Home
LYPLC Ex1 Ex2
Contents
1. FNC 39 16 bits SFRD amp SFRD P 7 Steps EX EXis EXin EXon SFRD P Operands lt S gt KnX KM Kns T C D V Z n gt lt 0 gt 2 256 Flag X10 S D n SFRD P 01 020 K10 pointer D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D20 When X10 OFF gt content of D2 stored into D20 and content of D1 decreased 1 D1 D1 1 When contents of source device S are equal to 0 i e the FIFO stack is empty zero flag M8020 is turned on This instruction will always read the source data from the register S 1 5 Applied Instructions Zone Reset FNC 40 16 bits ZRST P 5 steps EX EXis EXin EXon ZRST P Operands D1 D2 gt K H KnX KnY KnM KnS T C D VZ Operands lt D1 D2 gt X Y M S Flag D1 D2 X0 ZRST 50 599 ZRST C235 C255 The range of specified devices are reset for data devices the current value is set to 0 and for bit elements the bit status are turned OFF The specified device range cannot contain mixed devices types i e if COO specified as the first destination devices D1 then cannot paired with T99 as the second devices If D1 is bigger than
2. 158 16 bits DRVI 9 steps EXin EXon D DRVI 32 bits D DRVI 17 steps Operands S1 S2 gt KH KnY KnM T C D 2 Operands lt D1 x Y M 5 Flag M8029 X10 S1 S2 D1 D2 I DRVI K1000 000 00 02 S1 specify output pulse number Don t care flag M8134 M8135 S2 specify output frequency 16bits 10 32 767Hz 32bits 10 100 000 Hz D1 specify pulse output signal point gt only 00 01 D2 specify direction output signal point only 02 03 For YOO or 01 this instruction can be used once and only transistor module can be selected When executing DRVI busy flag M8182 00 M8183 Y01 will be set automatically by system When output pulse modify the content of S1 S2 is ineffective Set accelerate decelerate time separate flag 8002 K100 08168 Set axis 1 maximum speed DMOV 100 000 08156 Set axis 1 max output frequency MOV K100 D8164 Set axis 1 accelerate time ms MOV K1 000 D8165 Set axis 1 decelerate time ms m SET M8150 ZRST 000 499 10 t SET M100 M100 X10 POSIT
3. Main unit Ex1s series Ex1s24MR 16IN 08OUT Relay output 1524 16IN 08OUT Transistor output Ex1s32MR 16IN 16 Relay output 1532 16IN 16 Transistor output Main unit series Ex1n16MR O8IN 08OUT Relay output Ex1n14MT O8IN 06OUT Transistor output Ex1n24MR 16IN O80UT Relay output 24 16IN 08OUT Transistor output Ex1n32MR 16IN 1600 Relay output Ex1n32MT 16IN 16OUT Transistor output Main unit Ex2n series Ex2n24MR 16IN 08OUT Relay output Ex2n24MT 16IN 08OUT Transistor output Ex2n32MR 16IN 16OUT Relay output Ex2n32MT 16IN 16OUT Transistor output Analogue module Ex1s2AD 2CH Analog input Ex1s2TC 2CH Thermocouple Ex1s2LD 2CH Load cell Ex1s2PT 2CH PT100 Communication module without photo couple EX232BD RS232C interface EX485BD RS422 485 interface Communication module with photo coupler EX232ADP RS232C interface EX485ADP RS422 485 interface Remote module EXRMO808R O8IN 08OUT Relay output 0808 O8IN 08OUT Transistor output
4. Pulse V 157 16 bits PLSV 7 steps D PLSV 32 bits D PLSV 13 steps Operands lt S gt KH KnY KnM T C D 2 lt S gt Operands D2 2 X Y M S lt D1 gt Flag M8029 M0 S D1 1021 ES e PLsv D100 00 02 5 assign output frequency and forward reverse direction 16bits 10 32 767Hz 32bits 10 100 000 Hz D1 assign pulse output point gt fixed 00 01 output point D2 assign direction output point gt fixed YO2 YO3 output point About above mentioned example if D102 0 then it is without target running mode like fig 157 1 157 2 if 0102 90 then it is target running mode When pulse output can change content of S but can t change sign If drive contact OFF then decelerate to bias speed stop directly M8140 and M8141 are mark location change flag Following mode can reach refer to Application Note X14 8132 1 16 D102 0 D104 0 X12 fig 157 1 X14 M8132 0 X16 D102 0 D104 0 X12 fig 157 2 M8132 0 k D10240 01040 When M8140 or M8141 1 target location change fig 157 3 M8132 0 D102 0 D104z0 When M8140 or M8141 1 target location change fig 157 4 Drive to increment 5 Applied Instructions
5. sl 31 i 3 9 1 el 91 31 31 I i i i 31 8i Ql PL Qi qi Qi Qi 9 Q Qi 9 ql oi e 249 S S 246 xoo X01 X02 4 X05 X06 x10 X12 xis x14 X15 X16 X17 24VDC PLC 246 240 241 cao Yoo 01 1 02 vos C1 04 05 06 C2 Y10 11 Y12 vis Y14 Y15 Y16 Y17 External power mode used and connected with driver x option option 24V 24G pulse sign eee Jem peee oem eee emen Servo Driver ka Se ul 1 Specifications 16 Type Terminal Signal 24V S S is NPN mode 24G S S is PNP mode 24V 24G are external power source input terminal 24VDC T F J OMS NEL 1 9 Y 24V S S 24G X00 X01 X02 X03 X04 X05 X06 X07 PLC 24V S S 24G X10 X11 X12 X13 X14 X15 X16 X17 16ER 16 Type Terminal Signal 24V S S is NPN mode 24G S S is PNP mode 24V 24G are external power source input terminal L H 5 H 5 e e e o e el 16EYR 16EYT Type Terminal Signal not need external power source input 24VDC 1 1
6. Bit15 D10 1 then MO ON LSB Mean FNC 45 16 bits 7 steps EX n MEAN P Operands lt S gt KH KnX KnY Ks T C D vz Operands lt n gt lt D 1 64 Flag X10 S D n I 4 MEAN D0 D10 K3 00 D1 D2 3 gt D10 Annunciator Set 5 Applied Instructions FNC 46 16 bits ANS 7 steps EX EXin EXon ANS Reserved Annunciator Reset FNC 47 16 bits 1 steps EXin EXon ANR Reserved Square Root FNC 48 16 bits 5steps EX EX n D SQR P 162 bits D SQR P 9 steps Operands lt S S lt gt KnX KnY KM KnS T C D V Z Operands D Flag M8020 M8021 M8022 X000 S D I 4 SOR D10 D12 V 010 012 S must be positive When it is negative error flag M8067 ON and stop executing When the result with decimal fraction don t care it but borrow flag M8021 will ON When result is 0 zero flag M8020 will ON 5 Applied Instruct
7. 8002 MOV K100 D8168 Setting Y00 bias speed frequency 1 ward MOV K100 D8164 Setting Y00 acceleration deceleration time ms 1 ward DMOV 100 000 08156 Setting YOO maximum speed frequency 2 wards DMOV K500 D8176 Setting YOOdog point absolute position 2 wards ZRST M100 M199 8002 DMOV K50 000 0116 Setting Home Speed DMOV K1000 D118 Setting Creep Speed MOVP K5 D8169 Setting search number of Z phase X12 t SET M112 m RST M8152 Clear zero return finish flag RST M8158 Initial direction control by M8156 SET M8156 Initial direction reverse SET M8154 Forward mode if M8154 0 then reverse mode X12 RST M112 M112 X12 Home Creep DogP DZRN D116 D118 X02 YOO Dog point X02 M8029 M8152 pulse catch flag M8172 effective RST M112 RST 8029 Attention When execute FNC 156 ZRN the content of bias speed frequency D8168 D8170 will change to Creep search servo zero speed value 5 Applied Instructions Reverse mode example initial direction control by dog point absolute position initial direction could also choose to control by flag M8156 or M8157 If bias absolute position greater than dog point position then reverse If bias absolute position next than dog point position then forward
8. FNC 86 T biler NRSOP JE E Esau 5 Steps EX EXis EXin EXon VRSC P Operands lt D gt K H KnX KnY KnM KnS C D V Z 2 S 0 3 8000 S D m VRSC KO DO X001 DECO 0 ON when the setting value of VR is 0 M 1 ON when the setting value of VR is 71 M 10 I L ON when the setting value of VR is 10 The identified volume S of the master unit is read as an analog input and converted to 8 bits binary code 0 255 then divided 16 the result 0 15 stored into the destination device D This function the volume can as a 16 0 15 position rotary switch 5 Applied Instructions PID FNC 88 16 bits PID 9Steps EX EXin EX n PID Operands S1 S2 S3 lt gt K H KnX KnY KnM KnS C D V Z lt D gt Operands X Y M S Flag 51 52 1 S3 D PID DO D1 D100 D2 Set Value Process Value Parameter Output Manipulation Value SV PV MV Use setting execute program as left mentioned and stored the result S2 Process Value MV into D S3 S3 6 Control Parameter D Output manipulation value data register S1 Set Value It will occupy 25 devices continuous from as
9. tal 1 24VDC 5Vout 232ADP Type Terminal Signal CTOL Type Terminal Signal 24V 24G are external power source input terminal a FP FP RP RP CR CR pee 24v 24G sa Rx x 246 sv LL rc LI Cd 24VDC 5Vout 1 12 1 Specifications 2AD Terminal Signal 24V 24G are external power source input terminal 2DA Type Terminal Signal 24V 24G are external power source input terminal 24VDC 24VDC pw EM 24V FG 24G e Es 0 2 24V FG 249 e e gt PLC PLC NN V1 I1 C1 V2 12 C2 _ tec V1 I1 Ci 12 C2 2TC Type Terminal Signal 8AD Type Terminal Signal 24V 24G are external power source input terminal 24V 24G are external power source input terminal 24VDC 24VDC mm glee 24G e V1 1 2 V3 4 CA 24V FG 24G e e PLC PLC V5 I5 C5 6 16 7 17 C7 V8 18 C8 _ V1 V1 e V2 V2 e 2LD Type Terminal Signal 24V 24G are external power
10. Number Content Of Register EX TEX EXA Default 08080 Sampling bit component No 00 x D8081 Sampling bit component No 01 x D8082 Sampling bit component No 02 x D8083 Sampling bit component No 03 x D8084 Sampling bit component No 04 x D8085 Sampling bit component No 05 x 08086 Sampling bit component No 06 x 08087 Sampling bit component No 07 08088 Sampling bit component No 08 x 08089 Sampling bit component No 09 x Number Content Of Register EGIT w 08090 Sampling bit component No 10 x D8091 Sampling bit component No 11 x 08092 Sampling bit component No 12 x D8093 Sampling bit component No 13 x D8094 Sampling bit component No 14 x D8095 Sampling bit component No 15 x D8096 Sampling character component No 00 x D8097 Sampling character component 01 x D8098 Sampling character component No 02 x D8099 Up operation ring counter unit 0 1ms x Number Content Of Register xX w D8100 System reserved x D8101 System reserved EE D8102 Memory capacity 2 2k 4 4k 8 8k steps O 08103 System reserved don t used x D8104 5 reserved don t used x D8105 System reserved don t used x D8106 System reserved don t used x D8107 System reserved don t used x 08108 S
11. pulse J Y Y Y sign X00 YOO 0 signal X01 Y01 0 signal X06 Y00 dog point signal 07 01000 point signal X00 X01 X02 X03 X04 X05 X06 X07 2 1 Zero2 0091 0092 Use this instruction for zero return dog point must assigned to 06 00 07 01 servo zero must assigned to 00 00 or X01 Y01 Servo End amp Servo Ready are assigned by user This is a multifunction so PLSR can execute JOG zero return single position drive by setting different flag When zero return if there is no zero signal stepping motor set parameter 08169 or D8171 to 0 Fixed YOO and 01 to Pulse output signal 02 and 03 to Sign output signal After this instruction execute acceleration and deceleration time 08164 and D8166 data will be changed to S3 lt lt Notice gt gt When choose YOO then not choose specific function of corresponding X00 input For example high speed counter C235 C241 C244 C246 C247 C249 C254 and interrupt signal 1000 1001 MPG function and zero point signal are excluded When choose Y01 then not choose specific function of corresponding X01 input For example high speed counter C236 C241 C244 C246 C247 C249 C254 and interrupt signal 1100 1101 MPG function and zero point signal are excluded After executing this instruction content of Acceleration Deceleration time D8164 D8
12. 8002 100 08170 Setting 01 bias speed frequency MOV K100 08166 Setting YO1acceleration deceleration time ms DMOV K100 000 08158 Setting YO1 maximum speed frequency DMOV K500 D8178 Setting 01 dog point absolute position ZRST M100 M199 8002 50 000 0126 Setting Home Speed DMOV K1000 D128 Setting Creep Speed MOVP K5 D8171 Setting search number of Z phase X13 M SET M113 RST 8153 Clear zero return finish flag SET M8159 Initial direction control by D8179 D8178 SET M8157 M8159 1 This Flag Don t Care RST M8155 Reverse mode if M8154 0 then forward mode X12 RST M112 M113 X13 Home Creep DogP DZRN D126 D128 X03 YOO Dog point X03 M8029 M8153 pulse catch flag M8173 effective RST M113 RST 8029 5 Applied Instructions Forward mode touch hardware limited switch stay 1 second then reverse example this example initial direction control by flag M8156 or M8157 8002 DMOV 50 000 D116 Setting Home Speed DMOV K1000 D118 Setting Creep Speed MOVP K5 D8169 Setting search number of Z phase X12 t SET M112 T18 RST M8152 Clear zero return finish flag m SET M8154 Forward mode if M8154 0 then reverse mode
13. WDT P Operand None X00 EXis This instruction will compare the cycle time with the content of special data register 08000 If the watch dog timer gt the content of 08000 then error occurred and error code is 6309 Can use MOV instruction to change content of special data register 08000 If do not write WDT instruction in program then the watch dog timer is ineffective EXin EXon 5 Applied Instructions FOR FNC 08 16 bits FOR 7 Steps EX EXon FOR Operands lt S gt K H KnX KnY KnM KnS T C D V Z NEXT FNC 09 16 NEXT lt lt lt sess sss pes mg ss 7 Steps EX EXin EXon NEXT Operand None FOR K4 After program execute 4 times then execute the program below NEXT FOR D02 If the content of DOZ is 5 then program B is executed i 4 times and program A will be executed 20 times NEXT The maximum nest level of FOR NEXT is 5 levels NEXT 5 Applied Instructions Compare FNC 10 16 bits CMP amp 7 Steps EXis EXin EXon D P 32 bits D CMP amp D CMP P
14. xos xo ee es x14 x15 x16 24VDC ll 24VDC PLC ee 24e e co vor ve vos vos vos vos v c2 vio vn ve via via vis v16 v17 32MT Type Terminal Signal and Wiring Diagram 249 S S is NPN mode 240 gt S S is PNP mode 246 240 are output power source from PLC 100 240VAC 50 60Hz 7 i Teele e gl gl gl 9 9 J 5 5 ol sl l el sl 9 240 S S 246 X00 X01 X02 X03 X04 xos X06 X07 X10 X11 X12 x13 x14 X15 X16 X17 24VDC PLC Yoo 01 CA1 Y02 vos Y04 yos voe Yo7 Y10 Y11 Y12 v13 C3 Y14 Y15 Y16 Y17 x option Internal power mode used and connected with driver 5 option 24V 24G Servo Driver Pan 32MT Type Terminal Signal and Wiring Diagram 249 S S is NPN mode 240 gt S S is PNP mode 24 249 are output power source from PLC 100 240VAC 50 60Hz
15. D 10 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 D 10 1 o olojo olojo o ojo o o o o o t1 D 10 0 o oloj o olojo ojojo o oj o o o o D 10 1 10 1 1 1 8 P8 1111 5 loToToTo o o o o o o o o ojojo 1 D 10 2 D 10 1 2 1 1 1 D 10 32 765 10 1 32 765 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 gt 0 1 1 111 1 111 1 1 111 1 1 0 D 10 32 766 D 10 1 32 766 1 0 0 0 50 50150 150 0 0 0 0 0 0 1 0 011 1 1 111111 1 1 1 1 1 1 1 0 D 10 32 767 D 10 1 32 767 1 0 0 0 0 0 50 0 0 0 0 0 0 0 0 1 gt 0 1 1 111 1 1 1 1111111 111 1 1 D 10 32 768 10 1 32 768 1 01010 0 0 0 0 0 0 010 0 0 0 0 gt 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Rotation Right 5 Applied Instructions 30 16 bits ROR amp ROR P 5 Steps EX EXis EXin EXon D ROR 320 0 amp D ROR P 9 Steps K H KnX KnY KnM KnS C D V Z Operands lt gt lt D gt
16. 8000 ROW1 10 17 STATUS gt M20 M27 Y10 0 ROW2 X10 17 5 05 gt M30 M37 Y11 ROW3 X10 X17 STATUS gt M40 M47 Y12 5 28 Set by High Speed Counter 5 Applied Instructions FNC 53 EXin D HSCS 32 bits HSCS 13 Steps Operands lt 51 1 gt K H KnX KnY KnM KnS C D V Z lt S2 235 255 Operands X Y M S e D gt When 0 can use Index to assign 1010 1060 to interrupt Flag M8000 K2 147 483 647 When use FNC53 operate external output action S1 52 D by interrupt When current value of C253 changed DHSCS 100 C253 000 from 99 to 100 and from 101 to 100 000 will be set When current value of C253 is changed from 199 to DHSCR K200 C253 000 200 and from 201 to 200 000 OFF This command is specialized instruction of 32 bits please input D HSCS command Only can use FNC53 FNC54 FNC55 once M8000 C253 K2 147 483 647 D of D HSCS can assign lO 0 51 1 S2 D L 21 6 L 21 6 can not be reuse D HSCS K100 C253 1010 Therefore when current value of High Speed Counter which is assig
17. Matrix FNC 52 16 bits MTR 9 Steps EX EXon MTR Operands KnX KnY KM KnS T C D V Z lt gt Operands lt S gt lt D1 gt X Y M S 02 Operand 5 X00 X10 X20 X30 X160 X170 D1 YOO Y10 20 Y30 Y160 Y170 D2 Y M S multiple of 10 i e 00 10 20 etc n K H nz2 8 M8000 S D1 D2 n 1 MTR X10 Y10 M20 K3 8029 MTR instruction allows 8 consecutive input devices S to be used multiple n times result was stored D2 S Head address of the input devices n row numbers D1 Head address of the output trigger devices D2 Head address of the matrix table After completion of full reading of the matrix the complete flag M8029 to be turned ON This flag will be automatically reset when this instruction is executed This instruction can be used once and only the transistor module can be selected ROW3 0 1A50V ERI T lo Slo ele S Slee Sle V V v ROW2 gt 20 gt 2lo ROW1 519 s gj g ihe 5 9 zio gt gt gt Slo COMX X10 X11 X12 X13 X14 X15 X16 X17 10 Y11
18. 6 Special Auxiliary Relay amp Data Register The series of PLG Number Content Of Register EX TEX EXA Default 08160 00 current speed pps Lower Word O O O o Wix D8161 YOO current speed pps Upper Word 08162 01 current speed pps Lower Word O O O Wix D8163 01 current speed pps Upper Word 08164 00 acc deceleration time ms O O O 100 WIV 08165 00 deceleration time ms when M8150 ON effective O O O 100 WIV 08166 01 acc deceleration time ms 100 08167 01 deceleration time ms when M8151 ON effective 100 WIV 08168 00 bias speed pps 100 D8169 00 search servo Z phase times OF O O T The series of PLG Number Content Of Register TEX TEX Default 08170 01 bias speed pps O O O 100 V V 08171 01 search servo Z phase times 1 Viv D8172 YOO0 pulse number of accelerate to maximum speed Lower Word 0 08173 00 pulse number of accelerate to maximum speed Upper Word O O O D8174 01 pulse number of accelerate to maximum speed Lower Word 0 FS 08175 01 pulse number of accelerate to maximum speed Upper Word O O O 08176 00 Dog Point Absolute Address Lower Word O O O 1414 D8177 00 Dog P
19. s ee emm Servo Driver 24 Type Terminal Signal and Wiring Diagram 24 S S is NPN mode 240 gt S S is PNP mode 24 249 are output power source from PLC 100 240VAC 50 60Hz el sl sl 91 l o si sl sl sl 291 5 246 5 5 246 xoo X01 X02 X05 X06 x10 X12 x14 X15 X16 X17 pn 24VDC PLC 24e 246 241 cao voo vs cai ve vos v4 vs ve vv 1 External power mode used and connected with driver x option x option 24V 240 pulse sign ee e p nm nm ee eme be Hore Servo Driver 1 Specifications 32MR Terminal Signal 246 S S is NPN mode 240 S S is PNP mode 249 240 are output power source from PLC 100 240VAC 50 60Hz E 3 4 4 5 3 9 9 3 9 al sl sl el ol sl 9 el 1 ol i el i ol el i 240 55 249
20. 13 Steps Operands lt 51 S2 gt K H KnX KnY KnM KnS T C D V Z Operands lt D gt X Y M S Flag M8020 M8021 M8022 X0 St 152 D 10 M11 12 K100 gt T10 then M10 K100 T10 then M11 ON K100 lt T10 then M12 ON Data of S1 is compared with data of S2 and D will be changed according to the result This will automatic occupy 3 bit destination devices from head address of designation M10 M12 Full algebraic comparisons are used i e 10 smaller than 2 When XO OFF then D bit devices status will not be changed Zone Compare FNC 11 16 bits ZCP amp 2 9 Steps EX n EXon D zcP P 132 bits DZCP amp DDYZGPIP 17 Steps Operands lt S1 S2 S3 gt K H KnX KnY KnM KnS T C D V Z Operands D gt X Y M S Flag M8020 M8021 M8022 St 82 1 63 1 D M10 T10 lt K100 then M10 ON M11 K100 lt T10 lt K200 then M11 M12 T10 gt K200 then M12 ON Content of S3 is compared with data range of S1 and S2 and D will be changed according to the result This will automatic occupy 3 bit destination devices from head address of designation M10 M12 Full algebraic
21. EXis EXin EXon Default M8200 When M8xxx 1 down counter ololo When M8xxx 0 Cxxx up counter M8234 Number Content Of Register The series of PLC EX n EXon Default D8200 Reserved D8234 High Speed Counter The series of PLC R Number Content Of Register EX EX Default M8235 When 8 1 Cxxx down counter E When 8 0 up counter e exe y 8245 8246 If Cxxx is down counter Then M8xxx 1 s If Cxxx is up counter Then M8xxx 0 M8255 The series of PLC R Number Content Of Register EX EX Default D8235 System reserved don t used D8245 D8246 System reserved don t used D8249 6 Special Auxiliary Relay amp Data Register Trouble shooting While ERR LED is lit Example 1 Example 2 a To monitor register of error code D8004 a To monitor register of error code D8004 b If D8004 8061 then monitor value of 08061 b If D8004 8066 then monitor value of 08066 c If D8061 6106 error code 6106 means AC power If D8066 6609 error code 6609 means there is no quality no good END command d To improve quality of AC power supply d To check user s program Please refer to following pages to know more error Please refer to following pages to know more error codes c
