3000 T T T 1 100 50 Oo Temperature C
7. ater circle for shielding the pick up coil of the Kappabridge from the hot furnace The main parts of the cooling system are double mantle of the furnace pipes flow indicator and water container with pump An outlet of warm water WATER OUT of the PICK UP unit left side is connected by approx 2 5 m long tubing with an inlet IN of the water container An inlet of cold water WATER IN of the PICK UP unit left side is connected by approx 2 5 m long tubing with an outlet OUT of the water container The water reservoir must contain approx 50 litres of distilled water It is recommended to add the growth inhibitor of bacteria and fungi 25 ml for 50 is sufficient e g BAD STABIL manufacture NeoLab oder no 1 6095 Cable from the pump of the water reservoir should be connected to the socket situated on the CS4 Temperature Control Unit After first filling with water or after any other aerating of the cooling system it is necessary to carry out its disaeration It is recommended to do it also after the apparatus has not been in function for a prolonged period of time The process of the disaeration of the cooling system is as follows Connect the CS4 apparatus to the MFK1 FA Kappabridge see Chapter in Manual Part 1 Installation Procedures Interconnection Scheme Fig 1 do not forget to connect temperature sensor Switch on the Kappabridge Run the program SUFYTE EXE After activation of the CS4 FURNACE the progr
8. e range CS4 Temperature range CSL Accuracy of temperature sensor Argon gas flow requirement protective atmosphere Amount of liquid nitrogen cooling cryostat Power requirements Power consumption Dimensions Mass Temperature control unit Laboratory power supply EA PS Water container with Pump Argon flow meter Furnace Cryostat 0 25 cm 6 5 mm 1x10 SI ambient temperature to 700 C 192 C to ambient temperature 2 C see also IEC 751 Pt100 approx 100 ml min approx 0 25 for one cooling 240 230 120 100 V 10 50 60 Hz 350 VA 230 mmx 190 mmx 130mm 1 7 kg 310 mmx 240 mmx 130mm 8kg 380 mm x 380 mm x 700 mm 2 kg without water 32 mm x 32 mmx 140 mm 1kg diameter 60 mm length 220 mm 0 5 kg Installing and Operating the CS4 CSL For connection of the CS4 CSL to the Kappabridge MFK1 FA or MFK1 A follow the Interconnection Scheme MFK1 FA CS4 CSL see Chapter Installation Procedures in Manual Part 1 Kapabridge MFK1 FA CS4 CSL High Temperature Furnace The power for heating the furnace is connected through two wire cables fixed by two screws The heating wire itself is made of platinum bifilar winding The specimen vessel the heating tube and the insulation tube are made from silica glass while the furnace outer tube is made from perspex The temperature insulation of the furnace consists of a layer of AlO powder and a layer of cooling water The CS4 apparatus is equipped with a closed w
9. e variation susceptibility measurement it is not quite necessary to calibrate the bridge every day The instrument should be always calibrated when the frequency was changed The program checks and displays the day of the last calibration and recommends to calibrate in case the last calibration was performed more than 100 days ago 17 Data File Description The data obtained by measurement are stored in random access ASCII files made automatically during measurement Each file contains the data of one specimen and has the extension CUR for high temperature data and CLW for low temperature data m The first record contains the abbreviations of the parameters stored in individual columns 7 The second and other records contain the values of the measured and calculated parameters later by program Cureval specified in the following table Abbreviation Length Parameter stored TEMP 9 bytes temperature in degrees centigrade TSUSC 9 uncorrected total in phase susceptibility CSUSC 10 total susc corrected for empty furnace NSUSC 6 susceptibility normalized by maximum value BULKS 12 bulk susceptibility FERRT 9 total susc of separated ferromagnetic comp FERRB 9 bulk susc of separated ferromagnetic comp TIME 7 time of measurement in seconds AUXI 9 auxiliary data 7 The column containing the auxiliary data is not headed AUXI but by the name of the free furnace for which the measured data are corrected F20056 in our example shown b
