Home

WTP2 User Manual - A and T Instruments

image

Contents

1. 52 1 zle H 35 A 32 1 36 1 34 0 67 A 60 1 62 1 12 1 72 0 40 1 39 0 68 2 25 0 96 0 90 1 89 1 28 0 el 43 0 42 1 Line 1 defines the number of Transmit Groups in the file The first line of each Transmit Group defines Number of variables Transmit delay Transmit offset Transmit Node ID Up to a maximum of 5 in each group Effectively sets the update rate 0 10Hz 1 5Hz 2 3 3Hz 4 2Hz 9 1Hz Allows spacing of data transmission on network to optimise bandwidth Allows full system compatibility with other Fastnet devices Example of Transmit delay and offset on Fastnet Traffic can be seen in the userout d section Further lines in each group Fastnet Function number Function name Variable number Decimal Places Must match the number defined in the menu see fixmenu d Name displayed on the FFD not transmitted in fixout d reference only From bg_vars d The number of decimal places shown on displays 4 11 Chapter 4 Data Files Note that the fixout d file does not support context switching or time based oscillation of functions userout d should be used for this purpose Defining Custom Fastnet Menus usermenu d This file enables you to either add a function to an existing menu or add a new menu with associated functions In the file example shown below we have added two new menus called DECKMAN and SAILS with functions and we have also added two functions
2. sam_startup sampler cld37f3e End of startup Appendix D Diagnostic messages displayed via Terminal This allows various elements of the WTP2 to be checked as follows Ethernet configuration Ethernet adapter PCI E100CE1 IP Address te b92 1687022 Subnet Mask E 255 2554 25540 IP Address 20000300 Subnet Mask 0 0 0 0 Software Version B amp G WIP2 04 11 05 V104B5 Octal Initial system configurations completed 690 690 690 690 690 690 690 init begin User Menus Loaded B amp G Menus Loaded Loading User Variables Loading B amp G Variables Init end Thread eld8b692 COM ports is use and baud rates HDG HDG GPS GPS comport 4 baud 4800 comport 5 baud 4800 comport 1 baud 4800 comport 6 baud 4800 NMEAIN comport 2 baud 4800 RS232 and Deckman initiation RS232 Thread elfb0032 DMN DMN DMN Preparing Fastout Init Deckman Thread 61d40f9a The WTP2 boot has completed End of startup D 2 Appendix D Diagnostic messages displayed via Terminal Diagnostics Following the boot procedure the WTP2 will continuously display various diagnostic characters and messages these are described below Data is being transmitted on Fastnet to displays sent at regular intervals Valid GPS position received from GPS1 Valid GPS position received from GPS2 1 Valid compass data received from Compass 2 Valid compass data received fr
3. The first line of each group defines Number of variables Up to a maximum of 5 in each group 4 13 Chapter 4 Data Files Transmit delay Transmit offset Effectively sets the update rate 0 10Hz 1 5Hz 2 3 3Hz 4 2Hz 9 1Hz Example of Transmit delay and offset on Fastnet Traffic eh 0 1 second Further lines in each group Fastnet Function number Function name Variable number From bg_vars d Decimal Places Variable switching Allows spacing of data transmission on network to optimise bandwidth Delay 2 Offset 1 Delay 2 Offset 0 No delay or offset Time Must match the number defined for the menu usermenu d Name displayed on the FFD once data is transmitted see below for options The number of decimal places shown on displays The userout d file can be configured so that variables oscillate on a time basis or on a context sensitive basis where the variables switch whether the boat is sailing upwind reaching downwind or in the pre start These options are shown in the modified example below 2 3 Al A2 A3 A8 AQ 1 0 MAIN_POS Ek JIB_CAR_P 116 2 JIB CARS 117 2 AWA 10 0 TWA 16 O TWA 16 O TIMER 1 0 9 8 CWA e 65 1 CWS KT 66 1 Here we have two changes e The two Jib Car variables oscillate automatically the time delay is set via the osc time value in Deckman Instrument Control Settings e We have added an output that switc
4. 5V 5V 5V gt d GES JAAMA coca AAAA COGE aca eaaa eee faltar a E Gece peen pere Per Seo Seco eco EEN Deckman COM2 Speed 2 Rate Gyro Anlg 13 Anlg 14 Anlg 10 Anlg 12 Anlg Sp0 NMEA SV SV 12V SV SV CHAAR Em aebgbelGebbel BOBS GO nan kasse Gore Masthead Unit Starboard Port Anlg 5 Anlg 6 Anlg 7 Anlg 8 Anlg 9 Speed Sensor Speed Sensor 5V 5V 5V 5V 5V Connector wiring Wiring is shown when looking into the rear of connector Secure cable to connector using cable tie 6 6 Chapter 6 Installation Power SE E Red 12V Black 0V Screen Fastnet BE Red Black White Green Screen Port Speed Sensor Note that the sea temperature input is Analogue input channel 15 and can be used for other functions if the Green Signal Analogue Speed Sensor Red and White 5V supply Yellow Sea temp input Black 0V Screen paddlewheel unit is not supplying sea temperature ZZE 6 7 Chapter 6 Installation Starboard speed sensor BG Speed 2 Analogue Speed Input SS EN Green Signal Analogue Speed Sensor Red 5V supply Black 0V Screen Green Signal Analogue Speed Sensor Red 5V supply Black 0V Scree
5. 94 GGRng GGR 0 0 95 HHDiff HHD 0 dl 96 MastWnd MWM 0 0 1 97 AnSp4 AS4 0 0 0 98 AnSp5 AS5 0 0 0 99 AnSp6 AS6 0 0 0 100 gpslcog GO 0 0 2 101 gpslsog sgl 2 0 0 102 gpslahd ghl 0 0 0 103 gpslsva svl 0 0 0 104 gpslutc utl 0 0 0 105 gps2cog cg2 0 0 2 106 gps2sog sg2 2 0 0 107 gps2qhd qh2 0 0 0 108 gps2sva sv2 0 0 0 109 gps2utc ut2 0 0 0 The lines define the variables as follows Variable Number The unique identifying number for the variable Long Name Descriptive name for the variable must not contain spaces Short Name Short name for the variable Decimal Places The number of decimal places that data is stored with Absolute Value Absolute value 1 or not 0 new variables should be set to 0 Data Type Standard data 0 180 to 179 1 0 to 359 2 time 3 distance 4 Input Configuration Files Defining Analogue Inputs and derived variables sampleXX d Note XX refers to a two digit number such as 08 This file lists all the analogue inputs pulse inputs derived variables and user variables see page 4 25 to the WTP2 The variables are split into sections according to the type The figures in the first line of the file give the number of inputs of each type figures in brackets refer to the numbers in the example below note that the number of items in the uservars section are not recorded here Analogue 16 data received via the analogue board e g heel angle Pulse 4 data received as a pulse dire
6. 25 25 RE 25 30 25 constant 6 4 variable 91 variable 91 The first line of this is taking the input from samplexx d for Leeway and ensuring it is set to 0 the output of the first line is 0 no matter what the input refer to example 1 above The table then takes the value of Selected Heel bg_vars variable 89 and the equals signs means that we are assigning values for leeway based on heel The effect of this table would be that for Heel values up to 25 the value assigned would be exactly the same as the Heel angle Above 25 the assigned value will stay at a constant of 25 since when the system will interpolate between 25 and 30 the assigned value remains 25 and beyond 30 the extrapolation will still grve the value 25 The next line will multiply by the leeway constant of 6 4 and each of the final two lines will divide by selected boat speed bg vars variable 91 to complete the formula Summary The following provides a summary of the operation of the calibration tables The calibrations are applied sequentially so that those specified first in a file will be applied before those specified later Identifiers recognised are table constant and variable Number 1 indicates that the calibrations are applied directly to the variable Any other number indicates that the calibration is with respect to a different variable in the WTP2 database with the number being the variable number from bg_vars d Sensor Calibration
7. 3 Linear for 180 to 179 4 Table 5 Table for 0 to 360 xi x2 6 Table for 180 to 180 The next two numbers are x y and the final two are x2 y2 x is the independent variable which is actually a voltage on the AD board or pulses per second for boat speed and wind speed and y is the dependant variable that we need to calibrate We will use the example of calibrating a compass A possible simple calibration file heading cal might look like 2 00 20 5 25 This would add a 20 offset it is unlikely that you would ever have to apply such a large offset to a compass the large numbers are just to illustrate the functionality below Functions 4 5 and 6 are more complicated The first line of the file is the same as for calibrations 1 2 and 3 after this you create one or more tables to further calibrate the variable and these operate on whatever the output is from the first line The first way that this can be done is with one simple table of corrections Advanced calibration example 1 A sample file might look like D0 20005525 Table 1 0 10 180 10 360 10 The first line of the file still works the same as before but the result is then further calibrated from the table The 1 following the word Table indicates that the corrections are applied directly to the output from the initial calibration Next the addition sign after the 1 indicates that the corrections in the table ar
8. Clicking this button will cause the next set of incoming data to overwrite the old even if it falls outside the error bounds This is not normally required but may be necessary under some circumstances gt Bec wip Of lasl ni Bounds variables bound Heel 9999 Boatspeed 9999 AW angle 9999 AW speed 9999 Leeway 9999 d Course 999 IW angle 9999 TW speed 9999 TW_Dirn 999 Orig TWA 9999 Orig TWS 9999 Orig TWD 999 Ext SOG 9999 Ext COG 999 Heading 999 GGAUTC 9999 GGASVA 9999 GGAQHD 9999 latitude m 1 00 longitude m 1 00 Chapter 2 Basic Operation Calibrate Boatspeed DI This function helps you to calibrate your boat speed correctly and works in exactly the same way as the traditional method of measuring the time taken to cover a known distance Deckman will automati ically calculate the calibration values from the tests you select e Calibrate Boatspeed E Default distance 0 500 Nm CLOSE Time Set Log GPS DelTime Cse Startrun 1 12 10 40 0 5000 0 5070 0 0000 02 49 000 2 12 13 41 0 0000 00 11 End run Use current Selected runs in calculation none 1 constant Calibration distance C linear change e set C GPS Calibration 0 986 End run marks the end of a calibration run Click Start run at the beginning of the run and then End run to finish Details of each run are displayed in the table the start
9. Deckman Control Facilities see page 2 7 The configuration of the WTP2 can be changed to suit individual requirements by using the data files The data files described below control how data is input onto the WTP2 stored in the variable database and output to Deckman and the displays All of the variables in the WTP2 database are listed in the file bg_vars d Inputs from the various components masthead unit paddle wheels strain gauges and so on are fed into the WTP2 via the sampleXX d compassX d gpsX d and nmeainX d files The structure of the menus on the FFDs is controlled by the fixmenu d and usermenu d files and the outputs to these menus are controlled by fixout d and userout d Deckman is supplied data values from the WTP2 defined by the content of the dmnvars d file and allows control of WTP2 settings calibrations and damping values via settingX d svcals d and damping d respectively Occasionally you will see some rategyro xx files within the data directory These are diagnostic files generated by the WTP2 and should be deleted if they have not specifically been requested by B amp G There are other files which are not shown for clarity but are detailed in the following chapter Input files Variable control i Output files Output devices m fixmenu d gt fixout d o sampleXX d R Displays gt usermenu d compas
10. Rate Gyros During assembly the output of each channel is measured as mV per degree per second So if for example the measured response of the gyro was 111 1 mV degree sec then a 1 0 volt input would indicate a pitch or roll rate of 9 0 s A reading from the AD board of OV indicates a rate of 0 s therefore appropriate calibration values would be 0 0 0 0 and 1 0 9 0 There should be no need to change the pre set values unless you want to see the effect of removing one or more of the sensors Boat Speed This calibration is expressed as Hertz per knot Hz kt so for a calibration of 3 50 Hz kt enter 0 0 0 0 and 3 50 1 0 Both port and starboard should be calibrated 5 4 Chapter 5 Parameters Wind Speed The B amp G systems use W 1 A H B where A is calibration in Hz kt H is the anemometer frequency and B is an offset So for the standard of A 1 04 and B 1 04 the equivalent WTP2 calibration is 0 1 04 and 10 4 11 04 1 0 00 1 04 10 4 11 04 Mast Rotation The pre set value for this is for it not to be used It is straightforward to use if you have the facility and is a requirement for accurate wind data if you have a rotating mast The options are for mast rotation correction to be off 0 in absolute value mode for mast twist 1 or in mast rotation mode 2 for fully rotating masts If the mast rotation correction is used set to either 1 or 2 then it is necessary to have a suitable i
11. ie Not implemented acceleration 4 SmoothVS sVS Moving average of boat speed Not implemented 5 MHU A R AR Masthead unit red phase 6 MHU A G A G Masthead unit green phase 7 MHU_A B A B Masthead unit blue phase 8 MW_angle MWA Measured wind angle SA 9 MW_speed MWS Measured wind speed 57 10 AW_angle AWA Apparent wind angle 51 11 AW_speed AWS Apparent wind speed 4D 12 Leeway Lee Leeway 82 13 Heading Hdg Magnetic compass heading Not including leeway 49 14 Course Cse Course Heading and leeway combined 69 15 dotCourse dCs Rate of change of course Not implemented 16 TW_angle TWA True wind angle 59 17 TW_speed TWS True wind speed 55 18 TW dim TWD True wind direction 6D 19 VMG VMG Velocity made good TF 20 GW_speed GWS Ground wind speed 21 GW dim GWD Ground wind direction 22 Orig TWA ta Original true wind angle 23 Orig TWS ts Original wind speed A 1 Appendix A WTP2 Variables Short Normal Name Name Description Notes Fastnet Func 24 Orig TWD td Original True Wind Direction 25 MastRot MRo Mast Rotation 9C 26 TWD Off wdo True Wind Direction offset 27 sel SOG SOG Selected COG selected from GPS1 or 2 EA 28 selCOG COG Selected SOG selected from GPS1 or 2 EB 29 VMC VMC Velocity Made Good relative to Course EC 30 Opt VMC OVC Optimum VMC 31 Cse OVMC COC Course for Optimum VMC 32 Vs target TS Target Boat Speed 7D 33 Vs targ T Boat Speed as a percen
12. Boat Speed and GPS Inputs on page 2 4 for more information sel speed controls which input is used for boat speed Refer to Multiple Compass Boat Speed and GPS Inputs on page 2 4 for more information sel_GPS controls which set of GPS data is used for position SOG COG etc Refer to Multiple Compass Boat Speed and GPS Inputs on page 2 4 for more information boatlog this allows you to reset the Log variable to any value you wish though zero is likely to be most useful 2 9 pacwr oE of wiaf Settings variables mast_height leeway_cal use_heel use_gyro variation osc_time UP RE_angle RE DW angle TWS factor use mrot use 3D damp 3D sel comp sel heel sel trim sel speed sel GPS boatlog Chapter 2 Basic Operation Bounds Checking To prevent errors caused through the loss of characters between the instrument system and the PC WTP2 allows the user to set limits on input values The incoming data is checked against the previous values This display allows you to change the bounds that are used for each incoming variable smaller values make errors less likely but increase the possibility that the numbers will stick because of dramatic boat manoeuvres The values shown in the example should be used unless you are experiencing difficulties with a particular variable Reset Bounds Checking KH Ye