22. 5 steps EX EXin EXon REF Operands K H KnX KnY KnM KnS T C D VZ lt gt Operands X Y M S D D should always be a multiple of 10 i e 00 10 n should always be a multiple of 8 i e 8 16 24 PLC input all refresh before program STEP 0 execute output is executed after END or FEND instruction It is not changed in performing process If it needs immediately input data or output performing result in the performing process then have to use output amp input refresh instruction lt lt Input Fresh gt gt only X10 X17 to be flashed X00 D n REF 10 K8 lt lt Output Fresh gt gt refresh 00 07 Y10 Y17 Y20 Y27 X01 D n REF 00 K24 In interruption program FNC 50 REF command can not be used Refresh and Filter Adjustment FNC 51 16 bits 3steps EX EXis EXin EXon REFF P Operand n 0 60 X10 L 4 REFF K20 To avoid noise interference PLC input relay all designed with hardware RC filter to adjust software filter time This instruction only change X00 X07 software filter time i e content of D8020 If it has to change other input point filter time please use MOV instruction 5 Applied Instructions
23. Default RW M8050 lOxx int disable when O O O ON IWIN 8051 1 disable when O O O ON WIN M8052 l2xx int disable when ON O O O oN WIW M8053 disable when ON O O O ON WIW M8054 int disable when ON ON IWIN M8055 int disable when ON ON M8056 l6xx int disable when IWIN 8057 7 int disable when O O O NN M8058 I8xx int disable when O O O ON IWIN M8059 Don t used The series of PLC Number Content Of Register EX TEX EXA Default M8060 configuration error OFF Nix 8061 PLC hardware error O O O OFF 8062 RS232C error O O O OFF M8063 Link 485 error O O OFF Wix 8064 Parameter error O OFF Wix M8065 Syntax error OFF v x 8066 Program error OFF v x 8067 error O O O OFF x 8068 Operation error O O O OFF Nix M8069 I O bus error OFF The series of PLC Number Content Of Register EX TEX EXA Default M8070 1 master station OFF 8071 slave station OFF N N 8072 Reserved O O O OFF Nix M8073 Parallel link master station overtime flag OFF Nix M8074 M8075 Ready to start sampling trace instruction M8076 Sampling trace ready instruction Viv M8077 Sampling trace executing signal x 8078 Sampling Trace OF
24. TZCP P Operands lt 81 S2 S3 KnY T C D Operands D gt X Y M S Occupy 3 bits from the head address of D set S1 lt S2 Flag M8020 M8021 M8022 X000 S1 S2 S D TZCP D20 D 30 DO M3 S1 S D20 hours DO hours gt D1 mins ON D2 secs 52 DO hours D30 hours lt D1 mins lt D31 mins ON D2 secs D32 secs M5 DO hours D30 hours D1 mins gt D31 mins ON T D2 secs D32 secs When X000 OFF then not execute TZCP M3 M5 status unchanged Compare it with time value zone of 3 bits from the head address of S According to the result then 3 bits from the head address of D will be ON OFF automatically S1 S 1 S 2 The lower limit of compare range assign hour min sec S2 S2 1 S2 2 The topper limit of compare range assign hour min sec S S 1 S 2 real time clock assign min sec D D 1 D 2 According result of comparison device of 3 bits from the head address of D is ON OFF automatically Setting range of hour min sec compare with real time clock reference to FNC160 TCMP 5 Applied Instructions
25. 11 steps EX EXon ASC Operands S 8 character or alphanumeric data Operands lt gt T D Flag X00 S D ASC ABCDEFGH D100 The source data string S consists of up to 8 characters The character is converted to ASCII codes then stored into 0100 0103 When M8161 is OFF 8161 Upper 8 bits Lower 8 bits D100 B A D101 D D102 E D103 H G When M8161 is ON Upper 8 Lower 8 Upper 8 Lower 8 D100 0 A D104 0 E D101 0 B D105 0 F D102 0 D106 0 D103 0 D D107 0 H Print FNC 77 16 bits PR 5 steps EX EXon PR Operands lt S C D Operands D Y Reserved 5 Applied Instructions FROM FNC 78 16 bits FROM P Mu CE 9 steps EX EXis EXon D FROM 32 bits DFROM P 17 steps Operands lt D gt KnX KnY KnM KnS T C D 2 Operands lt gt 0 7 no of special module m2 0 31 no of buffer memory BFM 1 31 of read when D n 1 15 X00 m1 m2 D n H FROMP 1 K29 KAMO module BFM destination read no When X00 ON the buffer memory of special module 29 to be read and stored into M00 M15 lt lt Specia
26. E0 E7 0 or 1 0 22 00r 1 Exponent sign 0 positive 1 negative when b 0 b31 0 then 0 Binary Floating data 2 22 2 21 2 0 23 2 E E6 2 2127 Example A22 1 gt 21 0 gt A20 1 gt 19 0 0 7 1 gt E6 E1 0 gt 0 1 1 27 0 26 1 20 Binary floating data 20 1 2 0 22 1 23 0 223 2 Pd 1 625 2 2 1 625 2 positive and negative sign is decided by b31 can t use negation The using of zero flag M8020 negative flag M8021 carry flag M8022 the flag action of floating operation as follows Zero flag when result is 0 then it is 1 Negative flag when result not reach minimum unit when it is not 0 then it is 1 Carry flag when result more than absolute value using range then it is 1 5 Applied Instructions Applied instructions allow the user to perform complex data manipulations mathematical operations Each applied instruction has unique mnemonics and special function numbers Each applied instruction will be expressed using a table similar to that show below And will be found at the beginning of the description of each new instruction COMPARE FNC 10 16 bits CMP amp CMP P 7 Steps EX EXis EXin EXon D P 32 bits D CMP amp D CMPIP 13 Steps Operands lt S1 S2 gt K H
27. Position module Ex1ni1PG Position module Ex1n2PT Position module for special function Signal conversion module Ex1nCTOL open Collector TO Line driver Ex1nLTOC Line driver TO open Collector Wire extension module Ex1nNEXT 50 Wire 50cm length Ex1nNEXT 80 Wire 80cm length Power extension module ExPower E Input 100 240VAC 50 60Hz Output DC24V 15 500mA Communication module EX485LNK RS422 485 interface Performance Specification 1 Specifications ITEM Exis Extn Ex2n Operating control method Cyclic operation by stored program control method Batch processing method when END instruction is executed Operation time Basic instruction 0 5us Applied instruction from 2us to several 100us Programming language Relay symbolic language Step ladder Program capacity memory 8000 steps built in EEprom Number of instruction Basic instruction 27 Step ladder instruction 2 Applied instruction 106 1s 108 1n 119 2n Input Relay Ex1s X00 X17 000 X177 Sink Source DC24V 7mA photo coupler isolation Output Relay Ex1s Y00 Y17 Ex1n Y000 Y177 Relay AC250V 1A or Transistor DC30V 0 5A Auxiliary Latched
28. rol ve pep xen x xn LYPLC 32MR drawing 2 gt LIYAN ELECTRIC Taie Te TcoTronrerzT sc pr resp oer Tc Ay ONY mTreT rema Tra Tre Tre Y Min 50mm Expansion Wire 2 0in 000000 O E YI 191211 e rusio xeper e epe rede E Li D 55 300 o1 2 pos pap o z m LYPLC 32ER D gt 2 a 2 LIYAN ELECTRIC 2 u eTeTeTe colymImTmeTmscirdrdmmc lrornrelrelcsTryaTreTys rr u 0090000 N 1 ExtnNEXT 50 or ExtnNEXT 80 Ex1n32MR Ex1n32ER Ex1n32ER To use terminal as left drawing 1 Don t wire it to the mark e of terminal Can t use the same cable for the signal wire of input and output Don t put the signal cable of input and output with power cable at the same tube The expansion module with power device so can t wire the 249 of expansion module to the 240 of master There is no power device in expansion I O unit so have to connect 249 of master unit to 24V or 241 of expansion unit otherwise can t input signal If there is no enough space but have to arrange it to two li
29. source data The ASCII code of the lower byte in source S to be converted to the hexadecimal data and stored into the destination device D for n number byte When M8161 ON 8 bits operation mode 0200 0 0201 D202 B D203 C 0204 71 D205 2 D206 3 D207 4 D102 D101 D100 K1 OH K2 OAH K3 K4 K5 0H ABC1H K6 OAH BC12H K7 123 K8 1234H Check Code 5 Applied Instructions FNC 84 16 bits CCD P 7 Steps EX EXin EXon CCD P Operands LLL pep K H KnX KnY KnS T D V Z lt gt lt gt 1 64 D Flag M8000 S D n CCD D100 DO K10 Calculation the data of n bytes 16 bits from the head address of source S then put the Sum gt D00 Vertical Parity gt D01 D 1 M8161 OF F 16 bit mode S Bit Pattern D100 L K100 0 1 1 0 0 1 0 0 D100 H K111 0 1 1 0 1 1 1 1 D101 L K100 0 1 1 0 0 1 0 0 D101H K98 0 1 1 0 0 0 1 0 0102 L K123 0 1 1 1 1 0 1 1 D102 H K66 0 1 0 0 0 0 1 0 D103 L K100 0 1 1 0 0 1 0 0 D103 H K95 0 1 0 1 1 1 1 1 D104L K210 1 1 0 1 0 0 1 0 D104H K88 0 1 0 1 1 0 0 0 Vertical parity
30. Appendix A Appendix EX20P HAND HELD PROGRAMMING PANEL PROCEDURE OFF LINE ON LINE Program Register Transfer monitor H Password Ej Option E Help Edit Prog Start Setting Buzzer HPP gt PLC Monitor Password Frequency Test All Delete All Delete Prog Device Change PLC Function Range HPP lt PLC Status Password Table Delete Prog Verify Control By Delete PLC About PLC PLC Password Dreg HPP gt PLC Key Switch Dreg HPP lt PLC Dreg Verify B 1 LIYAN PROGRAMMABLE LOGIC CONTROLLER LIYAN ELECTRIC INDUSTRIAL LTD TEL 886 4 25613700 FAX 886 4 25613408 Lyplc edoc0204v292e Website http www liyanplc com E mail twliyan ms16 hinet net
31. JcoM vito vii vi2 v13 eee O T 0 1 2 3 10 1010 10 This instruction used n 1 8 output points and 4 input points to read in n 1 8 thumbwheel switch If the read data is larger than 32 bits n25 then D2 automatically occupy the next word device This example the BCD 4 digit thumbwheel switch 1 2 4 8 is connected to 10 13 or X14 X17 the source S needs to be used X10 X14 X20 X24 as the head address Once DSW execute then the flag M8029 reset to 0 When execution is completed M8029 set to 1 Each pin 1 2 4 8 of the thumbwheel switch needs to be connected a diode 0 1 50 This may only be used once and only the transistor module can be selected If use M8029 then can control two or more DSW M8002 SET M500 M500 DSW X10 DO K2 Seven Segment Decoder 5 Applied Instructions FNC 73 16 bits SEGD P 5steps EX EXin EXon SEGD P Operands lt 5 1 gt KnX KnY KMM KnS T D VZ lt D Flag X00 S D I SEGD 000 K2YO A single hexadecimal digit 0 9 A F occupying the lower 4 bits of the source device S is decoded to a data format used to drive a seven segment dis
32. 24V S S 24G X00 X01 X02 X03 X04 X05 X06 X07 PLC CO 00 01 02 Y03 C1 04 05 06 07 10 Y10 Y11 C11 Y12 Y13 C12 Y14 Y15 C13 Y16 Y17 PLC 00 Y01 Y02 Y03 C1 Y04 05 06 07 1 Specifications 24ER 24ET Terminal Signal 24V S S is NPN mode 24G gt S S is PNP mode 24V 24G are external power source input terminal 24VDC i S S 5 5 S 5 J 5 el si sl si sl i st 9 st l st 9l 8 e 24V S S 246 X01 X02 X05 X06 X11 X12 x14 X15 X16 X17 PLC e e e e YOO Y01 YO2 vos C1 Y04 5 YO7 e e e e e e e e e e 32ER 32ET Type Terminal Signal 24V S S is NPN mode 24G gt S S is PNP mode 24V 24G are external power source input terminal 24VDC Td sssassss i o sl st sl el 9 sl sl sl sl sl sl el el e 24V S S 246 Xoo X01 X02 4 X05 X06 X11 X12 x14 X15 16 X17 b CO YOO Y01 Y02 vos ct Y04 Y05
33. 9 steps Operands lt S gt KnY KnM T C D VZ Operands x Y M 5 Flag X001 S D 051 050 021 020 I1 I D EBCD D 50 D 20 binary floating data decimal floating data Convert binary floating data assigned by source device to decimal floating data and store it to destination device binary floating data D51 D50 decimal 23BIT exponent 8BIT sign 1BIT exponent decimal exponent decimal decimal floating data D20 102 Reserved Scientific to Float conversion 119 EXis EXN D EBIN P 32 bits D EBIN amp D EBIN P 9 steps Operands IS 51 KnX KnY KnM KnS T C D VZ 592 Operands X Y M S Flag X001 S D 021 020 051 050 I I D EBIN D 20 D 50 Decimal floating data binary floating data Convert binary floating data assigned by source device to decimal floating data and store it to destination device exponent decimal exponent decimal decimal floating data 021 020 D20 x 10002 U binary floating data decimal 23BIT exponent 8BIT sign 1BIT Reserved 5 Applied Instructions Floating Point Addition FNC 120 EX EXis D EADD P 32 bits D EADD amp D EAD
34. The series of PLC Number Content Of Register EX TEX EXA Default RW D8020 X000 X007 filter O O O 5 08021 010 017 filter O O O 5 NN 08022 X020 X027 filter O O O 5 NN 08023 X030 X037 filter ololo 5 WIV 08024 X040 X047 filter ololo 5 08025 050 057 filter Oe 51414 08026 X060 X067 filter ololo 5 08027 070 078 filter O O O 5 D8028 Z index register O O O 0 IWIN D8029 V index register O mod 0 Number Content Of Register XO R W D8030 100 107 filter O O O 5 D8031 110 117 filter ololo 5 NN 08032 120 127 filter 152170 5 08033 X130 X137 filter 51414 08034 X140 X147 filter 5 D8035 150 157 filter O O O 5 08036 160 167 filter O O O 5 D8037 170 177 filter O O O 5 NN D8038 End of User Program Step Number 08039 Constant scan time 08001 22 102 Version 1 02 6 Special Auxiliary Relay amp Data Register The series of PLC Number Content Of Register EX TEX EXA Default RIW M8040 M8041 M8042 M8043 M8044 M8045 M8046 STL state ON O O OFF 8047 STL monitoring enable OFF 8048 8049 The series of PLC Number Content Of Register EX
35. This module transfer data with main unit through communication method 1 Specifications RTC extension board amp Memory board Ex1RTC1 1 Real Time Clock extension board Ex1RTC1 2 EEPROM 8K steps Ex1RTC1 3 Real Time Clock extension board EEPROM 8K steps Ex1RTC1 4 Multi mode EEPROM 8K steps Ex1RTC1 5 Real Time Clock Multi mode EEPROM 8K steps This board is only suitable for 24 or 32 points of main unit Extension I O module not expandable Ex1s08EX 08 0000 Ex1s08ER O4IN 04OUT Relay output Ex1s08ET 041 04OUT Transistor output 1508 OOIN 08OUT Relay output 1508 OOIN 08OUT Transistor output Extension I O module expandable Exini6EX 16IN OOOUT Exini6ER O8IN 08OUT Relay output Exini6ET O8IN 08OUT Transistor output Exini6EYR OOIN 16OUT Relay output Exini6EYT OOIN 16 Transistor output Exin24ER 16IN 08OUT Relay output 24 16IN 08OUT Transistor output Ex1n32ER 16IN 16OUT Relay output Ex1n32ET 16IN 16OUT Transistor output Analogue module Ex1n2DA Analog output Ex1n4AD 4CH Analog input Ex1n8AD 8CH Analog input Ex1n4TC 4CH Thermocouple Ex1n8TC 8CH Thermocouple Ex1n2PT 2CH PT100
36. binary floating data binary floating data Floating Point Division FNC 123 EX EX D EDIV P 32 bits D EDIV amp D EDIV P 13 steps Operands lt S1 S2 S1 S2 5 KnY KnM T C D VZ Operands x Y M 5 Flag None X001 51 S2 D 011 010 D21 D20 051 050 I D EDIV D 10 D 20 D 50 binary floating data binary floating data binary floating data The binary floating data of assignation device S1 is divided by binary floating data of assignation device S2 then the result stored by form of binary floating data at destination device of D When source operand assigned by constant K or H it will be converted to binary floating data automatically X002 D101 D100 K100 0111 D110 D EDIV D 100 K 100 D 110 binary floating data convert automatically to binary floating data binary floating data 5 Applied Instructions Floating Point Square Root FNC 127 EX D ESQR P 32 bits D ESQR amp D ESQR P 13 Operands lt S 5 lt S gt KnY KnM T G D 2 lt gt Operands X Y M
37. 8023 8024 8025 8026 8027 8028 8029 Instruction execution complete flag O O OFF i The series of PLC Number Content Of Register EX TEX EXA Default RW M8030 M8031 M8032 M8033 M8034 Output disable when ON OFF M8035 Run Stop flag WIV M8036 Forced run mode WIV M8037 Forced stop mode O O O M8038 M8039 Constant scan time mode flag OFF 6 Special Auxiliary Relay amp Data Register The series of PLC Number Content Of Register EX TEX EXA Default RW D8000 Watchdog timer ms O O O 100 D8001 Type amp Version O O O 08002 capacity j 08003 Memory type 08004 Error number O O O 0 D8005 D8006 D8007 D8008 D8009 The series of PLC Number Content Of Register TEX TEX Default RW D8010 Present scan time unit 0 1ms 10 V V D8011 scan time unit 0 1ms O O O 10 x D8012 Max scan time unit 0 1ms 10 N x D8013 Second O O O 0 08014 O O O 0 NN D8015 Hour 12 WIV 08016 1 08017 08 08018 Year 03 08019 Week ololo 1
38. C lt l o oll 1 gt 9 LO e i LIYAN ELECTRIC Sue eue U 2 kalast e rose Tc 21 0 11 2 Tra Tr Tr O 000000 H 00090 00900099909009009 0909 0000000000000 Master unit Expansion unit Expansion module and EXADP communication module all can assembly to 35mm Open connector cover connected master unit and expansion i o unit or expansion module Open connector cover connected master unit and EXADP communication module is the LED monitor of input relay output relay power run status and error status e is the terminal of input relay is the terminal of output relay is EEPROM card 32 0 Mark AC110 220V D DC24V of output Relay Transistor X All input Y All output M Master E Expansion points 16 24 32 No Mark or 1n can expansion 1s can t expansion Series name Dimension mm A 200000000000000000000000 fib dp d d dp db d db db dj I LTTTTTTI e 888888888 000000000 000000000 80 90 00000000 200000000 T 8 000000 130 39 6 140 2 48 lt Configuration of systems
39. D31 030 RAD binary floating value D SIN D 30 D 32 031 D30 RAD 033 021 SIN binary floating value D MUL K 10000 K2 D 40 The length of Line L is double of diameter D FLT D 40 D 42 Convert Line L integer value to binary floating point format D EMUL D 42 D 32 D 100 D100 is the binary floating point value of Line m D INT D 100 D 200 D200 is the binary integer value of Line m 5 Applied Instructions Cosine FNC 131 EXon COS P 32 bits D COS amp D COS P 9 steps Operands lt S gt KnX KnY KnM KnS T C D VZ lt Operands X Y M S 0 lt angle 360 Flag X000 S D 051 D5OFRAD 061 D60 COS I D COS D50 D60 binary floating data binary floating data Used assigned angle RAD by source device S to get COS value then store the result at destination device D S D51 D 50 RAD value angle x z 180 assign to binary floating data D D 61 D 60 COS value binary floating data Tangent FNC 132 EX EXis EXin EXon D TAN P 32 bits D TAN amp 9 steps Operands dS KnY KnM T C D HD Operands X Y M S 0 lt angle 360 Fla
40. Error code Associated Meaning 0000 No error 6501 6502 6503 6504 6505 6506 System program error 6507 System watchdog error 6508 6509 No this instruction Error code Associated Meaning 0000 No error 6601 LD amp LDI used continuously more than 8 6602 LD LDI amp ANL ORL incorrect 6603 MPS used continuously more than 11 times 6604 MPP amp MPS incorrect 6605 STL amp RET error 6606 No SRET or IRET instruction 6607 FOR amp NEXT error 6608 MC amp MCR incorrect 6609 END missing Error code Associated Meaning 0000 No error 6701 6702 6703 6704 6705 Applied instruction error program keep run 6706 Applied instruction error program stop 6707 6708 6709 LYPLC Ex1s Ex1n Ex2n series 5232 INTERFACE PIN ARRANGEMENT Up view the connector of LYPLC Ex1s Exin Ex2n series If connect to the data access with power don t connect 5 to each other RTS TXD GND CTS 5V GND RXD GOO N IBM PC RS232 C INTERFACE PINARRANGEMENT 9 RS 232 25 t RS 232 1 CD 8 CD 2 RXD 3 RXD 3 TXD 2 TXD 4 DTR 20 DTR 5 GND 7 GND 6 DSR 6 DSR 7 RTS 4 RTS 8 CTS 5 CTS 9 RI 22 HI
41. X13 X10 X7 X0 GRY 1234 015 1234 When 51 be used need notice filter time 08020 08037 will response time S effective value range When 16 bits operation 0 32 767 When 32 bits operation 0 2 147 483 647 LD 5 LoaD compare 5 Applied Instructions FNC 224 230 16 bits 5 steps EX EX D LD x 32 bits 9 steps Operands lt 514524 gt KH KnX KnY KnM KnS T C D 5 x Y M 5 Flag Comparison of BIN to the content of two source operands according the result update operate status The upper bit of S1 S2 is sign bit i e 0 positive 1 negative If use 32 bits counter C200 to compare have to use 32 bits instruction If use 16 bits instruction to compare then error will occur No 16 bits instruction 32 bits instruction ON OFF 224 LD DLD S1 S2 S1 S2 225 LD gt DLD gt S1 gt S2 S1 lt S2 226 LD lt lt S1 lt S2 S1 gt S2 228 LD lt gt DLD lt gt S1 2162 S1 62 229 LD lt D LD
