Home

18 Apr 78 Revised 25 Sept. 78 BENT CAP ANALYSIS CAP 18 The

image

Contents

1. 3 amp 3 Overal 4 0 Sign Convention Input Caiculations For Ex 1 Span tengths 20 0 side Ea Sido Increment Use a 000 length Ine 74 Loads Siab 04245 YZ x Df Beams LAT x 124 Raf 0 218 Ze GO x C 26 Tera Super 404 224 Beam 3044 8 8 8 08 Liye Loods 1 IA loadings T Lene ao eo LLR IB Truck pacing 227 gz 444 o eo w 32 68 462 7 Lane LLAI R 1 27 62 7 79 6 Lane 22 Bent Cap Oata Spi fener for ends af 19 Iride 32 24 792 000 1728 27 92 03 Stiffness for interior partion i 2 Haas 2 673 E 06 Dead Loads End af cap 2 0 2 75 0 750 O z 6 0425 Inc 29023 Exot Interior e IO 2 75 0 150 t 27 2 188 O Live toad 3 380 E400 3 98 gt 23 bosoi Width Meret 1 1 tions 79 6 z 298 LE 1 481844 t 54 1270 03 232 5428 4 te TEXAS HiGHWAY DEPARTMEN
2. eda 2 69 2 xe RUE RERUM 71 T EE 6 74 AL CONDITIONS 77 baie 81 HOF ede haw ane ee WR ERI SUE 82 ee ie 84 Korm Part 2 9 5 08 90 22 ge 66 92 ENG RIGS RS 98 ers eue ene Ete emeret ueni Di ES 100 iv Introduction The Bent Cap Program is a specialized beam column program modified for use with the AASHTO lane loading rules The specific version at this time 1974 is designated CAP 17 the number in dicating that this is the seventeenth significant revision When the Bent Cap Program is used for design the following assumptions are built into the solution 1 All supports are knife edged pin connected 2 No axial loads are present 3 Live Loadings are varied in accordance with AASHTO rules 4 Deck slab for slab and stringer construction is hinged over interior stringers The above are consistent with the usual assumptions used when designing bent caps by hand Applications In general the Bent Cap Program should be used for flexural design of any bent cap When used with multi story bents or other bents for which a frame analysis has been run the bent cap moments ma
3. NORMAL BENT 18 2G date tes 22 Completed Input FORM 22209944 9999 ee d 23 Computer QUEDOU Leste 25 BOS 29 EXAMPLE 2 As SKEWED BENT S etre SO are eters RI Input Le LAE LORS a E d UR 33 cuve 34 Computer 2i GELS we SEG 36 Computer PLOUS 41 EXAMPLE 3 SKEWED TRANSITION BENT 43 Input CalculLatrOHS perena bw Ru a wb 45 Completed Input Part 46 computer OUtputs Part legea we edad A A 48 Completed Input Form 52 Computer Output e Bart 225 uere Secr deer Sr D E USD 54 Compute POLS UE 58 iii EXAMPLE 4 A ONE COLUMN BENT 60 Compl Comput Comple Comput Comput EXAMPLE N Compl Comput Comple Comput Comput REFERENCE Input Calculations ted Input er Output ted Input er Output er Plots Input Calculations ted Input er Output ted Input er Output er Plots 62 Form Part 63 LE eue eau eS 65 Eom ev ERU sanct
4. 501 2 516 2 531 2 546 2 561 2 577 3 5 2 138 16 182 1 138 02 7 046 02 7 613 02 0 0 4 753 02 183 1 144 02 4 563 02 9 225 02 0 0 4 768 02 184 1 150 02 2 126 02 1 085E 03 0 0 4 783 02 165 1 156 02 0 0 1 248 03 0 0 799 02 TABLE 7 MAXIMUM SUPPORT REACTIONS 186 1 163 02 0 0 1 412 03 9 0 4 814 02 187 1 169 02 0 0 1 577 03 0 0 4 829 02 STA DIST X MAX REACT MAX REACT 188 1 175 02 9 0 71 783 03 3 933E 01 1 330 02 189 1 18 1 02 0 0 1 528 03 3 434 02 0 0 190 1 188E 02 0 0 1 314 03 3 419 02 0 0 22 1 375 01 5 343 02 0 0 191 1 194 02 0 0 1 100 03 3 404 02 0 0 62 3 875 01 6 363 02 0 0 192 1 200 02 0 0 B 880E 02 3 3896 02 0 0 96 6 000 01 6 542 02 0 0 193 1 206 02 0 0 6 767 02 3 374 02 0 0 128 8 000 01 6 02 0 0 194 1 213 02 0 0 4 663 02 3 359E 02 0 0 188 1 175 02 T 162E 02 0 0 195 1 219 02 0 0 24569E 02 3 343E 02 0 0 196 l 225E 02 0 0 4 841 01 2 021 02 0 0 197 1 231 02 0 0 4 243E 00 3 722 01 0 0 198 1 238 02 0 0 1 886 00 3 017 00 0 0 TABLE 6 SCALES FOR PLOT OUTPUT 199 l 244E 02 0 0 4 715 01 1 509 00 0 0 200 1 250 02 1 202 10 2 003E 11 3 772 01 0 0 DISTANCE 20 INCHES x FT 201 1 256 02 0 0 0 0 1 6025 11 9 615 11 MOMENT 4 INCHES 4000 202 1 263 02 0 0 0 0 0 0 0 0 SHEAR 4 INCHES 1000 K 203 1 269 02 0 0 0 0 0
5. 813 4 875 938 5 000 5 063 5 125 5 188E 5 250 5 313 5 375 5 438 5 500 5 563 5 625E 5 668 5 750 5 813 5 875 5 938 6 000 6 063 6 125 6 188E 6 250 6 313 6 375 6 438E 6 500 6 563 6 625 6 688 6 750 6 813 6 875 6 938 7 000 7 063 7 125 188 7 250 7 313 7 375 1 9870 03 1 5930 03 1 2190 03 8 6810 04 5 4410 04 2 5270 0 0 0 2 0780 0 3 7480 04 5 0500 04 6 0230 04 6 7050 04 7 1360 0 7 3500 0 7 3870 04 7 2800 0 7 0660 0 6 7790 0 6 4520 04 6 1190 04 5 7860 0 5 4570 04 5 1360 04 4 8270 04 4 5330 0 4 2560 0 3 9970 0 3 7570 0 3 5360 0 3 334D 04 3 150D 04 2 9810 0 2 8250 0 2 6790 0 2 5380 0 2 3720 0 2 1470 0 1 8320 04 1 3920 04 T 928D 05 0 0 1 0220 04 2 2450 0 3 6380 04 5 1760 0 6 8290 0 8 5710 0 1 0380 03 1 2220 03 1 4080 03 1 5940 03 1 7800 03 1 9670 03 2 1530 03 0 0 0 0 0 0 0 0 0 0 1 63 0 02 1 5100 02 1 3860 02 1 2630 02 T 438E 7 500 7 563 T 625E T 6B8E 7 750 7 813E 7 875 7 938 6 000E B 063E 8 125 8 188 8 250 8 313 8 375 8 438 8 500 8 563 8 625 B 688E 8 750 8 813 8 875 8 938E 9 000 9 063E 9 125 9 188 9 250 9 313 9 375 9 438E 9 500 9 563E 9 625 9 686E 9 750 9 813E 9 875 9 938 1 000 1 006 1 013 1 019 1 025 1 031 1 038 1 044 1 050
6. STATION TO STATION FR 9 35 File 6 71 2 95 PROGRAM CAP 17 PROB 40002 TABLE 1 PROGRA DECK THD MATLOCK WBIsFEsJJP USE STD BGP C 34HS 30 DEG M CONTROL DATA OPTIONS TO HOLO IF 1 FROM PRECEDING PROB NUMBER OF ADDITIONAL CARDS FOR CURRENT PROB REVISION DATE 12 JUN 68 EXAMPLE NO 2 SKEWED BENT 30 DEG LF ENVELOPES OF MAXIMUMS 0 OPTION IF 1 TO CLEAR ENVELOPES BEFORE LANE LOADINGS OPTION IF z1 TO PLOT DESIGN VARIABLE ENVELOPES OPTION IFz 1 TO OMIT OUTPUT TABLE 5 ANGLE OF 5 DEGREES TABLE 2 CONSTANTS USING DATA FROM THE PREVIOUS PROBLEM TABLE 3 LISTS OF STATIONS NUM OF LANES TOTAL 3 LANE LEFT LANE RIGHT STRINGERS SUPPORTS MOM CONTR SHEAR CONTR NUM OF NUM OF STRINGERS SUPPORTS 5 3 1 3 26 46 26 8 71 7 0 22 0 37 0 11 37 63 11 22 37 13 35 NUM MOM CONTR PTS 5 52 0 67 0 52 63 39 1 NUM SHEAR CONTR PTS 6 6 7 65 JUNE 74 FT UNITS TABLE NUMBER 4 1 0 0 0 14 7 0 1 0 3 000 01 10 TABLE 4 CAP STIFFNESS AND DATA FOR BOTH FIXED AND MOVABLE LOADS FIXED OR MOVABLE STA STA CONTO FROM TO Ife 3 71 0 7 0 0 37 37 0 52 52 0 67 67 0 0 0 FIXED POSITION DATA BENDING STIFFNESS t KkeFT9FT 1 000 06 0 0 0 0 0 0 0 0 0 0 0 0 SIDEWALK SLAB LOADS CK 0 0 0 0 0 0 0 0 0
7. 1 056 1 063 1 069 1 075 1 081 1 088E 1 094 1 100 1 106 1 113 1 119 1 125 1 131 1 1390 02 1 0150 02 8 9100 03 7 668D 03 6 4190 03 5 1620 03 3 8940 03 2 6130 03 1 3160 03 0 0 1 3370 03 2 6850 03 74 0350 03 5 3770 03 6 7030 03 8 0080 03 9 2900 03 1 0540 02 1 1770 02 1 2960 02 1 120 02 1 5230 02 1 6310 02 1 7340 02 1 8320 02 1 9250 02 2 0130 02 2 0950 02 2 1710 02 2 2 10 02 2 3950 02 2 3620 02 2 4120 02 2 560 02 2 4930 02 2 5230 02 2 5460 02 2 5620 02 2 5710 02 2 5730 02 2 5680 02 2 5550 02 2 5360 02 2 5090 02 2 150 02 2 330 02 2 3850 02 2 3290 02 2 2660 02 2 1970 02 2 1220 02 0410 02 1 9540 02 1 8630 02 1 7660 02 1 6650 02 1 5600 02 1 4510 02 1 3380 02 1 2230 02 1 1040 02 9 8370 03 8 6090 03 182 1 138 183 11445 184 1 150 185 1 156 186 1 163 187 1 169 188 1 175 189 1 181 190 1 188 191 11946 192 1 200E 193 1 206 194 1 213 195 1 219 196 1 225 197 1 231E 198 1 238 199 1 244 209 1 250 201 1 256 1 263 203 1 269 204 1 275 205 1 281 206 1 288 207 1 294 208 1 300 7 3670 03 6 1180 03 4 8690 03 3 6250 03 2 3950 03 71 184D 03 0 0 1 1510 03 2 2720 03 3 3690 03 4 445D 03 5 5030 03 6 5490 03 7 5860 03 8 6180 03 9 6490 03 1 0680 02 1 1710 02 1 2740 02 1 3770 02 0 This is four pages of output 76 PROB
8. 1 088 1 094 1 100 1 106 1 113 1 119 1 125 1 131 2 399 6 019 9 630 1 105 1 254 1 416 1 578 1 738 1 898 2 057 2 214 2 371E 2 527 2 682 2 836 2 989 3 141E 3 292 3 442 3 463 3 82 3 500 3 518 3 534 3 549 3 564 3 578 3 590 3 602 3 613 3 623 3 632 3 639 3 646 3 653E 3 505E 3 357 3 208 3 057 2 906 2 75 2 601 2 7 2 307 2 165 2 023 1 880E 1 735 1 590 1 444 1 297 1 001 243 7 178 2 716 4 724 6 7 2 8 768 1 080 1 285 1 491 1 697 1 584 1 4 1 359 1 249 1 168 1 089 1 010 9 327 8 560E 7 803E 7 056 318 5 589t 870 4 160 3 60 2 169 2 087 1 415 7 523 3 922 4 152 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 90 0 0 0 0 9 0 0 0 0 0 4 162 1 402 2 398 3 402 4 417 6 010 5 592 2 139 3 205 3 220 3 235 3 250 3 266 3 201 3 296 7 436 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 428E 1 579 1 729 1 880 2 031 2 182 2 333 2 484 2 635 2 786 2 937 3 087 3 238 3 389 3 5 0 1 130 2 365 2 380 2 396 2 511 2 26 2 941E 2 56 2 71 2 486
9. 1 30 53 5 6 90 O 3tr Live Load Ze 3 z 250 125 LL Bent Reactions sonet 18 Uit 1301 2 2 ITO Distributed Lane 179 220 18 930 E OO Stiffness Assume 1 000 Weight 5670 0 From Es 45 97 Fil 5 29 1 TEXAS HIGHWAY DEPARTMENT BRIDGE DIVISION SHEET or 2 AKW BENT CAP PROGRAM IDENTIFICATION OF PROBLEM 2 CARDS EACH PROB COUNTY PROB NO 4OQOS PROB NO DISTRICT INITIALS DESCRIPTION OF PROBLEM LETTERS AND OR NUMBERS 6 ALLOWABLE SYMBO lolololo iw Era WA 317 seweb 18 eeN T 7 P TTT BOLS DB 8 1 ENTER 1 CLEAR ENVELOPES OF MAXIMUM VALUES PRIOR TO MULTi LANE Li ENTER i TO PLOT ENVELOPES SKEW ANGLE 83 2320021 ENTER n TABLE 5 ON OUTPUT L MOVABLE LOAD DATA NUMBER OF START INCREMENTS STATION TABLE 3 LISTS OF STATIONS NUMBER OF CARDS AS GIVEN IN TABLE NONE OR 14 STARS TATION OE 0 NUMBER OF MOMENT CONTROL POINTS 11111 ARENS 0 DEPARTMENT BRIDGE DIVISION BENT CAP PROGRAM CONT TEXAS HIGHWAY edi 25 2 stringer EE 0
10. 5 2770 6 5090 94 7 76 0 9 9 0210 04 1 0260 03 1 1450 03 1 2580 03 21 3630 93 71 570 03 1 5380 03 1 6050 03 1 6550 03 1 6870 03 1 6980 03 1 6870 93 1 6550 03 1 6050 03 1 5380 03 1 570 03 1 3630 03 1 2580 63 1 1450 93 1 0260 03 9 0210 04 7 7640 04 5090 04 5 2770 0 0920 04 2 9750 0 1 9510 04 1 0790 0 4 2250 95 56 5T 58 59 60 61 62 6 4 5 68 69 71 73 T4 75 2 00 2 850 2 900 2 950 3 000 3 050E 3 199 3 150 3 200 3 250 3 300 3 3506 3 400E 3 50 3 5006 3 550 3 8006 3 650 3 TC0E 3 760 01 01 01 91 91 01 01 01 61 ai e 01 1 ti 91 01 24 2030 06 0 0 3 5870 95 1 0770 9 2 1140 04 9 04 74 998D 04 5 1940 04 8 7850 04 1 0940 03 1 3200 03 1 5540 03 1 7870 03 22 0210 03 2 2550 03 2 4890 03 2 2230 03 0 0 9 5 6 5 LC PROB CONTO 40001 EXAMPLE NO 1 NORMAL BENT ZERO SKEW USE STD BGP C 34HS TABLE 5 MULTI LANE LOADING SUMMARY MOMENT FT K AT STA 17 22 37 52 57 SHEAR STA 15 DEAD 10 EFFECT 4 284 02 9 837 01 2 394E 02 9 837 01 284 02 DEAD LO EFFECT 8 709 01 1 323 02 ORDER POSITIVE MAXIMUM 1 303 0
11. by certain input data Details of the model and associated calculation procedures are given in Ref 1 Loads may be applied in two different ways First they may be placed directly on the cap such as stringer reactions and the cap dead load Second they may be applied thru the roadway slab and automatically distributed to the stringers and thru them into the cap This distribution assumes the slab hinged at each stringer except the outside stringers and will proportion stringer loads accordingly When the bent is skewed the increment length and the weight per increment input for the cap are both adjusted automatically for the skewed condition Stringer stations are not changed when increment length is increased so that loads placed on the deck slab including distributed loads need not be adjusted for skew The results of dead or fixed loads and live or movable loads are not determined as separate envelopes and then combined Instead a complete solution of all loads is made for each station and the total kept for the envelope Fixed load results are tabulated separately from movable loads only in Table 5 Envelopes of maximums are developed by first calculating an envelope for only the fixed position loads Then the random lane load is stepped across the slab and the cap solved at each step with the results used to expand the fixed load envelope Each time a
12. remainder of card 03 is self explanatory on the form The fourth and fifth lines are Table 2 cards 04 amp 05 and are used to describe the geometrical limits of the structure and movable loads The sixth thru nineteenth lines are Table 3 cards 06 thru 19 The sixth line lists numbers of lanes stringers beams supports moment control points and shear control points The computer uses these counts to separate one from the other in the subsequent entries If the counts are not correct the computer will not interpret the data properly Lines seven thru nineteen list the detailed geometric data that physically describe the bent cap and the locations at which the user wishes maximum values to be calculated control points Lines twenty thru fifty seven cards 20 thru 57 are Table 4 and are on the reverse side of the input sheet These cards are used to describe the properties of the cap and the locations and magnitudes of the loads Table 4 is open ended i e any number of cards may be used furthermore it is not required to be in any particular order Data may be entered in any order convenient to the user Data entered in any block of ten spaces should be in ex ponential form and must be right justified All other data must be right justified and in integer form Table 1 is used to control the input data for the problem Storage of data from a previous pr
13. 45 50 5 8 File 5 2 1 8 gt gt ioc 4206 z 2 52 gt 2 a a gt 5 2 5 lt a 2 b STRINGER 8 LOAD DATA Ht 11 TAE TH TI POSITION SIDEWALK amp SLAB LOADS a 2 E tf STA STATION 53 29 2 File 5 TABLE 4A DEAD LOAD DEFLECTIONS PROGRAM CAP 17 DECK THD MATLOCK WBIsFEsJJP REVISION DATE 12 JUN 68 STA DIST X DEFLECTION FT FT PROB 40004 LKW EXAMPLE NO 3 PART 2 JUNE 74 1 5 T74E 01 0 0 FT UNITS 0 0 0 0 1 5 774E 01 0 0 2 1 155 00 8 4890 04 TABLE 1 PROGRAM CONTROL DATA 3 1 732 00 7 2610 04 ENVELOPES TABLE NUMBER 4 2 309E 00 6 0330 04 OF MAXIMUMS 2 3 4 5 2 887E 00 4 8060 04 OPTIONS TO HOLD IFx1 FROM PRECEDING PROB 1 1 9 1 3 464E 00 3 5810 04 NUMBER OF ADDITIONAL CARDS FOR CURRENT PROB 0 14 0 0415 00 2 3620 04 8 619 00 1 1530 04 OPTION IF 1 TO CLEAR ENVELOPES BEFORE LANE LOADINGS 0 9 5 196 00 1 9530 05 OPTION IFz1 TO PLOT DESIGN VARIABLE ENVELOPES 1 10 5 774 00 2 7030 05 11 6 351 00 0 0 OPTION 1 70 OMIT OUTPUT TABLE 5 0 12 6 928E 00 1 2510 04 13 7 506 00 3 2880 04 ANGLE 5 DEGREES 3 000E 01 14 8 083 00 5 9220 04 15 8 660 00 8 9610 04 16 9 236 00 1 2220 03 TABLE 2 CONSTANTS 17 9 815
14. 71 267 3 931 211 9 827 01 2 57 01 1 301 12 0 0 0 0 0 0 0 0 0 0 9 9 0 0 283 01 2 147 02 2 1396 02 2 130 02 1 078 02 2 553 00 1 702 00 8 510 01 2 126 01 1 1276 12 0 0 0 0 0 0 1 459 1 467 1 476 1 484 1 493 1 501 1 510 4 069 0 0 0 0 TABLE 7 MAXIMUM SUPPORT REACTIONS STA DIST x REACT REACT FT K 11 6 351 00 3 605 02 0 0 37 2 136 01 4 197E 02 0 0 63 3 637E 01 3 605E 02 0 0 TABLE 8 SCALES FOR PLOT OUTPUT DISTANCE 20 INCHES 56 FT MOMENT 4 INCHES 1009 FT K SHEAR 4 INCHES 400 K Iv fF EE ER Es p SS s O EE EE EEEEEEEEEEEE E 582755793 LLL EL LEE LEE ag 1 Hi 1 Hs Hn SS EE EM m gt HESS SS SS SHS E E E EE SaaS EE z OI IIOIIIIIIXI TRE 2 tu e 11117 42 14222 1 0 44 ll H
15. ANGLE OF SKEW DEGREES 3 687 01 TABLE CONSTANTS NUMBER OF INCREMENTS FOR SLAB AND CAP 207 INCREMENT LENGTH FT 5 000 01 NUMBER INCREMENTS FOR MOVABLE LOAD 20 INITIAL POSITION OF MOVABLE LOAD STA ZERO 127 FINAL POSITION OF MOVABLE LOAD STA ZERO 201 NUMBER INCREMENTS BETWEEN EACH POSITION OF MOVABLE LOAD 1 MAXIMUM NUMBER OF LANES TO BE LOADEO SIMULTANEOUSLY 3 LIST OF LOAD COEFFICIENTS CORRESPONDING TO NUMBER OF LANES LOADED 1 2 3 4 5 1 0006 00 1 000E 00 9 000 01 TABLE 3 LISTS OF STATIONS NUM OF NUM OF NUM OF NUM MOM NUM SHEAR LANES STRINGERS SUPPORTS CONTR PTS CONTR PTS TOTAL 3 5 5 6 1 2 3 4 5 6 7 9 LANE LEFT 127 152 176 LANE RIGHT 152 176 201 STRINGERS 132 0 148 0 164 0 180 0 196 2 SUPPORTS 22 62 96 128 188 MOM CONTR 128 132 148 164 180 188 SHEAR CONTR 130 150 162 166 178 186 10 USING DATA FROM THE PREVIOUS PROBLEM PLUS TABLE 4 CAP STIFFNESS AND DATA FOR BOTH FIXED AND MOVABLE LOADS FIXED OR MOVABLE FEXED POSITION DATA gt STA STA BENOING SIDEWALK FROM TO STIFFNESS SLAB LOADS K FT9FY CK 112 0 0 4 409 00 95 115 0 0 0 3 414 00 4 4 0 0 0 1 000 01 105 195 0 0 0 4 410 01 127 203 0 0 0 4 552E 00 206 206 0 0 0 1 000 01 STRINGER CaP LOADS MOVABLE POSITION SLAB LOADS 0 0 0 0 0 0 5 0 0 0 0 6 TABLE 4A DEAD LOAD DEFLECTIONS STA om 40uU un 0 DIST X 6