13. The compassX d files define the inputs of serial or networked compass sensors and their associated heel and trim sensors see Appendix C Supported Compass Types Two examples of compass configuration files are shown below Example A Using a NMEA serial compass In this example we are configuring a standard NMEA compass input with heel and trim data the format is as follows 3 4800 N 8 1 headingl 3 13 headingl cal headingl fil heell 3 0 heell cal heell fil triml 3 57 triml cal triml fil Line defines the COM port settings COM Port WTP2 COM port used Baud Rate Baud Rate setting to suit the input Parity Parity setting to suit the input usually N for no parity Data Bits 7 or 8 to suit the input Stop Bits 1 or 2 to suit the input Compass Type Identifies special compass types see Appendix C All other lines define variable inputs for heading heel and trim from this compass Variable Name Name of the variable for user information only COM Port Same port as the first line above Variable Number Variable number where data is stored from bg_vars d Calibration File Filename of the calibration file to use Filter File Filename of the filter damping file to use 4 6 Chapter 4 Data Files Example B Using a B amp G networked compass In this example we are configuring a B amp G Halcyon Gyro Stabilised compass sensor which is present on the B amp G Fastnet network probably attached directly to an AC
14. for masthead unit offset and mast rotation or twist then the rate gyro corrections for pitching and rolling are applied and then the triangulation with Boat Speed is done and Course added to get the Original Wind speed and Wind Direction The adjustment tables for wind shear and gradient are applied to get True Wind speed and True Wind Direction and then these variables are filtered From these filtered variables the True Wind Angle is calculated and a back triangulation is done to calculate Apparent Wind Speed and Apparent Wind Angle Therefore the order of wind calculations is measured wind corrected wind original wind true wind apparent wind It is the data from the last two steps of the calculation that you actually see on the displays The various stages in the calculation can be seen in more detail in Appendix E Wind Calculation flowchart 5 7 Chapter 5 Parameters Sensor Damping Boat Speed To understand the filtering of the boatspeed functions it is necessary to consider the order in which WTP2 calculates the various functions and where filtering is applied this is shown in the flowchart below Port Paddlewheel Stbd Paddlewnee 8 Paddlewheel 2 E portpad input stbdpad input vs2pad input portpad cal E A cal vs2pad cal portpad fil E A fil vs2pad fil variable variable variable port VS 6
15. full background illumination on all system displays Further short presses of the key decrease the illumination in three stages from full brightness to OFF The next press of the key enables full illumination again This operation at any one FFD invokes the same sequence on all displays connected to the system However display lighting can be localised so that the level is adjustable for individual displays Caution Do not press the Light key for longer than one second as this will switch the displays off Should a user inadvertently power off the displays it will be necessary to re boot the WTP2 system to ensure that all non standard functions are displayed on the FFDs correctly Page Key Operation of this single key enables the user to quickly access eight functions of the WTP2 System by selecting any one of the four pre set page displays 2 functions per page with a simple key press Default Pages e True Wind Angle Opposite Tack True Wind Direction Timer e VMG to Waypoint Cross Track Error e Course Over Ground Speed Over Ground 2 1 Chapter 2 Basic Operation Notes e Ifyou are lost in the system press the Page Key to immediately return to the top level display The initial four pages can be reconfigured using the remaining keys and the menu system see Page Display Configuration below e Successive presses of the Page Key displays each page in rotation e Holding down the Page Key for 2 seconds initia
16. loadcell d The addition of this file allows the WTP2 to accept serial inputs from loadcell systems which are generally used for large numbers of loadcells If a small number of loadcells are installed it is normal to use an analogue device and to connect to analogue inputs on the WTP2 The loadcell input accepted via loadcell d is as follows additional loadcells increment n as their identifier Un xxx xx lt CR gt lt LF gt 6 4800 N 8 1 forestay 1 58 forestay cal null fil Chapter 4 Data Files Line 1 defines the COM port settings COM Port WTP2 COM port used Baud Rate Baud Rate setting Parity Parity setting to suit the input usually N for no parity Data Bits 7 or 8 to suit the input Stop Bits I or 2 to suit the input The additional lines control the input variables as follows Variable Name variable name for reference Sentence ID n in the example sentence above Variable Number Variable number where data is added to from bg_vars d Calibration File Filename of the calibration file to use Filter File Filename of the filter damping file to use Example on using the data files Imagine you wanted to add a linear displacement transducer to your system to tell you the forward or aft position of the mast foot This would give out a voltage that would need to be fed onto the analogue Note If your system requires additional inputs the WTP2 can be supplied with an analogue expansion card
17. the WTP2 Typical Setup The WTP2 is supplied with a straight through Ethernet patch cable that allows the WTP2 to be connected to an onboard PC network via a hub or router Power WTP2 WTP2 Ethernet Cable Straight Through BGH 194017 Cable 1 2 Chapter 2 Basic Operation Chapter 2 Basic Operation The WTP2 is controlled from a PC running Deckman software however basic control of the display of data around the boat is carried our via the Full Function Display FFD units WTP2 Menus Seen on the Full Function Displays FFDs When using the WTP2 all the information is contained in menus on the FFDs The FFD simultaneously displays two functions with accompanying descriptive text Chapter 4 Data Files outlines how it is possible to customise these menus and the data that is shown This section simply describes how to navigate these menus and display the data available Page Key Scroll Up Scroll Down Enter Key Lights Key The Keys Keylock To prevent accidental changing of the data displayed two keylock features are available on the FFDs e Press the Enter and Lights keys simultaneously once All keys except the Page key are locked e Press the Enter and Lights keys simultaneously once more All keys are locked e Press the Enter and Lights keys simultaneously a third time All keys are unlocked Lights Key This key controls the level of illumination on the displays One short press of the key provides
18. the intercept is changed by and is commonly used for sensors such as depth rake or rudder where the zero position may have to be changed 1 amp 2 Change the slope or inverse slope alters the gradient of the calibration without changing the offset The inverse slope option is typically used in boatspeed calibration where the slope is normally presented as its inverse in Hz Knot 3 Set the value alters the slope to match the output to the value entered without changing the intercept This is often used on load sensors where the intercept is known to be zero tonnes at zero volts and then the sensor is attached to a known load for calibration 4 18 Chapter 4 Data Files Damping control in Deckman damping d This file defines which variables have damping control available in Deckman The following format is the default file it is flexible for the user to add delete items as required boatspeed D 2 4 1 headingl D 13 4 1 gyrohdg D 33 4 1 course D 14 4 1 TW_speed D 17 4 1 TW_dirn D 18 4 1 Each line defines a separate damping option format as follows Variable Name As it appears in Deckman D Denotes a damping value Variable Number The variable number to apply damping from bg_vars d Width of field Width of display field in characters inc decimal point Decimal places Number of decimal places required Note there are no actual damping values in this file these are stored in the relevant fil fi
19. with the installation or maintenance of the system 111 iv Contents Contents CHAPTER 1 INTRODUCTION TO THE WTP2 mnnnnnnnnnnnnnnvvennnnvnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnn 1 1 System DESC PION ists eee eee ae Aanes AG 1 1 O sea ERE 1 1 Belle RTE DEE 1 2 CHAPTER 2 BASIC OPERATION coccion ii ti 2 1 WTP2 Menus Seen on the Full Function Displays FFDS ooooononncccnnccinncccnnncccnonannnanncccnnrranannn cnn 2 1 TAS Sa ia ett 2 1 Examples of Operation 2 arks AA eed eh a eet ee de 2 3 Input Selection via Deckman A 2 4 Deckman Control Facilities AA 2 7 CHAPTER 3 USE OF A PG eege 3 12 INTOQUCION ii A AG 3 12 DO GKIM AN fees sch EEE PETE NE E EEIE ETENE A EEN EEEE EE A E NE RETA E A 3 12 A ta idid el EE 3 13 TEA EE 3 14 CHAPTER 4 DATA FILES viner aaa 4 1 D finingithe variables iii en Rei 4 2 Input Configuration Fles riisin aariaid aia iaaa da taaa dadaa 4 4 Display Output configuration les 4 9 Deckman Output configuration les 4 15 Optional UE Ve 4 21 Example on using the data files A 4 24 USer vapeur deser dde Dt dew A Met ii Dd tdt 4 25 CHAPTER 5 PARAMETERS coc iii lara Ee 5 1 Cali e Mind 5 1 sensor Calibracion ale al Aa AG EE 5 4 Slide and DR len TE 5 6 Sensor DAMON iia AA de ee eii 5 8 CHAPTER 6 INSTALLATION io aii 6 1 Physical Installation annens 6 1 Fastnet Network Installation table blanca A 6 1 A dE dace dEieee Seege E ET 6 3 NMEA rot geesde ege ee As 6 4 Paddlewneels cuac taa rias 6 4
20. 1 B amp G Halcyon Gyro Stabilised C 1 CST Vectoria neran nut is C 1 IOC UU C 1 Furuno SC60 rerereservssenrrseneennsssvrreensesnnrsvneee C 1 HMR3000 iia ia C 1 Keppel it tin ds C 1 KV Hindi aisladas C 1 NMEA diia C 1 ICM alpaca C 1 KEE C 1 A EE 3 12 Serial Loadcell Input 4 23 Settings boat log vanskene se eener ak ene 4 17 p 0 1 0 uri ds es 2 9 control IR E 2 9 damp ID ae 2 9 4 17 EXA 2 9 4 17 mast beght ieii 2 9 4 17 OSO Mii 2 9 4 17 RE DW angle 2 9 4 17 Sel COMP orien dE i 2 9 4 17 sl Sita ii 2 9 4 17 sel heel io NEESS 2 9 4 17 sel speed teenie 2 9 4 17 E at 2 9 4 17 TWS E 2 9 4 17 UP RE angle senserint 2 9 4 17 USE D WEE 2 9 4 17 USE TO ita 2 9 4 17 use heel inde 2 9 4 17 USE MO tel rete 2 9 4 17 VIN td 2 9 4 17 Speed li it EES Eege 4 17 A n a 2 8 4 1 4 18 4 25 Trim select e EE 2 9 4 17 True Wind correcto as 4 20 EN dE 4 21 user variables mesran n 4 25 Serien ici 2 7 4 1 4 9 4 12 4 13 variables user dd is 4 25 W Wind Speed iii 5 5
21. 1 QHD1 102 selSOG 27 selQHD 79 GPS 2 selSVA 78 COG2 105 selUTC 77 2 SOG2 106 UTC2 109 2 6 Chapter 2 Basic Operation Deckman Control Facilities To access the WTP2 control facilities in Deckman choose gmenu instrument control You will then see a dialog on the screen Each box along the top of the dialog accesses a different control facility as described below Output a Controls the output of Deckman variables to the WTP2 to be viewed on the displays In addition to the standard WTP2 system variables it is possible to output up to nine variables from Deckman to the WTP2 for transmission to displays As supplied WTP2 declares a Deckman menu containing four functions remote 1 remote 2 if more than four Deckman variables are required additional menu items will need to be added to the usermenu d file see page 4 12 To output a variable click on the first blank line of the variables column select the appropriate Deckman variable from the list followed by OK The variable will be displayed on that line with the channel column showing 1 and the current data shown in the final column The 1 indicates that output of this variable is currently disabled To enable the output click on the channel number currently 1 and assign a channel number of either 1 2 3 or 4 on the standard configuration If the same channel number is assigned to more than one variable then the data will os
22. 3 stbd VS 64 vs2pad 87 Selected by Heel Angle no calibration no calibration boatspd fil boatspd2 fil variable variable variable boatspd 2 SOG 27 boatspd2 86 Selected by User variable SelBoatSpd 91 Note when shipped from the factory Boat Speed is shown to two decimal places However due to the extra responsiveness of the WTP2 system especially when tacking 1t may be desirable to change the displayed value to one decimal place in the fixout d file 5 8 Chapter 5 Parameters Rate Gyros The rate gyro filters are specified in gdheel fil gdpitch fil and gdyaw fil for heel pitch and yaw respectively The rate gyros are susceptible to drift and so a band pass filter used The values in these files should not be altered They should read Whenever the WTP2 is switched on the measured Pitch and Roll are likely to have values that are well away from zero and it will take 15 minutes or so for the numbers to settle down This has an enormous effect on wind speed and angle but is perfectly normal The WTP2 therefore ignores the inputs from the rate gyros for 15 minutes after power on 5 9 Chapter 6 Installation Chapter 6 Installation Physical Installation Processor The WTP2 unit should be installed in a dry place with easy accessibility The enclosure is water resistant but will not survive prolonged immersion The engine box is NOT a good place to install your instrument system processors
23. 5 80 51 81 53 82 92 16 2 LH DO pm Oo D DP ms RAR bs 01 01 Um Um O other lines WIP variate number tag character numeric field width decimal places Line 1 defines the COM port settings COM Port WTP2 COM port used Baud Rate Baud Rate setting Parity Parity setting to suit the input usually N for no parity Data Bits 7 or 8 to suit the input Stop Bits I or 2 to suit the input The additional lines control the output variables as follows Variable WTP2 variable number Tag Character A unique character to identify the output variable Field Width The width of the output field Decimal places Number of decimal places required on the output From the above file the WTP2 will transmit data in the following format 1140700826 78 18178469 467165 18178472 467167 30 00 i28 h0 0 g0 0 f 9 7 e0 0 EL 4 22 Chapter 4 Data Files CU b8 ad y0 x0 O O OCT OO The output file is made up as timestamp lat long1 lat2 long2 id variable id variable etc Where timestamp latl long lat2 long2 Decoded example 1140700826 78 18178469 467165 18178472 467167 seconds since Jan 1970 GPS1 Latitude Degrees x 360000 bow position GPS1 Longitude GPS2 Latitude GPS2 Longitude 23 02 2006 13 20 GPS1 Latitude 50 29 744 N GPS1 Longitude 1 17 86 W GPS2 Latitude 50 29 75 N GPS2 Longitude 1 17 861 W Serial Loadcell Configuration
