Home
SURFEX OFF-LINE User's Guide - On this page you will find various
Contents
1. 2 Ou 2 2 53 5 2 2 5 3 22 5 22 35 22 2 2 3 2 2 32 3 22 2 2 3 3 2 2 3 2 2 5 2 2 3 3 2 32 35 2 2 F_VEG F_VEG F_VEG F_VEG F_VEG F_VEG F_VEG IF_VEG F_VEG F_VEG F_LAI F_LAI F_LAI F_LAI F_LAI F_LAI F_LAI F_LAI F_LAI F_LAI F_LAI F_LAI F_ZO F_ZO F_ZO 20 F_ZO F_ZO F_ZO F_ZO F_ZO F_ZO 5 1 5 2 5 3 5 4 5 5 5 6 5 7 5 8 5 9 5 10 5 11 5 12 5 1 5 2 5 3 5 4 5 5 5 6 5 7 5 8 5 9 5 10 5 11 5 12 5 1 5 2 5 3 5 4 5 5 5 6 5 7 5 8 5 9 5 10 F_ZO 5 11 IF_ZO 5 12 IF_EMIS 5 1 F_EMIS 5 2 F_EMIS 5 3 F_EMIS 5 4 F_EMIS 5 5 F_EMIS 5 6 F_EMIS 5 7 F_EMIS 5 8 F_EMIS 5 9 F_EMIS 5 10 IF_EMIS 5 11 F_EMIS 5 12 F_VEG 6 1 F_VEG 6 2 IF_VEG 6 3 F_VEG 6 4 F_VEG 6 5 F_VEG 6 6 F_VEG 6 7 F_VEG 6 8 F_VEG 6 9 F_VEG 6 10 F_VEG 6 11 F_VEG 6 12 F_LAI 6 1 F_LAI 6 2 F_LAI 6 3 XUNIF_VEG XUNIF_VEG XUNIF_VEG XUNIF_VEG XUNIF_VEG XUNIF_VEG XUNIF_VEG XUNIF_VEG XUNIF_VEG XUNIF_VEG XUNIF_VEG XUNIF_VEG XUNIF_LAI XUNIF_LAI XUNIF_LAI XUNIF_LAI XUNIF_LAI XUNIF_LAI XUNIF_LAI XUNIF_LAI XUNIF_LAI
2. NAM DATA FLAKE 5 5 5 XUNIF EMIS ROAD XUNIF_EMIS _ROOF XUNIF_EMIS_WALL NAM DATA TEB _ _ _ XUNIF F2I XU XU XU XU XU XU XU XU XU XU XU XU XU XU XU XU XU XU XU NIF GAMMA NIF GC NIF_GMES NIF H B1 NIF H ICE NIF_H_INDUSTRIES NIF_H_SNOW NIF H TRAFFIC NIF H TREE NIF HC ROAD NIF_HC_ROOF NIF HC WALL NIF_LAI NIF_LAIMIN NIF_LE_INDUSTRIES NIF_LE_TRAFFIC NIF NATURE NIF_RE25 NIF_RGL 5 5 5 5 _ NAM PREP FLAKE _ NAM DATAISBA
3. Pd F_LAI F_LAI F_LAI F_LAI F_LAI F_LAI F_LAI F_LAI F_LAI F_ZO F_ZO F_ZO F_ZO F_ZO F_ZO F_ZO F_ZO F_ZO F_ZO F_ZO 70 6 4 6 5 6 6 6 7 6 8 6 9 6 10 6 11 6 12 6 1 6 2 6 3 6 4 6 5 6 6 6 7 6 8 6 9 6 10 6 11 6 12 F_EMIS 6 1 F_EMIS 6 2 F_EMIS 6 3 F_EMIS 6 4 F_EMIS 6 5 F_EMIS 6 6 F_EMIS 6 7 F_EMIS 6 8 F_EMIS 6 9 F_EMIS 6 10 F_EMIS 6 11 F_EMIS 6 12 F_VEG F_VEG F_VEG F_VEG F_VEG F_VEG F_VEG F_VEG F_VEG F_VEG F_VEG F_VEG F_LAI F_LAI F_LAI F_LAI F_LAI F_LAI F_LAI F_LAI F_LAI F_LAI F_LAI F_LAI F_ZO F_ZO F_ZO F_ZO F_ZO F_ZO F 20 20 20 20 20 7 1 7 2 7 3 7 4 7 5 7 6 7 7 7 8 7 9 7 10 7 11 7 12 7 1 7 2 7 3 7 4 7 5 7 6 7 7 7 8 7 9 7 10 7 11 7 12 7 1 7 2 7 3 7 4 7 5 7 6 7 7 7 8 7 9 7 10 7 11 ne XUNIF_LAI XUNIF_LAI XUNIF_LAI XUNIF_LAI XUNIF_LAI XUNIF_LAI XUNIF_LAI XUNIF_LAI XUNIF_LAI XUNIF_ZO XUNIF_ZO XUNIF_ZO XUNIF_ZO XUNIF_ZO XUNIF_ZO XUNIF_ZO
4. NAM PGD SCHEMES 46 NAM_PREP_SEAFLUX 61 LSEDIMENTS NAM_PREP_FLAKE 63 NANLELAKEn aise ea 69 NAM PREP ISBA 64 LSST_DATA NAM_PREP_SEAFLX 61 NAM_DATA_SEAFLUX 44 NAM PREP TEB 65 LSURF_BUDGET NAM_PREP_WATFLX 62 NAM DIAG SURFn 74 CTYPE_TG LSURF_BUDGETC NAM PREP ISBA ei 64 75 CTYPE_TS LSURF_MISC_BUDGET NAM PREP TEB 65 75 CTYPE_WG NAM DIAG TEBn 75 NAM PREP ISBA 64 LSURF VARS CTYPE WS NAM DIAG SURFn 74 NAM PREP TRB u u222 2 2 ne 65 LTEB CANOPY CWATER NAM PREP TEB 65 NAM PGD SCHEMES 46 LWAT SBL NAM_PREP_SEAFLUX 62 I IDXRATIO N NAM INIFILE CARTESIAN 49 N2M NAMIANIFILE_CONF_PROJ 48 NAM DIAG SURFn 74 IDYRATIO NDAY NAM INIFILE CARTESIAN 49 NAM_PREP FLAKE 63 NAMIANIFILE_CONF_PROJ 48 NAM PREPISBA 64 IXOR NAM_PREP_SEAFLX
5. 39 CFTYP VEGTYPE _ 5 38 CFTYP WALL O HOR 42 CFTYP WATER NAMSEBRAG 5 eed xir EET 37 CFTYP WRMAX CF _ 40 CFTYP Z0 39 CFTYP Z0 0 Z0H _ 40 CFTYP Z0 TOWN 42 CGRID NAM PGD GRID lat 47 CHORT NAM SGHILISB n ceci taedet 70 CISBA NAMISBA ans uses eed ep hab onte 55 CKSAT NAMSGHISBAn 70 CLAMBERT NAMEIGN uses 51 CNATURE NAM PGD SCHEMES 46 COROGTYPE NAM 25 sans Late kan 54 CPHOTO NAMIISBA 55 CRAIN NAMSGHISBAn 70 CROUGH aa een alba 70 CRUNOFF 70 CSCOND aa ee En 70 CSEA NAM_PGD_SCHEMES 46 CSEA_ALB NAMSEAFLUXn 68 CSEA FLUX NAMSEAFLUXn 68 CSNOW NAM PREP ISBA SNOW 64 CSNOWRES NAM cene atrae enm TA qe nh 70 CSOILFRZ NAM era 70 CTOPREG NAM SCH ISBAT en AE 70 CTOWN
6. 65 NAM PREP WATEFLUX 62 NAMSEAFLUXNn 68 NAMSGHISBAn 70 NAM SURF ATM 67 NAMSURFDST 70 tr Mrs dinars esse nl 54 ale ah dol Sat 52 NAMGEM tae ernste reed rag ele etta 52 NAMRGRI een 52 C CALBEDO INACMCISB ATIS ia Re 70 CCIDRY N AMETS BATS ER oed 70 CCH_DRY_DEP NAM CH ISBAn u sa ee 72 NAM CHSEAFLUXn 71 98 NAM CHETEBn ec ceases en NAM_CH WATFLUXNn CCHEM SURF FILE CCPSURF 15 CDIFSFCOND AMLISBAn CDU CDU CDUMMY_PG N M N M N CDUMMY_PG N M N M CDUMMY_PG 5 CEMIS PGD AREA 8 MY PGD AREA AM DUMMY PGD en ann MY PGD ATYPE D AM DUMMY PCD vs onc aan D AM DUMMY PGD _ _ _ _ CEMIS_PGD_ATYPE 8 CEMIS_PGD_COMMENT CEMIS PGD FILE NAM CH EMIS PGD NAM_CH_EMIS PGD CEMIS_PGD_FILETYPE CEMIS_PGD_NAME CEMISPARAM CFILE CFILE_FLAKE
7. 5 5 _ _ 5 5 XUNIF_ROOTFRAC XUNIF_RSMIN XUNIF_RUNOFFB XUNIF_SAND XUNIF_SEA XUNIF_SEFOLD XUNIF_T_B1 NAM PREP FLAKE XUNIF T BOT NAM PREP FLAKE XUNIF_T_BS NAM_DATA_FLAKE XUNIF_T_ICE NAM PREP FLAKE _ _ onanan NAM DATA XUNIF_T_MNW NAM_PREP_FLAKE XUNIF T SNOW NAM_PREP FLAKE XUNIF TC ROAD XUNIF TC ROOF XUNIF TC WALL XUNIF TOWN XUNIF VEG XUNIF VEGTYPE XUNIF_WALL_O_HOR XUNIF_WATER XUNIF_WATER_DEPTH NAM_DATA_FLAKE XUNIF_WATER_FETCH NAM_DATA_FLAKE XUNIF_WRMAX_CF XUNIF ZO XUNIF Z0 O Z0H XUNIF Z0 TOWN XUNIF ZS XUSURIC XUSURICL XUSURID XVCHRNK XVMODMIN XVZ0CM XWS ROAD _ _ NAM DATA TEB NAM DATA TEB _ 5 NAM DATA TEB _ _ _ NAM DATA TEB 278
8. 99 99 DRE none none 23 minimal stomatal resistance coefficient used in the computation of RSMIN coefficient for maximum interception water storage capacity maximum solar radiation available for photosynthesis vegetation thermal inertia coefficient ratio of surface roughness lengths vegetation near infra red albedo vegetation visible albedo vegetation UV albedo il near infra red albedo il visible albedo il UV albedo Isba A gs parameters depending on number of patches only rea mesophyll conductance character LEN charac DIRECT BINLLF BINLLV ASCLLV NIF_BSLAI ratio d biomass d lai NAM BSLAI TYP BSLAI DIRECT BINLLF BINLLV ASCLLV NIF_LAIMIN minimum LAI NAM_LAIMIN TYP_LAIMIN cha DIRECT BINLLF BINLLV ASCLLV NIF_SEFOLD rea e folding time for senescence CFNAM SEFOLD charac CFTYP SEFOLD character LEN 6 DIRECT BINLLF BINLLV ASCLLV XUNIF_GC real cuticular conductance CFNAM GC character LEN 28 CFTYP GC character LEN 6 DIRECT BINLLF BINLLV ASCLLV XUNIF_DMAX real maximum air saturation deficit CFNAM DMAX character LEN 28 CFTYP DMAX character LEN 6 DIRECT BINLLF BINLLV ASCLLV
9. 61 NAM INIFILE CARTESIAN 49 NAM PREPSURF ATM 60 NAMIANIFILE_CONF_PROJ 48 65 IXSIZE NAM_PREP_WATFLX 62 NAM INIFILE CARTESIAN 49 NDAY_SST NAMIANIFILE_CONF_PROJ 48 NAM DATA SEAFLUX 44 IYOR NDGLG NAM INIFILE CARTESIAN 49 NAMDIM exer de SAN 52 NAM INIFILE CONF PROJ 48 NDUMMY PGD NBR IYSIZE _ 56 NAM INIFILE CARTESIAN 49 NEMIS PGD NBR NAMIANIFILE_CONF_PROJ 48 EMIS 57 NEMIS_PGD_TIME L NAM CH_EMIS PGD 57 LALDTHRES NGROUND LAYER NAM SURF ATM 67 labia 55 LALDZOH NIMAX NAM SURF ATM 67 _ 49 LCH_BIO_FLUX NAM CONF_PROJ GRID 48 NAM CH ISBAn 72 NJMAX LCH_SURF_EMIS _ 49 NAM CHSURFn 71 NAM CONF PROJ GRID 48 LCOEF NLAT 5 74 _ 50 LFLK_SBL NLON NAM_PREP_SEAFLUX
10. 50 XLONMIN XRM COVER XRPK NA NA XSST_UNIF XTG DEEP XTG ROOT XTLR XTIME XTIME XTS R XTS R RF ec N N SE N gt 222222 gp 2 Lo 2 4 2 gt OZ Lo Z XTS WALL NAM LONLMAT REG M COVER M CONF PROJ NAM PREP SEAFLX NAM PREP ISBA NAM PREP ISBA XTG_S M PREP ISBA XTLBLD M PREP TEB M PREP TEB M PREP FLAKE M PREP ISBA M PREP SEAFLX M PREP SURF ATM M PREP TEB M PREP WATFLX M DATA SEAFLUX M PREP TEB M PREP TEB NAM PREP TEB XTS_WATER_UNIF XU XU XU XU XU XU XU XU XU XU XU XU XU XU XU NIF_BLD NIF_BSLAI NIF_CLAY NAM PREP FLAKE NAM PREP WATFLX XTSTEP NAM DATA TEB NIF_BLD_HEIGHT NAM_DATA_TEB NAM_DATA ISBA NIF_CE_NITRO NAM_DATA ISBA NITRO NAM_DATA ISBA NIF ALB ROAD NAM DATA TEB NIF ALB ROOF NAM DATA TEB NIF_ALB_WALL NAM_DATA_TEB NIF_ALBNIR_SOIL NAM_DATA ISBA NIF_ALBNIR_VEG NAM DATA ISBA NIF_ALBUV_SOIL NAM_DATA ISBA NIF_ALBUV_VEG NAM_DATA ISBA NIF_ALBVIS_SOIL NAM_DATA ISBA NIF_ALBVIS_VEG NAM_DATA ISBA XU XU XU XU XU XU XU XU NIF_CNA_NITRO NIF_COVER NIF_CV NIF D ROAD NIF_D_ROOF NIF_D_WALL NIF_DEPTH_BS NIF_DG XUNIF_DMAX XUNIF_EMIS NAM COVER 2222222222222 5
11. 63 _ 50 LFRAC NMONTH NAM_DIAG_SURF_ATMn 73 NAM_PREP_FLAKE 63 LISBA CANOPY NAM PREPISBA 64 NAM PREP ISBA 64 NAM PREPSEAFLX 61 LPGD NAM PREPSURF ATM 60 5 75 NAM PREP TEB 65 LPRECIP NAM PREP WATFLX 62 NAM_SEAFLUXn 68 NMONTH SST LPWEBB NAM DATA SEAFLUX 44 NAM_SEAFLUXn 68 LPWG NAM ISBA xem an Au NE 55 NAMSEAFLUXn 68 NPOINTS LRAD_BUDGET NAM IGN arena ar Dee en Dude 51 NAMDIAG SURFn 74 NRGRI LRM_TOWN NAMRGHRIL 5 ee nase 52 NAM COVER auri or era sn 53 NTIME LSEA SBL _ 5 39 NAM DATA SEAFLUX 44 NYEAR 63 NAM PREP ISBA ter 64 NAM PREP SEAFLX 61 NAM_PREP_SURF_ATM 60 65 NAM_PREP_WATELX 62 NYEARSST NAM_DATA SEAFLUX 44 NZSFILTER NAMEZS ex I nen le een 54 R RLOCE
12. 10 XUNIF ZO 0 ZOH 0 3 XUNIF ALBNIR VEG 0 1 ALBVIS VEG 0 0425 ALBUV VEG 0 3 XUNIF ALBNIR SOIL 0 1 XUNIF_ALBVIS_SOIL 0 06 XUNIF_ALBUV_SOIL 0 003 XUNIF_GMES 0 0000003 XUNIF RE25 0 06 BSLAI 0 3 XUNIF_LAIMIN 5184000 XUNIF_SEFOLD 0 00025 GC 0 1 XUNIF_DMAX 0 3 XUNIF_F2I 20 XUNIF_H_TREE 3 79 XUNIF_CE_NITRO 9 84 XUNIF_CF_NITRO 1 3 XUNIF_CNA_NITRO 40 XUNIF_RSMIN 0 GAMMA 0 2 XUNIF WRMAX CF 100 XUNIF_RGL 0 00002 XUNIF_CV 10 XUNIF ZO 0 ZOH 0 3 XUNIF ALBNIR VEG 0 1 XUNIF ALBVIS VEG 0 0425 XUNIF_ALBUV_VEG 0 3 XUNIF_ALBNIR_SOIL 0 1 XUNIF_ALBVIS_SOIL 0 06 XUNIF_ALBUV_SOIL 0 003 XUNIF_GMES 0 0000003 XUNIF RE25 0 06 BSLAI 0 3 XUNIF_LAIMIN 5184000 XUNIF_SEFOLD 0 00025 XUNIF GC 0 1 XUNIF_DMAX 0 3 XUNIF_F2I 20 XUNIF_H_TREE 3 79 XUNIF_CE_NITRO 9 84 XUNIF_CF_NITRO 1 3 XUNIF_CNA_NITRO 40 XUNIF_RSMIN 0 GAMMA 0 2 XUNIF_WRMAX_CF 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 9 9 0 0 0 0425 0 3 0 1 0 06 0 003 0 0000003 0 06 0 3 5184000 0 00025 0 0 1 06 003 0000003 06 13 5184000 0 00025 0 1 0 3 20 3 79 9 84 1 3
13. 41 CFTYP H INDUSTRIES NAM_DATA TEB 43 CFTYP H TRAFFIC NAM_DATA TEB 43 CFTYP H TREE NAMDATAISBA 41 CFTYP HC ROAD 42 CFTYP HC ROOF NAM_DATA TEB 42 CFTYP HC WALL _ _ 43 CFTYP LAI 39 CFTYP LAIMIN NAM DATAISBA 41 CFTYP LE INDUSTRIES NAM_DATA TEB 43 CFTYP LE TRAFFIC NAMDATATEB 43 CFTYP NATURE NAM FRAC s ONET en Bann 37 CFTYP_RE25 5 41 CFTYP_RGL NAMDATAISBA 40 CFTYP ROOTFRAC NAMDATAISBA 39 CFTYP_RSMIN NAMDATAISBA 40 CFTYP SEA 37 CFTYP SEFOLD _ 41 CFTYP SST NAM DATA SEAFLUX 44 CFTYP TC ROAD _ _ 42 CFTYP TC ROOF _ _ 42 CFTYP TC WALL _ _ 43 CFTYP TOWN NAM FERAQ ud eps 37 CFTYP VEG
