Home
ダウンロード
Contents
1. Fiber Coat FC is a metal sheet piled by electrostatic transplanted nylon fibers FC is used for duct or roof materials because of its unique design and water absorption ability We can add another function to FC by various treatments The fr
2. E 2 3 0 3 Fig 2 A5052 Pile nylon66 Primer Al 5052 H32 1 mmt Polyester resin 20um Fig 2 Light absorption surmise of FC 3 1 3 1 1 m 1 dtex 0 1 g 1000m U 4100 350 800nm
3. Vol 36 3 1 1 Fig 20 RMOB 2K Sn 3 0 Ag 0 5Cu FIB Fig 21
4. 2 3 4 47 300 400 nm 2 2 1 WML 4 120um
5. EDS Tal SA Fa om jit seine EPLE ae ae 7 not detected Sn Mie i detected Al 50um ee Fig 20 Surface appearance of Sn plated Al sheet after flow soldering Sn Solder si Fd b After soldering a Before soldering Fig 21 Cross sectional observation image of SAPlate 3 1 2 17 19
6. Fig 7 Fig 8 20 10 1 Seiichi Honma Plastics 55 2004 5 2 William J Putman Matthew McGreer and Matthew Conrad Soc Plast Eng ANTEC 1995 3322 3 Eiki Takeshima Toshinori Kawano Hisao Takamura and Shigemichi Katoh J Jpn Soc Colour Mater 56 1983 457 Fig 8 Actual use for roofs of houses and the parts around the roofs 51 K a a FAMER I
7. DD I PET 2 PET 3 PET 1 1998 129 2 56 2001 93 3 72 1986 301 Vol 36 5 RZ REMS 32
8. 2 Rolling speed 1500mpm 14 0 TO Upper toraue 0 044 6 Lower torque 13 0 Friction coefficient 9 043 120 0 042 E 0 041 2 11 0 a 0 040 8 ae 0 039 8 9 0 0 038 8 0 0 037 1 0 j 3 0 4 0 5 0 6 0 Flow rate of upper lubricant L min Fig 12 Influence of upper side lubrication on rolling torque a 5 5L min b 2 0L min 500 u m Fig 13 Microscopic observation of top strip surface 5 1 2 1 2 2 Fig 14 Fig 15 Fig 16 1
9. Solderable Aluminum Plate 2006 2 Table 1 3 A1100 A3104 A1100 2K A1100 2K Table 1 Type Conductivity Characteristic
10. 3 3 1 Al Fig 2 Al Al Depth profile C O Al C 2nm contamination O DS C Al O Al 40nm Al Al 40nm Fig 3 XPS Al
11. Te Shutter Electrode Etching unt El Specimen Cassette Roller Input raw samples gt Vacuum Output a clad sample gt Arion etching room Fig 1 Cladding room Schematic of cladding equipment 2 3 2 3 1 X Al Al AES Auger Electron Spectroscopy JUMP 7000 X XPS X ray Photoelectron Spectroscopy JPS 9200 2 3 2 Al Al 180 JIS C 6471 2 3 3 FIB Focused Ion Beam JBM9320FIB
12. 2 5 1 2 3 Al Al 2 3 B 2 1 27 m Al JIS A1050 RUE 1mm Al JIS A3003
13. Sample NS 2 NS 3 20 PET PET Influence the adhesion specification of surface treatment Peel strength N 15mm Redraw can wall DWI can wall Laminated sheet Cup wall 15 mg m 15 2 18 4 12 1 17 4 77 59 14 2 9 1 14 8 12 6 9 6 3 0 chemical treatment hatching Film breaking Film strength lt Adhesion Ni Sn Plating Sample S1 Sn 0 12g m Cr 8mg m Sample T4 Cr 420mg m7 Cr 15mg m Sample 2 Sn 4 00g m Cr 8mg m Fig 6 20 Sample NS3 Ni Sn 5 00g m Influence of surface treatment film adhesion on PET Hair can inside D I
14. Fig 5 Stand No 5 Stand No 4 Strip palm flow control valve Pressure gauge lPaadapnume Feeder pump Circul ation pump Fig 5 Lubrication system of stand No 5 Roll palm Flowmeter Mixing tank 800L 4 4 1 4 1 1 N 2TM 5 Table 1 Table1 Condition to measure rolling torque Condition 2 0mm 750mm 0 256mm Index Material size Lubricant Proportional to rolling speed Direct application 14 RBD palm oil application Oil concentration 4 1 2 Fig 6 10
15. Sample A B Fig 23 Sample A B Fig 23 Surface of sample A and Sample B before whisker examination Fig 22 Sample B Snom X Fig 24 Solderable Aluminum Plate JCPDS PDE 04 0673 X Sample A Sample B Willson Rogers FEO Fig 24 Sample A
16. Fig 3b 2 c a D 2 4 7 Table 2 4 Sn Pb Sn Ag Sn 3 0Ag 0 5Cu 2 4 7 Sn 3 0 Specification and characteristic of SAP
17. 2 2 0 8 2
18. WR pees 7 No 2 No 2TM 5 2 Fig 2 Fig 3 Fig 4
19. TFS Table 6 Substrate Sample No Material Temper Primary plating Metal 120mg m chromium Cr 420mg m Tl S1 S2 Tin Plate T ICA 4 00gm NS1 Ni Sn 0 56g m NS2 coating T ICA Ni Sn 1 68gm NS3 sheet 5 00gm Aluminum H19 TFS Tin Free Steel Surface treatment both side Secondary plating Chromium oxide Cr 0 12 gm Chromium oxide Metal chromium 8 7 mg m Cr Cr chromium phosphate Tin Plate No passivation Fig 6 20 TFS PET PET
20. Vol 36 4 4 1 6 TEAL Fig 11 Fig 12 1 10 non polluted 8 polluted zs cleaned 3 6 8 4 a 2 ae 0 1 350 450 550 650 750 Wavelength nm Fig 11 Influence of auto emission pollution on reflectance of FC Before exposure After exposure el
21. Embossing roll i Laminating roll Heating Heating Cooling zone zone zone Base metal i L coating section Laminating Embossing Coating section section section Fig 2 Schematic view of production line 2 3 2 3 1 2 1 2 2 JIS K 6744 Te 1 JIS B 7729 6mm 8mm ees 2 0 C 25 C 0T 3 SST JIS Z 2371 1000 4 60 5 10 HCl 10 NaOH
22. Table5 2 1 Fig 14 Sn 3 0Ag 0 5Cu Hin Fig 15 Dd Al100 gt Sample Solder joint Copper sheet Fig 13 Appearance of a sample for pull strength test of solder joint Table5 Condition of solder joint and pull strength test Sn 3 0Ag 0 5Cu M705 GRN360 K2 V Flux content 11 2 Halogen content 0 0 SENJU METAL INDUSTRY Co Itd
23. AH TACY FVEBbWV7 EKS G x D3 8 e IE Ti N mm G 7 92 104N mW D ZAEV FLE 280mm 4 E T 0 683 106 4 0 171 10 g 4 LT E i k Vol 36 Motor shaft Spindle shaft Motor BUR CO Pinion gear n Efficiency WR ear amp Gear ratio Fig 2 Schematic model of mill drive system Antenna Telemeter transmitter Recorder Telemeter receiver Fig 3 Rolling torque measurement system Strain gauge Four gauges L transmitter collor Fig 4 Over view of rolling torque measurement system 3
24. 2 5 W 20 cm Fig 3 Fig 4 10 650nm 650nm AK 25 20 15 10 5 Density of Pile X10 cm Ea 0 88 dtex 1 70 dtex 3 30 dtex 3 30 dtex 0 4mm 06mm 0 8mm 1 2 mm 0 Pile size Fig 3 Pile size and density of pile HSH 30 Vol 36 10 0 88 dtex 0 4 mm 8 1 70 dtex 0 6 mm 3 30 dtex 0 8 mm g 6 3 30 dtex 1 2 mm i 4 2 0 350 450 550 650 750 Wavelength nm Fi
25. 1990 tE TULC aTULC COz Bisphenol A Diglycidyl Ether A BADGE BG EU REACH
26. 1996 2 3 4 5 6 7 if Draw and Ironing DI PETA PET PET BOS 2
27. 0 77kN mm 3 6 12 RF power 700W Etching time 5min E 8 o z lt to E L sal 3 A 0 0 2 0 4 0 6 0 8 Rolling load kN mm Fig 6 Relationship between peel strengh of Al Al clad materials and rolling load during cladding process 5 RF power 700W Etching time 5min 4 L a 3 5 bn 52t LU 1 0 j 0 2 0 4 0 6 0 8 Rolling load kN mm Fig 7 Relationship between elongations of Al Al clad materials occurred by rolling and the rolling loads during the clad process P at L ama tert 42 000 lara pid fires 15KU Fig 9 Kz G8 SEM images of the inner side surface of Au deposited Al sheet after rolling with Al foil The samples were produced without Vol 36 3 4 Al Al Fig 8 Al Al Al Ra 0 8um