24. 8 4 16 180 8 0 6 91 50 7 42 70 7 52 110 7 18 138 4 74 180 10 0 7 14 48 8 08 70 8 29 10 8 04 138 5431 180 12 0 7 53 46 8 42 70 8 80 110 8 43 142 5495 180 14 0 7 76 45 8 67 70 9 14 110 8 70 146 6 46 180 16 0 7 94 44 8 87 70 9 54 110 8 99 149 6 91 180 ZOO 8 223 43 9 20 7 0 105 32 110 9 46 156 7 74 180 25 30 8 25 43 9 28 ZE LOST 110 9 50 157 7 81 180 True Wind Correction Tables adjwa d adjvt d These files define the corrections applied to True Wind Angle adjwa d and True Wind Speed adjvt d data The format of both files is the same it is not normal to modify these files directly they are updated when the table is altered in Deckman v1 al v2 a2 v3 a3 2 0 0 0 60 0 0 90 0 0 130 4 0 0 0 60 0 0 90 0 0 130 6 0 0 0 50 0 0 90 0 0 130 8 0 0 0 45 0 0 90 0 0 130 10 0 0 0 40 0 0 90 0 0 130 T20 0 0 40 0 0 90 0 0 130 16 0 0 0 40 0 0 90 0 0 130 20 0 0 0 40 0 0 90 0 0 130 24 0 0 0 40 0 0 90 0 0 130 28 0 0 0 40 0 0 90 0 0 130 32 0 0 0 40 0 0 90 0 0 130 4 20 Chapter 4 Data Files Log Mileage boatlog d This file simply contains the total mileage travelled the value can be modified using settings in Deckman s Instrument Control dialogue Optional Files Advanced Pre Start True Wind Correction Tables adjstrwa d adjstrvt d These files define the corrections applied to True Wind Angle adjstrwa d and True Wind Speed adjstrvt d data when the WTP2 is in pre start mode The forma
25. A T Instruments Ltd 235 Bentley Way LYMINGTON S041 8JW UK Tel 44 0 1590 718182 www aandtinstruments com info aandtinstruments com WTP2 User Manual HB 0916 03 HB 0916 03 Certification This equipment generates uses and can radiate radio frequency energy and if not installed and used in accordance with the instructions may cause harmful interference to radio communications However there is no guarantee that interference will not occur in a particular installation If this equipment does cause harmful interference the user is encouraged to try to correct the interference by relocating the equipment or connecting the equipment to a different circuit Consult an authorised dealer or other qualified technician for additional help if these remedies do not correct the problem The Wave Technology Processor 2 WTP2 meets the requirements for CFR47 Part 15 of the FCC limits for Class B equipment WTP2 meets the standards set out in European Standard EN 60945 1997 IEC 945 1996 for maritime navigation and radio communication equipment and systems Trademarks All rights reserved No part of this manual may be reproduced or transmitted in any form or by any means including photocopying and recording for any purpose without the express written permission of B amp G Information in this document is subject to change without notice B amp G reserves the right to change or improve its products and to make changes in the con
26. CE Kernel for i486 Built on Jun 24 2004 at 18 23 42 g_pPageDir 80523000 RTC Status Reg B 0x02 K86Init done OEMAddressTable 80224fb8 OEMIoControl Unsupported Code 0x101008c device Del Hl func OEMIoControl Unsupported Code 0x10100d0 device x 1 1 func DEMIoControl Unsupported Code 0x10100f8 device x 1 1 func WTP Startup OEMIoControl Unsupported Code 0x10100f8 device x 1 1 func user def setup good Index 2 Name PCIME100CE1 WTP has been halted by presence of Stop txt file Windows IP configuration Ethernet adapter PCIME100CE1 Address 19221 Subnet Mask IP Address Subnet Mask Connected 3 17 31 ANSIW 58400 8 N 1 7 Once you get to the screen shown in step 6 re connect to the WTP2 with FTP You will be presented with the root directory again as per image in step 2 8 Copy the CALIBS DATA and FILTERS folders to your desktop Also copy WTPImp exe This will give you a full working backup if you need to undo the changes you are making 9 Delete the file WTPImp exe and replace it with the updated one 10 Once this new file is copied you may need to amend two files in the data directory for the WTP to run if your directory contains setting5 d and sample07 d files you will need to carry out the changes below 11 Open the DATA folder copy setting5 d and sample07 d to the desktop as we need to modify these 2 files 72 Chapter 7 Upgrading the WTP2 14 15 12 Copy setting5 d a
27. Caution Display Installation Displays installed into locations manufactured from conductive materials e g Steel Carbon Fibre etc should be insulated from the structure to prevent damage to the casings as a result of the effects of electrolysis ii Preface This manual is in three parts Basic Operation Chapter 1 is a brief introduction to the WTP2 outlining the way the unit works and some of the differences with other instrument systems Chapter 2 contains information about the basic operation of the WTP2 in conjunction with the B amp G Deckman software Most users should be able to operate the WTP2 from Deckman using the information contained in this section Customisation Chapter 3 outlines the way a PC can be used to upload or download files to or from the WTP2 Chapter 4 contains information on the use of the data files these allow you to control the input of variables onto the system and the way these are sent back out to the displays Chapter 5 concerns the calibration damping and settings options available These chapters are mainly aimed at more experienced users who may wish to alter variable inputs and outputs Installation and Maintenance Chapter 6 outlines the installation of a number of different components and is therefore almed primarily at those involved with the initial installation of the system general wiring information is also included in this section This section is almed mainly to assist
28. DDR WTPImp exe Click here to learn about browsing FTP sites 3 Open the Update folder and you will find a file called STOP TXT as shown below SES ftp wtp2 Update Microsoft Internet Explorer File Edit View Favorites Tools Help lt Back gt gt Qsearch Lrolders lt A US GE X A Br address Sirtp jiwtpziUpdste zl oe Links E Customize Links Free Hotmail Windows Media E windows STOP TXT Server wtp2 User Name wtp Click here to learn about browsing FTP sites 7 1 Chapter 7 Upgrading the WTP2 4 Rename this file to be STOP TXT i e remove the as shown below ES ftp wtp2 Update Microsoft Internet Explorer SS DI ES r File Edit View Favorites Tools Help e lt Back gt 2 Qsearch Folders lt A G GE X wy SS EES Links E Customize Links Free Hotmail Windows Media Windows STOP TXT Server wtp2 User Name wtp Click here to learn about browsing FTP sites 5 Once this file has been renamed re start the WTP2 6 The WTP2 will begin to boot up normally but when it gets to loading the WTP software it will stop because of the presence of the STOP TXT file This will be shown in HyperTerminal as follows amp WTP 2 HyperTerminal ll x File Edit View Call Transfer Help Del al3 ola el SysInit GDTBase 804f60e8 IDTBase 80517860 KData 8051d800 Windows
29. ERS 8 FIL pata 2 ADJVT D RJETHERNET D 18 perfpol d B ADIWA D a FIXMENU D KE rategyro 00 B BG_VARS D F FIXOUT D SAMPLEOS D 2 boatlog d GP51 D 2 setting6 d 2 compass1 D 2 6P52 D SYCALS D R COMPASS2 D B NAVPOLD B USERMENU D R COMPASS3 D NMEAIM1 D USEROUT D DAMPING D nmeaout d 2 DMNYARS D caves B CAL Note The rategyro 00 file is a diagnostic file generated by the WTP2 These files should be deleted if they have not specifically been requested by B amp G Appendix C Supported Compass Types Appendix C Supported Compass Types 2 w Compass sensor Input sentence 3 E E s 2 Label in file TOET 3 E B amp G Halcyon 2000 B amp G Fastnet Y N N N N lt no label gt B amp G Halcyon Gyro B amp G Fastnet Y Y Y N N BGGYRO Crossbow AHRS Binary Y Y Y N Y XBAHRS CSI Vector GPS PSAT HPR hhmmss ss h h p p r r FKK Y Y Y NN PSAT Furuno SC60 PFEC GPatt hhh h pp p rr r Ver 1 5 Y Y Y N N lt no label gt PFEC GPatt hhh h pp p rr r KK Ver 2 0 Y Y Y N N lt no label gt Honeywell HMR3000 SPTNTHPR h h a p p a r r a KK Y Y Y N N HMR3000 Keppel HPR03 HPR h h p p r r Y Y Y N N KEPPEL KVH GyroTrac Yopppp tr hhhh Y Y Y N N lt no label gt NMEA 0183 Heading Sensor xxHDT h h T Y N N N N lt no label gt xxHDM h h M Y N N N N lt no label gt xxHDG h h d d a v v a KK Y N N N N lt no label gt PNI Corp TCM2 Ch hP
30. GPS TN 6 4 RASGOS ua EE 6 5 Pepret 6 5 Contents WTP 2 connector Wing eiii AEN deg A cd dt dd 6 6 CHAPTER 7 UPGRADING THE WTP2 nernnnnvnnnnnnnnnnnvnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnennnnnnnnnner 7 1 Upgrade Procedure iii li en 7 1 APPENDIX A WTP2 VARIABLES 0 ciococoicacisitoninaccin adios dado lina cenit A 1 APPENDIX B WTP2 DIRECTORY STRUCTURE rnnnnnnnnnvvnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnvnnnnnnnnnnnnnnnnnnnnnnner B 1 APPENDIX C SUPPORTED COMPASS TYPES nunnvvnnnnvvnnnnnvnnnnnvnnnnnvnnnnnnennnnnnnnnnnnnnnnnvennnnnnnnnner C 1 APPENDIX D DIAGNOSTIC MESSAGES DISPLAYED VIA TERMINAL rrnnnnnvvnnnvvennnnnvnnnnnnnn D 1 APPENDIX E WIND CALCULATION FLOWCHART i nnnnnvnnnnnvnnnnnnnnnnnvnnnnnnnnnnnnvnnnnnnnnnnnvnnnnnnnnnnneer E 1 vi Chapter 1 Introduction to the WTP2 Chapter 1 Introduction to the WTP2 System Description The B amp G Wave Technology Processor in combination with the B amp G Deckman software and range of H2000 displays make for the highest level yacht racing instrument system in the world today Central to this high performance is the WTP2 a powerful processor running a Windows CETM operating system and a high speed analogue to digital board such that calculations run some hundreds of times faster than on standard instrument systems This provides several benefits e All of the sensors can be sampled at higher data rates 100 times per second on analogue inputs e Wind calculations are improv
31. In this example we will add a variable called mastfoot which we will input to analogue channel 8 In bg_vars d we add a line to define the new variable in this case the next variable number is 110 so we add the following line setting variable 110 to be mastfoot and having two decimal places for further information on the file format see page 4 2 110 mastfoot mst 2 0 0 In sampleXX d we need to define the sampling of the analogue channel so we modify the line for analogue channel 8 to read as follows mastfoot 1 8 110 mastfoot cal mastfoot fil This defines that the function called mastfoot is sampled on analogue input card 1 channel 8 and mapped onto variable 110 being calibrated and filtered with the listed files At this stage we would like to show the variable on the displays as an example we will add the function MASTFOOT to the PARAMETER menu First we need to add the menu item in usermenu d for this we add one line MASTFOOT 0112 al 4 This new menu item MASTFOOT would now be displayed in the PARAMETER menu 0112 using fastnet function number al the 4 defines the location of the menu item within the item list We now need to output the data onto the network so that when you select the item from the menu there is data to display this is done using the userout d file In this example we will output the data twice per second given that there are currently no outputs at this rate we n
32. MEA depth transducer is used A nmeainX d file is required to instruct the WTP2 to decode the depth information This file allows you to specify the settings for the depth transducer Refer to page 4 8 for more information 6 5 Chapter 6 Installation WTP2 connector wiring This section contains technical information that may be required to assist with the installation of the WTP2 for diagnostics and for advanced users who wish to alter the standard inputs Terminal Layout EN dd E ra po m ij fr smi 7 F e lt E 0 FA L S Wd i Eo d d VI Power Fastnet J AS j LED LED J O EI O Power In 9JpPEEE N ojee a 2 salle a selte EES wee Auxiliary COM7 COM6 COMS COM4 COMI Anlg Sp Anlg Sp7 RS422 SV SV aoaaa coo oca aaa GEES fe AAA Fastnet COM3 Terminal Anlg Spl AnlgSp2 Anlg Sp3 Anlg Sp4 Anlg Sp5 Heading P 5V 12V
33. OM 0 0 2 4 2 Chapter 4 Data Files 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 Dst t Mrk Tm t Mr Curr Ra Curr Dir MCur Ra DCur Ra Battery Rudder AnSpl gyro_hl MCur_Dir K te Le te DCur_Dir gyro_dhl gyro_trm gyro_dpt gyro_hdg gyro_dyw Triml forestay AnSp2 seatemp airtemp Barometer port VS stbd VS CMW angle CMW speed Depth XTrkErr TWA OVMC VMG Targ VMG_Targ OppTrkW OppTrkG Log pit chRMS pitchPrd SelUTC SelSVA SelQHD Heading2 Heel2 Trim2 Heading3 Heel3 Trim3 Boat Spd2 VS2pad DIM TIM Cr Cr MC MC DC DCD AU AU A Dat Rud spl GH1 GdH GTm GdP GHg GdY Tml frs sp2 sea air Bar pvs sVS CWA CWS Dep XTE AOC VGT OTW OTG Log PMS PPd UTC SVA QHD Hg2 H12 Tm2 Hg3 H13 Tm3 VS2 V2p PIE NO DS CO OO OO bat REDDO PROOF NONRFRNEF EEE ONON ON he o oo0ooooo oo Or ooooo ooRroo RROOO ooooo CO OO CO OO CO CH oo o Oo MMO RVO NG Ww A fam ar a O OO k EE Ed O oF eS HCH OO DO OM OBO oo 4 3 Chapter 4 Data Files 88 SelHdg SHg 0 2 89 SelHeel sHl 1 1 90 SelTrim STm 0 dl 91 SelBoatSpd VSS 0 0 92 Hdg2_Heave Hv2 0 0 93 GGBrg GGB 0 2
34. P Pilot When using a networked compass there are some specific changes to the serial input file shown above 1 The COM port is set to 1 which calls the B amp G network port rather than one of the serial ports 2 The baud rate parity data bits and stop bits are ignored by the WTP2 so can be left at default values 3 The text BGGYRO is added to identify the compass type 4 The value in the variable line which normally shows the COM port is modified to be the function number on the B amp G Fastnet bus 1 4800 N 8 1 BGGYRO headingl 74 13 headingl cal headingl fil heell 52 O heell cal heell fil triml 155 57 triml cal triml fil GPS input gpsl d gps2 d The gpsX d files define the inputs of GPS units and the location of the antenna relative to the bow of the yacht An example of a GPS configuration file is shown below Line 1 defines the COM port settings COM Port WTP2 COM port used Baud Rate Baud Rate setting to suit the input Parity Parity setting to suit the input usually N for no parity Data Bits 7 or 8 to suit the input Stop Bits I or 2 to suit the input Line 2 defines the GPS antenna position Offset GPS Antenna offset from centreline Port Starboard in feet Bow to GPS GPS Antenna distance from Bow in feet 4 7 Chapter 4 Data Files The additional lines define the variables Normally this should not be changed though for example you may wi
35. ach creeme NS i Taa Fastnet Cable aay Fastnet Cable Gag A 135 0A 130 135 0A 130 D b ii T emm s EH i Ra FFD FFD 20 20 Display 20 20 Display Units and displays may be fitted in any order on the databus 6 2 Chapter 6 Installation Ethernet Minimum recommended wired configuration The Ethernet connection method used will depend on the type of network being installed on the boat For a straightforward installation comprising a small number of wired PCs we recommend a simple network using a powered hub that allows the PC to be turned off and back on without compromising the Ethernet integrity Straight Through Cable Power WTP2 Optional Extra PCs WTP2 Ethernet Cable BGH194017 Advanced wired wireless configuration This also allows the system to make use of a wireless router enabling one or more of the PCs on the system to run over wireless LAN WLAN In this configuration it is likely that the router will have a DHCP facility and it may be desired to use the router to assign IP addresses throughout the system to configure the WTP2 to accept DHCP configuration of its IP address it is necessary to rename the fixedIP txt file see page 4 19 PG Straight Through Cable WTP2 ROUTER Optional Extra PCs WTP2 Ethernet Cable BGH194017 Wireless Enabled PC 6 3 Chapter 6 Installation Simple Peer to Peer configuration It is possible to connect the WTP2 dire
36. and SGND are required S pEHe 2 Receive Transmit Ground Screen Pin 1 Pin2 Pin3 Pin 4 Pin 5 Pin 6 Pin7 Pin 8 Pin 9 n c TxD DTR SGND DSR RTS CTS 5V Analogue Input ANLG 5 6 7 8 9 12 13 and 14 SUE 6 11 Receive Data Transmit Data Data Terminal Ready Ground Data Send Ready Request To Send Clear To Send Ring Indicator 5V Signal OV Screen Chapter 6 Installation 12V Analogue Input ANLG 10 Caution Input voltage on the Signal terminal must NOT exceed 5V Voltages exceeding 5V will result in permanent damage to the system BEX 12V Signal UN Screen 5V Spare Analogue Input ANLG SPO SP1 SP3 SP4 SP5 SP6 SP7 Note that the Spare Analogue Inputs are only functional when the Analogue Expansion option is installed SAG NV Signal OV Screen 6 12 Chapter 6 Installation 12V Spare Analogue Input ANLG SP2 Note that the Spare Analogue Inputs are only functional when the Analogue Expansion option is installed Caution Input voltage on the Signal terminal must NOT exceed 5V Voltages exceeding 5V will result in permanent damage to the system ENN E Ke 12V Signal OV Screen Auxiliary An addi