14. NAM SURF ATM NAM SURF ATM NAM SURF ATM NAM SURF ATM NAM SURF ATM NAM SURF ATM NAM PREP TEB XWS ROOF XX YCOVER NAM COVBR eer RERUM ee YDEP FLAKE YDEP NAMDATAFLAKE YEXT NAMDATAFLAKE YEXT FLAKE err eka TH_BS TH_BSFILETYPE COEF_WATER COEF_WATERFILETYPE YFILETYPE YT_B YT_B YWAT YWAT YY YZS N N N 2929 2 E tu 2 5 NAMES neta YINIFILE YSAND AMDATAFLAKE SFILETYPE R DEPTH MDATA FLAKE R DEPTHFILETYPE _ FLAKE R FETCH _ _ R_FETCHFILETYPE M_DATAFLAKE gt 4 gt gt gt gt S Q 2
15. 57 NAM_CHISBAn 72 NAM_CHSEAFLUXNn 71 8 71 NAM a near een 72 NAM_CH WATFLUXNn 71 NAM CONF_PROJ 48 NAM CONF PROJ GRID 48 NAM COVER RE RR A AR PI 53 NAMDATAFLAKE 45 NAMDATAISBA 38 NAM_DATA SEAFLUX 44 NAM DATA TEB 42 NAMDIAGISBAn 75 NAMDIAG SURF_ATMn 73 NAMDIAG SURFn 74 _ 75 NAM DUMMY PGD ee 56 NAM FELAKET u en 69 NAM FRAC nenne 37 td pee euros 51 NAMINIFILE CARTESIAN 49 NAM INIFILE CONF PROJ 48 une mei 55 Like o ry nn 70 NAMLONLAT_REG 50 47 NAM PGD SCHEMES 46 NAM PGDFILE 36 63 64 NAM PREP ISBA 64 61 60
16. 10 _ 11 _ 12 F_VEG 1 1 F_VEG 1 2 F_VEG 1 3 F_VEG 1 4 F_VEG 1 5 F_VEG 1 6 F_VEG 1 7 F_VEG 1 8 F_VEG 1 9 1 10 F_VEG 1 11 1 12 F_LAI 1 1 F_LAI 1 2 F_LAI 1 3 F_LAI 1 4 F_LAI 1 5 F_LAI 1 6 F_LAI 1 7 F_LAI 1 8 F_LAI 1 9 F_LAI 1 10 F_LAI 1 11 F_LAI 1 12 _70 1 1 _70 1 2 _70 1 3 _70 1 4 F_Z0 1 5 F_Z0 1 6 F_Z0 1 7 20 1 8 F Z0 1 9 F_Z0 1 10 F_Z0 1 11 F_Z0 1 12 F_EMIS 1 1 F_EMIS 1 2 F_EMIS 1 3 F_EMIS 1 4 F_EMIS 1 5 F_EMIS 1 6 F_EMIS 1 7 F_EMIS 1 8 F_EMIS 1 9 F_EMIS 1 10 F_EMIS 1 11 F_EMIS 1 12 P4 P4 P4 22 2 2 3 222 22 22 3 2 2 2 gt gt gt HR FR gt gt gt a amp NAM_DATA_TEB XUNIF XUNIF XUNIF XUNIF XUNIF XUNIF XUNIF XUNIF XUNIF XUNIF XUNIF XUNIF XUNIF XUNIF XUNI
17. XUNIF T BOT water temperature at the bottom of the lake K XUNIF_T_B1 temperature at the bottom of the upper layer of sediments XUNIF H SNOW snow layer thickness m XUNIF_H_ICE ice layer thickness m 1 thickness of the upper level of the active sediments m CFILE FLAKE name of the file used to define the surface temperature The use of a file or prescribed value XTS_WATER_UNIF has priority on the data in CFILE_FLAKE file CTYPE type of the CFILE_FLAKE file if the latter is provided CTYPE must then be given The following values are currently usable MESONH the file type is a MESONH file GRIB the file type is a GRIB file coming from any of these models 1 ECMWF european center forecast model 2 ARPEGE Arpege french forecast model 3 ALADIN Aladin french forecast local model 4 MOCAGE Mocage french research chemistry model NYEAR year of surface UTC time It is used only if no atmospheric file or no surface file is given in those the date can be read NMONTH month of surface UTC time It is used only if no atmospheric file or no surface file is given in those the date can be read NDAY day of surface UTC time It is used only if no atmospheric file or no surface file is given in those the date can be read XTIME time from midnight of surface UTC time It is used only if no atmospheric file or no surface file is given in t
18. BINLLF ASCLLV BINLLF ASCLLV BINLLF ASCLLV BINLLF ASCLLV BINLLF ASCLLV BINLLF ASCLLV BINLLF ASCLLV BINLLF ASCLLV BINLLF ASCLLV BINLLF ASCLLV BINLLF ASCLLV BINLLF ASCLLV fraction of buildings buildings height wall surf hor surf roughness length for momentum f emissivity roof layers heat capacity roof layers thermal conductivity roof layers depth road albedo road emissivity road layers heat capacity road layers thermal conductivity road layers depth J K m NIF_ALB_WALL NAM_ALB_WALL TYP ALB WALL NIF EMIS WALL NAM EMIS WALL TYP_EMIS_WALL NIF_HC_WALL CFNAM HC WALL CFTYP HC WALL XUNIF TC WALL CFNAM TC WALL CFTYP_TC_WALL XUNIF_D_WALL CFNAM D WALL CFTYP D WALL XUNIF H TRAFFIC CFNAM H TRAFFIC CFTYP H TRAFFIC XUNIF LE TRAFFIC CFNAM_LE_TRAFFIC CFTYP_LE_TRAFFIC XUNIF_H_INDUSTRIES CFNAM H INDUSTRIES CFTYP H INDUSTRIES XUNIF_LE_INDUSTRIES CFNAM LE INDUSTRIES CFTYP LE INDUSTRIES real character character real character character real character character real character character real character character real character LEN 28 character LEN 6 real character LEN 28 character LE
19. DATA TEB Pj P P E P3 P P ED 2 3 2222222222222 242222 22222 2222 2222824 0 N N N N N N N N N N N 0 N N N N N N N N N F_RGL F_CV Z0 0 ZOH ALBNIR VEG F_ALBVIS_VEG F_ALBUV_VEG F_ALBNIR_SOIL F_ALBVIS_SOIL F_ALBUV_SOIL F_GMES F_RE25 F_BSLAI F_LAIMIN F_SEFOLD F_GC F_DMAX 2 H TREE CE NITRO CF NITRO F_CNA_NITRO F_RSMIN F_GAMMA F_WRMAX_CF F_RGL F_CV 20 0 20 F_ALBNIR_VEG F_ALBVIS_VEG F_ALBUV_VEG F_ALBNIR_SOIL F_ALBVIS_SOIL F_ALBUV_SOIL F_GMES F_RE25 F_BSLAI F_LAIMIN F_SEFOLD F_GC F_DMAX F_F21 F_H_TREE F_CE_NITRO F_CF_NITRO F_CNA_NITRO ROOF_LAYER F_ALB_ROOF F_EMIS_ROOF F_HC_ROOF 1 F_HC_ROOF 2 F_HC_ROOF 3 F TC ROOF 1 TC ROOF 2 F TC ROOF 3 F D ROOF 1 F_D_ROOF 2 F_D_ROOF 3 ROAD_LAYER F_ALB_ROAD F_EMIS_ROAD F HC ROAD 1 ROAD 2 ROAD 3 F TC ROAD 1 F_TC_ROAD 2 ROAD 3 F_D_ROAD 1 1 7 0 1 7 7 7 7 7 7 7 7 7 7 7 5 7 0 0 7 0 7 2 3 7 9 1 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10
20. F_RSMIN F_GAMMA F_WRMAX_CF F_RGL F_CV Z0 0 ZOH ALBNIR VEG F_ALBVIS_VEG F_ALBUV_VEG F_ALBNIR_SOIL F_ALBVIS_SOIL F_ALBUV_SOIL F_GMES UNIF_RE25 F_BSLAI F_LAIMIN F_SEFOLD F_GC F_DMAX 21 H TREE NITRO F_CF_NITRO F_CNA_NITRO F_RSMIN F_GAMMA F_WRMAX_CF F_RGL F_CV Z0 0 ZOH ALBNIR VEG ALBVIS VEG F ALBUV VEG ALBNIR SOIL ALBVIS SOIL ALBUV SOIL F_GMES UNIF_RE25 F_BSLAI F_LAIMIN F_SEFOLD F_GC F_DMAX F F2I F H TREE CE NITRO F CF NITRO F_CNA_NITRO F_RSMIN F_GAMMA F_WRMAX_CF 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 8 8 1 60 XUNIF_DG 11 2 1 60 XUNIF_DG 11 3 0 01 XUNIF_DG 12 1 1 60 XUNIF_DG 12 2 1 60 XUNIF_DG 12 3 999 XUNIF ROOTFRAC 9 1 999 XUNIF_ROOTFRAC 9 2 999 XUNIF_ROOTFRAC 9 3 999 ROOTFRAC 10 1 999 XUNIF_ROOTFRAC 10 2 999 XUNIF_ROOTFRAC 10 3 999 XUNIF_ROOTFRAC 11 1 999 XUNIF_ROOTFRAC 11 2 999 XUNIF_ROOTFRAC 11 3 999 XUNIF ROOTFRAC 12 1 999 XUNIF_ROOTFRAC 12 2 999 XUNIF_ROOTFRAC 12 3 40 RSMIN 0 GAMMA 0 2 XUNIF WRMAX CF 100 XUNIF 0 00002
21. __ e op o dn ST T gt T T ST T e arabe mer TG2 war war O was wan wer was w amp BESA 485 ANDA TAGS RESPESTR RESPBSTR BIOMASSTRZ BIOMASSTRZ LAST BIOMASSTR LAST TSNOW VECT WSNOW VEGI RSNOW VEGI HSNOW VEGI ASNOW VEG WSNOW VEGZ RSNOW VEG2 HSNOW VEG2 WSNOW VEG3 RSNOW VEG3 HSNOW VEGS ISBA CAN Un ISBA CANZIM SEA CAN On ISBA CAN En _ISBA CAN Pn D N gt N eee e e NI uy OOP op oy oy Sy 0 0 N NINI N N N DOP N N bo N N N Oooo uv 5 y 13 1 2 SEAFLUX Ja KI or tomperatare deep soil temperature third layer temperature m3 m3 kgCO2 m2 s Img m 7s DM le E ES m s surface liquid volumetric water content root Tiquid volumetric water content deep liquid volumetric water content Surface frozen volumetric water content root frozen volumetric water content third layer frozen volumetric water content water retained by the foliage serodynamica resistance total dry above ground structural
22. 43 AM_ALBNIR SOIL NAM DATA ISBA 40 AM_ALBNIR_VEG NAM DATA ISBA nee 40 AM_ALBUV_SOIL NAM DATA ISBA 40 AM ALBUV VEG NAM DATA anis 40 AM ALBVIS SOIL NAM DATA ISBA keeper DERE 40 AM ALBVIS VEG NAMDATAISBA 40 AM BLD NAM DATA TEB 42 AM BLD HEIGHT NAM DATATEB 42 AM BSLAI NAM DATAISBA 41 AM CE NITRO NAMDATAISBA 41 AM CF NITRO 41 AM CNA NITRO 9 41 AM CV NAMDATAISBA 40 AM D ROAD NAMDATATEB 42 AM D ROOF _ _ 42 AM D WALL NAMDATATEB 43 AM_DG NAM DATAISBA nassen dent 39 AM DMAX NAM DATAISBA 41 AM EMIS NAMDATAISBA 39 AM EMIS ROAD NAM DATA TEB 42 AM EMIS ROOF NAM DATA TEB 42 AM EMIS WALL NAM DATA TEB 43 AM F2I NAM DATAISBA 41 AM GAMMA 40 AM GC NAM DATASISBA encre 41 AM
23. CFNAM_D_WALL 1 CFNAM_D_WALL 2 CFNAM_D_WALL 3 CFNAM_ZO_TOWN CFNAM_BLD CFNAM_BLD_HEIGHT CFNAM_WALL_O_HOR CFNAM_H_TRAFFIC CFNAM_LE_TRAFFIC CFNAM_H_INDUSTRY CFNAM_LE_INDUSTRY LECOCLIMAP SEA WATER CFNAM NATURE TOWN CGRID LONLAT XLONMIN XLONMAX XLATMIN XLATMAX NLON NLAT h CNATURE ISBA CSEA SEAFLX CTOWN TEB D_WALL DAT D_WALL DAT D_WALL DAT Z0_TOWN DAT BLD DAT 2810 HEIGHT DAT WALL 0 HOR DAT TRAFFIC DAT LE TRAFFIC DAT H INDUSTRY DAT LE_INDUSTRY DAT SEA DAT WATER DAT NATURE DAT TOWN DAT REG 2 2 WATFLX XUNIF_ZS 0 XUNIF_CLAY XUNIF_SAND XUNIF_RUNOFFB CISBA CPHOTO NPATCH NGROUND_LAYER ooo 3 1 NON CPREPFILE PREP 2004 NMONTH 10 NDAY 25 XTIME 21600 XSST_UNIF 285 NYEAR 2004 NMONTH 10 NDAY 25 XTIME 21600 NYEAR 2004 NMONTH 10 NDAY 25 XTIME 21600 XTI_ROAD 285 XTI_BLD 285 XTS_ROAD 285 XTS_RODF 285 XTS_WALL 285 XTS_WATER_UNIF 285 CFTYP_D_WALL 1 CFTYP_D_WALL 2 CFTYP_D_WALL 3 CFTYP_ZO_TOWN CFTYP_BLD CFTYP_BLD_HEIGHT CFTYP_WALL_O_HOR CFTYP_H_TRAFFIC CFTYP_LE_TRAFFIC CFTYP_H_INDUSTRY CFTYP_LE_INDUSTRY CFTYP_SEA CFTYP_WATER CFTYP_NATURE CFTYP_TOWN gt ASCLLV ASCLLV ASCL
24. NIF_F2I rea critical normilized soil water content for stress NIF F2I rea parameterization NAM F2I character LEN 28 TYP_F2I cha er LEN 6 DIRECT BINLLF BINLLV ASCLLV NIF H TREE rea height of trees NAM H TREE cha er LEN 28 TYP_H_TREE cha er LEN 6 DIRECT BINLLF BINLLV ASCLLV NIF_RE25 rea Ecosystem respiration parameter CFNAM RE25 character LEN 28 CFTYP RE25 character LEN 6 DIRECT BINLLF BINLLV ASCLLV XUNIF_CE_NITRO real leaf aera ratio sensivity to nitrogen CFNAM CE NITRO character LEN 28 CFTYP CE NITRO character LEN 6 DIRECT BINLLF BINLLV ASCLLV XUNIF_CF_NITRO real lethal minimum value of leaf area ratio CFNAM CF NITRO character LEN 28 CFTYP CF NITRO character LEN 6 DIRECT BINLLF BINLLV ASCLLV XUNIF CNA NITRO real nitrogen concentration of active biomass CFNAM CNA NITRO character LEN 28 CFTYP CNA NITRO character LEN 6 DIRECT BINLLF BINLLV ASCLLV Over urban areas all surface parameters have to be specified by the user in namelist NAM_DATA_TEB Fortran name Fortran type defaut XUNIF BLD CFNAM BLD CFTYP BLD XUNIF_BLD_HEIGHT CFNAM BLD HEIGHT CFTYP BLD HEIGHT XUNIF WALL O HOR CFNAM_WALL_O_HOR CFTYP_WALL_O HOR XUNIF Z0 TOWN 20 TOWN 70 NIF ALB
25. NTIME number of SST input files CFNAM SST SST data file name CFTYP SST type of SST data file DIRECT BINLLF BINLLV ASCLLV NYEAR_SST year of SST data file NMONTH SST month of SST data file NDAY SST day of SST data file XTIME_SST time in seconds of SST data file How to initialise SST from external files an example with 3 SST input files lat lon value type amp NAM_DATA_SEAFLUX NTIME 3 LSST DATA CFNAM_SST 1 sst_1 dat CFTYP SST 1 ASCLLV CFNAM SST 2 sst_2 dat CFTYP SST 2 ASCLLV CFNAM SST 3 sst_3 dat CFTYP SST 3 ASCLLV NYEAR SST 1 1985 NMONTH SST 1 12 NDAY_SST 1 31 XTIME_SST 1 64800 NYEAR SST 2 1986 NMONTH SST 2 1 NDAY_SST 2 1 XTIME_SST 2 43200 NYEAR SST 3 1986 NMONTH SST 3 1 NDAY_SST 3 2 SST 3 0 FLAKE scheme Over lakes if one wants to use Flake scheme some parameters have to be specified by the user in the namelist NAM_DATA_FLAKE XUNIF_WATER_DEPTH real 1 Lake depth YWATER_DEPTH character LEN 28 filename YWATER_DEPTHFILETYPE character LEN 6 DIRECT BINLLF BINLLV ASCLLV XUNIF_WATER_FETCH real wind fetch YWATER_FETCH character LEN 28 filename YWATER_FETCHFILETYPE character LEN 6 DIRECT BINLLF none BINLLV ASCLLV temperature at the outer edge XUNIF T BS real of the thermally active layer of the bottom sediments YT_BS haracter LEN