16. Right 275 SSS x 4 409 4652 et TEES q 3000 04472021 E206 6 Median Slob 52558 4409 3414 Waights Left 1 530 2 7 0 150 20 9987 Vota CMB 0 485 70 x 1 302 44 1 UIt Right 50 2 7 3 20 1 207 Ste Sign Supports Aseume 105 Each uit including mounting brackets C8 TEXAS HIGHWAY DEPARTMENT BRIDGE DIVISION SHEET of 2 Ev BENT CAP PROGRAM mt IDENTIFICATION OF PROBLEM 2 CARDS EACH PROB PROB NO DISTRICT INITIALS DESCRIPTION OF PROBLEM LETTERS AND OR NUMBERS 8 ALLOWABLE SYMBOLS 1026100 5 Is P ec T TRATION 1 11 Tonle ri ONLY TH o PART hi re 1251 sh wel soz wrt 1111 ERT RT TABLE L ENTER TO CLEAR ENVELOPES OF MAXIMUM VALUES PRIOR TO MULTi LANE LOADING ENTER 1 PLOT ENVELOPES SKEW ANGLE 88 178 2 4 70 7777 TABLE 2 CONSTANTS 2 CARDS UNLESS DATA HELD FROM PRECEDING PROBLEM ELIMINATE TABLE 5 ON MOVABLE LOAD DATA NUMBER OF OF START T INCREMENTS INCREMENT LENGTM STATION TABLE 3 LISTS OF STATIONS OF CARDS AS GIVEN IN TABLE NONE OR 14 LANES 5 5 sups N IMBER OF MOMENT CONTROL POINTS je D 0 25 STATION AT LEFT OF LANE Lil Lisi i teef Lis 1111111 111
17. struction but the user should be aware that any material can be used 16 It is hoped that these examples will provide sufficient insight into the procedures and operation of the Bent Cap Program to demonstrate its uses and versatility Due to the versatility of the program there are several ways of accomplishing Bent Cap analysis The methods shown should be considered as demon strations and not necessarily as the best or most efficient method for the user s purposes The user should exercise his own judgement as to program arrangements etc for his particular Case Author These instructions and examples were prepared by L K Willis of The Bridge Division and were reviewed by J J Panak of The Bridge Division 17 EXAMPLE NO 1 NORMAL BENT PROBLEM 40001 The preliminary work needed prior to filling out the input form consists of setting the increment length assigning stations and calculating the bent cap stiffness and the loads A typical sheet with a sketch of the bent and showing this work precedes the input form and output which follows The design conditions for the bent are those for the BGp C 34HS standard between two 60 simple prestressed concrete beam spans An increment length of 6 was chosen for this example and the stationing defining the structure laid out In the interest of symmetry of input data t
18. 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 7 541E 12 0 0 9 0 0 0 0 0 0 0 1 002 12 3 772 01 1 509 00 3 017 00 68 119 120 121 123 12 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 15 159 160 161 162 163 164 165 166 167 168 169 170 172 173 174 175 176 177 178 179 180 181 7 438 7 500 7 563 7 625 T 688E 7 750 7 813 7 875 7 938 8 000 8 063 6 125 8 1 8 250 8 313 8 375 8 438 8 500 8 563 B 625E 8 6 8 750 8 813 8 875 8 938E 9 000 9 063 9 125 9 188 9 250 9 313 9 375 9 438 9 500 9 563 9 625 9 688 9 750 9 813E 9 875 9 938 1 000 1 006 1 013 1 019 1 025E 1 031 1 038 1 044 1 059 1 056 1 063 1 069 1 075 1 081 1 088 1 094 1 100 1 106 1 113E 1 119 1 125 1 131 3 418 9 349 1 519 2 093 2 657 3 213E 3 759 295 4 529 4 75 4 969 5 174 5 371 5 557 5 735 5 903 6 061 6 210 6 350 6 480 6 601E 6 712 6 814 6 907 6 697 6 4 6 24BE 6 010 5 7626 5 505 5 238 4 962 676 382 4 077 3 763 3 440E 3 107 2 765 2 414 1 760 243 7 178 2 716 4 724 6 742 8 768 1 080 1
19. 01 9 0 8 600 25 1 443E 01 9 0 8 665 403 99 26 1 501 01 0 0 8 731 404 0 1 559 01 0 0 8 796 Y 28 1 617 01 1 694 01 8 862 Since envelopes were held from the previous problem 29 1 674 01 4 256 01 8 927 and the value from this problem is smaller the value 30 1 732 01 6 856 01 8 993 from the previous problem 406 7 appears the 3 Ge envelope for this problem The 404 0 is discarded 33 01 22 350 02 2 311E 34 1 963 01 3 054 02 2 318E 35 2 021E 01 4 215E 02 2 324E 36 2 078 61 5 489 02 2 331 37 2 136 61 6 767 02 4 231 38 2 19 4E 01 5 489 02 0 0 39 2 252 01 4 215 02 0 0 40 2 309 01 3 054E 02 0 0 41 2 367 01 2 340 02 0 0 42 425E 01 1 638 02 0 0 43 2 583 01 9 494 01 0 0 44 2 5 0 01 6 856 01 0 0 4 2 598 01 4 256 01 0 0 46 2 656E 01 1 694 01 0 0 2 714 01 9 0 48 2 771 01 0 9 49 2 829 01 0 0 50 2 887 01 0 0 51 2 944E 01 0 0 52 3 002 01 1 752 01 53 3 060E 01 1 027 02 5 3 118E 01 1 033E 02 55 3 175 01 1 388E 02 LS 3 233 01 3 617E 02 0 0 1 848E 02 3 291E 01 2 647 02 8 948t 00 1 855 02 3 349 01 1 686 02 698 01 1 861 02 3 406 01 T 248E 01 1 854 02 TABLE 7 MAXIMUM SUPPORT REACTIONS 3 464 01 27 742 02 3 522E 01 3 633 02 STA 0157 X MAX REACT REACT 3 580E 01 4 529 02 FT K K 3 637 01 5 4
20. 2 000 2 500 3 000E 3 500E 4 000E 4 500 5 000 5 500 6 000 6 500 7 000 7 500 8 000 8 500 9 000 9 500 1 000 1 050 1 100 1 150 1 200E 1 250 1 300 1 350 1 400 1 450 1 500 1 550 1 600 1 650 1 700 1 750 1 800 1 8506 1 9006 1 950 2 0006 2 0506 2 100 2 150E 2 200 2 250 2 300 2 350 2 400 2 50 2 500 2 550 2 600 2 650 2 7006 2 7506 DEFLECTION FT 0 0 0 0 00 1 9100 02 1 8320 02 1 7540 02 1 6770 02 1 5990 02 1 5220 02 1 60 02 1 3700 02 1 2950 02 1 2210 02 1 1480 02 1 0760 02 1 0050 02 9 3600 03 8 6810 03 8 0190 03 7 3730 03 6 7460 03 6 1370 03 5 5480 03 4 9810 03 4 4360 03 3 9140 03 3 4160 03 2 9440 03 2 4970 03 2 0790 03 1 6880 03 1 3270 03 9 9690 04 6 9790 04 4 3140 04 1 9840 0 0 0 1 6200 04 2 8770 04 3 7740 04 3120 04 4 4910 04 4 3120 04 3 7740 04 2 8710 0 1 6200 0 0 0 1 9640 0 4 31 40 0 6 9790 0 9 9690 04 1 3270 03 1 6880 03 2 0790 03 2 970 03 2 8006 2 8506 2 9006 2 950 3 000 3 050 3 100 3 150 3 200E 3 250E 3 300 3 350 3 400 3 450 3 500 3 550 3 600 3 650 3 700 3 750 3 800 3 850 3 900 3 950 4 000E 050 amp 100 150 200 4 250E 2 9440 03 3 4160 03 3 9140 03 4 4360 03 4 9810 03 5 5480 03 6 1370 03 6 7460
21. PRIOR TO MULTI LANE LOADIN ENTER i ENVELOPES SKEW ANGLE 5 12 EE 3 E TEES 7 20 TABLE 2 CONSTANTS 2 CARDS UNLESS DATA HELD FROM PRECEDING PROBLEM MINATE TABLE 5 ON MOVABLE LOAD DATA NUMBER OF NUMBER OF START MOVABLE OAD INCREMENTS INCREMENT LENGTH INCREMENTS STATION 20 NUMBER TABLE 3 LISTS OF STATIONS NUMBER OF CARDS AS GIVEN IN TABLE i NONE OR 14 STAS sups NUMBER OF MOMENT CONTROL POINTS wee M FRACTIONAL TENTHS DF NCREMENTS L ION AT POINTS FOR MOMENT 44 AR TATION AT DESIGN CONTRO POINTS FOR ELT psl ERE 16 2 25 ac 35 40 45 65 File 5 2 1 0L File 29 2 747 ON TEXAS HIGHWAY DEPARTMENT BRIDGE DIVISION BENT CAP PROGRAM CONT D MOVABLE CONTINUED wet STIFFNESS ANC 2 2 DATA NUMBER OF CARDS AS GIVEN IN TABLE OF CAP MOVABLE Lon LOADS SLAB LOADS _ 576 ob 21 00 3 5 D IL TABLE DEAD LOAD DEFLECTIONS PROGRAM CAP 17 DECK THO MATLOCK WBISsFEsJJP REVISION DATE 12 JUN 68 STA PROB 40006 EXAMPLE NO 4 PART TWO JUNE T4 1 APPLICATION OF SIOEWALK OVERLOAD KIP FT UNITS 1 2 TABLE 1 PROGRAM CONTROL DATA 3 ENVELOPES TABLE NUMBER 4 OF MAXIMUMS 2 3 5 OPTION
22. i e an assumed arbitrarily large stiffness and a simple uniform load No error is introduced with regard to stiffness except for dead load deflections and the error introduced with regard to the cap dead load moments will be negligible in terms of the total design moment If the cap were not of uniform section between the columns it would be necessary to input actual stiffness values 32 File 1284 DESIGN DATE TEXAS CK OSN 22 HIGHWAY DEPARTMENT DESIGN BRIDGE D DIVISION 2 75 2 75 Cap _ 42 930 2 990 An BENT Input Calculations for Example 2 Bent Cap Span lengths 90 0 Ea Side 30 00 LF Shon Stiffness Assume 1 000 E 06 3 000 E OI Deg T 2 Rail Dead Lozol 1 8 2 75 xO SO 1 475 Increment length 6 5 000 01 475 7375 EF OI Inc 74 cmm Dead Loads for lead factor design Beam lead 1 3 808 19 Beam From 1 Live Loae for load factor design Lied 30 uF x 3 980 6 623 Ine From 1 33 TEXAS HIGHWAY DEPARTMENT BRIDGE DIVISION L orl TE CONTROL BENT CAP PROGRAM bare IDENTIFICATION OF PROBLEM 2 CARDS EACH PROB 6 gt PROB PROB NO DISTRICT INITIALS DESCRIPT n OF PRO ABLE 1 ENTER 1 TO CLEAR ENVELOPES OF MAXIMUM VALUES PRIOR TO MULTI LANE LOADING ENTER
23. 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 013 11 22 933E 01 1 173 00 2 34TE 00 8 885 01 2 119 02 2 97 02 2 509 02 2 520 02 2 532 02 2 544 02 2 556 02 2 56 02 6 22 00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 5 9 9 9 ooooooooo oooooooooo 0 0 8 362E 01 2 077 02 2 089E 02 2 101E 02 2 112 02 2 124 02 2 130 02 2 136 02 2 148 02 2 159 02 2 171 02 2 183E 02 18 3 500 3 563 3 625 3 688 3 750 3 813 3 8T5E 3 938 4 000 4 063 4 125 4 188E 4 250 313E 4 375 4 438 4 500 4 563 4 625 4 688E 4 T50E 4 813 875 4 938E 5 000 5 063 5 125 5 188 5 250 5 313 5 375 5 438 5 500 5 5636 5 625 5 688E 5 750 5 813 5 875 5 938E 6 000 6 063 6 125 6 188 6 250 6 313 6 375 6 438E 6 500 6 563 6 625 6 688 6 750 6 813 6 875 6 93 7 000 T 063E 7 125 7 188 7 250 7 313E 7 375 0 0 0 0 0 0 9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 046 01 1 3416 02 2 70 62 3 592 02 707 02 5 814E 02 5 501 62 5 181E 02 85 02 519 02 177 62 3 828 02 3 471 02 3 126 02 2 884 02 2 635 02 2 378 02 2 115 02 1 843 02 1 565 02 1 279 02 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 9 426E 12 0
24. 0 0 0 0 0 STRINGER CAP LOAOS 01 1 050 02 1 050 02 1 050 02 1 050 02 1 050 02 0 0 MOVABLE POSITION SLAB LOADS 0 0 9 0 0 0 0 0 0 0 0 0 8 623E 00 18 TABLE gt gt DEAD LOAD DEFLECTIONS 56 3 233E 01 1 1690 03 57 3 291E 01 9 2950 04 STA DIST x OEFLECTION se 3 349 01 6 9120 04 FY FT 59 3 406 01 4 6740 04 60 3 464 01 2 1220 0 61 3 522 01 1 1970 0 1 5 774 01 0 0 62 3 580E 01 2 120 05 0 0 0 0 0 63 3 637 01 0 0 1 5 774 01 0 64 3 695 01 6 1950 05 1 155 00 1 5220 03 65 3 753 01 1 8850 04 1 732E 00 1 3280 03 66 3 811 01 3 5850 04 4 2 309 00 1 1330 03 67 3 868 01 5 5070 0 5 2 887 00 9 3840 04 68 3 926 01 7 4420 04 6 3 464E 00 7 20 0 69 3 984E 01 9 3840 04 T 4 041 00 5 5070 0 70 4 041 01 71 1330 03 4 619 00 3 5850 0 71 4 099 01 1 3280 03 9 5 196 00 1 8850 0 T2 157 01 1 5220 03 10 5 774E 00 6 1950 05 13 215 01 0 0 11 6 351 00 0 0 74 272 01 0 0 12 6 928 00 2 120 05 75 330 01 0 0 13 7 506 00 1 1970 04 14 8 083E 00 2 7220 0 15 8 660 00 4 6740 04 16 9 238E 00 6 9120 04 17 9 815 00 9 2950 0 18 1 039 01 1 1690 03 19 1 097 01 1 3950 03 1 155 01 1 5950 03 21 1 212 01 1 7550 03 22 1 270 01 1 8620 03 23 1 328 01 1 9030 03 A rep These results are incorrect due to the arbitrary value of 26 1 501E 61 1 7070 03 cap sti
25. 0 3 764 01 70 3 500 01 0 0 2 754 02 1 065 02 0 0 5 359 01 0 0 4 321 01 71 3 550 01 0 0 2 249 02 9 562 01 9 0 0 7 T703E 01 0 0 5 22BE 01 3 600 01 0 0 1 798 02 8 476 01 10 0 0 1 059 02 0 0 6311 01 73 3 650 01 0 0 1 401 02 7 394 01 11 0 0 1 401E 02 0 0 7 394 01 T4 3 700 01 0 0 1 059 02 6 311 01 12 0 0 1 798 02 0 0 6 476 01 75 0 0 7 703 01 5 228 01 13 0 0 2 249 02 0 0 9 562 01 76 0 0 5 359 01 4 321 01 14 2 754 02 0 0 1 065 02 TT 0 0 3 382 01 3 764 01 15 3 314 02 0 0 1 173 02 76 0 0 1 595 01 3 3826 01 16 3 928 02 0 0 1 282E 02 79 8 431 12 1 6866 11 1 595 01 17 4 596 02 0 0 1 391 02 4 000 01 0 0 0 0 1 686 11 18 5 318E 02 0 0 1 499 02 81 4 050E 01 0 0 0 0 19 6 095 02 0 0 1 608 02 82 amp 100 01 0 0 0 0 20 6 926 02 0 0 15717 02 63 4 150 01 0 0 0 0 21 7 812 02 0 0 1 826 02 4 200 01 9 0 0 0 22 6 752 02 0 0 1 935 02 65 4 250 01 0 0 9 0 0 0 23 9 7 6 02 0 0 2 044 02 24 1 080 03 0 0 2 153 02 25 1 190 03 0 0 2 262 02 26 1 306 03 0 0 2 371 02 27 1 427E 03 0 0 2 481 02 28 1 554 03 0 0 2 572 02 29 21 68 4E 03 0 0 2 629 02 30 1 817 03 0 0 2 669 02 31 1 951 03 0 0 2 709 02 2 088 03 0 0 2 766 02 33 2 228 03 0 0 2 658 02 34 2 373 03 0 0 2 968 02 35 2 525 03 0 0 3 078 02 36 2 681 03 0 0 3
26. 0 STA EFFECT 22 1 402 02 62 1 784 02 96 1 142 02 gune ouNwo ouneo ORDER qun owN o vo qunve 1 509 7 691 5 916 4 927 4 133 5 916 0 0 4 927 4 733 5 916 0 0 1 941 1 479 0 0 0 0 1 941 1 479E 0 0 0 0 1 360 POSITIV MAXIMUM 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 02 01 00 61 09 91 127 152 176 159 156 176 159 176 175 176 wo 175 176 6 199 LOAD AT LANE STA gune gene QQ ORDER ouno wn o 8 874 0 0 0 0 3 744 3 697 8 874 0 0 3 744 3 697 8 874 0 0 8 477 8 282E 4 141 8 874 8 477 8 282 4 141 6 874 1 322 1 124 1 014 6 141 NEGATIVE MAXIMUM 0 0 0 0 3 181 133 132 181 o 133 132 181 weo 149 152 132 181 weno 149 152 132 181 weno 165 156 176 132 LOAD AT LANE STA 6 TABLE 6 ENVELOPES OF MAXIMUM VALUES 128 4 530 02 0 1 509 02 1 127 2 810E 01 0 188 STA DIST X MAX MOM MAX MOM MAX SHEAR MAX SHEAR 1 1 509 02 1 127 1 8 874E 00 3 181 FT K FT K 2 7 691E 01 2 152 2 9 0 3 5 916E 00 3 176 3 0 0 1 6 250E 01 0 0 0 0 0 0 0 0 oe 0 0 0 0 0 0
27. 0 0 0 04 1 275 02 0 0 0 0 0 0 0 0 205 1 281 02 0 0 0 0 6 0 0 0 206 1 288E 02 0 0 0 0 0 0 0 0 207 l 294E 02 0 0 0 0 0 0 0 0 1 300 02 0 0 0 0 0 0 0 0 86 Control points for part Prob A are not listed in part 2 and ore rx For plotting in this proble 4 90007 ovoilobla i t 4 mecs Control points for por REFERENCE 1 Matlock Hudson and W B Ingram Computer Program to Analyze Bending of Bent Caps Research Report No 56 2 Center for Highway Research The University of Texas at Austin October 1966 100
28. 01 3 313E 01 3 375 01 3 438E 01 DEFLECTION 1 3530 0 5 7270 05 2 0770 05 9 8770 05 1 7660 04 2 5420 04 3 2600 0 3 8410 04 4 2070 04 4 2790 0 3 9750 0 3 2150 0 1 9170 0 0 0 2 6200 04 5 8510 04 9 6000 04 1 3780 03 1 8290 03 2 3050 03 2 7970 03 3 2950 03 3 7980 03 3020 03 4 8040 03 5 3020 03 5 79 0 03 6 2760 03 6 7460 03 7 2030 03 7 6 30 03 8 0640 03 8 4640 03 8 8420 03 9 1940 03 9 5200 03 9 8160 03 1 0090 02 1 0340 02 1 0580 02 1 0810 02 1 1030 02 9 9850 03 8 9460 03 7 9170 03 6 9030 03 5 9090 03 3 500 3 563 3 625 3 688E 3 750 3 813E 3 875 3 938 4 000 063 4 125 4 188E 4 250 4 313E 375 438 4 500 4 563 4 625 4 6 4 750 4 813 4 875 4 938E 5 000 5 063 125 5 188 5 250 5 313 5 375 5 438 5 500 5 563E 5 625E 5 688 5 750 5 813 5 875 5 938 6 000 6 063 6 125 6 188 6 250 6 313 6 375 6 438 6 500 6 563 6 625 6 688E 6 T50E 6 813 6 875 6 938 7 000 7 063E 7 125 7 188 7 250 7 313 7 375 4 9410 03 4 0040 03 3 1030 03 2 2440 03 1 4330 03 6 8050 04 0 0 5 670 0 1 1160 03 1 5640 03 1 9480 03 2 2730 03 2 5460 03 2 7720 03 2 9590 03 3 1110 03 3 2360 03 3 3370 03 3 4220 03 3 4960 03 3 5590 03 3 6080 03 3 6 40 03 3 6650 03 3 6710 03 3 6590 03 3 6280 03 3 57
29. 01 72 141D 03 20 1 155 01 2 3660 03 21 1 212 01 2 5340 03 TABLE 3 LISTS OF STATIONS ee 1 270 01 2 6390 03 23 1 328E 01 2 6770 03 USING DATA FROM THE PREVIOUS PROBLEM 24 1 386 01 2 6540 03 25 1 443 01 2 5750 03 26 1 501 01 2 4460 03 TABLE 4 CAP 5 55 DATA FOR BOTH FIXED MOVABLE LOADS 1 559 01 2 2130 03 28 1 617 01 2 0620 03 FIXED OR MOVABLE FIXED POSITION DATA MOVABLE 29 1 674E 01 1 8200 03 STA STA BENDING SIDEWALK STRINGER POSITION 30 1 732 01 1 5520 03 1 STIFFNESS SLAB LOADS CAP LOADS SLAB LOADS 31 1 790 01 71 2660 03 K FT9FT 1 84 01 9 6720 0 33 1 905 01 6 7650 04 0 0 0 0 0 0 0 0 8 950 00 34 1 963 01 4 1400 04 3 71 0 1 000 06 0 0 5 670 01 9 0 35 2 0216 01 2 0010 0 T T 9 0 0 0 0 5 250 01 0 0 36 2 078E 01 5 5210 05 22 22 0 0 0 0 0 5 250 01 0 0 37 2 136 01 0 0 37 37 0 0 0 9 0 5 250 01 0 0 38 2 194 01 5 5210 05 52 62 0 0 0 0 0 5 250 01 0 0 39 2 252 01 2 0010 04 67 67 0 0 0 0 0 5 250 01 0 0 40 2 309 01 4 1400 04 T 7 0 0 0 0 0 6 960 01 0 0 41 2 36 01 6 7650 04 19 19 0 0 0 0 0 6 960 01 0 0 42 2 425 01 9 6720 0 31 31 0 0 0 0 0 6 960 01 0 0 43 2 483E 01 1 2660 03 43 43 0 0 0 0 0 6 960 01 0 0 44 2 5 0 01 1 5520 03 55 55 0 0 0 0 0 6 960 01 0 0 45 2 598E 01 1 8200 03 67 67 0 50 0 0 6 960 01 0 0 46 2 656 01 2
30. 065 02 2 170 02 1 2806 02 3 943 01 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 301 12 0 0 0 0 0 0 0 0 0 0 B 948E 00 9 698 01 1 854 02 2 742 02 3 633 02 4 529 02 5 428 02 4 073 02 2 722 02 1 37 02 3 024E 00 1 701 00 7 560E 01 1 890 01 1 545 12 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 948E 01 2 344 02 2e337E 02 2 331E 02 1 175 02 1 964 00 1 309 00 6 547 01 1 637 01 1 338 12 0 0 0 0 0 0 1 742 02 1 749 02 1 755 02 1 762 02 1 768 02 1 775 02 1 782 02 9 192 00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 127E 12 9 0 9 0 TABLE 7 MAXIMUM SUPPORT REACTIONS STA 11 37 63 DIST x FT 6 351 00 2 136 01 3 637 01 MAX REACT K 4 067 02 4 902 02 amp 067E 02 TABLE 8 SCALES FOR PLOT OUTPUT REACT NO PLOTS SPECIFIEO FOR PROBLEM 40003 TEXAS HIGHWAY DEPARTMENT BRIDGE DIVISION SHEET 2 or 2 KW BENT CAP PROGRAM o rrr IDENTIFICATION PROBLEM 2 CAROS EACH PROB COUNTY ProB 0004 _ PROB NC DISTRICT INITIALS XY OF PROBLEM LETTERS AND OR NUMBERS ALLOWABLE SYMBOLS 022 411 E PE B lH L TILL Tl LL L TT ER NOTE USE ONLY THESE SY MBO BB masa 1 1 17717 7777 77777 77 7 77
