Home

ダウンロードはこちらから - 一般財団法人日本自転車普及協会

image

Contents

1.
2. S En
3. 1 3 5 4 2 6
4. 2 3 Pollock 1991 20 1RM
5. 1E 3 25 1
6. 20 50 1RM Takarada 2000 50 1RM Tanimoto Ishii 2006
7. Pocket NIRS Duo BluetoothTM PDA 7 5 x 2
8. 3 23 7 6 9 1 Endurance cycling exercise increases serum heat shock protein 72 in humans 1Ryo Kakigi Hisashi naito 1Shinichiro Murade Toshinori Yoshihara Takashi Nakagata 1Hayao Ozaki and 1Shizuo Katamoto 1Graduate School of Health and Sports Sciences Juntendo University Chiba Japan Introduction Heat shock proteins HSPs play important physiological roles in various cells as a molecular chaperone Some studies have shown that HSPs are released into the systemic circulation during exercise Walsh et al reported that extracellular HSP72 increases 30 and 60 min after treadmill running at 70 Vo2max Suzuki et al
9. 1 TEE Total Energy Expenditure DLW DLW LL DLW RE Energy Expenditure
10. 15 8 8 1 2
11. Do 1 7 1 f 61 1
12. BB 2 RIET O DASH 5 DEL 2 3 A DOR REL CMR a EDE RIB I T1LD 3 1 No
13. 3 13 1995 Gordon amp Grant 1997 174 P 2002 E Morgan W P 1979 Sachs M L and Pargman D 1987 HEFL 1993 2007
14. Hill 1938
15. 1 33 29 4 1 1 EF ftp BMI 4294112 1698 7 7 620482 21 4 2 X BMI Body mass index 2 33 2 18 1 1
16. Plouts Snyder 5 2002 QOL 134 LEA P HH 5
17. 1 2 90 REELT BK
18. 18 63 at pani gt ITIS acl EAH eB Heh 69 15kDa 1 E LD LD 1 3 PL IK PR FER LDH S E 10 DEY PAO PAO E H FABP Fe g A
19. Vozmax 40 1 1 cm kg ml kg 42 7 171 8 65 3 51 3 185 2 SD 11 7 4 9 7 1 7 4 10 6 2 8
20. 2 W NIRO200 cal g Pocket NIRS Duo NIRS O2Hb HHb
21. 60rpm 1 0kp 60Watts 2 0 3kp GY 18Watts AE 300 2 14 95 20 45 all out CS400 Polar Finland 15 3 3
22. 1 2 1 2 3 4 5 Watt 428 31 344453 331437 337434 352428 beat min 168 6 8 6 178 7 7 0 182 6 4 5 185 344 5 187 344 7 E m min 256 13 278 14 288 36 308 12 308 12 beat min 164 4 4 8 172 9 7 0 180 6 4 2 185 9 4 6 187 4 4 8 ES Ae ze NT 1 4 3 1 4 1 NIRcws BOMLITR
23. ed a 2 3 3 I 1 MHI
24. 4 5 1 Clinic 2011 5 64 67 Coaching 12 WV 1 1 12 2 2 2 Fe EE 1
25. 1kg 1km 0 3940 03 kcal kg km 0 360 08 kcal kg 1 km 7 48 12 6 4 2 186km 5 84 133420 61 6 16 1 Vozmax
26. 2 4 9 2o ITEE E 9 Ss VAS i H 2
27. 1714 7 387 8kcal 1 ACSM Guidelines for Exercise testing and prescription 1991 2 2006 RNA 3 Wanich T Hodgkins C Columbier JA Muraski E Kennedy JG Cycling injuries of the lower extremity J Am Acad Orthop Surg 15 748 56 2007 64 9 L REED BS
28. 3 92 J AJE La LAL 4
29. 3 EFD 4 30 1 4 1
30. 29 9 ait ok 1 33 29 4 34 B 27 7 1
31. 11 4 GHQ 30 DN Commitment Addiction 0 10 0 09 0 02 0 05 0 08 0 02 0 11 0 01 0 07 0 03 0 14 0 09 GHQ 30 0 13 0 01 SDS r 82 p lt 05
32. 12 1 LIEDF 4 5 SDS Commitment Addiction BID MID HR 0 12 0 01 0 06 0 16 i 332 0 16 0 04 0 18 0 02 0 13 0 01 0 10 0 04 0 21 0 28 0 09 0 03 DETH 0 20 0 06 0 25 0 18 0 19 0 09 0 23 0 12 0 19 0 04 0 22 0 15 0 26 0 02
33. 7 HSP72 MN atts 4 CS400 Polar Vozmax 4 16 83
34. POLAR 1 1 1 3 3 A 80 828E 1 25watt 1 25watt 25watt 50
35. 5 6 H Vomax 47 OH fei E 5 R 1 1 Fk HRmax V0 max RRE cm kg beat min ml kg min 1 a 25 174 62 0 194 67 4 2 a 19 183 72 0 193 57 4 3 b 18 174 63 2 186 61 2 4 b 20 168 62 0 193 65 7 5 c 18 176 68 2 186 63 6 6 c 18 178 69 9 175 60 8 19 7 175 5 66 2 187 8
36. EMG amp p lt 0 05 Bonferroni amp 90 rpm 60 rpm p lt 0 001 2 3 A 24 90rpm B 21 60rpm 2 3 5 2 0 4 2 2 4 2 1 5 1 9 T T E 2 0 4 E 18 4 19 4 S 92 gt 1 8 5 1 7 5 1 7 4 1 6 1 6 5 1 5 1 5 100 0 102 5 105 0 7 5 100 0 102 5 105 0 oe 2 VO l min A 90 rpm B 60 rpm 99 A 140 90rpm B 135 60rpm 135 130 130 5 E E 125 4 w w 8 125 oc 120 T 120 115 J ae 110 110 97 5
37. oH ul cat p BE B 80 90 25 2 4 NIRS 2 NIRO 200 D7 0 5
38. 185 4410 1 183 348 7 52 147 2 46 5 4 8ml kg1 min1 2 8 11
39. att 1H 15 8 5 Vomax 8Saltin Astrand Vomax 80ml kg1 min Voomax Voomax Voomax Vomax
40. 2 3 Al 1 60 80km 120 240km 33 2010 10 31 7 7 29 30 LAF U30 n 4 30 30G n 5 40 40G n 12 50 LE 50G n 8 4 4 1 Vomax PowerMax Vl COMBI WELNESS
41. Petruzzello et al 1991 McDonald amp Hodgdon 1991 2002 pany 14 GHQ 3
42. NIRcws f Chance et al 1992 Hampson and Piantadosi 1988 100 300mmHg 0 Bae et al 2000 NIRcws Power Lab 16SP AD Instruments Australia 2kHz A D 109 1 4 2 5 1
43. 2 2 EET 239 10 ml 30 80C 3 4C 3000 10 65 WL
44. E FER o k T 3 1 EMG jp lt A Ef ff 14 20 9 6 5 1 5 6 0 4 2
45. 133 1 2 Abe 2005 Evance 1995 20 80 40 Lexell 1992
46. 3 Dy B a UEN 1 7 4 Gntegrated EMG iEMG lt 173 3 Tey A 4 9cm 67 0 EWA 6 0 kg AC MAGROLLER MINOURA JAPAN 1 3
47. FH E Te FRE pe 1E MY 0 5 7 2 1 E ET EAO 1E i i van i fe E aR EL DEB Ch 59M Visual analyzing scale 25 ak BAIAR MIS 1 1 REB SR LI Th
48. 3 4 3 8 12 25
49. aed DD E 1 SSF 2008 tt 475 2 2004 3 Arikuni T 1994 Ipsilateral connections of the anterior cingulated cortex with the frontal and medial temporal cortices in the macaque monkey Neurosci Res 21 19 39 4 Ghashghaei HT 2007 Sequence of information processing for emotion based on the anatomic dialogue between prefrontal cortex and amygdale Neuroimage 34 90 923 5 Xiao D 2002 Pathways for emotions and memory I Input and output zones linking the anterior thalamic nuclei with prefrontal cortices in the rhesus monkey Thalamus Relat Syst 2 21 32 6 2003
50. 1 near infrared spectroscopy NIRS en 2 3 1 1 3 1 21 179 cm 70 kg nH Ar VY visual analyzing scale 2 J 7 2
51. N ssCO Visual analyzing scale VAS 380 3 4 4 1 1 02Hb_1 uM iif fi s 6 1 OL nM s 2 mi 4 1 2 82 4 og 1 1 3 4 uM nM uMD 15 L s 02Hb1 HHb1 20 r 15 F 10 F IPOT nad ANAD a WW ay mT ne hy r uull i W 3 02Hb_2 HHb_2 MT WW RT HT LNA TAA TAAA A A IM 20 EU 10 s 10 5 0 5 10 15 13 11 aq nM co co a 4 Di MM PH A UE A KOA a A 201 api G01 801 1001 1201 1401 OzHb_1 HHb_1 L s 5
52. 1 3 H F 1 2 2 3 2 PERE ERE 3 RR LK ae i RX f 3 E
53. CS400 Polar Finland 5 3 V 20 50 15 ok ZOR EHNE all out
54. 1 6 4 4 1 56 1 3 1 9 X 1 5 ana 1 1 0 4cm 0 6 0 2cm 1 5 1 6 Acute changes in CSA as Acute changes in circumference cm cycling running cycling running gt j PREMER T lt 0 05 x lt 0 05 1 7 6 6
55. za E 2 ty 135
56. 1993 9 CA Commitment Addiction 2
57. Mena 68 PAO 1 te 1 D Ah NT proBNP NT proBNP BNP proBNP H FABP H FABP
58. Int WAIL 1 14 95 97 5 100 102 5 105 60 90rpm U
59. HSP72 D HSP72 HSP72 HSP72 HSP72 Hix my HSP72
60. 3 1 2 2 3 1 12 Commitment Tos
61. 120 Tanimoto 2005 ROS Friedl et al 1990 E 1 ROS Velarde et al 2004 E 5 103 11 1 137 6 24 3 E25 9
62. Spl AAR 1 4 3 MRI Magnetic Resonance Imaging EE scanXQ T1 10mm 5mm 1 BELT MRI ck OAM BLL Kk 3 1 MRI 5 20cm
63. 1 Ainsworth BE Haskell WL Whitt MC Irwin ML Swartz AM Strath SJ O Brien WL Bassett DR Jr Schmitz KH Emplaincourt PO Jacobs DR Jr Leon AS Compendium of physical activities an update of activity codes and MET intensities Med Sci Sports Exerc 32 S498 504 2000 2 2010 2011 24 3 1 PRR ARSE 1 2 BMI25 10 1 7 H 1 1980 20 2