37. and then enter this value in the forestay box Check also that the reading is 0 when there is no load on the forestay depth is the offset for adjusting the depth sensor reading from the transducer position to either the keel negative values or the waterline positive values Note You can control which variables you are able to calibrate from this dialogue by adjusting the svcals d data file Please see on page 4 18 2 8 e wr Jod Ol wfa 1 Calibration variables Bspd_port Bspd_stbd Headingl heell trim1 MHU_angle depth Forestay Chapter 2 Basic Operation Settings The settings dialogue controls all the normal items required to setup the WTP2 mast_height is used for wind calculations involving the rate gyros This should be set to the distance from the waterline to the masthead sensor in feet leeway_cal is the leeway calibration value A value between 8 and 13 is usually appropriate for most modern boats use_heel should be set to 1 if you have a heel sensor and 0 if you do not A heel sensor is highly recommended to achieve accurate wind data use_gyro determines whether or not the system uses data from the rate gyro sensors to correct wind calculations 1 use gyro data 0 do not use gyro data Normally there is no reason to disable this function variation is magnetic variation This is calculated automatically using data from the GPS If the GPS is no
38. aran it is recommended to connect the outer hull sensors to the Port and Starboard sensor inputs with any centre sensor being connected to the Speed 2 input Therefore the user selections in the Instrument Control Settings dialogue in Deckman selects between either the outer hulls which automatically switch for Port Starboard or the centre hull If any additional sensors are required they would need to be switched externally GPS Sometimes the NMEA signal from a GPS will not work directly with the WTP2 In this case the GPS input should be fed through an opto isolator see above The sentences normally used by the WTP2 are xxGGA for position and xxVTG for COG and SOG If VTG is not present the WTP2 looks for RMC for COG and SOG On start up the WTP2 also looks for WBD BWC or BWR for range and bearing to a waypoint from the GPS The WTP2 will put range and bearing from one of these 6 4 Chapter 6 Installation sentences into the BTW GC M and DTW GC NM until a waypoint command from Deckman is received when it will start to calculate its own range and bearing Rate Gyros The Rate Gyro sensor is supplied pre wired from the factory however 1f it is necessary to rewire the unit the connections are detailed below Red 12V supply Lal Black OV Blue Yaw Rate Gyro Green Roll Rate Gyro Violet Pitch Rate Gyro Rate Gyro sensor internal connections Depth A N
39. cillate between those variables on the displays Damping Ne Allows you to alter the damping values on the WTP2 The values are read from the WTP2 and any changes you make are sent as soon as they are entered Each of the menu options has a number this is the damping applied to that instrument data Generally because the WTP2 uses a much faster processor and more sophisticated calculations you will be able to use much lower damping values than with conventional systems between 0 5 and 5 is suggested for normal variables Note You can modify which variables are listed in this dialogue using the data files See damping d on page 4 19 2 7 fo was Output variables chan data DST_STRB 1 55 DST_PORT 2 295 TM PORT 3 9911h TM_STRB 1 6839h ole aE an Damping variables data boatspeed 0 1 headingl 0 5 gyrohdg 0 1 course 1 0 TW speed 10 0 TW_dirn 1 0 Chapter 2 Basic Operation Calibration Controls the calibration of variables by allowing you to input a calibration value to a particular variable Bspd_port and Bspd_stbd are boat speed calibrations for the port and starboard side respectively in Hertz knot If you have only one boat speed sensor enter the same value in both port and starboard If you do not know what these values are the boat speed can be calibrated using the cal boatspeed option see page 2 11 Headingl is the offset va
40. ct from a component e g boat speed and wind speed Derived 25 calculated by the WTP2 from other variables This cannot be changed by the user The second line tells the WTP2 to use 1 or not use 0 data from the rate gyros left hand figure and mast rotation sensor right hand figure in wind calculations These specifications will be overwritten if you alter either of these in the Settings dialog in Deckman see page 2 9 4 4 Chapter 4 Data Files Each column then defines a particular item the first column gives the name of the variable from bg_vars d and the last three show the variable number from bg_vars d and the names of the calibration and filtering files cal and fil respectively For some types of inputs there are additional columns In the analogue section the second column is the input card number always 1 unless the Analogue Expansion option is installed and the third the physical line of the input In the pulse section the second column refers to the physical line of the input 16 4 25 1 0 analogue MHU_A_B 1 0 7 null cal null fil MHU_A_G 1 1 6 null cal null fil MHU_A_R 1 2 5 null cal null fil gyro_dhl 1 3 52 gdheel cal gdheel fil gyro_dpt 1 4 54 gdpitch cal gdpitch fil gy
41. ctions similar to functions 1 2 and 3 except that the time constant for the damping can be determined with respect to another variable in the WTP2 database During a manoeuvre True Wind Direction TWD can be unsteady If we wish to use some damping to display TWD more steadily based upon data from before the start of the manoeuvre then we could filter it based on the value of Yaw Rate using damping function 17 Exponential 360 To do this we could create the following filter file twd fil 17 Table 56 0 AEN 3 0 02 6 0 0125 9 0 01 10 0 01 The first line of the file indicates the damping type to be used In the example the 56 after the word Table indicates that the damping will be calculated with respect to Yaw Rate as 56 is the variable number for gyro_dyw see bg_vars on page 4 2 Therefore in this example the table controls the time constant for the exponential damping depending on the Yaw Rate of the vessel the first column is the Yaw Rate and the second is the time constant to be used as in functions 1 2 and 3 i e inverse of required damping time in secs 10 This file would result in the following damping being applied Yaw Rate 2 s Damping s 0 1 3 5 6 8 gt 9 10 Wind To fully understand the filtering of the wind functions it is necessary to consider the order in which WTP2 calculates the various functions and where filtering is applied When the wind is measured it is initially corrected
42. ctly to a PC using a crossover cable not supplied In this system it is necessary for the PC to be running and the network card in the PC enabled in advance of starting the WTP2 to ensure the IP addresses are assigned as such this layout is only recommended for service configuration and not for general use Crossover Cable NMEA NMEA inputs usually work without problems when connected directly to the WTP2 RS232 ports However in certain circumstances an opto isolator may be necessary Strictly speaking an opto isolator is a requirement of the NMEA standard They work by generating a voltage that is in the correct range for use with the WTP2 Paddlewheels Single Paddlewheel If you only have a single paddlewheel sensor it is necessary to put a link between the boat speed signal wires for both the Port and Starboard sensor inputs Alternatively 1t is possible to connect a single sensor to the Speed 2 port this would need to be selected via the Instrument Control Settings dialogue in Deckman Dual Paddlewheels If you have dual paddlewheel sensors it is necessary to connect to the Port and Starboard sensor inputs Do not use an external gravity switch It is also possible to have a spare sensor wired into the Speed 2 input which is available for backup in case of a sensor failure this is selected via the Instrument Control Settings dialogue in Deckman Triple Paddlewheels For a triple paddlewheel configuration on a trim
43. d VSS Selected boat speed see page 2 4 41 92 Hdg2 Heave Hve Heave from Compass 2 Requires EM series compass 93 GGBrg GGB GPS1 to GPS2 bearing For comparison of GPS inputs 94 GGRng GGR GPS1 to GPS2 range For comparison of GPS inputs 95 HHDiff HHD Heading 1 to Heading 2 difference For compass comparison 96 MastWind MWM Wind Angle measured relative to mast For rotating mast systems 9D 97 FwdRud FWR Forward Rudder Angle 28 98 Code Cd0 Code 0 load A3 A 4 Appendix A WTP2 Variables Short Normal Name e Description Notes Fastnet Func 99 Vang Vng Vang position CB 100 gpslcog cgl COG from GPS1 101 gpslsog sgl SOG from GPS1 From a position fixer These 102 gpslqhd qhl QHD from GPS 1 functions are used when GPS 1 is selected see page 2 4 103 gpslsva svl SVA from GPS 1 104 gpslutc utl UTC from GPS 1 105 gps2cog cg2 COG from GPS 2 106 gps2sog sg2 SOG from GPS 2 From a position fixer These 107 gps2qhd qh2 QHD from GPS 2 functions are used when GPS 2 is selected see page 2 4 108 gps2sva sv2 SVA from GPS 2 109 gps2utc ut2 UTC from GPS 2 New functions can be added from 110 here onwards A 5 Appendix B WTP2 Directory Structure Appendix B WTP2 Directory Structure The files within WTP2 are stored according to the following directory structure EI version txt El fixedIP txt EF wTrImp exe FT TCHGADDR EXE Pfixcon exe FILT
44. e Then the table works as before for calibrating with respect to another variable the left column indicates the value at which the calibrations to be applied while the right column is the multiplication factor The example above would act to reduce boat speed with increasing angle of heel Other identifiers and operators As well as the word table it is also possible to use two other identifiers Variable The following number refers to the bg vars number and a mathematical symbol indicates what operation is to be performed Constant To specify a constant value to use in the calculation a mathematical symbol indicates what operation is to be performed There are also a number of mathematical operators that you can use Add Subtract e Multiply Divide Assigns a value to the variable you are calibrating Calibration example 4 The line constant 3 3 would mean that we are multiplying by a constant value of 3 3 Calibration example 5 By way of an example we will attempt to recreate the leeway calculation that WTP2 does as standard The standard calculation is based on the formula K x Heel Leeway Boatspeed Refer to the settingX d file on page 4 16 for more information 5 3 Chapter 5 Parameters Let us suppose we wish to recreate this but artificially limit heel to 25 degrees and using a leeway constant of 6 4 The file leeway cal would look like this 4 0 0 1 0 table 89 30 25
45. e 4 19 the Deckman RS232 communication is automatically enabled This allows communication with Deckman via a serial lead Note that the RS232 link operates at reduced data update rates compared to the Ethernet link rates of 1 5Hz are supported via RS232 The standard RS232 communications settings are Baud Rate 9600 Data bits 8 Parity None Stop Bits 1 Flow control None When using RS232 communications the instrument type in Deckman should be set to WTP v5 09 Deckman Using the Advanced Calibration Advanced Damping and WTP Guru functions in Deckman the user can directly modify calibration filter and system files Caution incorrect modification of the WTP2 files especially system files accessed by the WTP Guru option can lead to incorrect data values or system instability Only modify files directly if you are familiar with the file level operation of WTP2 Common settings calibration and damping can be carried out in the normal Deckman Instrument Control dialogues It is recommended that regular backups are made of your WTP2 files using FTP Chapter 3 Use of a PC These functions are accessed via the menu button whilst Deckman s Instrument Control function is in use Use of the dialogue itself is very straight forward simply highlight the file you wish to view or modify in the left hand column by clicking on it with the mouse and then click the Get File button The file content will be displayed in the right ha
46. e now able to view this function If we press the Page Key the configured pages will return and True Wind Angle will no longer be displayed If you wish to keep True Wind Angle on a page then you can configure the page Page Display Configuration The Page Key allows the user to configure four pages per FFD depending on the required use at that position To store the setting in the previous paragraph as a permanent new page proceed as follows 1 Repeatedly press the Page key until the desired page you wish to re configure is shown 2 Press Scroll Up or Scroll Down and until the display shows CNFG DSP 3 Press Enter PAGE is shown in the appropriate display 4 Press Enter the digital display is blanked and the two functions selected are displayed in the text Note at this point either of the two functions may be changed if required using the Scroll Up or Scroll Down Keys as per Function Selection above 5 Press Enter to accept the new page configuration and restore the digital display You are able to configure each FFD on the boat individually to suit the needs of the crew in the immediate vicinity All page displays are held permanently in the display memory NAV Key Configuration Our second example is configuring the NAV key The NAV key allows the user to select either Rhumb Line or Great Circle navigation information to be displayed by default the FFDs show Rhumb Line pages WTP2 only uses Great Circle waypoint data so we ne
47. e short presses of the lower right hand key on an FFD in the normal way Displays which have their lighting control set to LOCAL will not be affected by the lighting control input of another display The display backlight colour may be altered between RED default and GREEN This is adjusted via the menu choice LIGHTING RED or GREEN 1 Press and hold the SCROLL UP or SCROLL DOWN key until LIGHTING appears in the text 2 Press the ENTER key and use SCROLL UP or SCROLL DOWN to select either RED or GREEN 3 Press ENTER again and the original page display appears The FFD backlighting will now be configured to your desired selection Input Selection via Deckman Multiple Compass Boat Speed and GPS Inputs WTP2 is able to handle up to three compass inputs as well as associated heel and trim values two boat speed inputs and two GPS inputs This is useful for testing purposes to compare different sensors or as a backup Variables to handle data from all of these inputs exist on the system To select which input you wish to use in the calculations on the WTP2 use the Instrument Control option in Deckman see Settings on page 2 9 Whichever input is selected is then copied into the SelHdg 88 SelHeel 89 SelTrim 90 SelBoatSpd 91 or Selected GPS multiple functions variables this is then used in the calculations and output to Deckman and displays as required This selection is shown below for each of the selectable variabl