42. 16bit n x 16 32bit n 32 Flag M8022 D I 4 DO K4 MSB DO LSB 111 111 1 111111 10 01 1010101010 A MSB After 1 rotation v LSB 0000 8022 0 lt 1 After rotation right the LSB of specified devices is shifted into carry flag M8022 Rotation Left FNC 31 16 bits ROL amp ROL P 5 Steps EX EXin EXon D ROL 326 DROL amp D ROL P 9 Steps KnX KnY KnM KnS T C D VZ Operands lt gt lt D gt 16bit n lt 16 32bit n lt 32 Flag D n c D0 K4 MSB D0 LSB 11111 111111 11 lue 9 10 01 01 ng M8022 MSB v After 1 rotation v LSB 111111 111 101 10 0101 10101 10101 1 1111 1 8022 1 After rotation left the MSB of specified devices is shifted into carry flag M8022 Rotation Right with Carry 5 Applied Instructions FNC 32 16 bits amp 5 Steps EX D RCR P 32
43. 81 1182 116 81 1152 1811 gt KnX KnY T D VZ Operands lt D X Y M S D occupy bit devices from the head address S1 gt S2 set S81 lt S2 Flag M8020 M8021 M8022 X001 51 52 5 1 D DEZCP D20 D 30 DO M3 M3 When D21 D20 gt D1 DO then ON M4 binary floating data binary floating data When D21 D20 D1 DO 031 030 M4 ON M5 binary floating data binary floating data M Wnhen D1 00 gt D31 D30 then M5 ON binary floating data binary floating data If X001OFF then not execute M3 M5 status unchanged The result will automatically set 3 bit devices from the head address of D When source operand assigned by constant K or H it will be converted to binary floating data automatically X001 K10 D6 D5 2800 M0 M1 M2 D EZCP K 10 K2800 D5 M0 Convert automatically binary convert automatically binary floating data floating data binary floating data eSet S1 S2 if S1 gt 52 1 then data of S2 is as same as data of S1 5 Applied Instructions Float to Scientific conversion FNC 118 EX EXis EXin EXon D EBCD P 32 bits D EBCD amp D EBCD P
44. EXin EXon D XCH 32 bits D XCH amp D XCH P 9 Steps Operands lt D1 D2 gt K H KnX KnY KnM KnS C D V Z D1 D2 D10 D20 Before D10 100 After D10 200 D20 200 D20 100 lt lt Function of Expanded gt gt SWAP X0 HF 4M8160 D XCH P D10 D11 M8001 M8160 If M8160 ON D1 and D2 are the same word device then the upper 8 bits and the lower 8bits will exchange If D1 and D2 are not the same device error flag M8067 ON error code 6705 Error step number is stored to D8069 and not be executed D10 16 bits Upper 8 bits Lower 8 bits NA Before executing D10 0050H 80 After executing D10 5000H 20480 D11 D10 32 bits Upper 8 bits Lower 8 bits Upper 8 bits Lower 8 bits NN NOA Before executing D11 D10 87654321H 80 gt After executing 65872143H 5 Applied Instructions BCD BINARY CODE TO DECIMAL FNC 18 16 bits BCD amp BCD P 5 Steps EX EXis EXin EXon D BCD P 32 bits D BCD amp D BCD P 9 Steps Operands lt S gt K H KnX KnY KnM KnS T C D V Z lt D gt S D BCD D10 K2Y0 The binary source data S is converted
45. KnX KnY KnM KnS C D V Z Operands D x Y M 5 No modification of the instruction mnemonic is required for 16 bit operation and it will operate continuously i e every scan cycle of the user program the instruction will operation and provide a new result However pulse operation requires a P to be added directly after the mnemonic while 32 bit operation requires a D to be added before the mnemonic This means that if an instruction was being used with both pulse and 32 bit applied operation it would look like D P where was the basic mnemonic The pulse function allows the associated instruction to be Activated on the rising edge of the control input The Instruction is driven ON for the duration of one program Scan cycle Thereafter even if the control input remains on the associated instruction will not be active Following is Symbols list D Destination device S Source device m n Number of active devices bits or an operational constant Following is instruction modifications An instruction operation in 16 bit mode where identifies the instruction mnemonic P An instruction modified to use 16 bits pulse operation D An instruction modified to use 32 bits operation Condition Jump 5 Applied Instructions FN
46. P 82 bits DWXOR amp D WXOR P 13 Steps Operands lt S1 S2 gt K H KnX KnY KM KS T C D V Z lt D 61 52 D t WAND D10 D12 D14 010 012 gt 014 1 4 121 14 0 0 0A 1 0 S1 S2 D m D10 D12 D14 010 V 012 gt 014 1V1 1 1V 0 1 0 1 1 61 52 D 1 WXOR D10 D12 D14 010 012 D14 1V1 0 1V 0 1 0 1 1 0 0 0 5 Applied Instructions Negation FNC 29 16 bits NEG amp 3 Steps EXis EXon D NEG P 32 bits D NEG amp D NEG P 5 Steps KnX KnY KnM KnS T C D VZ Operands lt D D NEG D10 D10 1 D10 When ON the selected device D is inverted 1 0 0 1 When this is complete a further binary 1 is added to the bit pattern The result is become a negative number or a negative number will become a positive Example gt gt Absolute Value of Negative 8000 BON D10 0 15 0 F 010 lt lt Note of Negation gt gt
47. T23 T23 nee 3 Step Ladder Instructions 0000 LD 8002 0022 LD 22 0001 SET S 10 0023 SET S 15 0002 STL S 10 0024 STL S 13 0003 OUT Y 10 0025 OUT Y 12 0004 OUT 20 0026 OUT T 23 0005 K 50 0027 K 20 0006 LD 20 0008 LD 23 0007 AND X 10 0029 SET S 14 0008 SET 5 11 0030 STL S 14 0009 LD 20 0031 OUT Y 11 0010 AND X 11 0032 OUT T 24 0011 SET S 13 0033 K 20 0012 511 5 11 0034 LD 24 0013 OUT Y 11 0035 SET S 15 0014 OUT T 21 0036 STL S 15 0015 K 30 0037 OUT Y 13 0016 LD T 21 0038 OUT T 25 0017 SET S 12 0039 K 50 0018 STL S 12 0040 LD 25 0019 OUT Y 12 0041 SET S 10 0020 OUT T 22 0042 RET 0021 K 30 0043 8 3 2c 3 3 3 Multiple Flows Simultaneously Y M8002 S20 0 10 T20 50 T20 Y1 523 Y11 T21 K30 T23 K20 T21 123 22 Y2 Y12 T22 K30 T24 K20 T22 T24 525 Y13 T25 K50 T25 S20 Fig 3 3 3a Simple Flow Charting This type of program construction can enable multiple flow at the same time M8002 S20 T20 S21 0 Y10 T20 K50 SET 523 1 522 524 22 24 1310 4 S25 Y3 Y13 T25 K50 T25 Fig 3 3 3b Ladder STL 0000
48. Time Addition FNC 162 16 bits amp TADD P 7 steps EX EXis EXin EXon TADD P Operands lt 514652 gt KnY KnM T C D VZ lt D Operands x Y M 5 Flag M8020 M8021 M8022 X000 S1 S2 D am e TADD D 10 D 20 D30 D10 D11 D12 D20 D21 D22 D30 D31 32 91 52 D D10 10 hours D11 30 mins D12 10 secs 10hours30mins10secs D20 3 hours D21 10 mins D22 5 Shours10mins5secs D30 13 hours D31 40 mins D32 15 secs 13hours40mins15secs The time value stored at 3 bits from the head address of S1 add the time value stored at 3 bits from the head address of S2 then stored the result at the device of 3 bits from the head address of D If the result greater than 24 carry flag M8022 ON and the value of addend subtract 24 then stored at D 1 S2 D 18 hours 10 hours 4 hours 10 mins 20 mins gt 30 mins 30 secs 5 secs 35 secs 18hourstOmins10secs 10hours20minsbsecs 4hours30mins35secs The result is 0 Ohour Omin Osec then zero flag M8020 ON Setting range of hour min sec compare with real time clock reference to FNC160 TCMP instructio
49. X007 MOV K1 010 station number 1 slave MOV 0006 D11 write command MOV H0000 D12 address Upper byte MOV 0004 013 address Lower byte MOV D14 data Upper byte MOV H0084 015 data Lower byte MOV K6 D98 number of send bytes 64 D99 number of receive bytes D10 station number 1 slave MOV H0003 011 read command MOV 0000 D12 address Upper byte MOV HO000 013 address Lower byte I 1 MOV H0000 D14 number of data Upper word MOV 2 015 number of data Lower word MOV K6 D98 number of send bytes H MOV K64 D99 number of receive bytes M8000 907 9 07 e v ys eds 9 4 9 4 RSW1 RSW2 BMOV 010 0100 098 move data to buffer RS D100 098 D200 099 assign send receive start address 500 SET M8122 send start flag M8123 RST M8123 receive completion flag INC 0998 SET 8122 8129 HU RST 8129 ERROR flag INC 0999 5 Applied Instructions At ModBus Ascii mode number of send data must be set correctly and communication format has to be STX ETX Data of error check is not included to number of send bytes It is counted by PLC automatically and result
50. 0 then error occurred Sum FNC 43 16 bits 5 EX EXis EXin EXon D SUM P 32 bits D SUM P 9 steps Operands lt S gt K H KnX KnY KnM KnS C D V Z lt D gt Flag X00 S D SUM Do D2 rae Ae ga 5g 3158 0 1 8 4 2 1 ololo o o D 2 The number of active bits within the source device S i e bits which a value of 1 are counted count is stored in the destination device D If there is no bit as 0 then zero flag M8020 ON 5 Applied Instructions Bit On Check FNC 44 7 steps EX EXis EXin EXon P 132 bits DIBON P oue 13 steps lt gt KnX KnY KnM KnS C D V Z lt gt n 0 15 or 0 31 Operands lt D gt X Y M S Flag X10 S D n c Do Bit15 D1020 then OFF LSB
51. 000 M499 EEprom backup 000 M499 EEprom backup Relay General M500 M1535 no backup M500 M1535 no backup M Special M8000 M8255 no backup M8000 M8255 no backup State Relay Latched S000 S499 EEprom backup S000 S499 EEprom backup S General 500 S999 no backup 500 S999 no backup 100 msec 000 T199 no backup 000 T199 no backup 10 msec T200 T245 no backup T200 T245 no backup Timer T 1 ms integration 4 points T246 T249 EEPROM backup 4 points T246 T249 EEPROM backup 100 ms integration 6 points T250 T255 EEPROM backup 6 points T250 T255 EEPROM backup Analog 2 points Define by user 2 points Define by user Latched C00 C31 EEprom backup Latched C00 C31 EEprom backup 16018 Counter General C32 C199 General C32 C199 Counter C 32bits General C200 C215 General C200 C215 Counter Latched C216 C255 EEprom backup Latched C216 C255 EEprom backup High Speed 6 points XO X5 XO or X1 for 1 phase 60KHz X2 X5 for 1phase 10KHz Counter and X1 for 2 phase 30KHz X2 X5 for 2phase 5KHz Latched D000 D255 EEprom backup Data Register General D256 D3999 can used FNC 12 MOV stored at EEPROM Special D8000 D8255 no backup Index VO V7 20 Z7 Pointer P JMP CALL P000 P127 Pointer 1 Interrupt 1 10 18 Nest Nest N NO 7 Communication Interface The 2 nd port Option RS 232C amp RS 232C RS 422 RS 4
52. D00 xX60 1000 n xt n pulse revolution t measurement time The pulse frequency of X00 X05 is same with HSC If input relay X00 X05 is assigned by the SPD they can t be used to other purpose or interrupt input point If pulse output assign YOO then X00 can t be used if assign YO1 then X01 can t be used V1 45 or more add complete flag M8029 easily reach many data of continuous measurement then count average value 1 measure frequency mode MAO D01 current value 2 EN Fa 000 measurement value 100 5 100 5 7 D02 remainder time ii measure cycle mode Time base 1 JJ LJ LI LIL LT I L X10 X00 Di DO measurement value ms I D1 current value V When the content of S2 is 0 then it s measurement cycle mode The measurement time ms and RPM are inverse ratio it can get number of turning round by formula thereinafter RPM N 60 x 1000 DO 5 31 5 Applied Instructions Pulse Output FNC 57 16 bits PLSY P 7 steps EX EXis EXin EXon D PLSY 32 bits DIPLSY P 13 steps Operands lt 51 S2 gt K H KnX KnY KnM KnS T C D V Z D YOO Y01 Flag M8029
53. RST M8158 Initial direction control by M8156 M113 RST M8156 Initial direction reverse M113 T18 ALTP M8156 RST M113 SET M8132 X12 m RST M112 M112 X06 X07 Y02 T18 M112 M112 X07 X06 02 T18 SET M113 M112 X12 Home Creep DogP DZRN D116 D118 X02 YOO Dog point X02 M8029 M8152 pulse catch flag M8172 effective RST M112 RST M8029 18 113 12 T18 10 5 Applied Instructions forward mode touch software limited switch stay 1 second then reverse this example initial direction control by flag M8156 or M8157 X12 41 SET M112 T18 m RST M8152 Clear zero return finish flag SET M8154 Forward mode if M8154 0 then reverse mode RST M8158 Initial direction control by M8156 M113 M8156 M113 T18 ALTP M8156 RST M113 SET M8132 X12 RST M112 M112 114 DZCP 100 000 100 000 08140 190 Yo2 192 RST M112 Y02 M190 SET M113 SET M114 M114 DZCP 99 999 K99 999 08140 190 191 114 112 X12 Home Creep DogP DZRN D116 D118 X02 YOO Dog point X02 M8029 8152 pulse catch flag M8172 effective RST M112 RST 8029 T18 M113 X12 18 10 5 Applied Instructions
54. Specifications 16MR Terminal Signal 246 S S is NPN mode 240 gt S S is PNP mode 249 240 are output power source from PLC 100 240VAC 50 60Hz 249 240 V8 IR Pn L X00 X01 X02 X03 X04 X05 X06 X07 24VDC EE PLC L 240 Yoo Y01 Y02 Y03 C1 Y04 Y05 Yoe Y07 16MR Type Terminal Signal PNP mode Source 24 24 are output power source from PLC 100 240VAC 50 60Hz Internal power mode used and connected with driver 249 240 I H H H H H Mis x00 x05 x07 24VDC PLC _ 246 246 Co Yoo YO1 Yo2 YOS C1 04 Yos Yoe YO7 14MT Type Terminal Signal and Wiring Diagram 249 240 are output power source from PLC ees 50 60Hz L COM X02 X04 X05 X06 X07 24VDC 13 PLC 22 4 246 240 241 CAO Yoo YO1 YO2 Yo3 C1 04 Y05 e option x option um 24V 24G pulse sign Servo Driver 14MT Type Terminal Signal and Wiring Diagram 249 240 are output power source f
55. co RST xi LD X 1 0 OUT C 0 CO x K 5 YO LD C 0 OUT Y o0 M x1i L CO When 0 ON clear current data to 0 and contact off count up the signal of X1 OFF ON after 5 counts then keep current value and the contact ON Counters can be set directly using constant K or indirectly by using data register D CO Do All of the counters CO C255 are latched The high speed counters refer to chapter 4 3 Step Ladder Instructions How STL Operates 3 1 The state activate amp move condition NN 22 YO X0 lt move condition B Y2 3 1a 3 1b 3 When 3 1 state then executing the program belonged to state A i e YO Y1 2 OFF State OFF the program belonged to state B not executing When move condition XO ON don t need keep then state ON i e state AON and state ON in one cycle time 3 1b YO Y1 Y2 all ON After one cycle state A auto OFF state B still ON 3 1c i e YO OFF Y1 ON SET 2 ON Once the current STL state activates a second following state the source STL state will auto reset 3 2 Simple Flow Chart SFC amp Ladder Chart STL Y S1 YO YO move condition X0 move condition S2 S2ismove destination move destination H 3 2 Simple Flow Chart SFC 3 2b Ladder STL 3 2a is Si
56. gt D2 then only D1 is reset Decode FNC 41 16 bits 7 steps EX EXin DECO P Operands lt S gt X Y M S K H T C D 6 D gt lt gt lt 0 1 1 8 10 S D n DECO 000 10 K3 X002 X001 000 0 1 1 4 2 1 0 0 0 0 1 0 0 0 M17 16 M15 M14 M13 M12 M11 M10 If the specified device D is T C or D then n lt 4 If the sources all are 0 then M10 set to 1 5 Applied Instructions Encode FNC 42 16 bits ENCO P 7 steps EX EXin EXon ENCO P Operands lt 5 lt S gt X Y M S K H T C D V Z lt D dei Flag X10 S D n L ENCO M10 D10 K3 M17 M16 M15 M14 M13 M12 M11 M10 0 0 0 0 1 0 0 0 7 6 5 4 3 2 1 0 010111 1 MSB D10 LSB If the specified device S is T C or D then n lt 4 The number of active ON bits within the source device S is more than one only the lowest bit 1 is effective If bits of source device S all are
57. lt 2 lt 1 lt 256 lt D gt Flag X10 S D ni n2 SFTRP Mo K16 K1 lt lt BIT SHIFT RIGHT gt gt 15 14 13 12 11 10 M9 M8 W 5 4 M2 M1 AAD NGA NGA NGA NGA NGA NGA NGA NGA NGA AAA X10 5 D ni n2 H L SFTLP Mo K16 K1 lt lt BIT SHIFT LEFT gt gt V 15 14 13 12 44 10 9 8 7 M6 5 4 2 M1 MO A RUT KRY KRY KRY RY RY BR BR AN UN Example I O Test Wiring X10 Y10 X17 Y17 M8002 SET Y17 M8013 T10 SFTRP X10 Y10 K8 K1 X10 X12 X13 X15 X16 X17 a 10 K5 T10 5 Applied Instructions Word Shift Right FNC 36 16 bits WSFR amp WSFR P 9steps EX EXis EXin EXon WSFR P Word Shift Left FNC 37 16 bits WSFL amp WSFL P 9 steps EXis EXin EXon WSFL P Operands lt 5 1 gt KnX KnY KM KnS T C D V Z lt n gt lt D x n1 lt 256 Flag X10 S D ni n2 WSFR P
58. use the LDI instruction LDI OUT LDI X 1 xi 4 x OUT Y 1 Y1 OUT T K 50 SP K 50 When use hand held programmer the space key needs to be pressed to enable the constant to be entered AND amp AND Inverse Instruction EX EXon Mnemonic Instruction Symbol amp Device Step number m m AND AND ae os 1 ANd Inverse 1 If an NO contact is connected in series use the AND instruction AND 2 LD X 2 H HHH v2 AND X 3 OUT Y 2 If an NC contact is contacted in series use the ANI Instruction ANI xac LD X 2 AN X 3 OUT Y 3 2 Basic Instructions OR amp OR Inverse Instruction EX EXis EXin EXon Mnemonic Instruction Symbol amp Device Step number oR Sada 5 OR Inverse I m 1 X Y M S T C If an NO contact is connected in parallel use the OR instruction LD X 4 X4 YA OR X 5 X5 lt OR OUT Y 4 If an NC contact is connected in parallel use the ORI instruction 4 LD X 4 Y4 ORI X 5 X5 lt ORI OUT Y 4 ANB Instruction EX EXis EXon Mnemonic Instruction Symbol amp Device Step number ANB ANd Block E Hu etel 1 Serial connection of parallel circuit use the ANB X10 LD X 10 Y10 OR X 1 x13 LD 12 hue OR X 13 ANB OUT Y 10 ORB Instruction
59. 019 D20 021 When M8027 ON CPU will write the content of S into EEPROM D only D register can be used Note When M8027 ON for avoid to SET 8027 010 01000 K8 RST M8027 damage EEPROM must be used Pulse Instruction MOV P When M8160 ON the move as follows M8027 not be ON V2 85 or more is effective SET M8160 D10 D20 K4 D14 Lower D13 Upper 013 Lower D12 Upper D12 Lower D11Upper D11 Lower D10 Upper D10 Lower V 024 Upper D24 Lower D23 Upper D23 Lower D22 Upper D22 Lower D21 Upper D21 Lower D20 Upper D20 Lower 5 Applied Instructions Fill Move FNC 16 16 bits FMOV amp FMOV P 7 Steps EX EXis EXin D FMOV P 32 bits DIFMOV amp D FMOV P 13 Steps Operands lt 5 gt KnX KnY KnM KnS T C D V Z lt gt lt 0 gt n lt 128 X0 S D n I 4 KO DO K10 gt 000 009 Exchange FNC 17 16 bits XCH amp XCH P Sete eset Rp aus sss 5 Steps EX
60. 07 v zs els oo 9 4 RSW1 RSW2 MOV 64 D99 number of receive bytes X007 K1 D10 station number 1 slave MOV H0003 011 read command MOV Hoooo D12 address Upper byte MOV 0000 D13 address Lower byte I 1 MOV 014 number of data Upper MOV 0002 015 number of data Lower word MOV K6 D98 number of send bytes MOV K64 D99 number of receive bytes 8000 H Bmov D10 D100 D98 move data to buffer RS D100 D98 D200 D99 assign send receive start address 5 Applied Instructions At ModBus RTU mode number of send data must be set correctly and communication format has to be no STX ETX Data of error check is not included to number of send bytes It is counted by automatically and result is stored to next two registers lt lt MODBUS ASCII gt gt LRC error check mode switch of EXRMO808R T ON DIP m O m LI T 2 3 4 5 6 7 g SWI Ex application note with Remote module M8002 7 Do 0255 SET 8161 8 bits operation mode MOV H3386 D8120 ModbusAscii 9600 7 E 1 MOV KO 08121 PLC station number 0 master MOV H003A D8124 STX I MOV H000D D8125 ETX1 Mov H000A D8126 ETX2 MOV K200 08129 time out monitor
61. 1 0 0 0 0 1 0 1 Sum K1091 X10 8161 M8161 ON 8 bits operation mode SS D n CCD D100 DO K4 M8000 M8161 16 bits h ignore Lower 8 bits source data Calculation the data of n bytes 8 bits from the head address of source S then put the Sum 00 Vertical Parity gt D01 D 1 M8161 ON 8 bit mode S Bit Pattern D100 K100 0 1 1 0 0 1 0 0 D101 K111 0 1 il 0 1 1 1 1 D102 K100 0 1 1 0 0 1 0 0 D103 K98 0 1 1 0 0 0 1 0 D104 K123 0 1 1 1 1 0 1 1 D105 K66 0 1 0 0 0 0 1 0 D106 K100 0 1 1 0 0 1 0 0 D107 K95 0 1 0 1 1 1 1 1 D108 K210 1 1 0 1 0 0 1 0 D109 K88 0 1 0 1 1 0 0 0 Vertical parity 1 0 0 0 0 1 0 1 SUM K1091 Volume Read 5 Applied Instructions FNC 85 16 bits VRRD P 5 Steps EX EXin EXon VRRD P Operands lt D K H KnX KnY KnM KnS T C D 7 lt gt S 0 3 8000 5 D VRRD KO DO X001 T0 Do The identified volume S of the master unit is read as an analog input and converted to 8 bits binary code 0 255 stored into the destination device D The content of D can as Timer data or Counter data Volume Scale