64. 70 1RM repetition maximum BE 1 8 4000m 5 ao
65. 30 8000rpm HSP72 HSP70 ELISA EKS 715 Assay Designs Stressgen MI USA 3 Student N t test p lt 0 05 41 H 2 121 2 74 9 73 4 48 4 km 165 9 11 7 87 648 0 Vozmax
66. HSP72 lt HSP72 Ly Y Ie E HF 43 HRD oA n Pockley 9 HSP72 HSP72 HSP72
67. 7 5 2 Ct 1E v A 248 258 D 0 x B AETV 2
68. 2 3 4 1997 pe 2 Karp JR Johnston JD Tecklenburg S Mickleborough TD Fly AD Stager JM 1 amp Chocolate milk as a post exercise recovery aid Int J Sport Nutr Exerc Metab 16 78 91 2006 52 7 12 NHR 2 HR JE ARAKEA RY ERRA 2
69. 36 57 5 gA Ret RE 1 2 3 4 5 6 7 8 9 10 wa H PB RSE In f 346 352 2008 In ARR
70. 1 12 MRI 1 2 4000m 5 2 5 3 x12 i MRI MVC myoret 112 2 2 1
71. 1500kcalD gt 2 Bx CWA Va viet Fel 3 E 5 7 E g 3 fps Ga Tee SR IRO OE a km beat min beat min VO max decal Rk 1 a 40 1 174 194 81 5 2012 0
72. 2 3 a 1 32 2 2010 7 4 7
73. 69 30 3 7 7 1 1 3 2 3 aoza 2 6 1 Sit ii 8 9 _ 51 5 16 485 _ 1 33 1 1 10 oga 24 727 11
74. BRE LT Lactate Threshold VT Ventilation Threshold 18 63 33 29 4 1 71 2 18 63 33 29 4
75. SIIA 12 15 1 ED MVC 270 sec aN 5 8 Abe I Phillips 5 1997
76. 1993 2007 commitment
77. 5 yY
78. KRECI 1 1 j FEJ cm kg R 172 9 3 6 65 5 3 5 19 841 3 6 0 0 9 N 8 1 3 AT VTE RAVI Y yY ZEE E eBay LCi ODF RDA80 Rim DriveAction MINOURA ir KN CAAD8 Cannodale USA E Th 5 100rpm 150 100rpm 5 4000 m
79. 5 PEM 1 1 22 9 8 10 1 61 308 2010
80. H 2 Polar CS400 Powermax VI TOR 54 E km
81. REI 15 LPR A S 10 4 TAS JMU EAD Tem CSA 3 ARIK IMEEFAO Tem gt aa aL Power Lab 16SP AD Instruments Australia 2kHz AD 1 1E gt DRE ee 38 4 1 8 1 110 5 JH FA 6 MVC
82. RQ TG mg dL 926 509 829 483 50 149 NEFA uEa L 399 2 1902 3759 187 0 140 850 glU mL 97 108 62 36 1 84 12 2 UN mg dL 15 1 33 153 22 8 0 22 0 y GTP U L 323 215 30 5 213 TOF AST GOT U L 243 103 248 96 10 40 ALT GPT U L 24 6 20 7 22 0 11 9 5 40 LD LDHI U L 205 3 34 3 1762 279 115 245 CK CPK U L 162 0 895 140 0 608 62 287 T ng mL 0 0042 0 0020 0 0047 0 0056 0014 ng mL 43 2 141 459 13 1 6O H FABP ng mL 2i 10 23 t05 6 2 CPK MB CK MB ng mL 35 19 36 15 5 0 NT proBNP mL 298 230 194 149 125 CK r GTP AST GOT ALT GPT LD LDH NT proBNP N X p lt sO 05 vs
83. 1 12 2 8 43 4 5 33 DA 6 12 1 80 60 6 94 60 1 2 83 82 5 8 da 2 88 1 60 zuli 2 ER 8 2 2
84. Mingels et al 20100 2 Neumayr et al 2005 230km N 1128 D 31 A
85. 5 131 0 31 9 EE Tanimoto 2005 Takarada 2001 o LIED i 7 2 H 5 EZTET 4 Kraemer and Ratamess 2005 14 2 1 3mM 1H 5 11 0 1 6mM
86. VO gt H R 1 H Mae LL 4 924kcal y Y wes omen OM ran ene F Reiner el Eee a et mem etl alg a 9 56 1 2 26 4 223 1292 626 708 4 0 46 b 88 15 969 266 1249 726 1106 5 0 41 c 66 34 8 amp 8 25 0 125 572 1926 1 0 39 d 46 28 79 0 322 1186 584 1670 4 0 32 e 45 23 50 8 229 1328 612 1464 0 0 45 60 25 15 223 1135 639 1935 5 0 37 g 35 39 87 246 1433 728 2185 5 0 45 FHE n 6 brg 48 26 679 256 1259 644 17147 0 40 PE faz n 6 bg 1 2 07 191 36 10 7 6 9 387 3 0 05 a 125 9 10 7 beat min 64 4 6 9 161m 1 10 2
87. 66 7 0 38 8 22 orl E 36 4 63 6 51 56 48 50 81 3 6 8 6 3 6 3 63 6 27 3 72 79
88. 37 0 15 1 5 105 Till k T Linossier 1997 Kaljumae 5 1994 70 1 RM Fleck Kraemer 1987
89. t 2 Way ANOVA Bonferroni 116 5 1 1 1 1 1 2 1 2 1 3 28 4 6 2
90. 90W EL RD WIN EI fe as EP bey SAIC ES 30 30 2 1 18W m AE300 S 1 levelling off 2 8
91. Lot Ii E ma E LD LDH F LDH H FABP BLU H 9
92. 0 87 0 05kcal kg1 km ay AYO cit 4125 5kcal R 4 ZS
93. HF TG NEFA RRE UN CK CPK y GTP AST GOT ALT GPT LD LDH T Heart type fatty acid binding protein H FABP CPK MB CK MB L FRAT F PF TB NT proBNP 5 t p lt 0 05 Statistical Package for Social Science SPSS 18 0J for Windows KS N N terminal pro B type natriuretic peptide 66 1 1 BMI
94. HSP72 3 E HSP72 E E HSP72 HSP HSP72
95. R3 N 54 N 36 N 51 N 47 F M SD M SD M SD M SD 1 55 1 28 1 30 1 21 1 21 1 14 1 02 1 05 1 64 1 55 1 45 1 36 4 25 1 29 1 06 1 66 1 45 0 77 1 35 1 51 1 33 1 57 1 43 1 46 1 76 1 43 0 81 0 40 0 95 0 67 1 15 0 73 1 17 0 43 0 71 1 37 0 98 1 51 1 06 1 51 1 44 1 64 1 04 1 20 1 00 0 70 1 39 0 36 0 99 0 42 0 82 0 57 1 05 0 88 GHQ 6 41 6 33 5 82 5 56 6 60 4 87 6 31 4 68 0 14 N M SD SDS SDS ps lt 05 4 7
96. 4 2 2 EMA N 499 N 501 N 144 N 20 M SD M SD M SD M SD F F F 1 3 1 45 1 5 1 58 1 2 1 31 1 1 1 64 1 75 0 01 1 30 0 9 1 26 1 1 1 31 1 2 1 27 0 5 0 83 1 12 2 88 8 36 1 3 1 60 1 5 1 64 14 1 66 1 1 1 48 0 59 0 07 1 22 09 1 26 09 1 24 06 095 05 0 76 4 70 0 31 0 56 1 1 1 62 14 1 72 08 1 37 09 1 81 4 18 0 82 0 47 0 7 1 46 0 7 1 47 0 6 1 39 0 8 1 65 0 02 0 23 0 05 GHQ 6 1 6 47 7 1 6 51 59 5 63 4 7 5 79 2 831 0 02 1 94 N M SD
97. Fe LOL 104 1
98. 1 53 1 cm 1 B 85 164 5 2 46 176 5 3 B 49 167 5 4 63 173 2 5 30 158 5 6 36 151 5 43 165 3 12 9 3 2 1 Ly C 15 3 kg ml kg1 1 58 4 55 7 193 68 5 45 8 187 61 0 58 2 192 69 0 58 4 156 48 4 46 1 191 42 0 47 2 187 57 9 51 9 184 10 8 6 2 14 20
99. 87 6 Vozmax HSP72 50 Voomax DETO FY Suzuki 9 3 8 km HSP72 3 YD Walsh 70 Vozmax HSP72 E Febbraio E 2 7 HSP72 HSP72 4 180 km
100. an 2 1 1 5 5 1 2 8
101. 1km F HR A 0 39 36 245 0km h 40 54 0 6km h FE 4 7 1 1kg 0 03kcal kg km Sepa ese
102. AK ABN Be 2070 7 185 3kcal 2 1 50 EDS HE vo 1000kcal Jd E VOsmax 84 74 E7 1 ml hh
103. 9 38 34 10 4 W 2 3 18 63 38 29 4
104. VAS 69 9 17 0 70 0 18 3 VAS 70 4 14 5 83 6 10 8 100 r 90 F X lt 80 A dak E 60 C 50 D 40 gt 30 L J E 17 G 100 rp 90 A 80 E B 70 tC 60 D 50 40 gt 30 eer Tk 18 88 2 m VAS 48 0421 6 VAS 29 7 13 8 100 p _ 80 60 40 20 0 L 1 L L I L E F G A B C D 19 3 5 VAS
105. id J 3 23 2 1 60 80km 1 2 SHEE mam Qe 1
106. o 1 409 12 7 429 112 cm 1688 70 169 8 7 7 kg 68 9 112 620 82 BMI 24 1 32 214 20 X BMI Body mass index p lt OO5 vs 2 PAO 1 PAO PAO 1009 0 68 5 uM vs 1288 1 69 4 pM p lt 0 05 D lt O O 500 UM 1 PAO 67 3 K 2 LDH H FABP NT proBNP
107. ZAD Lambert Beer M 3cm 1 5cm SIN 4cm 1 1
108. 196 586 601 313 573 636 179 564 489 234 556 545 198 486 461 37 56 48 95 9 37 56 11 38 Ca 0 90 0 89 FI 540 F 2008
109. au H 2 3 7 4 His 4 HI ml 3 4 93 Pockt NIRS Pcket NIRS
110. 2008 GHQ 80 HEIRS LBL 1998
111. I Fp IL ROD DICKIES BB A 74n FiA WE I A 4 WEI 1 2 2 500 371 129 20 29 13 30 39 24 40 49 22 50 59 12 60 69 17 1000 499 501 20 29 19 30 39 22 40 49 19 50 59 22 60 69 19 2010 6 o o Genera
112. Wr HHb 100g 50 90 2 02Hb 30 02Hb HHb WY
113. 1 PAO Potential Anti Oxidant KPA 050 PAO 490nm Cu 3 490nm 2189 Cu 1 mM 2189 M L 4 1 SRL mmol L
114. BRE G em ke Mi a 41 170 1 59 0 20 4 b 43 167 4 70 5 25 1 c 40 171 0 60 0 20 5 d 49 167 5 61 0 21 7 e 47 179 1 67 5 21 0 f 63 173 2 69 0 23 0 g 59 175 0 60 0 19 6 6 b g 50 2 172 2 64 7 21 8 Ea n 6 b g 9 0 4 5 4 8 2 0 2 6 b g POLAR FINLAND 2 POLAR PRO TRAINER 5 TAL MO AIT dA E z HRmax beat min 177 172 183 192 183 156 187 178 8 13 0 3 HR max VOzmax f POWERMAX V2 COMIBI JAPAN ic 3 MEDICAL SCIENCE JAPAN His