48. e to avoid incorrect data being accepted Display Output configuration files Fixed Fastnet menus fixmenu d This file controls the configuration of the standard function menus onto the FFD displays the menu items which are standard parts of the WTP2 system but are not declared normally by the FFD are declared here Modifying this file is not recommended It is suggested that users adjust the usermenu d file to alter network output settings The format of the file is shown below for completeness POL_SPD_KT 0102 3 7e 5 TARG_SPDKT 0102 4 Td 5 REACHINGPC 0102 D TG 35 MEAS W A 0106 5 5a 5 MEAS W SKT 0106 6 ST 5 WA MAST 0106 7 9D 5 TARG TWA 8 0106 8 53 5 HEEL 0107 1 34 5 TRIM 0107 2 9B 5 MAST_ANG_ 0107 3 DE 5 4 9 Chapter 4 Data Files YAW RTE S PTCH_RTE S ROLL_RTE S 0112 0112 0112 1 44 15 2 9E 15 3 3C 15 The format is Menu item name Menu number Order in chain Fastnet Function Number Node This name is defined in the menus Defines which menu contains the function see usermenu d for full list The position of the function in the menu The Fastnet function number of the function in hexadecimal The Node number that the menu is declared from for system compatibility Note The text in the first column e g POL SPD KI etc is not seen on the displays and is only to make it easier to recognise what the numbers refer to if custom titl
49. e to be added Then the numbers in the left column indicate values of the incoming data while the right column indicates the correction to be applied with interpolation for values between the defined values The table below indicates the result of this two stage calibration 5 1 Chapter 5 Parameters Original Data Result of First Line Result after Table 0 020 028 90 110 108 180 200 192 340 000 010 You can see the interpolation for headings between those at which the corrections are specified and that the calibrations in the table are applied to the output from the first line of the file rather than the original input It is also possible to calibrate your variable with respect to another variable in the WTP2 database Advanced calibration example 2 For example you could enter OOF 200525 table 1 0 10 180 10 360 10 table O 20 10 0 0 20 10 The first line and first table of this are identical to above but the outcome of the first table is then further modified by the second table In the example the 1 after the word table indicates that the correction was applied to the variate itself Entering any other number after the word table means that we are calibrating with respect to another variable in the WTP2 s database with the variables referred to by the bg vars identification number see bg vars d on page 4 2 In the example above the 0 refers to the bg_vars identificat
50. ed a calibration file shown by null cal but we have specified a filtering file named ma twd fil pitchRMS ll cal pitchRMS fil pitchPrd ll cal pitchPrd fil CMWA LL CMWA fil CMWS LU CMWS fil Boatspd2 ll cal boatspd2 fil WindToMast S mu Lt a TargetBSpd 11 cal TargBSpd fi uservars MA TWD AE ma_twd fil All that remains now is to create the relevant filtering and calibration files Example of filter file ma_twd fil 6 100 This would take the value of the True Wind Direction variable and create a moving average filter type 6 over 10 seconds 100 10 No calibration file is used in this example though you can add one as required 4 26 Chapter 5 Parameters Chapter 5 Parameters Note It is only recommended that advanced users alter the parameter files directly as described in this chapter Most simple calibration damping etc can be controlled from Deckman as described in Chapter 2 Basic Operation Calibration Each variable requiring calibration has its own calibration file cal file extension all calibration files are located in the Calibs directory Various calibration functions are available to the WTP2 but most of them are variations on linear as in the diagram The first parameter describes the type of calibration ID Calibration Type y2 0 Null calibration 1 Ordinary linear 2 Linear for 0 to 360 yt
51. ed by the addition of rate gyro sensors to measure boat motion Compass inputs are enhanced using the same sensors e Ethernet communications are used to allow high speed communication with one or more PCs running the Deckman tactical software e The ability for users to create their own variables based on existing data e Boat performance polars have a simple description and interpolation using cubic splines Additional terms are included to improve filtering and calibration see Chapter 5 e Data is written to the display network at high rates up to 10Hz e Users can configure the way information is displayed in menus with intelligent data switching Sensors The WTP2 is designed to accept numerous different sensor types to allow the system designer to use the most appropriate device in each application All of the standard B amp G H2000 sensors are compatible except that the WTP2 uses an active NMEA sensor for Depth rather than the passive sensors normally used on H2000 In addition to the normal sensors the WTP2 system also includes a 3 Axis Rate Gyro sensor unit for measuring the pitch roll and yaw motion of the boat It is this sensor that gives the WTP2 its name because it allows the removal of the wave inertia components from the wind measured at the masthead If you have any sensor compatibility requirements that the standard WTP2 does not support please contact the B amp G Custom Projects team 1 1 Chapter 1 Introduction to
52. ed to modify this page To select the Great Circle mode proceed as follows 1 Press the Page Key once 2 Press Scroll Up until the upper display shows CNFG DSP flashing 2 3 Chapter 2 Basic Operation 3 Press Enter the upper text now shows PAGE flashing 4 Press Scroll Up to select NAV MODE GC Great Circle 5 Press Enter to select your desired choice The display will stop flashing and the NAV key will display data in GC Lighting Control The backlight level on system displays is controlled by the LIGHTS Key Use of this key normally controls all the FFDs simultaneously however the level of illumination on a single FFD can be set to be controlled individually via the menu choice LIGHTING LOCAL 1 Press and hold SCROLL UP or SCROLL DOWN until LIGHTING appears in the text 2 Press ENTER and use SCROLL UP or SCROLL DOWN until LOCAL appears in the text 3 Press ENTER again and the original page display appears The FFD is now in local mode The LIGHTS Key now controls this display only This will enable you to use for example very low backlight brightness at the chart table whilst using a higher backlight level on deck To return displays to system lighting control 1 Select LIGHTING 2 Press ENTER and use SCROLL UP or SCROLL DOWN to select SYSTEM 3 Press ENTER again the original page display appears and the lighting has returned to system control The lighting brightness is still controlled by successiv
53. eed to add another transmit group to the existing file 4 24 Chapter 4 Data Files Existing file 1 2 9 7 A8 CWA H 65 1 AQ CWS KT 66 li Modified file 2 2 9 7 A8 CWA 65 1 AQ CWS KT 66 ili 1 4 1 Al MASTFOOT 110 2 As can be seen in addition to adding the extra transmit group we have also modified the first line of the file to read 2 which identifies the number of transmit groups that follow The final thing to do would be to create new calibration and damping files mastpos cal and mastpos fil in the relevant folders with appropriate values and if required add the new variable into damping d and or svcals d to allow damping and calibration from Deckman see Chapter 5 Parameters for more information on these If calibration or filtering of the variable is not required it is normal to use null cal and null fil respectively as the calibration and damping filenames User variables You are able to create your own data variables taking data from your existing variables and then filter damp and calibrate them as you wish There are a number of different facilities for use here including the possibility of variables being calibrated with respect to another variable User variables are defined in sampleXX d under the uservars section and then can be passed to Deckman or the display network as normal New variables are first added to the variable list in bg_vars d Once t
54. emp sea Sea temperature 1F 61 airtemp air Air temperature 1D 62 barom bar Barometer 87 63 port_VS pVS Port boat speed paddlewheel 64 stbd VS sVS Starboard boat speed paddlewheel 65 CMW angle CWA Corrected Measured Wind Angle AN 66 CMW speed CWS Corrected Measured Wind Speed A9 67 Depth Dep Depth 0B 68 XTrkErr XTE Cross track error EE 69 TWA OVMC AOC True Wind Angle for Optimum VMC 70 VMG Targ VGT Target VMG 71 VMG Targ VGP VMG as a percentage of Target VMG 32 72 OppTrkW OTW Opposite tack track wind fa a 9A 73 OppTrkG OTG Opposite tack track COG RE Sch A 3 Appendix A WTP2 Variables Short Ez Normal Name Name Description Notes Fastnet Func 74 Log Log Ship s log de ass ke 7S CD 75 pitchRMS PMS Pitch Root Mean Squared Gives E Or wave 76 pitchPrd PPd Pitch period ives an SE CS 77 selUTC wie WEE et SCH selected from GPSI or 2 DD 78 selSVA SVA GE Ee SE o ds selected from GPS1 or 2 79 selQHD QHD Ss O selected from GPS or 2 80 Hdg2 HG2 Heading 2 see page 2 4 81 Hdg2 hl H2H Heel 2 see page 2 4 82 Hdg2 trm H2T Trim 2 see page 2 4 83 Hdg3 Hg3 Heading 3 see page 2 4 84 Hdg3 hl H3H Heel 3 see page 2 4 85 Hdg3 trm H3T Trim 3 see page 2 4 86 BoatSpd2 VS2 Boat speed 2 see page 2 4 87 VS2pad V2p Boat speed 2 raw data 88 SelHdg SHg Selected heading see page 2 4 49 89 SelHeel SHI Selected heel see page 2 4 34 90 SelTrim Stm Selected trim see page 2 4 96 91 SelBoatSp
55. es in each case the standard variable number is shown in brackets 24 Chapter 2 Basic Operation Heading selection N o E d Heading1 13 Heading2 Heading3 83 d Las Selected COG Heel selection Heel1 0 Heel2 81 Heel3 84 Trim selection Trim1 57 Trim2 82 Trim3 dl Selected Heading 88 Selected Heel 89 Selected Trim 90 2 5 Chapter 2 Basic Operation Boat Speed selection 1 Boatspeed 2 2 Boatspeed2 Selected Boatspeed 86 91 3 Selected SOG 27 For boat speed there are a couple of extra steps to take account of the damping and the fact that there may be separate port and starboard paddlewheels The raw data from the standard port and starboard paddle inputs 63 and 64 respectively are combined to make Boatspeed the WTP2 uses Heel Angle to determine which of the two inputs to use The raw data from the second speed sensor is used to make Boatspeed2 Note that this stage is necessary in order to filter the raw data from the sensors Then 1f you enter a 1 in sel_speed in the Settings dialog see Settings on page 2 9 then Boatspeed 2 will be copied into SelBoatSpd 91 if you enter a 2 in the dialog then Boatspeed2 87 will be copied and if you enter a 3 SelSOG 27 will be copied By default WTP2 is setup to look at Boatspeed 2 GPS Selection GPS 1 COG1 100 SOG1 101
56. es for the menu items are required then the items should be sent using userout d as described in the next section Fixed Fastnet output fixout d This file controls the standard data outputs onto the B amp G Fastnet network variables such as Boat Speed Wind data Heading etc which are common to all systems are defined here Modifying this file is not recommended It is suggested that the users adjust the userout d file if it is necessary to alter network output settings The format of the file is shown below for completeness 11 OT HS 01 ow Oa Or Kos oO GT GS M opp I 41 42 E 44 9E 0 1 0 5 AWA M TWS KT AWS KT TWA 0 5 MWS KT MWA HDG QM HDGR DM 0 5 AWSR KT TWD QM TWDR QM AWAR Q Q 1 VS KT VSR KT VMG KT 0 5 YAW_RTE_ S PTCH_RTE S 10 17 11 16 55 55 11 18 18 10 91 91 19 56 54 O O 0 0 GB Ree O NN 4 10 Chapter 4 Data Files 3C ROLL RTE S 75 TIMER MS 4 1 1 5 Te POL SPD KT 7d TARG SPDKT 7c REACHINGKT 53 TARG_TWA_ 2 9 1 1 C1 DEPTH M 1F SEA_TEMP_C 3 Bi Br 5 87 BAROMETRMB 82 LEEWAY 8 9a OPP_TACK M Se TO Se 9 e8 DTW_GC NM e6 BIW GC QM ee XTE NM 4 4 0 5 9C MAST_ANG 9D WA MAST 9B TRIM 34 HEEL 4 4 2 9 ea COG QM eb SOG KT 84 TIDE_SET M 83 TIDE_RTEKT
57. h to display units use for a space for a degrees sign 4 12 Chapter 4 Data Files New functions should use Fastnet function numbers al a4 and a8 ae If further function numbers are required please contact B amp G New menus use ID numbers 01b1 01b2 01b3 etc Existing menus are numbered as follows SPEED 0102 LOG 0103 DEPTH 0104 NAVIGATE 0105 WIND 0106 PERFORM 0107 WAYPOINT 0108 MOTOR 0109 TEMP 010a TIME 010b MISC 010c PARAMTR 0112 EXTERNAL 0113 Note any items added in any of the menu or output files need to be defined correctly in bg_vars d etc so that the function exists in WTP2 in the first place Defining Custom Fastnet Outputs userout d This file controls how additional user data is sent from the WTP2 to the displays and allows you to have different variables shown according to your point of sailing and or to have oscillating variables on a time basis Any variable detailed in this output must have been defined in bg_vars d and a menu item defined using usermenu d to enable you to access the data from a display The only exception to this rule is remote Deckman outputs that are dealt with automatically by WTP2 2 3r 9 Al MAIN_POS br A2 JIB_CAR_P 116 2 A3 JIB CARS 117 2 2 9 8 A8 CWA 65 I A9 CWS KT 66 1 The first line of the file contains a single number which defines the number of transmit groups that follow in the example above we have 2 transmit groups
58. he new variables have been created add the new variables to the uservars section in sampleXX d enter the name of the variable the WTP identification number of your new variable followed by the WTP identification number of the variable you wish to base it upon and then calibrate or filter the name of the calibration file which must end cal and the name of the filtering file ending fil as follows uservars Userl 96 2 userl cal userl fil Note to have no filtering or calibration for a user variable simply enter null cal or null fil in the relevant place 4 25 Chapter 4 Data Files Example The new variable we are adding here is a Moving Average for the True Wind Direction we will call the variable MA_TWD In bg_vars d we add a line to define the new variable in this case the next available variable number is 110 so we add the following line setting variable 110 to be MA TWD has zero decimal places and is 0 360 data 105 gps2cog cg2 0 0 2 106 gps2sog sg2 2 0 0 107 gps2ghd qh2 0 0 0 108 gps2sva sv2 0 0 0 109 gps2utc ut2 0 0 0 110 ma_twd mwd 0 0 2 number long name short name decimals abs val type Next we add the new variable to the uservars section of samplexx d this means that the new variable we are creating represented by WTP variable number 110 in the second column is using data from WTP variable 18 third column WTP variable 18 is True Wind Direction We have not appli
59. hes on the sailing context AWA upwind TWA when reaching or downwind and Timer during the start sequence The True Wind Angles for switching between upwind reaching and downwind variables are set using the UP RE angle and RE DW angle values in Deckman Instrument Control Settings 4 14 Chapter 4 Data Files The format for the context switching is upwind section reach section downwind section start section the sections within brackets are optional If information is not specified for all of these sections the information for the upwind section will be repeated for all missing sections It is also possible though uncommon to combine these functions the following line would oscillate the Jib Car variables upwind and display TWA when either reaching or downwind with Timer in the pre start A2 JIB CAR P 116 2 JIB CARS 117 2 TWA 16 0 IWA 16 0 TIMER 1 0 Note that all items output from the userout d file are output to the network on Node 10 Deckman Output configuration files Data output to Deckman dmnvars d This file defines which variables are output to Deckman 55 18 17 91 24 16 55 18 17 91 Chapter 4 Data Files Each line defines a single variable that is output to Deckman the operation of this file varies slightly depending on whether the communication with Deckman is serial or Ethernet For Serial communications the entire contents of the file including d