10. elow The suceptibilities except the normalized ones are given in the order of 1076 in unit SI The file appears as in the following example TEMP TSUSC CSUSC NSUSC BULKS FERRT FERRB TIME F20056 21 2 164 4 12 94 650 815 0 23 147 2 0 815 21 5 164 4 12 74 640 802 4 2 1 135 3 16 170 Examples of High Temperature Measurement with CS4 Ktot 165 170 175 180 Ktot 100 80 60 40 20 E 6 SI EMPTY FURNICE raw data before smoothing T T T T T T T T r T T T r T T 1 0 100 200 300 400 500 600 700 800 Temperature C E 6 SI Hopkinson Peak HAEMATITE F T f E T T T E E E 1 0 100 200 300 400 500 600 700 C Temperature Ktot 800 600 400 200 200 Ktot 100 80 60 40 20 18 E 6 SI Curie Temperatures NIKL MAGNETITE ell without correction for furnace y T T T T y T T T T T y 1 0 100 200 300 400 500 600 700 Temperature C E 6 SI ILMENITE 0 100 200 300 400 500 600 700 C Temperature 19 The following examples illustrate that some new fabric can progress and or decay during the first heating The repeated measurement of the already once measured specimen may be different form the first one The interpretation of the curves is thus not quite clear and simple susc S 0 20 specimen M1 first measurement 0 15 0 10 heating specimen M1 second measurement
11. esistance depends on temperature Thermometer is connected to the system by 15 pin connector the same as used for the rotator of the MFK1 FA n If you connect the thermometer or rotator be sure the Kappabridge is OFF n The sensor and the silica glass pipe are very fragile For this reason a very careful manipulation is needed to prevent damaging the pipe when it is inserted in or taken out from measuring tube with specimen Fill the specimen to the measuring vessel place it in the horizontal position along the vessel and insert carefully the thermometer Then set the vessel with thermometer to vertical position and shake gently the specimen down step by step as shown at above pictures Do not push the thermometer into the specimen which is on the bottom of the measuring vessel 9 n The basic type of a specimen measured is fine powder of a mineral or rock Small fragments can also be used in this case add AlO powder to prevent position changes of the fragment s during movement up and down For correct measurement the specimen should be placed in the area of homogeneous temperature and homogeneous measuring magnetic field This area extends at the length of 20 mm from the bottom of the specimen vessel The temperature sensor is placed in the centre of this area In this case the measurement of a specimen temperature is the most precise and the measurement of the specimen susceptibility is the most sensitive 7 Temperature sensor s
12. g heating rate only 30 C below max temperature you can measure all the curve with maximum heating and cooling rate very fast approx 40 min for all curve up to 700 C This can be used e g for empty furnace measurement or for brief testing purposes The option heating rate 4 is not saved in config file SUFYTE SAV it must be set before each measurement exclusively The key F4 controls the time of the thermal treatment of the specimen at the maximum temperature The default value 0 means that the temperature immediately after reaching the maximum temperature set by the F1 key starts decreasing If longer heating at the maximum temperature is needed it must be set using the key F4 However the thermal treatment at the maximum temperature cannot be set longer than 20 min The key F6 sets the field After pressing the key the required Field can be entered The key F7 sets the frequency The key F5 is pressed if one agrees with the input data of the entire table The program also continues after 30 s of no activity The following menu appears on the screen 1Menu 2CStd 3 CAL 4 SSTART 6 7 8 9 10 EXIT Key Fl Return to the initial menu Key F2 Calibration Standard nominal value Key F3 Calibration procedure Key F5 Activates the measurement procedure Key F10 Exits the program Note The keys F3 and or F5 are not available in case the nominal value of calibration standard and instrument gain are not saved in configuratio
13. hould be carefully cleaned after each specimen measurement For cleaning use cotton wool which can be soaked with various solvents e g acetone ethanol if necessary After cleaning dry up the sensor S 7 Do not use ultrasonic cleaning for thermometer Take care of outlet wires of the thermometer as well In any manipulations do not bend them too much Argon Flow Meter The protective Argon atmosphere can be optionally used to prevent chemical changes of the specimen during heating The appropriate flow is about 6 1 hod which corresponds approx to the one half of argon flow meter scale 10 Measuring Vessel The specimen silica glass vessel should be cleaned regularly to achieve the right results Ultrasonic cleaning is a very effective and a very quick procedure for cleaning measuring vessels Cotton wool wound on a skewer is used for mechanical cleaning of the specimen vessel interior Cotton wool can be soaked with various solvents e g acetone ethanol Chemical cleaning is needed if a specimen was smelted during measurement A m Contact a chemist for rules for manipulation with acids before using following procedure Be careful while operating with acids put acid in a cylindrical vessel made from laboratory glass put acid in the specimen vessel insert the specimen vessel into the acid let acid act for several hours exchange acid several times pour acid out rinse the specimen vessel with water