115. 21 20062 40 60 2 3 20 30 40 30 60O 20 30 40 30O 60 40 38 37 34 33 33 47 31 45 30 45 26 45 25 41 33 32 31 29 28 27 38 27 36 26 33 26 32 26 30 74 Hy B X 85 182 B FLA LT Rai VT 50G 220 2 Y 0 5658
116. VD NEFA 4H HC 1H HOM 6 2H HOW 2 5 4 2 H FABA NEFA a eal Interaction p 0 05 4 cTnT CPK MB NT proBNP 2 4H NT proBNP CPK MB 1H 2H 2 cTnT 2H 6 1H
117. p lt 05 p lt 05 ps lt 05 ps lt 05 ey che p lt 05 Fea p lt 05
118. BR 2 14 1 bate fe HHb VA KI E AFE a POTH 02Hb 1 Jiz E 02Hb 02Hb 5 2 9 VSA
119. Y all 2 80 90 3 4 30 i POLAR
120. HSP72 HSP72 HSP72 0 52 0 47 ng ml 7 4 HSP72 0 134 0 10 ng ml Dulin 2 40 60 HSP72 1 26 ng ml 3 HSP72 3 RE Walsh Dulin 2
121. i EE SS HRA LPT SHERI A PREN a FA 1 Lint 0 mH AMD LD LDH gt f cf f b EEk T amp D 2 ANT NT proBNP
122. Wak 2 FE 223 195 25 33 9 8 9 16 60 mi 195 7 7 2010 10 o o General Health Questionnaire GHQ 30 I o Self rating Depression Scale SDS o
123. commitment SDS MEA r 0 16 p lt 05 0 18 p lt 05 r 0 21 p lt 01 r 0 20 p lt 01 r 0 25 p lt 01 AL r 19 p lt 01 r 23 p lt 01 r 0 19 p lt 01 r 0 22 p lt 01 r 0 26 p lt 01 0 16 p lt 05 r 0 18 p lt 01 J r 0 20 p lt 01 r 0 14 p lt 05 r 0 16 p lt 05 r 0 16 p lt 05 r 0 28 p lt 01 J r 0 18 p lt 05 r 0 15 p lt 05 r 0 16 p lt 05
124. 20 61 6 20 60 16 1 Vozmax Mets 8 94 1E GEA z EIJ 5 34 2 4 He 2978 830 kcal 9 8 2 1 kcal kg hr1 0 38 0 08 kcal kg km1 1 Astrand I Aerobic work capacity in men and women with special reference to ag
125. 1 gt A i SEPSA ET RN AAA I EE eee I 6 A 1 2 30 km 80 km 30 40 km 4 5 40 60 km 60 80 km TED EE MTB aenn aa S S A a A AA i 1 6 ek pes 577 as 2 3 1 3 93 9 6 1
126. 38 197 207 1989 5 45 387 394 1996 76 EL GA 11 2 2 ER H f
127. 2 1 non weight bearing exercise gii OAT FD EE 1 3 2010 2010 T
128. 1 2 3 1 15 2 3 43 4 5 27 6 12 30km 6 30 40km 12 40 60km 24 60 80km 31 Fm 80km 27 86 11 39 2 8 1 60 80km 12 metabolic equivalent MET 16METs keal kg xMETsx
129. 4 1 1 2 1 2 lt 3 4 lt 5 6 2 1 30km 30km 40km 40km 60km 60km 80km 80km 3 2 MTB 5 D D D 6 D 7 1 ee
130. 2 137 6 24 3 61 0E 17 8 103 1 25 9 aed 1 1 2 1 1 1 160 p cycling i o r 140 O running 5 9 120 g 100 f 5 80 bn gt 8 60 o 40 O 20 0 pre Imin 2min 3min 4min 5min postlmin post2min lt 0 05 117 ka n oo S oO oO oO Oo fF N oO Relative oxy
131. 50 5 D 9 2 HHb 1391 2 02Hb HHb 02Hb 10 3 2 7 3 02Hb HHb 91
132. N F 5nL EKF DIAGNOSTIC 30 4mmolL Ks 72 RAMS 1 30 1 kp oz Leveling Off
133. 60 1 0kp 60Watts 2 0 3kp TOM Ste 26 33 FE 1 E keal T 0 9 1L 4 924kcal
134. Muscle fluid shift 1 2 106 1 1 1 1 1 4000m 5
135. O2Hb_ i HHh_3 NM aul a M WiN MA W l A h WT en MUIR ROI WL TAN WL WT 1 ol 401 Gor Tg01 1001 1201 1401 s 6 83 18 p ahh tial ai Ss gt E i O2Hb_1 ke 3 HHb_1 Py Ri 9 71 1 401 601 801 1001 1201 1401 7 HO 7 uMD Ol 201 301 QARN SOn HS 8 ol 8 8 0 043uM 1 576uM 1 248uM 1 997uM 2 484uM 4 479uM 0 414uM 0 698uM 5 94uM 3 481uM 0 659uM 1 131uM 1 614uM 1 977uM 3 299uM 0 674uM 8 25
136. 1 10 3 10 2 2 Polar CS400 30 20C 50 1 2
137. yA 2 R 1 10 4 La 8 0 mmol L 4 3 Voomax 38 Voomax LT Lactate Threshold HA fli VT Ventilation Threshold 20 50 LT Lactate Threshold VT Ventilation Threshold LT VT 5 1 JE H 5 3 5
138. 6 Y GTP LDH J Potential Anti Oxidant PAO LLT 60 60 80km 2 3 PAO 1288 1 69 4nM vs 1009 0 68 5nM p lt 0 05 LDH H FABP NT proBNP
139. cTnT NT proBNP CPK MB Mb CK 4 4 2 1 Costil1 DL Metabolic responses during distance running J Appl Physiol 28 251 255 1970 2 Mingels AM Jacobs LH Kleijnen VW Laufer EM Winkens B Hofstra L Wodzig WK Dieijen Visser MP Cardiac troponin T elevations using highly sensitive assay in recreational running depend on running distance Clin Res Cardial 99 385 391 38 2010 3 Nelson ME Rejeski WJ Blair SN Duncan PW Judge JO King AC Macera CA Castaneda Sceppa C American College of Sports Medicine American Heart Association Physical activity and public health in older adults recommendation from the American College of Sports Medicine and the American Heart Association Circulation 116
140. 166 4 10 8 90 0 4 6 87 6 7 4 Vozmax 4125kcal 18 2 1 6kcal kg1 h1 23 5 4 1kcal km 2 0 37 0 05kcal kg km 1 N 4
141. 2 GHQ 80 GHQ 30 p lt 10 p lt 10 p lt 01
142. 2 4 4 SABA 1 4 4 1 2 4 5 MRI Magnetic Resonance Imaging a T1 2 4 6 1 voluntary contraction MVC 1 SIGNA EXCITE XI GE 10mm 0mm 10mm 3 1 4 3
143. 30 Tanimoto 5 2005 E QNO ROS Reactive Oxygen species NO Anderson 2000 5 28 4 6 2 131 61 0 5 50 6 12 1 Cles HED 140 ook E17 3
144. a N NIRO 200 Pocket NIRS Duo Ml 2 PASE Aeromonitor AE2808 Minato Medical Science Japan 81 1 3 15
145. 31 km h 4 EMG 20 50 yr AC MAGROLLER 3 mixing chamber AE300 S MINATO MEDICAL SCIENCE JAPAN 2 Ozs Nz 20 73 Balance 02 CO2 14 97 5 00 N Balance JAPAN M3 LE i CS400 POLAR FINLAND 3 30 3 40 EMG
146. SDS p lt 05 p lt 05 p lt 05 p lt 05 p lt 05 4 p lt 05 p lt 05 J p lt 05 p lt 05 p lt 05 Ht 4 N 56 N 38 N 51 N 48 F M SD M SD M SD M SD BID AR 155 0 57 158 0 72 165 0 69 144 054 0 94 3 32 0 79 2 89 0 95 3 27 0 72 3 29 0 77 2558 138 0 62 134 0 58 136 0 60 1 25 057 0 04 1 56 0 69 1 24 0 44 155 0 78 158 082 2 05 2 04 1 09 176 117 155 0 99 1 79 110 1 80 184 0 99 194 110 162 0 90 1 94 100 1 11 1 96 1 01 1 51 0 69 1 84 0 97 2 23 093 434 1 43 0 60 118 039 1 53 0 70 1 46 071 238 DETH 1 53 0 72 134 0 67 1 41 0 70 138 057 0 72 213 0 74 1 74 0 72 1 90 0
147. 24 60 6 0 38 0 08 kcal kg1 km1 9 20 60 gt yj km1 1 0 0 5 1 0 kcal kg1 km1 E 0 35 kcal kg1 km1 E 4 0 40 kcal kg1 km 2
148. E 20 20 89 40 47 48 55 56 R 3 GHQ 30 GHQ 30 GHQ 30 OF 3
149. 15 31 179 38 559 24 189 26 81 t i W 6 W 1 2 i 2 3 H 4 5 3 1 3 2 1 i 30 60 Miia E N i 60 Bll 21 141 4 2 1
150. 2 1 9 4000m 5 3 12 9 1 5 28 446 2 61 0 17 3 137 6 24 3 103 1 25 9 104 4 4 1 59 1 3 1 9 2 5 4 3 6
151. 4 RAAH 8 LE TDD 1 J Ch ess bes 77 D 25 B E3 30 F GABE H2 4 SAMOA
152. 3 H X 70 4 A ii AT E 14 5 7 Visual analyzing scale 38 8 21 5 6 21 1 1 EN ERRETO ae 4 F2 78
153. 2 Scion Image Scion USA CSA cross sectional area F H 1 4 4 mE Ie gt on ACE 1
154. 5 34 H 2 5 34 136 46 4km 5J 24 541 0km hr 133420 fir i 179414 831 57 0 ml1 kg nay 8 942 4 Mets 61 6 16 1 Vozmax 29784830 kcal 9 8 2 1 kcal kg 1 hr1
155. RPE 2 2 113 MRI 1 t 2 2 1 4 8 12 Watt 204 9 28 8 223 9434 8 231 5 36 0 241 0 32 1 beat min 181 3 9 4 180 1 5 5 182 2 8 8 180 0 9 5 RPE 17 8 1 3 17 8 1 2 18 3 1 0 18 4 0 9 RPE Ratings of perceived exertion pre 1 2 4 1 AF NEA
156. 120 1 4 FRA 1 1 1 1 1 8 1 20 MVC 1 1 1 MVC 1 2 3 4 3 AF VEE kgF 153 5 18 3 32 843 8 31 443 7 31 9 4 0 31 6 3 7 32 1 3 6 21 6 3 1 20 743 4 21 0 3 7 20 8 3 5 21 143 3 1 8 1 UU NEY SEAS time sec 25 2 Re Re Nn nN relative pedal force 1 nn 121 2 2 1
