Home

CO2-H2O 接触界面における CO2 ハイドレート生成速度モデリング

image

Contents

1. 3 2 2 DRED C amp T Voronov 3 3 RITE 3 4 Fig 3 8 X1mm X 5mm 9 Fig 3 8 44 3 Heatflux iW gs le Fig 3
2. yi 1 2 E WE SWA 259800 A ABE AIL FORTRAN 4 f 1
3. 14 1 2 1 2 1 1970 Fig 1 9 2006 90 Crude oil Natural gas 99 6 96 4 Fig 1 9 2006 1 9
4. CCS ec CO E SAT CO Fig 1 4 CO HH 7 2003 Fig 1 5 EU 5 H TT 2721 CO E CO2 ict Statoil
5. H20 Malegaonkar et al 2 2 9 1 dn r 9 1 I 1 1 1 Pun DS 2 2 K k dn dt 3 Ap m2 fp HzO Pa fea mol Pa m2 kr molPa m2 ka mol Pa Ds I 100 KEO
6. CO CCS XT 1 1 2 CCS CCS OPE He BA TH CO2 rk TE 1 3 gt J AB thk HT v7 lt EL 2 SO Hig 1 4 3 CO2
7. 1995 CH Ohgaki CO CH4 et al CO0z CH4 CH4 CHa CH CO CO Ohgaki Aya Shindo
8. 2006 1 11 1 12 1 13 2 1 2 2 2 3 2 4 2 5 3 1 3 2 3 3 3 4 3 5 3 6 3 7 3 8 3 9 3 10 4 1 4 2 4 3 4 4 Mullin CO H20 KI CO CH4 CO2 ZE Micro DSC 3 16MPa 274 15K 75 3 16MPa 274 15K
9. 4 1 1 2 oT OT pT E E Q 4 1 Ot 7 Ox Oz Oz CO2 HzO CO 4 2 9C_19 pee a p 4 2 Ot rox Oz Oz 49 TT 4 2 2 Navier Stokes COs Navier Stokes 4 3 4 4 4 5 Du 1 5 u DV us 4 3 Dt p Ox r Dw 1 DY wt Di pur 8 4 4 10 Ot 7 Ox Oz HSMAC Navier Stokes 4 6 1 8 19 or pT T T A
10. Table 1 1 1 15 Structute I T m Lattice Description Body Centered Diamond S eage 0 0 2 Mae 6 o o UU Tease 0 8 0 _Ucage 0 0 1 IT II 5 12 12 8S cage 16 5 5JE 01823192 W 6 4 16 L cage 8 24 cage Ns Ns Na 5 67 HzO 1 3 2 CO 1810 Sir Humphry Davy 9C Davy Faraday L Cl
11. 4 5 h lt lt E c 4 6 h gt 47 4 8 10 4 9 20 4 10 30 4 11 40 4 12 50 4 13 60 4 14 70 4 15 80 4 16 90 PR 4 17 100 224 10 DE 20 1 h 1 vi 1 1 4 18 D 30 1 D 1 D 1 D h 4 19 4 20 4 21 4 22 4 23 4 24 4 25 4 26 90 4 27 100 224 4 28 5 1 5 2 at HF HE OE HF FE HP
12. 86 21 1
13. 0 1sec HATS No ie Restart Data ce m oos Navier Stokes HSMAC Fig 4 7 4 4 6 VY CIE 274 15K 0 013 0 012 0 011 0 01 0 009 0 008 m gt 0 007 0 006 0 005 0 004 0 003 0 002 0 001 0 005 X m Fig 4 8 59 T K 1 13E 03 1 06E 03 9 80E 04 9 05E 04 8 29E 04 7 54E 04 6 79E 04 6 03E 04 5 28E 04 4 52E 04 3 77E 04 3 02E 04 2 26E 04 1 51E 04 7 54E 05 0 01 10 0 013 0 012 0 011 0 01 0 009 0 008 m gt 0 007 0 006 0 005 0 004 0 003 0 002
14. 31 N xs M us BT 2 31 x 2 31 32 H pT Ru 1 38 L 2 33 ORG T 2 32 2 33 2 34 CHD ENS ul PT x RT In x 2 33 2 34 k 0 S RT 8 1 a Ot _ xH _ OP ES vH 2 35 2 37 0 2 38 3318 51v 34 9 34 2 35 2 36 2 37 oln x Vy v RT
15. RITE 1 5 CO 1 100m 100m LL EDA ty LH FR lt J gt Z 1 100 m Fig 1 5 1 5 900 t CO CO2 CO
16. CO mb 11 808 CO Injection well Ejection well Sea level N and H O 1000m 500m E Fig 1 8 1 8 CO 13 CO KI RIC 2 185 1880 t CO0s Fig 1 8