31. 187 02 37 2 843E 03 0 0 2 003 02 38 2 686 03 3 094 02 2 494 02 39 2 534 03 2 98 02 2 534 02 TABLE 7 MAXIMUM SUPPORT REACTIONS 40 2 387E 03 2 874 02 2 574 02 41 2 257 03 2 76 02 684 02 STA DIST X MAX REACT REACT 42 2 118E 03 2 654 02 2 T94E 02 43 2 261 03 2 61 02 2 904 02 64 2 408E 03 2 574E 02 3 014 02 37 1 850 01 6 501E 02 9 034E 01 45 2 562 03 2 534E 02 3 124 02 47 2 350 01 6 780 02 29 034 01 46 2 721 03 2 9 02 3 233 02 47 2 885 03 2 003 02 6 0 4 2 716 03 3 327 02 0 0 49 2 553 03 3 217 02 0 0 TABLE 8 SCALES FOR PLOT OUTPUT 50 2 394 03 3 107 02 6 0 51 2 242 03 2 998 02 0 0 NO PLOTS SPECIFIEO FOR PROBLEM 40005 52 2 095 03 2 888 02 0 0 53 1 953 03 779 02 0 0 54 2 00 01 1 817 03 2 686 02 0 0 55 2 750 01 1 684 03 2 629 02 0 0 69 TEXAS HIGHWAY DEPARTMENT BRIDGE DIVISION SHEE 2 2 Kw 2 CARDS PR BENT CAP PROGRAM ceps TIFICAT PROBLEM 2 o som COUNTY PROB 40006 DISTRICT INITIALS DESCRIPTION OF PROBLEM LETTERS AND OR NUMBERS 2052390 p asin 1 11 111 11 11 71777 1771777177 50988 NOTE USE ONLY THESE 012 3282487753 TABLE T NTER 1 CLEAR OF MAXIMUM VALUES
32. 22 0 0 0 0 8 080 01 37 37 0 0 0 0 0 8 080 01 1 52 se 0 0 0 8 080 01 67 67 9 4 0 0 o1 20 0 0 0 3 980 09 0 0 74 5 000 01 20 3 51 1 3 LOADED 5 Tables 1 thru 4 list the input data as punched on the cards This data should be reviewed to assure correct input 8 9 1e 9 TABLE 44 DEAD LOAD DEFLECTIONS STA 0 015 tFT 5 060E 9 0 5 000 1 000 1 500 2 000 2 500 3 009 3 500 4 000E 4 500 5 5 550EF 6 000 64509 7 099 7 599 8 000 8 500 9 090 9 500E 1 600 1 050 1 100 1 150 1 200 1 2506 1 300 1 350 1 500 1 50 1 500 1 550 1 600 1 650 1 700 1 759 1 800 1 850 900 1 959 2 090 2 050 2 100 24150E 2 200 2 250 2 300 2 350 2 amp 00 2 450 2 500 2 550 2 6006 2 550E 2 T00E 2 750 x 01 91 00 99 00 09 00 00 00 00 90 o0 09 00 01 91 91 91 01 01 01 01 01 91 01 91 91 04 1 01 01 01 01 1 51 ot 01 0 91 91 91 61 01 01 03 or 1 DEFLECTION 0 6 2 7230 93 2 4890 03 2 2550 03 72 0210 03 1 7870 03 1 5540 03 1 3200 03 1 0940 93 8 7850 04 6 7940 04 9980 0 3 4290 04 2 114 04 1 0770 04 3 5870 05 0 0 2030 96 4 2250 95 71 0790 04 1 95 0 0 2 9150 0 0920 0
33. 285 1 491 1 697 1 584 1 471 1 359 1 249 1 168 1 089 1 010 9 327 8 560 7 803 7 056 6 318 5 589E 4 8 0 4 160 3 460 2 T69E 2 087 1 415 7 523 3 922 4 152 0 0 0 9 07 3 37 3 58 3 738 3 889 4 040 191 7 3 2 93 6 79 4 945E 5 096 5 247 5 398 5 549 8 045 1 054 182 183 184 185 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 TABLE 7 MAXIMUM SUPPORT REACTIONS STA 22 62 96 128 188 1 138E 02 1 144 02 1 150 02 1 156 02 1 163E 02 1 169 02 1 175 02 1 181 02 1 188 0 1 194 0 1 200 0 1 206E 0 1 213 0 1 219 0 1 225 0 1 2316 0 1 238E 0 1 244 02 1 250 02 1 256 02 1 263 02 1 269 02 1 275 02 1 281 02 1 288 02 1 294 02 1 300 02 DIST X FT 1 375 3 875E 6 000 8 0006 1 175 01 01 1 096E 02 4 234 01 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 130 12 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 MAX REACT K 5 3 3 02 6 363 02 6 542 02 5 134 02 1 810 02 TABLE SCALES FOR PLOT OUTPUT NO PLOTS SPECIFIED FOR PROBLEM 40007 0 0 2 075 7 637 1 329 1 904 2 89 3 083E 2 681 2 289 1 906 1 533 1 169 8 147 4 6
34. 3 0 0 3 0 0 oe 54 9 786 02 0 0 0 0 8 362 02 3 56 1 0 0 1 8 382 02 3 56 2 0 0 2 9 0 3 0 0 3 9 0 oe oe SHEAR K AT DEAD LD LANE POSITIVE LOAD AT LANE NEGATIVE LOAD AT STA EFFECT ORDER MAXIMUM LANE STA ORDER MAXIMUM LANE STA 30 1 272 02 0 0 0 1 397 02 1 1 0 0 1 1 397 02 1 E 2 0 0 2 0 0 3 0 0 3 0 0 oe oe 35 1 471 02 0 0 0 0 1 397E 02 1 1 0 0 1 1 397E 02 1 6 2 0 0 2 2 096E 01 2 3 3 0 0 3 0 0 oe 49 1 471 02 9 1 397 02 3 5 0 9 89 56 2 800 01 0 0 1 5 4E 03 2 572 02 TABLE 6 ENVELOPES OF MAXIMUM VALUES 7 2 850 01 0 0 1 427 93 2 481E 02 58 2 900 01 0 0 1 306 03 2 371 02 STA DIST X MAX MOM MAX MOM MAX SHEAR MAX SHEAR 59 2 950 01 0 0 1 190 3 2 262 02 FT K 60 3 000 01 0 0 1 089 03 2 153 02 5 3 050 01 0 0 9 746 02 2 044 02 1 5 000 01 0 0 0 0 0 0 0 0 e 3 100 01 9 0 6 752 02 1 935 02 0 0 0 0 0 0 0 0 63 3 150 01 0 0 gt 7 612 02 1 826 02 1 0 0 0 0 0 0 64 3 2006 01 0 0 6 926 02 1 717 02 2 0 0 0 0 0 0 65 3 2506 01 0 0 6 095 02 1 608 02 0 0 0 0 0 0 66 3 300 01 0 0 5 318 02 1 499 02 4 0 0 0 6 323 11 4 215 12 67 3 350 01 0 0 4 596 02 1 391 02 5 6 323E 11 4 215 12 0 0 1 595 01 66 3 400 01 0 0 3 928 02 1 282 02 6 0 0 1 595 01 0 0 3 382E 01 69 3 450E 01 0 0 3 314E 02 1 173 02 7 0 0 3 362 01 0
35. 3 3 0 0 oe oe STA DIST x MAX MOM WAX SHEAR SHEAR FT FT K FT K 54 1 088 02 0 0 0 0 0 1 5 000 01 6 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 5 000 01 0 0 0 0 0 0 0 0 3 0 0 1 000 00 9 0 0 0 0 0 oe oe 3 1 500 00 9 0 0 0 0 0 4 2 000 00 0 0 0 0 6 323 11 4 215 12 REACTION 5 2 500 00 6 323E 11 4 215E 12 0 0 1 595 01 AT DEAD LD LANE POSITIVE LOAD AT LANE NEGATIVE LOAD aT 6 3 000 00 0 0 1 595 01 0 0 3 382 01 STA EFFECT ORDER MAXIMUM LANE STA ORDER MAXIMUM LANE STA T 3 500E 00 0 0 3 382 01 0 0 3 764E 01 6 4 000 00 0 0 5 359 01 0 0 4 5321 01 37 1 835 02 9 500 00 0 0 7 703E 01 0 0 5 228E 01 0 0 0 0 0 0 10 5 000 00 0 0 1 059 02 0 0 6 311 01 1 0 0 1 0 0 11 5 500 00 0 0 1 401 02 0 0 7 394 01 0 0 2 0 0 12 6 000 00 0 0 1 798 02 0 0 8 478 01 3 0 0 3 0 0 13 6 500 00 0 0 2 2 9 02 0 0 9 562 01 oe oe 14 7 000 00 0 0 2 754 02 0 0 1 065 02 15 7 500 00 0 0 3 314 02 0 0 1 13 02 47 1 370 02 16 8 000 00 0 0 3 928 02 0 0 1 282 02 0 90 0 0 0 17 8 500 00 0 0 4 596 02 0 0 1 391 02 1 0 0 1 0 0 16 9 000 00 0 0 5 318 02 0 0 1 499 02 2 0 0 2 0 0 19 9 500 00 0 0 6 095 02 0 0 1 608E 02 0 0 3 0 0 20 1 000 01 0 0 6 926E 02 0 0 9717 02 oe oe 21 1 050 01 0 0 812 02 0 0 1 826 02 22 1 100 01 0 0 8 752 02 0 0 1 935 02 23 1 150 01 0 0 9
36. 3 6070 03 3 9810 03 4 3540 03 4 7230 03 5 0860 03 5 390 03 5 7810 03 6 1090 03 76 4210 03 6 7140 03 6 9870 03 7 2400 03 7 4720 03 7 6810 03 7 8660 03 8 0280 03 8 1650 03 8 2760 03 8 3610 03 8 4190 03 8 4500 03 8 4520 03 8 4260 03 8 3710 03 2870 03 8 1720 03 8 0290 03 7 8570 03 7 6590 03 7 4340 03 7 1840 03 6 9110 03 6 6150 03 6 2970 03 5 9600 03 5 6030 03 5 2280 03 74 8380 03 320 03 7 0130 03 3 5820 03 3 1400 03 18 183 184 185 186 167 188 189 190 191 192 193 194 196 197 198 199 200 201 202 203 20 205 206 207 208 1 138 1 144 1 150 1 156 1 163 1 169 1 175 1 181 1 188E 1 194 1 200 1 206 1 213E 1 219 1 225 1 231 1 238 1 244 1 250 1 256 1 263 1 269 1 275 1 2816 1 288E 1 294 1 300 2 6910 03 2 2370 03 71 7820 03 1 3270 03 8 7640 0 4 3310 04 0 0 4 1980 04 8 2790 0 1 2260 03 1 6160 03 1 9990 03 2 3780 03 2 7520 93 3 1250 03 3 4970 03 3 8690 03 4 2410 03 6130 03 4 9850 03 6 0 0 0 0 0 0 0 0 0 0 0 0 0 This is four pages of output 98 PROB 40007 LKW EXAMPLE 5 SPECIAL CONDITIONS DEMONSTRATION PART 1 PART TO LEFT OF OPEN SLAB JOINT TABLE 5 MULTI LANE LOADING SUMMARY MOMENT FT K AT STA 22 29 4 59 62 74 DEAD Lo EFFECT 7 639 7 483 3 144 5 1 5 9 111 1 1
37. 467 9 5 979 3 531 0 0 0 0 1 413 8 346 8 346 7 850 5 979 3 531 0 0 0 0 2 487 2 48 0 0 6 0 91 61 01 NEGATIVE MAXIMUM 1 077 1 077 0 0 0 0 9 415 LOAD LANE STA 1 3 1 3 40 48 0 1 1 6 3 46 2 26 0 14 1 6 51 51 LOAD AT LANE STA 1 3 1 3 0 40 05 1 6 264 01 1 6 1 5 560E 00 3 46 2 1 560 01 26 2 0 0 TABLE 6 ENVELOPES OF MAXIMUM VALUES 3 0 0 2 0 5 DIST MAX MOM MAX MOM MAX SHEAR MAX SHEAR FT K FT K 35 1 068 02 0 0 0 0 5 595 01 0 14 5 77 01 0 0 0 0 0 0 0 0 1 6 6 3 3 521 01 1 6 0 0 0 9 0 0 0 0 0 2 0 0 2 050 01 26 1 5 774 01 0 0 0 0 0 0 0 0 0 0 3 5 560 09 46 1 155 00 0 0 0 0 9 859 13 2 8875 12 oe oe 3 1 732E 00 1 138 12 3 334 12 0 0 1 637 01 4 2 309 00 0 0 1 890 01 0 0 6 547 01 39 1 068 02 5 2 88 7 00 7 560 01 0 0 1 309 00 0 5 595 01 e 40 0 0 0 6 3 464E 00 1 701 00 0 0 1 964 00 1 3 521 01 3 48 1 0 0 T 4 041E 00 0 0 3 024 00 0 0 1 175 02 2 2 050 01 2 2 2 0 0 8 619 00 0 0 1 374 02 0 0 2 331 02 3 5 560 00 1 6 3 0 0 9 5219 00 0 0 2 T E 02 0 0 2 33 02 oe 10 5 774 00 0 0 4 07 02 0 0 2 3 02 11 6 351 00 0 0 5 428 02 9 192 00 3 946 01 61 9 926 01 12 6 928 00 0 0 4 529 02 157825 02 0 0 0 9 41
38. 61 61 61 61 61 01 01 01 01 61 01 61 01 01 01 01 01 01 01 01 01 01 01 01 2 3690 03 2 7440 03 73 1380 03 3 5500 03 3 9790 03 4 4240 03 8840 03 5 3580 03 5 8450 03 6 3450 03 6 8560 03 7 3780 03 7 9090 03 8 4490 03 8 9970 03 9 5520 03 1 0110 02 1 0680 02 1 1250 02 1 1820 02 1 2400 02 1 2980 02 1 3560 02 1 4140 02 1 4720 02 0 0 0 0 0 0 0 0 0 0 Since the movable load magnitude has been set to zero algebraically the results for the random and multilane loading summary are also zero This means the envelopes will contain only fixed load results PROB CONTD 40006 TABLE 5 MULTI LANE LOADING SUMMARY LKW EXAMPLE 4 PART TWO APPLICATION OF SIDEWALK OVERLOAD MOMENT FT K AT STA 30 37 47 54 SHEAR 5 30 35 49 DEAD LD EFFECT 21 02 1 276 03 1 178 03 7 63 02 DEAD 10 1 159 02 1 287E 02 OROER euno POSITIVE MAXIMUM 0 0 0 0 0 0 0 9 POSITIVE MAXIMUM JUNE 74 KIP FT UNITS CRITICAL NUMBER OF LANE LOADS LOAD AT LANE LANE STA ORDER LOAD AT LANE STA ORDER euno LOAD AT MAXIMUM LANE STA 0 0 0 0 0 0 6 0 NEGATIVE LOAD AT MAXIMUM LANE STA L 1 1 0 0 2 2 0 0 TABLE 6 ENVELOPES OF MAXIMUM VALUES
39. 88 02 53 2 650E 01 0 0 1 953 03 2 779 02 54 2 700 01 0 0 1 817 03 2 686 02 55 2 750E 01 0 0 1 684 03 2 629 02 vL 2 800 2 850 2 900 2 950 3 000 3 050 3 100 3 150E 3 200E 3 250 3 300 3 350E 3 400 3 450 3 500 3 550E 3 600 3 650E 3 700 3 750 3 800 3 850 3 900 3 950 4 000 050 100 150 4 200 4 250E 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 8 431 12 0 0 0 0 0 0 0 0 0 0 0 0 1 554E 03 1 427 03 1 306 03 1 190 03 1 080 03 9 746 02 8 752 02 7 612 02 6 926 02 6 095 02 5 318 02 4 596 02 3 928 02 3 314 02 2 754 02 2 249E 02 1 798 02 1 401E 02 1 059 02 7 703E 01 5 359 01 3 382 01 1 595 01 1 686 11 0 0 0 0 0 0 0 0 0 0 0 0 2 572 02 2 481 02 2 371 02 2 262 02 2 153 02 2 044 02 1 935 62 1 826 02 1 717 02 1 608 02 1 499 02 1 391 02 1 282 02 1 173 02 1 065 02 9 562 01 8 476 01 7T 394E 01 6 311 01 5 228 01 4 5321 01 3 764 01 3 382 01 1 595 01 1 686 11 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 8 431 12 0 0 0 0 0 0 0 0 0 0 TABLE 7 MAXIMUM SUPPORT REACTIONS STA DIST X MAX REACT MAX RE
40. TU iT Hic i ii 42 EXAMPLE 3 SKEWED TRANSITION BENT PROBS 40003 AND 40004 Several methods have been used to analyze transition bents The one used in this Example is suggested since it is the simplest yet discovered The relative precision is more than enough for bent cap design This method requires that two problems be run The first problem is run as if the bent were being designed for appropriate live loadings with the number and location of beams from one Span Th nvelopes are then held and stored in the second problem which is then run for the live loading with the number and location of beams for the other span The envelopes of the second problem then consist of the controlling maximums from both problems The actual stringer dead loads and the live loads are all input in the first problem Referring to the input sheet for problem 40003 Table 1 shows that Tables 2 and 3 have been retained from the previous problem for the five beam 34 foot roadway section No cards are used in Tables 2 and 3 since they have both been held Since a normalized bent is being input a different skew angle could have been used if desired however the same skew angle has been kept as in Example 2 43 Table 4 shows all the loads input to the cap and to demon strate that no particular order of entry is req
41. design loadings for dead load live load and sidewalk live load In part two Problem 40006 the effect of a truck displaced out onto the sidewalk is investigated The envelopes and Tables 1 2 3 and 4 are all held and Table 4 adjusted to the new loading by algebraic addition of additional data Although only loads have been changed stiffnesses can also be modified in this way The first three cards are entered in Table 4 to cancel the sidewalk and vehicular live loads being equal in magnitude and opposite in direction and at the same stations The last two cards are the ultimate live load lane reaction without impact and at 150 of allowable stresses load factor reduced by two thirds in accordance with AASHTO 1973 Article 1 3 2 B Since envelopes have been held from the design load conditions the final envelopes of this problem will then be expanded to include this overload condition for stations where and if it controls The outside wheel on the sidewalk has been moved in to the end of cap but the other wheel has been left in the position it would occupy when the outside wheel is one foot from face of rail 61 File 1284 V TEXAS DESIGN FOR HIGHWAY DEPARTMENT Example gt Simele en One cetmn Gent BRIDGE DIVISION Fquivelent Columa ef same gross Area Ag 2 60 546 Support locations fe approximate the single column Inpu
42. gt 18 19110 E Q ha SIDEWALK amp SLAB MOVABLE 212514145 64 64 mimi mim 41 7 FIXED TABLE 4 PROBLEM 47 File 29 2 8v TABLE DEAO LOAD DEFLECTIONS PROGRAM 17 DECK THO MATLOCK WBIsFEsJJP REVISION DATE 9 12 JUM 68 STA DIST X OEFLECTION FT FT PROB 40003 EXAMPLE NO 3 SKEWED TRANSITION BENT PART 1 JUME 74 1 5 774 01 0 0 USE STD BENT BGP T 34HS 30 DEG KIP FT UNITS 0 0 0 0 0 1 5 774 01 0 0 1 155 00 8 4890 04 TABLE 1 PROGRAM CONTROL DATA 3 1 732 00 7 2610 0 ENVELOPES TABLE NUMBER 4 2 309 00 6 0330 0 OF MAXIMUMS 2 3 4 5 2 887 00 74 8060 04 OPTIONS TO HOLD IFs1 FROM PRECEDING PROB 0 1 1 0 6 3 464 00 lt 3 5810 04 NUMBER ADDITIONAL CARDS FOR CURRENT PROB 0 0 13 7 4 041E 00 2 3620 0 4 619 00 71 1530 0 OPTION IF 21 TO CLEAR ENVELOPES BEFORE LANE LOADINGS 5 196 00 1 9530 05 OPTION IFz1 TO PLOT DESIGN VARIABLE ENVELOPES 10 5 774 00 2 7030 05 11 6 351 00 0 0 OPTION IFz 1 TO OMIT OUTPUT TABLE 5 12 6 928E 00 1 2510 04 13 7 506 00 3 2880 0 ANGLE SKEW DEGREES 3 000 01 14 8 083 00 5 9220 0 15 6 660 00 8 9610 04 16 9 238 00 1 2220 03 TABLE 2 5 5 17 9 815 00 1 5500 03 18 1 039 01 1 8620 03 USING DATA FROM THE PREVIOUS PROBLEM 19 1 097
43. loads required by use of fractional stationing Stringer loads have been entered in the usual manner except that they are stringer weight only Cards 43 thru 46 show fixed loads applied to the deck slab including the weight of the deck slabs These loads are distributed to the stringers and applied thru them to the cap Distributed loads entered in this data block are not adjusted for skew 79 Table 4 for Problem 40008 shows only the changes from the conditions in part 1 since Table 4 from part one has been held The first four cards cancel loads on the left roadway and the last two cards add loads on the right roadway 80 18 97700 Overall MO4 340 n 0 _ 92 725 Rdwy _ e 5 4 Structure Oveh ecl Meal 5 H 906 06 NORMALIZED BENT x 2 xm oe ol x Input Data Calculations Inpoct lt o Use 6 Increment 5 S Tatal of Increments 3207 Lana g lengths LLR 0 640 700 18 lt 62 8 ze Angle e pT 2 13059 x 1 256 x 62 85 177 5 4177 25 20 8 8T4 719a A Loads Gm 31 9 x 0 515 70 0 46 9 Cui Cap Data 74 Sieb 0 6458 150 7 2 15555 O SOx 70 9 Left 2 15 x6 783 4 4 097572 2 _ 2000 146 6295
44. may be used as the basis for the normalized bent and more importantly when the program uses this calculated skew angle the resulting program calculations will be based on the actual bent dimensions The 15 radial dimension is available from the superstructure require ments and the skewed distance is available from the frame output data in the geometry program or other calculations One capability which has not been demonstrated should be mentioned It is not necessary for the defined traffic lanes to be contiguous i e the movable load may be excluded from medians gore areas etc during multi lane loading by proper choice of lane boundaries This will not by itself exclude the random lane load To exclude thes ffects it will be necessary to either run two problems with the start and stop stations properly arranged or to exercise the clear envelopes option in Table 1 which will remove all effects of the random lane load When using two or more increments per step for movable loads the user should make sure that the lane boundaries will permit the stepping to be done without skipping lanes Summary The examples which follow this summary demonstrate the use of the Bent Cap Program for several different design situations covering most of the usually encountered structural arrangements The bents used for demonstration have all been of concrete con