157. 29784830 kcal 9 3 2 1 kcal kg1 hr1 0 38 0 08 kcal kg km1 0 89 0 08 kcal kg1 km 0 86 0 08 kcal kg1 km 8 7 1714 7 387 3 kcal
158. b Lares 1 4 60 90W 2 1 18W JOT 30 Ss ELGG BY AMICES ECAH VP ROK AB800 30 1
159. 0 43 kcal kg te 58 5 F 4313 6 4 2 136km 4 133 Th s
160. J 9 2 Addiction 2 na Commitment a 90 Addiction a 89 10 5 2 5 CA FI FI Ccomittment
161. 2 23 3 12 1 DE 83 29 4 34 27 7 42 9 11 2 169 8 7 7 cm 62 048 2 kg 21 4 2 0 40 9 12 7 mi 168 8 7 0 cm 68 9 11 2 kg 24 143 2
162. 50 MVC Yamauchi 2007 1 5 20 MVC 5 20 MVC TaStayo 2008
163. MYORET RZ 450 E MVC maximum s gt Ve 1 Hf as MVC EAE Australia 2 4 7 NE NEEJ 1 4 4 1
164. Kuipers 1994 70 1 RM 1000m 4000m 1 Takarada 5 2000
165. 1976 J 60 8 2 gt 2 1 2 E ty 2 40
166. 100 mm iE 395 mm 60 rpm 95 97 5 F at 10 100 H 90 rpm RMN 102 5 53 x 21 53x 15 97 8 bar 100 105 5 60 rpm 90 rpm 2 90 rpm
167. 50G 40 60 4 220 f W E 104 8 100 9 5 U30 6 2 3 120 240km 2 1 7 2006 2 2006 RNA 3 Saltin Astrand Maximal oxygen uptake in athletes Journal of Applied Physiology 23 353 358 1967 4
168. 3 A B mA VE OVE VE VO VE VO mmol L 4 5 45 0 0 0 7 1 13 16 19 2 2 2 5 28 3 1 3 4 37 4 43 46 49 20 25 30 35 40 45 50 55 60 kp VO ml kg min M1 LT A VB B MeanSD Voomax 1 1 U30 30G 40G 50G 29 4 4 12 8 42 8 11 1 38 0 10 3 24 0 4 5 34 6 2 3 44 1 3 2 55 4 5 4 cm 171 8 4 7 1354 7 5 9 173 3453 169 1446 171 145 2 173 8 3 3 kg 64 9 6 7 48 0 4 7 63 6 10 6 59 1423 64 7 5 9 69 4 5 2 BMI kg m 22 0 2 0 20 1 2 9 21 1 2 7 20 7 1 1 22 1 1 9 23 0 2 1 991 8 139 3 699 3 118 0 1018 3 210 4 884 4 121 3 1017 3 111 5 1007 4 143 6 L 133 9 23 4 90 1 18 3 141 3 23 8 124 2 25 7 135 5 21 8 133 7 26 9 185 4 10 1 183 3 8 7 194 845 0 191 0 2 3 185 3 9 0 177 5 11 1 min kg 32 1 7 19 46 5 4 8 S6 6 10 0 34 2 6 3 51 3
169. CK CK MB Mb LD AST ALT y GTP SRL LA Glu C j 2 Bonferroni 3 1 p lt 0 05 32 A 1 1H 0 4040 05 19 542 5km 2H 1 2740 04 50 243 4km 4H 4 0940 01 151 942 9km 1 1
170. MVC maximum voluntary contraction 37 0 1 l gt ae MVC Af UZE AN FE RE BEA Dii MVC 3 f BU 4 gt jes l 130 5
171. p lt 0 05 52 5 OBLA 4 mmol l 2 6 VO2max 60ml kg min S 49 2 gez TEOD ARG MERD mia mmol L mmol L 1 a 2 a 3 b 4 b 5 c 6 c 2 1 4 1 2 1 4 1 1 1 6 2 0 1 5 0 3 3 7 10 3 3 9 4 0 3 6 3 5 4 8 2 7 mg dl mg dl 118 113 103 121 109 125 98 135 114 121 111 99 108 8 119 0 7 3 12 1 p lt 0 05 3 Cc 32 1 VOsmax 170 0 4 2beat min 84 7
172. 1 4 924 keal 3 bh aul 48 POWERMAX VI fred EN 60
173. 38 8 21 1 29 9 18 2 100 p 80 m 60 40 Aleka 1 2 3 4 5 6 7 20 5 Near infrared spectroscopy NIRS 700 3000nm oxy Hb Mb qdeoxy Hb Mb 89 MM total Hb blood volum Millikan 5 1937 CHS Jobsis 1977 Chance 1988 NIRS
174. BAR REDS 87 6 Voomax 1 Asea A Stress proteins and initiation of immune response chaperokine activity of HSP72 Exerc Immunol Rev 11 34 45 2005 2 Dulin E Barreno PG Guisasola MC Extracellular heat shock protein 70 HSPAIA and classical vascular risk factors in a general population Cell Stress Chaperones 15 929 937 2010 3 Febbraio MA Ott P Nielsen HB Steensberg A Keller C Krustrup P Secher NH Pedersen BK Exercise induces heapatosplanchnic release of heat shock protein 72 in humans J Physiol 544 957 962 2002 4 Locke M The cellular stress response to exercise role of stress proteins Exerc Sport Sci Rev 25 105 1036 1997 5 ARAE DARTE 53 455 460 2004 6 Naito H Powers SK Demirel HA Aoki J Exercise training increases heat shock protein in skeletal muscles of old rats Med Sci Sports Exerc 33 729 734 2001 7 Ogura Y Naito H Akin S Ichinoseki Sekine N Kurosaka M Kakigi R Sugiura T Powers SK Katamoto S Demirel HA Elevation of body temperature is an essential factor for exercise increased extracellular heat shock protein 72 level in rat plasma Am J Physiol Regul Integr Comp Physiol 45 294 R1600 7 2008 8 Pockley AG Shepherd J Corton JM Detection of heat shock pro
175. 15 CK Mb Neumayr et al 2005 NT proBNP cTnT 24 34 E 4 35 EE 2 1 7 1 2 14 4 Q P PRE POST PRE POST PRE POST Group Time Interaction LA mmol I 2 2404 4 8408 1 1 4401 7 1408 20402 2 3402 lt 0 01 lt 0 0001 lt 0 001 Glu mg dl 10446 136 7 11344 14849 119412 124416 0 34 lt 0 05 0 32 Ins pIU mll 7 3041 33 18 1145 20 7 54 1 09 21 28 3 3
176. 2 ER 3 2 98 8 D 9 eee es D 10 D 11 D 2 20 26 2 9
177. 28 A 4 2 WAVE 5 25 6 6 32
178. 3 4 2 1 Tes 6
179. 42 396 401 7 Powers S K and Howley E T 1994 Theory and application to fitness and performance 2nd ed Wm C Brown 8 Tanaka T Yamada Y Ohata K Yabe K Assessment of sites related difference in fat and muscle thickness in adults with cervical spinal cord injury Advances in Exercise and Sports 94 Physiology 13 2 25 23 2007 9 RET 2010 60 252 10 2010 60 4 228 232 11 http www dynasense co jp 12 2010 60 4 217 220 13 Fox PT 1986 Focal physiological uncoupling of cerebral blood flow and oxidative metabolism during somatosensory stimulation in human subjects Proc Natl Acad Sci USA 83 1140 1144 14 Sirotin YB 2009 Anticipatory haemodynamics signals in sensoty cortex Nature 457 387 388 95 V
180. OD CNET HSP72 HSP72 1 0 HSP72 HSP72 1 25 7 4
181. ara Bul ETEA gt 70 1 RM Fleck Kraemer 1987 30 MVC Hill 1938
182. 2 10 ERBARMJE H 350 N S 200 N S 5 300 E 8 250 3 150 za 200 5 2 150 3 9 2 2 100 50 50 0 0 cycling control cycling control 300 N S 150 N S 2 E Z 250 o o 200 g 100 E 150 E S S 2 100 50 50 0 0 cycling control cycling control N S 128 2 11 270 s JE 2 11 FL H 270 s Be os ERBARMJE H 200 N S 150 N S G G Z 2 150 2 F 2 100 2 100 2 a a 3 50 2 5 4 0 0
183. 1991 A mete analysis on the anxiety reducing effects of acute and chronic exercise Outcomes and mechanisms Sports Medicine 11 143 82 Sachs M L and Pargman D 1987 Runnning addiction A depth interview examination Journal of sport Behavior 2 143 155 2002 9 4 219 226 2002 31 11 1815 1320 1995 37 5 456 466 2007 84 230 231 2008 Addiction Fa SR WURA 1998 38 4 259 266 1993 Addiction
184. t Y 6 8 12 MRI CSA R MVO 1 I Hl TER 270 s 114 2 4 1 1 4 1 1 2 4 2 1 4 2 1 2 4 3 1 4 3 1
185. TELEMYO DTS NORAXON U S A OR KIE SRA DEE OMAR PIRAMO 5 X 250 00 10 1500 Hz Band pass filter 10 500 Hz 98 tE T fa Ei JAPAN BLUE SENSOR P AMBU U S A 5 kQ EMG MR XP 1 07 NORAXON U S A SONY DCR TRV30 JAPAN 60 fpm 10 5 A 0 amp L 0 90 90 180 180 270 and 270 360 GEMG 5 4 SPSS Software Version 14 0
186. 1 mM BO 12 Blood lactate concentration mM oN A OA a 11 0 1 6mM 7 a xe fn at im Pre Post ZL ORMOA BZ p lt 0 05 123 2 3 2 5 H X 2 5 1 5 0 5 Acute changes in circumference cm Edt Ae ine RT 0 05 124 2 4 SA NBA 1 2 1 1 FE 2 6 FE 1 20 MVC 2 1 1 MVC 1 2 3 4 5 AF VER