26. NYEAR 1986 NMONTH 1 NDAY 1 XTIME 0 amp NAM_PREP_TEB XTI_ROAD 285 XTI_BLD 285 XTS_ROAD 285 XTS_RODF 285 XTS_WALL 285 XWS ROAD O XWS RODF O NYEAR 1986 NMONTH 1 NDAY 1 XTIME 0 amp NAM_PREP_ISBA XHUG_SURF 1 XHUG_ROOT 1 XHUG_DEEP 1 XTG 276 16 XTG_ROOT 276 16 XTG DEEP 276 16 NYEAR 1986 NMONTH 1 NDAY 1 XTIME 0 amp NAM_PREP_ISBA_SNOW CSNOW 3 L amp NAM_IO_OFFLINE YPROGRAM ASCII YCOUPLING amp NAM_DIAG_SURFn LSURF_BUDGET F N2M 0 LCOEF F LSURF VARS amp NAM_DIAG_SURF_ATMn LFRAC F amp NAM_DIAG_ISBAn LPGD F LSURF_EVAP_BUDGET F LSURF MISC BUDGET LSURF_BUDGETC F amp NAM_DIAG_TEBn LSURF_MISC_BUDGET F amp NAM_SGH_ISBAn CRUNOFF amp NAM_ISBAn CROUGH ZOAD CSCOND NP89 CALBEDO DRY CC1DRY DEF CSOILFRZ CDIFSFCOND DEF gt CSNOWRES DEF CCPSURF DRY amp NAM_CH_ISBAn CCH_DRY_DEP WES89 amp NAM_SEAFLUXn CSEA ALB TA96 amp NAM_CH_SEAFLUXn amp NAM_CH_WATFLUXn amp NAM_CH_TEBn A 2 3 Surface parameters read from external files CCH_DRY_DEP CCH_DRY_DEP CCH_DRY_DEP WES89 WES89 WES89 The following namelist is valid only for simulation without patches In case of use of patches like for A gs options it should be updated DATA ISBA
27. YY Y coordinate of grid mesh center XDX grid mesh size on the conformal plane in x direction real meters XDY grid mesh size on the conformal plane y direction real meters 8 3 6 Gaussian grids These namelists define the projection in case CGRID GAUSS Namelist NAMDIM Fortran type default value NDGLG none Namelist NAMRGRI Fortran name Fortran type default value Namelist NAMGEM RMUCEN RLOCEN RSTRET NDGLG number of pseudo latitudes NRGRHI number of pseudo longitudes on each pseudo latitude circle starting from the rotated pole RMUCEN sine of the latitude of the rotated pole RLOCEN longitude of the rotated pole radian RSTRET stretching factor must be greater than or equal to 1 8 4 Land cover fractions Namelist NAM COVER This namelist gives the information to compute the surface cover fractions Fortran type default_value XUNIF COVER array of 255 reals 20 and i XUNIF_COVER i 1 YCOVER character LEN 28 YFILETYPE character LEN 6 DIRECT BINLLF BINLLV ASCLLV XRM COVER real gt 0 LRM_TOWN logical XUNIF_COVER specified values for uniform cover fractions For each index i between 1 and 255 XUNIF COVER i is the fraction of the th ecosystem of ecoclimap The same fraction of each ecosystem is set to all points of the grid The sum of all ecosystem fractions must be equal to one NS XUNIF COVER i
28. uniform prescribed value of clay fraction If XUNIF_CLAY is set file YCLAY is not used YCLAY clay fraction data file name If XUNIF CLAY is set file YCLAY is not used YCLAYFILETYPE type of clay data file DIRECT BINLLF BINLLV ASCLLV XUNIF SAND uniform prescribed value of sand fraction If XUNIF SAND is set file YSAND is not used YSAND sand fraction data file name If XUNIF SAND is set file YSAND is not used YSANDFILETYPE type of sand data file DIRECT BINLLF BINLLV ASCLLV XUNIF_RUNOFFB uniform prescribed value of subgrid runoff coefficient 8 7 Namelist to add user s own fields Namelist NAM DUMMY PGD This namelist allows to incorporate into the physiographic file any surface field You can treat up to 999 such fields These fields will be written on all the files you will use later after prognostic fields initialization or during and after run etc Their name the files are DUMMY GRnnn where nnn goes from 001 to 999 During the execution of the programs these fields are stored the XDUMMY _FIELDS first dimension spatial dimension second dimension total number of fields in the module MODD_DUMMY_SURF_FIELD n You must modify the fortran source where you want to use them default_value NDUMMY_PGD_NBR i CDUMMY PGD NAME character LEN 20 CDUMMY PGD FILE character LEN 28 CDUMMY PGD_COMMENT charac
29. 12 patches correspond to separate energy budgets for all vegetation types present in ISBA 3 patches correspond to bare soil types low vegetation trees If CPHOTO equals NON any number of patches between 1 and 12 is possible for the other values of 12 patches are required The order and the signification of each patch is the following bare ground rocks permanent snow deciduous forest conifer forest evergreen broadleaf trees C3 crops C4 crops irrigated crops 10 grassland C3 11 tropical grassland C4 12 garden and parks CISBA type of soil discretization and physics in ISBA 72 1 force restore method with 2 layers for hydrology 8 L force restore method with 3 layers for hydrology DIF diffusion layer with any number of layers CPHOTO type of photosynthesis physics The following options are currently available NON none is used Jarvis formula is used for plant transpiration AGS ISBA AGS without evolving Leaf Area Index LAT ISBA AGS with evolving Leaf Area Index AST ISBA AGS with offensive defensive stress without evolving Leaf Area Index LST ISBA AGS with offensive defensive stress with evolving Leaf Area Index NIT ISBA AGS with nitrogen with evolving Leaf Area Index NGROUND LAYER number of soil layer used in case of diffusion physics in the soil DIF XUNIF CLAY
30. LAI_02 DAT LAT_03 DAT LAT_04 DAT LAI_05 DAT LAI_06 DAT LAI_07 DAT LAI_08 DAT LAI_09 DAT LAI_10 DAT LAI_11 DAT LAI_12 DAT Z0_01 DAT Z0_02 DAT Z0_03 DAT Z0_04 DAT Z0_05 DAT Z0_06 DAT Z0_07 DAT Z0_08 DAT Z0_09 DAT Z0_10 DAT EMIS_01 DAT EMIS_02 DAT EMIS_03 DAT EMIS_O4 DAT EMIS_05 DAT EMIS_06 DAT EMIS_07 DAT EMIS_08 DAT DAT DAT DAT DAT DAT DAT DAT DAT DAT DAT DAT DAT CFTYP_VEGTYPE 1 CFTYP_VEGTYPE 2 CFTYP_VEGTYPE 3 _ 4 _ 5 CFTYP_VEGTYPE 6 CFTYP_VEGTYPE 7 CFTYP_VEGTYPE 8 CFTYP_VEGTYPE 9 CFTYP_VEGTYPE 10 CFTYP_VEGTYPE 11 _ 12 FTYP_VEG 1 1 FTYP_VEG 1 2 FTYP_VEG 1 3 FTYP_VEG 1 4 FTYP_VEG 1 5 FTYP_VEG 1 6 FTYP_VEG 1 7 FTYP_VEG 1 8 FTYP_VEG 1 9 FTYP_LAI 1 1 FTYP_LAI 1 2 FTYP_LAI 1 3 FTYP_LAI 1 4 FTYP_LAI 1 5 FTYP_LAI 1 6 FTYP_LAI 1 7 FTYP_LAI 1 8 FTYP_LAI 1 9 4 _70 1 1 _70 1 2 20 1 3 Z0 1 4 70 1 5 Z0 1 6 70 1 7 Z0 1 8 P 20 1 9 FTYP_Z0 1 10 FTYP_Z0 1 11 20 1 12 4 yy yyy Hi 4 CFTYP_EMIS 1 1 CFTYP_EMIS 1 2 CFTYP_EMIS 1 3 CFTYP_EMIS 1 4 CFTYP_EMIS 1 5 CF
31. european center forecast model 2 ARPEGE Arpege french forecast model 3 ALADIN Aladin french forecast local model 4 MOCAGE Mocage french research chemistry model NYEAR year of surface UTC time It is used only if no atmospheric file or no surface file is given in those the date can be read NMONTH month of surface UTC time It is used only if no atmospheric file or no surface file is given in those the date can be read NDAY day of surface UTC time It is used only if no atmospheric file or no surface file is given in those the date can be read XTIME time from midnight of surface UTC time It is used only if no atmospheric file or no surface file is given in those the date can be read seconds LISBA_CANOPY activates surface boundary multi layer scheme over vegetation Namelist NAM PREP ISBA SNOW This namelist defines the type of snow scheme used in ISBA scheme default value CSNOW string of 3 characters D95 3 L CSNOW type of snow scheme Possible snow schemes are 1 D95 Douville et al 1995 snow scheme 2 3 L Boone and Etchevers 2000 three layers snow scheme 3 EBA Bogatchev and Bazile 2005 Arpege operational snow scheme 9 7 Town scheme TEB Namelist NAM_PREP_TEB This namelist information is used to initialize the TEB urban scheme variables road roof and wall temperature profiles water intercepted by roofs and roads snow building intern
32. 0 24 2 8 3 0 2 0 97 2110000 2800000 2900000 1 51 0 08 0 05 0 05 0 4 0 1 3 0 2 0 97 2110000 2800000 2900000 51 08 05 05 A 1 wooooor gt 0 2 0 97 2110000 2800000 2900000 51 08 05 05 A amp NAM_FRAC amp NAM_PGD_GRID LONLAT REG amp NAM PGD SCHEMES amp NAM_ZS amp NAM_ISBA amp NAM_PREPFILE PREP SURF amp NAM_PREP_SEAFLUX amp NAM_PREP_WATFLUX amp NAM_PREP_TEB F_BLD N N N UNIF_H_TRAFFI N N N P4 P 94 94 LECOCLIMAP F XUNIF_SEA XUNIF_WATER N N F_TOWN F_NATURE X X LONMIN LONMAX LATMIN LATMAX kB X X X X N N CNATURE ISB F_BLD_HEIGHT F_WALL_O_HOR F_LE_TRAFFIC F_H_INDUSTRY F_LE_INDUSTRY 0 CGRID LONLAT REG 2 SEAFLX CTOWN TEB 2 CWATER WATFLX XUNIF_ZS 0 XUNIF_CLAY XUNIF_SAND XUNIF_RUNOFFB CISBA CPHOTO NPATCH NGROUND_LAYER on nono ooo 3 12 NON CPREPFILE PREP NYEAR 2004 NMONTH 10 NDAY 25 XTIME 21600 XSST UNIF 285 NYEAR 2004 NMONTH 10 NDAY 25 XTIME 21600 NMON NDAY XTIM XTI ROAD 285 XTI_ TH 10 25 E 21600 BLD 285 XTS_ROAD 285 XTS_ROOF 285 XTS
33. 11 0 2 11 100 11 0 00002 11 10 11 0 3 11 0 1 11 0 0425 11 0 3 11 0 1 11 0 06 11 0 003 11 0 0000003 11 0 06 11 0 3 11 5184000 11 0 00025 11 0 1 11 0 3 11 20 11 3 79 11 9 84 11 1 3 XUNIF_RGL XUNIF_CV XUNIF ZO 0 ZO XUNIF_ALBNIR_ XUNIF_ALBVIS_ XUNIF_ALBUV_V XUNIF_ALBNIR_ XUNIF_ALBVIS_ XUNIF_ALBUV_S XUNIF_GMES XUNIF_RE25 XUNIF_BSLAI XUNIF_LAIMIN XUNIF_SEFOLD XUNIF_GC XUNIF_DMAX XUNIF_F2I XUNIF_H_TREE XUNIF_CE_NITRO XUNIF_CF_NITRO XUNIF_CNA_NIT XUNIF_RSMIN XUNIF_GAMMA XUNIF_WRMAX XUNIF_RGL XUNIF_CV XUNIF_ZO_O_ XUNIF_ALBN XUNIF_ALBV XUNIF_ALBUV XUNIF_ALBNI XUNIF_ALBV XUNIF_ALBUV XUNIF_GMES XUNIF_RE25 XUNIF_BSLA XUNIF_LAIMI XUNIF_SEFOL XUNIF_GC XUNIF_DMAX XUNIF_F2I XUNIF_H_TRE XUNIF_CE_NI XUNIF_CF_NI XUNIF_CNA_N 9 100 9 0 00002 H 9 10 VEG 9 0 3 VEG 9 0 1 EG 9 0 0425 SOIL 9 0 3 SOIL 9 0 1 OIL 9 0 06 9 0 003 9 0 0000003 9 0 06 9 0 3 9 5184000 9 0 00025 9 0 1 9 0 3 9 20 9 3 79 9 9 84 RO 9 1 3 12 40 12 0 _ 12 0 2 12 100 12 0 00002 ZOH 12 10 12 0 3 S VEG 12 0 1 _VEG 12 0 0425 R_SOIL 12 0 3 S SOIL 12 0 1 _SOIL 12 0 06 12 0 003 12 0 0000003 12 0 06 N 12 0 3 D 12 5184000 12 0 00025 12 0 1 12 0