60. his file you will need to add the following data to the file At the top of the file change the line 16 4 24 to read 16 4 25 At the bottom of the DERIVED section add the following line TargetBSpd 32 null cal TargBSpd fil Once you have made these changes save the file Copy the new files setting6 d and sample08 d back into the DATA folder Open the UPDATE folder and rename STOP TXT to STOP TXT should end up as shown below 7 3 Chapter 7 Upgrading the WTP2 ES ftp wtp2 Update Microsoft Internet Explorer File Edit View Favorites Tools Help Back v gt GE search Cuprdder lt A lg GE X A Ed Address ftp wtp2 Update T Pu Links E Customize Links Free Hotmail Windows Media E Windows STOP TXT Update Server wip2 User Name wtp Click here to learn about browsing FTP sites 16 Once this file has been renamed re start the WTP2 17 The WTP2 will boot up normally in Hyperterminal this is indicated by the phrase End of Startup 18 The WTP2 has now been upgraded to the latest software version 7 4 Appendix A WTP2 Variables Appendix A WTP2 Variables Short e3 yorma Name Name Description Notes Fastnet Func 0 Heel HI Heel 1 dotHeel dHl Rate of change of heel Not implemented 2 Boatspeed VS Boat speed 41 3 dot VS dvs Rater change of boar speed
61. ield number is equal to the number of commas before the required value for example the file above would decode the following input correctly SSDDBT 32 81 f 10 00 M 5 46 F hh lt CR gt lt LF gt where f is feet M is metres and E SYXMTW 18 2 C hh lt CR gt lt LF gt is Fathoms 4 8 Chapter 4 Data Files Special Case The XDR NMEA sentence is processed slightly differently as a special case due to the possibility of multiple inputs The following example shows a single pressure sensor input sensor type code P decoding the following sentence SIIXDR P 1 000 B BARO hh lt CR gt lt LF gt 7 4800 N 8 I TIXDR P 2 62 baro cal null fil Line defines the COM port settings as in the previous example The additional lines control the decoding of the NMEA sentences as follows NMEA Code NMEA sentence identifier XDR sensor type code The 2 field in the sentence which defines the sensor type Input field Position of the required value in the NMEA sentence Variable Number Variable number where data is added to from bg_vars d Calibration File Filename of the calibration file to use Filter File Filename of the filter damping file to use Note that if a checksum is present on an incoming NMEA sentence it will be checked and the sentence discarded if incorrect if checksums are not present the sentence will be accepted as is It is recommended to implement checksums where possibl
62. ion number for Heel The second table therefore applies corrections depending on the angle of heel the fist column is the angle of heel and the second is the correction to be applied to the compass The result of the second table in the above example would be Input from 1 Table Angle of Heel Result after 2 Table 50 30 65 50 10 55 50 0 50 50 20 60 50 30 65 Here the offset to the compass heading is altered by the heel angle Of course the corrections in the previous table will continue to be applied before the corrections with respect to heel Here you can see that as well as interpolating within the calibration points you enter the WTP2 will also extrapolate outside them 5 2 Chapter 5 Parameters Advanced calibration example 3 It is also possible to multiply subtract and divide in your corrections For example a table to alter boat speed with respect to angle of heel might look like Ae LO 0000 do A table 0 40 0 95 30 0 95 25 0975 20 20599 15 1 0 ES 10 20 0 99 25 0 975 30 0 95 40 0 95 This table is therefore taking the standard input from boat speed which would be specified in the bg vars d file and applying a correction based on angle of heel bg vars identification number 0 after table So far this is operating the same as the example above Next however we have a multiplication sign which indicates that boat speed is to be multiplied by the values in the tabl
63. it is hot and electrically noisy The WTP2 unit is fixed to the mounting surface via 4 mounting lugs it is recommended that the unit is located on a batten to reduce shock loading on the mounting lugs in extreme conditions The WTP2 unit does not contain orientation sensitive components so it is NOT necessary to mount the unit vertically however 1t is recommended to orientate the unit with all cable exits downwards GC Rate Gyro Box Mounting Batten The Rate Gyro box should be orientated as carefully as possible along the fore and aft axis of the yacht and in the horizontal with the cable gland facing forwards as indicated by the arrows If you do not fix it down initially you will be able to check that the wiring is correct by rotating the box along the fore and aft and athwartships axes and seeing that the roll pitch and yaw rate values are updated correctly These rate values are displayed in the PARAMETR menu by default Pitch is taken to be positive when the top of the mast is swinging forwards roll is taken to be positive when the top of the mast is rolling from starboard to port yaw is taken to be positive when the boat is moving in an anti clockwise direction i e turning to port Heel Heel should read positive on starboard tack i e with the boat heeling to port The Heel sensor B amp G part 690 00 004 should be installed on an aft facing bulkhead Fastnet Network Installation General Layout The Fa
64. le Ethernet Configuration ethernet d fixedIP txt fixedIP txt defines the IP address and subnet used by the WTP2 If it is desired to use IP addresses assigned by an external DHCP server then you should rename this file IPAddress 192 168 0 2 Subnetmask 255 255 255 0 ethernet d defines the settings for the data transmission on Ethernet mu networkON 1 UDPfrequency 10 UDPprotocol 1 multicastaddr 2344111 lticastport 5602 Chapter 4 Data Files Each line defines a separate item format as follows networkON Use Ethernet communications 1 or disable Ethernet and use serial 0 UDPfrequency Sets the frequency Hz that data is sent to Deckman on Ethernet max 10 UDPprotocol 1 multicastaddr The network address that the WTP2 data is sent from default value shown multicastport The port used for WTP2 data default value shown Note that many PCs will require firewall settings to be altered to allow WTP2 UDP multicast data to be accepted on port 5602 Polar Tables navpol d perfpol d These files contains the polar table information used within WTP2 it is not normal to modify these files directly they are modified when the table is altered in Deckman to suit your boat v1 al v2 a2 v3 a3 v4 a4 v5 a5 2 0 1 45 70 1 48 80 1 48 110 11 29 125 0 58 180 4 0 2 66 601 2473 70 2 96 LOU 124560 130 1 28 180 6 0 5 40 51 6 04 70 6 09 10 5456 138 3 65 180 7 0 6 57 50 6 78 70 6 91 110 6 34 13
65. le Transfer Protocol FTP to carry out file management tasks Windows Explorer in the most recent versions of Windows has FTP functionality as this is straight forward and available to most users this is the program we will use for our examples Chapter 3 Use of a PC Connecting to WTP2 Assuming that the network is correctly configured it is only necessary to open Internet Explorer and type in the following into the address line ftp wtp2 or ftp 192 168 0 2 where 192 168 0 2 is the IP address of WTP2 At this stage it is likely that an error dialogue will appear advising that it is not possible to connect anonymously to the WTP2 at this stage it is necessary to clear the dialogue box and select the Login As option from the file menu Explorer should then prompt for a username and password enter the following username wtp password wtp Note the username and password are fixed in the operating system and it is not possible to change them The user is responsible for ensuring that the network in use has satisfactory security for the application When the username and password have been accepted the contents of the WTP2 will be displayed and various operations can be carried out as follows Backing up WTP2 files To make a backup of the WTP2 files simply select all the files and directories and drag them or copy paste to a folder on your PC Editing WTP2 files To edit WTP2 files drag the individual file from
66. lexible for the user to add delete items as required Bspd_port K 63 4 2 2 Bspd stbd K 64 4 2 2 Headingl K 13 02 45 50 heell K Os SE 8 triml K SY 3 1 0 MHU angle K eL 339100 0 Forestay K 58 4 2 0 depth K 67 4 1 0 Each line defines a separate calibration option format as follows Variable Name As it appears in Deckman K Denotes a calibration value Variable Number The variable number to calibrate from bg_vars d Width of field Width of display field in characters inc decimal point Decimal places Number of decimal places required Calibration Type Sets type intercept 0 slope 1 inverted slope 2 set value 3 Note there are no actual damping values in this file these are stored in the relevant cal file Changing calibration settings through Deckman that are listed in the sveals d file only controls the calibration in the first line of the cal file Additional calibration settings within the file e g a table must be edited directly within the file itself The way in which the first line of the cal file is altered by Deckman is controlled by the Calibration Type setting within svcals d The first line of the cal file is always a straightforward linear calibration and Deckman can alter this in four ways 0 Change the intercept changes the value of the calibrated output when the input is zero but keeps the gradient of the calibration the same This effectively offsets the output by the amount
67. lue for compass 1 Once you have run the AutoSwing facility on the Halcyon compass or the normal routines for other types of compass sensor you still need to align the unit in the boat correctly The most accurate way to do this is to sail on a known bearing towards a fixed charted object a long distance away You then use Heading1 to correct the compass bearing on the instruments until it matches the known bearing of the object A positive offset will increase the reading of the compass heading heell is the offset value for the first heel sensor If the heel angle does not read zero when the boat is sitting upright in the water it is necessary to enter a correction value here The heel sensor shows positive values when you are heeled to port as on starboard tack upwind triml is the offset value for the first trim sensor If the trim angle does not read zero when the boat is sitting upright in the water it is necessary to enter a correction value here The trim sensor shows positive values when the bow is trimmed down MHU angle is the offset angle for the masthead unit sensor at the top of the mast If you enter a positive value it will decrease the Apparent Wind Angle on starboard tack and increase the Apparent Wind Angle on port tack forestay is for the calibration of a forestay loadcell fitting Wind up the runner or backstay to a known value of tension perhaps by reading it from the loadcell value if already fitted and calibrated
68. n Analogue Input Negative Analogue Input Positive Screen 6 8 Chapter 6 Installation Masthead Unit BG Violet Wind Speed Blue Wind Angle Phase Green Wind Angle Phase Red Wind Angle Phase Orange 6 5V Black ou Screen Rate Gyro Y BG Blue Yaw rate Green Roll rate Violet Pitch rate Red 12V supply Black 0V Screen Deckman Serial connection This port is only enabled if Ethernet communications is disabled in ethernet d see page 4 19 SLET Receive Transmit Ground Screen 6 9 Chapter 6 Installation COM1 RS422 Note This port can be used as an RS232 port if required Link Receive Transmit and Ground together Receive Receive EE Transmit Transmit Ground Screen COM2 NMEA Note This port can be used as an RS232 port if required Link Receive Transmit and Ground together Receive Receive 53 GT Transmit Transmit Ground Screen COM3 Heading RS232 Giro Receive Transmit 12V OV Screen 6 10 Chapter 6 Installation COM4 to COM7 RS232 SE Terminal For normal diagnostic operation only RxD TxD
69. nd rename to setting6 d This file should have the same lines as below values will be different to this sample as they are relevant only to your system 4 SETTING6 D Notepad File Edit Format View Help mast height Teeway cal use heel Use gyro variation osc time UP RE_angle RE Dw_angle Tws_factor 19 00 hn wn RO La La La La La Lo La La La La La La La La La La La La RSS Su 4 a un 5 45 sn NODODODODOWDONDODPODRF NB THIS ORDER MUST NOT CHANGE mast height mastheight feet leeway_cal leeway calibration factor use_heel use heel in calculations 0 off 1 on Use gyro use gyro in calculations 0 off 1 on variation magnetic variation East west osc_time time in tenths of seconds for oscillating variables see userout d angle for switch between upwind and reaching variables R Dw_angle angle for switch between reaching and downwind variables Tws_factor Tws adjustment factor use mrot use mast rotation 0 off 1 absolute value 2 full rotation use 3D gyro correction in heading 0 off 1 on 3D damping parameter DO NOT CHANGE should be 0 970 Geen select 1 2 or 3 heel select 1 2 or 3 trim select 1 2 or 3 boatspeed select 1 paddle 2 sonic 3 50G GPS select 1 or 2 total distance travelled Parameters name Cappears on Deckman ven setting id width of display field in chars number of decimal places value 13 Copy sample07 d and rename to sample08 d Once you have renamed t
70. nd window At this stage it is possible to make any modifications before clicking the Save File button to save the file back to the WTP2 The OK button closes the dialogue if you haven t chosen to save the file before clicking OK your changes will be lost Edit WTP config files List name 1 4800 N 8 1 0 0 0 0 COG 1 100 null cal null fil SOG 1 101 null cal null fil QHD 1 102 null cal null fil SVA 1 103 null cal null fil UTC 1 104 null cal null fil data bits stop bits offset from centre line feet ve Iv SAMPLEO7 CM lt Mm gt Get File Save File Advanced file editing dialogue WTP Guru shown Advanced Calibration The Advanced Calibration function allows file edit access to any of the calibration files stored in the WTP2 calibs directory Advanced Damping Identical operation to Advanced Calibration except by using this option the Filter files filters directory are displayed rather than the Calibration files WTP Guru WTP Guru allows access to the system data files that directly affect the configuration of inputs variables and outputs to Deckman and displays data directory Note that if you modify files with WTP Guru you will need to re boot the WTP2 before they take effect as such it is often just as easy to use the FTP access to the files for this purpose which allows the backup of the existing files before making changes FTP The WTP2 uses the Fi
71. nononos 6 13 connector wiring 6 6 Deckman ena 6 9 E TE 6 7 masthead Ubilla 6 9 ET 6 7 Tale TO iodo iii 6 9 O A ENEE 6 10 6 11 Speed Sensor ciciccinccoccincionicno cia tonc inainten dados 6 7 6 8 speed sensor analogue ooooccnonincninnincnicncnns 6 8 Index terminal connection c cooooccnicnnnnincnioncnoninncnnnos 6 11 Terminal Layout 6 6 Ethernet minimum configuration errrrrrrrrrrrrrsvrrvrrnre 6 3 PCOCT LO PCOL eee eeecesseceeeeceteeeeeeeeeesseceneeceees 6 4 Wireless iii ok Mach Kaen aR 6 3 Fastnet layout ii ea head hata eet 6 1 network termination s eseseeeesseseesereeserseeeesee 6 2 sensors bo tspeed iii ta 6 4 COMPASS ses cvss ives oia B 1 C 1 depth punge sangere Gottes 6 5 heel sa rense sene 6 1 paddlewheels rnronrrnrrvrrrnrrrnrrnnrrnrrnrennvrnnernne 6 4 TALC E 6 1 6 5 Serial Ports GPS ankes 6 4 opto isolation eeeeeseecesseesseecececeeeeeeeeeees 6 4 WTIP2 Processor TEE 6 1 A TE 3 14 4 19 L LE WAV EE EE vencess 2 9 4 17 Eer CN 2 10 l adc Dita EN 4 23 Doria 2 9 4 17 M Magnetic Variation oooooncnioninonioncnnninnconnon non 2 9 4 17 Mast Height oooocooniccnccnionionnoononnccnnonnconncnnonnnons 2 9 4 17 Mast Rotation 2 9 5 5 N NMEA COMPASS cai 4 6 dep a 1 1 ALDO sne D 3 MPUt kn ia the 4 1 4 8 4 21 6 5 sentence Dacia 4 8 Ma o A 6 5 A ES 6 5 NEE 6 5 R Rate Gyro Sironin riadas 5 4 TT 3 12 S Sensors compass AHRS oe nan aia C 1 B amp G Halcyon 2000 C