187. 5 79 34 BER EL FL G Tr 21 1 07 mk 160 21 8 37 cm 55 07 7 99 kg 3 2 1 21 14 21 17 Monark Ergomedic 828E Exercise Bike Monark Sweden 1 Aeromonitor AE280S Minato Medical Science Japan Rating of Perceived Exertion RPE tt 2 ak FOE RHR HORA 8
188. 1 8 4 7 8 7 7 2010 10 o MEAN o General Health Questionnaire GHQ 30 1 o Self rating Depression Scale SD8 Self rating Depression Scale SDS 1973 6 SDS
189. 9 02Hb 85 HHDb 10 ay XE 02Hb HHb 10 8 l 02Hb 6 O2Hb 5 444 10 279 4 R HHb 1 005 1 853 9 1000 1500 2000 HHb 2 024 3 445 4 O2Hb 0 885 0 44 o V 11 D ane HHb 0 167 0 365 0 15 p 02Hb HHb 0 05 12 02Hb 6 33 0 26 HHb 1 17 1 8
190. pail maximum voluntary contraction MVC 90 2 1 5 1 t 5 GS 111 2 2 2 1 2
191. 104 8 5 4 100 9 7 7 LT Vo VT 2VT ml kg1 min1 U30 84 8ml kg1 min1 37 8ml kg min 30G 40G 50G 3 50G LT Vos 50 50 59 LTO Voz 65 Voomax Voomax LT VT fans ian ozmax LT 60 Ali Voomax VT 65 70 HRmax ORM 220 n 29 ra y 0 5658x 85 182 pi AI 2 0 38572 lt 200 190 180 170 160 150 140 140 150 160 170 180 190 200 210 220 HRmax 2 HRmax HRmax ozmax
192. 60 4 Vozmax Mets 1t 4 924 400 Cae ETE 57km 79km 2 14 3 20 5 34 55
193. BAL AA 60 2 gt 4kHz A D 9 45 0 90 er i MacLab ADInstruments MVC ats tk 270 7 90 E AS fe 2 5
194. 1 18 2 2 1 RADY PGE pre post pre post cm 173 2 5 4 172 4 6 7 ks 64 8 8 3 66 5 9 1 66 1 7 5 66 9 6 9 209408 5 21007 _ 5 N 9 2 3 5 3 12 4 30 180 RPE Rat
195. 4 90 rpm iEMG uV s iEMG uV s iEMG uV s iEMG uV S 18 0 5 16 0 14 0 12 0 10 0 8 0 6 0 4 0 2 0 0 0 60 rpm A e 95 97 596 t 100 iEMG uV s 30 0 5 25 0 4 20 0 4 15 0 4 10 0 4 5 0 4 C wens as ax iEMG uV S 0 0 20 0 15 0 4 10 0 4 5 0 E 0 0 5 0 0 90 90 180 180 270 270 360 102 30 0 25 0 20 0 15 0 4 10 0 4 5 0 4 0 0 5 0 J 30 0 5 D 25 0 20 0 15 0 10 0 5 0 0 0 0 90 90 180 180 270 270 360 5 60 rpm iEMG uVs 1 2 3 4 Ashe MC Scroop GC Frisken PI Amery CA Wilkins MA Khan KM Body position affects performance in untrained cyclists Br J Sports Med 37 441 444 2003 Coast JR Welch HG Linear increase in optimal pedal rate with increased power output in cycle ergometry Eur J Appl Physiol Occup Physiol 53 339 342 1985 Harnish C King D Swensen T
196. 912 432 640 821 AIT 563 797 214 534 782 097 776 678 255 772 673 211 735 652 124 572 598 301 738 517 114 505 LATFIFEAPYA addiction 150 681 642 256 673 392 175 669 405 079 642 508 050 624 A712 170 612 391 320 602 306
197. O a k 2 29 1 2 18 63 82 28 4 3 52 1 7 3 46 5 4 8ml kg 1 min 1 4 89 2 4 6 90 112 7 87 6 7 4 Voomax 5 4125 5kcal
198. 77 4 5 0 10 8 4 6 7 4 1 6 4 1 0 05 28 1 3 60 Voomax N 1 2 90 0 4 6 HRmax 87 6 7 4 ozmax 50 70 HRmax 40 F 35 6km Ainsworth D 12 0 12 5km 200m 2 1 0 5 1 0kcal kg1 km1 4 4125kcal
199. 2 1 5 2 2 50 6 12 1 5 131 0 31 9 2 1 X 2 2 160 140 120 100 80 60 Relative oxygenation baseline 40 20 2min 3min 4min 5min Imin 2min 3min 4min 5min 5 180 160 140 120 100 80 60 40 20 Relative oxygenation baseline min Pre max EH 5 p 0 05 122 2 2 5 2 3 X 2 3 5 3 TT d Edt Ae ine RT
200. 3 4 5 1 3 6 commitment addiction 2 8 commitment 9 2002 29 1 21 29
201. 5 30 120m min e 5 Margaria Margaria 1963 ye R 1 2 108 RE 3 H 2
202. 5 BRERA CISA 83 610 8 13 8 29 7 29 9 Rt Visual analyzing scale 18 2 El Visual analyzing scale 48 0 1 V El 1 2 n
203. CNN E lates Mean SD 28 4 52 1 7 3 46 54 8m1 kg1 min1 185 4 10 3 183 3 8 7 1 I RB m cm kg ml kg min n 28 45 5 171 7 64 8 52 1 185 4 n 4 38 0 154 7 48 0 46 5 183 3 2
204. 02Hb D j Lob F 4 D E D 4 13 10 2 D E E His
205. 4mM 3 F 1383 Tv 20 ly 74 79 Vozmax 3 000 kcal 1 2000 2400 kcal
206. ARAE 5 40 WERA E 6 47 SS 7 53 8 61 WARK PRR 9 kk 65 WARK KI WEI 1 96 HAs PRM 1
207. 1 Levey 27 HRmax 44 47 HRmax 200 100 90 180 80 70 160 60 140 50 40 120 30 20 100 80 Ell 2 166 4 10 8 90 0 4 6 90 7 2 7 87 6 7 4 Voomax 18 2 1 6kcal kg ht 23 5 4 1kcal km 0 87 0 05kcal kg km1 2 HRmax Vo max i kmh kcal kg h kcal km kcal kg km 119 3 35 6 166 4 90 0 87 6 13 2 23 5 0 38
208. 2 jq FIE T EE E km Vozmax 121 2 73 4 165 9 87 6 SD 74 9 48 4 11 7 8 0 HSP72 1 HSP72 HSP72 0 52 0 47 gt 0 79 0 55 ng ml p lt 0 05 0 8 0 6 0 4 0 2 HSP72 ng ml 0 0 p lt 0 05 M1 HSP72 HSP72 2 te mu HSP72 r 0 547 p lt 0 05 te 42 A HSP72 ng ml 1 0 0 0 0 0 0 0 8 6 4 2 0 i r 0 547 p lt 0 05 140 150 160 170 180 190 2 HSP72
209. EX D 4 8 1 23EX 2 1714 7 387 3kcal 2500kcal 3000kcal 1 EO 1 2 b g VOzmax VO gt 2 6 y NHT ao F 60 70 63
210. WL 029 R 1 ESSA 9 1 tw Ko D V WMR EZEC TOA 96 2 a ESTIA ne
211. 22 http ringring keirinJp KEIRIN 0 0 1 HAE I 2 MDS 6 V 1 13 AET EH 2 18 SS R He F 3 i 25 EIRE w PR ae
212. 42 2 km HSP72 22 1 HSP72 10 IOT R 6 E Walsh 1 vy FIFY 1 1 HSP72 HSP72 5 E HSP72
213. E1 5mM Fluid Shift 1 5cm 1 5 1 1 3 0 4cm 140 4cm Je 132 2004 5 HRA m 4 4 1 5 1 3 1 9 0 6 0 2cm
214. RIZKY mixing chamnber X 1kp 0 3kp TOFA r Z ih E au 1H 62 VOomax ml kg min 55 0 50 2 55 2 58 2 53 8 58 4 51 6 54 6 3 4 1 a dit CS400 15 PC 20 50 60rpm dit CS400 POLAR FINLAND JL AE300 8 MINATO 4 1E VO gt z H R
215. 0 058uM 0 458uM 1 327uM 0 791uM 8 078uM 5 228uM 6 095uM 1 841uM 1 695uM 1 667uM 9 092uM 0 054uM 14 385uM 0 448uM 13 520uM 1 147uM A 2 5 2 7 5 50 90 2 84 D4 D 02Hb m 5 73 5 25 HHb 2 85 1 51 10 f xO2Hb HHb 2000 ao 9 D DORRE
216. 1 2 4 P n 7 n 14 n 7 Group yr 48 4 39 3 49 3 0 10 kg 59 4 6442 6442 0 48 ml 1 680 04 1 70 0 02 1 71 0 04 0 79 0 40 0 05 1 2740 04 4 0940 01 lt 0 0001 Ikm 19 5 2 5 50 2 3 4 151 9 2 9 lt 0 0001 p lt 0 001 vs 1H p lt 0 001 vs 2H B Post LA 2H 7 1 0 8 mmol 1H 4 8 0 8 mmol l 4H 2 3 0 2 mmol l amp V b lt 1H 4H Post NEFA 4H 1433494 nEq L 1H 248 85 pEq L amp U 2H 590 76 pEq L X 2H 1H Glu Ins TG C ALT Y GTP A Post cTnT CPK MB 4H 0 073 0 027 9 2 1 9 ng mL 1H 0
217. 1973 673 679 Gordon J Grant G 1997 How we feel London Jessica Kingsley 20100 a 5 75 16 M AER 2004 50 17 25 Morgan W P 1979 Negative addiction in runners The Physician and Sports medicine 7 57 69 McDonald G D amp Hodgdon A J Psychological effects of aerobic fitness training Research and theory New York Springer Verlag IPE AGFA 1996 A AIK GHQ 61 308 2010 Petruzzello J S Landers M D Hatfield D B Kubitz A K amp Salazar W
218. D 02Hb 0 05 0 142 HHb 0 08 0 03 O2Hb HHb i 10 L nn nm S N 10 Fm 9 D 02Hb HHb 02Hb HHb 02Hb
219. 000 1 D 1 E 1 6 3 ICES fi
220. 18 63 28 1 1H n 7 1 2 2H n 14 4 4H n 7 3 a B Pre Post Ins NEFA H FABP N NTrproBNP T cTnT
221. Effect of cycling position on oxygen uptake and preferred cadence in trained cyclists during hill climbing at various power outputs Eur J Appl Physiol 99 387 391 2007 Nordeen Snyder KS The effect of bicycle seat height variation upon oxygen consumption and lower limb kinematics Med Sci Sports 9 113 117 1977 5 Sanderson DJ Amoroso AT The influence of seat height on the mechanical function of the triceps surae muscles during steady rate cycling J Electromyogr Kinesiol 19 e465 471 2009 103 PHO 1 LT 1 E 2 3 34 1 2 3 4 Bs