28. 1 2 A1 a A1 b Al c 1 0 0 8 0 6 0 4 0 2 0 0 Strip roughness Ra um 0 2 4 6 8 10 12 14 16 18 Rolling force kN mm Fig 4 Relation between rolling force and strip roughness befind stand 2 10 Al G E Alb A Al 08 E 06 amp E 04 3 5 0 2 0 0 0 2 4 6 8 10 12 14 16 18 Rolling force kN mm Fig 5 Relation between rolling force and transcription ratio 0 Al a Al b Al c Color Difference Light 0 4 0 5 0 6 07 0 8 Strip roughness Ral um Fig 6 Relation between strip roughness Ra and color difference light 70 Al a 60 50 40 30 20 10 0 A1 b Al Gloss 20 0 7 0 8 04 0 5 0 6 Strip roughness Raluml Fig 7 Relation between strip roughness Ra and gloss 20 5 1 2 1 WR 1 WR Table 4 A1 D D A2 B D 5 1 1 8 000kN 11 4kN mm
29. Fig 6 Value of b 0 30 60 90 120 150 180 Keeping time day Fig 27 Relation of color difference b value of sample and keeping days k Vol 36 10 5 Standard type 2K S E Sample C 8H Solder Sn 3 OAg 0 5Cu 245 C Depth of dipping 2 Omm 6m Speed of dipping 2 0mm s 7 Time of dipping 10s pid Flux NA 200 2 Sample size 0 4x7 0x20mm o Ar 2 o 5 L N 4 2 Ss 0 0 90 180 Keeping time day Fig 28 Relation of keeping days and flow soldering V4 72K 180 4 HE
30. Al O Al Interface Al AI 15 p Rolling load 0 58kN mm Al 700W x 45min A O 700W X 3min p E o 2 9 Ss to 5 b 6 a 3 0 AI AI AI O Al A O O AD Fig 10 Comparison of peel strength of Al Al Al Al oxide and Al oxide Al oxide clad materials 3 6 Fig 11 Alf Al 3 D 700W 5min 45min 0 34kN mm FTIB
31. 43 Standard type 2K Standard type 2K mae i Organic r resin Fig 25 Cross section observation image by FIB Fig 25 2K T Sample B
32. 45min 200 400 25 W Al Al nm Al Ra 380nm 5 15min Al RF power 700W Rolling load 0 58kN mm Peel strength N cm 0 10 20 30 40 50 Etching time min 40 30 20 10 0 Thickness of oxide nm Fig 4 Relationship between peel strength of Al Al clad materials and Ar ion etching time The thickness of the residual Al oxide layer after etching is shown on the horizontal axis 1000 Ar ion etching time 5min 15min 45min 750 H Al foil Interface Al sheet gt Intensity of oxygen
33. 1 PRA 2 2006 2 KEE 2000 3 REMS 34 2004 13 4 2004 5 1986 6 100 2004 7 2007 8 SAT 5100 Ver 2 54 2006 9 JIS C 60068 2 54 1996 10 JBITA 2007 11 SAT5IO Ver 2 4 2006 12 Technical Standardization Committee on Surface Mounting E11
34. 4 58 7 1993 581 5 2000 9 6 86 2000 171 7 ABE FESS 33 2002 23 8 35 2004 1 22 RES Vol 36 Al Al Investigation of Adhesion in Al Al Clad Materials by Surface Activated Bonding Method Huanan Liu Kouji NANBU and Hironao OKAYAMA Synopsis Keywords 1 We have developed a new cladding process by the surface activated bonding SAB method In this process the surface of materials to be bonded are cleaned and activated by argon Ar ion sputter etching and then immediately rolled together with low distortion at room temperature in a vacuum condition In this study we prepared aluminum Al foil of 27 m thickness and an Al sheet of 1 mm thickness as raw materials and fabricated a series of clad samples with different Ar ion etching time and rolling load conditions in a constan
35. 1 2000 2 RS 31 1998 15 3 13 2000 310 4 13 2000 322 5 13 2000 318 6 HH A Bees 86 2000 47 7 HAER SESK 23 1982 1080 8 WEL INT 23 1982 658 RES Vol 36 D PET 4 6 Application of Polyester Film Laminated Steel Sheet to DWI Can Shinichi Taya Masahiro Kat Junichi Tanase Hiroshi Dot Etsuro Tsutsumi Norihito SAIKI and Hidekazu TOMARU Synopsis Beverage cans are mainly produced through
36. 20 Table4 Thickness and residual ratio of samples at EMMAQUA test EMMAQUA test time years 0 0 5 1 1 5 2 2 5 3 Thickness 499 118 114 117 111 108 108 um Residual ratio 100 98 95 98 93 90 90 Table5 Molecular weight Mw and residual ratio of samples at EMMAQUA test Molecular EMMAQUA test time years Color _ weight 0 3 2 3 Mw 1 0E 05 9 2E 04 9 2E 04 8 8E 04 Black Residual ratio 100 89 89 85 Mw 1 0E 05 9 0E 04 8 0E 04 7 8E 04 Whit i bial renal 100 90 80 78 ratio 4 bY
37. 2 3 2 HPS212 2 50 C 2 60 C 2 1 1200 2 3 3 1 1 WEL SUN DC ISO4892 SWOM
38. Al Al Al Al Al O Al ALO O Al 3 3 5 Fig 10 Al Al Al Al Al BL Al Al O Al kA DIA Al Al O O Al Al Al 11 3N cm Al O O Al A 1 O Al 2 3 8N cm
39. 30wt Fig 6 CB Fig 7 FC FC 3 30dtex 20um x0 8mm 15 Black primer 12 Gray primer 9 i F ia 9 3 0 350 450 550 650 750 Wavelength nm Fig 6 Reflectance of colored primer 10 Black primer CB pile on 8
40. Vol 36 87 Fig 11 1A GD2 GD2 20 2 fsp Ksp I 2 z 2 1 Ksp 3 4 L GDp Spindle Drive side Operate side Fig 11 Equivalent torsional spring of spindle I GDp2 4 g 9 Ksp D4 G 32 L 4 GDp2 GD2 g D G L fsp 17 9Hz 13Hz
41. 20 C 50 RH 1 6 13000hr Table6 JEITA ET 74101 55 C 85 RHx2000hr 18 C 85 5 41 38 Observation place 2mm Fig 19 Appearance of a sample used to examine whisker Table6 Result of whisker examination 20C 5
42. Strip roughness Raf um Entry Inter stand Delivery Fig 20 Change of strip roughness in two stand temper mill D B mode Tem Entry Tnter stand Delivery Fig 21 Photos and roughness charts of strips FIA PEEWICKY SEM cd ZEAE 2 Ra L Fig 22 25 1 2 2 2 WR Fig 22 0 8 4 C2 a 0 7 E C20 0 6 mitiatroughpess C2 c 0 5 0 4 0 3 0 2 0 1 roughness of Stand 2 0 0 Strip roughness Ra um 0 2 4 6 8 10 12 14 16 Rolling forcelkN mml Fig 22 Relation between rolling force and strip roughness after stand 2 Transcription ratio Rolling force kN mm Fig 23 Relation between rolling force and transcription ratio k Vol 36 2
43. 5 5 1 Table 2 Table2 Test conditions 1 Condition 2 0mm 750mm 0 32mm 14 RBD palm oil Index Material size Oil concentration 5 1 1 2 0L min 5 5L min Fig 12 1 500mpm 1 LAC Y PUB 6 3 4 9 Fig 13 EL
44. 100 m 400nm 0 500nm 2 100m Fig 1 ss 10 8 8 E E 4 F 0 200 300 400 500 600 Wavelength nm Fig 1 Light transmittance of acrylic film 10 TSK OAMBALWINL 200m 100 m 400nm 0 500nm 2
45. Ar Al Al 10 5Pa Al Al Al HzO 9 10 3Pa A Bright field image of the interface of the Al Al clad material Al foil Al sheet Interface Electron beam diffraction patterns Fig 12 Bright field image of the interface of the Al foil Al sheet clad material and electron diffraction patterns by TEM Table 1 Results of EDX analysis around the interface of Al foil Al sheet clad material element Alfel