34. 28 filename YT_BSFILETYPE haracter LEN 6 DIRECT BINLLF BINLLV ASCLLV XUNIF_DEPTH_BS real depth of the sediments layer YDEPTH_BS character LEN 28 filename YDEPTH_BSFILETYPE haracter LEN 6 DIRECT BINLLF BINLLV ASCLLV XUNIF_EXTCOEF_WATER real extinction coefficient of solar radiation in water YEXTCOEF_WATER haracter LEN 28 filename YEXTCOEF_WATERFILETYPE haracter LEN 6 DIRECT BINLLF BINLLV ASCLLV XUNIF xxx uniform prescribed value of parameter xxx If XUNIF_xxx is set file is not used CFNAML xxx data file name associated to parameter xxx If XUNIF xxx is set CFNAM_xxx is not used CFTYP_xxx type of sea data file DIRECT BINLLF BINLLV ASCLLV 8 2 Choice of the surface schemes You must first choose the surface schemes you will use It is not possible once chosen to modify the surface schemes in the later steps PREP running of the schemes DIAG Depending on the schemes you use some additional physiographic fields will be computed if they are needed for the surface scheme chosen For example the ISBA scheme used for vegetation and soil needs the fractions of clay and sand Namelist NAM PGD SCHEMES This namelist defines the four schemes that will be used one for each type of surface sea inland water town vegetation characters TSZO ISBA ISBA character
35. 3 E 12 20 TRO 12 3 79 TRO 12 9 84 ITRO 12 1 3 XUNIF_D_ROAD 2 XUNIF_D_ROAD 3 NWALL_LAYER XUNIF_ALB_WALL XUNIF_EMIS_WALL 0 97 XUNIF_HC_WALL 1 2110000 XUNIF_HC_WALL 2 2800000 XUNIF_HC_WALL 3 2900000 XUNIF_TC_WALL 1 1 51 XUNIF_TC_WALL 2 0 08 XUNIF_TC_WALL 3 0 05 XUNIF_D_WALL 1 0 05 XUNIF_D_WALL 2 XUNIF_D_WALL 3 XUNIF_ZO_TOWN XUNIF_BLD XUNIF_BLD_HEIGHT XUNIF_WALL_O_HOR XUNIF_H_TRAFFIC XUNIF_LE_TRAFFIC XUNIF_H_INDUSTRY XUNIF_LE_INDUSTRY u woo u is 5 ono amp NAM_FRAC LECOCLIMAP F XUNIF_SEA XUNIF_WATER XUNIF_TOWN XUNIF_NATURE ia es x u kB amp NAM_PGD_GRID CGRID LONLAT REG amp NAM_LONLAT_REG XLONMIN XLONMAX XLATMIN XLATMAX NLON NLAT PrOoooo0 amp NAM_PGD_SCHEMES CNATURE gt ISBA CSEA SEAFLX CTOWN TEB gt CWATER WATFLX amp NAM_ZS XUNIF_ZS amp NAM_ISBA XUNIF_CLAY XUNIF SAND 0 37 XUNIF_RUNOFFB 0 5 CISBA 92 1 NIT NPATCH 12 NGROUND_LAYER 113 1 A u amp NAM_PREPFILE CPREPFILE PREP amp NAM_PREP_SURF_ATM NYEAR NMONTH NDAY XTIME 1986 1 1 0 amp NAM PREP SEAFLUX XSST_UNIF 285 NYEAR 1986 NMONTH 1 NDAY 1 XTIME 0 PREP WATFLUX 1 5 WATER UNIF 285
36. CFILE ISBA CFILE SEAFLX CFILE_TEB CFILE TS CFILE WATFLX CFILE WG CFILE_WS CFILETYPE CFLAKE FLUX NAM FLAKEn CFLAKE SNOW NAM_CH_EMIS PGD NAM_CH_EMIS PGD NAM SURE 96 ra NAM PREP SURF ATM _ 5 NAM_PREP_SEAFLX NAM uns om esse NAM_PREP WATELX _ 5 69 37 AM ALB ROAD NAMDATATEB 42 AM ALB ROOF ener en 42 AM_ALB_WALL NAMDATATEB
37. D_ROOF DAT ALB_ROAD DAT EMIS_ROAD DAT HC_ROAD DAT HC_ROAD DAT HC_ROAD DAT TC_ROAD DAT TC_ROAD DAT TC_ROAD DAT D_ROAD DAT D_ROAD DAT D_ROAD DAT ALB_WALL DAT EMIS_WALL DAT HC_WALL DAT HC_WALL DAT HC_WALL DAT TC_WALL DAT TC_WALL DAT TC_WALL DAT CFTYP_EMIS 1 9 CFTYP_EMIS 1 10 CFTYP_EMIS 1 11 CFTYP_EMIS 1 12 FTYP_DG 1 1 FTYP_DG 1 2 FTYP_DG 1 3 ROOTFRAC 1 1 FTYP_ROOTFRAC 1 2 FTYP_ROOTFRAC 1 3 FTYP_RSMIN 1 FTYP_Z0_0_Z0H 1 FTYP_GAMMA 1 FTYP_WRMAX_CF 1 FTYP_RGL 1 FTYP_CV 1 CFTYP_ALBNIR_VEG 1 CFTYP_ALBVIS_VEG 1 CFTYP_ALBUV_VEG 1 CFTYP_ALBNIR_SOIL 1 CFTYP_ALBVIS_SOIL 1 CFTYP_ALBUV_SOIL 1 CFTYP_GMES 1 CFTYP RE25 1 CFTYP_BSLAI 1 CFTYP_LAIMIN 1 CFTYP_SEFOLD 1 CFTYP_GC 1 CFTYP_DMAX 1 F2I 1 CFTYP H TREE 1 CFTYP_CE_NITRO 1 CFTYP_CF_NITRO 1 CFTYP_CNA_NITRO 1 C C C C C C C C C C C C ALB ROOF EMIS ROOF HC ROOF 1 HC ROOF 2 ROOF 3 ROOF 1 ROOF 2 ROOF 3 CFTYP_D_ROOF 1 CFTYP_D_ROOF 2 CFTYP_D_ROOF 3 CFTYP_ALB_ROAD CFTYP_EMIS_ROAD HC ROAD 1 CFTYP HC ROAD 2 CFTYP HC ROAD 3 TC ROAD 1 TC ROAD 2 TC ROAD 3 D ROAD 1 CFTYP_D_ROAD 2 CFTYP_D_ROAD 3 CFTYP_ALB_WALL CFTYP_EMIS_W
38. GRIB file coming from any of these models 1 ECMWF european center forecast model 2 ARPEGE Arpege french forecast model 3 ALADIN Aladin french forecast local model 4 MOCAGE Mocage french research chemistry model NYEAR year of surface UTC time It is used only if no atmospheric file or no surface file is given in those the date can be read NMONTH month of surface UTC time It is used only if no atmospheric file or no surface file is given in those the date can be read NDAY day of surface UTC time It is used only if no atmospheric file or no surface file is given in those the date can be read XTIME time from midnight of surface UTC time It is used only if no atmospheric file or no surface file is given in those the date can be read seconds LTEB_CANOPY activates surface boundary multi layer scheme over town Chapitre 10 How to run the externalized surface physical schemes Here are described the options available during the run of the several surface schemes 10 1 SURF_ATM general options available over all tiles Namelist NAM_SURF_ATM XCISMIN real 6 7 XVMODMIN real LALDTHRES logical LDRAG COEF ARP XEDB XEDC XEDD XEDK XUSURIC XUSURID XUSURICL XVCHRNK real 015 XVZ0CM real 0 OS a oo LALDTHRES flag to set a minimum wind and shear like done in Aladin model XCISMIN minimum wind shear to compute turbulent excha
39. M DATA ISBA ALBNIR VEG M DATA ISBA ALBUV SOIL NAM DATA ISBA z Z gt Z gt Z gt N gt 9 CFTYP ALBUV VEG NAM DATA ISBA CFTYP ALBVIS SOIL NAM DATA ISBA CFTYP ALBVIS VEG NAM DATA ISBA CFTYP BLD NAM DATA TEB CFTYP BLD HEIGHT NAM_DATA TEB 42 CFTYP BSLAI 41 CFTYP CE NITRO NAMDATAISBA 41 CFTYP CF NITRO NAMDATAISBA 41 CFTYP CNA NITRO NAMDATAISBA 41 CFTYP CV NAMDATAISBA 40 CFTYP D ROAD NAM DATA TEB 42 CFTYP D ROOF NAM DATA TEB pata siii REP 42 CFTYP D WALL NAM_DATA TEB 43 CFTYP_DG 39 CFTYP DMAX 41 CFTYP_EMIS 8 39 CFTYP_EMIS_ROAD _ _ 42 CFTYP_EMIS_ROOF NAM_DATA TEB 42 CFTYP EMIS WALL _ _ 43 CFTYP_F2I NAMDATAISBA 41 CFTYP GAMMA NAM DATA ISB on iiiter ev 40 CFTYP GC NAM DATAISBA 41 CFTYP GMES NAMDATAISBA
40. MY MODIF uncomment the lines ARCH XYZ VER_MYSRC MY_MODIF ARCH_XYZ ARCH XYZ VER MYSRC And the suffix MY MODIF will be added to the name of the directory of o and also to the name of the libraries you have edited the Makefile SURFEX mk file do the compilation using the command make 8 4 if you want to modify the source code go to SURFEX EXPORT src and do your modifications Then rebuild executable files by rerunning makefile files The new executable will be automatically be taken into account in SURFEX EXPERIMENT hapex rundir directory copy the executables using In s EXECDIR pgd exe SURFEX_EXPERIMENT hapex rundir In s EXECDIR prep exe SURFEX_EXPERIMENT hapex rundir In s EXECDIR offline exe SURFEX_EXPERIMENT hapex rundir Deuxieme partie Off line guide Chapitre 2 Using the externalized surface in off line mode use of the externalized surface software in off line mode requires the preparation of several types of file especially the input data necessary for the run and the definition of the options specified in the unique namelist The following example explains how to prepare the different files and how to select the run options 2 1 Case study The example is based on the situation of the 25th of October 2004 at 6utc and covers temporal period of 24 hours During this day an unstable weather is observed in France especially in
41. NLON integer NLAT integer XLONMIN minimum longitude covered by the grid i e corresponding to the west border of the domain real decimal degrees XLONMIN must be smaller than XLONMAX but no more than 360 smaller XLONMAX maximum longitude covered by the grid i e corresponding to the east border of the domain real decimal degrees XLONMAX must be larger than XLONMIN but no more than 360 larger XLATMIN minimum latitude covered by the grid i e corresponding to the south border of the domain real decimal degrees XLATMIN must be between 90 and 90 and smaller than XLATMAX XLATMAX maximum longitude covered by the grid i e corresponding to the right border of the domain real decimal degrees XLATMAX must be between 90 and 90 and larger than XLATMIN NLON number of surface points in the longitude direction NLAT number of surface points in the latitude direction 8 3 5 Regular Lambert grids Namelist This namelist defines the projection in case CGRID IGN default_value CLAMBERT Character len 3 1 0 7127 137 Lap 193 NPOINTS integer real real real real CLAMBERT type of Lambert prjection L1 Lambert I L2 Lambert II L3 Lambert III L4 Lambert IV L2E Extended Lambert II L93 Lambert 93 NPOINTS number of grid points defining the grid XX X coordinate of grid mesh center
42. P 53 2 2 2 2 2 2 2 22 333 ut F ZO 3 12 F EMIS 3 1 F_EMIS 3 2 F_EMIS 3 3 F_EMIS 3 4 F_EMIS 3 5 F_EMIS 3 6 F_EMIS 3 7 F_EMIS 3 8 F_EMIS 3 9 F_EMIS 3 10 F_EMIS 3 11 F_EMIS 3 12 F_VEG 4 1 F_VEG 4 2 F_VEG 4 3 F_VEG 4 4 F_VEG 4 5 F_VEG 4 6 F_VEG 4 7 F_VEG 4 8 F_VEG 4 9 F_VEG 4 10 F_VEG 4 11 F_VEG 4 12 F_LAI 4 1 F_LAI 4 2 F_LAI 4 3 F_LAI 4 4 F_LAI 4 5 F_LAI 4 6 F_LAI 4 7 F_LAI 4 8 F_LAI 4 9 F_LAI 4 10 F_LAI 4 11 F_LAI 4 12 F_ZO 4 1 F_ZO 4 2 F_ZO 4 3 F_ZO 4 4 F_ZO 4 5 F_ZO 4 6 F_ZO 4 7 F_ZO 4 8 F_ZO 4 9 F_ZO 4 10 F ZO 4 11 F ZO 4 12 EMIS 4 1 F EMIS 4 2 F EMIS 4 3 F EMIS 4 4 F EMIS 4 5 F EMIS 4 6 F EMIS 4 7 EMIS 4 8 F EMIS 4 9 F EMIS 4 10 EMIS 4 11 F EMIS 4 12 DG 1 1 DG 1 2 DG 1 3 F_DG 2 1 F DG 2 2 F DG 2 3 F DG 3 1 o000000000000o000000000o00o0o0o0000000U0nmnL o00o0o0o0o0o0o0oo0ooooooooocoooooooooooooo P4 P4 Pd 2 2 2 2 23 22 5 5 225 2
43. Pj EEEE 333 Pj P3 P Pj P Pj P bq P 35558 P4 P 32 2 tus 2 2 2 2 2 2 2 Ss 2 tus 2 3 2 2 2 _ 8 _ 9 _ 10 _ 11 _ 12 _ 1 1 F_VEG 1 2 F_VEG 1 3 F_VEG 1 4 F_VEG 1 5 F_VEG 1 6 F_VEG 1 7 F_VEG 1 8 F_VEG 1 9 F_VEG 1 10 F_VEG 1 11 F_VEG 1 12 F_LAI 1 1 F_LAI 1 2 F_LAI 1 3 F_LAI 1 4 F_LAI 1 5 F_LAI 1 6 F_LAI 1 7 F_LAI 1 8 F_LAI 1 9 F_LAI 1 10 F_LAI 1 11 F_LAI 1 12 F_ZO 1 1 F_ZO 1 2 F_ZO 1 3 F_ZO 1 4 F_ZO 1 5 F_ZO 1 6 F_ZO 1 7 F_ZO 1 8 F_ZO 1 9 F_ZO 1 10 F_ZO 1 11 F ZO 1 12 F EMIS 1 1 F EMIS 1 2 F EMIS 1 3 EMIS 1 4 F EMIS 1 5 F EMIS 1 6 F EMIS 1 7 F EMIS 1 8 F EMIS 1 9 EMIS 1 10 F EMIS 1 11 F EMIS 1 12 F VEG 2 1 F VEG 2 2 F VEG 2 3 F VEG 2 4 F VEG 2 5 F VEG 2 6 F VEG 2 7 F VEG 2 8 F VEG 2 9 F VEG 2 10 F VEG 2 11 F VEG 2 12 F LAI 2 1 F LAI 2 2 F LAI 2 3 OOOoOOo000000000000000000000000000000000000000000nmn 0000o0ooooocooooooooooooooco P4 P4
44. ROOF NAM ALB ROOF TYP ALB ROOF NIF_EMIS _ROOF 15 ROOF TYP_EMIS_ROOF NIF_HC_ROOF CFNAM HC ROOF CFTYP HC ROOF XUNIF TC ROOF CFNAM TC ROOF XUNIF_D_ROOF CFNAM D ROOF CFTYP D ROOF XUNIF ALB ROAD CFNAM ALB ROAD CFTYP ALB ROAD NIF EMIS ROAD NAM EMIS ROAD TYP EMIS ROAD NIF HC ROAD CFNAM HC ROAD CFTYP_HC_ROAD XUNIF_TC_ROAD XUNIF D ROAD CFNAM D ROAD CFTYP D ROAD real character character real character haracter real character haracter real haracter haracter real character haracter real character character real haracter haracter real haracter haracter real character haracter real character haracter real character haracter real haracter haracter real haracter haracter real character haracter DIRECT BINLLV DIRECT BINLLV DIRECT BINLLV DIRECT BINLLV DIRECT BINLLV DIRECT BINLLV DIRECT BINLLV DIRECT BINLLV DIRECT BINLLV DIRECT BINLLV DIRECT BINLLV DIRECT BINLLV DIRECT BINLLV DIRECT BINLLV BINLLF ASCLLV BINLLF ASCLLV