17. 1 2 3 CO0z 1 11 CO CO T CO V 1 141 CO Fig 1 10 3
18. 5 JE m3 100 fi t CO 12 1000m amp b CO2 CO CO A COs 1 1 3 CO CO
19. Pe F COM 23 G Q G S G 0 Iu Q wh S hy wu Q S ie 2 23 Q U n ut Q nh U 2 23 H2O NDGA Z Fig 2 5 MM MM LOIRE H20 2 24 25
20. Q uy RT 2 24 Q Dg R iy RT In 1 x 2 25 31 gu xr P gt FC H20 2 26 2 27 5 us U u RT In x 2 26 5 wy U uw RT In 1 x 2 21 Xs Fig OS 8907 AG 2 28 ac 6 0 e s o U RT In J 4 RT In 18 2 28 2 28 xs 106 100 x AG RT In 2 29 Xs x F kRT Im 2 30 Xs 32 Pressure Pa XS XI XH XU XCH4 Mole fraction Fig 2 5 CH4 H20 xj zz P H Lw
21. CO2 C0 knee LEAL CHERS L moro CH4 CH CH4 D 250 C NS 49 1 NF Fig 1 7 1 7 ARRAY Ze IB 1995 San Juan Basin Allison Unit G CO2 CBM Coalbed Methane Alberta Research Council Alberta COs CBM 1 500 CH I
22. 2 5 Moving Ship CO 2 f CO2 2 Moving Ship CO CO2 11 SIE Fig 1 7 CO 1 7 CO CO TIRA CH
23. CO 3 CO HI 6 CO2 Moving Ship FAT COs Tig 1 6 CO RITE Moving Ship CO i EHR CO 100km 1 000 2 500m
24. CO0z 5 1 ii i i 2 HzO 5 HzO 3 3 16MPa 278 15K
25. Fig 1 3 1250 BRNO eet CH 1150 1100 1050 0 5990 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 BES x CHAO iM C 1990 1400 1350 AT RRF PFCs 1300 FCs COMB HFCs PFCs SFs 1995018 SAREE PIORUMRERT Fig 1 3 1 4 2002 1 4 FELT 2005
26. MH21 70 Boe 1 11 15 1 12 Z
27. CO0z COs Tanker Fig 1 10 CO2 1 14 16 1 3 1 3 1 1 15 3 Hig 1 11 3 THig 1 12 Fig 1 13
28. D n 5410 Fig 4 5 MS dX he 55 Reaction Interface C7 i hs ii h gt ae Hig 4 6 MS dz j dX he dz j he Reaction Interface dz j l Fig46 h gt aL vix costas Oz 56 4 4 4 UAt lt l Cr min Ax Az 4 4 5 FEC 2 S ED Cr 4 57 197 Fig 4 7 E HSMAC
29. UNFCCC 1 3 192 188 UNECCC 1997 2004 2005 163 2008 2012 5 1990 6 HH
30. COs COs HzO CO 20 X Fig 2 3 Diffusion from hydrate film Jb CO hydrate film Film growth Diffusion to water Fig 2 3 25 2 3 CO CO Demurov et al 2 4 2 m2 Pa s 4 m2 Pa 27 LPa 6 mm COZ 2 7
31. HzO CO COs Hz0 0 mit Bi Micro ies X X X nal 0 Fig 4 4 54 7 1 Wall Surface Wall Surface 1 7 0 Fig 4 4 1 HzO gz h
32. CO2 10 Thermal power plant 1 000 2 500m Storage tank of CO2 Loading Ree Transportation CO Carrier COz Shift COz Disperser Fig 1 6 Moving Ship 1 8 D COs lt Q CO REE 100 kW ERIX 400 t Es CO 12 fi t T TOM 12 70 COs 85
33. 6 1 kp AE k k exp f 0 22 6 1 82 1 1 1 2 1 3 1 4 1 5 1 6 1 7 1 8 1 9 1 10 1 11 1 12 1 13 1 14 http www meti go jp http www ipcc ch WI PE efir FOR H 3 CO 2006 Hb http www kantei go jp jp singi ondanka index html ZR pl gt WI HE ERD CO http www rite or jp Japanese project tityu tityu html CO HAE Ba BET http www rite or jp Japanese project kaiyo index html http www kanso co jp kankyo_j k_kenkyu c