46. Fig 6 Sn 3 0Ag 0 5Cu 8 EC 19S 8 1 a OS le ULF 300R HB NA 200 6 z Good Zero cross time s Poor Phosphor bronze Tinplate SAPlate Copper Bronze Fig 5 Flow solderability of SAPlate in lead free solder Sn 3 0Ag 0 5Cu Depth of Dipping 2 Omm Phosphor SAPlate Copper Bronze bronze Tinp late Fig 6 Appearance of samples after wetting balance test Flux NA 200 VUIAAYA HOMHBKES Pots Hi A 1100
47. Fig 27 1 Cl_Upper Cl Lower B C2_Upper EF C2_Lower Strip roughness Ra um Entry Inter stand Delivery Fig 26 Influence of roughness of work roll for stand 1 on strip roughness in two stand temper mill D B mode Tem Entry Tnter stand Delivery cl DB Upper Ps Fig 27 Photos and roughness charts of strips 2 Ra L Fig 28 31 Fig 31 1 C2 C 1 2 Cla C10 C2 a C2 WR rbughness bf Stand 2 Str
48. 2 0 54m Sample B Sample B FIB Fig 25 Sample B FIB SIM
49. Table3 15 Fig 3 10 T 3 EMMAQUA 3 846 155Ly 40 3 Fig 4 HAYES Table 1 The fundamental characteristics PVC Acrylic Adhesion test Good Good Formability test Good Good Corrosion resistance test Good Good Boiling water dipping test Good Good 10 HCI Good Good Chemical 10 NaOH Good Good resistance Kerosene Good Good a Ethanol Good ra
50. 79 9 Vol 36 2 3 Development of Fiber Coat FC for Traffic Signal Hood Masanori YOSHIKAWA Hiroaki Toco and Harunori KOJYOU Synopsis Fiber Coat FC on which surface nylon66 fibers are piled by electrostatic transplanting method is one of the products in TOYO KOHAN For the substrate of FC several kind of metals in coil shape such as hot dipped galvanized steel available stainless steel aluminum alloys and so on are FC products show many superior characteristics such as good appearance and soft touch like velvet water absorption and nonflammable ability FC is used for various products for example duct or roof materials and panel heaters Recently we developed low light reflectance type FC for traffic signal hoods and commercialized this product Keywords Fiber Coat nylon66 low light reflectance traffic signal hood 1 UFTFC K 66
51. 2R A 1100 Fig 17 2K Ek Y 2R Sample Thermo couple Measurement point Heater ae AC power cabl ee Fig 16 Appearance of evaluation of heat radiation a i Black SAPlate type gt T Surface temperature of heater C 800 200 400 600 Time s 0 N ke 1000 Fig 17 Evaluation result of heat radiation 2 3 2 Eig 18 Fig 18 Example of heat sink made of SAPlate by stamping
52. Cross section composition Chromium Oxide mg m mgm P Sample S1 Fig 1 b The coating composition of Tin Plate Coating composition Chromium oxide Metal chromium cre Cr9 mg m Sn wm chromium phosphate gonemieal treatment phenol zirconium xK chemical treatment Steel sheet 0 225t ron foil 0 025 Sample CL S Steel Base Fig 1 d The cross section composition of sheet foil clad materials 2 2 KS 2 2 2 1 TPL45Si 441kN AMADA 60spm Table 3 Table3 The condition of the drawing process Cupping Punch diameter mm 91 0 Drawing ratio 1 54 Blank holder force kN 25 Drawing speed spm 60 Drawing t
53. Table5 1 No C 2 2 1 WR NIC1 C2 3 NND 1 D2 Table5 Conditions of temper rolling for bright finish products Mode WR condition Lubrication Test Material Stand 1 Stand 2 Stand Stand no 1 2 DB 522mm 582mm Dry Dry Cl M1 Dull SB Bright 1 18um 0 17um 522mm 582mm Dull SB Bright 2 20mm 0 17um D B 522mm 582mm Dry M3 Dull SB Bright D 1 18hm 0 17hm Ty Dry Dry C2 Dry D1 Wet D2 5 2 1 2 Fig 20 Table 5 C2 D B 1 2 8 000kN 11 4kN mm 1 WR 1 2 2 WR 2 Fig 21 1 WR
54. Ra Fig 19 L Fig 18 WR Foughness of Stand 2 Strip roughnessRa um 0 2 4 6 8 10 12 14 Rolling force kN mm Fig 16 Relation between rolling force and strip roughness after stand 2 o Bla Transcription ratio 0 2 4 6 8 10 12 14 Rolling force kN mm Fig 17 Relation between rolling force and transcription ratio 2 oo 3 50 Pea 5 40 E 30 o Bla B1 b E 20 B2 a 10 B2 iS 0 03 04 05 06 0 7 Strip roughness Raf um Fig 18 Relation between strip roughness Ra and color difference light 4 Bl a B1 b Gloss 20 0 3 0 4 0 5 0 6 0 7 Strip roughness Ra pum Fig 19 Relation between strip roughness Ra and gloss 20 5 2 2 WR 1 WR
55. Wetting Force mN Fig 4 Measuring method at zero cross time with wetting curve and appearance of testing Table3 Test condition of flow soldering wettability Sn 30Ag 05Cu M705 Sn 03Ag 0 7Cu M35 245 C Solder Temperature of soldering bath Testing device SENJU METAL INDUSTRY Co Itd Solder checker SAT 5000 RHESCA Co Itd Speed of dipping 20mm s Depth of dipping 2 Omm Time of dipping 10s Size of sample Flux Solid content Chlorine content 0 2 2 0 W x 20 L mm EC 19S 8 15 0 08 ULF 300R 6 0 04 NA 200 50 0 00 TAMURA KAKEN Co Itd 3 Fig 5 NA 200
56. 2 1 2 WR 4 Table 1 D D B D D B 3 Table1 Temper rolling modes Strip surface Work roll surface Rolling mode Stand 1 Stand 2 Dull Dull Dull D D Bright Dull B D Bright Dull Bright D B Bright Bright B B 2 3 3 1 Ra L UJARE 20 3 2 ea 2 mRa BIR 2 WR mRa 4 4 1
57. Standard type 2K LA Appearance of paper rubbing tester Load 980g T imes 100 Sample C without organic resin Fig 26 Result of paper rubbing test and appearance of evaluation device 3 2 2 EMO Sample C 2K 20 C D Fig 27 Sample C D 2K D Fig 28 90 180 Sample C 10s
58. FIA KE WR 2 1 A Et 3 Ra L L HE Ra L XxX 1 CAMP ISIJ 18 2005 1221 2 HHS 3 HD CAMP ISIJ 18 2005 1219 CAMP ISIJ 17 2004 1001 4 CAMP ISIJ 18 2005 1218 5 6 7 8 CAMP ISIJ 20 2007 353 CAMP ISIJ 20 2007 354 CAMP ISIJ 20 2007 356 CAMP ISIJ 20 2007 358
59. 99 96 Cu65 Zn35 Cu94 Sn 6 P0 02 Hw Sn5 6g m 2 1 2 2K Fig 4 8 9 Table 3 JIS C60068 2 54 245 C 2mmx 20m 0 2mm AI100 Sn 3 0Ag 0 5Cu 37 Fig 4
60. Polymer coated galvanized steel is used for building or housing materials Exterior materials for buildings especially must have high weather resistance and high corrosion resistance Pre coated materials or PVC laminated materials have been used as the exterior materials However recently some new demands such as environmental issues or fine appearance with embossing have been increasing for exterior materials in Japan TOYO KOHAN has developed acrylic film laminated material with high performance The fundamental characteristics of the new material for example formability corrosion resistance and weather resistance were good In order to evaluate the long time weather resistance we carried out the EMMAQUA test The colors of the test sample were white black and green standard colors of exterior materials The results of the EMMAQUA test for the past three years are as follows The glossiness of all colors became about 1 The color changes AE of black sample after three years was about 2 5 The residual ratio of thickness was about 90 The residual ratio of molecular weight was about 85 Both of them were high residual ratios Judging from the results the new material has high weather resistance for a long time We estimate that this new material will maintain good weather resistance over 20 years without any maintenance Of course the new material has good formability and can meet t