45. of the stringer input station TABLE 7 gt MAXIMUM SUPPORT REACTIONS STA DIST x 0 6 2 22 82 2 0 5 035E 51 1 355 02 0 9 1 350E 02 0 9 1 344E 02 0 9 1 338 02 5 4 1 332 02 0 9 1 326 9 0 6 1 320 6 0 8 1 315E c2 9 8 1 310 0 6 615 OL 33225 0 8 6254 01 4 219 01 1 031E 81 1 374E 12 2 74BE 12 08 0 2 0 9 9 90 9 0 9 Ignore numberz of th s type They are computed zeroes or calculation remnants and may be neglected MAR one REACT FT K 1 6 5965 00 3 513 9 0 67 2 8504 0 3 513 02 9 0 TABLE 8 SCALES FOR PLOT OUTPUT DISTANCE 20 INCHES 58 4 INCHES 1004 SHEAR INCHES 400 1 tah III 1 H S 30 EXAMP LI GI NO 2 A SK I BENT PROBLEM 40002 The Bent Cap Program calculates a skewed bent by working from a normal bent The original concept was to be able to calculate a Skewed bent from a normal bent and keep the columns lined up together For situations where only the skewed bent dimensions are available it is then necessary to develop an artificial un skewed or normalized bent to properly input the data To do this the skewed cap dimensions are projected on to a line at right angles to the road
46. open joint Part one Problem 40007 is used to calculate the effects of most dead and fixed position loads and the effects of the live load placed on the deck slab between the left face of rail station 9 and the open joint which must also be used as a lane boundary The envelopes of maximums are retained for use in part two Problem 40008 and the effects of the remaining dead and 77 fixed position loads and of the live load between the open joint and the right face of rail station 201 are used to expand the beld over envelopes from part one to develop the final envelopes Hinges or pins may be used at any location provided that the resulting structure is stable and that no loads are placed directly on the hinge For a typical slab and girder bridge this means that cap hinges should not be specified at either stringer locations or support column locations Also the cap weight should be zero at the hinge Gaps may be located anywhere provided no loads are placed directly in them and the structure is stable For bents supporting slab type superstructures the program applies the live load station by station directly to the consequently direct use of hinges or gaps is precluded They may be used however by detouring around them with one or more extra problems as is done here to detour around the open joint Referring now to the input for part one Problem 40007 Table 1 is input in th
47. the plots has been improved in CAP 18 w input forms with brief instructions have been made for 18 The forms are shown on the following pages Multiple prob lems in a problem series may require only changes in Table 1 and Table 4 in which case the second page of the form with Table 3 is omitted The forms may be used directly or followed as a guide for coding on standard 80 column blank forms A five page set of user guide instructions for CAP 18 follows the forms and may be used as an easy reference BENT PROGRAM USER MANUAL by Leo K Willis BRIDGE DIVISION TEXAS HIGHWAY DEPARTMENT January 1975 PREFACE This manual presents a user oriented method of analysis par ticularly suited to highway bridge bent caps utilizing a computer program which has been in use by bridge designers of the Texas Highway Department for nearly eight years The original work documented in Ref 1 has detailed information on the solution techniques but the idealized example problem and instructions have been found difficult to apply to actual bridge bent caps Although this manual is written for users unfamiliar with the Bent Cap Program experienced users will also find it useful The input instructions are improved over those previously used and include much of th xperience benefits gained through ex tensive use The va
48. to numerical errors in loads etc The above restrictions may often be avoided by using two or more problems as demonstrated in some of the examples Any 14 number of programs may be stacked and the envelopes accumulated or expanded so that the last set of envelopes will contain the controlling maximum for each station If moment or shear control points are omitted only the random lane loading is included in the Table 6 envelopes of maximum The program maximizes results for only those stations Specified as control points Each support is automatically a control point although it will not be listed in the Table 5 Multi Lane summary unless it has also been input as a moment control point The Table 6 envelopes include values which are maximum at only the specified control points The remainder of the stations in Table 6 are probably maximum if the control points have been judiciously selected They are not individually maximized but are maximum only as a result of the adjacent control points being maximized When using the bent cap program to design bents for curved Skewed structures the question often arises as to what to use for a Skew angle It is suggested that the skew angle be calculated as the angle whose cosine is the radial distance out to out of beams divided by the distance along the skew out to out of beams Then the radial roadway dimensions
49. 0 0 0 0 0 0 0 0 0 0 0 0 0 2 128 11 0 0 0 0 6 097 02 9 472 02 1 086E 03 1 224 03 1 471 03 1 718 03 1 967 03 1 865 03 1 765 03 1 665 03 1 567 03 1 468 03 1 371 03 1 291 03 1 213 03 1 135 03 1 058 03 9 816 02 9 061 02 019 02 965 02 958 02 8 938 02 6 926 02 8 921 02 6 923 02 8 933E 02 8 950 02 975 02 9 006 02 9 045 02 9 092E 02 9 145 02 9 268 02 1 028E 03 1 139 03 1 233 03 1 337 03 1 441 03 1 546 03 1 727 03 1 521 03 1 316 03 1 112 03 9 082 02 7 054 02 5 034 02 3 021 02 1 016 02 3 300 00 1 467 00 3 667 01 4 713 12 1 886 00 0 0 0 0 0 9 0 9 0 9 0 0 0 0 7 343E 01 3 285 02 3 273 02 3 262 02 3 250 02 3 238 02 3 226 02 3 215 02 2 391 02 8 008 01 2 347 00 1 173E 00 2 933 01 3 770 12 0 0 0 0 0 0 0 0 0 0 1 703 11 0 0 0 0 0 0 2 19 02 2 206 02 2 218 02 3 085 02 027 02 4 039 02 1 224E 02 0 0 0 0 0 0 0 0 9 0 0 0 0 0 0 0 0 0 0 0 0 9 0 0 7 210 01 T 32BE 01 7 5 01 T 562E 01 7 680E 01 7 797 01 7 914 01 8 032 0 8 149 01 266 01 B 384E 01 8 501E 01 8 618E 01 7 8 736E 01 1 867E 02 3 175 02 3 187 02 3 199 02 3 210 02 3 222 02 3 23 02 3 575 01 9 0 0 0 0 0 0 0
50. 0 1 621 02 oe 35 2 021 01 0 0 3 665 02 0 0 1 628 02 36 2 078 01 9 0 4 588 02 0 0 1 635 02 37 2 688 02 37 2 1366 01 0 0 5 522 02 2 327 01 2 32TE 01 0 1 549 02 2 27 0 0 0 38 2 19 01 0 0 4 607 02 1 635 02 1 1 549 02 1 0 0 39 2 252 01 0 0 3 696 02 1 628 02 4 554 01 1 6 2 0 0 40 2 309 01 0 0 2 789 02 1 621E 02 3 4 554 01 3 48 3 0 0 1 2 367E 01 0 0 2 041 02 1 615 02 3 oe 42 2 25 01 0 0 1 379 02 1 608 02 43 2 483 01 8 946E 01 7 214 01 1 254 02 63 2 2796 02 44 2 540E 01 1 415 02 690 01 8 993E 01 0 1 632 02 3 51 0 9 415 00 0 14 45 2 598 01 1 932 02 2 20 01 8 927 01 1 1 632 02 3 5 1 5 560 09 1 6 46 2 656 01 2 445 02 0 0 8 862 01 1 560 01 2 28 0 0 47 2 714 01 2 955 02 0 0 8 796 01 3 0 0 3 0 0 48 2 771 01 3 460E 02 0 0 8 731E 01 2e 0 49 2 829E 01 3 9626 02 0 0 8 665 01 50 2 86 01 4 460 02 0 0 8 600 01 51 2 944E 01 4 955 02 0 0 8 534 01 52 3 002 01 5 445 02 0 0 1 190 01 1 752 01 53 3 060 01 4 953 02 0 0 0 0 1 027 02 54 3 118 01 4 458 02 0 0 0 0 1 033 02 55 3 175 01 3 9596 0 0 0 0 1 388 02 IS 56 57 58 59 60 61 63 65 66 68 69 71 72 T3 7 75 3 233 3 291 3 349 3 406 3 464 3 522 3 580 3 637 3 695 3 753 3 811 3 868E 3 926 3 98 4 041 4 099 4 157 4 215 4 272 4 330 3
51. 0 3 346 01 63 3 0 0 3 1 3 624E 01 2 38 1 3 048 01 3 66 4 0 0 2 1 342 01 1 18 2 558 01 4 97 oe oe 3 0 0 6 111 00 1 9 4 0 0 4 0 0 94 1 620 02 0 3 803 01 34 0 1 125 02 78 1 3 624E 01 2 38 1 1 098 02 75 2 1 342 01 1 18 5 040E 01 4 95 0 0 3 6 712 00 1 9 4 0 0 4 0 0 98 1 977 02 0 1 194 02 94 0 1 1 193 02 4 95 1 1 031 01 3 75 2 3 0 0 3 0 0 4 0 0 4 0 0 oe REACTION K AT DEAD LD LANE POSITIVE LOAD AT LANE NEGATIVE LOAD AT STA EFFECT ORDER MAXIMUM LANE STA OROER MAXIMUM LANE STA 3 065 02 0 1 965E 02 1 9 0 1 1 965 02 1 9 1 2 3 131 01 2 38 2 3 0 9 3 4 9 0 4 0 62 3 260E 02 0 1 890 02 p 42 0 2 573 01 1 9 1 1 890 02 2 42 1 2 573 01 1 9 1 044 02 3 66 gt 2 556 01 4 97 3 5 145 01 1 18 3 0 0 4 4 6 4 0 0 96 3 644E 0 0 1 6336 9 90 0 3 803 01 0 1 1 697 02 95 1 3 624 01 39 1 201 02 3 75 gt 1 342 01 1 16 3 T11E 00 1 9 3 0 0 9 0 4 0 0 88 TABLE 6 ENVELOPES OF MAXIMUM VALUES STA DIST x 6 250 01 6 250 01 1 250 00 1 875 00 2 500 00 3 1256 00 3 750 00 4 375 00 5 000 00 5 625 00 6 250 00 6 875 00 7 500 00 8 125 00 8 750 00 9 375 00 1 000 01 1 063 01 1 125 01 1 188 01 1 250 01 1 313 01 1 375 01 1 438E 01 1 500 01 1 563 01 1 625 01 1 666 01 1 750 01 1 813E 0
52. 0 0 0 0 1 6 250 01 0 0 0 0 0 0 188 4 100 02 1 250 00 0 0 0 0 0 0 0 2 041E 02 0 187 0 0 0 3 1 875 00 0 0 0 0 0 0 1 1 864E 02 3 181 1 0 0 4 2 500 00 0 0 0 0 0 0 2 1 125 02 2 156 2 0 0 5 3 125 00 0 0 0 0 0 0 3 4 141 01 1 132 3 0 0 6 3 750 00 0 0 0 0 0 0 oe T 4 375 00 0 0 0 0 0 0 8 5 000 00 0 0 0 0 0 0 9 5 625 00 0 0 0 0 1 541 12 1 013 11 10 6 250 00 9 426E 12 1 267 11 0 0 2 933 01 11 6 875 00 0 0 3 667 01 9 9 1 173 00 12 7 500 00 0 0 21 467 00 0 0 2 347 00 13 86 125 00 0 0 3 300 00 0 0 8 885 01 14 750 00 0 0 1 125 02 0 0 2 119E 02 15 9 375 00 0 0 2 682 02 0 0 2 497E 02 16 1 000 01 0 0 246 02 0 0 2 509 02 17 1 063E 01 0 0 5 818 02 0 0 2 520E 02 18 1 125 01 0 0 7 397 02 0 0 2 5326 02 19 1 188 01 0 0 8 983 02 0 0 2 544E 02 20 1 250 01 0 0 1 058 03 0 0 2 556 02 21 1 313 01 0 0 1 218 03 0 0 2 567E 02 1 375E 01 0 0 1 379 03 5 956 01 6 422E 00 23 1 438 01 0 0 1 226E 03 2 970 02 0 0 24 1 5006 01 0 0 1 074E 03 2 958 02 0 0 25 1 563 01 0 0 9 224E 02 2 947 02 0 9 26 1 625 01 0 0 7 718 02 2 935 02 0 0 1 688 01 0 9 6 219E 02 2 923 02 0 0 28 1 750 01 1 551 02 4 728 02 2 911E 02 0 0 1 813 01 3 367 02 3 244E 02 1 791 02 0 0 30 1 875 01 3 719 02 2 815 02 8 882E 01 0 0 31 1 938E 01 4 064 02 2 392 02 8 765 01 0 0 32 2 000 01 4 401 02 1 977 02 8 6
53. 01 1 700 01 1 750 01 1 800 01 1 850 01 1 900 01 1 950 01 2 000 01 2 050E 01 2 1006 01 2 150 01 2 2006 01 2 250 01 2 300 01 2 350 01 2 00 01 2 4506 01 2 5006 01 2 550 01 2 6006 01 2 650 01 TOOE 01 2 750 01 DEFLECTION FT 0 0 0 0 0 0 0 0 0 0 1 5850 02 1 5220 02 1 590 02 1 3960 02 1 3330 02 1 2700 02 1 2080 02 1 1460 02 0850 02 1 0240 02 9 6370 03 9 0430 03 8 4590 03 7 8840 03 1 3200 93 6 7680 03 6 2290 03 5 7040 03 5 1940 03 6990 03 7 4 2210 03 3 7620 03 73 3210 03 2 9000 03 5990 03 2 1210 03 1 7650 03 1 4340 03 1 1270 03 8 4570 04 5 9150 04 3 6520 0 1 6770 04 0 0 1 3610 04 2 4110 04 3 1530 04 3 5920 0 3 7310 0 3 5730 0 3 1190 04 2 3720 04 1 3320 04 0 0 1 6230 0 3 5210 0 5 6850 0 8 1030 0 1 0770 03 1 3670 03 1 6800 03 2 0140 03 Since all dead load deflections for part two are less than those for part 1 no larger maximums will be created for the envelopes TL 56 57 58 59 60 1 62 6 65 66 67 68 69 70 71 72 73 7 75 76 77 78 79 80 81 83 85 2 800 2 850 2 900 2 950 3 000 3 050 3 100 3 150 3 200 3 250 3 300 3 350 3 400 3 450 3 500 3 550 3 600 3 650E 3 700 3 750 3 800 3 850 3 900 3 950 4 000 4 050 4 100E 4 150 4 200 4 250 01 01 01 01 01 01
54. 0620 03 47 2 714 01 2 2730 03 8 2 TTIE 01 2 60 03 9 2 829 01 2 5750 03 50 2 88 01 2 6540 03 51 2 944E 01 2 6770 03 52 3 002E 01 2 6390 03 53 3 060 01 2 5340 03 54 3 118 01 2 3660 03 55 3 175 01 2 1410 03 6v 3 233 3 291 3 349 3 406 3 464 3 522 3 580E 3 637 3 695 3 753 3 811 3 868 3 926 3 984E 4 041 4 099 4e1 STE 215 272 4 330 61 01 1 8620 03 1 5500 03 1 2220 03 8 9610 04 5 9220 04 3 2880 0 1 2510 04 0 0 2 7030 05 1 9530 05 1 1530 04 2 3620 04 3 5810 04 74 8060 04 6 0330 04 7 2610 0 8 4890 04 0 0 0 0 PROB CONTD 40003 TABLE 5 MULTI LANE LOADING SUMMARY LKW EXAMPLE NO 3 SKEWED TRANSITION BENT PART 1 USE STD BENT BGP T 34HS 30 DEG MOMENT FT K AT DEAD 10 STA EFFECT 11 2 941 02 2 012 02 37 3 313E 02 52 2 012E o2 63 2 941 02 SHEAR DEAD LD 5 EFFECT 9 1 260 02 13 9 9266 01 ORDER POSITIVE LOAD AT MAXIMUM LANE STA 0 0 0 0 0 0 0 0 3 433E 02 6 13 2 215 02 1 6 9 905 01 2 26 0 0 3 433E 02 51 2 215 02 3 46 9 905 01 28 0 0 POSITIVE LOAD AT MAXIMUM LANE STA 6 558 01 0 10 CRITICAL ORDER owN o owN o nN o ouno LANE ORDER 2 JUNE T4 KIP FT UNITS NUMBER OF LANE LOADS NEGATIVE MAXIMUM 2 87 2
55. 1 1 675 01 1 938 01 2 000E 01 2 063E 01 2 125 01 2 188E 01 2 250 01 2 313 01 2 375 01 438E 01 2 500 01 2 563E 01 2 625 01 2 688 01 2 750 01 2 813E 01 2 875 01 2 936 61 3 000 01 3 063E 01 3 125 01 3 188 01 3 250 01 3 313 01 3 375 01 3 438E 01 FT K 0 0 9 426E 12 0 0 0 0 0 0 0 0 9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 551 3 367 3 719 06 401 4 731 5 054 5 369 5 677 5 978 6 271 6 557 6 836 7 107 7 371E 7 628 7 877 5 583 5 281 3 972 2 655 1 331 5 0 0 0 0 0 0 0 0 0 0 0 MOM FT K 0 0 0 0 0 0 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 267 11 3 667E 01 1 467 3 300 1 125 2 682E 4 246 5 818 7 397 B 983E 1 058 1 218 1 379 1 226 1 074 9 224 7 718 6 219 4 728 3 244E 2 814 2 392 1 977 1 569 1 169 7 761 3 905 1 214 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 9 0 0 0 0 0 0 0 1 331 2 670 016 5 369 6 729 00 00 02 SHEAR 7 541 12 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 5 956 2 970 2 958 2 94 7 2 935 2 923 2 911 1 791 8 882 8 765 8 648 8 530 8 413 8 296 8 178 8 061 7 944 7 826 7 709 7 592 MAX SHEAR 0 0 0
56. 1 0 0 1 2 205 02 1 2 oe 2 0 0 2 0 0 3 29 3 332 01 0 9 0 3 768 00 26 0 2 655 01 9 1 3 768E 00 2 26 1 2 196 01 1 19 1 583 02 2 0 0 5 814 00 48 0 3 000 02 0 13 0 5 261 01 0 40 3 0 0 0 0 1 2 043E 02 1 6 1 2 685 01 3 48 oe 6 046 01 26 0 0 3 0 0 3 0 0 35 1 068 02 oe o 0 0 0 0 1 081 02 0 19 1 0 0 1 8 536 01 2 2 31 3 658 01 t 2 0 0 2 4 024 01 1 6 0 1 722 02 9 18 0 1 315E 02 40 3 0 0 3 5 814E 00 3 46 1 8 657 01 2 26 1 6 714 01 3 48 oe 2e 2 5 211 01 1 6 2 0 0 3 0 0 3 0 0 39 1 068 02 oe 0 1 081 92 0 35 0 1 8 536 01 2 28 1 37 3 313 02 2 4 024 01 3 46 0 0 0 0 2 092 02 27 3 5 814 09 1 3 1 0 0 1 2 092E 02 27 oe 2 0 0 B T BE 01 1 6 3 0 0 3 8 728 01 3 48 45 3 332 01 oe 3 0 2 655 01 9 45 0 3 768 00 2 28 1 2 196 01 1 3 768 00 2 28 43 3 658E 01 2 5 814 00 1 6 2 0 0 0 1 722 02 36 0 1 315 02 14 3 0 0 3 0 0 1 8 657 01 2 28 1 6 714 01 1 6 E 2 5 211 01 3 46 2 0 0 3 0 0 3 0 0 61 9 926 01 oe oe 1 139 01 0 14 0 7 787 01 45 1 5 814E 00 1 6 1 7 57 01 3 48 55 1 583t 02 2 0 0 1 309 01 2 28 0 3 0006 02 0 41 0 5 261E 01 14 0 0 3 0 0 1 2 043 02 3 1 2 685 01 1 6 oe 6 046 01 2 28 2 0 0 3 0 0 3 0 0 65 1 260 02 0 0 9 9 547E 01 3 51 0 0 0 1 9 5 7 01 51 1 0 0 67 3 024E 00 2 0 0 2 0 0 0 0 0 0 0 0 3 0 0
57. 11110 1101 1 1 1111 ae E EM STAT STRINGERS FRACTIONS TENTHS OF BEES PERMITTED F iim oT E 104 mea ERE i 00 2 5 ST AT SUPPORTS Ep er peace esa eee oh 1111 588 8 STATION AT DESIGN CONTROL POINTS FOR ci 24 144 11159 15 6 poe Uer 8858888888 82888 T ONI EARI TAT ON gt 896 DESIGN CONTRO QR Snes SERCH IER BERONEN TT EME 7 _8 p ESE 4c 45 File 5 29 1 ES File 5 29 2 TEXAS HIGHWAY DEPARTMENT BRIDGE DIVISION BENT CAP PROGRAM CONT D STIFFNESS AND LOAD DATA NUMBER FIXED POSITION MOVABLE STAT ON eor SIE BENDING STIFFNESS SIDEWALK FEE STRINGER 6 CAP POSITION FROM Eu CAP LOADS LOADS SLAB LOADS 1 CU 78 PROGR PROB 40007 TABLE TABLE TABLE AM 17 DECK THO WBIeFEs REVISION DATE 12 JUN 68 EXAMPLE 5 SPECIAL CONDITIONS DEMONSTRATION JUNE 74 PART 1 PART TO LEFT OF OPEN SLAB JOINT KIP FT UNITS 1 PROGRAM CONTROL DATA ENVELOPES TABLE NUMBER OF MAXIMUMS 2 3 4 OPTIONS TO HOLO IFz1 FROM PRECEDING PROB 0 0 0 0 NUMBER OF ADDITIONAL CARDS FOR CURRENT PROB 14 28 OPTION IFz1 TO CLEAR ENVELOPES BE
58. 18 78 Revised 25 Sept 78 BENT CAP ANALYSIS CAP 18 The CAP 18 Bent Cap Analysis computer program is significantly different from the CAP 17 program which is described in the 1975 Bent Cap Program User Manual but since CAP 18 includes all the capabilities of CAP 17 plus some additional features the 1975 manual is still useable The change required new input forms which have updated input instructions The differences between CAP 17 and CAP 18 are described below A new feature included in CAP 18 is the option to use working stress analysis load factor analysis or both analyses The use of working stress analysis in CAP 18 is essentially the same as for CAP 17 For load factor analysis in CAP 18 the user is able to input actual loads with load factors which are automatically applied to the appropriate loads CAP 17 required input of the factored loads The current version of CAP 18 has a revision date printed on the first line of the computer output This allows the user at a later time to know which operational version of the program was used for the computations Any future changes to the program will always be reflected in a change in the revision date The following improvements have also been included in CAP 18 1 2 3 4 5 6 7 8 9 18 requires two run identification cards for each run and one problem identification card