45. TG1 X_Y_TG1 K 2 8576409563069382E 02 2 8548082006251650E 02 2 8540527530138650E 02 2 8546873415878122E 02 For example here are shown the first initial values of skin surface temperature over natural area for Isba surface scheme as they are written in PREP txt file This field is represented on figure 4 6 288 3 288 2877 2874 2874 286 8 286 5 286 2 285 8 285 6 Guns cou face 2007 01 24 14 41 FIG 4 6 Initial surface temperature for vegetation taken from PREP txt file An other example shows the roof surface temperature over the working area Toulouse city is located roughly at x 15 y 22 4 2 3 Extracting 2d fields It s possible to extract 2d fields from PGD txt covers orography etc and from PREP txt ini tial prognostic variables like soil temperature profile soil water content profile etc For that purpose you need to run SXPOST tool located at the same place as PGD PREP and OFFLINE SUR FEX_EXPORT src exe Input files for SXPOST are PGD txt PREP txt if exists and namelist TLROOFA 007 01 24 458 FIG 4 7 Initial surface temperature for the roofs taken from PREP txt file containing the number of fields to be extracted the name and a flag indicating if the variable depends on patches or not The name of a given field is the name written in PGD txt or PREP txt file where characters amp have been removed For example to extract orograph
46. XSST_UNIF has priority on the data in CFILE_SEAFLX file CTYPE type of the CFILE SEAFLX file if the latter is provided CTYPE must then be given The following values are currently usable MESONH the file type is a MESONH file GRIB the file type is a GRIB file coming from any of these models 1 ECMWF european center forecast model 2 ARPEGE Arpege french forecast model 3 ALADIN Aladin french forecast local model 4 MOCAGE Mocage french research chemistry model NYEAR year of surface UTC time It is used only if no atmospheric file or no surface file is given in those the date can be read NMONTH month of surface UTC time It is used only if no atmospheric file or no surface file is given in those the date can be read NDAY day of surface UTC time It is used only if no atmospheric file or no surface file is given in those the date can be read XTIME time from midnight of surface UTC time It is used only if no atmospheric file or no surface file is given in those the date can be read seconds LSEA SBL activates surface boundary multi layer scheme over sea 9 4 Lake scheme WATFLX Namelist NAM PREP WATFLUX This information is used to initialize the WATFLX sea scheme temperature XTS WATER_UNIF real none CFILE_WATFLX string of 28 characters CFILE in NAM PREP SURF ATM CTYPE string of 6 characters MESONH CFILETYPE in NAM_PREP_SURF_ATM GRIB N
47. XUNIF_VEG 12 6 XUNIF_VEG 12 7 XUNIF_VEG 12 8 XUNIF_VEG 12 9 XUNIF_VEG 12 10 XUNIF_VEG 12 11 XUNIF_VEG 12 12 XUNIF_LAI 12 1 XUNIF_LAI 12 2 XUNIF_LAI 12 3 XUNIF_LAI 12 4 XUNIF_LAI 12 5 XUNIF_LAI 12 6 XUNIF_LAI 12 7 XUNIF_LAI 12 8 XUNIF_LAI 12 9 XUNIF_LAI 12 10 XUNIF_LAI 12 11 XUNIF_LAI 12 12 XUNIF_ZO 12 1 XUNIF_ZO 12 2 XUNIF_ZO 12 3 XUNIF_ZO 12 4 XUNIF_ZO 12 5 XUNIF_ZO 12 6 XUNIF_ZO 12 7 XUNIF_ZO 12 8 XUNIF_ZO 12 9 XUNIF_ZO 12 10 XUNIF_ZO 12 11 XUNIF_ZO 12 12 XUNIF_EMIS 12 1 XUNIF_EMIS 12 2 XUNIF_EMIS 12 3 XUNIF_EMIS 12 4 XUNIF_EMIS 12 5 XUNIF_EMIS 12 6 XUNIF_EMIS 12 7 XUNIF_EMIS 12 8 XUNIF_EMIS 12 9 XUNIF_EMIS 12 10 XUNIF_EMIS 12 11 XUNIF_EMIS 12 12 XUNIF_DG 9 1 XUNIF_DG 9 2 XUNIF_DG 9 3 XUNIF_DG 10 1 XUNIF_DG 10 2 XUNIF_DG 10 3 XUNIF_DG 11 1 _DG 3 2 _DG 3 3 _DG 4 1 _DG 4 2 _DG 4 3 _ROOTFRAC 1 1 _ROOTFRAC 1 2 _ROOTFRAC 1 3 _ROOTFRAC 2 1 _ROOTFRAC 2 2 _ROOTFRAC 2 3 _ROOTFRAC 3 1 _ROOTFRAC 3 2 _ROOTFRAC 3 3 _ROOTFRAC 4 1 _ROOTFRAC 4 2 _ROOTFRAC 4 3 _RSMIN _GAMMA _WRMAX_CF F_RGL CV 20 0 ZOH _ALBNIR_VEG _ALBVIS_VEG _ALBUV_VEG _ALBNIR_SOIL _ALBVIS_SOIL _ALBUV_SOIL _GMES _RE25 _BSLA _LAIMIN _SEFOLD GC
48. XUNIF_ZO XUNIF_ZO XUNIF_ZO XUNIF_ZO XUNIF_ZO 10 4 10 5 10 6 10 7 10 8 10 9 10 10 10 11 10 12 10 1 10 2 10 3 10 4 10 5 10 6 10 7 10 8 10 9 10 10 10 11 10 12 XUNIF_EMIS 10 1 XUNIF_EMIS 10 2 XUNIF_EMIS 10 3 XUNIF_EMIS 10 4 XUNIF_EMIS 10 5 XUNIF_EMIS 10 6 XUNIF_EMIS 10 7 XUNIF_EMIS 10 8 XUNIF_EMIS 10 9 XUNIF_EMIS 10 10 XUNIF_EMIS 10 11 XUNIF_EMIS 10 12 XUNIF_VEG XUNIF_VEG XUNIF_VEG XUNIF_VEG XUNIF_VEG XUNIF_VEG XUNIF_VEG XUNIF_VEG XUNIF_VEG XUNIF_VEG XUNIF_VEG XUNIF_VEG XUNIF_LAI XUNIF_LAI XUNIF_LAI XUNIF_LAI XUNIF_LAI XUNIF_LAI XUNIF_LAI XUNIF_LAI XUNIF_LAI XUNIF_LAI XUNIF_LAI XUNIF_LAI XUNIF_ZO XUNIF_ZO XUNIF_ZO XUNIF_ZO XUNIF_ZO XUNIF_ZO XUNIF_ZO XUNIF_ZO XUNIF_ZO XUNIF_ZO XUNIF_ZO 11 1 11 2 11 3 11 4 11 5 11 6 11 7 11 8 11 9 11 10 11 11 11 12 11 1 11 2 11 3 11 4 11 5 11 6 11 7 11 8 11 9 11 10 11 11 11 12 11 1 11 2 11 3 11 4 11 5 11 6 11 7 11 8 11 9 11 10 11 11 01 01 vu Pj bd Pj P Pj EEEE 333 Pj P3 P Pj P Pj P 35558 P4 P
49. and define the grid for the surface 3 The physiographic fields are defined on this grid 8 1 1 Choice of the grid There are 3 possibilities 2 are always possible one is available only if the PGD routine is integrated into an atmospheric model initialization facility 1 The grid is chosen via namelists options see below 2 The grid is defined as a part of the grid of an already existing surface file indicated via namelists see below 3 The grid is defined as being identical to the one of an atmospheric model which is given as fortran argument in the coupling of the PGD surface facilities routine PGD_SURF_ATM into an atmospheric model initialization procedures In this case all namelists that are usually used to define the surface grid are ignored Note that in addition to the grid the orography can also be given from the atmospheric file 8 1 2 Choice of the physiographic fields There are 3 main possibilities depending on LECOCLIMAP flag Namelist FRAC This namelist defines if ECOCLIMAP mechanism based on fractions of covers will be used or not default value LECOCLIMAP Logical XUNIF SEA real between 0 and 1 CFNAM SEA character LEN 28 CFTYP SEA character LEN 6 DIRECT BINLLF BINLLV ASCLLV XUNIF_WATER real between 0 and 1 CFNAM WATER character LEN 28 CFTYP WATER character LEN 6 DIRECT BINLLF BINLLV ASCLLV XUNIF_NATURE real between 0 and 1 CFNAM_NATURE ch
50. any of these models 1 ECMWF european center forecast model 2 ARPEGE Arpege french forecast model 3 ALADIN Aladin french forecast local model 4 MOCAGE Mocage french research chemistry model NYEAR year of surface UTC time It is used only if no atmospheric file or no surface file is given in those the date can be read NMONTH month of surface UTC time It is used only if no atmospheric file or no surface file is given in those the date can be read NDAY day of surface UTC time It is used only if no atmospheric file or no surface file is given in those the date can be read XTIME time from midnight of surface UTC time It is used only if no atmospheric file or no surface file is given in those the date can be read seconds 9 3 Sea scheme SEAFLX Namelist NAM SEAFLUX This namelist information is used to initialize the SEAFLX sea scheme temperature XSST_UNIF real none CFILE_SEAFLX string of 28 characters CFILE in NAM_PREP_SURF_ATM CTYPE string of 6 characters MESONH CFILETYPE in NAM_PREP_SURF_ATM GRIB NYEAR integer none NMONTH integer none NDAY integer none XTIME real none LSEA_SBL logical F XSST_UNIF uniform prescribed value of Sea Surface Temperature This prescribed value if defined has priority on the use of CFILE_SEAFLX data CFILE SEAFLX name of the file used to define the Sea surface Temperature The use of a file or prescribed value
51. biomass of 1 maximum leaf assimilation wind in canopy at layer n n 1 to 6 pressure in canopy at layer n n 1 to 6 SEAFLUX ste 1L LSEA SBL T SEASBLQ L SEASBLE 1L LSEASBLP _ 13 1 3 3 e TLROD l wswowxmooF 1 RSNOW ROOF TSNOW ROOF 1 l 1l PWSNOW ROAD 1 RSNOW ROAD 1 TSNOW ROAD 1 __ ASNOW ROAD T CANYON _ QGcANYON 1 1 TES CNT _ __ TEBOANE rEB CAN P 13 1 4 WATFLUX WATERFLUX SEL TeWATERT __ zo WATER WAT SBLU WATSBL T e WAT SBLQ e WAT SBL E 1L WAT SBL P e 13 15 FLAKE FLARE Br _ TSNOW rice or Tr snow ere WATSBLU WAT SBLT 1 WAT SBL Q Te WAT SBLE WATSBLP 1 Example of namelist A 1 surface parameters defined from ecoclimap This is the classical way how to use ecoclimap and other databases orography sand and clay The initiali zation of prognostic vari
52. can be read XTIME time from midnight of surface UTC time It is used only if no atmospheric file or no surface file is given in those the date can be read seconds LWAT SBL activates surface boundary multi layer scheme over inland water 9 5 Lake scheme FLAKE Namelist NAM_PREP_FLAKE This namelist information is used to initialize the FLAKE sea scheme temperature XTS WATER UNIF none XUNIF_T_SNOW 273 15 XUNIF T ICE min 273 15 X TS WATER XUNIF_T_MNW depends on XTS_WATER XUNIF_T_BOT depends on XTS WATER XUNIF_T_B1 depends on XTS_WATER XUNIF H SNOW 0 XUNIF H ICE 0 01 if XTS_WATER lt 273 15 XUNIF H ML 3 XUNIF_H B1 12 CFILE_FLAKE string of 28 characters CFILE in NAM_PREP_SURF_ATM CTYPE string of 6 characters MESONH CFILETYPE in NAM_PREP_SURF_ATM GRIB NYEAR integer none NMONTH integer none NDAY integer none XTIME real none LFLK_SBL logical F XTS_WATER_UNIF uniform prescribed value of water surface temperature supposed at an altitude of Om mean sea level 1 titude The temperature is then modified for each point depending on its altitude following a uniform vertical gradient of 6 5 Kkm 1 This prescribed value if defined has priority on the use of CFILE FLAKE data XUNIF_T_SNOW surface temperature of snow K XUNIF T ICE surface temperature at the ice atmosphere or at the ice snow interface K XUNIF_T_MNW mean water column temperature