62. 32 767 0 1 2 sd Ii BAUR Borrow Flag Carry Flag Zero Flag Zero Flag A NN CON 2 1 0 2 147 483 648 4 1 0 1 gt gt 2 147 483 647 0 1 2 SUN IN A V AA 7 NAA 4 Borrow Flag Zero Flag Carry Flag Multiplication 5 Applied Instructions FNC 22 16 bits MUL amp MUL P 7 Steps EX EXis EXin EXon D MUL P 32 bits DMUL amp D MUL P 13 Steps Operands lt S1 S2 gt K H KnX KnY KnM KnS T C D V Z lt D X0 61 1 S2 D D10 D12 D14 16 bit 010 x D12 gt D15 D14 X0 51 1 S2 D D10 D12 D14 32 bit 011 010 x D13 D12 gt D17 D16 D15 D14 The primary source S1 is multiplied by the secondary source S2 The result is stored to destination D Division FNC 23 16 bits DIV amp DIV P 7 Steps EX EXis EXin EXon D DIV P 32 bits D DIV amp D DIV P 13 Steps Operands lt 51 S2 gt KnX KnY KnS T C D VZ lt D X0 51 S2 D DIV D10 D12 D14 Dividend divisor quotient remainder 010 012 gt D14 D15 16 bits 16bits 16 bits 16 bits X0 5
63. 9 steps EXin EXon RS Operands lt S gt K H KnX KnY KnM KnS T C D VZ lt gt m n 1 128 lt gt m n Flag lt lt Communication Format gt gt D8120 Content 0 1 Bito Data length 7 bit 8 bit Parity 00 none 01 odd 11 even Bit3 Stop Bit 1 bit 2 bit Bit4 0011 300 0100 600 Bit5 Baud rate 0101 1200 0110 2400 Bit6 bps 0111 4800 1000 9600 Bit7 1001 19200 Bit8 Start 1 None D8124 Bit9 End 1 None D8125 Bit10 Reserved Bit11 Reserved Bit12 End2 None D8126 Bit13 RS Mode User define ModBus Bit14 ModBus Mode Ascii Mode RTU Mode or Computer Link Bit15 Protocol Format 1 Format 4 EXADP232 422 485 communication board connected to the 274 communication port of EXPLC to execute transmitting and receiving data The protocol is assigned by D8120 protocol and data frame are all defined by user and can be selected different communication interface board 50 EXPLC can be communicated with other kind of machines When main unit start to operate it will check if there is RS instruction by itself If yes then Computer link mode is ineffective The Protocol will be changed to user define mode or Modbus mode Computer link mode Program of this mode can not be written RS instruction i e all stations are slaver unit It only set content of D8120 and D8121 bit14 of D8120 have to be set 1 i e it can construct multi station connection system E
64. EX EXis EXin EXon Mnemonic Instruction Symbol amp Device Step number ORB OR Block mm E m 1 Serial connection of parallel circuit use the ORB X10 X12 LD 10 I YM AND X 12 X11 X13 X M lt ORB AND X 13 ORB OUT Y 11 2 Basic Instructions Load Pulse amp Load Falling Pulse Instruction EXin EXon Mnemonic Instruction Symbol amp Device Step number LDP LoaD rising Pulse l X Y M S T C 2 LDF LoaD Falling pulse u L4 X Y M S T C 2 LDP X0 0 LDP X 0 M100 2 OR X xs 3 OUT M 100 4 LDF X0 LDF 6 OUT Y 0 i C Yo gt Basic points to remember Connect LDP and LDF instructions directly to the left hand bus bar Or use LDP and LDF instructions to define a new block of program when use ORB and ANB instructions see later sections LDP is active for one program scan after the associated device switches from OFF to ON LDF is active for one program scan after the associated device switches from ON to OFF Single Operation flags M2800 to M3071 When the pulse operation instructions used with auxiliary relays M2800 to M3071 only activate the first instruction encountered in the program scan after the point in the program where the device changes Any other pulse operation instructions will remain inactive This is useful for use in STL programs see chapter 3 to perform single step operation using a singl
65. ORF ORB OUT M 40 ORP is active for one program scan after the associated device switches from OFF to ON ORF is active for one program scan after the associated device switches from ON to OFF Single operation flags M2800 to M3071 When used with flags 2800 to M3071 only the first instruction will activate END Instruction 2 Basic Instructions EX EXis EXN Instruction Symbol amp Device Step number NOP N A 1 END END END 1 NOP Instruction After the program all clear operation is executed all instructions in the program are over written with NOP s END INSTRUCTION Insert this instruction at the end of a program and program return to step O If missing this instruction then program can t be executed NOTE 1 Program a circuit from its up to down and left to right 2 Output relay can t be connected directly from the bus bar If necessary connect it through the N C contact of special auxiliary relay M8000 3 I O relay inside auxiliary relay TIM OUT the number of contact that can be used per output relay is not limited 4 Behind the output coil can not in addition contact Two or more output coils can be connected in parallel 2 Basic Instructions Multiplex output circuit EX EXis EXin EXon Mnemonic Instruction Symbol amp Device Step number Memory PuSh
66. S The content of S is positive number then effective Flag M8020 X001 S D V 011 010 gt D21 D20 I pEsoR D10 D 20 binary floating data binary floating data To be square root of binary floating data of source device S then the result stored by binary floating data at destination device of D When source operand assigned by constant K or H it will be converted to binary floating data automatically X002 K1024 0111 0110 D ESQR k1024 D110 Convertautomatically to binary floating data binary floating data If the result is 0 then zero flag M8020 will ON The content of source operand is effective only when it is positive If the number is negative then error flag 8067 will ON and stop executing Float to Integer FNC 129 16 bits INT amp INT 5 steps EX EXis EXin EXon D INT P 32 bits D INT amp D INT P 9 steps Operands IS gt KnX KnY KnM KnS T C D V Z Operands X Y M S Flag X001 S D 011 010 020 D10 D20 binary floating data BIN integer remove the number of decimal fraction X002 S D 0101 0100 D111 D110 D INT D100 D200 binary floating data BIN integer remove the number of decimal fraction Convert binary floating data of assigned device S
67. X04 pulse catch O OFF N N M8175 XO5 pulse catch O O O OFF INN 8176 XO6 pulse catch O O OFF 4 4 8177 X07 pulse catch O O O OFF M8178 Reserved x M8179 Reserved x Following Device For Monitor Used Will Auto set or clear by system The series of PLC Number Content Of Register EX TEX EXA Default RW M8180 YOO FNC 59 PLSR Busy Flag O O O OFF 8181 01 FNC 59 PLSR Busy Flag OFF Nix M8182 00 FNC 158 DRVI FNC 159 DRVA Busy Flag O O O OFF M8183 01 FNC 158 DRVI FNC 159 DRVA Busy Flag OFF x 8184 00 FNC 156 ZRN Busy Flag O O O OFF x M8185 01 FNC 156 ZRN Busy Flag O OFF Nix M8186 Interpolation busy flag M8187 M8188 Interpolation busy flag M8189 The series of PLC Number Content Of Register EX TEX EXA Default RW M8190 00 FNC 59 PLSR Zero Return Busy Flag 1 OFF Nix 8191 01 FNC 59 PLSR Zero Return Busy Flag O O OFF M8192 00 FNC 157 PLSV Busy Flag O O O OFF Nix M8193 YO1 FNC 157 PLSV Busy Flag LO OFF x 8194 00 FNC 57 PLSY Busy Flag OFF w x M8195 01 FNC 57 PLSY Busy Flag OFF x M8196 00 FNC 59 PLSR Jog Forward Busy Flag O O O OFF M8197 01 FNC 59 PLSR Jog Reverse Busy Flag O O O OFF 8198 Y00 FNC 59 PLSR Jog Forward Busy Flag O O O OFF M8199 Y01 FNC 59 PLSR Jog Reverse Busy Flag O O O OFF
68. Y06 Yo7 Y10 Y11 Y12 via 14 15 Y16 Y17 L 1 Specifications 8EX Type Terminal Signal 485ADP 485LNK Type Terminal Signal 24V 24G are external power source input terminal 24V 24G are external power source input terminal 24VDC L L L 24VDC 3 3 a s i 24V 24G X00 X01 X02 an 24V FG 24G e E 2 i PLC 24V 24G X04 X05 06 X07 _ RDA RDB SDA SDB SG SG 8ER 8ET Type Terminal Signal 1PG Type Terminal Signal 24V 24G are external power source input terminal 24V 5 5 are NPN mode 24G S S are PNP mode 24VDC B PG S S X00 DOG lt 24v 246 xo2 241 24G RP COM CLR tle CO YOO YO1 YO2 YO3 _ _ B 24VDC 8EYR 8EYT Type Terminal Signal LTOC Type Terminal Signal not need external power source input e C1 04 05 06 YO7 PB z H E i x PLC CN YOO Y01 Y02 YO3 _ _ Vin 5Vo Z A ij
69. amp 5 Steps EX EXin EXon CML 132 bits D CML amp D CML P 9 Steps Operands lt S K H KnX KnY KnM KnS T C D VZ lt D gt X0 S D CML DO K4Y0 Each data bit within the source device S is inverted and then copied to the designated destination D MSB DO LSB 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 17 v Y0 1 01 10 011 0 5 Applied Instructions FNC 15 16 bits BMOV amp BMOV P 7 Steps EXin EXon BMOV P Operands S gt KnX KnY KnM KnS C D VZ lt n gt lt D lt 128 Flag None S D n HI BMOV D10 D20 K10 When ON the move as follows X0 PT RST M8160 BMOV D10 D8 K10 019 018 017 016 015 014 013 012 011 010 VO VO VO VO vo 017 016 015 D14 D13 D12 D11 D10 D9 D8 When transmitting number is repeat the move as follows X0 HH RST M8160 BMOV D10 D12 K10 010 011 012 013 014 015 016 017 018 019 VO VO VO VO vo Ve Vo 012 D13 014 015 016 017 D18
70. bits DRCR amp D RCR P 9 Steps K H KnX KnY KnM KnS T C D VZ Operands lt n lt D 16bit n lt 16 32bit n lt 32 Flag X0 D n L RCRP DO K4 MSB Do LSB 1 1 1 1 1 1 1 1 0000000 8022 o When M8022 1 after one rotation then M8022 0 MSB LSB 01010 1 1 1 1 1 1 1 1 1 0101010 Rotation Left with Carry FNC 33 16 bits RCL amp 5 Steps EX EXin EXon D RCL P 32 bits D RCL amp D RCL P 9 Steps K H KnX KnY KnM KnS T C D V Z Operands lt n lt D gt 165 n lt 16 32bit n lt 32 Flag D n RCLPP DO K4 MSB DO LSB 10 M8022 INN When 8022 0 after one rotation then M8022 1 ll MSB LSB 1 1 1 1 0000000001 1 1 Shift Right 5 Applied Instructions FNC 34 16 bits SFTR amp SFTR P EX EX N EX SFTR P Shift Left FNC 35 16 bits SFTL amp SFTL P SFTL P EX EXin Operands X Y M S
71. bits the msb is sign also can pair of any one to 32 bits data Special Data Register D8000 D8255 256 Points The special data register is used to control or monitor the programmable logic controller internal status When the power OFF gt ON all of the data register are set to initial value Index Register V Z 16 bits operation mode V amp Z all is 16 bits register 32 bits operation mode pair of V Z as 32 bits register V is upper word Z is lower word Sometime the use of multiple index registers V amp Z is necessary in larger program or the program need handle large quantities of data For Example MOV 007 0100 Just change index Z value then can move the content of 000 099 to D100 Following instruction format can modified by index V Z KnXxxZ KnYxxZ KnMxxZ KnSxxZ TxxZ CxxZ DxxZ Following is error instruction format KnZMxx index register V Z can t connect to Kn directly Example MOV K10 Z index Z 10 ADD DO D2 D100Z D0 D2 gt D110 Binary Floating Data Binary floating data is a data register which use an continuous serial number for example D11 D10 D 11 b15 b0 F 010 b15 b0 gt 27 26 25 2 20 21 2 23 2 21 2 22 2 23 5 E7 E6 E5 E1 A22 A21 20 2 A2 A1 A0 631 080 029 b28 624 b23 022 b21 b20 b2 b1 b0 Exponent 8 bit amp Exponent 32 bit
72. is stored to next two registers 5 52 lt lt User Defined Mode gt gt user defined error check Ex1 application note of master at Ascii mode 8 bits operation mode communication format PLC station number 0 master STX 2 number of send bytes number of receive bytes 8002 SET 8161 MOV 6 D8120 MOV D8121 MOV H003A 08124 MOV H000D 08125 MOV 08126 M8002 098 MOV K64 M8000 M8123 LI T10 RST M8123 SET M8122 END Application note of Slave RS 0100 098 D200 099 assign send receive start address END M8002 SET 8161 8 bits operation mode MOV H13A6 08120 communication format MOV 108121 station number 1 slave 1 MOV D8124 STX MOV 0000 08125 ETX1 MOV 08126 ETX2 M8002 K8 098 number of send bytes MOV K64 099 number of receive bytes 8000 RS 5100 098 0200 099 assign send receive start address M8123 110 T10 HU RST 8123 SET 8122 5 Applied Instructions At this mode data of error check is counted by program designer PLC do not calculate automatically Send data mu
73. lt S1 lt S2 S1 gt S2 230 LD gt D LD S1 gt S2 S1 lt S2 S1 S2 10 K200 C 10 X001 Lb D200 K 30 HH SET voti pip K678493 C200 D M3 5 Applied Instructions AND AND compare AND AND gt AND lt AND lt gt AND lt AND gt FNC 232 238 16 bits 5 steps EX EX D AND 932 dec EE eu EIE 9 steps MU o E Operands lt S1 S2 gt KH KnX KnY KnM KnS T C D VZ Operands X Y M S Flag Comparison of BIN to the content of two source operands according to the result update operate status when X001 OFF and DO 10 then 011 ON No 16 bits instruction 32 bits instruction ON OFF 232 AND DAND S1 S2 S1 4 S2 233 AND gt DAND gt S1 gt S2 S1 lt S2 234 AND lt DAND lt S1 lt S2 61 1 gt S2 236 AND lt gt DAND lt gt S1 Z S2 S1 S2 237 AND lt DAND lt S1 lt S2 S1 gt S2 238 AND DAND S1 S2 S1 lt S2 S1 S2 K200 C 10 when X000 ON 10 200 then 010 ON K 10 DO SET 011 678493 D 10 D X002 ON 011 010 l
74. phase 32 bits up down counter at the same time Monitor M8xxx ON OFF status then can know the counting direction of Cxxx The counting direction of this type counter are decided by A phase and phase when the input pulse is ON of A phase and when B phase input pulse is OFF gt ON then is up counter when phase ON gt OFF then is down counter A phase input pulse ON A phase input pulse ON A phase A phase B phase B phase Y Y B phase is count up B phase is count down This example use X00 as A phase input X01 as B phase input without start rest X11 When X11 ON reset C251 current value to 0 and the contact turned OFF X12 C When X12 ON enable the C251 start counting C251 1234 Whether count up or count down when current value setting value YO2 ON other OFF 251 I Yo2 X11 X00 as A phase input X01 as B phase input X02 as reset input X06 as start input 4 6254 e When X11 or X02 ON reset C254 current value to 0 and the contact turned X12 OFF l C254 1234 When X12 ON enable the C254 start counting C254 Whether count up or count down when current value setting value YO4 ON other OFF H 704 4 Advanced Devices Data Register D Latched Data Register 0000 D255 256 Points General Data Register D256 03999 General data register can be used as same as file register All of data register are 16
75. pointer LAB PO and execute Subroutine until SRET instruction is executed then program return to original step and continue processing The LAB assigns beginning of subroutine must be programmed after an FEND The same LAB can only be used once but many CALL statements can be assigned to a single LAB subroutine Subroutines can be nested for 5 levels including one CALL instruction Interrupt Return 5 Applied Instructions FNC 03 16 bits 1 Steps EX EXin EXon IRET Operand None Enable Interrupt FNC 04 16 bits 1 Steps EX EXon El Operand None Disable Interrupt FNC 05 16 bits DI L mam es 1 Steps EX EXis EXin EXon DI Operand None Disable Interrupt El The programmable controller has a default status of disabling Enable Interrupt interrupt operation DI As under normal operation when an interrupt routine is when Disable Interrupt an interrupt routine is activate all other interrupt are disabled FEND Interrupt routine are always programmed after a FEND X1 instruction 1 The IRET instruction may only be used within interrupt Interrupt Routine routines IRET END Number of in 100 l
76. speed counters or for any other purpose like as an interrupt input Device Table of High Speed Counter Input 1 Phase without start reset 1 Phase with 1 Phase bi direction A B Phase counter C235 236 237 238 239 240 241 242 243 244 245 246 C247 248 C249 250 251 252 253 254 255 XO U D U D U D UJU U A A A 1 U D R R D D D B B X2 U D U D U D X3 U D R R U U A A X4 U D U D D D B B X5 U D X6 5 5 5 X7 5 5 5 0 up counter input D Down counter input A phase input B phase input Reset input 5 Start input Inputs X0 X7 cannot be used for more than one counter For example If C235 is used the following counters C241 C244 C246 C247 C249 C251 C252 C254 10 amp SPD cannot be used X6 amp X7 also as high speed input point but only as START or RESET input used cannot as counter input Following is 2 Phase Encoder Forward amp Reverse Pulse Conduction Need used AB Phase Counter 6 A phase B phase 4 Forward Pulse Count Up A phase B phase Y Y Reverse Pulse Count Down 4 Advanced Devices 1 Phase High Speed Counter High speed counter operated by interrupt and independent cycle time 1 Phase 1 Input without start reset C235 C240 control M8xxx ON OFF status then can set C
77. to BIN integer then store the result at destination device D When the result is 0 then zero flag M8020 will ON When it converts and becomes 0 because of less than 1 borrow flag M8021 will ON If the calculating result more than following limit then will overflow and carry flag M8022 will ON When 16 bit operation 32 768 32 767 When 32 bit operation 2 147 483 648 2 147 483 647 5 Applied Instructions Sine FNC 130 EX EXis EXin EXN D SIN P 32 bits D SIN amp D SIN P 9 steps Operands lt S gt KnY KnM T C D VZ Operands X Y M S 0 lt angle lt 360 Flag X000 S D 051 D50O JRAD 061 D60 SIN D SIN D50 D60 binary floating data binary floating data Used assigned angle RAD by source S to get SIN value then store the result at destination device D S D 51 D 50 RAD value angle x 7 180 iri assign to binary floating data Y D D 61 D 60 SIN value binary floating data 8002 D MOV P K 60 DO ZC 60 00 binary integer value M8000 D FLT DO D4 Convert ZC to binary floating value gt D5 D4 D EDIV K31415926 K1800000000 D 20 z 180 021 020 D EMUL D4 D 20 D 30 D5 D4 angle x x 180
78. 0 D200 K4 8000 M8161 when M8161 ON then 8 bits mode 16 bits _ gt 0 lower 8 bits K1 K2 K3 K4 A D200 down D201 down D202 down 0203 down D204 down S D205 down q s x So 9 D206 down 0207 down 5 Applied Instructions Ascii To Hex Conversion FNC 83 7 Steps Operands lt SS e K H KnY KnM KnS T C D V Z lt lt D n 1 64 Flag S D n 0200 0100 4 The ASCII code of the upper lower byte source S to be converted to the hexadecimal data and stored into the destination device D for n number byte When M8161 OFF 16 bits operation mode Ex D200 down 70 D200 up D201 down D201 up D202 down 71 D202 up 2 D203 down 3 0203 up 4 D102 D101 D100 0H K2 K3 OABH K4 OABCH K5 OH ABC1H K6 OAH BC12H K7 123 K8 OABCH 1234H X10 M8161 8 bits mode S D n HEX D200 D100 K4 8000 M8161 when 8161 ON then 8 bits mode lt 16 bits gt ignore Lower 8 bits
79. 00 down D100up D101 down D101 up ETX start data of receiving n end STX D200 down D200up D201 down D201 up ETX If error occurrence was in the communication then error flag M8063 to be set and error code in the D8063 5 50 lt lt MODBUS gt gt CRC error check mode switch of EXRMO808R T ON DIP AE aHa rP T 2 3 5 8 7 Ex application note with Remote module M8002 285 0255 m SET 8161 8 bits operation mode MOV H6087 08120 ModbusRTU 9600 8 E 1 KO 08121 PLC station number 0 master LJ Mov K200 D8129 time out monitor X007 pn MOV K1 D10 station number 1 slave MOV 0006 D11 write command MOV 0000 012 address Upper byte MOV H0004 D13 address Lower byte MOV H0000 014 data Upper byte MOV H0084 015 data Lower byte MOV K6 098 number of send bytes M500 SET 8122 send start flag M8123 INC 0998 PLS M500 M8123 receive completion M8128 H RST M8128 CRC ERROR flag INC 0999 END 907 9
80. 1 S2 D DDIV D10 D12 D14 Dividend divisor quotient remainder 011 010 013 012 gt D15 D14 D17 D16 32 bits 32 bits 32 bits 32 bits The primary source S1 is divided by the secondary source S2 The result is stored to destination D If value of source device S2 is 0 zero then an operation error is executed Error code 6706 and error step number stored to 08069 the program operation is cancelled V1 17 edition If value of source device S2 is 0 zero then will not execute and directly jump to next instruction 5 Applied Instructions Increment FNC 24 16 bits INC amp INC P 3 Steps EX EXin D INC P 32 bits DINC amp D INC P 5 Steps K H KnX KnY KnM KnS T C D VZ Operands D y D INC D0 D0 1 D0 On every execution of the instruction the device specified as the destination D and its current value increased 1 In 16 bit operation when 32 767 is reached the next execution will write a value of 32 768 to destination device In 32 bit operation when 2 147 483 647 is reached the next execution will write 2 147 483 648 to destination device The carry zero and borrow flag are unaffected in the operation Decrement FNC 25 16 b