222. commitment addiction 2 2 33 2 8 1 60 80km 1 2 i 3 82
223. cycling control cycling control 200 N S 150 N S g E Z 2 150 2 F 2 100 2 100 3 4 5 3 50 50 4 0 0 cycling control cycling control N S 129 5 DEOS 12 ee 4000m 5 5 4 3 6 70 80 1RM one repetition maximum Campos 2002 2 8 2000 52 ZAD
224. reported that plasma HSP72 concentration were elevated after Ironman triathlon race However the effect of endurance cycling exercise on extracellular heat shock protein 72 in human has not been established Purpose To examine serum HSP72 after endurance cycling exercise in humans Methods Recreationally male cyclists n 25 age 42 7 11 7 years weight 65 2 7 1 kg and VO2peak 51 3 7 4 ml kg min volunteered and participated the endurance cycling race Heart rate was recorded to estimate VO2peak during race Before and immediately after race blood sample were taken for determining blood lactate concentration and HSP72 concentration HSP72 in serum were quantified by EIA methods Results Mean exercise time was 145 91 min In addition estimated VO2peak during race was 87 9 9 7 In addition Serum HSP72 concentrations were significantly increased after endurance cycling race pre 0 52 0 47 ng ml post 0 79 0 55 ng ml p lt 0 05 Blood lactate concentrations were also significantly elevated after race pre 2 2 1 3 mmol l post 4 6 2 4 mmol l p lt 0 05 There was no relationship between serum HSP72 and blood lactate concentration Vo2max and exercise time Discussion Previous studies showed that treadmill running and marathon increase extracellular HSP72 in humans We also demonstrated that serum HSP72 was increased after endurance cycling exercise Although cycling exerci
225. 0 87 0 05kcal kg km1 6 2 1 Ainsworth BE Haskell WL Whitt MC et al Compendium of physical activities an update of activity codes and MET mintensities Med Sci Sports Exerc 32 S498 504 2000 I 2 7 2006 3 pp 54 71 1990 A iE Gull a III 4 2006 30 4 12 EIRE 2 2
226. 005 0 002 4 8 1 2 ng mL 2H 0 018 0 002 5 4 0 5 ng mL Post NT proBNP 4H 33 99 27 pg mL T 2H 51416 pg mL Post CK 2H 140 12 U L amp U 4H 206 18 U L 1H 226 28 UL Mb LD AST ALT y GTP 5R fn LA 2 4 Ins 4H 1H 2H Costill 1970 LA
227. 100 0 102 5 105 0 97 5 100 0 102 5 105 0 3 HR beat min A 90 rpm B 60 rpm iEMG 90 rpm p 0 002 KI 4A 60 rpm P lt 0 001 5A WEEAHIC p lt 0 001 5C iEMG iEMG 4 amp 5 BR 2 amp 8 U 5 FEY FLA
228. 150 w Five saddle heights 95 97 5 100 102 5 and 105 of preferred saddle height were randomly assigned for each cadence without informing the subjects of the saddle height condition During each trial Vo and heart rate HR were measured Surface EMG signals were also recorded unilaterally the right side from the gluteus maximus GM biceps femoris BF gastrocnemius lateral head GL vastus lateralis VL and tibialis anterior TA between 250 and 3 00 of each pedaling trial Results Increased saddle height resulted in an quadratic rise in VO p lt 0 001 and HR p lt 0 01 for both cadences Unlike the previous finding using cycle ergometer Nordeen Snyder 1977 VO did not show a U shaped change with varying saddle heights demonstrating a different cardiorespiratory response between the cycle ergometer and actual bicycle pedaling Higher saddle heights resulted in significantly greater integrated EMG GEMG mean of 5 cycles in GM 60 amp 90 rpm p lt 0 001 and GL 60 rpm p 0 001 but iEMG of other three muscles BF VL TA were not influenced by the saddle height changes for both cadences Discussion The increased iEMG in GM and GL with higher saddle heights may have resulted from a greater effort to generate torque to maintain a given speed due to the effect of angle torque relationship and from exaggerated kinetic or kinematic behaviors of the hip and ankle joints These changes possibly accounted for the obser
229. 248 256 2008 Jenkins RR Exercise oxidative stress and antioxidants a review Int J Sports Nutr 3 356 375 1993 i Koa m 42 48 2001 Kretzschmar M M ller D Hibscher J Marin E Klinger W Influence of aging training and acute physical exercise on plasma glutathione and lipid peroxides in man Int J Sports Med 12 218 222 1991 In 240 247 2008 Mena P Maynar M Gutierrez JM Maynar J Timon J Campillo JE Erythrocyte free radical scavenger enzymes in bicycle professional racers Adaptation to training Int J Sports Med 12 563 566 1991 Ohkuwa T Sato Y Naoi M Glutathione status and reactive oxygen generation in tissues of young and old exercised rats Acta Physiol Scand 159 237 244 1997 2010 2011 Vassalle C Petrozzi L Botto N Andreassi MG Zucchelli GC Oxidative stress and its ass
230. 38 58 71 17 2 i 2 ERAR 2 JER 12 R b2 jl 2 1992 2 30 2010 1 771 2 2 3 40 1 2 9 239
231. 40 2 a 40 1 173 195 85 2 2079 0 36 3 b 40 1 174 188 88 3 2017 0 40 4 b 41 4 167 183 79 1 1903 0 37 5 C 41 1 164 184 17 3 1982 0 35 6 C 40 1 168 187 96 7 2431 0 43 40 5 170 0 188 5 84 7 2070 7 0 39 0 6 4 2 5 0 7 1 185 3 0 03 4 n 32 HR HR km beat min beat min VO 2max kcal kg km 36 2 2 0 164 5 182 6 87 1 0 36 5 0 1 3 10 8 9 9 7 4 0 08 Ale Tes NS 1kg 1km 51
232. 83 1 83 0 72 232 2 73 0 86 261 0 72 257 0 90 238 0 91 1 51 1 98 0 75 2 18 0 83 2 22 0 86 2 34 0 87 1 69 1 98 0 92 1 71 0 87 192 1 00 1 83 0 79 0 77 236 0 94 234 0 82 251 0 97 260 101 0 84 1 71 0 68 1 53 0 76 1 65 0 72 1 67 0 76 0 53 2 54 0 85 242 0 92 259 0 92 265 106 0 44 2 63 0 96 261 0 92 245 081 256 092 0 38 239 0 85 218 0 87 229 0 90 221 097 0 55 1 39 0 68 1 08 0 27 1 37 0 72 1 25 0 57 247 2 25 0 82 224 0 91 235 0997 215 095 0 45 SDS 40 75 5 70 36 24 4 48 39 47 5 82 39 73 5 05 377 lt N M SD lt 10 05 p lt 01 4 OQA 1 3 ERZI WERD EW ER TA Re COKE 6 1
233. Ainsworth 32km 62kg 1 2 62 kg xX16METsx1 2 992 1984 kcal 7METs 8km 8METs 2 4 19 2 1 BAGH mm 2 cm kg 3 6 1 D 1 2 1 2 3 4 5 6 2 1 154 2 15 30 30 60 60 3 MTB D FA
234. differences of cycling time influenced energy dynamics in enduro Additionally although there are not different in the value associated with hepatic function after the race among three groups cTnT CPK MB and NT proBNP as clinical indicators of cardiac damage significantly increased in the 4H group compared to the 1H and 2H group Therefore such a race over 4 hour may put great stress on 11 cardiac system for Japanese recreational cyclists References Costill DL 1970 J Appl Physiol 28 3 251 255 Neumayr G et al 2005 Am J Cardiol 96 5 732 735 4 1 2 3
235. levelling off Xa 5414 d 2 1 0 3 3 10 D 3 Polar CS400 kcal 5 CS 80 20 C
236. lt 0 05 ffp lt 0 001 vs Pre p lt 0 01 p lt 0 001 vs 1H p lt 0 01 p lt 0 001 vs 2H 37 4 4 2 Fen ae be fie amp 1 4 LA 2 NEEA 2