61. Gel Permeation Chromatography GPC 3 Table 1 Table 2 SWOM 5200 AB
62. 2 3 5 LOL 2 3 4 5 0 Plate out ON QWedge of oil Lubricant Roll gap t a PE DPlate out louet ma Fig 1 Schematic view concerning rolling lubrication Fig 1 1 3 6 WR
63. Fig 1 FC 400g m Pile nylon66 mga Base metal Fig 1 Cross Section of FC 2 FC 2 112 87 18 3 1 LED 6 70w LED15w LED LED LED
64. Fig 8 1 1 2 1 2 WR Fig 9 0 8 0 7 0 6 0 5 0 4 0 3 0 2 0 1 0 0 Al Upper Al Lower t A2 Upper O A2_ Lower Strip roughness Ra pm Entry Inter stand Delivery Fig 8 Comparison of strip roughness between D D and B D mode in two stand temper mill Tem Entry Tnter stand Delivery Fig 9 Photos and roughness charts of strips 2 Fig 10 Fig 13 b 1 8 000KN 11 4kN mm A2 B D 2 1 A1 D D Fig 10 2 Fig 12 Fig 13
65. PET T 1 Sample T 1 DR 2 PET Sample A PET PET PET PBT D I PET Table 5 Fig 3 PET Table 5
66. Solderable Aluminum Plate 1 Technology JEITA ET 7404 1997 13 JIS C 0099 1996 14 Pb M705 GRN360 KV 2004 15 Technical report 20060105 SnBi L20 L23 Eco solder past BLT5 2006 16 FERAH 34 1987 112 17 26 2005 165 18 R amp D 2006 19 Technical Standardization Committee on Surface Mounting Technology JEITA ET 7410 2005 20 K S Willson and J A Rogers Tech Proceeding Amer Electroplaters Soc 51 92 1964 92 21 X AHER 1994 22 Kiyotaka Tsuji J Surface Finish Soc Jpn 58 2007 406 45 Vol 36 3 4 The Characteristics of Acrylic Film Laminated Material Satoshi TAKAHASHI Masanori TANIGAMI Takahiro Koca Noriaki WADA Synopsis Keywords 1
67. 3 3 PET Fig 8 2 PET 21 4 DI PET 1
68. 1 200mpm 1 37 Fig 7 Z FARE Fig 7 1000 mpm Fig 7 1400mpm Fig 8 13Hz Fig 10 WR Fig 9 2 3 4 5 Upper stri
69. CHES CHS 2 1 3 E 2 Fig 16 WELZ EHTS IZ __ Proportional Constant Upper side Upper side t Lower side Lower side Rollbite Rollbite 8 EI a 6 25 a l g er 34 6 3 2 J 0 500 1000 1500 2000 Rolling speed mpm Fig 14 Characteristic of lubrication control _ Proportional Upper torque 4 Lower torque Total torque Constant s Upper torque 4 Lower torque 8 Total torque 32 30 28 26 24 22 20 18 Rolling torque KN m Total torque kN m 16 14 0 500 Fig 1000 Rolling speed mpm 12 1500 2000 15 Influence of lubrication on rolling torque Proportional lubricant application S
70. GH DLE 2K 3 2 Table 7 BOS 3 2 1 Sample C 2K Fig 26
71. TEM Vol 36 Transmission Electron Microscope JBM 2010F Al Al TEM X EDX Energy Disperse X ray 2 3 4 Al Al Al Al VK8510 SEM Scanning Electron Microscope JSM 840A iM Al Al Al Al Al Al Al 12nm 30nm Au
72. 2 1 2 1 1 4 Table 1 1 TFS Tin Free Steel TFS Table 2 Fig 1 2 k Vol 36 2 Table2 Fig 1 b 3Ni Sn Ni Sn TFS Ni Sn
73. Fig 5 PET OE Reduction ratio of the can top edge 10 Reduction ratio of the can top edge 15 Sample T1 substrate Steel T 1 Sample T2 substrate Steel DR3 Sample T3 substrate Steel DRS Sample A substrate A3004 H19 Fig 3 SEM micrograph of the surface of can top edge inside Table5 Mechanical properties of the materials after each process Laminated sheet Cup wall Redraw can wall DWI can wall Sample No Material Tempar Yield Tensile Yield Tensile Yield Tensile Yield Tensile Strength Strength Strength Strength Strength Strength Strength Strength MPa MPa MPa MPa MPa MPa MPa MPa Tl T 1
74. 9 7 9 Fig 19 90 2 JBITA ET 7410 55 C 859 RHx2000 FE SEM
75. 3 a 1 2 8 000kN D 2 1 8 000kN c 1 2 1 2 Fig 4 2 a b c 3 a c 2 2 1 1 2 Fig 4 b 2 WR Fig 5 2 Fig 6 Fig 7 L
76. 2 2 Fig 2 0 8mm JIS Z18 GI GI 48 x Vol 36 GI 2 4 GI
77. 180 8 180 Fig 2 RTC 1210A 0 17mm s 25 C gt e oe b Fy im clear film inside Fig 2 Model of 180 peeling test HSH Vol 36 2 4 2 4 1 1 5mmx 40mm RTC 1210A 3 3m s 75 C 2 JIS Z 2241 JIS 5 RTC 500 0 17mm s 25 C
78. 2 23 2 2 Fig 1 AR LEAL AOA Al L 1 x103Pa 0 3Pa Ar ANA Al RE Radio Frequency 700W RF MH Ar 0 3Pa 700 W Al 8 1nm min Ar Al Al
79. 4Hi 2 Table 2 Table2 Main specifications of temper mill Mill type 4Hi 2Stand Line speed Max 1 700mpm Strip Thickness 0 10 0 80mm size Width 457 1 067mm Weight Max 18 000kg Roll Stand 1 WR 460 534 X 1 219L size BUR 1 219 1 351 X 1 168L Stand 2 WR 460 585 X 1 219L BUR 1 219 1 351 X 1 168L Screw down device Electric screw Rolling force Max 12 000kN 4 2 Table 3 Fig 1 M1 M2 M3 3 2 Table3 Main specifications of coils Material MI M2 M3 Annealing Non annealed Non annealed Annealed Size 0 15t X 700w 0 25t X 625w 0 25t X 1041w coil coil coil Yield point 521N mm 556N mm 414N mm HR 30T 72 73 57 Surface Dull finish Bright finish Bright finish Roughness 0 54 0 50um 0 16 0 14um 0 34 0 29um if k Vol 36 Tem MI Mz EE mt 100pm Zn 100pm Zumt 1004m i rj AVT T E E REEI 1 Upper i LARE E r TE fey i byl Ji H 4 n Li a 1 FT aad LZ i DF ji p d Lower if i a oe 15i a i r
80. Fig 9 Sn 3 0Ag 0 5Cu Fig 10 POR Table4 Test condition of reflow soldering wettability Sn 3 0Ag 0 5Cu M705 GRN360 K2 V Flux content 11 2 Halogen content 0 0 Sn 58Bi L20 BLT5 T8F Flux content 10 0 Halogen content 0 0 SENJU METAL INDUSTRY Co Itd Solder paste Supply of solder paste 5x0 3 mm Testing device Solder checker SAT 5100 RHESCA Co Itd Depth of dipping 0 1mm Speed of dipping 1 Omm s Size of sample 0 2x2 0 x20 L mm 250 7 7 Peak 240 C 200 Peak A 60 ae 0 Sn 3 OAg 0 5Cu M705 Temperature of Copper sheet C 50 Ao f Sn 58Bi L20 geet tt 0 50 100 150 200 250 Time s Fig 9 Temperature profile used to evaluate reflow soldering 2 5 S Sn 3 0Ag 0 5Cu paste 1 2 0 ee L P 2 g
81. 60 VG2000 ISO2813 2 4 2 SWOM BMMAQUA T L a b SQ 2000 AB L 0 a 0 D 0 L 1 1 D 1 AL L 0 I1 1 Aa a 0 a 1 Ab b 0 b 1 l AE AL 2 Aa 24 Ab 2 49 2 4 3 EMMAQUA EMMAQUA 2 4 4 EMMAQUA FOR
82. 45min Fig 11 b Al Al 5min Fig 11 a nm Fig 12 700Wx 5 min 0 77kN mm TEM 20nm 40nm COR Table 1 EDX Al Al 12at LOL AREK AIO OH 50 at AI Al foil Wee Interface Fig 11 Cross sections of Al Al clad materials observed by FIB a etched for 5min before cladding and b for 45min 27 Vol 36
83. Mode WR condition Lubrication Test Material Stand 1 Stand 2 Stand Stand no 1 2 D D 525mm 534mm Dry Dry Al M1 Dull SB Dull SB 1 09 ym 1 08um B D 522mm 6 534mm Dry Dry A2 M1 Bright Dull SB 0 07hm 1 08um D D 519mm 518mm Dry Dr Bl M2 Dull SB Dull SB Dry Wet B2 0 74hm 0 95hm SB Shot blast texture 5 1 1 2 Fig 2 Table 4 A1 D D 1 2 8 000kN 11 4kN mm HA 1 2 WR 1 2 2 1 Fig 3 Strip roughness Ral um Entry Inter stand Delivery Fig 2 Change of strip roughness in two stand temper mill D D mode Tem Entry Tnter stand Delivery Fig 3 Photos and roughness charts of materials