81. 166 will change to S3 FNC 59 Zero Return EX 1 5 Applied Instructions This Example Initial Direction controlled by Flag M8156 or M8157 Initial Direction also can be controlled by the absolute address of dog point Setting YOO Accelerate Time and Decelerate Time ms 1 word Creep Speed D8168 K100 00 Dog point is X06 8002 MOV K100 D8168 Setting Y00 Bias Speed Frequency 1 word MOV K100 D8164 DMOV 100 000 08156 Setting YOO Maximum Speed Frequency 2 words DMOV K500 D8176 Setting Y00 Dog Point Absolute Address 2 words ZRST M100 M199 8002 H DMOV 50 000 0116 Setting Home Speed Frequency DMOV K1000 D118 Setting Creep Speed Frequency MOVP K5 D8169 Setting the number of search z phase X12 1 112 RST M8152 Clear zero return finish flag RST M8158 Initial direction decided by M8156 SET M8156 Initial direction reverse SET M8154 Forward Mode if M8154 0 then is reverse mode SET M8144 Setting FNC 59 PLSR zero return mode FNC 156 ZRN Don t Care This M112 X12 Home Don tCare Acc Dec DPLSR 0116 0118 M8029 M8152 pulse catch flag M8176 effective RST M112 RST 8029 e FNC 59 Zero Return 2 5 Applied Instructions Initial direction controlled by dog poi
82. 2 03 04 05 N option option 24V 24G pulse sign Servo Driver 1 Specifications 24MR Type Terminal Signal 246 S S is NPN mode 240 S S is PNP mode 24 249 are output power source from PLC 100 240VAC 50 60Hz I I 8 By SI 31 9 2 gi l sl l sl 9 9l 8181 9l sl sl l 9 e 24 S S 24o xoo X01 X02 4 X05 X06 x10 X11 X12 x14 X15 X16 X17 24VDC L nl 24VDC PLC 246 240 e e YOO YO1 YO2 vos C1 YO4 5 YO7 24 Terminal Signal and Wiring Diagram 249 S S is NPN mode 240 gt S S is PNP mode 24 249 are output power source from PLC 100 240VAC 50 60Hz o si sl sl sl sl 9 9l si sl Sl sl 8191 5 ol e 240 5 5 24e x02 X05 X06 X07 X10 X11 X12 x13 x14 X15 X16 X17 Lu 24VDC PLC 241 cao Yoo Y01 Y02 vos C1 04 05 06 YO7 E option Internal power mode used and connected with driver option 24V 24G pulse
83. 2 then the result stored by form of binary floating data at destination device of D When source operand assigned by constant K or H it will be converted to binary floating data automatically X002 K2346 0101 0100 D111 D110 I D 0 D2346 D 100 D 110 Convert automatically to binary floating data binary floating data binary floating data Enable assign source operand S and destination operand 0 to same device number 5 Applied Instructions Floating Point Multiplication FNC 122 EX EXis EXin D EMUL P 32 bits D EMUL amp D EMUL P 13 steps Operands lt S1 S2 S1 S2 lt _ gt KnX KnY KnM KnS T C D V Z lt Operands X Y M S Flag None X001 51 1 52 1 D 011 010 x 021 020 051 050 D EMUL D 10 D 20 D 50 binary floating data binary floating data binary floating data Two source devices binary floating data of S1 is multiplied by binary floating data of S2 then the result stored by form of binary floating data at destination device of D When source operand assigned by constant K or H it will be converted to binary floating data automatically X002 K2346 x 0101 0100 gt D111 D110 DEMUL K2346 D 100 D 110 Convert automatically to binary floating data
84. 2 bits counter C200 to compare then have to use 32 bits instruction If use 16 bits instruction to compare then error will occur X001 ON or 10 200 then 000 ON when X002 and M30 ON or D101 D100 gt 100000 6 Special Auxiliary Relay amp Data Register The series of PLC Number Content Of Register EX TEX EXA Default RW M8000 monitor a contact ON M8001 Run monitor b contact OFF Wix M8002 Initial pulse a contact O O O Wix M8003 Initial pulse b contact Wix 8004 Error occurrence O O O OFF M8005 M8006 M8007 M8008 24V power failure OFF N x 8009 24Vdc down OFF Wix The series of PLC Number Content Of Register TEX Default 8010 M8011 10 5 clock pulse 5ms ON 5ms OFF O O O M8012 100ms clockpulse 50ms ON 50ms OFF M8013 1 0 clock pulse 0 5sec ON 0 5sec OFF M8014 1 0 clock pulse 0 5 0 5min OFF O O O 8015 8016 8017 8018 8019 Real Time Clock Data Error Flag O O O OFF The series of PLC Number Content Of Register EX TEX EXA Default M8020 7 flag OFF 41 M8021 Borrow flag OFF M8022 Carry flag OFF WIV
85. 4 1 MRD Memory ReaD MRD 1 7 E MPP MPP Memory PoP 1 In LYPLC EX series there are 11 stack memory space can store operation result so MPS instruction may be used up to 11 times continuously MPS Push the operation result into stack and the stack pointer increment by 1 MRD Read the operation result from stack and the stack pointer unchanged MPP Pop the operation result from stack First the stack pointer decrement by 1 MPS MRD MPP are all no operand LD X 00 X00 OUT Y 00 YOO AND X 01 X01 OUT Y 01 Y01 LD X 02 X02 ie X03 MPS Yo2 AND x 03 X04 OUT Y 02 10 11 x 04 5 H Y04 OUT Y 03 MPS X12 LD x 10 2 H Y05 MPS X13 AND x 11 I voe OUT Y 04 MR X14 MRD 07 AND X 12 MPP OUT Y 05 MRD AND X 13 OUT Y 06 MPP AND X 14 OUT Y 07 2 Basic Instructions Master Control MC MCR EXis EX n Mnemonic Instruction Symbol amp Device Step number Master control Fa 2 Master Control Reset 1 10 LD X 10 MC N 0 NO M10 SP M 10 X1 LD X 1 yo OUT Y 0 X2 LD X 2 Yi OUT Y 1 MCR N 0 Nis the nesting level number The MC MCR instructions are used in pairs when branch a circuit to plural OUT instruction When the MC condition is ON the state of each relay is the same as in an ordinary circuit with out MC MCR instruction When the MC condition is O
86. 85 RS 232C amp RS 232C RS 422 RS 485 Calendar Option Week Year Month Day Hour Minute Second 16 bits 32 768 32 767 UY poama 32 bits 2 147 483 648 2 147 483 647 Constant H Hexadecimal 32 bits 00000000h FFFFFFFFh General Specification Item Description Source Voltage 100 240VAC 50 60 Hz Supply current 24VDC 800 mA Momentary power failure Keep operation in 10 ms Breakdown voltage AC1500 1 min between output terminal and frame ground terminal Isolation resistance DC500v 5m Noise Impedance Noise voltage 1000Vp p noise width 1 us Grounding Class 3 ground Ambient Temperature 0 55 C Ambient humidity 35 85 RH without condensation Atmosphere Must be free from corrosive gasses 1 Specifications Input Specification Item DC input Sink DC input Source 24G 246 1 Circuit 5 5 lo LSS AZK SZ X00 A X00 DC24V 10 15 DC24V 10 15 Input voltage Input current DC24V DC24V Impedance 3 3 KO 3 3 KO Response time About 10 ms X00 X07 High Speed About 10 ms X00 X07 High Speed Input pattern No voltage contact or NPN open collector No voltage contact or PNP open collector Ci
87. C 00 16 bits CU amp CJ P 3 Steps EX EXis EXin EXon CJ Operand P63 X0 CJ PO X1 Y0 X2 PO Yi Example A X0 X10 CJ P10 CJ P60 X1 X11 at X2 X12 P10 Y2 CJ P60 X3 X13 4 4H Y12 X4 X14 P10 Y4 P60 Y Y13 Example B Example C Example A If X0 ON forces the program to jump to LAB any program area which is skipped will not update Output statuses will not change even input the devices Example A If miss LAB PO pointer then XO ON will jump directly to END If a backwards jump is used then need to care the watchdog timer overrun If LAB pointer is duplicated to use only the last pointer is effective Example B X0 ON forces the program to jump to the second LAB pointer Example C Many CJ statements can be assigned to jump to the same pointer Subroutine Call 5 Applied Instructions FNC 01 16 bits CALL amp CALL P xb LE E 3 Steps EX EXon CALL P Operand P00 P63 Subroutine Return FNC 02 16 bits SRET TOM 1 Steps EX EXon SRET Operand None X0 m CALL PO Main Program FEND X2 PO Sub Routine Yi SRET END When ON program will jump to subroutine
88. D P 13 Operands lt S1 S2 S1 S2 lt gt KnY KnM T C D lt Operands X Y M S Flag None X001 S1 S2 D 021 020 051 050 051 050 I D EADD D 10 D 20 D 50 binary floatingdata binary floating data binary floating data Two devices of binary floating data are added then the result stored by form of binary floating data at destination device When source operand assigned by constant K or H it will be converted to binary floating data automatically X002 D101 D100 K2346 D111 D110 D EADD D 100 K 1248 D 110 binary foatingdata convert automatically to binary floating data binary floating data Enable assign source operand S and destination operand D to same device number Floating Point Subtraction 121 EXis EXin D ESUB P 32 bits D ESUB amp D ESUB P 13 steps Operands amp 5 S1 S2 S1 S2 g GB KnX KnY KnM KnS T C D 2 lt D b Operands X Y M S Flag None X001 51 52 1 D 011 010 021 020 051 050 D 5 D10 D 20 D 50 binary floating data binary floating data binary floating data Binary floating data of S1 subtract binary floating data of S
89. DO D10 K10 K1 DO V lt lt WORD SHIFT RIGHT gt gt n2 lt lt 255 019 D18 017 016 015 014 013 012 011 010 A A A A PA E X10 S D ni n2 WSFLP DO D10 K10 K1 D0 lt lt WORD SHIFT LEFT gt gt n2 lt n1 lt 255 v 019 D18 017 016 015 014 013 012 011 010 5 Applied Instructions Shift Register Write FNC 38 16 bits SFWR amp SFWR P 7 Steps EX EXin EXon SFWR P Operands lt S gt K H KnX KnY KnM KnS T C D 2 lt gt lt gt 2 lt n lt 256 Flag 10 5 D n L 4 SFWRP DO D1 K10 Source n 10 points pointer DO D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 A A 4 O When X10 OFF gt content of DO stored into D2 and D1 1 When next rising pulse content of DO stored into D3 and D1 2 the position of insertion into the stack is automatically calculated by controller If content of D exceeds the value n 1 n is length of the FIFO stack then insertion into the FIFO stack is stopped The carry flag M8022 is turned ON Before starting to use a FIFO stack ensure that contents of the head address register D are equal to 0 Shift Register Read
90. EXis EXin EXon TTMR Reserved Special Timer FNC 65 16 bits STMR EX EXis EXin EXon STMR Reserved 5 Applied Instructions Alternate Output FNC 66 16 bits ALT P 3 steps EXis EXin EXon ALT P Operands lt D gt X Y M S Flag X00 D 00 00 00 m a Ramp FNC 67 16 bits RAMP 9 steps EX EXin RAMP Operands 1 S2 D D n n 1 to 32 767 Flag M8029 X00 S1 S2 D n L 4 RAMP D1 D2 K1000 When ON content of 51 and S2 are stored into D Content of D is increased by 1 each scan cycle n the number of scan cycle D2 D1 02 Scan cycle time stored at D4 lt gt lt gt n scan cycle time n scan cycle time 01 lt D2 D1 gt D2 After M8029 is driven write once scan time value longer than actual scan time into M8039 and then PLC will enter to fixed scan mode For example n K1000 in above example If scan cycle is set to 20msec then value in D3 will be changed from setting value of D1 to setting value of D2 within 20sec If XO become OFF w
91. F 8079 Reserved OFF 6 Special Auxiliary Relay amp Data Register The series of PLC Number Content Of Register EX TEX EXA Default RIW D8040 STLon state no 1 08041 STL on state no 2 08042 6 state no 3 08043 STLon state no 4 08044 STLon state no 5 O O O Nix D8045 5 state no 6 O O O 08046 STLon state no 7 08047 6 state no 8 08048 08049 The series of PLC Number Content Of Register Default RW D8050 lOxxint vector 08051 1 vector D8052 l2xxint vector Nx D8053 I3xxint vector 08054 l4xx int vector 08055 I5xxint vector 08056 int vector 08057 7 int vector Nx 08058 8 int vector 08059 The series of PLC Number Content Of Register EX TEX EXA Default RW D8060 l O configuration error D8061 PLC hardware error 08062 Communication error 08063 Communication error 08064 Parameter error 08065 Synta
92. FF the specified devices of PLF is enabled 1 scan cycle SET RST EX Mnemonic Instruction Symbol amp Device Step number Y M 1 SET SET A Yms TH Special M S Coils 2 D special RST ReSeT HH D registers Vand Z 3 LD x 0 SET Yo SET Y 0 LD X 1 Yo RST Y 0 yo o SET While operation result is on the specified device is enabled Once enabled the specified device remains enabled even if the operation result is disabled RST While operation result is on the specified device is reset word device cleared to 0 2 Basic Instructions TIMER amp COUNTER EX EXis EXi EXon Mnemonic Instruction Symbol amp Device Step number 32 bit OUT OUT counter 5 Others 3 RST RST Hs re H 16 2 Timer X0 LD X 0 TO OUT TO K 50 YO LD T 0 OUT Y 0 oo When 0 on 0 active after 5 seconds TO contact ON and keep current data even through X0 keep ON TO coil 5 sec TO contact When XO off then clear TO to 0 and contact off YO Timer can be set directly by using constant K or indirectly by using data register D 1 TO DO All of the timers 000 255 are unlatched lt lt Counter gt gt LD X 0 RST
93. FF the state of each relay between the and MCR instruction is as following Time Device for OUT Reset amp OFF Counter Device for SET Hold present state Be sure that an LD LDI instruction will be always following MC MCR instruction 2 Basic Instructions Inverse INV EX EXis EXiw EXon Mnemonic Instruction Symbol amp Device Step number INVerse 1 0 LD 0 1 PLS MO 3 LD 0 SET YO 4 SET Y 0 535 6 PLF M1 8 ID M1 9 RST YO Basic points to remember The INV instruction is used to change invert the logical state of the current ladder network at the inserted position Usage is the same as for AND and ANI see earlier Usages for INV Use the invert instruction to quickly change the logic of a complex circuit It is also useful as an inverse operation for the pulse contact instruction LDP LDF ANP etc PLS PLF Pulse Output 2 Basic Instructions EX EXis EXon Mnemonic Instruction Symbol amp Device Step number PLS PuLSe 2 PLF PuLse Falling 2 LD X 0 Yo PLS Y 0 LD X 1 Hrer PLF Y 1 0 Yo Jd e __ kie luce 2 Y1 gt The special auxiliary relay can t be for PLS PLF used When pulse OFF gt ON the specified devices of PLS is enabled 1 scan cycle When X1 pulse ON gt O
94. ION SPEED 1 1 DDRVI D10 012 YOO 02 M8029 If D11 D10 is positive then YO2 ON is negative then YO2 OFF RST M100 DXOR hFFFFFFFF 010 010 DADDP K1 D10 D10 RST M8029 5 Applied Instructions Example of single position drive condition mode stop then start again then will output remain pulse number 8002 100 08168 DMOV 100 000 08156 MOV K100 08164 MOV 1 000 08165 RST M8150 ZRST M100 M199 M8002 DMOV 250 000 D110 DMOV 100 000 0112 10 SET M100 SET M111 M112 DMOVE 250 000 0110 c RST 110 110 DDRVI D110 D112 Y00 Y02 M8029 RST M110 RST M111 RST M112 DMOVE 08152 RST 8029 M110 M111 ME DMOVE 08148 D110 RST M111 SET M112 END Drive to absolute 5 Applied Instructions FNC 159 9 steps EX D DRVA 32 17 steps Operands S1 S2 gt KnX KnY KnM KnS T C D Z Operands lt D1 D2 X Y M S Flag M8029 X10 S1 1621 D2 1000 Doo YO Yos S1 specify absolute address Do
95. Item D8018 Year D8017 Month D8016 Date D8015 Hours D8014 Minutes D8013 Seconds D8019 Week New time data write into special register 08013 08019 GRAY CODE 5 Applied Instructions FNC 170 16 bits GRY amp GRY P 5 steps D GRY P 32 bits D GRY amp D GRY P 9 steps lt S KH KnX KnY KnM KnS T C D lt D gt Operands x Y M 5 Flag 000 1 D GRY K 1234 K3Y10 S BIN D GRY b15 1234 23 20 17 10 GRY 1234 S effective value range When 16 bits operation 032 767 When 32 bits operation 0 2 147 483 647 5 Applied Instructions GRAY CODE FNC 171 16 bits GBIN amp GBIN P 5 steps D GBIN P 32 bits D GBIN D GBIN P 9 steps Operands lt S gt KnY KnM T C D VZ lt D gt Operands x Y M 5 Flag X000 S1 D L K3X0 D10 X000 x013 GRY gt D10 BIN
96. LD 8002 0022 OUT 23 0001 SET 5 20 0023 K 20 0002 STL S 20 0024 LD 23 0003 OUT Y 0 0025 SET S 24 0004 OUT Y 10 0026 STL S 24 0005 OUT 20 0027 OUT 12 0006 K 50 0028 OUT 24 0007 LD 20 0029 K 20 0008 SET S 21 0030 STL S 22 0009 SET S 23 0031 STL S 24 0010 STL S 21 0032 LD 22 0011 OUT Y 1 0033 AND 24 0012 OUT 21 0034 SET S 25 0013 K 30 0035 STL S 25 0014 LD 21 0036 OUT Y 3 0015 SET 5 22 0037 OUT Y 13 0016 STL 5 22 0038 OUT 25 0017 OUT Y 2 0039 K 50 0018 OUT 22 0040 LD 25 0019 K 30 0041 SET S 20 0020 STL S 23 0042 RET 0021 OUT Y 11 0043 3 Step Ladder Instructions Input Relays X amp Output Relays Y 4 Advanced Devices Input Relay X000 X177 octal 128 points receive external switch signal photo coupler isolation and connect to input terminal directly Output Relay Y000 Y177 octal 128 points output the signal to drive load relay or photo coupler isolation and connect to output terminal directly The timing of Input X amp Output Y The number of Input X amp Output Y ON STATUS ON STATUS X00 X07 X10 X17 s X20 X27 X30 X37 can t read can read MM A input OFF status cannot read LYPLC Ex32MR LYPLC Exa2ER output fresh input fresh _program program program PF Input fresh lt gt output fres
97. LIYAN PROGRAMMABLE LOGIC CONTROLLER LYPLC Exi Ex2 USER S MANUAL Caution CAUTION 1 Asuitable enclosure is required to provide the necessary level of safety and environmental protection and spacing for mounting is needed for safety 2 Removal of any module while the equipment is in operation can affect safety related to electrical shock fire hazard and electrical damage 3 Incorrect connections of power to the supply ies reverse polarity improper voltage level and or frequency and improper lead connection will lead to electric shock and fire hazards 4 Connecting to SELV Safety extra low voltage circuit only to all the terminals other than those for hazardous voltages 1 Specifications Master Unit amp Expansion Unit EXADP Master Expansion 00000 000000000000000000000000 i NIU O D Te ean we pes pr rs De O Merope TR J ff f E 32MR Y mem pP
98. PLC Number Content Of Register EX TEX EXA Default w 08150 01 remain pulse Lower Word 0 08151 01 remain pulse Upper Word 08152 YOO starting absolute position Lower Word O OO 0 08153 YOO starting absolute position Upper Word 08154 01 starting absolute position Lower Word 0 JN 08155 01 starting absolute position Upper Word 08156 Y00 maximum output frequency Lower Word 100K NIN 08157 00 maximum output frequency Upper Word 08158 01 maximum output frequency Lower Word 100K J 08159 01 maximum output frequency Upper Word 6 Special Auxiliary Relay amp Data Register The series of PLC Number Content Of Register EX TEX EXA Default M8160 SWAP function O O O OFF N M8161 8 16bits selection flag O O O M8162 x M8163 x M8164 x M8165 x M8166 8167 Slee 8168 SERIES 8169 The series of PLC Number Content Of Register EXC TEX TEX Default RW M8170 X00 pulse catch OFF M8171 01 pulse catch O O O OFF M8172 X02 pulse catch O O O OFF W N M8173 X03 pulse catch O O O OFF N N M8174
99. Running FNC 81 16 bits 5 Steps EX EXin EXon PRUN P bits DPRUN P 9 Steps Operands S KnX KnM the lowest bit device is 0 D KnY the lowest bit device is 0 Flag M8073 M8129 Master program M8070 1 S D is pseudo operand M8070 S D __ K2X00 K2MO Slaver program M8071 1 S D is pseudo operand 8071 S D PRUN K2X20 K2MO The content of D490 D497 of the master will transmit to D490 D497 of the slaver 8070 1 The content of 0500 0507 of the slaver will transmit to 0500 0507 of the master M8070 0 This instruction just set the status of M8070 and M8071 don t need to assign data register D then will auto communicate Because only the data register communicate each other just used MOV to execute conversion then input relay of master can control the output relay of slaver and the input relay of slaver can control the master Relative parameter 8122 start communication transmitted flag M8123 receive finished flag M8070 master flag 8071 slaver flag 8129 sum check error flag 8073 overtime flag D8070 overtime register ms D8072 communication taking time ms Example program please refer to EXPLC Application Note F081 When PRUN instruction used then can t use RS instruct
100. STC LoaD Falling pulse Falling edge pulse M Serial connection XYMSTC AND Pulse of Rising edge pulse Iti lt Prater e ANDF Serial connection XYMSTC AND Falling of Falling edge pulse lt Parallel connection OR Pulse of Rising edge pulse 4 X Y M S T C Parallel connection T X Y M S T C OR Falling of Falling edge pulse V NOP operation 5 1H PULSE Rising edge pulse i m H PLF Falling edge pulse Set bit device SET Permanently ON I ReSeT Permanently OFF YMSTCDVZ 2 H Master Control of Master control block MCR Denote the end N HH Master Control Reset of Master control block Invert the current result INVerse of the internal PLC operations Push the result 3 PuSh of operation to stack MPS Read the result ReaD of operation from stack MRD MPP Pop amp remove Pp PoP the Result from stack MPP END Forced the current program END Main program end scan to step 0 4 Special Auxiliary Relay 2 Basic Instructions Load amp Load Inverse amp Out Instruction EX EXis EXin EXN Mnemonic Instruction Symbol amp Device Step number LoaD recite 1 LDI LoaD Inverse rae 1 OUT OUT If each logic line start an NO contact use the LD instruction LD OUT 4 LD X OUT Y If each logic line start an NC contact