59. 2 1 045 02 0 0 0 0 1 303 02 1 045 02 0 0 0 0 POSITIVE MAXIMUM 5 718 01 t CRITICAL LOAD AT LANE STA 0 19 2 26 2 27 0 35 LOAD 5 14 LANE ORDER ouno o ORDER ewnNeo JUNE 74 KIP FT UNITS NUMBER OF LANE LOADS NEGATIVE MAXIMUM 2 395 02 2 395 0 1 403E 02 1 403 02 1 990 01 0 0 7 9606 01 7 960 01 7 960 01 0 0 1 403 02 1 03 02 gt 1 990 01 0 0 2 395 02 2 395 02 9 0 0 0 NEGATIVE MAXIMUM 4 789 01 4 789 01 0 0 0 0 7 960 00 LOAD AT LANE STA 1 3 1 3 1 1 3 51 1 1 3 3 51 3 51 3 51 1 3 3 51 3 51 LOAD AT STA 1 3 1 3 3 51 1 2 3 24 6 01 1 2 3 2 50 644 01 0 1 3 oe 55 1 323 62 0 1 2 3 oe 59 8 TO9E 01 1 2 3 oe REACTION K AT DEAD LD LANE STA EFFECT ORDER 17 2 219 02 0 1 2 3 2 57 219E 62 1 2 3 2 4 763 4 179 0 0 2 733 2 706 8 093 0 0 7 960 7 960 9 0 7 960 7 960 0 0 0 0 4 T789E 789 0 0 0 0 01 1 1 61 00 POSITIVE MAXIMUM 8 756 8 756 4 179 0 0 8 756 8 756 179 9 0 01 01 61 61 01 01 1 6 2 26 0 29 1 1 1 1 3 1 3 3 51 3 51 LOAD AT LANE S
60. 250E 01 0 0 6 250 01 1 250 00 1 875 00 2 500 00 3 125 00 3 750 00 4 375 00 5 000E 00 5 625E 00 6 250E 00 6 875 00 7 500 00 8 125 00 8 750E 00 9 375 00 1 000 01 1 063 01 1 125 01 1 188E 01 1 250 01 1 313 01 1 375 01 1 438E 01 1 500 01 1 563 01 1 625 01 1 688E 01 1 750 01 1 813 01 1 675 01 1 938 01 2 000 01 2 063 01 2 125 01 2 188 01 2 250 01 2 313E 01 2 375 01 01 2 500 01 2 563 01 2 625 01 2 688 01 2 750 01 2 813 01 2 875 01 2 938 01 3 000E 01 3 063E 01 3 125E 01 3 188 01 3 250 01 3 313 01 3 375 01 3 438E 01 DEFLECTION FT 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 7 1190 04 6 8420 04 6 5660 04 6 2890 04 6 0100 0 5 7290 0 5 4240 04 5 0640 0 4 6190 0 4 0580 04 3 3490 04 2 458D 04 1 3530 04 0 0 1 6370 04 3 5110 04 5 5790 0 9 04 1 0120 03 1 2510 03 1 4920 03 1 7310 03 1 9670 03 2 1980 03 2 230 03 2 6420 03 2 8520 03 3 0540 03 3 2450 03 73 4260 03 3 5950 03 3 7510 03 3 8950 03 4 0240 03 4 1400 03 4 2 00 03 74 3260 03 3980 03 4 4610 03 4 5150 03 4 5640 03 4 6110 03 4 1580 03 3 7070 03 3 2620 03 2 8250 03 2 3990 03 3 5006 3 563E 3 625E 3 688E 3 750 3 813 3 875 3 938 4 000 4 063E 4 125 4 166E 4 250 4 313 4 375 4 438E 4 500 4 563 4 625 4 688 4 750
61. 27 1 961 2 e9BE 2 65 2 986 3 332 3 6T7E 922E 363F TO4E 5 043EF 5 379 5 0 3 TOME 4 36 4 022 3 677 3 332 2 9B5E 2 64 1 2 298 1 961 1 627 1 300 9 696 6 462 3 198E 0 0 0 0 0 51 5 1 oz G2 02 02 o2 02 oe 92 02 02 02 92 92 62 o2 o2 02 01 91 01 MOM t 0 0 4 0 9 0 0 9 5 152 13 i1 031E 01 219 01 9 6585 01 T 1 744E 6 1 327 1 986 2 668 3 312 3 9T9E 650 5 323 5 999 6 679E 5 855 5 032 5 215 3 398 2 586 24338E 2 094E 1 852 1 61 1 379 1 347 9 179E 6 921 693 0 496F 73 392E 5 0 0 0 0 5 0 0 9 0 9 0 6 0 3 302 2 6 69 6 921 294 T9E 1 1 7 1 3 9E 1 614 852 2 0 2 338 2 506 398E amp 21 5 932 90 91 02 02 62 02 62 02 92 02 02 07 02 92 02 02 91 01 01 01 00 09 01 01 9 n oe 02 02 92 92 52 52 62 02 02 SHEAR 9 9 0 8 9 9 34349E 0 0 0 0 0 0 0 0 6 0 2 0 0 0 9 92 94 0 6 0 6 0 0 0 0 5 035 2 2246 2 218 2116 2 205 14 97 6 4226 8 365 6 296 236 6 17 8 113 68 05 T 989E 7 927 T 865E T 863E 7 741 7 679 7 618 12 02 92 p 01 e
62. 28E 02 1 635 01 3 695 01 4 073 02 0 0 11 6 351 00 4 067 02 3 753 01 2 722 02 0 0 37 2 136 01 4 956 02 3 811 01 1 374 02 0 0 6 3 637 01 4 067E 02 3 6686 01 3 024 06 0 0 9 ls i ML v Held from previous problem Part 1 4 041 01 0 0 1 890 01 0 0 TABLE SCALES PLOT OUTPUT 4 099 01 1 301 12 2 602 12 1 637 01 0 0 amp 157 01 0 0 0 0 2 253 12 1 127 12 DISTANCE 20 INCHES 59 FT 4 215 01 9 0 0 0 0 0 0 0 MOMENT 4 INCHES 1009 4 272 01 0 0 0 0 0 0 0 0 SHEAR 4 INCHES 409 K 330 01 0 0 0 0 0 0 0 0 The values enclosed by brackets above are the same as those in Part 1 and have been held from Part 1 The remaining values are larger than those from Part 1 and are the result of calculations made for Part 2 li MLB I 111 i ene 1 L T 13 IIIIIIIIIIIIWTA gt EXAMPLE 4 A ONE COLUMN BENT PROBS 40005 AND 40006 This example shows bow a normal one column bent under 2 25 simple slab spans can be solved with the Bent Cap Program The description of this type of bent in stations is no di
63. 3 0 0 1 0 0 1 0 0 oe 0 0 0 2 0 0 3 0 0 3 0 0 REACTION 0 DEAD LD POSITIVE LOAD AT LANE NEGATIVE LOAD AT 96 EFFECT ORDER MAXIMUM LANE STA ORDER MAXIMUM LANE STA TABLE 6 ENVELOPES OF MAXIMUM VALUES 2 279 02 0 1 630 02 1 3 0 1 139E 01 9 49 STA DIST X MAX MOM MAX MOM MAX SHEAR MAX SHEAR 1 1 630 02 1 3 1 5 614 00 3 48 CFT FT K FT K 1 309 01 2 26 2 9 6 3 1 5 774E 01 0 0 0 0 2 oe 0 0 0 0 1 5 774E 01 0 0 0 0 2 688E 02 2 1 155 00 0 0 2 887 1 601 02 2 27 9 9 0 3 1 732 06 3 334 1 1 637 1 1 601 02 2 27 1 4 2 3096 69 1 890 6 54T7E 01 4 605 01 1 6 2 9 0 5 2 887 00 7 560 01 1 309 4 605 01 3 46 3 9 0 6 3 464E 00 1 701E 1 964 oe T 4 041 00 3 024 1 175 8 4 619 00 1 374 2 331E 2 279 02 9 5 196 00 2 722 2 33T7E 0 1 630 02 3 51 0 9 14 10 5 77 00 4 073E 2 344 1 1 630 02 3 51 1 1 6 11 6 351 09 5 428E 3 948 2 1 309 01 2 28 2 12 6 928 00 4 529 0 0 3 0 0 3 13 7 506 00 3 633 0 0 5 14 8 0636 00 2 T42E 0 0 15 8 6606 00 1 854E 0 0 16 9 238 00 9 698 0 0 17 9 815 00 8 948E 0 0 18 1 039 01 0 0 0 0 Reaction Calculation at Station 63 B c E ee 21 1 212 01 0 0 3 358 Dead Load 227 9 1 270 01 0 0 3 026 Lane 3 Live Load 100 163 0 23 1 3286 01 0 0 8 534 Lane 2 Live Load 100 13 09 24 1 386
64. 4 2 936 2 819 2 T02E 2 58 2 67 2 350 2 232 2 115 1 998 1 880 0 0 0 0 0 0 0 0 0 0 0 0 0 0 7 343 3 285 3 273 3 262E 3 250 3 238E 3 226 3 215 2 391 8 008 2 347 1 173E 01 o2 o2 02 02 01 00 00 2 933 01 3 170 03E 12 11 2 194 02 2 206E 02 2 218 02 3 085 02 4 027 02 4 039 02 1 22 02 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 T 210E 01 7 328E 01 7 5 01 7 562 01 7 680 01 7 797 01 7 914 01 8 032E 01 B 149E 01 8 266 01 8 384 01 8 501E 01 8 618E 01 8 736 01 1 867 02 3 175 02 3 187 02 3 199 02 3 210 02 3 222 02 3 234 02 3 575 01 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 End of 0 0 lt Left T 541E 12 0 0 0 0 0 0 0 0 Beginning of 1 122 10 0 0 3 712 01 1 509 00 3 017 00 T 438E 7 500 7 563 T 625E 7 688 7 750 7 813 7 875 7 938 8 000 8 063 8 125 8 188 8 250 8 313 8 375 8 438E 8 500 8 563 8 625 8 688 8 750 8 81 3 8 875 8 938 9 000 9 063 9 125 9 166 9 250 9 313 9 375 9 438 9 506 9 563 9 625 9 688E 9 750 9 813 9 875 9 938 1 000 1 006 1 01 3 1 019 1 025 1 031 1 038 1 044 1 050 1 056 1 063 1 069 1 075 1 081
65. 5 00 14 0 6 558E 01 0 13 506 00 0 0 35633 02 1 775 02 0 0 1 5 560 00 1 6 1 6 264E 01 3 46 14 8 083E 00 0 0 2 742 02 1 768 02 0 9 2 0 0 2 1 560 01 2 28 15 8 660E 00 3 943 01 1 854 02 1 762 02 0 0 3 0 0 3 0 0 16 9 238 00 1 280 02 1 755 02 0 0 oe 17 9 815 00 2 170E 02 1 749 02 0 0 18 1 039 01 3 065 02 1 742 02 0 0 65 1 260 02 19 1 097 01 3 9596 02 1 388 02 0 0 0 1 077 02 3 51 0 0 1 155 01 4 458 02 0 0 1 033 02 0 0 1 1 077 02 3 51 1 0 0 21 1 212 01 4 953 02 0 0 1 027E 02 0 0 2 0 0 2 0 0 22 1 270 01 5 445 02 0 0 1 7526 01 1 190 01 3 0 0 3 0 0 23 1 328E 01 4 955 02 0 0 0 0 8 534 01 oe oe 2 1 386 01 4 460 02 9 0 9 0 B 600E 01 25 1 443 01 3 9626 02 0 0 0 0 8 665E 01 REACTION K 26 1 501 01 3 460 02 0 9 0 0 8 731E 01 AT DEAD LD LANE POSITIVE LOAD LANE NEGATIVE LOAD AT 27 1 559 01 2 955 02 0 0 0 0 8 796 01 STA EFFECT ORDER MAXIMUM LANE STA ORDER MAXIMUM STA 28 1 617 01 2 445 02 0 0 0 0 8 862E 01 29 1 674 01 1 932 02 2 204 01 0 0 8 927 01 11 2 279 02 39 1 732 01 415 02 4 690 01 0 0 8 993 01 0 1 632 02 1 0 9 415E 00 40 31 1 790 01 8 946 01 7 214 01 0 0 1 254E 02 1 1 632 02 1 3 1 5 560 00 3 48 32 1 848 01 0 0 1 379 02 0 0 1 608 02 1 560 01 2 26 0 0 33 1 905 01 0 0 2 041 02 0 0 1 615 02 3 0 0 3 0 0 34 1 963 01 0 0 2 7 5 02 0
66. 58 01 0 0 33 2 063E 01 4 731 02 1 569 02 8 530E 01 0 0 2 125 01 5 054 02 1 169 02 8 413 01 0 0 35 2 188E 01 5 369E 02 61 01 8 296 01 0 0 36 2 250 01 5 677 02 3 905 01 8 178E 01 0 0 37 2 313 01 5 978 02 1 214E 00 8 061 01 0 0 38 2 375 01 6 271 92 9 0 7 944E 01 0 0 39 2 438E 01 6 557 02 0 0 826 01 0 0 40 2 500 01 6 836 02 0 0 7 709 01 0 0 41 2 563E 01 7 107E 02 0 0 1 592 01 0 0 2 625 01 7 3716 02 9 0 7 474 01 0 0 43 2 688 01 7 628 02 0 0 7 357E 01 0 0 44 2 750 01 1 8776 02 9 0 0 0 8 362 01 45 2 813 01 6 563 02 0 0 0 0 2 077 02 46 2 875 01 5 281 02 0 0 0 0 2 089 02 47 2 938 01 3 972 02 0 0 0 0 2 101 02 48 3 000E 01 2 655 02 0 0 2 112E 02 49 3 063 01 1 3316 0 0 0 2 124E 02 Hinge zero moment 50 3 125 01 dat 7 0 0 2 130E 02 51 3 186 01 9 0 1 331 02 0 0 2 136 02 52 3 250 01 0 0 2 670 02 9 0 2 148E 02 53 3 313 01 9 0 4 016 02 0 0 2 159E 02 6 3 375 01 0 0 5 369E 02 0 0 2 171E 02 55 3 438 01 6 0 6 729 02 0 0 2 183E 02 96 3 500 3 563 3 625 3 688 3 750 3 813E 3 875 3 938 4 000E 063 4 125 4 188 4 250 4e313E 4 375 4 438 4 500 4 56 3 4 625 4 6 4 750 813 4 875 4 938E 5 000 5 063 5 125 5 188 5 250E 5 313 5 375 5 438 5 500 5 563 5 625 5 688E 5 750 5 813 5 875 5 93
67. 60E 9 238E 9 815 1 039 1 097 1 155 3 175 1 708 12 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 486 8 783E 1 610 2 346 3 081 3 819 553 5 283 4 751 213 3 671 3 124 2 572 2 015 1 454 8 570E 3 154E 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 154 8 870E 1 454 2 015 2 572 3 124E 3 671 4 213 4 751 5 283 4 553 3 819 3 081 MAX MOM FT K 9 6 6 0 0 9 0 0 1 220 12 2 457 01 9 827 01 2 211 00 3 931 00 1 267E 02 2 499 02 3 736 02 4 978 02 4 231E 02 3 488 02 2 T50E 02 2 017 02 1 289 02 5 664 01 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 673 00 3 171 01 6 203 01 9 285 01 l 242E 02 1 560 02 1 882 02 2 2 7 02 2 821E 02 MAX SHEAR 0 0 9 0 0 0 1 479 12 0 0 5 CK 0 0 0 0 0 0 1 056 12 2 128 01 8 510 01 T02E 00 2 553 00 1 078 02 2 130 02 2 139 02 2 14TE 02 4 283 01 0 0 1 442 02 1 450 02 07 3 233 3 291 3 349 3 406 3 464 3 522 3 580 3 637 3 695 3 753 3 811 3 868 3 926 3 984 4 041E 4 099 4 157E 215E 272 4 330 2 346 02 1 610 02 8 783E 01 1 486 01 9 0 5 664 1 289 2 017 2 750 3 488 4 231 4 978 3 736 2 499
68. 746 02 0 0 2 044 02 24 1 00 01 0 0 1 080 03 0 0 2 153 02 25 1 250E 01 0 0 1 190 03 0 0 262 02 26 1 300 01 0 0 1 306 03 9 0 2 371 02 27 1 350 01 0 0 1 427 03 0 0 2 481 02 28 1 400 01 6 0 1 554 03 0 0 2 572 02 29 1 450 01 0 0 1 684 03 0 0 2 629 02 30 1 500 01 0 0 1 817 03 0 0 2 669 02 None of the above maximums exceed those for Part 1 yer H 8 4 4 4 Ce thus the sidewalk vehicle loadings do not control 33 1 650 01 0 0 2 228E 03 0 0 2 858E 02 for thia cap 34 1 700 01 0 0 2 373E 03 0 0 2 968E 02 35 1 750E 01 0 0 2 525E 03 0 0 3 078 02 36 1 800 01 0 0 2 681 03 0 0 3 187 02 37 1 850 01 0 0 2 843E 03 0 0 2 003E 02 38 1 900 01 0 0 2 686 03 3 094 02 2 494 02 39 1 950 01 0 0 2 534 03 984 02 2 534 02 0 2 000 01 0 0 2 387 03 2 874E 02 2 57 02 4 2 050 01 0 0 2 2 7 03 2 764 02 2 684E 02 2 2 100 01 0 0 2 118 03 2 65 02 2 794 02 43 2 150 01 0 0 2 261 03 2 614 02 2 90 02 2 200 01 0 0 2 408E 03 2 574 02 3 014 02 45 2 250E 01 0 0 2 562 03 2 534E 02 3 124 02 46 2 300 01 0 0 2 721 03 2 9 02 3 233E 02 4T 2 350 01 0 0 2 885 03 2 003 02 48 2 400 01 0 0 2 716 03 3 327 02 49 2 450 01 0 0 2 553 03 3 217 02 50 2 500 01 0 0 2 39 03 3 107 02 51 2 550 01 0 0 2 242E 03 2 998 02 52 2 600 01 0 0 2 095 03 2
69. 77 887 TET 323 ENTER TO CLEAR ENVELOPES OF MAXIMUM VALUES TABLE PRIOR TO MULTI LANE LOADING ENTER TO PLOT ENVELOPES SKEW ANGLE 1 4 ENTER 1 ro nate TABLE 5 ON OUTPUT LIS TIN MOVABLE LOAD DATA TAR STOP MOVABLE 1 040 TATION INCR NT 20 9 Cards LOAD REDUCTION FACTORS ACCORDING TO NUMBER OF LANES LOADED MAX NUMBER LANE LOADS i 2 3 4 5 015 1114111111 11111111 1118 11 1 1 14 141 1 11111111141 1 1 16 20 30 40 50 60 TABLE 3 LISTS OF STATIONS OF CARDS AS GIVEN IN TABLE 1 NONE OR 14 LANES STRS sups NUMBER OF MOMENT CONTROL POINTS efe 12 Gl L3 181 NUMBER OF SHEAR CONTROL PONTS 20 40 STATION AT LEFT OF LANE E E El El B EE EIN N Sizin Elis E E E BE E El fo 7 STATION AT RIGHT OF LANE ole dapi 019 STATION FRACTIC TENT NCREMENTS PERM T TED F FORMAT 117 i AT P A uc STATION AT SUPPORTS ncs 3 LLL Ap _ LELLI p PO WNTS FOR MOMENT sf 137 ind TATION AT DESIGN CONTRO EE EET e 60111 65111 J I K ram HAHH Ferd Eom 9 16
70. 8 6 000 6 063 6 125 6 188E 6 250 6 313 6 375 6 438 6 500 6 563 6 625 6 688E 6 750 6 813 6 875 6 938 7 000 T 063E 7 125 7 188 7 250 7 313 7 375 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 9 0 0 0 0 0 0 0 0 2 046 01 1 341 02 2 70 02 3 592E 02 4 707 02 5 814 02 5 501E 02 5 181 02 4 854 02 4 519 02 177 02 3 828 02 3 471 02 3 126 02 2 88 02 2 635 02 2 378 02 2 115 02 1 843E 02 1 565 02 1 279 02 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 9 426 12 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 128 11 0 0 0 0 8 097 9 472 1 086 1 224 1 4 1 718 1 967 1 865 1 765 1 665 1 56 1 468 1 371 1 291E 1 213 1 135 1 058 9 816 9 061 9 019 B 985E 8 958 8 938 8 926 8 921 8 923E 8 933E 8 950 8 975 9 006 9 045 9 092 9 145 9 268 1 028 1 130 1 233 1 337 1 441 1 546 1 727 1 521 1 316 1 112 9 0826 7 054 5 034 3 021 1 016 3 300 1 467 3 667 90 01 4 713E 12 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 402 10 4 715 01 1 886 0 0 0 0 0 0 0 0 0 0 0 0 2 332 2 320E 2 309 2 e9TE 2 285 2 27 2 262 2 2506 2 238 2 227 2 215E 1 073 3 406 3 288 3 171 3 05
71. 80 03 3 5070 03 3 4130 03 3 2950 03 3 1510 03 2 9800 03 2 7800 03 2 5 80 03 2 2770 03 1 9570 03 1 5780 03 1 1320 03 6 0890 04 9 0 7 0440 04 1 930 03 2 3540 03 3 2760 03 74 2490 03 5 2600 03 6 2990 03 7 35 0 03 8 4160 03 9 4770 03 1 0540 02 1 1600 02 1 2660 02 0 0 0 0 0 0 0 0 0 0 2 0130 0 2 2210 0 2 290 0 2 6380 0 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 7 438 T 500E 7 563 7 625 T 688E 7 750 7 813 7 875 7 938 8 000E 8 063E 8 125 8 168E 8 250 8 313 8 375 8 438 8 500 8 563 8 625 8 688E 8 750 8 813 8 875 8 938 9 000 9 063 9 125 9 188E 9 250 9 313 9 375 9 438 9 500 9 563 9 625 9 688E 9 750 9 813 9 875 9 938 1 000 1 006 1 013 1 019 1 025 1 031 1 038 1 044 1 050 1 056 1 063 1 069 1 075 1 081 1 088 1 094 1 100 1 106 1 113 1 119 1 125 1 131 01 01 01 2 8450 04 3 0510 0 3 2370 0 3 3570 0 3 3630 04 3 2080 04 2 8430 04 2 2190 04 1 2880 04 0 0 1 6950 04 3 7540 04 6 1320 04 8 7880 04 1 1680 03 gt 1 4770 03 1 8050 03 2 1470 03 2 5010 03 2 86 40 03 3 2330 03
72. 88 o2 01 02 LANE OROER New POSITIVE MAXIMUM 3 744 2 1 5 1 370E 0 0 0 0 3 816 3 307 1 426 1 070 1 070 0 0 0 0 0 0 1 426E 1 426E 0 0 9 0 0 0 6 080E 6 080 9 228 0 0 0 0 62 92 02 o2 01 CRITICAL LOAD AT LANE STA 24 38 32 18 6T 67 LANE ORDER JUNE 74 KIP FT UNITS NUMBER OF LANE LOADS NEGATIVE MAXIMUM 6 147 6 1 7 0 0 0 0 0 0 2 496 2 496 7 131 7 131 5 72 4 961 2 139 0 0 0 0 8 082E 7 701 2 852 3 550 0 0 5 229 4 983 1 918 1 846 0 0 o2 01 01 02 02 02 LOAD AT LANE STA weno No eno 32 18 34 97 18 96 SHEAR STA 20 24 31 50 64 3 367 02 0 1 4 1 038 03 0 1 2 4 0 CK DEAD LD LANE EFFECT ORDER 1 425 02 0 1 2 3 4 1 593 92 0 1 2 3 4 4 797 01 0 1 2 3 4 2 8 677 01 0 1 4 0 9 440 01 0 1 2 3 4 2 1 103E 02 4 352 4 352 2 936 0 0 0 0 o2 02 01 POSITIVE MAX
73. 93 7 3730 03 8 0190 03 8 6810 03 9 3600 03 1 0050 02 1 0760 02 1 1480 02 1 2210 02 1 2950 2 1 3700 02 1 4460 02 1 5220 02 1 5990 02 1 6770 02 1 7540 02 71 8320 02 1 9100 02 9 0 9 0 0 0 6 0 0 0 19 1 1 397 02 54 1 0 0 2 3 493E 01 2 2 0 0 3 0 9 3 0 0 2e 0 PROB CONTD 40005 LKW EXAMPLE NO 4 ONE COL BENT BETWEEN SLAB SPANS JUNE 74 5 1 272 02 PART ONE DESIGN LOAD CONDITIONS KIP FT UNITS 9 1 397 02 3 56 0 0 0 1 1 397 02 3 56 1 0 0 2 1 746 00 2 3 2 0 0 TABLE 5 MULTI LANE LOADING SUMMARY CRITICAL NUMBER OF LANE LOADS 3 0 0 3 0 0 oe MOMENT FT K AT DEAD LO LANE POSITIVE LOAD AT LANE NEGATIVE LOAD AT REACTION K STA EFFECT ORDER MAXIMUM LANE STA ORDER MAXIMUM LANE STA AT DEAD LO LANE POSITIVE LOAD LANE NEGATIVE LOAD STA EFFECT ORDER MAXIMUM LANE STA ORDER MAXIMUM LANE STA 30 9 786 02 0 0 9 0 gt 8 362 02 1 8 37 1 751 02 1 0 0 1 8 382E 02 1 5 0 4 051 02 0 gt 2 654 02 3 56 0 0 0 0 1 4 051 02 1 6 1 2 654E 02 3 56 3 0 9 3 0 0 2 6 985E 01 2 32 2 0 0 oe oe 3 0 0 3 0 0 oe 37 1 472 03 0 0 0 1 327 03 1 8 47 1 751 02 1 0 0 1 1 327 03 1 8 4 051 02 3 56 0 2 654 02 1 8 2 0 0 366 01 1 4 051 02 3 56 1 2 654E 02 1 6 3 0 0 3 0 0 2 9 779 01 2 34 2 0 0 oe 2 3 0 0 0 0 29 oe 47 1 472 03 9 0 0 0 1 327 03 3 56 1 0 0 1 1 327 03 5 2 0 0 8 557 01 2 34