84. 495mm X 0 450mm x Y Y 50mm constant Illuminance Signal hood meter LED Fig 15 Illuminance measuring point 33 200 FC signal hood 3 150 Painted signal hood 100 S T 50 0 0 50 100 150 200 250 300 350 40 450 Distance from light source mm Fig 16 Relationship between illuminance and distance from light source 6 85 19 4 2 2007 41 2 2007 47 1 2 TRESS Vol 36 Solderable Aluminum Plate TF itl Pre coated Aluminum Plate for Solder SAPlate Shunsuke KAWANO Kou YOSHIOKA Tatsuo TOMOMORI Synopsis Aluminum alloy excels in li
85. Redraw can wall PET PET PET Sample CL S ERGO I y FM Sample CL A 20 FE SEM Fig 4 PET 20 PET
86. 0 lm Sn 3 0Ag 0 5Cu 2 Sn 0 3Ag 0 7 Cu Sn 58Bi Bronze Phosphor Tinplate bronze SAP late Copper Fig 12 Appearance of samples after reflow soldering test Sn 58Bi solder paste 2 2 Fig 3 Fig 13
87. Hv20 Al Ra 0 38 m Al HV67 Al Al 0 38 mOkECH 0 34kN mm Al Al Al Al Fig 9 Al Au Al 0 34kN mm 0 5 0 77kN mm 3 6 SEM Au 30nm 0 34kN mm Fig 9 a Au 0 77kN mm Fig Q b Au 12nm 0 77kN mm Fig 9 Al foil 0 8 My20 Al sheet E 06 NS a a T s ie g 04 Hv67 mS e m E F as E a 02 0 i 1 Non rolled 0 2 0 4 0 6 0 8 Rolling load kN mm Fig 8 Transitions of su
88. 2 0 07 p 19km 4 81km amp 153km T 0 06 a 0 05 o 8 0 04 S O n 2 0 03 0 02 E f 0 500 1000 tp 2000 Rolling speed mpm Fig 21 Influence of rolling length on friction coefficient if Bue Vol 36 Upper 19km Upper 81km Upper 153km Lower 19km B A Lower 81km Lower 153km E 11 10 J 9 so 8 amp 7 6 J 0 500 1000 2000 Rolling speed mpm Fig 22 Influence of rolling length on rolling torque 6 No 2 TM
89. 3000hr Fig 10 3000hr SEM 3000hr 10 m 0h 8 3000h 6 3 4 2 2 0 1 id 1 li 350 450 550 650 750 Wavelength nm Fig 9 Reflectance of FC after 3000hr sunshine weather meter test Before After 3000hr Fig 10 Surface of piles after 3000hr sunshine weather meter 4 3 FC 1000hr Al5052 4 4
90. Table2 Fig 1 c Ni Sn 90 Ni 4 Table 1 5 gt Be Table1 The specification of testing materials Material Chemical composition wt Specification of the substrate R Yield Strength Tensile Strength Thickness C Mn P S Nb Temper MPa MPa mm Steel T 1CA 247 351 0 001 0 170 0 013 0 009 0 025 DR3 309 352 0 225 DRS 388 401 A hor Si Fe cu Mn Mg Zn Temper Yield Strength Tensile Strength Thickness A3004 MPa MPa mm 0 30 0 40 0 21 1 00 1 00 0 22 H19 279 309 0 280 Table2 The specification of surface treatment Substrate Sample No g Surface treatment both side Material Temper 7 Primary coating Secondary coating Tl TFS T 1CA T2 Electro DR3 Metal chromium 120mg m Chromium oxide 15 T3 chromium DR5 cr Cr mg m T4 coating T 1CA 420mg m S1 0 12g m Chromium oxide 8 7 Tin Plate T 1CA Sn Metal chromium 7 S2 4 00g m2 Cr
91. JIS C 0099 SMD Fmax 1 13 Fig 8 Fmax Table 4 Wetting Force mN L Heating profile FLLLLTFLFLLLLLLLLLFL lt Wetting curve Sampl fl Solder paste Copper sheet Fig 8 Measuring method of wetting force Fmax with wetting curve 10 11 and schematic diagram of testing 2D HEE TZ ZI PA 1415
92. Solderable Aluminum Plate 1 2 3 3 Sn Zn 1618 ST Sn 2 8 19 JEITA
93. 3 1 1 2K Sample A Sample B Table 6 42 Table 8 2K Sample A Sample B Fig 22 Sample A Table8 Result of whisker examination Condition 55 C 85 RH x 2000hr Sample A Sample B Tin Structure Nickel Tin of sample Aluminum Aluminum sheet sheet Result Whisker generated Fig 22 Surface of sample A and Sample B after whisker examination
94. Fig 19 Upper A 1 9m 12 amp Upper B 0 9m E 4 Si Upper C 2 9m x 10 3 9 8 sp 8 7 6 ct L hd J 0 500 1000 1500 2000 Rolling speed mpm Fig 19 Influence of nozzle position on rolling torque 5 3 2 Fig 20 45 E Upper A 45 12 Upper D 90 lt Ad pn 10 o 3 r 9 sp 8 amp 5 7 jaa 6 1 L a J 0 500 1000 1500 2000 Rolling speed mpm Fig 20 Influence of spraying angle on rolling torque 5 4 Table 2 2 5 WR 19 153km 1 Fig 21 Fig 22
95. PET TFS Tin Free Steel Sample T1 Cro 12 Ni Sn Plating Cre 15mg m 6 As plating Redraw can wall removing film Fig 8 Effect of using thinner film on reducing of PET Hair TFS FEB SEM Fig 7 0 3 m TFS 50nm
96. WC 75 8eV AIO OH Al 72 7 eV 6 AIO OH Al Al 1 nm AlzOs 7 AlO OH Al XI n 9 Al 3000 2000 Intensity 1000 0 3000 2000 Intensity 1000
97. 0 0 10 20 30 40 50 Al surface Depth from surface nm Fig 2 Depth profiles of Al raw materials obtained by AES a 27 m thickness Al foil and b Imm thickness Al sheet Ar ion Etching time 30sec Al 300sec 1200sec AIO OH 3000sec 5 i gt w 2 2 lt x 60 65 70 75 80 85 Binding energy eV Fig 3 Transitions of Al binding energy peaks obtained by XPS analysis on Imm thickness Al plate surface 3 2 Fig 4 700W 0 58kN mm Al Al Fig 4 5mm 6 0N m 45 min 11 3N cm 2 Fig 5 AES 5 15min
98. 2000 5200 Te 2 2 EMMAQUA 20 EMMAQUA 3 ASTM G90 Cycle 3 12 3 EMMAQUA 3 MS210A 3 JIS K 7219 15 2 4 2 4 1 SWOM EMMAQUA
99. Cr mg m NSI Ni Sn 0 56g m NS2 plating T 1CA Ni Sn 1 68gm No passivation NS3 sheet 5 00g m A Aluminum H19 chromium phosphate chemical treatment Metal chromium a Chromium oxide gt CL S Steel sheet T 1CA 5 120mg m x 15 mg m Steel base Cr Cr CLAD material Alminum foil O phenol zirconium chemical treatment CL A Alminumsheet H19 chromium phosphate chemical treatment Aluminnm base Metal chromium Chromium oxide CLAD material Iron foil 120mg m 15 mg m cr Cr 16 D I PET Coating composition Chromium Oxide mg m Metal Chromium cr mg m Fig 1 a The coating composition of TFS Tin Free Steel ECCS Coating composition Steel sheet rs NS1 rs NS2 PA NS3 os 00 r Metal Chromium Fig 1 c The coating composition of Ni Sn alloy coating steel Table
100. os ae FR uy TS gt ci TOYO KOHAN Technical Reports of Toyo Kohan Company Ltd Vol 36 Contents Construction of Strip Surface Roughness eee Takao HAsHIDA in Temper Rolling Process Hidenori Oxumura Analysis of Lubrication System in Cold Rolling Process ee Tsuyoshi IRE by Measuring Rolling Torque Hidenori Oxumura Akio ToMIOKA Hiroshi HASEGAWA Mamoru Koca Application of Polyester Film Laminated Steel Sheet to DWI Can Shinichi Taya Masahiro Ka Junichi TANABE Hiroshi Dot Etsuro Tsutsumi Norihito Sart Hidekazu Tomaru Investigation of Adhesion in Al Al Clad Materials ee Huanan Liu by Surface Activated Bonding Method Kouji NANBU Hironao OKAYAMA Development of Fiber Coat FC for Traffic Signal Hood Masanori YosHIKAWA Hiroaki Toco Harunori Koryou Pre coated Aluminum Plate for Solder SAPlate pp Shunsuke Kawano Kou YosHIOKA Tatsuo Tomomort The Characteristics of Acrylic Film Laminated Material eese Satoshi TAKAHASHT Masanori TANIGAMI Takahiro Koca Noriaki WADA 15 23 29 47 Vol 36 Construction of Strip Surface Roughness in Temper Rolling Process Takao HASHIDA and Hidenori OKUMURA Synopsis One of the purposes of the temper rolling process is to give a