101. X10 51 52 D number of pulse DO gt PLSY K1000 D00 Y00 Y000 1KHz This instruction is pulse output without slope S1 assign output frequency 1 5000 2 S2 assign output pulse D assign pulse output point PLSY is used to output a consecutive pulse 16 bit range 1 32 767 32 bit range 1 2 147 483 647 If S2 is specified to 0 then it will continue to generate pulse The pulse duty cycle is 5096 ON 5096 OFF Data of S2 can be changed during execution but the new will not be effective until current operation has been completed and complete flag M8029 set to ON This instruction can be used once and only the transistor module can be selected Pulse Width Modulation FNC 58 16 bits PWM 7 steps EX EXis EXin EXon PWM Operands lt S1 S2 gt K H KnX KnY KnM KnS T C D 2 D YOO Y03 Flag None X10 S1 S2 D 010 50 00 He 4 000 I gt l S1 ON duty width t range 1 32 767 msec S2 T range 1 32 767 msec D The output point Y by interrupt handing If content of 51 1 is bigger than content of S2 then error occurred This instruction can be used once and only the transistor module can be selected PULSE OUTPUT WITH SLOPE 5 Appli
102. Xa D ECMP P 32 bits D ECMP amp D ECMP P 13 Operands 45141 gt lt S1 P KnY KnM T C D VZ 452 492 Operands lt D X Y M S The result is indicated by 3 bit devices specified with the head Flag M8020 M8021 M8022 address entered as D X001 51 S2 D D11 D10 D21 D20 gt MO M1 M2 D D 10 D 20 MO binary floating data binary floating data MO When D11 D10 gt 021 020 then MO ON 1 binary floating data binary floating data F 34 When 011 010 D21 D20 then M1 ON M2 binary floating data binary floating data When D11 010 lt D21 D20 then M2 ON binary floating data binary floating data When X001 OFF then not execute ECMP M0 M2 status unchanged Compare the binary floating data of the source devices S1 and S2 this will automatic ON OFF 3 bit devices from the head address of D When source operand assigned by constant K or H it will be converted to binary floating data automatically X001 D100 DECMP K5000 Hc Convert automatically K5000 D101 D100 gt 10 11 12 binary floating data binary floating data 5 Applied Instructions Floating Point Zone Compare FNC 111 EX EX n D EZCP P 32bits D EZCP D EZCP P 17 steps Operands lt gt
103. comparisons are used i e 10 smaller than 2 When OFF then D bit devices status will not be changed 5 7 5 Applied Instructions Move FNC 12 16 bits MOV amp MOV P TERM UE Um Rhea Ae ee ose 5 Steps EX EXon MOV P 32 bits DMOV amp D MOV P 9 Steps Operands lt S gt KnX KnY KnM KnS T C D VZ D gt X0 S D MOV DO K4Y0 When XO ON contents of source device S copied to destination device D MSB DO LSB 1 1 17 v YO When M8027 CPU will write content of S into EEPROM D only register be used Pee M8027 r 4 MOV 01000 01000 8000 MAF M8027 Note When M8027 ON for avoid to damage EEPROM must be used Pulse Instruction MOV P Shift Move FNC 13 16 bits SMOV amp SMOV P 7 Steps EX EXin SMOV P Operands lt 5 1 gt KnX KnY KnM 5 C D VZ I lt D Reserved Complement 14 16 bits CML
104. d current value of timer t1 input to contact and then ON then from current value to count up until to setting value and contact act current V Y11 Integration timer needs to use RST instruction to clear the content and the contact X12 Circular Timer 8002 The program starts enable T10 start to count i e CALL P10 not count time to check if setting value reaches 5 At this time timer will become to circular timer FEND circulating count by 0 32767 65535 0 8000 10 T10 K100 SRET END 4 Advanced Devices Counter Mnemonic C255 16 bits up counter C199 range 1 32 767 X10 LD 10 X10 RST C 00 X11 X11 LD X 1 I C00 K5 OUT C 00 Coo K 5 Y00 LD C 00 current OUT Y 00 Coo The counter can be reset by RST at any time value of counter is set to O and contact signal is OFF When X10 ON clear current value to 0 and contact turned OFF When counter count the pulse OFF gt ON number of X11 and when current value to the setting value then the contact turned ON and keep the current value Counters can be set directly by using constant K or indirectly by using data register D Use data registers or special data registers to let content of data register become to setting value for the counter The counter input signal ON or OFF must greater than program scan cycle time If use other instruction to writ
105. e data which is greater than setting value to current value register then when next count input is ON counter output contact act and current value register will become to setting value High Speed Counter operated by the principle of interrupt this means they are event triggered and independent of cycle time 32 bits up down counter C200 C234 range 2 147 483 648 2 147 483 647 X12 X12 up count up count F M8200 down count X13 X1 X14 X14 C 200 K 5 C 200 1 value Through X14 count input to drive C200 s coil one time the current value of counter will be increment or decrement When the current value from 6 increase to 5 or from 4 decrease to 5 the output contact set to ON If from 5 decrease to 6 or from 5 increase to 4 then output contact OFF i e current value setting value ON others are OFF If the current value is 2 147 483 647 when increment by 1 will change to 2 147 483 648 If the current value is 2 147 483 648 when decrement by 1 will change to 2 147 483 647 This counter we called it to circular counter The counting direction assigned by special auxiliary relay M8200 M8234 If M8xxx ON then belong to down counter If M8xxx OFF then belong to up counter If use other instruction to write a data which is greater than setting value to current value register then when next count input counter will
106. e device Any other instructions LD AND OR etc will operate as expected 2 Basic Instructions AND Pulse amp AND Falling Pulse Instruction EXis EXin EXN Mnemonic Instruction Symbol amp Device Step number ANDP AND Pulse 1H 2 ANDF AND Falling pulse F I X v M S T C 2 ANDP Z mao s 40 1 OR X 1 xi 2 10 4 OUT M 100 5 LDF 0 Co 6 ANDF 0 8 OUT Y 4 Basic points to remember Use the ANDP and ANDF instructions for the serial connection of pulse contacts Usage is the same as for AND and ANI see earlier ANDP is active for one program scan after the associated device switches from OFF to ON ANDF is active for one program scan after the associated device switches from ON to OFF Single operation flags M2800 to M3071 When used with flags M2800 to M3071 only the first instruction will activate OR Pulse amp OR Falling Pulse Instruction 2 Basic Instructions EX EXon Mnemonic Instruction Symbol amp Device Step number OR Pulse LAW X Y M S T C 2 OR Falling pulse v XYMS TC 2 SET M50 Basic points to remember Use the ORP and ORF instructions for the parallel connection of pulse contacts Usage is the same as for OR and ORI see earlier ON O OQ LD ORP SET LD AND LD
107. ed Instructions FNC 59 16 8 9 steps EX PLSR 32 bits 15 17 steps Operands lt 1 S2 53 gt KH KnY KnS T VZ D YOO YO1 Flag M8029 X10 St S2 S8 L PLSR K1000 Doo K1000 Yoo S1 assign output frequency 10 100 000 pps S2 assign opposite position M8134 M8135 0 or absolute position M8134 M8135 1 output pulse S3 assign acceleration deceleration time When set acceleration deceleration separate flag is just for acceleration time then D8165 and D8167 are deceleration time D assign pulse output point Fix YOO and 01 to be pulse output point and 02 03 to be direction output point When use this instruction have to convert increment distance or absolute position to pulse then stored at S2 The pulse duty cycle is 5096 ON 5096 OFF When pulse output X10 OFF pulse is stopped outputting immediately When instruction running changing content of 52 1 is ineffective This instruction for YOO or YO1 only can be used once total twice and have to select transistor output type There is only one kind of pulse output type in this instruction Negative Logic Type Pulse amp Sign can be controlled step or servo motor
108. finish flag 5 Applied Instructions set data of D98 send point and D100 send content first send request flag when operation completed auto reset When the transmit request flag M8122 to be driven in the waiting communicate status then PLC will transmit from the head address of D100 for D98 number of bytes to slaver and M8122 will auto reset after transmit completed lt lt Receive Finish Flag gt gt M8123 When PLC finish to receive data receive finish flag M8123 will set to 1 user can use program to reset it lt lt Carrier Detect Flag gt gt M8124 Reserved lt lt RS instruction formula gt gt Data preset RS instruction enable X00 Start to transmit Finish M8122 Automatic clean to 0 Into stay return message Return message OK Handle return data lt S m D n RS D100 4 D200 K4 lt 8 Bits Mode gt M8161 ON is 8 bits operation 16 bits gt ignore Lower 8 bits start data of transmitting m end STX D100 down D101 down D102 down D103 down ETX start data of receiving n end STX D200 down D201 down D202 down D203 down ETX 16 Bits Mode gt M8161 OFF is 16 bits operation lt 16 bits gt Up 8 bits Down 8bits start data of transmitting m end STX D1
109. g M8000 2 147 483 647 S1 S2 S D DHSZ K1000 K2000 C251 Yooo Compare action of input 1000 gt 251 current value 000 ON K1000 lt C251 current value x 2000 001 ON K2000 lt C251 current value Y002 ON This command is specialized instruction of 32 bits so have to use D HSZ Content of S1 and S2 is according to S1 lt S2 When use FNC55 operate external output by Interrupt Output will act without effect by scan cycle 5 Applied Instructions Speed Detect FNC 56 16 bits SPD 7 Steps EX EXis EXin EXon SPD Operands 61 000 005 When C251 is used X02 and X03 not be used Operands lt 92 V K H KnX KnY KnM KnS T C D VZ Flag M8029 ioc IB 61 52 1 D SPD X00 K100 D00 The input pulse assigned S1 and the S2 assign measurement time the result will be stored at D This will automatic occupy word devices from the head address of D D00 D02 This example 001 count up the pulse number of X00 OFF gt ON and put the result into DOO at 100msec after Then reset D01to 0 and start counting again D02 is used to measurement remainder time The counting pulse amount of the assign time can t be more than 65535 Following formula can calculated RPM RPM
110. g X000 S D D51 D50 RAD 061 D60 TAN D D50 D60 binary floating data binary floating data Used assigned angle RAD by source device S to get TAN value then store the result at destination device D S D 51 D 50 D D 61 D 60 RAD value angle 180 assign to binary floating data TAN value binary floating data Byte Swap 5 Applied Instructions FNC 147 16 bits SWAP amp SWAP P 5 steps EX EXis EXin D SWAP P 32 bits D SWAP amp D SWAP P 9 Operands lt S gt KnX KnY KnM KnS T C D 2 Operands X Y M S Flag X000 5 SWAP P D10 when 16bits Down 8 bits and Up8 bits exchange D10 Up 8 bits Down 8 bits 000 S H D SWAP P D10 when 32 bits Up 8 bits and Down 8 bits exchange D11 D10 Up 8 bits Down 8 bits Up 8 bits Down 8 bits U 1 7 A If use continuative executing instruction each scan cycle will execute to exchange please pay attention This instruction is as same as FNC17 XCH function of expanded 5 Applied Instructions FNC150 159 Position Control FNC 150 159 with two axes pulse output position control function E
111. h cycle time Auxiliary Relay M Latch auxiliary relay 000 M499 decimal 500 points General auxiliary relay M500 M1535 decimal Special auxiliary relay M8000 M8255 decimal 256 points Please do not use undefined special auxiliary replay This type of relay can not drive load directly State Relay Mnemonic S State relay 5000 5499 decimal for latched State relay 5500 5999 decimal for general This type of relay is for SFC used Pointer Mnemonic Pl The pointer POO P63 decimal 64 points The pointer P is for CJ CALL branch used The number of pointer can t use duplicate The pointer 1 is for interrupt used Constant Mnemonic K H Decimal constant K range 16 bits 32 768 32 767 32 bits 2 147 483 648 2 147 483 647 Hexadecimal constant H data range 16 bits 0000 FFFF 32 bits 00000000 FFFFFFFF LIYAN ELECTRIC LIYAN ELECTRIC 4 Advanced Devices Timer Mnemonic T T000 T255 All of timers belong to count up internal clock pulse 10ms 100ms When count data reaches the setting value the contacts activated When the drive condition OFF the current value reset to 0 and the contact OFF except integration Timer Setting value of timers can constant K or can use using data register D indirectly 100ms Timer TOOO T199 200 points setting range 0 1 3 276 7 seconds 10
112. h cases if the number exceeds the allowable ranges the highest digit will overflow and ignored it When X20 OFF all of the D2 devices are reset but contents of D1 keep intact qm qum X00 This example will stored 2130 into DOO X01 9 When two or more keys were pressed only the First Key is effective This example the status of M10 M19 to be changed by the status of 00 11 M11 M12 M13 This example M20 is key release flag M20 This instruction may only be used once 5 Applied Instructions Hexadecimal Key FNC 71 16 bits 9 Steps EX EXin EXon D HKY 32 bits 17 Steps Operands lt D 02 K H KnX KnY KnM KnS T C D VZ Operands lt D3 gt x Y M 5 lt S F gt lt D1 gt Flag X14 S D1 D2 D3 HI HKY X10 Y10 DO MO When the numeric key 0 9 be pressed then causes bit device D3 7 turn ON for the duration of key press When the function key A F be pressed then causes bit device D3 6 turn ON for the duration of key press When the function key has been pressed then will set bit devices D3 0 t
113. hen acting then act of RAMP signal will stop in midway If XO ON again then D4 will be cleared and D3 will restart by setting value of D1 After end of execution flag M8029 act and then value of D3 will return to value of D1 Control of start end point be executed by RAMP instruction and analog output Enter into RUN status when X0 ON Rotary Control 5 Applied Instructions FNC 68 16 bits ROTC EX EXis EXin EXon ROTC Reserved Sort FNC 69 16 bits SORT EX EXis EXin EXon SORT Reserved 5 Applied Instructions Tenkey Input FNC 70 16 bits 7 Steps EX EXis EXin EXon D TKY 32 bits D TKY 13 Steps Operands lt D1 gt K H KnX KnY KnM KnS T C D V Z Operands lt X Y M S lt D2 gt Flag X20 S D1 D2 TKY X000 Doo M10 COM X02 X04 X05 X06 X07 X10 X11 PLC This instruction can read 10 consecutive devices and will store an entered numeric string in D1 In 16 bits operation D1 can store numbers from 0000 to 9999 max 4 digits In 32 bits operation D1 value from 00000000 to 99999999 max 8 digits In bot
114. ime clock reference to FNC160 TCMP instruction 5 Applied Instructions Time Read FNC 166 16 bits TRD amp TRD P 5 steps EXin TRD P Operands KnX KnY KnM KnS T C D VZ Operands X Y M S Occupy 7 bits from the head address of D Flag X000 D TRD DO The data of real time clock stored at destination device of 7 bits from the head address of D Device Item Data Device Item D8018 Year 0 99 last two figure gt DO Year D8017 Month 1 12 gt D1 Month D8016 Date 1 31 gt 02 Date D8015 Hours 0 23 gt D3 Hours D8014 Minutes 0 59 D4 Minutes D8013 Seconds 0 59 D5 Seconds D8019 Week 0 Sun 6 Sat gt 06 Week 5 Applied Instructions Time Write FNC 167 16 bits TWR 4 TWR P 5 steps EX EXin TWR P Operands lt S gt KnX KnY KnM KnS T C D VZ Operands Flag S TWRP D 10 Device Item Data D10 Year 0 99 last two figure D11 Month 1 12 012 1 31 013 Hours 0 23 D14 Minutes 0 59 D15 Seconds 0 59 D16 Week 0 Sun 6 Sat Device
115. into an equivalent BCD number and stored to the destination device D If the converted BCD number exceeds the operational ranges of 0 to 9999 16 bit operation or 0 to 99999999 32 bit operation an error will occur Error flag M8067 ON error code 6705 and error step number stored to D8069 Program will be executed continuously but result will not be stored to D This instruction can be used to output data to a seven segment display directly BIN DECIMAL CODE TO BINARY FNC 19 16 bits BIN amp 5Steps EXis EX n D BIN P 32bits D BIN amp D BIN P 9 Steps Operands lt 5 1 gt K H KnX KnY KnM KnS T C D V Z lt D gt S D BN D10 K2Y0 BCD source data S is converted into an equivalent binary number and stored at the destination device D If the source data is not provided in a BCD format an error will occur Error flag M8067 ON error code 6705 error step number stored to D8069 The device S can t be used constant K H 5 Applied Instructions Addition FNC 20 16 bits ADD amp ADD P 7 Steps EXis EXin EXon D ADD P 32bits D ADD amp D ADD P 13 Steps Operand
116. ion Hex To Ascii Conversion 5 Applied Instructions FNC 82 16 bits 7 Steps EXis EXin ASCI P Operands e 5 K H KnX KnY KnM KnS C D lt lt D gt 1 64 S D n ASCI D100 D200 The hexadecimal data of source S to be converted ASCII code and stored into upper lower byte of destination device D for n number of bytes When M8161 OFF 16 bits operation mode example 0100 D101 1234H Data of destination The hexadecimal data of source S to be converted ASCII code and stored into lower byte of destination device D for n number of bytes When 8161 8 bits operation mode example 0100 D101 1234H K1 K2 K3 K4 K5 K6 K7 K8 D200 down B 0 PU g 1 D200 up Cc B A 0 4 ug 0201 down B A 0 4 3 D201 up A 0 4 D202 down A 0 D202 up A D203 down 0203 10 M8161 8 bits operation mode S D n ASCI D10
117. ions Float FNC 49 16 bits FLT P 5steps EXis EXin EXon D FLT P 32bits D FLT P 9 steps Operands S lt gt K H KnX KnY KnM KnS T C D V Z Operands D gt Flag M8020 M8021 M8022 FLT Instruction is converted command between BIN integer and binary floating data Because constant K H will automatically convert when floating data operate then not fit this instruction X000 S D FLT D10 D12 010 013 012 BIN integer floating data um 11 FLT D10 D12 011 010 D12 8000 binary floating data BIN integer Decimal fraction don t care X000 H D FLT D10 D12 011 010 013 012 BIN integer binary floating data X000 D FLT D10 D12 011 010 013 012 M8000 binary floating data BIN integer Decimal fraction don t care When M8023 ON execute binary floating data BIN integer When M8023 OFF then execute BIN integer binary floating data Binary floating data BIN integer the operating result is decimal fraction don t care it but M8021 M8022 will ON when result is 0 M8020 will ON 5 Applied Instructions Output amp Input Refresh FNC 50 16 bits REF P
118. its DEC amp 3 Steps EX EXin EXon D DEC P 32bits D DEC amp 5 Steps K H KnX KnY KnM KnS T C D V Z Operands lt D D DEC D0 D0 1 D0 On every execution of the instruction the device specified as the destination D and its current value decreased 1 In 16 bit operation when 32 768 is reached the next execution will write a value of 32 767 to destination device In 32 bit operation when 2 147 483 648 is reached the next execution will write 2 147 483 647 to destination device The carry zero and borrow flag are unaffected in the operation Logical AND 5 Applied Instructions FNC 26 16 bits WAND amp WAND P 7 Steps EX EXin EXon D WAND P 32 bits DWAND amp D WAND P 13 Steps Logical OR FNC 27 16 bits WOR amp WOR P Sige ie e sare m e cem 7 Steps EX EXon D WOR P 82 bits D WOR amp DWOR P 13 Steps Logical XOR 28 16 bits WXOR amp 7 Steps EX EXis EXN D WXOR
119. l Device Module Number 1 gt gt CPU module 0 1 0 X00 X07 kee 10 17 X20 X27 Y00 Y07 Y10 Y17 Y20 Y27 K 0 The BFM is the memory address of special module The number of special module is address to 0 7 and beginning with the one closest to the CPU unit The special module can up to 8 maximum no occupy points TO FNC 79 16 bits TO P asap i a kapas 9 steps EX EXis EXin EXon D TO P bits D TO P 17 steps Operands lt S gt KnX KnY KnM KnS T C D VZ Operands lt 0 7 of special module m2 0 31 of buffer memory n 1 31 no of write when D n 1 15 X00 m1 m2 S n H K1 K12 DO K1 module no BFM destination write no When X00 ON the content of DO to be write into the buffer memory BFM 12 of the special module If used pulse command can decrement cycle time lt lt Number of Read n gt gt r PLC PLC BFM 4 16 bits and 4 32 bits and nz2 5 Applied Instructions Communication FNC 80 16 bits RS