14. n close water circle release the water input tube and check if the GREEN led COOLING on the Pick up Unit is ON and if the water flow is at least 0 5 l min If necessary you can optionally open the cooling system in the point inlet IN on the cap of water container and use the above described procedure similarly 8 Correct flow ofthe cooling water is monitored during the operation of the apparatus by control software and by green LED located on the right side of the pick up unit of MFK1 FA The LED is on if sufficient amount of water is flowing Any interruption of the water flow longer than two seconds is signalled by this LED going off and the heating of the furnace is automatically switched off and the measurement is interrupted 7 The optimum condition for the measurement is reached when the temperature of water in the container and the temperature in the laboratory are the same Therefore we recommend to switch on the cooling system approximately 2 3 hours before starting the measurement every time after new tanking or replenishing the container Normally this is not necessary because the temperature of water is equal to the ambient temperature In case the new water was stored before filling to the reservoir in another room with different temperature and the measurement was run immediately the drift of coils during measurement may be increased Temperature Sensor and Specimen Thermometer is special platinum sensor whose r
15. n file SUFYTE SAV After activating the START key F5 the programs starts the measurement of the specimen Before pressing F5 it is necessary that the powdered specimen is in the measuring vessel the thermometer is inserted in the specimen and the vessel is inserted in the furnace During measuring the screen of the computer has the outlook whose example is shown The cooling curve is illustrated on the screen as dashed line 15 C MFK SUFYTE xxx cur 200 A m F1 Water Flow 0 75 l min Temp 52 5 C Heat 420 mA H 100 Heat Rate 3 Tmax 700 Tmin 40 o E6 SI 20 40 HAEMAT CUR 60 80 Heating Cooling o 100 200 300 400 500 600 700 423 susc Re Im 158 9 E 06 45 E 09 Water 0 75 l min Linger 0 min 1Menu 2 3 4 5STOP 6 7 8 9 10 7 The measurement can be aborted any time using STOP Key F5 The STOP have to be confirmed in 10 s otherwise the measurement continues The heating is switched off but the program does not terminate until the temperature is lower than 100 C 7 Do not manipulate with measuring tube and with the thermometer until the program terminates 7 The message BULK in the lowermost line alternates during measurement with the message Zeroing in progress It informs the operator about current procedure The message Transferred informs us of how large part of the signal has been transferred from the measuring unit for further evaluation during each Bulk measurement The mes
16. nimum temperatures to which the investigated specimen should be heated and cooled respectively The pre set values are those of the last measured specimen stored in the configuration file SUFYTE SAV The values 700 C and 40 C are set in the new instrument because they are probably the most common ones useful in the investigation of the most rocks They are also the limit values The maximum temperature cannot be chosen higher than 700 C otherwise the message Illegal value appears and the program waits for new input and the minimum temperature cannot be chosen lower than 40 C In addition the minimum temperature cannot be set higher than 100 C because of the necessity of cooling the furnace before measuring the next specimen Within the above interval the temperatures can be selected provided the difference between maximum and minimum temperatures is at least 50 C For example if one investigates pyrrhotite bearing rocks and is interested only in the Curie temperatures of pyrrhotite one would select the maximum temperature about 350 C and considerably save measuring time The key F2 controls the susceptibility scale of the figure of the susceptibility vs temperature relationship to be drawn on the screen of the computer during measurement The default values 0 0 mean that the program selects the suitable scale automatically If one has some preliminary idea of the susceptibility to be measured one can choose the scale corresp