101. 1 5H hed ped L 52 81 0 kelo te x x L es on fo le L 2 SAPlate Copper Bronze MS Tinplate Fig 10 Reflow solderability of SAPlate in lead free solder paste Sn 3 0Ag 0 5Cu Sn Bi Fig 10 Fig 11 Sn Bi 39 Solderable Aluminum Plate 2 5 8 Sn 58Bi paste Ss 1 Bo 2 L eT ee g gt to 59 Egi e x L oO 0 5 S 2 Phosphor SAPlate Copper Bronze bronze Tinplate Fig 11 Reflow solderability of SAPlate in lead free solder paste Sn 58Bi Fig 10 Sn Ag Cu Fig 12
102. Gray primer CB pile ss g 6 4 2 a 0 1 1 1 350 450 550 650 750 Wavelength nm Fig 7 Reflectance of FC with colored primer 4 4 1 FC Fig 8 FC 350 800nm 0 5 4 FC 31 10 FC signal hood 8 H Painted signal hood Reflectance O N A Q 450 550 650 750 Wavelength nm 350 Fig 8 Reflectance comparison of FC and painted signal hood 4 2 FC S80 JIS B 7753 1 102 18 amp 63 C 50 3000hr 15 Fig 9
103. WR L Fig 24 Fig 25 40 z pete g 5 20 C2 a E C2 5 10 t C2 c is 0 0 2 0 3 0 4 0 5 0 6 0 7 0 8 Strip roughness Ra um Fig 24 Relation between strip roughness Ra and color difference light 100 4 C2 a C2 b linea oe 0 2 0 3 0 4 0 5 0 6 0 7 0 8 80 60 Gloss 20 40 20 0 Strip roughness Ra hml Fig 25 Relation between strip roughness Ra and gloss 20 5 2 2 1 WR 1 WR SB 2 2 WR Table 5 C1 1 18um Ra C2 2 20mRa 1 2 8 000kN 11 4kN mm Fig 26 1 WR 1 2 2 1 WR
104. 2 4 2 RRE I 5 mx 40mm RTC 1210A 20mm 3 3mm s 757C 2 15mmx 45mm RTC 500 0 17mm s 25 C 3 3 1 PET Fig 3 FE SEM TFS Sample T1 3 15
105. if k Vol 36 RES Vol 36 2 3 4 5 Analysis of Lubrication System in Cold Rolling Process by Measuring Rolling Torque Tsuyoshi IRE Hidenori Okumura Akio Tomioka Hiroshi HaseGAwA and Mamoru KOGA Synopsis Keywords 1 8 It must be very important to estimate and evaluate the lubrication performance in the cold rolling process in order to improve the productivity and surface quality of the cold rolled strip The cold rolled strip getting harder and thinner it is essential to improve rolling lubrication in terms of the lubricant itself and the application system such as spraying nozzles pumps mixing facility dominating emulsion size and E S 1 Various methods to evaluate lubrication performance had been carried out by many engineers and researchers calculated friction coefficient and forward slip are reported as the most useful methods at present In the meanwhile lubrication performance should be discussed not only on the upper and lower sides but also on the whole width of the strip to realize high productivity and quality in the cold rolling process However it is actually very difficult and this seems to be impossible on the production sites Therefore it must be important to adequately evaluate lubrication performance between the work rol
106. 1296 1 I 1 2 8 il I 1296 1
107. 2 1 Sn 0 3Ag 0 7Cu Fig 7 Ag 10 C sx Vol 36 Sn 3 0Ag 0 5Cu 245 C Fig 7 Fig 5 3 0Ag Sn 0 3Ag 0 Cu ULF 300R HB NA 200 Good Zero cross time s Poor Phosphor SAPlate Copper bronze Bronze Tinplate Fig 7 Flow solderability of SAPlate in lead free solder Sn 0 3Ag 0 7Cu 2 1 3
108. 5x0 25 mm Reffer to Fig 9 M705 Solder checker SAT 5100 RHESCA Co Itd 0 25mm 1 0mm s 0 2x2 0 x20 L mm Solder paste Supply of solder paste Temperature profile Soldering device Depth of dipping Speed of dipping Size of sample Speed of pull 20mm min 250 Breaking in the material Breaking in joint interface 0 Z xs t TGQ ee RES PS o p 100 H e L a 50 0 SAP late Copper Bronze Phosphor Tinplate bronze Fig 14 Solder joint strength measurement result of SAPlate Fig 15 Photograph of samples after solder joint strength test a Breaking in the material b Breaking in joint interface 40 Vol 36 2 3 2 3 1 Fig 16 0 2x46x70mm 20 C 99 96
109. Ra A 2 B D al roughhess Strip roughness Ral pm 0 2 4 6 8 10 12 14 16 18 Rolling force kN mm Fig 10 Relation between rolling force and strip roughness after stand 2 0 8 0 6 0 4 0 2 Transcription ratio 0 0 0 2 4 6 8 10 122 14 16 18 Rolling forcelkN mml Fig 11 Relation between rolling force and transcription ratio k Vol 36 50 Al A SD a 40 o 2 30 5 2 20 A 8 10 0 0 3 04 0 5 0 6 0 7 0 8 Strip roughness Ra um Fig 12 Relation between strip roughness Ra and color difference light 140 120 4 Al A amp 100 S380 A o 60 40 20 0 03 0 4 0 5 0 6 0 7 0 8 Strip roughness Ra hml Fig 13 Relation between strip roughness Ra and gloss 20 5 1 3 2 1 2 WR D D 2 Table 4 B 1 B2 2 M2 Fig 14 1 2 8 000 kN 12 8kN
110. S 14 Lower 18 8 bp 12 16 5 10 ue 8 12 U m 6 pper 10 0 500 1000 1500 2000 Rolling speed mpm Fig 17 Influence of oil concentration on rolling torque 0 07 e 15 6 0 06 S 8 8 E 0 05 8 0 04 S 2 5 0 03 H amy 0 02 0 500 1000 1500 2000 Rolling Fig 18 Influence of oil concen speed mpm tration on friction coefficient 5 3 Table 2 2 Table 3 A BC D Table3 Test conditions 2 Index Distance from Spraying angle stand 5 A 1 9m 45 to rolling direction B 0 9m 45 to rolling direction C 2 9m 45 to rolling direction D 1 9m 90 to rolling direction 5 3 1
111. a 8 T N a Distance to interface nm Fig 5 Depth profiles of oxygen concentration at the interface of Al Al clad materials treated by different etching time measured by AES 3 3 Fig 6 700W 5 min Al 30nm Al Al 0 34kN mm 0 91 N cm 0 77 KN mm 9 41N cm Al Fig 7 Fig 6 0 42 kN mm 1 0 77kN mm 3 6 ML
112. mm 1 1 2 B2 2 WR 1 Fig 15 1 a I Bl _ Upper El Bl_Lower 1 0 B2_Upper B2 Lower 2 08 8 a S 04 a 0 2 0 0 Entry Inter stand Delivery Fig 14 Comparison of strip roughness between dry and wet operation for stand 2 in two stand temper mill D D mode Tem Entry Tnter stand Delivery 2 1004m Fig 15 Photos and roughness charts of strips Fig 16 Fig 17 2 PS
113. 1 S 1 i 1 e mi m m 1 1 1 S 1 4 gt lt mi Pid Pid gt Very Good Good Common Poor Disable Fig 1 Solderability of various metals 2 Fig 2 Photograph of conventional heat sink 2 35 RO TV ST 3
114. 1 aT hi F Hi ty Pra Fig 1 Photos and roughness charts of materials 4 3 WR 2 SBT WR Table 4 5 0 92cSt 25 C 1 5 1 2 1 5 30mpm 5 5 1 Table4 1 WR 2 O NoA1 2 1 WR NoAl A2 3 2 NpB1 B2 Table4 Conditions for temper rolling for dull finish products
115. 3 Fig 1 2 Fig 2 Fig 2 a i Sfin fa T S a C B B N sila i 1 Cc i i G 0 r i Z c lu h t Tapped hole T d Ifi r 1 tal i 1 a 0 p ollellclli 1 hl milrlla 1 m a i a 1 Shn i vil p nllallklln 1 r liulolln n i dh s 1 efil 1 e di Je zlldliellc o j n ym i U if s e r r e mlluUliellu m u 1 1