34. Cio 2 3 2 4 dn k A C C mh 9 4 C Cog Hv y C 9 5 dn poc C C 2 5 molm2 23 Concentration Adsorption C Driving force for diffusion amp Ara RR TU TUER REIHE NABARI TARA RARI E Ci C Driving force for reaction Stagnant film lt x Crystal solution interface Fig 2 1 Mullin 2 4 2 5 2 6 A C G dt r 2 6 CO CO 24 2 2 COs Hig 2 2 COs HzO CO gas CO hydrate film Reaction interface CO saturated water C sat 7 gt Concentration Fig 2 2
35. 20 40 60 80 Time hour Fig 3 2 37 8 3 Micro DSC 2 572 5 Fig 3 2 Pressure Indicator CO Tank Micro DSC Reaction Cell Fig 3 3 CO 48mm AZ 20mm VEX 32mm 10mm 9mm 7mm VEX 11mm 3nm ULVAC DA 20D 38 RE Tokyo Sokkei Kenkyujo Co Ltd DATALOGGER TDS 601 4 Micro DSC VI SETARAM 3 39 Fig 3 4 CO Ze CA Fig 3 5 40 Fig 3 6 41 Introduction of vessels Water cir
36. hi or or bdo Qvi 4 9 2 2 d Ti ha PiCi l Pinin 4 10 2 2 4 d T AX A RR a o a o 4 11 i AX PiaCia PiCi Table 4 3 Table 4 8 4 2 4 8 4 9 1 14 4 10 g 9 81 m s CO 7 1 47 07 H 8 00E 07 Pa Q 77 0 kJ mol 0 015 mol mol COs HzO Wilke Chang 2 5 58 4 4 4 4 1 COs HzO 4 4 2 274 15K 3 16MPa CO CO
37. THig 4 1 HAER CH SALA FE CO DN CO hvdrate heating film H O Fig 4 1 COs HzO CO CO HzO COs Table 4 1 48 Table 4 1 CO Navier Stokes HzO 4 2 4 2 1 H20 H20 COs COs
38. 22 AE RORIS CE CV ZR Ap 2 1 2 Noyes et al 1987 1 16 dn 2 ck T d n q q 2 3 ka mol m 2 s C RORE mol mol mol mol Mullin et al 2 3 Englezos et al 3 Fig 2 1 G k L C
39. COs HzO COs 2 076768 2009 1 peice eae ema dat AN RENE o us UNE Ee 112 ARRITE LUTO COS ks 1 1 3 1 2 1 2 1 _ 1 2 2 1 2 3 CO02 1 3 A Ri 1 3 1 1 3 2 C02z 1 8 8 C02 THY cS nd 2 CO0z eT We TT unicuasdeu n Ue 2 1 2 FN 2 2 00 sse 2 3 COs _ Sa Yasa s 2 4 1 CO2 Bless FOEBK 2 4 2 D H20
40. 05 kp Ot h t A f ES fj 2 7 Mb CO2 Crmol mol H Pa f HC 2 8 26 2 4 CO 2 4 1 C0z CO 2 2 5 krm s E Cog mol mol 9 k A C C 2 9 2 4 2 COs H20 Dw m2 s Cx mol mol pvc au TAGS sy aee 2 az EU 2 10 HzO
41. 2 5 oru c ED RRR oe oS REN F s asr oe 48 Aq SPEM 55 5 aveo mui 48 EHE RIS 49 BOWTIE hu 49 qoo OE eats 50 AOD E EM 50 X e hub a a a IEA 51 54 NORMEN o c ME 54 Xo DM SUM es e etse de cM 54 4 AAA rg t 57 dt eet atus e ela cd da 57 vb tee 59 5 80 89 Avec 83 n 86 1 1 1 2 1 3 1 4 1 5 1 6 1 7 1 8 1 9 1 10 CO2 CO2 T Moving Ship
42. 1mol 1mol hy mo Pe Z 2 19 G Q Q hus Q 2 19 4 pm H 0 2 20 21 us U S 2 20 Hw U Ju S 9 21 u M S amp wS V um U wp 30 2 20 2 21 1x uy U 1x uL S 2 20 hys U x hy y 5 2 21 Q 22 G S G U h us S uj U ha U eo