72. nput configured for the mast angle information on variable number 25 See page 4 4 55 Chapter 5 Parameters Filtering and Damping Damping Types Like calibration all the variables that require filtering have their own filter file in the filters directory The various damping functions are specified by the first number in the damping file ID in the table below Damping example 1 Exponential Damping ID Damping Type Notes One parameter l Ordinary ad dt inverse of required damping time in secs 10 gt One parameter 2 Exponential for 360 inverse of required damping time in secs 10 One parameter S EE inverse of required damping time in secs 10 4 Two term Kalman filter Refer to B amp G 5 Band pass mainly for rate gyros Refer to B amp G 6 k term moving average Refer to B amp G f 3 order Chebyshev low pass ripple fraction 0 1 One parameter damping in secs 8 As 7 for 360 One parameter damping in secs 9 As 7 for 180 One parameter damping in secs 10 3 order Chebyshev band pass fixed coefs DO NOT CHANGE used for rate gyros see below 11 Non linear See explanation below 12 Non linear for 360 See explanation below 13 Non linear for 180 See explanation below 14 RMS calculation Root E att e g for calculating wave amplitude Period calculation i Period calculation e g for calculating time between waves i i Table with independent variable and inver
73. nt Wind Angle e True Wind Speed True Wind Angle True Wind Speed True Wind Direction e Velocity Made Good True Wind Angle Navigation NAV Key Pressing the NAV Key will select the Navigation Display After selection of the Navigation Display successive operations of the NAV Key will display the following information in a fixed order e Heading Course Over Ground e Heading Boat Speed e Distance to Waypoint Bearing to Waypoint e Tide Set Tide Rate 22 Chapter 2 Basic Operation Examples of Operation The general principle for operating the FFD will be made clear by the following examples of function and page selection Function Selection Our first example will be to select another function for one of the pages The new function is True Wind Angle and since we want to place this function in the bottom display we will be using the Scroll Down Key 1 Press the SPD DEP Key until the display is showing BOAT SPD in the upper display and DEPTH in the lower display 2 Press Scroll Down the lower text now shows DEPTH flashing the upper display is not affected 3 Press Scroll Down until the lower text shows WIND flashing the upper display is not affected 4 Press Enter the lower text now shows APP W A flashing the upper display is not affected 5 Press Scroll Down until the lower text shows TRUE W A 6 Press Enter again the lower display now shows required function the upper display is not affected We ar
74. ods 2 8 Compass SClECHOM nt os 2 9 4 17 D Damping A eeeececseeceeseceeceeeceeceseeeeeeteeereeseenes 5 8 control Deckman inicio aent Re 27 Damping Types cccceesecssessecsceeseceeeeteeeeeeeeees 5 6 r te BYTO iei R SE R VOEREN 5 9 data files example o oooconionnnnicnocnnccnocnonnonnnonnonnos 4 24 Deck Mila 3 12 Advanced Calibration seororronnrorrornverrverer 2 11 3 12 3 13 date eege ee 2 11 3 12 3 13 W TP EE 2 11 3 12 3 13 Ettore ici ati 3 12 IP Address DHCP iaa 3 12 doi 3 12 ON 3 12 DIAS oia 3 14 E e GE EE D 1 CA See EE D 1 diagnostic characters rrrrrnrrrrrrrrrrrrnnrnnrrnre D 3 Terminal Software Version D 2 Display output Control 2 9 A A AT Fastletuiuicin anida 4 1 E A ON 3 12 Firewall sucia naaa dee rt skute 4 20 A eer eet best 3 13 IP Address detal ta ta dd 3 14 DHEP EE 3 12 Ee A A e 3 12 il AAA A GA 3 12 4 19 F Fast Serial Output sia 4 22 A td ARON 4 22 ls 3 12 4 19 A Gees 3 13 A raise 3 14 A 3 14 PASSWOT EE 3 14 USCINAME occccocoocnnonononononononononnnononononnnnnonccnnnnnanoss 3 14 G GPS PU ae 4 1 selec nia 2 9 4 17 Gyro Correction Compass damping ee anara Rove 2 9 ONE Sengen ee 2 9 O EE 2 9 H Heli aiii 2 9 4 17 Selection tala 2 9 4 17 HyperTerminal ici 3 14 I Installation Connection analogue inputs iv 6 12 analogue inputs xl 6 11 analogue inputs optional 6 12 6 13 auxiliary port cooooonociocccononnconoconocnncnnccnncnno
75. om Compass2 3 Valid compass data received from Compass3 A Valid data received on NMEA input 1 B Valid data received on NMEA input 2 C Valid data received on NMEA input 3 L Serial loadcell information received X Checksum error on incoming data PCNE100CE1 192 168 0 2 Ethernet IP Address message fnerror Diagnostic fastnet message D 3 Appendix E Wind Calculation flowchart Appendix E Wind Calculation flowchart Raw Masthead Unit Data Adjustment for MHU offset and Filtered Mast Rotation Gyro corrections for yacht motion Use gyro 1 Gyro Heading Use 3D t1 Leeway Filtered Vs Orig TWA Orig TWS Orig TWD Wind Shear then True Wind CALs Notes 1 Ifuse gyro is set to 0 OFF then the CMWA CMWS stage is bypassed 2 Ifuse 3D is set to 0 OFF WTP2 will use Selected Heading rather than Gyro Heading E 1 Index Index A adjs Evtd ci ii 4 21 A A 4 21 ACIVEG A erer ei 4 20 adjWa O eiren a io ation 4 20 B boatlogid WEE 4 21 Boatspeed eiccsecieseccs ec ieiv ceeecetacevtesiedsecesneteiaeiee antes 5 4 calibration 2 11 select caen 2 9 ET EE 2 10 TOSCb ses tds rica 2 10 C Calibration advanced fables a a 5 1 5 4 boatspeed non eeii 2 8 2 11 COMPASS kunna eidele EE 2 8 control Deckman E 2 8 depth offsets ninio 2 8 EXAMPles sisriisivnsvisiiniseeadrsvnsreinsrie dass 5 1 7 1 forestay Lodi 2 8 He ees 2 8 ME osea cai 2 8 M
76. ons software upgrades file backup file restore and diagnostics are all carried out via PC using Deckman FTP or HyperTerminal or similar terminal program Communication Options and configuration Ethernet The Ethernet interface allows much faster data transmission than a standard serial RS232 link and is the recommended method for interfacing Deckman The Ethernet interface on WTP2 transmits data to PCs running Deckman at 10Hz via the UDP protocol Any PC on the Ethernet can control the WTP files calibrations etc This is controlled via a TCP IP protocol so that in the case of multiple PCs running Deckman only one copy of Deckman has access to the files at a time The Ethernet port is configured by default it is only necessary to configure the instrument type within Deckman gmenu change instruments as WTP2 Ethernet and set the network properties on the PCs used to match the WTP2 IP addressing it is recommended that the fixed IP address is retained 192 168 0 2 and the PC s on the network are set to IP addresses 192 168 0 3 onwards The Subnet Mask on the PC should also be set to match the WTP2 usually set to 255 255 255 0 The IP Address of the WTP2 is set in the fixedIP txt file if this file is not present the WTP2 will attempt to use DHCP for allocation of the IP address See further advanced information regarding Ethernet Configuration on page 4 19 RS232 If Ethernet is disabled via the ethernet d file see pag
77. p pRr rXxx xxYyy yyZzZ zZTCC C Y Y Y N N TCM2 e SPppRer NYY NN 100 PRDID Proprietary NMEA PRDID p p r r h h KK Y Y Y N N PRDID a Binary Y Y Y Y N EM3000 Xsens Mtx and Mti Binary Y Y Y N N XSENS C 1 Appendix D Diagnostic messages displayed via Terminal Appendix D Diagnostic messages displayed via Terminal While booting the Terminal screen will show some normal motherboard system messages which can be ignored then the WTP2 operating system will start An example of a normal boot is shown below WIP Startup OEMIoControl Unsupported Code 0x10100f8 device 0x0101 func 62 user def setup good Index 2 Name PCINE100CEL Windows IP configuration Ethernet adapter PCI E100CE1 IP Address EA 168 202 Subnet Mask 22 20 02 5 5225 530 IP Address 0 0 0 0 Subnet Mask e OOOO B amp G WIP2 15 02 06 V1 04B5 Octal PCINE100CE1 192 168 0 2 after theVarMgr init startVT is 0 startWA is 0 WOC1 opened 690 init begin 690 User Menus Loaded 690 B amp G Menus Loaded 690 Loading User Variables 690 Loading B amp G Variables 690 Init end 690 Thread 81470052 HDG comport 3 baud 4800 HDG comport 4 baud 4800 HDG comport 5 baud 4800 GPS comport 1 baud 9600 GPS comport 6 baud 4800 NMEAIN comport 2 baud 4800 RS232 Thread eld81fb2 NMEAOUT comport 7 baud 4800 DMN Init Deckman DMN Thread cld37f7e end sampler fixselections
78. ro_dyw 1 11 56 gdyaw cal gdyaw fil rudder 1 5 49 null cal null fil Battery 1 6 48 null cal null fil MastRot 1 7 25 null cal null fi sparel 1 8 50 null cal null fil spare2 1 9 59 null cal null fil airtemp 1 10 61 null cal null fil spare4 Ll 22 97 null ca null fil Forestay 1 13 58 null cal null fil spared 1 14 98 null cal null fil spare6 L 15 99 null cal null tal pulse MHU_VA 0 9 MHUVA cal null fil portpad 2 63 portpad cal portpad fil stbdpad 3 64 stbdpad cal stbdpad fil VS2pad 1 87 vs2pad cal vs2pad fil derived MW_angle 8 MWA cal null fil Boatspeed 2 null cal boatspd fil Orig TWD 24 null cal Orig TWD fil Orig TWS 23 mulk ca Orig_TWS fil TW_dirn 18 null cal TW_dirn fil TW_speed 17 null cal TW_speed fil Course 14 null cal Course fil VMG 19 null cal vmg fil VMC 29 null cal vmc fil Opt VMC 30 null cal OptVMC fil CseOVMC 31 null cal CseOVMC fil TWAOVMC 69 null cal TWAOVMC fil OppTrkW 72 null cal null fil OppTrkG 73 null cal null fil GyroHdg 55 null cal GyroHdg fil GyroHl 51 null cal GyroHl fil GyroTrm 53 null cal GyroTrm fil Leeway 12 null cal null fil pit chRMS 75 null cal pitchRMS fil pitchPrd 76 null cal pitchPrd fil CMWA 65 null cal CMWA fil 4 5 Chapter 4 Data Files CMWS 66 null cal CMWS fil Boatspd2 86 null cal boatspd2 fil WindToMast 96 MWA cal null fil VS Target 32 null cal vstarget fil uservars Compass input compassl d compass2 d compass3 d
79. sX d c al userout d gpsX d bg_vars d p dmnvars d nmeainX d gt dam ping d Deckman settingX d gt svcals d The structure of the main data files on the WTP2 4 1 Chapter 4 Data Files There are notes below on the basic workings of each of the data files followed by an example of what is necessary to get a new variable into the system Defining the variables bg_vars d This file is the most important on the WTP2 as it lists all of the variables in the system if variables are not listed here then they will not be in the WTP2 at all variables 0 Heell Dol 1 1 1 1 dotHeel aHl 1 1 0 2 Boatspeed VS 2 0 0 3 dot VS dvs 2 0 0 4 Smoothvs SVS 2 0 0 5 MHU_A_R AR 4 0 0 6 MHU A CG AG 4 0 0 7 MHU A D A D 4 0 0 8 MW_angle MWA 1 1 1 9 MW speed MWS 1 1 0 10 AW_angle AWA 0 1 1 11 AW speed AWS 1 0 0 12 Leeway Lee I 1 0 13 Headingl Hdl 0 0 2 14 Course Cs 0 0 2 15 dotCourse dCs 1 0 0 16 TW_angle TWA 0 1 1 17 TW speed TWS 1 0 0 18 TW_dirn TWD 0 0 2 19 VMG VMG 1 0 20 GW speed GWS i 0 0 21 GW Dirn GWD 0 0 2 22 Orig TWA TA 0 1 1 23 Orig TWS ES 1 0 0 24 Orig TWD TD 0 0 2 25 MastRot MRo 1 1 1 26 TWD Off TDo 0 0 1 27 SelSOG SOG 2 0 0 28 SelCOG COG 0 0 2 29 VMC VMC 2 0 0 30 Opt_VMC OVC 2 0 0 31 Cse_OVMC COC 0 0 2 32 Vs target Vt 2 0 0 33 Vs targ Vt 0 0 0 34 TWA_targ WAt 0 1 1 35 Vs perf PPV 2 0 0 36 Va perf PP 0 0 0 37 Vs nav PNV 2 0 0 38 Vs nav PN 0 0 0 39 Brg_o_Mrk B
80. se of 16 Ordinary exponential dependent damping required damping time in secs 10 17 Exponential dependent damping for 360 Ae indep S t varian cand Mverse of required damping time in secs 10 18 Exponential dependent damping for 180 Table with indep Se i variabl cand inverse ae required damping time in secs 10 Damping functions 11 12 and 13 are exponential functions that will cause the data to move more quickly if the difference between the new data and the last value moves outside a bound The first damping number in the filter file is as for functions 1 3 i e inverse of required damping time in secs 10 the second specifies the bound outside this value the damping becomes less until at 8 times the bound value there is almost no damping at all These functions are particularly useful for boat speed and heading when coming out of a tack For example we might use non linear damping on our heading so that when it is changing rapidly after a manoeuvre it is less damped than when we are sailing a steady course A typical filter file would look like 12 0 1 4 5 6 Chapter 5 Parameters This gives a damping of 1 second in normal use inverse of 0 1 divided by 10 however when difference between the new data and the last value is greater than 4 the damping gradually reduces until at 32 difference no damping is applied Damping example 2 Dependent Damping Damping functions 16 17 and 18 are exponential fun
81. sh to add a link to a filter file for SOG Variable Name COM Port Variable Number Calibration File Filter File NMEA input nmeainl d nmeain2 d nmeain3 d Name of the variable for user information only Same port as the first line above Variable number where data is added to from bg vars d Filename of the calibration file to use Filename of the filter damping file to use This file controls NMEA inputs excluding any that may be for GPS or Compass sensors A typical use for this file is to define the decoding of Depth and Sea Temperature from an active NMEA sensor File example Depth and Sea Temperature 2 4800 N 8 1 SDDBT 1 67 depth cal null fil YXMTW 1 60 seatemp cal null fil Line 1 defines the COM port settings COM Port WTP2 COM port used Baud Rate Baud Rate setting to suit the input Parity Parity setting to suit the input usually N for no parity Data Bits 7 or 8 to suit the input Stop Bits I or 2 to suit the input The additional lines control the decoding of the NMEA sentences as follows NMEA Code Input field Variable Number Calibration File Filter File NMEA sentence identifier Position of the required value in the NMEA sentence Variable number where data is stored from bg_vars d Filename of the calibration file to use Filename of the filter damping file to use Where the NMEA code is all the characters between the and the first comma in the NMEA sentence and the input f
82. stnet network cabling should be such that the network cable run is predominantly in a linear layout with a definite start point and end point which are terminated see page 6 2 Star shaped layouts are inefficient may cause incorrect operation and should be avoided 6 1 Chapter 6 Installation Network Terminator The Network Terminator B amp G part 239 00 099 is a black two wired component with a resistance of 100 Ohms Two are supplied with insulating sleeving to prevent shorting of the wires A Network Terminator must be fitted across the Green and White Fastnet databus wires of the last unit of junction box at each end of the network cable Refer to the examples below When adding more displays or units to the system ensure that the terminator is moved to the ends of the Fastnet databus cable Never fit more than two terminators to the system All systems no matter how large or small must have two terminators installed across the Green and White wires WTP2 Processor Example 1 Single Fastnet cable terminated at WTP2 processor and at last junction box Network Terminator 239 10 099 i mas Fastnet Cable NTT 135 0A 130 ILN co Insert Grommet Be L S Plug N Network Terminator 239 10 099 cW f N 8 N Example 2 NM Two Fastnet cables from WTP2 Processor unit WTP2 Processor Ki terminated at last junction box at each end SA sa i N Z ni lin a A Pr B