116. 961 Interface layer 86 7 Al sheet 96 4 4 Unit at others O Al Al Al Al 180 AES FIB TEM 28 1 10 3Pa Al Al 2 Al Al Al Al 3 Al
117. Al Al Al 1 RE 42 2001 191 2 PHAR YESS 32 2000 41 3 3 2002 223 4 35 1996 496 5 66 1997 571 6 Handbook of X ray Photoelectron Spectroscopy JEOL p189 7 2005 69 8 p996 9 B Gibbesch G Elssner 55 1991 1002
118. Constant lubricant application j 2000 T 0 07 2 0 06 8 0 05 SS fom 8 0 04 Pt 2 0 03 2 x 0 02 0 500 1000 1500 Rolling speed mpm Fig 16 Influence of lubrication on friction coefficient 13 5 2 Table 2 2 2 6 15 Fig 17 Fig 18 1 2 Upper torque 15 Lower torque 15 Total torque 15 Upper torque 6 A Lower torque 6 8 Total torque 6 26 p 4 30 24 28 E 22 Total 26 E E 20 SS ee 1 as
119. bright or dull roughness to a strip surface from the point of surface gloss and forming which customers demand Generally the strip roughness has been shaped by means of adjusting rolling conditions the roughness of work rolls and rolling forces at temper rolling process The operating conditions concerning the temper mill has been learned by experience on the whole In these circumstances the solution of the mechanism for making strip roughness has not been fully solved yet though many researchers have analyzed temper rolling mechanisms during normal states through experimental mills recently Especially the transcription of the roughness from the work roll surface to the strip surface still has many unknowns This report shows the basic mechanism to make the strip roughness with the two stand temper rolling mill in Kudamatsu plant Keywords temper rolling strip roughness two stand mill transcription ratio dull finish bright finish 1 shot blast texture rolling force
120. p After cleaning Fig 12 Auto emission pollution test result 5 FC FC Fig 13 Fig 14 FC 0 66 4 FC 85 Fig 14 FC 10 FC signal hood 8 Painted signal hood S 5 6 z 5 4 Cee et 2 0 i if 1 1 350 450 550 650 750 Wavelength nm Fig 13 Compaeison of reflectance between FC and conventional paint Painted signal hood FC signal hood Fig 14 Appearance of actual signal hood under lighting condition CL 200 Fig 15 Fig 16 LED 20mm 10 BY
121. 0 RHx 13000hr Condition Room keeping 55 C 85 RH x 2000hr Shape of 90 bend sample Sheet Result No whisker generation 3 2K Table 7 D 3 BY 2K Table 7 Table7 Structure of SAPlate type 2K and function of each film Structure Thickness um Funct ion Abrasion resistant b i lt Organic Resin 7 1 0gm Antioxidation of Sn plating Tin are oter Solderability Aluminum Adhesion of Sn plating sheet 50 5um J Solder joint Anti whisker 3 1
122. 2 SampleT 1 TFS O Table 2 SampleA PA Iron Foil IF 2 TFS Table2 Fig 1 2 1 2 PET 1 16m 28m
123. CA 247 351 394 427 460 475 619 648 T2 TFS DR3 315 349 427 453 504 518 666 687 T3 DR5 400 413 437 475 499 513 652 672 A A3004 H19 220 255 217 284 282 293 292 313 T1 Inside film 36 48 63 156 A Inside film 38 47 54 158 Reduction ratio of can wall from original thickness base gauge 58 Inside of can Foil side Outside of can Sheet side Fig 4 SEM micrograph of the surface of can top edge 20 reduction ratio 19 Vol 36 Steel sheet Aluminum foil CLAD Aluminum sheet Iron foil CLAD Sample CL S Sample CL A Laminate film Laminate film Fig 5 Sectional view of the surface of can top edge 20 reduction ratio 3 2 PET Table6 Table 6 TFS
124. E 06 Black i ei ie w fF Green E lied E a Fig 4 Surface appearance of samples at EMMAQUA test Sr 50 Vol 36 15 4 Black 8 10 A a White amp A e Green 2 5 3 8 4 0 1 2 3 4 Test time years Fig 5 Glossiness changing of samples at EMMAQUA test 10 8 4 Black White wW 6 eG 4 reen 4 amp a 4 2 T 0 1 0 3 1 2 Test time years Fig 6 AE of samples at BMMAQUA test 78 Table 5 K EMMAQUA 3 EMMAQUA 40 40 KEL
125. Sample B 321 220 2 Scherrer 2D Sample A Sample B 321 40A 220 130A Crystallite 200 i 50A 5 3 oA lt 101 860A 220 2 2 A 211 S A 301 iis x A 112 3 Roa 321 x 420 9 Sample A Sample B Fig 24 Measurement result of crystal orientation and crystallite size of Sn plating film
126. d stand 2 5 0 Clea T B Cl b C2 a g 40 B C20 8 30 E 5 20 E 10 0 0 0 2 4 6 8 10 12 14 16 Rolling force kN mm Fig 29 Relation between rolling force and transcription ratio 40 gt 2 30 5 20 e Cla oO C1b Aa C2 a s 0 _ O C20 0 0 2 0 3 0 4 0 5 0 6 0 7 0 8 Strip roughness Ra hml Fig 30 Relation between strip roughness Ra and color difference light Entry Delivery Fig 32 Comparison of strip roughness between dry operation and wet operation for stand 2 60 5 50 a g 40 S 5 5 30 D1_Upper A 20 D1_Lower 2 tl D2_Upper 10 O D2_Lower 0 Entry Delivery Fig 33 Comparison of color difference light between dry operation and wet operation for stand 2 80 60 amp a z 40 3 D1 Upper 20 D1_Lower D2 Upper O D2_Lower 0 Entry Delivery Fig 34 Comparison of gloss 20 between dry operation and wet operation for stand 2 6 4Hi 2 1 WR
127. emperature C RT 2 2 2 B3 26 HHL 100spm Table4 10 30 Table4 The condition of the redraw amp wall ironing process Body Maker Punch diameter mm 66 Punch 55 Tool temperature C Redraw 30 Ironing die 40 Speed spm 100 single shot 2 3 2 3 1 PET PET FE SEM Field Emission Scanning Electron Microscope 2 3 2
128. g 4 Reflectance of several piles 3 1 2 CB CB 3 30dtex 20 pn x0 8m CB Fig 5 CB 10 Dyed pile CB pile 8 6 Z 2 0 350 450 550 650 750 Wavelength nm Fig 5 Reflectance of dyed pile and CB pile 3 2 3 2 1
129. ghtness and heat radiation and it can be multi used as the heat radiation material such as for heat sinks However heat radiation material using the aluminum alloy had a fault that joints by soldering can not be used Then we developed a pre coated aluminum plate SAPlate that had a solderbility and began manufacturing in 2006 Various soldering methods using lead free solder can be applied on this product keeping the superior property of aluminum such as lightness and heat radiation Moreover it has excellent formability and anti whisker property On this paper we introduce a typical characteristic of SAPlate Keywords pre coated aluminum heat sink lead free soldering whisker 1 1
130. he demand for various color and embossing Thus our acrylic film laminated material has good performance not only in durability but also in appearance and has been increasing its share in the Japanese market acrylic film laminated material high weather resistance EMMAQUA test GI k