237. yr 171 8 4 7 and 154 7 5 9cm 64 9 6 7 and 48 0 4 7kg respectively The male subjects were divided into 4 groups by ages less than 30yr U30 n 4 30 39 yr 30G n 5 40 49 yr 40G n 12 above 50 yr 50G n 8 They performed a maximal exercise test using a cycle ergometer at 60 rpm During the exercise test heart rate HR oxygen uptake Vos and blood lactate La were measured oz peak obtained individual during the exercise test was considered as Voz max Results The mean Vozmax and HRmax of male and female subjects were 52 1 7 2 and 46 5 44 8 ml kg min 185 10 and 183 9 bpm respectively and declined with aging 56 6 54 2 51 3 49 7ml kg min and 194 8 191 0 185 3 177 5 bpm for each group Voz at lactate threshold LT was also declined with aging 34 8 30 7 30 6 30 7 28 3 ml kg1 min but there was no age related changes in Voomax at LT 60 7 56 5 59 1 61 2 60 3 Discussion Previous studies demonstrated that Vozmax declines with aging and the lack of physical activity In this study however Vozmax of 40G and 50G was 38 5 higher compared with the reference values that of age matched Japanese people and the same level as joggers in 40 60yr2 Voz at LT was 63 higher than that of sedentary Japanese in 50yr and equivalent to joggers in 40 60yr2 Especially Voomax and HRmax in 50G were comparable to that of Japanese adolescents on treadmill running These results indicate that regularl
238. 0 SDS 1 8 SDS commitment addiction 2
239. 0 16 0 03 0 18 0 20 0 20 0 20 0 14 0 07 0 16 0 06 SDS 0 32 0 05 p lt 05 p lt 01 commitment addiction 2 commitment 2 13 7 1 2002
240. 0 880 08 kcal kg1 km 56 2 E 4 E km 126 8 133 9 146 0 138 7 138 7 134 5 136 4 6 4 1 5 23 2 5 33 4 5 34 3 5 36 5 5 36 6 5 41 584 0 06 aE 1 ak 2 km h 23 6 24 1 26 2 24 8 24 8 23 7 24 5 1 0 E ml kgr1 1 Vozmax Mets 120 2 178 132 9 181 110 0 154 121 4 179 157 6 189 155 1 195 132 9 179 19 6 14 18 1 29 3 35 4 35 0 36 2 34 8 31 5 7 0 57 32 5 64 0 60 5 60 2 78 6 73 7 61 6 16 1 5 2 8 4 10 1 10 0 10 3 9 9 8 9 2 4 i kcal kcal kg 1 hr 1 1681 3288 3535 4015 2898 2454 2978 830 5 3 8 6 10 3 10 4 10 7 10 3 9
241. 1094 1105 2007 4 Neumayr G Pfister R Mitterbauer G Eibl G Hoertnagl H Effect of competitive marathon cycling on plasma N terminal pro brain natriuretic peptide and cardiac troponin T in healthy recreational cyclists Am J Cardiol 96 732 735 2005 39 5 2 12 2 5 HSP Y HSP
242. 3 2 1 Ein kcal kgt km t 0 23 0 36 0 42 0 40 0 43 0 43 0 38 0 08 136km 62 65 5 KIC d 2 64 Vozmax 24 12 Voomax AIPA 20 60 7 9 Vozmax 60 Vozmax
243. 3 4 74 0 72 10 35 2 77 0 08 lt 0 001 0 37 tH tt NEFA pEq ml 36181 243 35 389 53 590 76 317454 1433494 lt 0 0001 lt 0 0001 lt 0 0001 TG mg ml 70412 97414 106418 162 37 6145 6648 0 18 lt 0 05 0 50 p lt 0 001 vs 2H P lt 0 05 ffp lt 0 001 vs Pre P lt 0 05 p lt 0 01 p lt 0 001 vs 1H 36 3 1 n 1 2 n 14 4 n 7 P PRE POST PRE POST PRE POST Group Time Interaction H FABP ng ml 2 4 0 2 5 22 2 2 2 0 2 8 0 1 4 2 50 2 12 9 2 8 0 07 lt 0 0001 0 05 NT proBNP tiss 21 4 51 16 1745 4010 2749 99427 0 11 lt 0 0001 lt 0 05 pg ml Hra cTnT ng mL 0 0038 0 000 0 005 0 002 0 003 0 000 0 013 40 002 0 004 0 001 0 073 0 027 lt 0 01 lt 0 01 lt 0 01 TH EE SS CPK MB Ing mll 3 2 0 7 4 841 2 4 040 4 5 4 0 5 3 40 5 9 2 1 9 0 11 lt 0 0001 lt 0 01 CK U L 103 10 140 12 148 14 206418 193414 226428 0 06 lt 0 0001 lt 0 05 Mb ng ml 3743 79417 50 4 174 30 49 5 214 27 lt 0 05 lt 0 0001 0 05 LD U L 172 7 192 10 171 5 201 8 184 19 214 21 0 56 lt 0 0001 0 65 AST U L 2342 25 2 24 2 26 2 29 7 32 7 0 42 lt 0 001 0 74 ALT U L 1942 1942 2343 24438 2548 2648 0 62 0 10 0 33 y GTP U L 30 7 31 9 31 6 34 7 36 11 37 11 0 91 0 07 0 42 P
244. 5 7 49 7 8 2 1 2 0 07 1 2 0 0 1 2 0 1 1 3 0 0 1 2 0 0 1 2 0 1 mmolL 11 6 2 64 12 1 2 4 11 2 2 9 11 8 2 1 12 0 3 2 11 1 2 2 Vo LT min kg 31 2 6 87 26 8 2 8 34 8 9 5 30 7 5 7 30 6 6 0 30 7 8 1 Vox VT min kg 31 2 6 86 34 4 44 0 37 3 9 2 36 9 6 4 36 4 4 5 33 4 6 7 LT Vomax 59 5 7 14 58 4 10 4 60 7 7 6 56 5 6 6 59 1 6 5 61 2 8 7 VT Vomax 59 5 7 07 74 145 8 65 4 10 8 69 4 9 4 69 4 4 7 67 6 4 8 all out 33 Voomax HRmax 29 4 52 1 7 2 46 544 8ml kg mint 185 4 10 1 188 8 8 7 2 3 50G 20 24
245. 6 86 02 Hb HH b 6 13 G 10 02Hb 0 10 5 16 HHb 0 03 0 02 bo SN So Oe OF bh mn Ol J o ae Li oO or bo bo 02Hb m HHb 10 10 1010 1510 14 G RA E 3 E D E 9 2 b 15 87 02H b HH b oe 16 G 0 25 4 2 1
246. 62 7 27 5 0 4 4 7 3 3 6 2 1 1 2 4km 4 6 2 2 462 8 A 838 B 1 C 2 2 HR Polar C8400 fa 15
247. 962 PIR 222 2 12 3 3 aI ARAKEA RY HE ERLE 2 3 D 12 Costill et al 1970
248. A kgF 102 4 16 3 20 5 2 5 19 1 4 0 19 7 4 2 18 8 3 5 19 0 2 8 20 743 7 19 2 4 8 19 9 4 9 19 1 4 2 19 8 3 6 2 6 25 20 15 10 relative pedal force 1 time sec 125 2 5 CSA ET 2 7 mie REGIA 5 4 3 6 Dok 2 7 20000 18000 16000 14000 12000 10000 8000 6000 4000 2000 Muscle Bone Area mm2 cycling control El PS Ae he NT p lt 0 05 x 0 05 2 8 11 2 6 AF EEA MVC
249. ARAL A BR 29 9 9
250. EJ 2 9 MVC ARB 4 7 UY BEE MVC 37 0 15 1 2 9 MVC 140 T 120 3 100 H op 80 E 60 o a B 40 o 5 20 0 cycling control lt 0 05 x HOARE p lt 0 05 127 MVC MVC ua X 2 10
251. LT VT 29 75 20 40 2max ou 1 2 18 63 88 29 4 E Qr 3 56 6 54 2 51 3 49 7ml kg min 46 5ml kg min
252. O ERAR R e PHRAO EMG 4 amp 5 y 100 iEMG uV s iEMG uV S iEMG uV s 18 0 16 0 14 0 12 0 10 0 8 0 6 0 4 0 2 0 0 0 2 0 25 0 20 0 15 0 10 0 5 0 0 0 18 0 16 0 14 0 12 0 10 0 8 0 6 0 4 0 2 0 0 0 90 rpm AXE 95 97 5 100 gt 102 5 105 gt S wi C ERS Aa gt 3 0 90 90 180 180 270 270 360 101 20 0 5 B AMEH 18 0 16 0 14 0 12 0 10 0 8 0 6 0 4 0 2 0 0 0 2 0 25 0 5 D 20 0 4 15 0 4 10 0 5 0 0 0 T T T 0 90 90 180 180 270 270 360
253. and immediately after the race Post Then insulin non esterified fatty acid NEFA heart type fatty acid binding protein N terminal pro brain natriuretic peptide NT proBNP cardiac troponin T cTnT creatine kinase creatine kinase MB CK MB myoglobin lactate dehydrogenase aspartate aminotransferase alanine aminotransferase ALT and yrglutamyl transpeptidase y GTP were measured at commercially available laboratories Blood lactate LA and glucose levels were evaluated with blood from a fingertip respectively Results There were not differences in all value Pre and was a time effect in all value except ALT and y GTP LA Post in the 2H group 7 1 0 8 mmol l was significantly higher than that in the 1H 4 8 0 8 mmol l and 4H 2 30 2 mmol l group There was a significant increase in NEFA Post for the 4H 1433 94 pEq L group compared to the 1H 243 35 pEq L and 2H 590 76 pEq L group cTnT Post and CPK MB Post in the 4H 0 073 0 027 9 2 1 9 ng mL group were significantly higher than that in the 1H 0 005 0 002 4 31 2 ng mL and 2H 0 013 0 002 5 4 0 5 ng mL group and NT proBNP Post in 4H 9927 pg mL group was higher than that in the 2H 51 16 pg mL group Discussion LA after the race increased until 2 hour but was lower in the 4H group than 1H and 2H group Costill 1970 has also shown the same results in running Meanwhile NEFA significantly increased in the 4H group after the race compared to the 1H and 2H group Thus the