120. mple Flow Chart 3 2b is Ladder Chart The state S can be connected to Output Relay directly To Activate an STL state need drive the STL coil first In the EX series the SET is used to drive an STL state to make it active The formula is used M8002 amp ZRST to initial STL state and used M8002 amp SET to start STL program The RET instruction is end of STL state let program return to ladder sequence 3 Step Ladder Instructions 3 3 STL RET Operands S0 S999 3 3 1 Single Flow Mode Y 8002 8002 Fig 3 3 1 Simple Flow Chart SFC Fig 3 3 1b Ladder STL LD M 8002 K 30 SET 5 0 LD T 11 STL 5 0 SET 5 2 OUT Y 10 STL 5 2 SET Y 11 RST Y 11 OUT T 10 OUT Y 13 K 50 OUT 12 LD 10 K 20 SET 5 1 LD T 12 STL 5 1 SET 5 0 OUT Y 12 RET OUT 11 The end of STL program area need added RET instruction let program return to original bus bar 3 3 2 Selective Branch Programming Y M8002 Yt Y12 T21 T23 T21 K30 T23 K20 Y11 T24 K20 Y13 T25 K50 T25 S10 RET Fig 3 3 2a Simple Flow Chart SFC 3 Step Ladder Instructions This type of program construction can created many flow but only one flow can enable i e X10 X11 can t ON at the same time M8002 S14 Yt S10 T24 v10 T24 K20 T20 SET S15 T20 X10 KSO S15 4 Y13 T20 T25 T25 ia 11 510 Y11 T21 T21 K30 Fig 3 3 2b Ladder STL 512 Y12 T22 T22 K30 13 Y12
121. ms Timer T200 T245 46 points setting range 0 01 327 67 seconds 1ms integration Timer T246 T249 4 points setting range 0 001 32 767 seconds 100ms integration Timer T250 T255 6 points setting range 0 1 3276 7 seconds Timer contact active condition and accuracy H 10 timer active 9 9 3 K10 9 13 5 E 1 5 is TO z 10 2nd cycle n cycle n 1 cycle From above diagram if the timer contact position put before timer coil then the bad accuracy is 21 The timing of Timer detailed action The timing of unlatched timer General 1 23sec When input contact X10 ON T200 start to count X10 lt by 100ms counting method When count value I 7200 K123 X10 reaches to setting value the contact act T200 current lt Setting value When count in the midway input contact X10 OFF 10 value gt the count current value will clear to 0 When count reaches to input contact X10 OFF the Y10 current value of count will clear to O and contact returns The timing of latched timer Integration X11 t t2 When input contact X11 ON T250 count by 100ms T250 K345 t1 t2 34 5sec counting method When counting value reaches to T250 X11 Integrate Time setting value the contact act 11 ntegrate When count in the midway input contact X11 OFF X12 Time lt Setting value the unchange
122. n 5 Applied Instructions Time Subtraction FNC 163 16 bits TSUB amp TSUB P 7 EX EXis TSUB P Operands lt _ 1 S2 _3 KnY KnM T C D VZ lt D Operands x Y M 5 Flag M8020 M8021 M8022 X000 S1 S2 D TSUB D 10 D 20 D30 D10 D11 D12 020 021 022 D30 D31 32 S1 S2 D D10 10 hours D11 30 mins D12 10 secs 10hours30mins10secs D20 3 hours D21 10 mins D22 5 secs 3hours10mins5secs 030 7 hours D31 20 mins 032 5 secs 7hours20minsSsecs The time value stored at 3 bits from the head address of S1 subtract the time value stored at 3 bits from the head address of S2 then stored the result at the device of 3 bits from the head address of D The result less than 0 borrow flag ON and the result of subtraction added 24 then stored at D 61 52 1 D 5 hours 18 hours 11 hours 20 mins 10 mins gt 10 mins 40 secs 5 secs 35 secs 5hours20mins40secs 18hourstOminsbsecs TthourstOmins35secs The result is 0 Ohour Omin Osec then zero flag M8020 ON Setting range of hour min sec compare with real t
123. n t care Flag M8134 M8135 S2 specify output frequency 16bits 10 32 767Hz 32bits 10 100 000 Hz D1 specify pulse output signal point gt only 00 01 D2 specify direction output signal point only YO2 YO3 For 00 or 01 this instruction be used once and only transistor module can be selected When executing DRVA busy flag M8182 00 or M8183 01 will be set automatically by system When output pulse modify content of 511 S2 is ineffective Set axis 1 max output frequency Set axis 1 decelerate time ms Set acceleration deceleration separate flag 02 D11 D10 gt D8153 D8152 then YO2 lt then YO2 OFF M8002 1 MOV K100 08168 Set axis 1 max speed DMOV 100 000 08156 L MOV K100 D8164 Set axis 1 accelerate ms MOV K1 000 D8165 SET M8150 ZRST 0 499 10 ti SET 100 M100 X10 POSITION SPEED DDRVA D10 D12 00 8029 1 RST M100 DXOR HFFFFFFFF 010 010 DADDP K1 D10 D10 RST M8029 5 Applied Instructions Time Compare FNC 160 16 bits TCMP amp TCMP P 5 steps EX EXis EXin TCMP P Operands lt S1 S2 S3 gt KnY K
124. nM T C D VZ lt 15 gt Operands D gt X Y M 5 D occupy continuative 3 bits Flag M8020 M8021 M8022 X000 51 52 1 53 1 3 1 D 10 K 30 K 50 DO 0 10 hours30 mins 50 secs S 0 DO hours 0 hours 30 mins 50 secs gt D1 mins ON D2 secs M1 DO hours 10 hours 30 mins 50 secs D1 mins ON D2 secs M2 DO hours hours 30 mins 50 secs lt D1 mins ON D2 secs When 000 OFF not execute TCMP 0 2 status unchanged Time of source device S1 S2 S3 compare with time value which stored at 3 bits from the head address of S According the result the device of 3 bits from the head address of D will be ON OFF automatically 511 hour assign 0 23 hour 521 min assign 0 59 min 531 lt assign 0 59 sec S hour assign 0 23 hour S 1 min assign 0 59 S 2 sec assign 0 59 sec D D 1 D 2 according the result device of 3 bits from the head address of D is ON OFF automatically The content of real time clock stored at special register D8015 hour D8014 min D8013 sec 5 Applied Instructions Time Zone Compare FNC 161 16 bits TZCP amp TZCP P 9 steps EX
125. nM KnS T C D VZ lt gt n lt 64 lt gt 1 52 Operands X Y M S le 0 gt X000 61 S2 D n ABSD D300 CO MO KA This instruction is used to bring a varied output type to counter It can detect the angle of the circle control action CO X001 m RST 001 Left example is used to control ON OFF status of Auxiliary Relay M0 M3 when rotation table rotate within a circle K360 Rotation angle signal 1angle pulse Using MOVE instruction to write following values into D300 D307 ON setting value OFF setting value Output point Put Turn ON value to even D300 40 D301 140 Mo number of D device and put D302 100 D303 200 M1 Turn OFF value to Odd D304 160 D305 60 M2 number of D device D306 240 D307 280 M3 When X0 ON change of M0 M3 is mentioned as follows Turn ON and Turn OFF value can re change to write into D300 D307 40 140 MO Output point number is decided by setting 100 200 value of D When become OFF output is not changed 60 160 M2 240 280 M3 0 180 360 ABSD instruction just can be used once one program When assign High Speed Counter in S then also can use D ABSD instruction For current value of counter at this time the output status will delay because of scan time recommend to use Table high speed compare mode of HSZ in
126. nds x Y M 5 Flag M8029 Reserved 5 Applied Instructions Zero return FNC 156 16 bits ZRN 9 steps D ZRN 32 bits D ZRN 17 steps Operands S1 S2 gt KH KnY KnM T C D Z Operands lt S3 gt lt D gt X Y M S Flag M8029 X10 S1 52 S3 D L 4 ZRN K1000 X02 00 S1 specify zero return speed Home Speed 10 100 000 Hz S2 specify creep speed 10 32 767 Hz S3 specify the Near point signal A contact range X00 X07 pulse catch flag M8170 M8177 Servo motor zero signal fixed X00 YOO X01 Y01 output point edge signal be selected so don t care a b contact D specify pulse output point gt Pulse Y00 Y01 Sign Y02 YO3 When execute ZRN zero return busy flag M8138 00 or M8139 01 will be set automatically to avoid driving DRVI DRVA at same time 00 or YO1 only can use once and have to choose transistor output mode After this instruction executing acceleration deceleration time D8164 D8166 data will change to S2 data FNC 156 ZRN acceleration deceleration separate flag M8150 and M8151 ineffective Avoid executing zero return initial direction error Ex1s Ex1n Ex2n series offer some relative parameter User can set it acco
127. ned by FEND S2 is as same as the value which is assigned by S1 interrupt main 1010 Interrupt program program and jump to execute 10 0 interrupt program immediately IRET When Special auxiliary relay M8059 END ON 1010 1060 interrupt are all prohibited 5 Applied Instructions Reset by High Speed Counter FNC 54 EX EXis D HSCR jEBSOHSGR EM 13 Steps Operands lt 1 gt KnX KnY KnM KnS C D V Z lt gt 1 52 235 255 Operands X Y M S lt D gt Can assign D and S2 are the same High Speed Counter Flag M8000 K300 61 52 D When current value of C253 is 400 C253 will be D HSCR 400 C253 C253 cleared immediately Current value will become 0 and output contact will not act 400 300 Current value of C253 C253 output contact This command is specialized instruction of 32 bits so have to use D HSCR Zone Compare For High Speed Counter FNC 55 EX D HSZ 32 bits HSZ 17 Steps Operands 51 1 52 K H KnX KnY KnM KnS T C D lt gt 16 6235 0255 Operands X Y M S k D gt Fla
128. nes then can install wire extension module bOcm length of Ex1nNEXT 50 or 80cm length of Ex1nNEXT 80 as left drawing 2 In principle when system is more than 128 points then have to install power extension module ExPower E as below drawing Ex1n32ER Ex1n32ER 0009000909000 U TsT Fs z o SIESTA LYPLC 32ER LIYAN ELECTRIC LYPLC 32ER LIYAN ELECTRIC LYPLC 32ER LYPLC 32ER LIYAN ELECTRIC LIYAN ELECTRIC 000000000900 y 1 14 List of Basic Instruction 2 Basic Instructions Symbol Function Circuit amp Devices Each logic start t eS LoaD Acontact X YM S TC Each logic start XYMSTC LoaD Inverse B contact Serial connection T AND A contact Serial connection ANd Inverse B contact X YM S TC Parallel connection 0 OR A contact POMS Parallel connection Moy gt OR Inverse B contact X YMS T C Serial connection ANd Block of Parallel circuit Parallel connection OR Block of serial circuit Final operation lt gt OUT coil drive YM S T C LDP Initial logical operation XYMSTC LoaD rising Pulse Rising edge pulse 1 lt s gt a e Initial logical operation TT XYM
129. nt absolute position Also could choose Initial direction to be controlled by flag M8156 or M8157 If bias absolute position greater than dog point absolute position then reverse If bias absolute position less than dog point position then forward 8002 100 08170 Set YO1 bias speed frequency m MOV K100 D8166 Set YO1 acceleration deceleration time ms DMOV 100 000 08158 Set YOO maximum speed frequency DMOV K500 D8178 Set YOO dog point absolute position ZRST M100 M199 8002 DMOV K50 000 0126 Set Home Speed DMOV K1000 D128 Set K5 D8171 Set search number of Z phase X13 t SET M113 RST M8153 clear zero return finish flag SET M8159 Initial direction control by D8179 D8178 SET M8157 M8159 1 This Flag Don t Care RST M8155 Reverse mode if M8155 1 then forward mode SET M8144 Set FNC 59 PLSR zero return mode FNC 156 ZRN Don t Care This M113 X13 Home Don t Care acceleration deceleration time Creep Speed 08170 DZRN D126 D128 K100 00 Dog point fixed X07 M8029 M8153 pulse catch flag M8177 effective RST M113 RST 8029 5 Ap
130. o D3 5 to ON and remain ON until the next function key has been activated F E D C B A Y Y M5 M4 M3 M2 0 In 16 bits operation 2 can store numbers from 0000 to 9999 max 4 digits In 32 bits operation D2 value from 00000000 to 99999999 max 8 digits In both cases if the number exceeds the allowable ranges the highest digit will overflow and ignored it When two or more keys were pressed only the first key is effective When X14 OFF all D3 devices are reset but contents of D2 keep intact This instruction requires 8 scans cycle time to read the key input After 8 scans complete flag M8029 to be turned ON This flag is automatically reset when this instruction execute This may only be used once and only the transistor module can be selected Digital Switch 5 Applied Instructions FNC 72 16 bits DSW 9 Steps EXin EXon DSW Operands lt n gt 1 8 lt D2 gt KnX KnY KnM KnS D VZ Operands lt S gt lt D1 gt X Y M S Flag M8029 X00 S D1 D2 n DSW X10 Y10 DO I I NUN SORS
131. odes Monitor value of D8004 Monitor value of D8004 If D8004 8061 monitor D8061 If D8004 8066 monitor 08066 If D8061 6106 is error code If D8066 6609 is error code Error code 6106 means AC power quality no good Error code 6609 means END missing Check AC power supply Check user s program System is normal System is normal 6 Special Auxiliary Relay amp Data Register Error code Associated Meaning 0000 No error 6001 6002 6003 6004 6005 6006 6007 6008 6009 Error code Associated Meaning 0000 No error 6101 SRAM hardware error 6102 6103 Dummy Error 6104 EEPROM hardware error 6105 Led frame error 6106 AC power quality no good 6107 24Vdc power failure 6108 Monitor program overflow 6109 User program overflow Error code Associated Meaning 0000 No error 6201 6202 6203 6204 6205 6206 6207 6208 6209 Error code Associated Meaning 0000 No error 6301 6302 6303 6304 6305 6306 6307 6308 6309 Watchdog overflow 6 Special Auxiliary Relay amp Data Register Error code Associated Meaning 0000 No error 6401 6402 6403 6404 6405 6406 6407 6408 6409
132. oint Absolute Address Upper Word 08178 01 Dog Point Absolute Address Lower Word WN 08179 YO1 Dog Point Absolute Address Upper Word O O O The series of PLG Number Content Of Register EX TEX EXA Default RW D8180 The content of ZO register 0 4 08181 content of VO register 0 08182 content of Z1 register OO 0 NIN D8183 The content of V1 register ololo 0 D8184 The content of Z2 register O O O 0 D8185 content of V2 register O O O o D8186 The content of Z3 register 08187 The content of V3 register O O O 0 WIN D8188 content of Z4 register O O O 0 4 08189 The content of V4 register 0 WIV i The series of PLC Number Content Of Register EX TEX EXA Default RW D8190 The content of Z5 register 0 WIN 08191 content of V5 register OO o 0 NIN 08192 content of Z6 register O O O o D8193 content of V6 register ololo 0 4 D8194 The content of Z7 register exo Le 0 D8195 content of V7 register O O O 0 WIN 08196 00 electronic gear ratio numerator O 1 ININ 08197 00 MPG electronic gear ratio denominator O 1 V N 08198 01 MPG electronic gear ratio numerator O 1 V N D8199 Y01 MPG electronic gear ratio denominator 1 IWIN 6 Special Auxiliary Relay amp Data Register Up Down Counter Number Content Of Register The series of PLC
133. orm measure Derivative calculation formula to execute PID operation In PID control execute operation formula of forward action or reverse action according to the content of Act direction which is assigned by S3 PID basic formula Output u t Kp e t f e t dt Td e t error value Control Object wat 1 0 1 Set value 50 Output value ide w Interference 5 Applied Instructions FNC 89 EX EXis EXin EXon FNC 90 EX EXis EX EX FNC 91 EX EXis EXin EXon FNC 92 EX EXis EXin EXon FNC 93 EX EXi EXon FNC 94 EX EXis EXin EXon FNC 95 EX EXis EXin EXon FNC 96 EX EXis EX n EXon FNC 97 EX EXis EXin EXon FNC 98 EX EXis EXin EXon FNC 99 EX EXis EX EXon Floating Point Compare 5 Applied Instructions FNC 110 E
134. play The decoded data is stored in the lower 8 bits of destination device D The upper 8 bits was unchanged D Bit Seven segment display data b7 b6 b5 b4 b3 b2 b1 b0 0 0000 olo lililililili 1 0001 0 0 0 1 1 0 2 0010 i 3 0011 olilololi ri 3 4 0100 o 5 0101 bo 0 1 1 0 1 1 sas 1 I 6 0110 s dT a 3 E A 5 7 0111 95 96 0 0 1 0 0 8 1000 b4 b2 E 9 1001 nm 1 1 0 1 1 1 1 Z A 1010 01111 gr Ts a Td n B 1011 olil lililil lolo 1100 0 0 1 1 11lo o0 1 D 1101 0 1 0 1 1 1 ide ict E 1110 ol lil lilililololi 1111 0 E Seven Segment With Latch FNC 74 16 bits SEGL P 5steps EX EXis EXin EX SEGL P Reserved Arrow Switch FNC 75 16 bits ARWS P 9 steps EXin EXon ARWS Reserved 5 Applied Instructions Ascii Code Conversion FNC 76 16 bits ASC
135. plied Instructions Example FNC 59 Jog and Jog M8029 ineffective X14 X16 M8146 00 409 Flag 15 17 H 8147 YO01 Jog Flag X16 X14 M8148 00 Jog Flag X17 X15 M8149 01 Jog Flag M8146 8198 DPLSR D110 D112 K100 Yoo M8148 M8196 M8147 M8199 DPLSR D120 D122 K100 01 8149 8197 Example first position drive 8002 100 08168 Set YOO axis bias speed frequency MOV K100 D8164 Set YOO axis Acc Deceleration time ms MOV K1000 D8165 Set YOO axis Deceleration time ms DMOV K100 000 08156 Set YOO axis maximum speed frequency SET M8150 Set YOO axis Acc Deceleration time separate flag X10 t SET M110 M110 X10 DPLSR D110 D112 K100 YO 8029 RST M110 RST 8029 5 Applied Instructions Initial State FNC 60 16 bits IST 7 steps EX EXis EXon IST Reserved Data Search FNC 61 16 bits SER P 9 steps EX EXis EXin EXon D SER P 32 bits D SER P 17 steps Reserved 5 Applied Instructions Absolute Drum Sequence FNC 62 16 bits ABSD 9 steps EXis EXin EXon D ABSD 32 bits DABSD 17 steps Operands lt 1 gt KnX KnY K
136. r1 ETX1 WIV 08126 Terminator2 ETX2 O O O D8127 D8128 D8129 Time out detection ms O O O 200 V V series of PLC Number Content Of Register EX Default 08130 00 MPG movement Lower Word 0 08131 00 MPG movement Upper Word O 08132 01 MPG movement Lower Word 0 Viv 08133 01 MPG movement Upper Word O VIV 08134 00 MPG following time ms 10 viv D8135 01 MPG following time ms 10 viv 08136 00 target relative position Lower Word O 0 V N 08137 00 target relative position Upper o 08138 01 target relative position Lower Word 0 08139 01 target relative position Upper O O O V N The series of PLG Number Content Of Register EX TEX EXA Default w 08140 00 absolute position Lower Word 0 aia D8141 Y00 current absolute position Upper Word 08142 01 current absolute position Lower Word 0 08143 01 current absolute position Upper Word O O O 08144 00 relative position movement Lower Word O O O o Wix D8145 00 relative position movement Upper Word O O O 08146 01 relative position movement Lower Word Wix 08147 01 relative position movement Upper Word O O O D8148 Y00 remain pulse Lower Word 0 R D8149 Y00 remain pulse Upper Word i The series of
137. rate time and decelerate time separated flag O OFF 8151 DRVI DRVA Y01 accelerate time and decelerate time separated flag O OFF 4 4 8152 FNC 59 PLSY FNC 156 ZRN 00 zero return finish flag O O OFF M8153 FNC 59 PLSY FNC 156 ZRN Y01 zero return finish flag OFF 8154 FNC 156 YOO zero return mode O reverse mode 1 forward mode O O OFF 8155 FNC 156 01 zero return mode O reverse mode 1 forward mode O OFF IWIN 8156 00 zero return direction when M8158 0 then 0 forward 1 reverse O O OFF 8157 01 zero return direction when M8159 0 then 0 forward 1 reverse O O OFF M8158 Y00 ZRN init dir selection 0 decide by M8156 1 decide by 0817776 O O OFF 415 M8159 Y01 ZRN init dir selection 0 decide by M8156 1 decide by 08179 8 O OFF N X 6 Special Auxiliary Relay amp Data Register The series of PLG Number Content Of Register EX TEX EXA Default 08120 Communication protocol format O O 0368h V N 08121 Station Number O O O oh v 08122 Remaining points of transmit data O O O 08123 data points O O O j D8124 Header STX N N 08125 Terminato
138. rcuits isolation Photo coupler Photo coupler Output Specification Transistor output Item Relay output YO e 5 YO ZN S D ZS Circuit NES O CO Load voltage Under AC250V DC30V DC5V 30V Rated current 2A 1 point 0 5A 1 point Rated capacity 100W 12W Response time About 10ms Under 1 ms Circuits isolation Machine isolation Photo coupler Note of Output Specification 15 Transistor output module haven t pulled high resistor 2 2K Source Power Wiring Diagram NPN Mode 240 240 is output power source from PLC 100 240VAC 50 60Hz 5 5 5 Master Unit MR type sl sb ol 249 240 e e co YO Y1 Y2 Y17 OG lt Source Power Wiring Diagram PNP Mode 249 240is output power source from PLC 100 240VAC 50 60Hz L 210 55 240 XO e X17 e 246 S S 240 X17 gt DC DC O5V gt o5V GND ORO 0 Master Unit MR type el 249 240 e e CO YO Y1 Y2 Y17 1 Specifications 1