17. oil of the Kappabridge The quasi continuous measurement process is fully automated being controlled by the software The CSL Low Temperature Cryostat Apparatus is used for measurement of the temperature variation of low field magnetic susceptibility of minerals rocks and synthetic materials in the temperature range from minus 192 C to ambient temperature The apparatus consists of non magnetic cryostat with a special platinum thermometer CS4 temperature control unit and laboratory power supply EA PS The specimen is placed in a measuring vessel which is cooled inside the cryostat by liquid nitrogen and then heated spontaneously to a given temperature The argon gas is needed for deplenishing the liquid nitrogen out of cryostat Temperature is measured by platinum thermometer The quasi continuous measurement process after cooling the specimen is fully automated being controlled by the software Program CUREVAL serves for off line data post processing and graphical representation of the data obtained by measurement of temperature variation of magnetic susceptibility of rocks by means of the CS4 CSL High Low Temperature Apparatus and the Kappabridge The program for MS DOS and MS WIN operating systems is available for free download at company web sites www agico com CS4 CSL Specifications Maximum specimen volume fragments or powder Inner diameter of measuring vessel Sensitivity to susceptibility changes 976 Hz 400 Am Temperatur
18. ondingly The key F3 controls the heating rate The default value heat rate 3 corresponds approximately to the rate of 11 C per minute which is suitable for the most rocks heating the specimen up to 700 C and its cooling down to 40 C takes approximately 2 1 4 hours For special studies slower heating rates can be used 1 corresponds approx 6 5 C min or 2 approx 8 5 C min but one must realize that such as measurements take correspondingly longer time Temperature Heat4 change point 480 C o 3000 6000 9000 12000 Time s If you select value 4 extra you are asked to enter temperature point of changing the heating rate This point is calculated by default from Tmax and Tmin temperatures which should be set before setting the temperature point of changing the heating rate Be sure the point is set properly in case you change Tmax and or Tmin after setting the temperature point of changing the heating rate The heat rate is approx 35 C min before point of changing heating rate on heating curve and after point of changing on cooling curve and approx 8 C min after point of changing on heating curve and before point on cooling curve It is recommended 14 to set the temperature point at least 50 to 100 C bellow expected Curie temperature This option accelerates the measurement in case you are interested in particular Curie temperature Remark If you set the temperature point of changin
19. sage Range informs us of the measuring range set up during auto ranging to measure the specimen The leftmost number in the lower line 423 in our example is the succession number of the measurement of the pair of susceptibility and temperature values 7 The susc is the measured total susceptibility value while Temp is the measured temperature value in degrees centigrade The value Heat contains an information of the heating current in mA units and arbitrary units steps of step motor controlling auto transformer The values Tmax and Tmin are the set up values of the maximum and minimum temperatures respectively 16 7 The values Tmax and Tmin can be changed also during measurement after pressing F1 The measurement is paused for short time new temperatures are set up and the measurement continues It should be emphasized that the maximum temperature cannot be selected lower than the actual temperature in the measurement process 7 The thermomagnetic curve is drawn automatically during the measurement The computer selects itself the most convenient susceptibility scale while the temperature scale is always the same i e from 0 to 700 C In the case that one wishes to have another susceptibility scale one can press F1 and adjust the susceptibility scale manually It should be emphasized here that the measured susceptibilities are the so called total susceptibilities i e those not corrected for the specimen volume or mass These