53. de Ree WX ONUS Bad L nd coverdractio ns 54450 amp RR A mx Orography and subgrid orography Namelist for ISBA scheme Namelist to add users own fields Namelist for chemistry anthropogenic emissions Initialization of the prognostic fields 9 1 9 2 9 3 Overview of fields computation Date initialization and default input data file for all schemes Sea scheme Eye o a P pue epe ee Se 29 29 30 33 35 35 35 35 35 36 37 37 37 37 46 47 47 48 49 50 51 52 53 54 55 56 57 9 4 Lake scheme WATFLX 9 5 Lakescheme FLAKE 22229 Fa UE 9 6 Vegetation scheme ISBA 97 TownischemeTEB ke BOE ae Tes 10 How to run the externalized surface physical schemes 10 1 SURF_ATM general options available over all tiles 10 2 SEAFLX sea scheme options 10 3 FLAKE lake scheme options 10 4 ISBA vegetation scheme 11 How to run the externalized surface chemical schemes 11 1 Chemical settings control s es 44 4 o han ow 4 404 le A 11 2 Chemical anthropo
54. grid in meters in x and y perpendicular directions on conformal projection plan Mercator Lambert or polar stereographic CARTESIAN this grid is a regular grid in meters in x and y perpendicular directions with no reference to real geographical coordinates LONLAT REG this grid is defined as a regular latitude longitude grid IGN this grid type contains all IGN French National Geographical Institute possible Lambert projections NONE this grid is not regular Only the number of points and the size of each grid mesh is prescribed There is no positioning of each point compared to any other YINIFILE name of the file used to define the grid It is possible to define the grid as a subgrid of a previously created file This is currently possible only for files that have CONF PROJ or CARTESIAN grid type The exact definition of the subgrid grid chosen is prescribed in a namelist described below depending on the type of grid available in the file chosen The use of a file has priority on the CGRID type YFILETYPE type of the YINIFILE file if the latter is provided YFILETYPE must be given The following values are currently usable MESONH the file type is a MESONH file 8 3 2 Conformal projection grids Mercator Lambert Polar stereogra phic Namelist NAM_CONF_PROJ This namelist defines the projection in case CGRID CONF PROJ Fortran type default value XLATO re
55. net radiation at roof RN ROAD net radiation at road GFLUX WALL net wall conduction flux GFLUX_ROOF net roof conduction flux GFLUX ROAD net road conduction flux LE_ROOF roof latent heat flux LE ROAD road latent heat flux Chapitre 13 Externalized surface model output fields Model output fields depend on the tile and on the configuration of run 13 1 Prognostic model output fields 13 1 1 ISBA The definition of the representation of soil vegetation snow and surface boundary layer components is done during PGD and PREP The description of soil is done with parameter CISBA 2 layers 3 layers or more if diffusion treatment selected from NAML ISBA The representation of vegetation is done with parameters NPATCH number of patches over vegetation and CPHOTO type of photosynthesis During PREP the snow scheme is chosen by parameter CSNOW in NAM_PREP_ISBA and if the surface boundary layer SBL scheme is activated then LISBA_CANOPY key has to be set to 77 soil CISBA vegetation snow CSNOW RESPBSTR RESPBSTR2 BIOMASSTR2 T T j p j pep BIOMASSTR2LAST p 11 1 JX BIOMASSTR LAST _ _ WSNOW_VEG 5 Rs gar O RSNOW_VEG 2 meer T 1 HSNOW VEG VEG ER an O je Se fer Safe __ ___ e
56. simulation with the saved conditions LINQUIRE enables the inquiry of surface variables from the atmosphere Chapitre 4 Data input files Two different formats are used as input for the externalized surface off line software Both are portable the first format is netcdf and the second is the ascii one Netcdf format has been chosen because of several participations of PILPS intercomparison projects that requires such format due to its portability It follows the Alma concept proposed by Polcher in 1998 4 1 netcdf format files 4 1 1 FORCING nc For this experiment atmospheric forcing is extracted from French database named BDAP Base de Donn es Analys es et Pr vues Data come from the analysis of surface parameters performed by Safran analysis system devoted to hydrological applications A constant value in space is applied for each gridbox list of parameters NB TIMESTP number of time steps YEAR current year MONTH current month DAY current day FORC_TIME_STEP forcing time step TIME current time TSUN DIM_FULL current sun time ZS DIM FULL surface orography LON DIM FULL longitudes LAT DIM FULL e latitudes TA DIM FULL NB TIMESTP air temperature QA DIM FULL NB TIMESTP air specific humidity WIND DIM FULL NB_TIMESTP wind speed DIR_SW DIM FULL NB_TIMESTP downward direct shortwave radiation SCA SW DIM FULL NB TIMESTP downward diffuse shortwave radiation LW DIM FULL NB TIMESTP downward longwave radiation PS
57. surface facilities do not contain only the program to run the physical surface schemes but also those producing the initial surface fields before the run and the diagnostics during or after the run All these facilities are listed below and they separate in 4 main parts 7 1 The sequence 1 PGD routine pgd surf atm f90 this program computes the physiographic data file called PGD file below At this step you perform 3 main tasks a You choose the surface schemes you will use b You choose and define the grid for the surface c The physiographic fields are defined on this grid Therefore the PGD file contains the spatial characteristics of the surface and all the physiographic data necessary to run the interactive surface schemes for vegetation and town 2 PREP routine prep_surf_atm_n f90 this program performs the initialization of the surface scheme prognostic variables as tempe ratures profiles water and ice soil contents interception reservoirs snow reservoirs 3 run of the schemes routine coupling surf atm n f90 this performs the physical evolution of the surface schemes It is necessary that this part contrary to the 2 previous ones is to be coupled within an atmospheric forcing provided either in off line mode or via a coupling with an atmospheric model 4 DIAG routine diag surf atm n f90 this computes diagnostics linked to the surface e g surface energy balance terms variables at 2m of heigh
58. the Southern part 2 2 The input files OPTIONS nam is the unique namelist used in the off line mode It s valid for the PGD PREP and RUN facilities but fro PREP it s necessary to switch off all diagnostics this is the case by default in surfex PARAMS nc contains information related to the integration as well as information that is not written in other input files FORCING nc contains the atmospheric forcing PGD txt is the PGD file result of PGD application which prepares physiographycal fields PREP txt is the PREP file containing physiographical information taken from PGD txt and initial values for prognostic variables of the model extracted from any atmospheric model Since ascii and netcdf input files are prepared independantly one has to take care of the consistency between the number of grid points specified in OPTIONS nam and the one used in PARAMS nc as well as the grid definition used for the forcing data that has to fit the one define by the namelist options 15 Chapitre 3 Namelist options the different namelist options are discussed in the externalized surface user s guide Here are the main option used for this specific example 3 1 namelist for PGD NAM PGD GRID CGRID describes the grid type used for the application In this case it s set to LONLAT REG which means that the working grid will be a regular longitude latitude grid NAM_LONLAT_REG give full definition of the grid by specifying the minimum an
59. type default value 1 1 YINIFILE size YINIFILE size IDXRATIO 1 IDYRATIO 1 IXOR first point I index according to the YINIFILE grid left to and out of the new physical domain IYOR first point J index according to the YINIFILE grid under and out of the new physical domain IXSIZE number of grid points in I direction according to YINIFILE grid recovered by the new domain If to be used in MESONH it must only be factor of 2 3 or 5 IYSIZE number of grid points in J direction according to YINIFILE grid recovered by the new domain If to be used in MESONH it must only be factor of 2 3 or 5 IDXRATIO resolution factor in I direction between the YINIFILE grid and the new grid If to be used in MESONH it must only be factor of 2 3 or 5 IDYRATIO resolution factor in J direction between the YINIFILE grid and the new grid If to be used in MESONH it must only be factor of 2 3 or 5 8 3 3 Cartesian grids Namelist NAM_CARTESIAN This namelist defines the projection in case CGRID CARTESIAN Fortran type default value XLATO reference latitude real decimal degrees XLONO reference longitude real decimal degrees NIMAX number of surface points of the grid in direction NJMAX number of surface points of the grid in direction y XDX grid mesh size on the conformal plane in x direction real meters XDY grid mesh size on the conformal plane in y d
60. 0_12 asc CEMIS_PGD_FILETYPE 2 ASCLLV CEMIS_PGD_NAME 3 DMSE NEMIS_PGD_TIME 3 0 CEMIS_PGD_COMMENT 3 dms_cte CEMIS_PGD_AREA 3 SEA CEMIS_PGD_ATYPE 3 ARI CEMIS_PGD_FILE 3 dms asc 5 PGD FILETYPE 3 ASCLLV Chapitre 9 Initialization of the prognostic fields 9 1 Overview of fields computation PREP The prognostic fields temperature humidity ice snow etc are averaged or interpolated on the specified grid by the program PREP They are stored in the surface file The computation is done separately for each surface scheme During the PREP facility the date of the surface You You You You You a E initializes initializes initializes initializes initializes the prognostic the prognostic the prognostic the prognostic variables variables variables variables of the chosen sea scheme of the chosen lake scheme of the chosen vegetation scheme of the chosen town scheme Here are presented the initialization procedures for the schemes that need such information for example scheme IDEAL does not need any information here but modificaton of the code source init_ideal_fluz f90 Note that for each scheme and for some for each variable of the scheme it is possible to initialize the prognostic fields either form an operationnal or research model or using prescribed usually uniform fields 59 9 2 Date initialization and default input data f