74. 97 1 3 2 2 3 1 886 4 715 2 003 9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 MAX REACT K 00 01 11 0 0 0 0 0 0 0 0 0 0 0 0 0 0 6 350 6 199 6 048 5 897 5 746 5 595 5 444 3 418 9 226 3 017E 1 509 01 01 01 01 01 01 01 01 00 00 00 3 772 01 1 602 11 1 069 02 1 084 02 1 099 02 1 114 02 1 129 02 1 1 5 02 2 546 01 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 504E 12 0 0 0 0 0 0 0 0 0 0 0 0 0 0 06 TEXAS HIGHWAY OEPARTMENT BRIDGE DIVISION seet C 2 _ LKW DATE CONTROL BENT CAP PROGRAM DISTRICT IPE IDENTIFICATION OF PROBLEM 2 CARDS EACH PROB COUNTY proB 2002 8 _ DESCRIPTION OF PROBLEM LETTERS AND OR NUMBERS amp ALLOWABLE SYMBOLS PROB DISTRICT INITIALS BET PT nc Exile el 111111 TITI TITEI 111177 SERE ER ONLY T IPE St 1012 Paari re Wren gt FE BPE sira ver TTTT kie EFT uk ENTER i TO PLOT ENVELOPES SKEW ANGLE ENTER TO HOLD FROM PRECEDING PROBLEM NO OF CARDS IN THIS PROBLEM ENTER I TO CLEAR ENVELOPES MAX MUM VALUES E gE 45 64 65 ENTER TABLE 5 ON TABLE2 CONSTANTS 2 CARDS UNLESS DATA HELD FROM PRECEDING PROBLEM OUTPUT LIST 44 MOVABLE LOAD DATA NUMBER OF NUMBER OF START INCREMENTS INCREMENT LENGTH NCREMENTS 5 TABLE 3 L
75. ACT FT 37 1 850 01 6 501 02 9 034 01 47 2 350 01 6 780 02 9 034 01 TABLE 8 SCALES PLOT OUTPUT DISTANCE 20 INCHES 59 FT MOMENT 4 INCHES 4099 FT K SHEAR 4 INCHES 400 SL 5 plof gt spor madi f BY Q as 5 Vof 7 EXAMPLE 5 SPECIAL COND rH ONS PROBS 40007 AND 40008 The structural detail arrangements in this Example have been arbitrarily arranged as shown on the sketch to demonstrate several special conditions Rarely will all of these occur in a single bent Dimensions shown should be considered as academic no effort has been made to conform to current design or detail standards The first of these special conditions occurs at station 50 and consists of a hinge pinned connection The next occurs between station 108 where the cap ends and station 116 where it begins again while the superstructure continues across the gap Then at station 127 there is an open joint in the deck slab but the cap continues on under the rest of the superstructure The most troublesome of these conditions is the one inch open joint at station 127 Since the bent cap program is not designed to analyze a roadway slab with such a discontinuity it is again necessary to use two problems to detour around the
76. CEDING PROB 0 NUMBER OF ADDITIONAL CARDS FOR CURRENT PROB OPTION 1 1 TO CLEAR ENVELOPES BEFORE LANE LOADINGS OPTION IF 1 TO PLOT DESIGN VARIABLE ENVELOPES OPTION IF 1 TO OMIT OUTPUT TABLE 5 ANGLE OF SKEWs DEGREES TABLE 2 CONSTANTS NUMBER OF INCREMENTS FOR SLAB INCREMENT LENGTH FT NUMBER OF INCREMENTS FOR MOVABLE LOAD INITIAL POSITION OF MOVABLE LOAD STA ZERO FINAL POSITION OF MOVABLE LOAD STA ZERO NUMBER OF INCREMENTS BETWEEN EACH POSITION OF MOVABLE LOAD MAXIMUM NUMBER OF LANES TO BE LOADED SIMULTANEOUSLY LIST OF LOAD COEFFICIENTS CORRESPONDING TO NUMBER OF LANES 1 2 3 4 1 000 00 1 000 00 9 000 01 TABLE 3 LISTS STATIONS NUM OF NUM OF NUM OF NUM MOM NUM SHEAR LANES STRINGERS SUPPORTS CONTR PTS CONTR PTS TOTAL 3 5 5 1 3 5 6 T LANE LEFT 3 26 RIGHT 26 48 71 STRINGERS 7 0 22 0 37 0 52 0 67 0 SUPPORTS 17 57 MOM CONTR 17 22 52 57 SHEAR CONTR 15 19 24 50 55 59 TABLE 4 CAP STIFFNESS AND DATA FOR BOTH FIXED AND MOVABLE LOADS FIXED OR MOVABLE gt FIXED POSITION DATA MOVABLE JUNE 74 STA STA CONTO CAP BENDING SIDEWALK STRINGER POSITION KIP FT UNITS FROM TO IF 1 STIFFNESS SLAB LOADS CAP LOADS SLAB LOADS K FT9FT CK 1 T 920E 05 0 0 4 125 01 TABLE NUMBER 14 1 2 6735 06 9 0 6 188 01 3 4 60 1 2 673 06 0 0 6 188 01 0 0 9 71 9 7 920 05 0 0 4 125 01 4 10 1 7 5 0 0 0 0 8 0806 01 22
77. CLEAR ENVELOPES MAXIMUM VALUES PRIOR TO MULTI LANE LOADING ENTER i PLOT ENVELOPES SKEW ANGLE TER ELIMINATE TABLE 5 ON OUTPUT L TABLE 3 LISTS OF STATIONS OF CARDS AS GIVEN IN TABLE 1 NONE OR 14 LANES 5185 0 5 r NUMBER MOMENT CONTROL POINTS 0 25 STATION AT LEFT OF LANE 88 TATION DESIGN ENTAO POINTS FOR TATION AT DESIGN CONTRO FOR 5 ELE File 5 29 1 79 TEXAS HIGHWAY DEPARTMENT BRIDGE DIVISION BENT CAP PROGRAM doas STIFFNESS AND LOAD DATA NUMBER OF CARDS AS GIVEN IN MOVABLE FIXED POSITIO FIXED FROM 10404 zm quu Arop ED nin ei File 5 29 2 59 PROGRAM 17 DECK THD MATLOCKeWBISFEsJJP REVISION DATE 8 12 JUN 66 40005 LKW EXAMPLE NO 4 ONE COL BENT BETWEEN SLAB SPANS JUNE 74 PART ONE DESIGN LOAD CONDITIONS KIP FT UNITS TABLE 1 PROGRAM CONTROL DATA ENVELOPES TABLE NUMBER OF MAXIMUMS 2 3 4 OPTIONS TO HOLD IF21 FROM PRECEDING PROB NUMBER OF ADDITIONAL CAROS FOR CURRENT PROB 15 19 OPTION 1 1 TO CLEAR ENVELOPES BEFORE LANE LOADINGS r OPTION 1 1 TO PLOT DESIGN VARIABLE ENVELOPES OPTION 1 1 OMIT OUTPUT TABLE 5 ANGLE OF SKEW DEGREES 0 0
78. CONTD 40008 EXAMPLE 5 PART 2 PART 2 PART TO RIGHT OF OPEM SLAB JOINT TABLE 5 MULTI LANE LOADING SUMMARY MOMENT FT K AT LD STA EFFECT 128 4 869 02 132 3 936 02 148 1 490 03 164 1 700 03 180 4 716 02 188 7 714 02 SHEAR K AT DEAD LO STA EFFECT 130 3 522E 02 ORDER gone 5 gue POSITIVE MAXIMUM 3 771 02 3 771 02 1 923 02 1 479 01 1 232 03 9 909 02 9 614 02 7 395 01 1 331 03 1 331 03 6 212 02 1 331 02 6 406 02 5 620 02 2 071E 02 1 479 02 POSITIVE MAXIMUM 1 509 02 CRITICAL LOAD AT LANE LANE STA ORDER 9 1 2 3 oe 1 127 1 127 1 2 152 2 3 176 3 oe 6 141 0 1 132 1 2 152 2 3 176 3 1 2 152 2 152 1 1 132 2 1 oe 163 0 156 1 1 132 3 176 3 oe 0 1 2 3 oe LOAD aT LANE LANE STA ORDER 1 127 0 JUNE 74 FT UNITS NUMBER OF LANE LOADS NEGATIVE LOAD MAXIMUM LAME STA 7 025 01 0 188 2 219 01 3 181 6 0 6 6 3 513 02 0 188 1 109 02 3 181 0 0 0 0 6 323 02 0 166 1 997 02 3 181 0 0 0 0 9 133 02 188 2 8 3 161 9 713 02 0 186 6 176 02 3 181 0 0 6 9 NEGATIVE LOAD AT MAXIMUM LANE STA 2 810 01 0 188 150 3 006 01 1 196 01 1 138 02 166 178 1 319 02 186 516 02 REACTION K DEAD
79. E 00 1 5500 18 1 039 01 USING DATA FROM THE PREVIOUS PROBLEM 19 1 097E 01 1 155 TABLE 3 LISTS OF STATIONS NUM OF NUM OF NUM OF NUM MOM NUM SHEAR LANES STRINGERS SUPPORTS CONTR PTS CONTR PTS TOTAL 3 6 3 7 1 2 3 4 5 6 9 10 LANE LEFT 3 2 56 LANE RIGHT 26 4 71 STRINGERS 7 0 19 0 31 0 43 0 55 0 67 0 Results same as Prob 40003 SUPPORTS 1 s 63 MOM CONTR 1 19 3 43 55 67 SHEAR CONTR 9 13 29 35 39 45 61 65 5 9220 04 3 2880 04 1 2510 04 0 0 2 7030 05 1 9530 05 1 1530 04 2 3620 04 6 3 926 01 3 5810 04 TABLE 4 CAP STIFFNESS AND DATA FOR BOTH FIXED AND MOVABLE LOADS ANH M 550415 01 6 0330 04 USING DATA FROM THE PREVIOUS PROBLEM PLUS ce HMM NONE 4 157E 01 8 4890 04 73 4 215 01 0 0 4 2726 01 0 0 75 4 3306 01 0 0 SWEAR DEAD 10 POSITIVE LOAD AT LANE NEGATIVE LOAD AT STA EFFECT ORDER MAXIMUM LANE STA ORDER MAXIMUM STA PROB CONTD 40004 LKW EXAMPLE NO 3 PART 2 JUNE T4 9 1 260 02 KIP FT UNITS 9 0 9 547 01 1 3 1 S47E 01 1 3 2 TABLE 5 MULTI LANE LOADING SUMMARY CRITICAL NUMBER OF LANE LOADS 3 3 oe oe MOMENT FT K AT 10 POSITIVE LOAD LANE NEGATIVE LOAD 13 9 926 01 5 ORDER MAXIMUM LANE STA ORDER MAXIMUM LANE STA 0 7 767 01 9 0 0 40 1 7 574 01 1 6 1 3 48 11 2 941 02 2 1 309 01 26 0 0 0 0 2 205 02 1 3 3 9 0 3
80. FORE LANE LOADINGS 0 OPTION IFz1 PLOT DESIGN VARIABLE ENVELOPES 0 OPTION 1 OMIT OUTPUT TABLE 5 0 ANGLE SKEW DEGREES 3 687E 01 CONSTANTS NUMRFR INCREMENTS FOR SLAB ANO 207 INCREMENT LENGTH FT 5 000 01 NUMPER OF INCREMENTS FOR MOVABLE LOAD 20 INITIAL POSITION OF MOVABLE LOAD STA ZERO M FINAL POSITION OF MOVABLE LOAD STA 7ERO 107 NUMBER OF INCREMENTS BETWEEN EACH POSITION OF MOVABLE LOAD 1 MAXIMUM NUMBER OF LANES TO BE LOADED SIMULTANEOUSLY 4 LIST OF LOAD COEFFICIENTS CORRESPONDING TO NUMBER OF LANES LOADED 1 2 3 4 5 1 000 00 1 000 00 9 000 01 7 500 01 3 LISTS OF STATIONS NUM OF NUM OF NUM OF NUM MOM SHEAR LANES STRINGERS SUPPORTS CONTR PTS CONTR PTS TOTAL 4 5 10 1 3 4 5 6 T 8 9 LANE LEFT 9 66 95 LANE RIGHT 38 66 95 127 STRINGERS 13 3 29 0 44 0 59 0 74 0 89 0 104 5 119 7 SUPPORTS 22 62 96 128 188 MOM CONTR 22 29 59 62 74 69 96 SHEAR CONTR 20 24 31 50 57 64 76 87 94 10 98 TABLE 4 CAP STIFFNESS DATA FOR BOTH FIXED AND MOVABLE LOADS FIXED OR MOVABLE STA STA FROM 10 49 51 116 13 14 29 59 89 104 105 119 120 132 148 164 196 197 180 7 95 4 105 0 49 50 51 108 200 13 14 29 59 74 89 104 105 119 120 132 148 164 196 197 180 127 115 105 20 CONTD IF 1 FIXE0 POSITION DATA ST
81. HEER CONTROL PONTS 20 25 STATION AT LEFT OF LANE _ og 3011 e FIIO PEE 11711 STAT CX AT RIGHT OF LAN 1915 eel 48 71 ETAT S RINGERS CFRACT ZNAL B NCBEMENTE PERMITTED F FCRAIATI 7 1 PE nk ca ed LEE TA STAT ON AT Su ETS DI 2 5 M c UH STATON DESIGN File 35 26 71 4 PROBLEM NUMPES 400011 TEXAS HIGHWAY DEPARTMENT BRIDGE DIVISION BENT CAP PROGRAM CONT D STIFFNESS AND LOAD DATA NUMBER OF CARDS AS GIVEN TABLE ALL ADOED STORAGE fIXED on MOVABLE FIXED POSITION DATA STATION STATION CONTINUED STIFFNESS SIDEWALK SLAB STRINGER amp CAP FROM g 1 LOADS LOADS SEU ERE 88 22 80 MOVABLE POSITION SLAB LOADS BENDING BET RFE et 11502302 1 2 r m File 5 29 2 42 1 ST PROGRAM CAP 17 DECK THO MATLOCK JJP REVISION DATE 12 JUN 68 PROB 40001 LKW EXAMPLE NO 1 NORMAL BENT ZERO SKEW USE STO 86P C 34HS TABLE 1 gt PROGRAM CONTROL DATA ENVELOPES OF MAXIMUMS OPTIONS TO HOLD IF 1 FROM PRE
82. IMUM 0 0 0 0 0 0 0 0 0 0 1 053 1 053 3 131 0 0 0 0 2 066E 2 066 1 902 0 9 0 0 1 902 1 902 0 0 0 0 0 0 1 902 1 902 0 0 0 0 0 0 8 566 8 54 62 01 3 73 3 73 1 9 LOAD AT LANE STA 1 18 1 18 2 38 38 38 1 9 1 9 1 9 1 9 1 9 65 3 6 LANE ORDER N P Newnes 4 316 02 4 316 02 1 586 02 5 872 01 0 0 6 345 02 6 339 02 5 475 01 0 0 0 0 NEGATIVE MAXIMUM 1 130 02 1 130E 02 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 492 01 1 407 01 0 0 0 0 0 0 1 018E 02 8 819E 01 gt 3 803 01 1 018 02 8 819 01 3 603 01 0 0 3 0 0 2 558E 01 2 558 01 4 97 4 97 38 1 18 94 4 95 3 75 LOAD AT LANE STA 1 9 1 9 0 20 1 16 0 1 18 0 38 1 18 4 97 97 18 3 624E 01 2 38 6 712 00 1 9 3 1 342 01 1 18 4 0 0 4 0 0 128 3 4T3E 02 6 1 661 02 4 107 0 0 0 1 1 661 02 107 1 0 0 76 1 678 01 0 0 0 0 0 3 803 01 34 9 3 346E 01 63 3 3 0 0 1 3 624E 01 7 36 1 3 048 01 3 66 4 0 0 4 0 0 2 1 342 01 1 18 2 558E 01 4 97 ee 0 0 0 3 6 711 00 1 9 4 0 0 4 9 0 188 1 0106 92 0 2 019 01 4 197 1 0 0 1 2 019 01 107 57 2 969 91 2 0 0 0 0 0 3 803E 01 34
83. ISTS OF STATIONS NUMBER OF CARDS AS GIVEN IN TABLE i NONE OR 14 LANES STRS SUPS NUMBER OF MOMENT CONTROL POINTS 20 25 STATION LEFT OF LANE E an SB 019 MITT Q lt I STAT ON SUPPORTS Gh Er HES E HERMES ne TATION BED OINT F E 114 eub 115 1 6 STAT IEEE BEI 065154 EErEE POINTS FOR SHEAR 1561 1111 111111 __ J posa T R Em a E 10 4 35 82 45 55 62 65 File 5 25 1 BRIDGE DIVISION BENT CAP PROGRAM CONT STIFFNESS AND LOAD DATA NUMBER O TEXAS HIGHWAY DEPARTMENT D MOVABLE POSITION LL EE E SES oj Vereor 5 v 2 1 STIFFNESS BENDING PROBLEM 242 TABLE 4 91 File 5 29 2 lt 6 PROGRAM 17 DECK THD MATLOCK WBIsFEsJJP REVISION DATE 12 JUN 68 PROB 40008 LKW EXAMPLE 5 PART 2 JUNE 74 PART 2 PART TO RIGHT OF OPEN SLAB JOINT KIP FT UNITS TABLE 1 gt PROGRAM CONTROL DATA ENVELOPES TABLE NUMBER OF MAXIMUMS 2 3 4 OPTIONS TO HOLD IF 1 FROM PRECEDING PROB 1 0 0 1 NUMBER OF ADDITIONAL CARDS FOR CURRENT PROB 2 14 6 OPTION 1 1 TO CLEAR ENVELOPES BEFORE LANE LOADINGS OPTION IF 1 TO PLOT DESIGN VARIABLE ENVELOPES 1 OPTION IF 1 TO OMIT OUTPUT TABLE 5
84. RINGER CAP LOADS CaP BENDING STIFFNESS t K FT9FT 4 245 06 4 2 5 06 0 0 2 5 06 4 2 5 06 9 0216 06 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 SIDEWALK SLAB LOADS 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 409 00 3 414 00 1 000 01 4 410 01 0 0 9 387 01 9 387 9 387 01 9 387 01 1 207 3 280 1 410 4 690 4 690 690 4 690 4 690 2 3 5 1 410 3 280 4 690 4 690E 690 4 690 3 750 9 400 4 690 0 0 0 0 0 0 0 0 0 0 00 61 01 61 91 01 01 61 01 01 01 61 61 01 61 61 00 01 MOVABLE POSITION SLAB LOADS 8 874 00 58 TABLE 4 DEAD LOAD OEFLECTIONS STA DIST X 6 250 01 0 0 6 250 01 1 250 00 1 875 00 2 500 00 3 125 00 3 750 00 4 375 00 5 000 00 5 625 00 6 250E 00 6 875 00 7 500 00 8 125 00 8 750 00 9 375 00 1 000 01 1 063E 01 1 125 01 1 188 01 1 250 01 1 313 01 1 375 01 1 438E 01 1 500 01 1 563 01 1 625 01 1 688 01 1 750 01 1 813 01 1 875 01 1 938 01 2 000 01 2 063 01 2 125E 01 2 185E 01 2 250 01 2 31 01 2 375 01 2 438E 01 2 500 01 2 563 01 2 625 01 2 688 01 2 750E 01 2 813 01 2 875 01 2 938E 01 3 000 01 3 063 01 3 125 01 3 188E 01 3 250
85. S TO HOLD IFz1 FROM PRECEDING PROB 1 1 1 1 6 NUMBER OF ADOITIONAL CARDS FOR CURRENT PROB 0 0 5 7 OPTION IF 1 TO CLEAR ENVELOPES BEFORE LANE LOADINGS 0 9 OPTION 1 1 PLOT DESIGN VARIABLE ENVELOPES 1 H OPTION 1 8 1 0 OMIT OUTPUT TABLE 5 0 ANGLE OF SKEW DEGREES 0 0 14 15 16 TABLE 2 CONSTANTS 37 16 USING DATA FROM THE PREVIOUS PROBLEM 19 20 21 TABLE 3 LISTS OF STATIONS 22 3 USING DATA FROM THE PREVIOUS PROBLEM 24 25 26 TABLE 4 CAP STIFFNESS AND DATA FOR BOTH FIXED MOVABLE LOADS 27 USING DATA FROM THE PREVIOUS PROBLEM PLUS 29 30 FIXED OR MOVASLE gt FIXEO POSITION DATA MOVABLE 31 STA STA CONTO CaP BENDING SIDEWALK STRINGER POSITION 32 FROM TO 17 STIFFNESS SLAB LOADS CAP LOADS SLAB LOADS 33 K FT9FT CK 34 35 0 20 0 0 0 0 0 0 0 6 985 00 5 5 0 0 0 0 0 3 580 00 0 0 37 14 14 0 0 0 0 3 580 00 38 5 5 0 0 0 0 0 1 842 01 39 79 79 0 0 0 0 0 1 842E 01 40 4 42 43 45 46 47 4B 49 50 51 52 53 54 DIST X FTO 5 000 01 0 0 5 000 01 1 000 1 500 2 000 00 2 500 00 3 000 00 3 500 00 4 000 00 4 500 00 5 000 00 5 500 00 6 000 00 6 500 00 7 000 00 7 500 00 000 00 8 500 00 9 000 00 9 500E 00 1 000 01 1 050 01 1 100 01 1 150 01 1 200 01 1 250 01 1 300 01 1 350E 01 1 400 01 1 450E 01 1 500 01 1 550 01 1 600 01 1 650E
86. T BRIDGE DIVISION SHEET L Lor P gy LX __________ CONTROL ___________ BENT CAP PROGRAM IDENTIFICATION OF 2 CARDS EACH PROB NO DISTRICT INITIALS DESCRIPTION OF PROBLEM ILETTERS AND OR 5 6 i 5 WABLE SYMBOLS COUNTY ra 42921 _ 4e pioi 151 __ EKAMPLE I BENT sIK EW ERE EE 5 5 IPE NOTE USE ONLY THE L Be COT kt EET OE Du ABLE t PROGRAMA CONTROL DATA i CARO FACH PROBLEM ENTER 1 TO HOLD FROM PRECEDING PROBLEM TES NO OF CARDS N THIS PROBLEM TABLE TABLE ENTER 41 CLEAR ENVELOPES OF MAXIMUM VALUES PRIOR TO MULT LANE LOADING ENTER TO PLOT ENVELOPES ENVELOPES SKEW ANGLE o 3 2 2 EL 1111111111 20 25 0 4 TABLE2 CONSTANTS 2 CARDS UNLESS DATA HELD FROM PRECEDING PROBLEM os MOVABLE LOAD DATA NUMBER OF NUMBER OF START INCREMENTS INCREMENT LENGTH INCREMENTS STATION T 15 1 200 PSP THER LOAD REDUCTION FACTORS ACCORDING TO NUMBER LANES LOADED LENE 3 UL peo 58180553055 sp stesse 16 TABLE 3 LISTS OF STATIONS NUMBER OF CARDS AS GIVEN IN TABLE 1 NONE OR 14 SUPE NUMBER OF MOMENT CONTROL PCINTS cfs CB 79 2 R nouos OF S
87. TA 1 3 1 26 51 3 51 26 cuu oun LANE ORDER 7 960 09 0 6 0 0 960 00 7 960 00 2 733E 01 2 706 01 8 093 00 0 0 5 718 01 4 763 01 4 179 01 0 0 NEGATIVE MAXIMUM 7 960 00 7 960E 00 0 0 0 0 7 960 00 7 960 00 0 0 0 0 3 51 3 51 25 2 26 3 51 40 3 48 2 28 LOAD 3 51 51 1 3 1 3 85 TABLE 6 ENVELOPES MAKIMUM VALUES STA DIST x CFT 5 000 0 9 5 090 1 090 1 500 2 000 2 5006 3 000 3 500 4 000 4 5055 5 000 5 500 6 000 6 500 T 000E 7 500 B 900E 8 500 9 0006 9 500 1 0006 1 0508 1 100 1 150 1 200 1 250 1 309E 1 359 1 4006 1 450 1 500 1 550 1 600E 650 1 700 1 759 1 09 1 4506 1 900 1 950 2 606 2 050 2 100 2 150 2 260 2 250 2 300 21350E 2 4008 2 450 2 500 2 550 2 600 2 659 2 700E 2 750 01 01 00 06 90 90 909 90 90 05 00 99 90 99 99 90 90 00 01 01 91 01 91 01 01 01 01 01 61 01 61 51 91 91 01 91 01 01 01 01 01 4 61 01 01 01 51 01 et 01 4 FY K 3 3 9 12 9 8 9 0 0 0 5 0 0 0 9 2 9 0 0 9 0 9 0 2 9 0 0 0 0 0 0 0 9 0 8 0 0 0 0 9 3 198 6 462 9 596E 1 300E 1 6
88. TABLE 2 CONSTANTS NUMBER Of INCREMENTS FOR SLAB AND CAP 8 INCREMENT LENGTH FT 5 000E 01 NUMSER Of INCREMENTS FOR MOVABLE LOAD INITIAL POSITION OF MOVABLE LOAD STA ZERO FINAL POSITION OF MOVABLE LOAD STA ZERO 56 NUMBER OF INCREMENTS BETWEEN EACH POSITION OF MOVABLE LOAD 2 MAXIMUM NUMBER OF LANES TO BE LOADED SIMULTANEOUSLY 3 LIST OF LOAD COEFFICIENTS CORRESPONDING TO NUMBER OF LANES LOADED 1 2 3 5 1 000 00 1 0006 00 9 000 01 TABLE 3 LISTS OF STATIONS NUM OF NUM OF NUM OF NUM MOM NUM SHEAR LANES STRINGERS SUPPORTS CONTR PTS CONTR PTS TOTAL 3 4 1 4 5 6 7 6 9 LANE LEFT 31 54 LANE RIGHT 31 54 76 SUPPORTS 37 47 MOM CONTR 30 37 47 54 SHEAR CONTR 30 35 49 54 TABLE 4 CAP STIFFNESS AND DATA FOR BOTH FIXED AND MOVABLE LOADS FIXED OR MOVABLE FIXED POSITION DATA STA STA CONTO CAP RENDING SIDEWALK STRINGER FPOM TO STIFFNESS SLAB LOADS CAP LOADS K FT9FT 5 1 2 430 06 0 0 5 625 01 36 1 1 010 07 0 0 7 500 01 46 1 1 0106 07 9 0 7 500 01 T9 0 2 430 06 0 0 5 625 01 5 T9 0 0 0 3 250 00 5 5 9 0 0 1 158 01 T9 79 0 0 1 158 01 5 5 9 0 0 1 8 2 01 79 79 0 0 0 1 842 01 0 0 0 0 0 0 MOVABLE POSITION SLAB LOADS 0 0 0 0 0 0 0 0 0 0 0 0 6 985 00 99 TABLE DEAD LOAD DEFLECTIONS STA Q OIST X 5 000 01 5 000 01 1 000 1 500