254. e Acta Physiol Scand Suppl 169 1960 2 Binkhjorst RA Van Leeuwen A rapid method for determination of aerobic capacity Int Z angew Physiol 19 459 467 1963 3 Davies CTM Limitation to the prediction of maximum oxygen intake from cardiac frequency J Appl Physiol 24 700 706 1968 4 1989 5 6 1 20 H I 33 55 Hi A 81 94 59 en 1990 604 78 Ls 4 25 38 1994 7
255. genation baseline oO cycling running Tt im 2 1 3 ioe oO 160 140 120 100 Relative oxygenation baseline ee oO cycling running 4 amp KEMERIT p 0 05 x HOARE p lt 0 05 118 1 2 5 1 4 14 2 1 3mM 7 2 1 5mM 1 4 5 act E a xe gi Tt im 18 16 14 12 Blood lactate concentration mM S oN FO Ow cycling running PS Ae he NT lt 0 05 x lt 0 05 119 1 3
256. ings of perceived exertion 18 90rpm 5 10 4000m 60rpm 90 1 5Kp Ww 5 12 3 1 1 7 RPE 12
257. l Health Questionnaire GHQ 30 General Health Questionnaire GHQ 380 1996 GHQ 80 6 kailis Bul RI 3 1996 2004 GHQ 80
258. lt 10 lt 05 p lt 01 4 I 2 5 WEI 1 ores 2 223 195 25 33 9 8 9 16 60 195 1 1
259. ociation with coronary artery disease and different atherogenic risk factors J Intern Med 256 308 315 2004 70 10 12 PRR ASE 1 2 V
260. se is non bearing weight and does not contain eccentric contractions differences of exercise mode may not affect extracellular HSP72 during exercise In addition our data suggests that eHSP72 may constantly release into the systemic circulation during exercise since eHSP72 concentrations were elevated after race regardless of exercise time Conclusion Endurance cycling exercise increases serum HSP70 in humans 2 Effect of saddle height on oxygen consumption and EMG of lower limb muscles during submaximal cycling on a free roller in cyclists Shinichiro Murade Akthiro Sakamoto Ryo Kakigi Shizuo Katamoto Graduate School of Health and Sports Science Juntendo University Department of Human System Science Tokyo Institute of Technology Introduction Oxygen consumption VO during pedaling exercise on a cycle ergometer has been shown to increase when the saddle height is low or high as compared to the optimal height Nordeen Snyder 1977 However this change has not been confirmed using an actual road bicycle although the kinetics and kinematics of pedaling may differ between cycle ergometer and actual bicycle Therefore this study aimed to investigate the effect of saddle height on VO using an actual road bicycle Methods Fourteen male competitive cyclists 18 25 yr performed 4 min submaximal pedaling using their own road bicycles on a free roller with a selected gear to produce the speed of 31km h at 60 and 90 rpm 120
261. tein 70 HSP70 and anti HSP70 antibodies in the serum of normal individuals Immnol Invest 27 367 377 1998 9 Suzuki K Peake J Nosaka K Okutsu M Abbiss CR Surriano R Bishop D Quod MJ Lee H Martin DT Laursen PB Changes in markers of muscle damage inflammation and HSP70 after an Ironman triathlon race Eur J Appl Physiol 98 525 534 2006 10 Walsh RC Koukoulas I Garnham A Moseley PL Hargreaves M Febbraio MA Exercise increases serum Hsp72 in humans Cell Stress Chaperones 6 386 398 2001 46 6 12 2 EIRE PRR 2 2 q H 5
262. ved rise in VO and HR with higher saddle heights Further EMG analysis as well as mechanical analysis is warranted to uncover the exact mechanisms for the different cardiorespiratory responses between cycle ergometry and actual road bicycle and among saddle heights Reference Nordeen Snyder K The effect of bicycle seat height variation upon oxygen consumption and lower limb kinematics Med Sci Sports 9 2 113 117 1977 3 Aerobic work capacity in Japanese middle aged recreational cyclists Takashi Nakagata Shinichiro Murade Yoshihiko Ishihara Shizuo Katamoto Hisashi Naito Graduate School of Health and Sports Science Juntendo University Introduction Recently the recreational cycling becomes increasingly popular to prevent to lifestyle related disease such as diabetes and improve physical fitness in Japan Cycling is one of the representative non impact type exercise and many people can cycle over prolonged duration irrespective of age and sex However the available data of the aerobic work capacity in Japanese recreational cyclists are only few Therefore we aimed to clarify the aerobic work capacity of Japanese middle aged recreational cyclists Methods Subjects were thirty three healthy Japanese recreational cyclists aged 18 63 years old 29 males and 4 females They usually enjoyed cycling 2 3 days week over 120 240 km week Age and physical characteristics of male and female subjects were 42 8 11 1 and 38 0 10 3
263. y cycling of 2 3 days week over 120 240km in middle aged men might stimulate their cardiorespiratory functions and contribute to improving their aerobic work capacity to higher level Reference 1 Exercise and Physical Activity Reference for Health Promotion 2006 EPAR2006 J Epidemiol 17 5 177 2007 2 Takeshima N et al Maximal oxygen uptake and lactate threshold in middle aged and older runners with special reference to aging Jpn J Phys Fit Sports 38 5 197 207 1989 10 4 The effects of the differences of cycling time on energy dynamics and biochemical markers of heart damage for Japanese recreational cyclists Hayao Ozaki Shinichiro Murade Ryo Kakigi Takashi Nakagata Toshinori Yoshihara Shizuo Katamoto Hisashi Naito Juntendo University Introduction Prolonged cycling and running impact energy dynamics and cardiac function Costill 1970 Neumayr et al 2005 However the effects of the differences of cycling time on energy dynamics and biochemical markers of heart damage have not yet been explored Therefore the aim of this study was to investigate them for Japanese recreational cyclists Methods A total of 28 recreational cyclists aged 18 63 years participated in the same local enduro and were divided into 3 groups by the race time within 1 hour group 1H n 7 1 2 hour group 2H n 14 more than 4 hour group 4H n 7 Venous blood samples were obtained from an actecubital vein before the start of the race Pre

Download Pdf Manuals

image

Related Search

Related Contents

Teclado de comando MAP - Bosch Security Systems  FSH-ELISA - DIAsource Immunoassays  hoMARd… - Ateliers Art terre  Gardena 3500/4  K:\BAL\ED-Motor\442585_es_02 BAL ED_EK Motor.fm  

Copyright © All rights reserved.
Failed to retrieve file