61. 1 i If XUNIF_COVER is set it has priority on the use of an ecosystem file see next item YCOVER In the case of grid without any reference to geographical coordinates CARTESIAN or NONE XUNIF_COVER must be set YCOVER ecoclimap data file name It is used only if XUNIF_COVER is not set YFILETYPE type of YCOVER file DIRECT BINLLV BINLLF ASCLLV XRM_COVER for each point all fractions of ecosystems that are below XRM_COVER are removed i e set to zero and the corresponding area fractions are distributed among the remaining ecosystem fractions Whatever the value of XRM_COVER at least one ecosystem remains for each grid point LRM_TOWN if TRUE all ecosystems containing town fractions are removed and replaced by the ecosystem corresponding to rocks 8 5 Orography and subgrid orography Namelist NAM_ZS This namelist defines the orography file and orographic treatment to be done default value none character LEN 28 gt gt default orography is 0 YFILETYPE character LEN 6 DIRECT BINLLF none BINLLV ASCLLV COROGTYPE character LEN 3 AVG ENV SIL ENV XENV real 0 NZSFILTER integer 1 XUNIF ZS uniform value of orography imposed on all points real meters If XUNIF_ZS is set file YZS is not used YZS data file name If XUNIF ZS is set file YZS is not used If neither XUNIF ZS and YZS is set then orography is set to
62. 10 3 0 2 0 97 21100 28000 29000 51 08 05 05 A 1 0 2 0 97 21100 28000 29000 1 51 0 08 0 05 0 05 00 XUNIF_RGL 00002 XUNIF CV XUNIF_ZO_D_ZOH 23 XUNIF_ALBNIR_VEG E ALBVIS VEG 0425 XUNIF_ALBUV_VEG 3 XUNIF_ALBNIR_SOIL 12 XUNIF_ALBVIS_SOIL 06 XUNIF_ALBUV_SOIL 003 XUNIF_GMES 0000003 XUNIF_RE25 06 XUNIF_BSLAI 22 XUNIF_LAIMIN 184000 XUNIF_SEFOLD 00025 XUNIF GC 245 XUNIF_DMAX 3 XUNIF F2I 0 XUNIF_H_TREE 79 XUNIF_CE_NITRO 84 NITRO XUNIF_CNA_NITRO 40 XUNIF_RSMIN 0 XUNIF_GAMMA 0 2 XUNIF_WRMAX_CF 100 XUNIF_RGL 0 00002 XUNIF_CV 10 XUNIF ZO 0 ZOH 0 3 XUNIF ALBNIR VEG 0 1 XUNIF ALBVIS 0 0425 XUNIF ALBUV VEG 0 3 XUNIF ALBNIR SOIL 0 1 XUNIF ALBVIS SOIL 0 06 XUNIF ALBUV SOIL 0 003 XUNIF GMES 0 0000003 XUNIF_RE25 0 06 XUNIF_BSLAI 0 3 XUNIF_LAIMIN 5184000 XUNIF_SEFOLD 0 00025 XUNIF GC 0 1 XUNIF DMAX 0 3 XUNIF_F21 20 XUNIF_H_TREE 3 79 XUNIF_CE_NITRO 9 84 XUNIF_CF_NITRO 1 3 XUNIF_CNA_NITRO 00 00 00 00 00 00 8 100 8 0 00002 8 10 8 0 3 8 0 1 8 0 0425 8 0 3 8 0 1 8 0 06 8 0 003 8 0 0000003 8 0 06 8 0 3 8 5184000 8 0 00025 8 0 1 8 0 3 8 20 8 3 79 8 9 84 8 1 3 11 40 11 O
63. 2 3 compute diagnostics 28 5 3 5 2 4 writing out diagnostics variables writing out restart file 6 Some output of off line simulation 6 1 6 2 Examples of prognostic variables output list of available variables III Users guide 7 Overview of the externalized surface sequence 9 7 1 7 2 The 8 1 8 2 8 3 8 4 8 5 8 6 8 7 8 8 The sequence 265 405 ee The atmospheric models using the externalized 7 21 in offline mode aove re sirs ou due Ru e Ex 12 2 in MEBSONH 582242 2 4320 A re 123 Jn AROME x as ve u EUER a a en physiographic fields Overview of physiographic fields computation PGD 8 171 Choieofthegrid XR SS Rp IE 4 8 1 2 Choice of the physiographic fields Choice of the surface schemes Definition of the grid 8 3 1 Choice of the grid type 8 3 2 Conformal projection grids Mercator Lambert Polar stereographic 8 3 3 Cartesian grids a 8 3 4 Regular longitude latitude grids 8 3 5 Regular Lambert grids 8 3 6 Gaussian rids 1 2 ioo i Eb IR
64. 2 5 2 22 35 22 2 2 5 22 2 2 2 3 2 2 3 22 22224284 F_ZO 7 12 F_EMIS 7 1 F_EMIS 7 2 F_EMIS 7 3 F_EMIS 7 4 F_EMIS 7 5 F_EMIS 7 6 F_EMIS 7 7 F_EMIS 7 8 F_EMIS 7 9 F_EMIS 7 10 F_EMIS 7 11 IF_EMIS 7 12 F_VEG 8 1 F_VEG 8 2 F_VEG 8 3 F_VEG 8 4 F_VEG 8 5 F_VEG 8 6 F_VEG 8 7 F_VEG 8 8 F_VEG 8 9 F_VEG 8 10 F_VEG 8 11 F_VEG 8 12 F_LAI 8 1 F_LAI 8 2 F_LAI 8 3 F_LAI 8 4 F_LAI 8 5 F_LAI 8 6 F_LAI 8 7 F_LAI 8 8 F_LAI 8 9 F_LAI 8 10 F_LAI 8 11 F_LAI 8 12 F_ZO 8 1 F_ZO 8 2 F ZO 8 3 IF ZO 8 4 IF ZO 8 5 F 70 8 6 F_ZO 8 7 F_ZO 8 8 F_ZO 8 9 70 8 10 F_ZO 8 11 F_ZO 8 12 F_EMIS 8 1 F_EMIS 8 2 IF_EMIS 8 3 F_EMIS 8 4 F_EMIS 8 5 F_EMIS 8 6 F_EMIS 8 7 F_EMIS 8 8 F_EMIS 8 9 F_EMIS 8 10 F_EMIS 8 11 F_EMIS 8 12 F_DG 5 1 F_DG 5 2 F_DG 5 3 F_DG 6 1 F_DG 6 2 F_DG 6 3 F_DG 7 1 OC OC XUNIF_ZO 11 12 XUNIF_EMIS 11 1 XUNIF_EMIS 11 2 XUNIF_EMIS 11 3 XUNIF_EMIS 11 4 XUNIF_EMIS 11 5 XUNIF_EMIS 11 6 XUNIF_EMIS 11 7 XUNIF_EMIS 11 8 XUNIF_EMIS 11 9 XUNIF_EMIS 11 10 XUNIF_EMIS 11 11 XUNIF_EMIS 11 12 XUNIF_VEG 12 1 XUNIF_VEG 12 2 XUNIF_VEG 12 3 XUNIF_VEG 12 4 XUNIF_VEG 12 5
65. 73 73 74 75 75 77 77 77 79 80 80 80 Premiere partie How to install the software Chapitre 1 Export off line version of SURFEX Instructions to install surfex on a linux PC and to run a 14 example 0 select a directory where installation has to be done for example HOME or HOME MYDIR where MYDIR is an existing directory if not it has to be created by the user From now on it is supposed that the user has defined a MYDIR directory 1 download v2 tgz from surfex web site and move it into HOME MYDIR EXPORT_v2 tgz 2 extract files from archive tar zxvf EXPORT_v2 tgz or gunzip EXPORT v2 tgz and then tar xvf EXPORT v2 tar at this stage directory EXPORT v2 is created in MYDIR and contains all software peaces 3 initialize environment variables needed for surfex 3 1 set main environment variable export SURFEX EXPORT HOME MYDIR EXPORT v2 3 2 then run a configuration script included in the archive SURFEX EXPORT conf profile surfex 4 run install surfex install surfex i realizes the compilation of surfex sources ii prepares executable files for pgd prep offline and sxpost applications 5 then run install experiment install experiment hapex install experiment i realizes the compilation of prep input experiment ii makes useful links to run pgd prep offline and sxpost 6 once the installation is done go to SURFEX EXPERIMENT hapex directory and then to rundir direct
66. ALL CFTYP_HC_WALL 1 CFTYP_HC_WALL 2 CFTYP_HC_WALL 3 CFTYP_TC_WALL 1 CFTYP_TC_WALL 2 CFTYP_TC_WALL 3 gt ASCLLV ASC ASC ASC LLV LLV LLV gt gt ASCLLV gt ASCLLV gt ASCLLV ASC ASC ASC LLV LLV LLV gt gt gt ASCLLV ASC LLV gt gt ASCLLV ASC LLV gt gt ASCLLV gt ASCLLV gt ASCLLV ASC ASC ASC ASC ASC LLV LLV LLV LLV LLV gt gt gt ASCLLV gt ASCLLV gt ASCLLV gt ASCLLV ASCLLV gt ASCLLV gt ASCLLV gt ASCLLV ASCLLV ASC ASC ASC LLV LLV LLV gt gt gt gt ASCLLV ASC ASC ASC ASC ASC ASC ASC LLV LLV LLV LLV LLV LLV LLV gt gt 2 gt gt gt ASCLLV gt ASCLLV gt ASCLLV ASCLLV ASCLLV ASCLLV gt ASCLLV gt ASCLLV ASCLLV ASCLLV ASCLLV ASCLLV ASCLLV ASCLLV ASCLLV ASCLLV gt ASCLLV gt ASCLLV gt ASCLLV gt ASCLLV gt ASCLLV gt ASCLLV amp NAM_FRAC amp NAM_PGD_GRID amp NAM_LONLAT_REG amp NAM_PGD_SCHEMES amp NAM_ZS amp NAM_ISBA amp NAM_PREPFILE amp NAM_PREP_SURF_ATM amp NAM_PREP_SEAFLUX amp NAM_PREP_WATFLUX amp NAM_PREP_TEB
67. Averaged Net Radiation H_ISBA Averaged Sensible Heat Flux LE ISBA Averaged Latent Heat Flux GFLUX ISBA Averaged Ground Heat Flux LEG Ground Evaporation Heat Flux LEGI Soil Ice Sublimation LEV Vegetation Evaporation Heat Flux LES Snow Evaporation Heat Flux LER Canopy Water Interception Evaporation LETR Vegetation Evapotranspiration EVAP Evapotranspiration DRAIN Soil Drainage Flux RUNOFF Supersaturation Runoff LEG_ISBA Averaged Ground Evaporation Heat Flux LEGI ISBA Averaged 5011 Ice Sublimation LEV ISBA Averaged Vegetation Evaporation Heat Flux LES ISBA Averaged Snow Evaporation Heat Flux LER ISBA Averaged Canopy Water Interception Evaporation LETR_ISBA Averaged Vegetation Evapotranspiration EVAP_ISBA Averaged_Evapotranspiration DRAIN_ISBA Averaged_Soil_Drainage_Flux RUNOFF_ISBA Averaged_Supersaturation_Runoff CH_ISBA Averaged_thermal_diffusion_coefficient HV_ISBA Halstead_coefficient ZOREL Output_ZOREL VEGTYPE_PATCH_1 fraction_of_vegetation_type_1 VEGTYPE_PATCH_2 fraction_of_vegetation_type_2 VEGTYPE_PATCH_3 fraction_of_vegetation_type_3 VEGTYPE_PATCH_4 fraction_of_vegetation_type_4 VEGTYPE_PATCH_5 fraction_of_vegetation_type_5 VEGTYPE_PATCH_6 fraction_of_vegetation_type_6 VEGTYPE_PATCH_7 fraction_of_vegetation_type_7 VEGTYPE_PATCH_8 fraction_of_vegetation_type_8 VEGTYPE_PATCH_9
68. D and PREP applications anyhow consistency tests are performed during surfex setup 4 2 ascii format files This format is used in the off line applications because it s the simpliest format that may replace more complex in terms of file handling like format used in meso NH framework or FA used in the Arome framework 0 012 0 011 0 01 0 009 0 008 0 007 01234 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 Fic 4 2 Time evolution of specific humidity over the working area 400 380 360 340 01234 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 Fic 4 3 Time evolution of longwave incoming radiation over the working area 150 100 50 PS a O 1 2 3 4 5 6 7 8 9 101112 13 14 15 16 17 18 19 20 21 22 23 24 25 Fic 4 4 Time evolution of shortwave incoming radiation over the working area 4 2 1 PGD txt This file contains the information related to physiography and orography essentially The file is splitted into several parts The first one corresponds to the gridbox as seen as a single pixel where quantities are aggregated The corresponding field names are prefixed with FULL This gridbox may be separated into four tiles respectively associated to nature town sea ocean and lake The corresponding field names are respectively prefixed with NATURE TOWN SEA and WATER The physiographic parameters written out into PGD txt file are mainly th
69. DIM FULL NB_TIMESTP surface pressure RAIN DIM FULL NB TIMESTP rainfall rate SNOW DIM FULL NB TIMESTP snowfall rate CO2 DIM FULL NB TIMESTP CO2 concentration DIR DIM FULL NB TIMESTP wind direction Dimensions DIM FULL and NB_TIMESTP represent respectively the total number of gridboxes in the area of interest and the number of atmospheric time steps following pictures show the time evolution of forcing quantities for the integration period over the region of interest Each curve correspond to a grid point 19 8 9 10 11 12 13 14 15 16 17 18 19 20 21 2 D N 2 N N 4 a a FIG 4 1 Time evolution of temperature over the working area 4 1 2 PARAMS nc ISBA_TIME_STEP isba time step OUTPUT_TIME_STEP time step for writing output DIM_FULL number of grid boxes GROUND LAYER number of layers in the soil SNOW LAYER number of snow layers PATCH NUMBER number of patch DTCUR TDATE 2004 10 25 starting date of the run DTCUR TIME 21600 starting time of the run ZREF DIM FULL 2 reference height for T and q UREF DIM FULL 10 reference height for wind The two netcdf files are prepared independantly from PGD and PREP applications with external programs named prep input parameters f90 and my_forcing f90 Parameters DIM_FULL GROUND LAYER SNOW LAYER PATCH NUMBER DTCUR TDATE DTCUR TIME have to be set up carefully accor ding to the one defined during PG