89. UM LANE STA 6 3186 01 6 10 LANE ORDER euwneo JUNE T4 KIP FT UNITS CRITICAL NUMBER OF LANE LOADS NEGATIVE LOAD AT MAXIMUM STA 2 396 02 5 761 01 0 40 3 402 01 3 46 9 0 0 0 71 362 02 6 041 01 1 6 041 01 3 46 7 563E 01 2 5 761 01 3 402 01 0 0 0 0 51 51 2 396E 02 NEGATIVE LOAD MAXIMUM STA 1 038 02 9 071 00 49 At Station 22 Moment at Sta 22 due to random lane load Indicates random lane load Location of left edge of movable load Indicates that random lane controls moment At Station 37 Listed Random Lane first 0 Multilane by order of ine of contribution to envelope 14 Station of the left edge of the load not necessarily th lane boundary Effects of loads are always listed at 100 regardless of number of lanes Defined lanes are numhered in order from the left Envelope Accumulation at Sta 37 Random Multilane 186 1 186 1 Dead Load Moment 136 2 Random Load 6 Sta O 72 37 Lane 1 load Sta 6 72 37 Lane 3 load Sta 48 68 02 Lane 2 load Sta 26 322 3 398 91 3 Lanes 90X D L Dead Ld Effect 0 136 2 1 0 1 80 41 0 9 2 80 41 0 9 A 75 63 0 9 Random Lane 100X Dead Load Indicates 3 Lanes 90 is maximum The 398 91 is kept for the m
90. aximum envelopes as shown the next page in the Table 6 output for Sta 37 The Random Lane result is discarded since it is less than the Multilane total 6 39 65 74 898E 01 4 898 01 7 474 91 1 101 02 REACTION K AT STA 37 63 DEAD 0 EFFECT 1 882 02 2 064 02 1 882 02 NWN 6 035 01 1 503 01 0 0 0 0 0 0 0 0 5 391 1 038E 1 038 0 92 POSITIVE MAXIMUM 1 572 1 572 1 503 9 0 1 493 1 493 4 388 4 1 572 1 572 1 503 9 0 o2 61 1 6 2 2 40 3 46 2 28 1 6 0 14 1 6 3 1 3 51 LOAD AT LANE STA 1 3 1 2 26 3 48 1 6 3 51 3 51 26 gone ORDER 2 5 5 00 0 0 5 391 01 3 392 01 1 975 01 5 357 00 0 0 6 318 01 6 035 01 1 503 01 0 0 0 0 0 9 0 0 0 0 MAXIMUM 9 071 00 5 357 00 0 0 0 0 9 071 00 5 357 00 0 0 0 0 3 8 0 14 1 6 2 26 44 48 2 28 LOAD AT LANE STA 49 3 46 0 14 1 6 TABLE 6 ENVELOPES OF MAXIMUM VALUES DIST x CFT STA 5 774 01 5 774 01 1 155 1 732 2 309 2 887 3 464 4 041 4 619 5 196 5 774 6 351 6 9266 7 506 6 083 8 6
91. e usual manner Table 2 Card 04 shows the range for the movable load to be from station 9 to station 107 i e from the face of the left rail to the open joint including the median area The median could have been excluded if desired except that the roadway width between the open joint and the median would be smaller than the width of the movable load By ignoring 78 the presence of the median the cap design will accommodate future removal of the median for widening etc The corresponding card of part two is then used for the balance of the roadway In Table 3 the location of the outside stringer on each bent has been specified to the nearest tenth of a station as a demonstration of this procedure although it will seldom be necessary to use it For the usual range of bent dimensions whole stations will be sufficiently precise for design work Table 4 for Problem 40007 is quite full and appears complicated because all loads have been separated for entry Cards 20 thru 25 define the stiffness and weight of both caps including the hinge and the gap between the caps The cap weight goes to zero at the hinge to avoid placing any load there The definition continues thru the hinge because to specify a complete increment of zero stiffness would define a gap and result in instability Cards 26 and 27 33 and 34 35 and 36 and 40 and 41 show the proportioning of stringer
92. f no data entry is made on any of these cards blank card should be written in the data area Use script to avoid inadvertent key punching These blank cards must be in cluded to make the card count equal to fourteen Cards 12 and 13 are used to locate the supports columns As many as twenty supports may be used and they must be located to the nearest whole station If Card 13 is not needed for data blank card should be written in the data area as for stringer location Cards 14 thru 16 are used to designate moment control points As many as thirty may be used Any station entered on these cards 10 will cause the program to try all combinations of lane loadings applied thru the deck slab and stringers calculation of the moments at the control point and every other station comparison of all the results and retention of the largest positive and negative values for inclusion in the envelopes Blank card should be written on unneeded cards Moment control points usually should be specified at each stringer and each support Cards 17 thru 19 are for designation of shear control points The same calculation procedures are used as those for moment control points As many as thirty may be specified Due to the internal workings of the program shear control points should not be specified within two increments of any concentrated loads i e stringers or supp
93. fferent from a slab and stringer unit except that there are no stringers Tables 1 and 2 are unaffected but in Table 3 Cards 09 10 and 11 describing stringer location must be left blank and so must the stringer count in Card 06 Since the program cannot solve a cap with only one support the single column is represented by two dummy supports one near each edge of the real column located as shown in the sketch and calculations for this example The remainder of Table 3 is filled out in the usual manner Since this bent is so simple there is a temptation to omit control points If this is done for moment no multi lane moment loading will be done and if no shear control points are specified no multi lane shear loading will be done The input data for Table 4 has been complicated by the cantilever sidewalks Since no loads may be input to the cap where the cap is undefined the sidewalk loadings must be approximated by loading applied within the defined cap The procedure chosen for this example is to transfer the shear forces generated in the sidewalk slab directly into the ends of the cap 60 The moments generated in the sidewalk slab are assumed to be absorbed in the roadway slab as the design circumstances require anyway Part one of this Example Problem 40005 investigates the cap with the varying bent stiffness and weight and the usual
94. ffness used They may adjusted by hand to the 27 1 559 01 1 5600 03 correct values if desired When fixed dead load 28 1 617 01 1 3870 03 flections important the actual stiffness should be 29 1 674 01 1 1940 03 input 30 1 732 01 9 9000 0 31 1 790 01 7 8410 04 1 848 01 5 8460 0 33 1 905 01 0050 0 3 1 963E 01 2 4070 04 35 2 021 01 1 1440 04 36 2 078 01 3 1020 05 37 2 136 01 9 0 38 2 194 01 73 1020 05 39 2 252 01 1 1440 04 40 2 309 01 2 4070 04 4l 2 367E 01 4 0050 0 42 2 425 01 5 8460 0 43 2 483 01 7 8410 04 44 2 5 0 01 9 9000 0 45 2 598 01 1 1940 03 46 2 656 01 1 3870 03 47 2 714 01 1 5600 03 48 2 771 01 1 7070 03 49 2 829 01 1 8180 03 50 2 887 01 1 8860 03 51 2 9 4 01 1 9030 03 52 3 002E 01 1 8620 03 53 3 060 01 1 7550 03 54 3 118 01 1 5950 03 55 3 175 01 1 3950 03 8t PROB CONTO 40002 LKW EXAMPLE 2 SKEWED BENT 30 DEG LF USE STO BGP C 34HS 30 DEG TABLE 5 MULTI LANE LOADING SUMMARY MOMENT FT K AT DEAD 0 STA EFFECT 11 2 582 02 22 1 975 02 37 1 861E 02 52 1 975E 02 63 2 562 02 SHEAR DEAD LO STA EFFECT 9 1 101 02 13 7 7 01 LANE ORDER POSITIVE LOAD AT MAXIMUM STA 3 308 02 0 13 2 134 02 1 6 9 543 01 2 26 0 0 3 308E 02 9 41 2 134 02 3 46 9 543 01 2 28 0 0 POSITIVE LOAD AT MAXIM
95. for each problem within the run CAP 17 required two identification cards for each problem no run identification cards and a problem number and card number punched on all data cards Options to omit the printing of the Table 4A Dead Load Results or the Table 5 Multi Lane Loading Summary have been included CAP 17 allowed only the omission of the Multi Lane Loading Summary The number of cards used for the Table 3 Lists of Stations in CAP 18 is controlled by the number of stringers sup ports moment control points and shear control points Only cards containing data are input no blank cards are now allowed in Table 3 CAP 17 required 14 cards for Table 3 many of which were blank The solution process of CAP 18 has been made more efficient and now includes the multiple loading process the same as in the current BMCOL 51 or SLAB 49 programs 18 allows loading at hinges while CAP 17 did not The output from 18 appears in decimal form rather than the exponential form used in CAP 17 Dead load moments and shears have been added to the Table 4A Dead Load Results It is now unnecessary to add additional control points just to obtain the dead load moments at special locations such as at face of columns The Table 6 Envelopes of Maximum Values for CAP 18 now also include minimum values instead of zeros as in CAP 17 The readability labeling and scaling of
96. gh the precise placement of the load for some of the control points may be skipped Card 05 is provided to enter the multi lane live load reduction factors A maximum of five lanes may be applied simultaneously If only three blocks are filled in no more than three lanes will be applied simultaneously etc Table 3 defines the lane and stringer geometry and the design control points In the appropriate blocks in Card 06 the numbers of lanes stringers or beams supports moment control points and shear control points are entered Card 07 defines the left boundary of each lane and Card 08 defines the right boundary of each lane These lanes may be the actual lanes or may be arbitrarily defined As many as ten lanes may be used Each lane must be at least as wide as the defined width of the movable load in Card 04 of Table 2 unless zero lanes are specified Cards 09 10 and 11 are used to locate the stringers or beams As many as thirty stringers may be used Stringers are normally input to the nearest whole station however if desired they may be input to the nearest tenth of a station If this is done any fixed loads transmitted thru the stringers must be proportioned to the two adjacent whole stations for input into Table 4 This procedure will be discussed later in Example No 5 For slab bridges with no stringers all three stringer cards should be left blank I
97. he station of the midpoint has been set and the remaining stations established symmetrically with respect to the midpoint station This procedure is recommended when the structure and loads are in fact symmetrical The results will be symmetrical and will serve as a rough input data check The ends of the cap were rounded to the whole stations shown After calculation of the loads and cap stiffnesses the input form was filled out Table 1 shows nothing held from the previous problem 2 cards in Table 2 14 cards in Table 3 10 cards in Table 4 retention of the random lane load request for plots of shear and moment envelopes inclusion of Table 5 in the output and zero blank skew angle 18 With regard to the random lane load a brief discussion of this option seems appropriate As indicated the option to use this loading is exercised by leaving the clear envelopes option blank When the random load is used a single movable load one truck or lane is placed on the structure independently of the defined traffic lanes and stepped across the cap at the defined movable load increment beginning at the start station ending at the stop station with the results added to the fixed load envelopes When th ffects of this loading are suppressed by entering 1 the results of the random lane load are removed from th nvelopes returning them to
98. i TO PLOT ENVELOPES SKEW ANGLE 13 n 5 TABLE 2 CONSTANTS CARDS UNLESS DATA HELD FROM PRECEDING PROBLEM EATER Lig TOCLIMINATE TABLE 5 ON MOVABLE LOAD DATA N ed NUMBER OF NUMBER START STOP MOVABLE o Cards INCREMENTS INCREMENT LENGTH INCREMENTS STATION TATION PLL ETE TET PT TY EBENEN 1111 8888 6 20 40 LOAD REDUCTION FACTORS ACCORDING TO NUMBER Of LANES LOADED LANE LOADS 1 2 4 1111111 11111 111111 11 11111111111 16 30 40 5 TABLE 3 LISTS OF STATIONS NUMBER OF CARDS AS GIVEN IN TABLE i NONE OR 14 TRS NUMBER OF MOMENT CONTROL POINTS NUMBER OF SHEAR CONTROL POINTS STATION AT LEFT OF LANE STATION AT RIGHT OF LAN Ties 111111 11 111111 1111 111 1111 41111 STATION STRINGERS FRACTIONAL TENTHS INCREMENTS PERMIT TED F FORMAT 7 E SE B S G FE Br STAT ON AT SUPPORTS T STATION AT 5 BERT CONTRO GR EEE 1 ec 25 30 35 40 4 o 52 65 File 5 25 1 TEXAS HIGHWAY DEPARTMENT BRIDGE DIVISION BENT CAP PROGRAM CONT STIFFNESS AND LOAD DATA NUMBER OF CARDS AS GIVEN IN TABLE D DATA z t MOVABLE FIXED POSITION CAP STRINGER CONTINUED BENDING STIFFNESS
99. ing supports chosen for purposes of design Cards 18 and 19 are blank Table 4 cards 20 thru 23 show the cap stiffness and dead load increasing uniformly from station 3 to 14 varying uniformly from station 14 to station 60 and decreasing uniformly from station 60 to station 71 Cards 24 thru 28 show the dead load stringer reactions and card 29 shows the live load plus impact lane reaction per station With regard to the live load definition used the exact arrangement is up to the user Thr alternate patterns are shown on the input data calculations sheet which are of equal total lane load reaction They have all been shown to indicate 20 the versatility of the descriptive method and any of the three are acceptable These particular definitions have been compared by running several identical bents with each definition with the results differing among the three by less than five percent On this basis the simple distributed load is suggested for use unless special conditions indicate use of a different definition When load factor ultimate strength design is desired the input loads should be increased by the proper factors Group usually will control cap design for flexure and shear 21 File 1284 DESIGN DSN DESIGN FOR TEXAS HIGHWAY DEPARTMENT BR DGE DIVISION COUNTY CONTROL HIGHWAY we SHEET
100. l at 01 01 0 01 91 61 1 oo WAX SHEAR 0 0 5 0 0 0 5 152E 13 1 0316 4 219 01 51 8 625 01 1 322 6 615 1 310E 315 320E 71 326E 14332E 71 338 214 344 t 350E 1 356E 0 4 9 9 0 9 0 6 0 0 0 1 0 0 0 8 0 0 0 4 0 9 4 0 6 0 9 8 6 9 618 TT 56T9E TT TAIE 7 803E 7 865 7 92 T 9B9E 8 051E 78 113E 6 174 8 236 6 29 78 360E 6 422 1 497 2 2956 2 211 2 218E 09 01 v2 02 e 62 02 99 91 01 91 al 0 91 01 01 01 01 01 ot 01 02 o2 62 02 56 2 600 01 5 855 57 2 850 01 6 679 02 5B 2 902 01 5 999 02 59 2 959 5 323 92 50 3 000 81 650 02 1 3 056 01 3 979 02 3 140F 01 3 312 02 63 150 01 2 548 02 64 200 91 1 986 92 65 3 250 01 1 327E 92 66 3 300 91 5 711 01 6 3 350 91 1 T 4E 00 68 3 500 01 556 01 69 3 450 01 4 219 01 3 500 01 1 031 01 3 55 01 12 21 37 12 3 600E 0 9 6 0 0 T3 3 6506 91 6 9 6 4 7 3 700E l 0 9 75 3 750 91 0 9 The first stringer occurs at Sta 7 The ghear values printed are the average of the values to the left and right of the station The value of 63 75 represents the average of 1 8 to the left and 130 5 to the right
101. n the Continued column The distribution is ended on the last card by listing the last station in the To column and leaving the Continued column blank The intermediate values at each unentered station will be interpolated linearly by the program between the values listed in each entry Nonlinear data must be approximated by a series of short straight line segments since the program transitions between varying input values by using linear interpolation The three Fixed Position Data blocks should be used in accordance with their headings Stiffness values for the cap are entered in the first block sidewalk and or slab load values 12 applied to the deck slab should be entered in the second block and stringer and cap dead load values and any other fixed position loads entered into the third block 11 values should be entered in exponential form The last data block Movable Position Slab Loads is used to enter movable loads live loads The configuration of this loading is optional with the user and is defined by entering the stations as for any other load but with respect to the Number of increments defined in card 04 The remarks column is not key punched and is provided for the sole use of the user to note each entry if desired Example Problems Six example problems follow the summary to illustrate the input methods described above Comments pertaining to each