43. Hydrate Former ak Kr Qo c Xe H2S co c CsHe O Cs He iso Ca Ho 7A n CaHio Cavities Hydrates LL 52 5 H30 su ELLE 5 e y 7 H20 6s ZZ y SH Hydrates Fig 1 11 1h 15 17 e 1 15 a S 512 DM 51262 DL 51264 Fig 1 12 d S 7r 7 435663 e U 51268 Fig 1 13 1 15 1 3 2 CO I 1 1 2nm 5 12 12 S cage 2 5 12 6 2 14 M cage 6 S cage 0 51 nm M cage 0 58nm CO 8 D cage COs CO COz 5 75 HO Table 1 1
44. CHS 1 10 1 2 2 HELA
45. CO CO2 6000m CO CH CHa CO CHa CH Xiaochun COz CO COs 20 1 4 COs Clarke et al 1 161 2 HzO
46. 8 43E 02 H O 1 00E 03 0 56 4 21 03 CO2 9 10 02 0 58 2 08E 03 8 89E 03 10 2 4 72E 02 2 22 03 1 40 8 90E 02 Fig 4 3 HO CO0z h CO2 hvdrate Reaction Interface l h Fig 4 3 4 8 4 6 4 8 COs H20 n COzCOs 4 Fv CO0s HszO COs H CO HzO 4 8 52 4 9 4 10 4 11 4 7
47. P C Pressure Pa Cr Cco2 Mole fraction Fig 2 4 CO2 HzO 29 2 5 1 Sean et al 2 6 Sean I 2 20 F 2 17 1mol 18 G 9 G s G U 218 Pp Fig 2 5 QR Imo GUS
48. HzO Davidson 1930 Hammerschmidt X 19 1960 Makogon Makogon Kvenvolden
49. L 9 88 2 38 Po RT 28 v v KP B 2 39 eq 2 39 KX b X EE 25 Xeq Xeq vy VE P 2 40 xnl v v AP XR 5 z 2 41 Fig 2 5 MM 35 3 TE EJ 3 1 CO HoO CO0z COz Micro DSC 3 2 Tkg CO CO2 COs
50. CO Wilke Chang I2 5 M pegs Dy 74x10 OM T aga 2 11 NV 2 26 218 g mol HzO Va 34cm3 mol CO Ny 0 4199 log 273 15 2 2057 m Pas 2 12 COs 27 k C C 2004 HC C Dy om Cr ky f k C h t D CEN ne Soe C 2 13 2 14 CFD 2 3 ke kp 28 2 5 3 14 15 C on kf k Ch D A t t l D l Cs 2 15 kp H k A t m h t 0 0 16 at Z 2 16
51. a T Wout ag V 2j z 6 4 2 3 AR COs CO 4 7 1 T T rje n I J 4 7 Ot 7 Ox Oz Oz 50 4 9 Fig 4 2 HzO 112 0mg 20 3 80mm 3 38mm 08 Fig 4 2 51 Table 4 2 Table 4 2 4 1 4 2 4 3 wees 4 4 xxxxx 4 5 kg m W m K J g K 1 00E 02 2 00E 02
52. HzO L H Fig 3 1 2 1X106m3 CO CO2 1010m3 Micro DSC 0 001C Fig 3 2 293K 0 05K min 8 0 05K min 293K 36 Temparature K Pressure Pa 300 290 270 Ceg Cco Mole fraction Fig 3 1 CO HO
53. 0 001 0 005 Fig 4 9 T K 1 13E 03 1 06E 03 9 80E 04 9 05E 04 8 29E 04 7 54E 04 6 79E 04 6 03E 04 5 28E 04 4 52E 04 3 77E 04 3 02E 04 2 26E 04 1 51E 04 7 54E 05 0 01 X m 20 60 0 013 0 012 0 011 0 01 0 009 0 008 m gt 0 007 0 006 0 005 0 004 0 003 0 002 0 001 0 005 Fig4 10 T K 1 13E 03 1 06E 03 9 80E 04 9 05E 04 8 29E 04 7 54E 04 6 79E 04 6 03E 04 5 28E 04 4 52E 04 3 77E 04 3 02E 04 2 26E 04 1 51E 04 7 54E 05 0 01 X m 30 61 m gt 0 013 0 012 0 011 0 01 0 009 0 008 0 007 0 006 0 005 0 004 0 003 0 002 0 001 0 005 X m T K 1 13E 03 1 06E 03 