131. ip roughness Ral um 0 2 4 6 8 10 12 14 16 Rolling forcel kN mm 100 Cla C1 b 80 C2 a A act C2 b S60 bye ut 6 40 5 20 0 0 2 03 0 4 0 5 0 6 0 7 0 8 Strip roughness Ra pm Fig 31 Relation between strip roughness Ra and gloss 20 5 2 3 Table 5 PD 1 D2 2 M3 Ra Fig 32 34 D 2 2 WR D 1 1 0 40 DI Upper amp D1_ Lower 3 035 D2_Upper 3 O D2 Lower a 0 30 E 0 25 2 a B 020 WR roughness of Stand 2 Fig 28 Relation between rolling force and strip roughness behin
132. l and the strip surface on the upper and the lower sides respectively The authors studied and proposed a new system that can individually evaluate lubrication performance on the upper and lower sides to directly measure the rolling torque with strain gauges stuck on the spindle shafts in No 2 tandem cold mill This paper shows the experimental results and the knowledge of relation between lubricating condition and rolling torque on the both surface sides of the strip As a result it is concluded that the direct measuring of rolling torque is very effective to evaluate lubrication performance in the work roll gap cold rolling lubrication performance rolling torque strain gauge WR 3 100m 2
133. late Structure Aluminum sheet 2R now developing wit High heat radiation So laer ab lility Solderability High heat 7 z radiation Organic Resin Resin Tin Aluminum Aluminum sheet sheet 36 a Flow soldering process Solderable Aluminum Plate FF a Fix of parts b Reflow soldering process Spreading of flux solder Dipping in soldering bath Finish l _ ei Coating of i A 3 a solder paste Fix of chip Heating Finish Fig 3 Flow soldering process and reflow soldering process Table2 Lead free solder alloys and available soldering process 4 7 Solder Typical M P Soldering Process i Alloy Composition C Flow Reflow Hand Marit Demerit Sn Cu Sn 0 7Cu 227 O x O Low cost Low wettability Sn Ag Sn 30Ag 0 5Cu 217 O O O High relativity High cost Insufficient Sn Zn Sn 9Zn 199 x O x Low cost reliability R ian Low soldering aia Sn Bi Sn 58Bi 139 x O x temperature Low relativity Ag 0 5Cu Fig 5
134. ndia Table2 Results of cycle test after 1200h PVC Acrylic Rust Red rust White rust Cross cut Blister 2mm 2mm Rust Red rust White rust Edge Blister 0 5 2mm 0 5mm Table3 Glossiness and AE at SWOM test 0 1800 3000 4000 5200 Test time h h h h h Glossiness 6 6 4 3 3 3 3 1 33 Acrylic AE 1 3 2 5 2 6 2 6 Glossiness 6 9 3 9 2 5 1 6 0 8 PVC AE 2 0 1 9 2 5 2 7 Test PVC film Acrylic film laminated laminated sample i i material material Picture Fig 3 The result of outdoor exposure test 15years 2 3 1 Fig 5 AE 4 2 5 Fig 6 120 m 3 108 m 90 Table 4 Mw 100 000 3 88 000 85 78 000 0 Test time years 0 1 2 3 Energy Langley 1 34E 06 2 59E 06 3 85
135. ont cover shows water droplets on the FC with a hydrophobic treatment Both enhanced roughness and low surface energy are used for attaining this hydrophobic surface This water repellent surface has special characteristics as anti contamination self cleaning etc Like this example shown in the photograph we can adopt other applications widely by controlling FC In this publication we introduce an application for traffic signal hoods by controlling light absorption of FC A ee a D I PET Tl BF HEH a OF Al Al oeteenyeienbennweeneoes JII a A ee RR IF Solderable Aluminum Plate R gt ASAIL ILTTE ETTE a H y 4 a H Qik fom Tf ok m ol a
136. p palm Lower strip palm Roll palm 500 1000 Rolling speed mpm Oil supply L min Or NW HOD No 1500 2000 o Fig 6 Flow rate of lubrication application Upper 6 Lower 22 p Total z 18 5 2 16 g 14 12 bo 2 10 0 2 8 0 500 0 1500 2000 Rolling speed mpm Fig 7 Characteristic of rolling torque ae g 7 Upper Z 6 6 Lower 55 3 4 gt 8 3 3 2 61 f 0 J 0 1000 1500 2000 Rolling speed mpm Fig 8 Characteristic of torque deviation Friction coefficient 4 Forward slip Rolling force 0 05 p 8000 E T 0 04 oS ees 7000 Sip 0 03 6000 Pac a S 0 02 5000 8 c8 z SE 0 01 4000 EE 2 E 0 3000 0 01 f 2000 0 500 1000 1500 2000 Rolling speed mpm Fig 9 Characteristic of rolling condition 12 8Hz 200mpm 1 F Ior le 1600mpm tas i Fae i Fig 10 FFT analysis of spindle torque 4 1 3 13Hz
137. rface roughness of 274m thickness Al foil and Imm thickness Al sheet by the change of rolling load oe ive Hl I5F 42 000 1WPm MD13 Iris Ar ion etching before rolling because of peeling the Al foil from the Al sheet easily a 30nm thickness of Au deposition and rolled at the load of 0 34kN mm b 30nm thickness of Au deposition and rolled at the load of 0 77kN mm c 12nm thickness of Au deposition and rolled at the load of 0 77kN mm 26 RH 30nm E Al 3 6
138. sx Vol 36 2 1 2 1 1 4 b c 3 24 5 ao Hig 3a bD
139. t vacuum degree It was found that the bonding strength of the Al Al clad samples increased with increasing the Ar ion etching time and rolling load In the observation of the interface between Al foil and Al sheet by means of focused ion beam FIB and transmission electron microscope TEM an amorphous like oxide layer with 20nm to 40nm thickness was formed in the case of the clad samples cladded under the conditions that the Al oxide layer on the raw materials remained It is considered that adherence between Al and Al oxide or between Al oxide and Al oxide occurs when only the adsorption layers on the surfaces to be bonded are removed by Ar ion etching clad roll vacuum aluminum bonding strength interface YE
140. the drawing and wall ironing DWI process After DWI forming the cans are generally washed and applied with paint coatings In recent years ecological concerns have been increasing all over the world Therefore one subject for steel and can makers is to avoid using the substances in achieving reasonable cost performance In this respect we have tried to apply polyester film laminated steel sheets to the conventional DWI process In this study we focused on the influence of material properties the strength of substrate and film adhesion strength and film thickness on PET Hair Filamentous trash of laminated polyester of DWI can using polyester film laminated steel sheets Keywords beverage can ironing laminated steel environment ecology 1
Download Pdf Manuals
Related Search
Related Contents
AVR-EASY32U4-DEV_Man.. une aspiration croissante des salariés à encadrer de OmniaMOD-V2 - Centro di controllo 施工説明書 取扱説明書 QAQ12 User Manual 0815 Ver.1282 Documentação Completa Manual Workshops (Excerpt) RTI Federation Service Storport Miniport Driver Copyright © All rights reserved.
Failed to retrieve file