102. oblem is accomplished in Table 1 Placing 1 in the appropriate block will store the envelopes Table 2 Table 3 or Table 4 Any or all of these may be held from the previous problem If storage is not wanted they may ither be left blank or marked zero The total number of cards in Tables 2 3 and 4 must be counted and entered in the blocks provided in Table 1 Table 2 must have either no cards leave blank or two cards and Table 3 must have either no cards leave blank or fourteen cards When these tables are held from the previous problem the card count is zero and the blocks are left blank When Table 4 is held from the previous problem new data may be added to it in which case only the number of added cards is listed in the block for Table 4 Data added to Table 4 will be combined algebraically with any held data at the same stations If Table 4 is held and no data is added this block is left blank Provision is made in Table 1 to clear the envelopes of results of the random lane loading prior to placing the lane loads in accordance with AASHTO Placing 1 in this block will return the envelopes to the fixed load usually dead load values No computation time is saved by exercising this option Plots of the maximum envelopes of shear and moment may be requested in Table 1 Choice of scale is automatic and is listed on the output Provision i
103. orts The station of a shear control point must differ by a t least two from any adjacent concentrated load including support print the calculations will not be made for the illegal control point and the program will continue 11 calculated results will be correct ts When this is violated an error message will Table 4 gives magnitudes and locations of stiffness and loads Table 4 begins with Card 20 and is unlimited i e any number of cards may be included These cards may be in any order except that cards in a stiffness or load distribution sequence must be in order 11 The first three data blocks are used to locate or give the range of data entered in the succeeding blocks Giving the initial station in the From column and the final station in the To column enters uniformly distributed loads and constant stiffness The Continued column is not used Concentrated loads are entered by using the same station in the From and columns Both columns must be used When either the stiffness or the distributed load vary they may be entered into Table 4 by interpolation To do this the initial station is used in the From column the To column is left blank and I is placed in the Continued column Inter mediate stations as desired are listed in order on succeeding cards in the column followed by 1 i
104. particular design condition are made preceding each example The output and plots for each example have been marked individually for explanatory purposes Limitations and Restrictions When using the program for various special conditions or unusual situations not covered by the included examples care should be taken to comply with these rules 13 1 There must be at least two supports 2 cap must be stable 3 No cap loads concentrated or distributed may be input where the cap is hinged or not defined 4 There must be at least two stringers except for slab bridges which must have zero stringers 5 The deck slab must be continuous over all defined stringers 6 Defined lanes must be at least as wide as the defined movable load Unless zero lanes are used 7 Defined lanes must not overlap Failure to comply with any of the above will terminate all calculation attempts for a problem i e the program will not run There are several other errors that can be made without terminating the program An error message will print defining the error and the program will continue and will give correct results which may or may not include all the desired results When input data errors are made in a problem from which calculated data is held into subsequent problems all problems involving the erroneous data will be terminated This does not apply of course
105. rious input and output options are presented in greater detail The principal portion of the manual consists of example problems including preliminary calculations of input data Sketches complete output listings and plots The output listings and plots are annotated to explain results that have often been misunderstood These examples are intended as demonstrations of the program and should not necessarily be taken as the best or only way to analyze bent caps TABLE OF CONTENTS PARE RAC Bis oy Gr eed SHE ed aed x GS aoa 33 INEFOGUCELON 1 APOIA RENE OIM M Program Features curb 8 9 2 2 Program Calculation Procedures 4 Input BEN ease dod pue du ed exe eie S dole S PUES 5 t x eher ere ex en eR 22 8 CPP 9 Table sk 11 Example Problems 9 9 mm o 9 awe 1 3 Limitations and RestruyctiOns OSES iiw 13 16 AU Ones der pure uus 17 EXAMPLE NO 1
106. s also made in Table 1 to suppress the print of Table 5 by entering 1 in the appropriate block Again no computation time is saved This option is provided solely to avoid bulky output When Table 5 is suppressed there is no separate listing of fixed load and movable load results 11 results are combined in the envelopes as totals If Table 5 is desired leave this block blank The skew angle if any is the last entry in Table 1 The Skew angle is zero normal bent leave blank The skew angle must be entered in degrees and decimals of a degree and must be in exponential form 20 307 2 050 01 Table 2 defines the increment and the movable load range The total number of increments used to describe the bent and roadway slab should be entered in the first block and the increment length which applies to both fixed and movable loads should be entered in the second block The next four blocks in Card 04 define the limits of the movable load The first block is for the width of the movable load in stations The start and stop stations are the positions at which the left edge of the movable load is placed and moved in steps across the cap The step size shown as movable load increment on the form is the number of increments used by the program between placements of the movable load A step size larger than 1 will reduce computation time althou
107. scarded Random Lane Load This is the defined movable load applied to the deck slab beginning at the start station and placed at each designated step across the deck slab without regard to defined boundaries and ending at the stop station A step is the number of increments specified on the input form for the movable load increment Table 5 This output table lists all movable load positions used and indicates which controls for each moment or shear control point Dead loads are separated and listed in this table and are not listed separately anywhere else Control Points Control points are those stations for which maximum shears or moments are desired These are the only stations for which AASHTO lane load patterns will be used in calculating maximums Fixed Load Dead load or other loads always present Movable Load Live load plus impact or such other loadings as the user desires to have moved about for maximums Bending Stiffness Usually Ec g If the cap is of uniform section the actual value may be arbitrary except that it should be large say 1 000 000 minimum If too small the program may get into solution difficulty causing erroneous results Since kip feet are used for input then stiffness must be input in kip feet squared Program Calculation Procedures The Bent Cap Program uses a discrete element model defined
108. solution is made for a new position of the random load the resulting values at all stations are compared with the previous values and if any new value is larger it replaces the previous value in the envelope After completion of the random lane loading the traffic lane loading is automatically arranged and values calculated for each pattern used The results are tabulated in Table 5 along with the random lane load results for each control point designated A complete solution of the cap is made for each pattern tried and the maximum values at each station are computed and used for further expansion of the en velope if larger however only the maximums at the designated control points for each pattern are listed in Table 5 Input Form Data is entered on the Bent Cap Program input form com pleted copies of which are included with the example problems The first two lines cards 01 amp 02 are self explanatory and are to allow the designer to identify the output This data is listed on the output exactly as it is input The third line Table 1 card 03 allows the user to direct the program to perform several optional operations The first four blocks allow the user to bold data over from the previous problem both to avoid unnecessary duplication of input data and to keep output data for later use The next three blocks are for entering the total card counts of Tables 2 3 and 4 The
109. t Data Calculations 3000 x 144 1 01 6 07 Use Increments Z F x 4 0x 0 130 L 500 A Me of Increments 7 500 E 0 Supecefrocture Dead Lead Sidewalk Over load AASHO Art s geo Wa 4 333 125 0 0 150 5 00 ff lene impact 150 Allowable uit 30 5 00 2 3 250 2007 Fre LLRs Sidewalk Dead Load Concentrated 7 64 located Stas Wine e 225 150 25 0 and vel Ste toene UH Wau 130 18 9 1158 Each end Live Load Impact Vehicle 3 I 350186 0 Max 1 25 45 LLR 32 0 44 8 x 0 4 49 6 L ane Ulf 191 z 1 3 1 30 x 9 6 597 83 77 20 6 945 Live Lead Pedestrian Coreen tr Wira 0 085 ntrated at Cap Ends Bent React 0 085 4 0125 2 5 UI LL 51 3 x 6 5 2 8 2 Data At ends Stiffness 53330 3000 x 164 2 43 E O amp 7 Woi 2 5 x3 O 10 130 125 77 5 625 01 62 9 TEXAS HIGHWAY DEPARTMENT BRIDGE DIVISION or 2 Kw BENT CAP PROGRAM IDENTIFICATION OF PROBLEM 2 CARDS EACH PROB 40005 PROB NO DISTRICT INITIALS PROB _FOOOS _ COUNTY OF PROBLEM LETTERS AND OR ENTER 1 TO
110. the fixed load values although the random lane results still appear in Table 5 The random lane load computations are made in either case thus no computation time is saved if the random lane results are sup pressed Table 2 Card 04 shows 74 increments to be used with a length of 0 5 feet to define the bent cap The movable load will be 20 increments 10 feet wide with the initial position of the left edge at station 3 face of rail and the final position of the left edge at station 51 10 feet from face of rail The movable load will be stepped 1 increment between successive solutions of the cap Table 2 Card 05 shows a 19 maximum of 3 movable loads for any one solution and the appropriate reduction factors for 1 2 or 3 lanes per solution Table 3 Card 06 shows 3 lanes 5 stringers 2 supports 5 moment control points and 6 shear control points Card 07 shows the left boundary of each lane and card 08 shows the right boundary of each lane Card 09 shows the station of each stringer Cards 10 and 11 are left blank and so marked Card 12 shows the column locations and 13 is left blank Card 14 shows the design control points for moment The end stringers are omitted since the cantilever moment will be maximum under the random lane load Cards 15 and 16 are blank Card 17 shows the design control points for shear must be 2 increments from concentrated loads includ
111. uired a different sequence is used Also note that stringer dead loads have been entered separately for the outside stringers at stations 7 and 67 The program will properly combine these loads algebraically If desired these loads can be combined and entered as totals The remaining cards show the input for the ultimate loads required for load factor design Referring now to the input for problem 40004 Table 1 shows that envelopes from the previous problem have been held as have Tables 2 and 4 Plots of the final envelopes have been requested and the 30 degree skew angle has been entered Table 2 is left blank and Table 3 is filled out for the six beam 34 foot roadway section Table 4 is left blank since it has been retained from the previous problem 44 File 1284 DESIGN TEXAS CK DSN HIGHWAY DEPARTMENT DESIGN FOR 17 9 BRIDGE DIVISION NORMALIZED BENT Input Data Calculations Span lengths 60 90 90 Sew Use Increment 5 000 0 No of Inc 74 Stringer Dead Loads From GO Span Slab Diafs 4 05 5 8 n2 Rail T2 4 x 2n 0 218 xGO Beams x 98 33x0 5 5 S Totals 202 DL Stringer Reaction 2025 40 4 Ol 30 2504 5 250 01 From Span Slab 2 Diafs 24 05 798 162 Rail 2 6 9 Beams 538 0010 22 ETE D L Stringer Reaction 38 96 53 5 ng UIt D L
112. way centerline or other reference line and the stationing proceeds as in Example 1 As can be seen from the sketch of the normalized bent for Example 2 this bent when normalized has the same roadway and beam spacing dimensions as Example 1 as expected but has 3 columns instead of two due to the skew The program will use the normal roadway dimensions for distribution of the live load in the same manner as for an unskewed bent These loads are then applied to the bent at the input stringer stations The increment length is increased automatically by skewing the normalized or input increment length thus placing the stringers in the correct position on the skewed cap The cap dead load is also adjusted automatically for the skew and the bent is then solved 31 Since the roadway data for Example 2 is identical with Example 1 Table 2 has been held from Example 1 as indicated consequently the card count for Table 2 is zero and left blank on the form The skew angle is entered in degrees and decimals and in exponential form No cards will be included for Table 2 since this data has been held Blank card should not be written in these spaces since the cards must be omitted when holding this table Table 3 has been filled out to reflect the geometry of the normalized bent In Table 4 the cap data is entered card 20 in the form usually used
113. y be combined with frame analysis moments by super position if desired Program Features The program will automatically apply multi lane loadings as required by AASHTO within the defined traffic lanes and determine the resulting maximum shears moments dead load de flections and total reactions on the columns Various input and output data may be stored for re use in the subsequent problem Plots of output data may be requested if desired Definitions of Terms Increment The length of cap represented by one station The increment length is optional with the user but is usually set equal to 6 Due to the internal working of the program a large number of increments will not necessarily insure greater precision A maximum of 300 increments may be used however calculation and print out time are both increased in proportion to the total number of increments Station The number of increments from the origin Origin Usually the left most point on either the cap or the deck slab Envelop The set of maximum values for every station gen erated by each solution of the program One is generated for maximum positive and negative moment and one is generated for maximum positive and negative shear After each computation for a particular station values are generated at each station and compared with previous values The larger is kept and the smaller is di

Download Pdf Manuals

image

Related Search

Related Contents

製品一般及び取扱注意事項  Vitantりni〝@  download  The GeneSpring User Manual for version 4.1  B1275 SPX Product Manual - Barnett Engineering Ltd  25 Jet FourStroke - Brunswick Marine in EMEA Center  

Copyright © All rights reserved.
Failed to retrieve file