9 80E 04 9 05E 04 8 29E 04 7 54E 04 6 79E 04 6 03E 04 5 28 04 4 52 04 3 77E 04 3 02E 04 2 26E 04 1 51E 04 7 54E 05 0 01 Fig 4 11 40 PR 62 0 013 0 012 0 011 0 01 0 009 0 008 m gt 0 007 0 006 0 005 0 004 0 003 0 002 0 001 0 005 Fig 4 12 ili 63 T K 1 13E 03 1 06E 03 9 80E 04 9 05E 04 8 29E 04 7 54E 04 6 79E 04 6 03E 04 5 28E 04 4 52E 04 3 77E 04 3 02E 04 2 26E 04 1 51E 04 7 54E 05 0 01 50 0 013 0 012 0 011 0 01 0 009 0 008 gt 0 007 0 006 0 005 0
54. 004 0 003 0 002 0 001 0 005 Fig 4 13 4 64 T K 1 13E 03 1 06E 03 9 80E 04 9 05E 04 8 29E 04 7 54E 04 6 79E 04 6 03E 04 5 28E 04 4 52E 04 3 77E 04 3 02E 04 2 26E 04 1 51E 04 7 54E 05 0 01 E 60 224 0 013 0 012 0 011 0 01 0 009 0 008 gt 0 007 0 006 0 005 0 004 0 003 0 002 0 001 0 005 Fig 4 14 4 65 T K 1 13E 03 1 06E 03 9 80E 04 9 05E 04 8 29E 04 7 54E 04 6 79E 04 6 03E 04 5 28E 04 4 52E 04 3 77E 04 3 02E 04 2 26E 04 1 51E 04 7 54E 05 0 01 E 70 0 013 0 012 0 011 0 01 0 009 0 008 m gt 0 007 0 006 0 005 0 004 0 003 0 002 0 001 0 005 Fig 4 15 66 T K 1 13E 03 1 06E 03 9 80E 04 9 05E 04 8 29E 04 7 54E 04 6 79E 04 6 03E 04 5 28E 04 4 52E 04 3 77E 04 3 02E 04 2 26E 04 1 51E 04 7 54E 05 0 01 80 0 013 0 012 0 011 0 01 0 009 0 008 m gt 0 007 0 006 0 005 0 004 0 003 0 002 0 001 0 005 Fig 4 16 67 T K 1 13E 03 1 06E 03 9 80E 04 9 05E 04 8 29E 04 7 54E 04 6 79E 04 6 03E 04 5 28E 04 4 52E 04 3 77E 04 3 02E 04 2 26E 04 1 51E 04 7 54E 05 0 01 90 0 013 0 012 0 011 0 01 0 009 0 008 m gt 0 007 0 006 0 005 0 00
55. 1 1 70 ttC CO2 ppm 37 Os 0 ERI 2 310 m M 100 290 0 1800 1850 1950 2000 Fig 1 1 CO2 1 1 IPCC 3 Fig 1 2 Departures in temperatures from the 1961 1990 average 1000 NORTHERN HEMISPHERE Data from thermometers red and from tree rings corals ice cores and nistorical records blue 1200 1400 1600 1800 2000 Year Fig 1 2 1 2 1992 1994
56. 8 Fig 3 9 20 15 10 0 x x T 0 5 10 Time sec Fig 3 9 3 16MPa 274 15K 45 20 X x x c x 215 x SE 10 X 5 4 0 n T T T T 0 10 20 30 40 Time sec Fig 3 10 75 3 16 274 15 46 50 3 7 BE 2 2 PATHE CERO EC 47 4 2 CO 3 4 1 COs CO COs HzO CO0 2 CO
57. E S d 0 008 ce aie 0 007 0 001 0 002 0 003 0 004 0 005 0 006 0 007 X m Fig 4 20 30 71 1E 7 m s sJ ey Z ET SSS 2 v 4 lt gt Q 0 002 0 003 0 004 0 005 0 006 0 007 0 001 X m Fig 4 21 40 72 1E 7 m s WM 7 RAE 1 IS v NU A Ui US 2 sss tee Z if ME 6 EZAMA Z moll Se eee Zf N lt O co e e o 0 002 0 003 0 004 0 005 0 006 0 007 0 001 X m Fig 4 22 50 73 1E 7 m s tb 7 AL Are P 7 T U rm an NN N Oo co lt e e o o e AM 0 002 0 003 0 004 0 005 0 006 0 007 0 001 X m Fig 4 23 60 74 1E 7 m s t 2 7 Z Z gt 1 x tt LA 0 008 STPPP eee 0 007 S NAV 0 002 0 003 0 004 0 005 0 006 0 007 0 001 X m Fi