139. rding to machinery characteristics When M8158 M8159 0 choose M8156 M8157 to decide zero return initial direction 0 forward 1 reverse When M8158 M8159 1 choose bias absolute position D8154 D8152 and dog point absolute position D8176 D8178 to compare to decide initial direction If D8155 D8154 gt D8177 D8176 then reverse direction If D8155 D8154 lt D8177 D81 76 then forward position For search dog point speed system use pulse catch flag M8170 M8177 to be dog point input point In Ex1s Exin Ex2n series there are two modes for zero return 1 forward mode M8154 8155 1 2 reverse mode M8154 M8155 0 1 reverse mode M8156 1or M8157 1 When 8158 0 or 8159 0 Home Speed Home Speed nitial position initial position t Dog point position dog point position Creep Speed Creep Speed start to search servo Z phase start to search Z chase Servo Z ON Servo Z ON 2 reverse mode when M8158 1 or M8159 1 Don t Care M8156 and M8157 Creep Speed Creep Speed Start to search servo Z phase start to search servo Z phase 5 Applied Instructions Forward mode example this example initial direction control by flag M8156 or M8157 initial direction could also choose to control by dog point absolute position
140. rom PLC 100 240VAC 50 60Hz 1 Specifications External power mode used and connected with driver L xo2 X04 X07 24VDC 24 240 241 Yoo 01 CA1 YO2 Yos c1 04 05 option x option 24V 24G pulse sign Servo Driver 14MT Type Terminal Signal and Wiring Diagram 249 S S is NPN mode 240 gt S S is PNP mode 240 240 are output power source from PLC 100 240VAC 50 60Hz S S X00 X01 X03 X04 X05 X06 X07 Internal power mode used and connected with driver 24VDC mi PLC 4 249 240 241 YOO YO1 CA1 YO2 YO3 C1 04 05 X option x option 24V 24G pulse sign Servo Driver 14MT Type Terminal Signal and Wiring Diagram 249 S S is NPN mode 240 gt S S is PNP mode 24 24 are output power source from PLC 100 240VAC 50 60Hz External power mode used and connected with driver L S S X02 04 X05 X07 24VDC 1 24 240 241 Yoo YO 0
141. s lt S1 S2 K H KnX KnY KnM KnS T C D VZ lt D gt Flag M8020 M8021 M8022 191 92 D H ADD D10 D12 D14 D10 D12 gt D14 The data contained within the source devices S1 S2 is added and the result stored to specified destination devices D All calculations are algebraically processed i e 5 8 3 If the result of a calculation is 0 then zero flag M8020 If the result exceeds 32 767 16 bit limit or 3 147 483 647 32 bit operation the carry flag M8022 ON If the result exceeds 32 767 16 bit limit or 2 147 483 647 32 bit limit the borrow flag M8021 ON Subtraction FNC 21 16 bits SUB amp 5 7 Steps EX EXin D SUB P 132 bits D SUB amp D SUB P 13 Steps Operands lt 151 152 gt KnX KnY KnM KnS T C D VZ lt D gt Flag M8020 M8021 M8022 X0 51 S2 D H I SUB D10 D12 D14 D10 D12 gt 014 Content of S1 subtract content of S2 and the result stored to specified destination devices D All calculations are algebraically processed i e 5 8 3 The MSB of devices is sign 0 Positive 1 Negative Zero Flag Zero Flag Zero Flag 2 1 0 32 768 lt 1 0 1
142. sed xe aix M8092 Don t used M8093 Don t used Sse nhs 8094 Don t used Se M8095 Don t used ase Ale M8096 Don t used 8097 Don t used ely M8098 Don t used 8099 High speed ring counter enable flag 0 1ms O OO The series of PLC Number Content Of Register EX TEX Default 8100 Don t used M8101 Don t used ES M8102 Don t used 8103 Don t used 8104 Don t used M8105 Don t used 5 qz M8106 Don t used lal M8107 Don t used E 8108 Don t used EE lead Be M8109 Don t used TORRES Number Content Of Register EGIT R w M8110 2AD CH1 Voltage OFF or Current ON Monitor Selective Flag O O O 8111 2 2 Voltage OFF or Current ON Monitor Selective Flag M8112 2AD CH1 Enable Flag Ses 6 et M8113 2AD CH2 Enable Flag M8114 2TC CH1 Enable Flag M8115 2 2 Enable Flag ololo SAIN M8116 2PT CH1 Enable Flag INI M8117 2 2 Enable Flag M8118 2LD CH1 Enable Flag M8119 2LD CH2 Enable Flag 6 Special Auxiliary Relay amp Data Register The series of PLC
143. signed S3 In this example it occupy D100 D124 When execute in first time have to clear the content of S3 7 to be 0 MO 1 KO D107 PID DO D1 D100 D2 Before execute PID operation have to use MOV command to write the parameter set value for PID control first S3 Sampling Time Ts 1 32767 ms can t set shorter than scan time S3 1 Act direction ACT BITO 0 forward action 1 reverse action BIT1 0 Without input change Alarm 1 With input change Alarm BIT2 0 Without output change Alarm 1 With output change Alarm reserved BIT4 reserved BIT5 0 Without output limit 1 With output limit BIT6 BIT15 reserved S3 2 Input Filter 0 99 96 S3 8 Proportion Constant Kp 1 32767 96 S3 4 Integral Time Constant Ti 1 32767 100ms 0 is without integral action S3 5 Derivative Filter Constant 100 S3 6 Time Derivative Constant Td 1 32767 10ms 0 is without derivative action S3 7 For internal operation when execute PID S3 19 S3 20 System reserved S3 21 System reserved S3 22 Output maximum value limitation it is effective when S3 1 BIT5 1 S3 23 Output minimum value limitation it is effective when S3 1 BIT5 1 S3 24 System reserved 5 Applied Instructions Basic operation of PID instruction This instruction is based on speed f
144. source input terminal 8TC Type Terminal Signal 24V 24G are external power source input terminal 24VDC 24VDC hl MN 24G 1 V1 V2 V2 V4 V4 24V FG 24G e e v54 V5 e V6 V6 V7 V7 e V8 V8 5V L1 11 5V L2 12 2PT Type Terminal Signal 4AD Type Terminal Signal 24V 24G are external power source input terminal 24V 24G are external power source input terminal 24VDC 24VDC 24V 24G V1 C1 V2 C2 24V FG 24G e x PLC Le I3 C3 V4 I4 C4 L RESI b1 B1 A1 b2 B2 2 1222 4TC Type Terminal Signal 24V 24G are external power source input terminal 24VDC IF 24V 24G V1 V1 2 V2 x PLC V3 V3 V4 V4 e 1 13 1 Specifications Note for Wiring 12mm J 3 3mm I lt I 8mm I lt gt 6mm SCIL d I I as 16 8 5 lt drawing 1 gt 6 5mm gt Master Unit OOOO db db p o 0 0 ODD p o p p po p 0 0 p 0 Q 1 24 55 ue poo or 2 we x04
145. st to be converted to Ascii and is stored to send area Ex2 application note of master at HEX mode M8002 SET M8161 8 bits operation mode MOV H00A7 08120 communication format KO 08121 PLC station number 0 master r MOV 08124 STX MOV HH000D 08125 ETX1 MOV 08126 ETX2 M8002 1 K8 D98 number of send bytes MOV 64 D99 number of receive bytes M8000 M8123 110 K1 RST M8123 SET M8122 END Application note of slave M8002 SET 8161 8 bits operation mode MOV H00A7 08120 communication format 08121 station number 1 slave MOV 08124 STX MOV HH000D 08125 ETX1 MOV 08126 ETX2 8002 1 K8 D98 number of send bytes 64 D99 number of receive bytes 8000 M8123 110 K1 T10 RST M8123 SET M8122 END RS 5100 098 0200 099 assign send receive start address IT RS D100 D98 D200 D99 assign send receive start address 5 Applied Instructions At this mode data of error check is counted by designer PLC do not calculate automatically 5 Applied Instructions Parallel
146. still count as usual but output contact will not be changed 4 3 4 Advanced Devices High Soeed Counter C235 C255 High speed counter operated by interrupt and independent cycle time 32 bits up down latched counter ITEM 1 phase 1 direction 1 phase bi direction 2 phase bi direction Counter number C235 C245 C246 C250 C251 C255 Counter direction According to ON OFF by M8235 According different input point to When A phase B phase M8245 to decided direction decided up count or down count 0 1 Up 1 gt 0 Down Monitor M8246 M8255 status then can know counter Direction monitor direction Difference of the 16 bit 32 bit counters ee ITEM 16 bit counter 32 bit counter Direction Up counter Up down counter direction can be change Value range 0 32 767 2 147 483 648 2 147 483 647 Setting method Current value Output contact reset Constant 16 bit or data register Constant 32 bit or a pair of register No change to maximum value Change to maximum value ring counter To maximum value set and keep status Up counter keep status down counter reset When RST instruction be driven the value of counter reset to zero and output contact OFF NOTE The input signal of high speed counter cannot be higher than counting speed If an input is already being used by a high speed counter it cannot be used for any other high
147. struction Incremental Drum Sequence 5 Applied Instructions FNC 63 16 bits INCD 9 steps EXis EXin EXon INCD Operands lt S1 gt K H KnX KnY KnM KnS T C D V Z lt n gt n lt 64 lt gt 1 52 Operands x Y M 5 le 0 gt X000 61 S2 D n INCD D300 CO MO K 4 4 E 2 produce a varied output when M8013 9999 1sec pulse signal Following is the control range of 4 points 0 3 Use MOVE instruction to write following value into S1 in advance D300 20 D301 30 D302 10 D308 40 000 j s s 40 CO 20 20 20 10 current value C 1 Current value m m MO eq M2 m M3 T L M8029 complete flag When counting value of CO reach to setting value of D300 D303 CO reset automatically in turn C1 count occurred number of reset 0 3 act in turn according to counting value of C1 After complete last operation of setting number by n flag M8029 become ON Above mentioned action will be always repeated When OFF CO and C1 is cleared MO M3 become OFF then operate again when X0 become ON INCD instruction only can be used once in one program Teaching Timer 5 Applied Instructions FNC 64 16 bits TTMR EX
148. t 678493 then M50 ON The upper bit of S1 S2 is sign bit i e 0 positive 1 negative Use 32 bits counter C200 to compare have to use 32 bits instruction If use 16 bits instruction to compare then error will occur 5 Applied Instructions OR OR compare OR OR gt OR lt OR lt gt OR lt OR gt FNC 240 246 16 bits 5 steps EX EX EX n D X 32 bits 9 steps We S55 lt m 2 Operands lt S1 S2 gt KnY KnM T C D VZ Operands X Y M S Flag Comparison of BIN to the content of two source operands according the result update operate status 16 bits instruction 32 bits instruction ON OFF 240 OR DOR S1 S2 S1 S2 241 OR gt DOR gt S1 gt S2 S1 lt S2 242 lt DOR lt S1 lt S2 61 1 gt S2 244 lt gt DOR lt gt 51 1 4 S2 S1 S2 245 OR lt D OR S1 lt S2 S1 gt S2 246 OR DOR gt S1 S2 S1 lt S2 191 52 L OR K200 C 10 X002 M30 DOR gt 0100 100000 M60 then M60 ON The upper bit of S1 S2 is sign but i e O positive 1 negative When use 3
149. t lt Note gt gt Interrupt pointer Interrupt Input Relay 6 points 0 Falling Trigger 1 rising Trigger No of Input Relay X0 X5 0 5 Can t duplicate Timer interrupt 3points 10 99 ms 6 7 8 Can t duplicate When an interrupt program execute other Interrupt Call is ineffective If Interrupt occur within the range of Disable Interrupt DI El this interrupt request signal is stored temporarily and execute until within the range of Enable Interrupt El DI When Disable Interrupt M8054 act the corresponding Interrupt input will not be executed In interruption program FNC 50 REF command can not be used Ex section A in above sample program 5 4 First End 5 Applied Instructions FNC 06 16 bits FEND EX EXis EXin EXon FEND Operand None Main Program 0 CJ P10 Main Program FEND X1 Y1 Main Program P10 FEND X2 Y2 Sub Program P20 SRET END Watch Dog Timer A FEND instruction indicates the first end of a main program and the start of the subroutine program area to be used Multiple FEND instruction can be use to separate different subroutines When FEND is executed the program return to Step 0 FEND can t be used after END instruction FNC 07 16 bits
150. um error flag O O O OFF The series of PLC Number Content Of Register TEX Default RW M8130 00 Without Target Flag O OFF 8131 YO1 Without Target Flag OFF V V 8132 00 Emergency Stop Flag FNC 157 PLSV O O O OFF IN TAI M8133 01 Emergency Stop Flag FNC 157 PLSV O O O OFF M8134 FNC 59 PLSR Y00 absolute position drive flag O O OFF NN M8135 FNC 59 PLSR Y01 absolute position drive flag O O OFF M8136 00 MPG enable flag FNC 59 OFF M8137 01 enable flag FNC 59 OFF V V 8138 Y00 MPG busy flag FNC 59 OFF x M8139 01 MPG busy flag FNC 59 OFF The series of PLC Number Content Of Register EX TEX EXA Default RW M8140 00 Mark Flag FNC 157 PLSV OFF 414 8141 01 Mark Flag FNC 157 PLSV OFF ili lay 8142 FNC 59 PLSR Linear Interpolation enable flag M8143 59 Circular Interpolation enable flag M8144 FNC 59 PLSR YOO Zero Return Flag OFF WIV 8145 59 01 Zero Return Flag OFF N N M8146 59 PLSR YOO Jog Forward Flag O O O OFF alsa M8147 FNC 59 PLSR 01 Jog Forward Flag O O O OFF M8148 FNC 59 PLSR Y00 Jog Reverse Flag O O O OFF 8149 59 PLSR Y01 Jog Reverse Flag OFF The series of PLC Number Content Of Register EX TEX EXA Default RW M8150 DRVI DRVA YOO accele
151. ut pulse OFF gt ON of X00 and X01 X12 When X11 or X02 ON reset C249 current value to 0 and the contact turned OFF l C249 1234 1 Phase 1 Input without start reset ex up page X10 count up count down count u X11 4 12 start Input X0 count input HUE C235 32 current value C235 output contact icm C235 use X000 as the interrupt pulse input point X12 is not pulse input point Just as enable signal Through X00 count input to drive C235 one time current value of counter will be increment or decrement When current value from 6 increase to 5 or from 4 decrease to 5 output contact is ON If from 5 decrease to 6 or from 5 increase to 4 output contact is OFF i e current value setting value ON other OFF If the current value is 2 147 483 647 when increment by 1 will change to 2 147 483 648 If the current value is 2 147 483 648 when decrement by 1 will change to 2 147 483 647 This counter we called it to circular counter The counting direction assigned by special auxiliary relay M8235 M8240 i e X10 control counting direction When the reset input to X11 is ON C235 current value reset to 0 and contact turned OFF 4 5 4 Advanced Devices 2 Phase 2 Input High Speed Counter This counter operated by interrupt and independent cycle time EX serial can use 2 point 2
152. x error Nix 08066 error 08067 error 08068 Error code 08069 Error step numbers O O O The series of PLC Number Content Of Register EX TEX EXA Default RW D8070 Parallel link time out register ms 14 D8071 D8072 Parallel link spending time ms O O O D8073 08074 Sampling remain times Quo ro O D8075 Sampling times set 1 256 N N 08076 Sampling cycle time set 0 sample per cycle gt 1 10ms sample once O O N N D8077 Sampling trace condition assigned O N N 08078 Set component no of conditioned sampling trace O N N 08079 Sampling data index O Nx 6 Special Auxiliary Relay amp Data Register The series of PLC Number Content Of Register EX TEX Default w 8080 Don t used EE M8081 Don t used mS M8082 Don t used ze qul M8083 Don t used 8084 __ Don t used ner ee M8085 ___ Don t used 8086 Don t used 8087 Don t used SEEN M8088 Don t used E ET M8089 Don t used E ea The series of PLC Number Content Of Register EX Default 8090 Don t used PI M8091 Don t u
153. x series of controller pulse output signal pulse negative logic sign as following drawing fixed YOO 01 pulse output point 4 4 4 fixed Y02 Y03 direction output point ON forward OFF reverse The pulse duty cycle is 50 50 OFF Single position control The curve condition of controller and relative device Maximum speed D8157 D8156 Actual acceleration time gt lt actual deceleration time pulse output frequency D8161 D8160 bias speed D8168 or D8170 leration deceleratifn time acodleration deceleratian time lt D8164 or D8166 D8164 or D8166 When choose 00 then special function of X00 input like high speed counter C235 C241 C244 C246 C247 C249 C254 and interrupt signal 1000 1001 can t choose except MPG function and zero signal When choose 01 then special function of X01 input like high speed counter C236 C241 C244 C246 C247 C249 C254 and interrupt signal 1100 1101 can t choose again except MPG function and zero signal Absolute current value read 5 Applied Instructions FNC 155 16 bits ABS 7 steps EX EXis EXin D ABS 32 bits D ABS 11 steps Operands lt S gt KnY KnS 2 Opera
154. xample M8002 MOV HE086 81201 Format 4 9600 7E1 MOV K1 D8121 1 station no 1 32 Modbus mode Program of this mode have to use RS instruction to change protocol bit13 of 08120 have to be set 1 Because there is RS instruction then it can be master unit and can be slaver unit also It uses M8122 and 8123 to control transmitting and receiving data Example M8002 MOV H3386 D8120 Modbus Ascii mode 9600 7E1 np MOV 00 08121 Master station RS D100 D98 D200 099 When RS executing changing data of 08120 does not affect current operation The using frequency of this instruction in program is not limited but it only can use one execution command for one scan time and it have to design more than one scan time of OFF time when changing The communicate port of EXPLC can be as master unit or slaver unit Therefore once RS execute then enable the function of communication and wait for trigger signal If RS instruction is used then PRUN instruction can t be used 5 49 X10 S m n RS D100 D98 D200 D99 transmission request Data of send start address data of send c SET M8122 M8123 receive finish flag data of receive lt lt Request of transmission gt gt M8122 Data of receive start address move this data D200 to other register RST 8123 reset the receive
155. xxx counting direction X10 M8235 This example used X10 control C235 counting direction X00 is counting input X11 When X12 ON C235 start counting the input pulse OFF ON of X00 eWhen X11 ON reset C235 current value to 0 and the contact turned OFF X12 l C235 K 5 1 Phase 1 Input with start reset C241 C245 control M8xxx ON OFF status then can set Cxxx counting direction X10 X10 control counting direction X00 counting input X01 reset input X06 start input M8244 When X12 ON and X06 ON C244 start counting the input pulse OFF ON of X00 X11 When X11 or X01 ON reset C244 current value to 0 and the contact turned OFF RST 244 This line instruction can ignored because can used X01 reset C244 X12 This example the content of D1 DO is the setting value H C244 D 0 1 Phase 2 Input without start reset C246 monitor M8xxx ON OFF status then can know Cxxx counting direction X11 00 as count up input point X01as count down input point When X12 ON C246 start counting the input pulse OFF gt ON of X00 and X01 X12 When X11 ON reset C246 current value to 0 and the contact turned OFF F C246 D 2 1 Phase 2 Input with start reset C247 C250 monitor M8xxx ON OFF status then can know Cxxx counting direction X11 00 count up input point X01 count down input point X02 reset input X06 start input RST C249 eWhen X12 and X06 ON C249 counting the inp
156. ystem reserved x 08109 System reserved x Number Content Of Register XO OU RW 08110 2AD TC 210 parameter refer to user s manual O O O 08111 2 TC 210 parameter refer to user s manual O O O 08112 2AD CH1 measurement value O O O 0 D8113 2AD CH2 measurement value O O O 0 08114 2AD TC PT LD parameter refer to user s manual of 2AD O O O 08115 2AD TC PT LD parameter refer to user s manual of 2AD NIN D8116 2AD TC PT LD parameter refer to user s manual of 2AD NIN 08117 2 TC LD parameter refer to user s manual of 2AD IVI 08118 Internal system reserved don t used 08119 Internal system reserved don t used x 6 Special Auxiliary Relay amp Data Register The series of PLC Number Content Of Register EX TEX EXA Default M8120 Reserved OFF 8121 Send wait flag O O OFF V V M8122 Send request flag V V M8123 complete flag O O O OFF y M8124 Carrier detection flag Q O O OFF 8125 8126 8127 M8128 5 CRC checksum error flag OFF M8129 Modbus checks
Download Pdf Manuals
Related Search
Related Contents
SX30 - User Guide - Thermo Scientific Regolatori - Leroy Somer USER`S MANUAL - Thunderlaser PDF Version BENDIX BW1428S User's Manual INSTRUCTIONS - Harley VERBLENDKUNSTSTOFFE Intelligent Sewing Machine Copyright © All rights reserved.
Failed to retrieve file