20. several times dry the vessel carefully n Some recommended acids a HCI b H SO c the strongest acid is the chrome sulphur acid prepared as follows use 15g of K Cr 0 and 200 ml cm of concentrated H SO crush finely K Cr O in a porcelain or achate mill dissolve this powder in concentrate HSO 11 Low Temperature Cryostat Cryostat is used for measurement of temperature variation of magnetic susceptibility in temperature range 192 C to ambient temperature Before running SUFYTE program which controls the measurement prepare the cryostat to its operating position n Switch off the system m Put the high temperature furnace to its standby position without disconnecting it Standby position is the place in the black big hole on the pick up unit Install the cryostat to the holder and connect the 9 pin connector located on the upper part of the pick up unit A m Check if the cryostat is properly mounted in the notch and if the tube for output the liquid nitrogen is not damaged 12 Measuring High Temperature Variation of Magnetic Susceptibility The program SUFYTE serves for on line measurement of temperature variation of magnetic susceptibility by means of the CS4 Apparatus and MFK1 FA or MFK1 A Kappabridge in temperature range from ambient temperature to 700 C This program requires MS DOS ver 4 0 and higher and VGA graphic card It works also under MS WIN OS but in this case all possible savers sho
21. susc E 3 SI 0 05 cooling 0 00 0 i 7 400 300 300 400 B00 506 700 800 TIC 0 100 200 300 400 500 600 700 800 T C specimen Mr firstimeasurament specimen M7 second measurement susc SI susc SI 0 3 0 3 0 2 o2 0 1 0 1 L 0 0 100 200 300 400 500 600 700 T C o ce gt 0 100 200 300 400 500 600 700 Tic 20 Measuring Low Temperature Variation of Magnetic Susceptibility The program SUFYTE serves for on line measurement of temperature variation of magnetic susceptibility by means of the CS4 and CSL Apparatus and Kappabridge MFK1 FA or MFK1 A in temperature range from 192 C to ambient temperature This program requires MS DOS ver 4 0 and higher and VGA graphic card It works also under MS WIN OS but in this case all possible savers should be off The operation of the program SUFYTE for low temperature range is very similar to high temperature measurement only some parameters which have no sense in low temperature measurement are omitted Running the Program m Install the high temperature furnace to its standby position without connecting it If you used in the last measuring session SAFYR programme with U D option disabled the plastic cylinder may be still present in the coil remove the plastic cylinder from coil Install the cryostat to the holder and connect the 9 pin connector located on the upper part of the pick up unit 7 Check if the
22. uld be off Running the Program A Check if the temperature sensor is connected and if the cooling system is closed If you used in the last measuring session SAFYR programme with the option U D DISABLED the plastic cylinder may be still present in the coil remove the plastic cylinder from coil Switch on the Kappabridge the power switch EA PS must be always ON it is remotely controlled by CS4 Run program SUFYTE EXE After the program is started the communication of the instrument with the computer via the serial channel RS 232 COM1 or COM2 is tested automatically If the communication is O K and initialization of Kappabgidge is successful the program initializes the CS4 unit and tests the current connected device furnace or cryostat and required confirmation or change If there is no initialization problem the initial menu appears after entering the file output path specimen file name and name of empty furnace cryostat foSr later correction Select key F1 F6 F7 forver FA and FB F1 MAX temperature 90 to 700 C 700 F1 MIN temperature 40 to 100 C 40 F2 y axis min susceptibility SI units O auto scale 0 F2 y axis max susceptibility SI units O auto scale O F3 heating rate slow 1 medium 2 fast 3 extra 4 3 F4 linger at max temperature minutes 0 F5 CONTINUE F6 Field 2 to 700 A m 200 F7 Frequency 1 to3 F1 13 By means of the key Fl one can choose the maximum and mi

Download Pdf Manuals

image

Related Search

Related Contents

AUTOCHLADNIČKA NÁVOD K OBSLUZE    Conheça o Seu Refrigerador  G-270ST/G-280ST USER MANUAL - radio  Engineers Jaws  ー取扱説明書(本書)  Avteq GMP-350S-TT1  N2125:User Guide V1.0.0:Italiano  MANUEL D`UTILISATION  

Copyright © All rights reserved.
Failed to retrieve file