58. HROBR HE DRO HR BR GROB 40 50 0 60 A82 70 A82 80 KHK 1 1 4 1 4 2 4 3 1 1 1 1 1 1 1972 Only One Earth G8 1 CO2 X Fig
59. 28 116 4 321 328 Jo CO JH 2007 1 15 E Dendy Sloan Carolyn A Koh Clathrate Hydrates of Natural Gases Third Edition 2007 CRC Press 1 16 Matthew A Clarke Bishnoi Determination of intrinsic kinetics of CO2 gas hydrate 2 1 2 2 formation using in situ particle size analysis Chemical Engineering Science 60 2005 695 709 Englezos P Kalogerakis N Dholabhai P D Bishnoi P R Kinetics of Gas Hydrate Formation from Mixtures of Methane and Ethane Chemical Engineering Science 42 11 1987 2659 2666 Malegaonkar M B Dholabhai PD Bishnoi P R Kinetics of carbon dioxide and methane hydrate formation Canadian Journal of Chemical Engineering 75 6 1997 1090 1099 83 2 3 2 4 2 5 2 6 3 1 3 2 3 3 3 4 4 1 4 2 4 3 4 4 4 5 4 6 4 7 4 8 Mullin J W Crystallization Third Edition 1993 Butterworth Heinmann Oxford U K A Demurov R Radhakrishnan B L Trout Computations of diffusivities in ice and CO clathrate hydrates via molecular dynamics and Monte Carlo simulations Journal of Chemical Phys
60. 4 0 003 0 002 0 001 T K 1 13E 03 1 06E 03 9 80E 04 9 05E 04 8 29E 04 7 54E 04 6 79E 04 6 03E 04 5 28E 04 4 52E 04 3 77E 04 3 02E 04 2 26E 04 1 51E 04 7 54E 05 0 005 0 01 X m Fig 4 17 100 Fig 4 8 Hig 4 17 68 1E 7 m s PP Z Z PP Z gt gt 1 FF RT tt wy x 0 002 0 003 0 004 0 005 0 006 0 007 d US N meee PPP ITA A NN deg SM 2277 d SN af d 0 001 CN lt X m Fig 4 18 10 HR 69 1E 7 m s 0 007 0 005 0 006 0 004 X m 5 PLL PA AEE EE IEEE TF RE r PE n AAA s T MEG w 0 01 0 009 0 008 0 007 70 0 003 0 002 Fig 4 19 20 0 001 Y m 7 CC W SNH 0 012 R N SNI 1E 7 m s FN 0 011 N 0 01 N B NN s 0 009 E
61. COs 2 V CO CO COs 21 2 CO0z 2 1 2 1 1 Englezos et al 2 1 WV Bas CHEF L Ze 3
62. Time sec Fig 4 28 ka p 79 5 3 4 ky 35 ORE ko Ocailt Qet 7 1 Te S Q0 9 0 5 1 ky 2 040 2 x107 m s kpn 7 5 0 5 x10 2 m Pa s Fig 5 1 Fig 5 2 3 00 05 e 2 00E 05 5 c 4 g calculation 1 00 05 X experiment 0 00E 00 0 4 8 Time sec Fig 5 1 80 Heat flux W 3 00 05 2 00 05 ___ x calculation 1 00 05 X experiment 0 00E 00 75 80 85 90 95 100 Time sec Fig 5 2 81 JEZA 6