83. t leeway calibration factor see Note below use heel in calculations 0 off 1 on use gyro in calculations 0 off I on magnetic variation East West time in tenths of seconds for oscillating variables see userout d angle for switch between upwind and reaching variables angle for switch between reaching and downwind variables TWS adjustment factor use mast rotation 0 off I absolute value 2 full rotation use 3D gyro correction in heading 0 off I on 3D damping parameter DO NOT CHANGE should be 0 970 compass select 1 2 or 3 see page 2 5 heel select 1 2 or 3 see page 2 5 trim select 1 2 or 3 see page 2 5 boatspeed select 1 2 or 3 see page 2 6 GPS select 1 or 2 see page 2 6 total distance travelled Each line is the same format as follows Ttem name gn Item ID Width of field Decimal places Value As it appears in Deckman denotes a Setting item Numeric ID in sequence fixed in the application do not change Width of display field in characters inc decimal point Number of decimal places required The value of the setting item Note The standard leeway calculation is Leeway K x Heel Boatspeed where K is the leeway constant as set in the settingX d file 4 17 Chapter 4 Data Files Calibration control in Deckman svcals d This file defines which variables have calibration control available in Deckman The following format is the default file it is f
84. t of both files is the same as the normal correction tables see page 4 20 If these files are not present the normal tables will be used at all times this is the default setting The pre start wind files can be loaded and modified in Deckman using the Adjust start wind angle and Adjust start wind speed options in the Start screen menu NMEA output nmeaout d When present this file controls the NMEA output from the WTP2 A typical use for this file is to output wind and other instrument data onto another NMEA enabled device such as a chartplotter There is a standard set of output sentences that are outputted and these are listed in the file It is not possible to change the sentences that are used 7 4800 N 8 1 GLL VIG VHW MWD VWR VWT MIW XDR HDG Line 1 defines the COM port settings COM Port WTP2 COM port used this can be shared with a NMEA input device Baud Rate Baud Rate setting to suit the input usually 4800 for NMEA Parity Parity setting to suit the input usually N for no parity Data Bits 7 or 8 to suit the input usually 8 for NMEA Stop Bits 1 or 2 to suit the input usually 1 for NMEA Subsequent lines list the sentences that are output 4 21 Chapter 4 Data Files Fast Serial Output fastout d This file enables a high speed serial output containing the variables listed in the file as an example the file below would output the following string 7 57600 N 8 1 93 94 13 5
85. t providing this information it can be entered here It will be overwritten by GPS information if it becomes available Enter a positive value for East variation negative for West Osc_time UP RE_angle and RE DW_angle all refer to the switching of variables on displays according to either point of sailing or over time if this is specified in userout d see Chapter 4 Data Files for more information The osc_time is the frequency with which the displays alternate between showing different variables units here are 1 10 second UP RE_angle is the angle for the change between upwind and reaching settings RE DW_angle is the angle for the change between reaching and downwind settings TWS factor will reduce or adjust wind speed by multiplying by this factor this is used as an adjustment for wind weight use_mrot allows the option of using data from a mast rotation sensor Available settings are 0 off 1 on using absolute value or 2 on using for fully rotating masts use_3D provides the option of using 1 or not using 0 Gyro Heading compass heading adjusted for rate gyro inputs when calculating wind information It is important that this is set to off 0 ifthe compass input you are using is already rate gyro corrected damp_3D should not be changed under normal use 0 970 is the default value sel_comp sel_heel and sel_trim control which input is used for heading heel and trim respectively Refer to Multiple Compass
86. tage of Target Boat Speed 34 TWA targ AT Target True Wind Angle 53 35 Ss aer PPV Boat speed derived from performance 7E polar 36 Vs perf PP Boat speed as a percentage of 33 performance polar 37 Vs nay PNV Boat speed derived from navigation polar 38 GE EE PN Boat speed asa percentage of e navigation polar 39 Brg_o_Mrk BM Bearing of mark E6 40 Det t Mrk DM Distance to mark ES 41 Tm t Mrk TM Time to mark 35 42 Curr Rate CrR Current rate Written from Deckman 43 Curr Dir CrD Current direction Written from Deckman 44 MCur_Rate MCR Measured current rate Written from Deckman 45 MCur_Dir MCD Measured current direction Written from Deckman 46 DCur_Rate DCR Diamond current rate Written from Deckman 47 DCur Dir DCD Diamond current direction Written from Deckman 48 Battery Bat Battery volts 8D A 2 Appendix A WTP2 Variables Short SS Normal Name Name Description Notes Fastnet Func 49 Rudder Rud Rudder Angle 0C 50 Rake Rke Mast Rake CA 51 gyro_hl GHI Gyro Heel 52 gyro_dhl GdH Roll rate of change of gyro heel Input from rate gyro 3C 53 gyro_trm GTm Gyro trim 54 gyro_dpt GdP Pitch rate of change of trim Input from rate gyro 9C 55 gyro_hdg GHg Gyro heading 49 56 gyro_dyw GdY Yaw rate of change of heading Input from rate gyro 44 57 trim trm Trim 9B 58 forestay frs Forestay load CC 59 keel kel Keel angle for canting keels C9 60 seat
87. tent without obligation to notify any person or organisation of such changes B amp G Wave Technology Processor WTP and WTP2 are all trademarks of Brookes amp Gatehouse Ltd and may not be used without the express permission of Brookes and Gatehouse Ltd Product Liability and Safety Warnings Brookes and Gatehouse Limited accept no responsibility for the use and or operation of this equipment It is the user s responsibility to ensure that under all circumstances the equipment is used for the purposes for which it has been designed Warning Calibration The safe operation of this equipment is dependent on accurate and correct calibration Incorrect calibration of this equipment may lead to false and inaccurate navigational readings placing the yacht into danger Warning Navigation Hazard The WTP2 system is an Electronic Navigation aid and is designed to assist in the navigation of your yacht It is not designed to totally replace conventional navigation procedures and precautions and all necessary precautions should be taken to ensure that the yacht is not placed into danger Caution Electrical Supply This equipment is designed for use with a power supply source of 12 V de The application of any other power supply may result in permanent damage to the equipment and invalidating the warranty Caution Cleaning The use of alcohol or solvent based cleaners will damage this equipment and any warranty in force will be invalidated
88. tes control of 20 20 and 40 40 displays Scroll Keys Two scroll keys are provided Scroll Up and Scroll Down and are used to scroll through the menus When the Scroll Up Key is first pressed the large digits in the upper display are no longer displayed and the name of the current menu flashes in the upper text If the key is held down then the upper text will scroll through the top level menu choices If when you are scrolling up the required menu choice is passed then pressing the Scroll Down Key will allow you to return to the required choice When the required menu choice is found the text will flash until selected by pressing the Enter Key Enter Key The principle use of the Enter Key is to activate selections chosen from the menu by the scroll keys As a general rule when any menu choice is flashing pressing the Enter Key will select that choice Speed Depth SPD DEP Key Pressing the SPD DEP Key will select the Speed Depth display After selection of the Speed Depth functions successive operations of the SPD DEP Key will display the following information in a fixed order e Boat Speed Depth e Boat Speed Speed Over Ground e Boat Speed Apparent Wind Angle e Boat speed True Wind Speed Wind WIND Key Pressing the Wind Key will select the Wind Display After selection of the Wind Display successive operations of the Wind Key will display the following information in a fixed order e Apparent Wind Speed Appare
89. the WTP2 to a local folder e g the Desktop make a backup then modify it using a suitable text editing tool Notepad supplied with Windows is recommended To update the WTP2 select the modified file and drag it back into the relevant WTP2 directory in the Explorer window Terminal The WTP2 has a Terminal connection that allows technicians or advanced users to diagnose operational issues To view the diagnostic text it is necessary to use a terminal package such as HyperTerminal which is supplied with Windows Connect a suitable serial lead to the WTP The only connections required for diagnostic use are Rx Tx and Ground Configure your terminal program with the following information and then establish the connection in HyperTerminal this is achieved simply by clicking the connect button other terminal programs may use different logic COM port The serial port you have connected the lead to on your PC Baud Rate 38400 Data Bits 8 Parity None Stop Bits 1 Flow Control None When the WTP2 is booting or running you will be able to see status messages and characters on the screen refer to Appendix D Diagnostic messages displayed via Terminal for full details Chapter 4 Data Files Chapter 4 Data Files Caution It is only recommended that advanced users or installers alter the data files directly as described in this chapter Most calibration damping etc can be controlled from Deckman as described in
90. time of the run the distances from your input the log and the GPS are shown Del Time shows the elapsed time for the run and the course during the run is shown on the extreme right In the Use current box you can choose what type if any of current information to factor into the calculations In the Calibration distance box you can select whether to use the distance entered by you or that received from the GPS Click on the runs you wish to use for the calibration to send them to the Selected runs in calculation box When you have selected runs a calibration value is then shown in the Calibration box Either choose Send Cal to accept the value or do more runs and calculations Advanced Deckman Controls When the Instruments Control dialog is open in Deckman clicking the menu button will give you some controls specific to the WTP2 The Advanced Calibration or Advanced Damping options allow you to access the calibration and damping files described in Chapter 4 below The WTP Guru option allows the advanced user to access system files do not use this option if you are not familiar with the file level operation of WTP2 See Chapter 3 Use of a PC for further details on these functions Chapter 3 Use of a PC Chapter 3 Use of a PC Introduction Apart from the normal use of Deckman software to control WTP2 in the normal racing environment there are other times when it is necessary to communicate with WTP2 via a PC Direct file modificati
91. tional 12v source for powering external devices SUE Output12V 2A maximum 12V OV No Connection No Connection Screen Chapter 7 Upgrading the WTP2 Chapter 7 Upgrading the WTP2 Caution Always backup WTP2 files before carrying out any system updates or modifying files Upgrade Procedure This document details the general upgrade procedure for the WTP2 application file WTPimp exe in this example we will also update two data files setting6 d and sample08 d to demonstrate the principles used this change is not relevant to all upgrades you should follow specific instructions on dependent files for your upgrade which are distributed in the version txt file along with the upgrade files If unsure please contact B amp G Technical Support To upgrade the WTP2 to the latest software version follow these steps 1 Start WTP2 and connect via FTP Consult the manual for more detail If you are unsure of this procedure please consult a specialist 2 In the FTP root directory as shown below you will see a Folder called Update E ftp wtp2 Microsoft Internet Explorer File Edit Viem Favorites Tools Help e Bak v gt search LyFolders lt A US GE X A Eee ATT zl 2 Links 2 Customize Links Free Hotmail Windows Media E Windows CALIBS DATA FILTERS oldFiles Update FIXCON EXE fixedIP txt om Server wtp2 User Name wtp TCHGA
92. to the existing PARAMTR menu Note that the Deckman functions are all named RemoteX as the Deckman software will send the relevant function text with the function here we are just defining a placeholder in the menu DECKMAN 01b1 03 REMOTE1 01b1 01 FO REMOTE2 01b1 02 F1 REMOTE3 01b1 03 F2 REMOTE 4 01b1 04 F3 SAILS 01b2 04 MAIN POS 01b2 01 Al JIB CAR P 01b2 02 A2 JIB CAR S 01b2 03 A3 CWA 0112 04 A8 CWS 0112 05 An The file format here is best dealt with by looking at part of the example above SAILS 01b2 04 MAIN_POS 01b2 01 Al JIB_CAR_P 01b2 02 A2 JIB CAR S 01b2 03 A3 The first line creates a new menu called SAILS format as follows Menu name As is appears on the FFD SAILS in the example above Menu ID number New menus use ID numbers 01b1 01b2 01b3 etc Menu position Identifies where the menu appears in the FFD here it is 4 in the chain The following lines add functions to the menu here we are adding three functions to the menu the Mainsheet Traveller position and Jib Car positions port and starboard The format is as follows Function Name As is appears on the FFD e g MAIN_POS in the example above Menu group ID The ID number of the menu group the function is to appear in see below Function order The position in the menu the function should appear simple 01 02 03 etc Fastnet Function number The hexadecimal value of the fastnet function number If you wis
93. uplicate items are sent once per second so in the example above there are some variables 55 18 17 91 2 which are repeated five times these variables are therefore sent five times per second 5Hz 5Hz is the maximum rate used on the serial output For Ethernet communication each unique item in the file is sent at the rate detailed in ethernet d 10Hz by default additional repeated variables are ignored Settings control in Deckman settingX d This file defines the settings which are controllable from Deckman these values are fixed in the source code so must not be changed It is not necessary to modify this file directly mast_height 5 0 5 1 leeway cal S 1 4 1 use_heel S 2 4 0 1 use_gyro S 3 4 0 1 variation S 4 05 E 0 0 osc time S 5 4 0 20 UP RE angle S 6 4 0 80 RE DW angle S 7 4 0 120 TWS factor S 8 4 2 00 use_mrot S 9 4 0 use_3D s 10 4 0 ik damp_3D Sid 25 23 0 970 sel_comp S 12 4 0 sel_heel S 1185 4000 sel trim s 14 4 0 sel_speed S 15 4 0 sel_GPS s 16 4 0 boatlog S AG M 2 0 00 Each line defines a different setting item All these items can be modified from within the Instrument Control option in Deckman 4 16 Chapter 4 Data Files Description of each item mast_height leeway_cal use heel use gyro variation osc time UP RE angle RE DW angle TWS factor use mrot use 3D damp 3D sel comp sel heel sel trim sel speed sel GPS boat log mastheight fee

Download Pdf Manuals

image

Related Search

Related Contents

Rapport d`activité 2006 - Ministère de l`Agriculture, de la Viticulture  Télecharger le manuel d`utilisation  Nikon Coolpix 8800 Digital Camera  Symantec Brightmail AntiSpam 6.0 (10298333) for PC, Unix, Sun, Linux    C218 Turbo User`s Manual    FX-ANT-P11 解説書  取扱説明書PDFはこちらから  USER GUIDE  

Copyright © All rights reserved.
Failed to retrieve file