63. atanigas co jp info branch gas images thermal conductivity pdf Haynes International Inc Hastelloy C 276 alloy information http www haynesintl com HASTELLOYC276Alloy HASTELLOYC276AlloyPP h tm 2005 R Byron Bird Warren E Stewart Edwin Lightfoot Transport Phenomena Second Edition 2007 Wiley p 302 ELSA th CO2 http www iwatanigas co jp info_branch gas images viscosity pdf 84 4 9 John J Carrol Alan E Mather The System Carbon Dioxide Water and the Krichevsky Kasarnovsky Equation Journal of Solution Chemistry 21 7 1992 607 621 4 10 Shahrzad Hashemi Arturo Sebastien Bergeron Phillip Servio Prediction of methane and carbon dioxide solubility in water in the presence of hydrate Fluid Phase Equilibria 246 2006 131 136 85 CO
64. culation Measure Regulation thermo elements thermo elements Fig 3 7 Micro DSC 3 1 42 3 CON 4 1 30 CO2 30 CO2 Micro DSC 43 3 5 CO02s 2
65. g 4 24 70 75 i 0 012 ii 1E 7 m s ft n 0 011 Mi 77 TS ULL E mss 0 008 Z my 0 007 0 001 0 002 0 003 0 004 0 005 0 006 0 007 X m Fig 4 25 80 76 inia SAM tt 1E 7 m s TALL LEY i ITT 1172215 Ce NNN 7 Ty we Se ZF f ho an A iv N q O co e e 0 002 0 003 0 004 0 005 0 006 0 007 0 001 X m ig 4 26 90 77 1E 7 m s s oe a NETT CRSA ZZ IL Lg bite 17 vig ott Wy 0 0 00 0 008 0 007 0 002 0 003 0 004 0 005 0 006 0 007 0 001 X m yh 100 Z Fig 4 27 y Fig 4 18 Fig 4 27 Hig 4 28 xe 78 2 00 05 Heat flux W 1 00E 05 0 00E 00 T T T T 0 20 40 60 80 100
66. ics 116 2 2002 702 709 R Warren Stewart Edwin Lightfoot Transport Phenomena Second Edition 2007 Wiley p 530 Wu Yang Sean Toru Sato Akihiro Yamazaki Fumio Kiyono CFD and Experimental Study on Methane Hydrate Dissociation Part General Cases AIChE Journal 53 8 2007 2148 2160 Micro DSC VI SETARAM Inc 2003 p 29 Voronov Vitaly P Gorodetskii Evgeny E Safonov Sergey S Thermodynamic properties of methane hydrate in quartz powder Journal Of Physical Chemistry B 111 39 2007 11486 11496 M SEDED DONA TUM 1 6 http wwwr rte or jp Japanese h16seikahoukoku 16program 16tka pdf http www iwatanigas co jp info_branch gas images R744_thermodynamic pdf 2008 Arvind Gupta Timothy J Kneafsey George J Moridus Yongkoo Seol Michael ZOW TH Kowalsky E D Sloan Jr Composite Thermal Conductivity in a Large Heterogeneous Porous Methane Hydrate Sample Journal of Physical Chemistry B 110 2006 16384 16392 COs http www iw
67. o2_0 html mE re uli TB WE PERU CO 82 4 2003 197 207 LI 0002 81 3 2002 216 225 3 2006 35 46 AeA 2007 COy 1 29 4 2008 24

Download Pdf Manuals

image

Related Search

Related Contents

  Wireless Digital PIR Sensor    取扱説明書はこちら  GE 12000 SXC  ボトムフロータイプ (冷風下部吹き出し)  FMR      Bushnell 18-0833 Binoculars User Manual  

Copyright © All rights reserved.
Failed to retrieve file