70. F XUNIF XUNIF XUNIF XUNIF XUNIF XUNIF XUNIF XUNIF XUNIF XUNIF XUNIF XUNIF XUNIF XUNIF XUNIF NROOF XUNIF XUNIF XUNIF XUNIF XUNIF XUNIF XUNIF XUNIF XUNIF XUNIF XUNIF NROAD XUNIF XUNIF XUNIF XUNIF XUNIF XUNIF XUNIF XUNIF XUNIF XUNIF XUNIF NWALL XUNIF XUNIF XUNIF XUNIF XUNIF XUNIF XUNIF XUNIF XUNIF XUNIF XUNIF XUNIF _DG 1 1 _DG 1 2 _DG 1 3 _ROOTFRAC 1 1 _ROOTFRAC 1 2 _ROOTFRAC 1 3 _RSMIN 1 _GAMMA 1 _WRMAX_CF 1 _RGL 1 _CV 1 Z0 0 ZOH 1 _ALBNIR_VEG 1 _ALBVIS_VEG 1 _ALBUV_VEG 1 _ALBNIR_SOIL 1 _ALBVIS_SOIL 1 _ALBUV_SOIL 1 _GMES 1 _RE25 1 _BSLAI 1 _LATMIN 1 _SEFOLD 1 GC 1 _ 1 F2I 1 _H_TREE 1 _CE_NITRO 1 _CF_NITRO 1 _CNA_NITRO 1 _LAYER _ALB_ROOF _EMIS_ROOF _HC_ROOF 1 HC ROOF 2 HC ROOF 3 _TC_ROOF 1 _TC_ROOF 2 _TC_ROOF 3 _D_ROOF 1 _D_ROOF 2 _D_ROOF 3 _LAYER _ALB_ROAD _EMIS_ROAD _HC_ROAD 1 _HC_ROAD 2 _HC_ROAD 3 _TC_ROAD 1 _TC_ROAD 2 _TC_ROAD 3 _D_ROAD 1 _D_ROAD 2 _D_ROAD 3 _LAYER _ALB_WALL _EMIS_WALL _HC_WALL 1 _HC_WALL 2 _HC_WALL 3 _TC_WALL 1 _TC_WALL 2 _TC_WALL 3 _D_WALL 1 _D_WALL 2 _D_WALL 3 _ZO_TOWN ou Ro oo u on 05 0425 15 05 0425 001 00000015 25 0 1536000 1 13 20 4 85
71. GMES NANMEDATASBA nes echar ido de 41 AM H INDUSTRIES NAM_DATA TEB 43 AM H TRAFFIC NAMDATATEB 43 AM H TREE NAM DATA ISB A Sasso echa oco eO eet 41 AM HC ROAD Z Q Z Q Z Q Z Q Z Q Z Q Z Q Z Q Z Z Q Z Z Q Z Z Z Q Z Q Z Q Z Z Q Z Q Z Q Z Q E Z DZ DZ DZ DZ DZ BZ DZ DZ DZ DZ DZ DZ gt gt gt gt gt gt gt gt gt gt gt gt gt gt gt gt gt gt gt gt gt gt gt Q aa d d d 9 H 2 9 M_DATA_TEB HC ROOF M_DATA_TEB HC WALL M DATA TEB LAI M DATA ISBA LAIMIN M DATA ISBA LE INDUSTRIES M DATA TEB LE TRAFFIC M_DATA_TEB RE25 M DATA ISBA E 9 E M DATA ISBA ROOTFRAC M DATA ISBA RSMIN M DATA ISBA SEA SEFOLD M DATA ISBA SST M DATA SEAFLUX TC_ROAD M DATA TEB TC ROOF M_DATA_TEB TC WALL M_DATA_TEB VEG M DATA ISBA VEGTYPE M DATA ISBA WALL O HOR M_DATA_TEB WRMAX CF M DATA ISBA 20 M DATA ISBA Z0_O Z0H M DATA ISBA Z0 TOWN M DATA TEB ALB ROAD M DATA TEB ALB ROOF M DATA TEB ALB WALL M_DATA_TEB ALBNIR_SOIL
72. Initialization of surface fields integrated in MESONH programs In MESONH there are usually 2 ways to produce initial files depending if you want to use real or ideal atmospheric conditions However from the surface point of view there is no difference between these 2 main possibilities of fields real e g from operationnal surface Scheme in an operationnal model or ideal e g uniform whatever the treatment done for the atmospheric fields This is allowed because the same externalized routines corresponding to PGD and PREP are used In the case of realistic atmospheric fields the MESONH programs calling the surface are 1 PREP_PGD it uses the PGD facility of the surface PREP NEST PGD surface fields are only read and rewritten except the orography that is modified the modification of the orography itself is considered as an atmospheric model routine as orography is also a field of the atmospheric model 3 PREP_REAL_CASE it uses the PREP facility of the surface that can produce either ideal or realistic surface fields 35 4 SPAWNING it does not produce surface fields any more The surface fields will be recreated during the PREP_REAL_CASE step following the SPAWNING In the case of ideal atmospheric fields the MESONH program calling the surface is 1 PREP_IDEAL_CASE it uses both the PGD and PREP facilities of the surface Ideal or realistic the latter only in conformal projection physiographic fields can be eith
73. LD 1 CFNAM_GC 1 CFNAM_DMAX 1 CFNAM F2I 1 _ _ 1 CFNAM CE NITRO 1 CF NITRO 1 CFNAM_CNA_NITRO 1 NROOF LAYER 3 CFNAM ALB ROOF CFNAM_EMIS_ROOF CFNAM_HC_ROOF 1 CFNAM_HC_ROOF 2 CFNAM_HC_ROOF 3 CFNAM_TC_ROOF 1 CFNAM_TC_ROOF 2 CFNAM_TC_ROOF 3 CFNAM_D_ROOF 1 CFNAM_D_ROOF 2 CFNAM_D_ROOF 3 NROAD LAYER 3 CFNAM ALB ROAD CFNAM EMIS ROAD ROAD 1 CFNAM ROAD 2 ROAD 3 CFNAM TC ROAD 1 CFNAM ROAD 2 CFNAM TC ROAD 3 CFNAM D ROAD 1 CFNAM D ROAD 2 CFNAM D ROAD 3 NWALL LAYER 3 ALB WALL CFNAM EMIS WALL HC WALL 1 WALL 2 CFNAM WALL 3 CFNAM TC WALL 1 CFNAM WALL 2 CFNAM WALL 3 EMIS_09 DAT EMIS_10 DAT EMIS_11 DAT EMIS_12 DAT DG_1 DAT DG_2 DAT DG_3 DAT ROOTFRAC_1 DAT ROOTFRAC_2 DAT ROOTFRAC_3 DAT RSMIN DAT 220 0 ZOH DAT GAMMA DAT WRMAX_CF DAT RGL DAT CV DAT ALBNIR_VEG DAT ALBVIS_VEG DAT ALBUV_VEG DAT ALBNIR_SOIL DAT ALBVIS_SOIL DAT ALBUV_SOIL DAT GMES DAT RE25 DAT BSLAI DAT LAIMIN DAT SEFOLD DAT GC DAT DMAX DAT F2I DAT H_TREE DAT CE_NITRO DAT CF_NITRO DAT CNA_NITRO DAT ALB_ROOF DAT EMIS_ROOF DAT HC_ROOF DAT HC_ROOF DAT HC_ROOF DAT TC_ROOF DAT TC_ROOF DAT TC_ROOF DAT D_ROOF DAT D_ROOF DAT
74. LSE CCH_DRY_DEP type of deposition scheme NONE no chemical deposition scheme WES89 Wesley 1989 deposition scheme LCH_BIO_FLUX flag to activate the biogenic emissions Chapitre 12 Externalized surface diagnostics The diagnostics for the surface require the call to the complete physics of the surface Therefore they can be computed either during the run of the schemes in order to have for example continuous time series of these diagnostics or can be computed at a given instant only if atmospheric forcing is given at this instant for the surface scheme to do one time step The cumulated diagnostics are of course significant only when computed during a run 12 1 Diagnostics relative to the general surface monitor Namelist NAM DIAG SURF ATMn default value LFRAC FALSE LFRAC flag to save in the output file the sea inland water natural covers and town fractions 73 12 2 Diagnostics relative to the general surface monitor and to each surface scheme Namelist NAM DIAG SURFn N2M integer LSURF_BUDGET logical LRAD_BUDGET logical LCOEF logical LSURF_VARS logical N2M flag to compute surface boundary layer characteristics N2M 1 computes temperature at 2 m specific humidity at 2 m relative humidity zonal and meridian wind at 10 m and Richardson number 2m and 10m quantities are calculated extrapolating atmospheric forcing variables with Paulson laws using surface heat
75. LV gt ASCLLV ASCLLV gt ASCLLV gt ASCLLV gt ASCLLV gt ASCLLV gt ASCLLV gt ASCLLV gt ASCLLV gt ASCLLV gt ASCLLV gt ASCLLV amp NAM_PREP_ISBA amp NAM_PREP_ISBA_SNOW amp NAM_IO_OFFLINE amp NAM_DIAG_SURFn amp NAM_DIAG_SURF_ATMn amp NAM_DIAG_ISBAn amp NAM_DIAG_TEBn amp NAM_SGH_ISBAn amp NAM_ISBAn amp NAM_CH_ISBAn amp NAM_SEAFLUXn amp NAM_CH_SEAFLUXn amp NAM_CH_WATFLUXn amp NAM_CH_TEBn XWS ROAD O XWS RODF 0 NYEAR 2004 NMONTH 10 NDAY 25 XTIME 21600 XHUG_SURF XHUG_ROOT XHUG_DEEP u ooo XTG SURF 285 XTG ROOT 288 XTG DEEP 292 NYEAR 2004 NMONTH NDAY XTIME on 21600 CSNOW 3 YPROGRAM YCOUPLING LSURF_BUDGE N2M LFRAC LPGD LSURF_EVAP_ LSURF_MISC_ LSURF_BUDGE LSURF_MISC_ CRUNOFF CROUGH CSCOND CALBEDO CC1DRY CSOILFRZ CDIFSFCOND CSNOWRES CCPSURF CCH_DRY_DEP CSEA_ALB CCH_DRY_DEP CCH_DRY_DEP CCH_DRY_DEP L ASCII gt E T Nu j BUDGET BUDGET TC BUDGET Hd WSAT 2040 NP89 DRY DEF DEF DEF DRY WES89 TA96 WES89 WES89 WES89 gt Index namelist description NAM_CARTESIAN 49 NAM CH CONTROLn 71 NAM_CH EMIS PGD
76. N ue taste nr 52 RMUCEN NAMGEM nass rm deu dure 52 RSTRET NAMGEM aaant a n ra as ae 52 X XBETA NAM CONFPROJ een de pora rasos 48 XCGMAX NAM gt ISBAn sans see a 70 XCISMIN NAM SURF ATM iio ne Evae oly 67 XDX 49 _ _ 48 NAM IGN ass se meer 51 XDY NAM_CARTESIAN 49 NAM CONF PROJ GRID 48 NAM IGN oneri E EREE ea HERO EDI 51 XEDB NAM SURB ATM rear 67 XEDC NAMSURF_ATM 67 XEDD NAM SURF ATM 67 XEDK NAM SURF ATM 67 XENV NAM 25 sine br rane 54 XHUG DEEP NAM PREPISBA 64 XHUG ROOT NAM PREPISBA 64 XHUG_SURF 64 XLATO NAM CARTESIAN 49 NAM zer re e beer Rn 48 XLATCEN NAM CONF PROJ GRID 48 XLATMAX NAM_LONLMAT REG 50 XLATMIN _ 50 XLONO 49 48 XLONCEN _ _ 48 XLONMAX NAMLONLMATREG
77. N 6 real character LEN 28 character LEN 6 real character LEN 28 character LEN 6 DIRECT BINLLF BINLLV ASCLLV DIRECT BINLLF BINLLV ASCLLV BINLLF BINLLV ASCLLV DIRECT BINLLF BINLLV ASCLLV DIRECT BINLLF BINLLV ASCLLV DIRECT BINLLF BINLLV ASCLLV DIRECT BINLLF BINLLV ASCLLV DIRECT BINLLF BINLLV ASCLLV DIRECT BINLLF BINLLV ASCLLV none 2 none none 99 gt none albedo TT wa emissivity wall layers heat capacity wall layers thermal conductivity wall layers depth anthropogenic sensible heat fluxes due to traffic anthropogenic latent heat fluxes due to traffic anthropogenic sensible heat fluxes due to factories anthropogenic latent heat fluxes due to factories SEAFLUX scheme Treat SST as a forcing variable For that purpose several SST files at a given time are required and namelist NAM_DATA_SEAFLUX should be filled LSST_DATA logical flag to activate this option NTIME integer 12 number of SST data CFNAM SST character LEN 28 CFTYP SST character LEN 6 DIRECT BINLLF BINLLV ASCLLV NYEAR_SST integer NMONTH SST integer NDAY SST integer XTIME SST real LSST_DATA flag to initialize SST from a climatology
78. NOFF type of subgrid runoff The following options are currently available WSAT runoff occurs only when saturation is reached DT92 Dumenill and Todini 1992 subgrid runoff formula SGH Decharme et al 2006 Topmodel like subgrid runoff CTOPREG kind of regression Option activated only if CRUNOFF SGH The following options are currently available DEF Wolock and MacCabe regression between topographic indices computed at 1km and 100m resolution recommended NON no regression CKSAT Activates the exponential profile for Ksat The following options are currently available DEF homogeneous profile SGH exponential decreasing profile with depth due to compaction of soil CRAIN Activates the spatial distribution of rainfall intensity The following options are currently available DEF homogeneous distribution SGH exponential distribution which depends on the fraction of the mesh where it rains This fraction depends on the mesh resolution and the intensity of hourly precipitation If the horizontal mesh is lower than 10km then the fraction equals 1 CHORT Activates the Horton runoff due to water infiltration excess The following options are currently available DEF no Horton runoff SGH Horton runoff computed Namelist NAM ISBAn CCIDRY string characters GB93 CSCOND string characters NP89 PL98 CSOILFRZ
79. NTIME 12 CFNAM VEGTYPE 1 CFNAM VEGTYPE 2 CFNAM VEGTYPE 3 CFNAM VEGTYPE 4 CFNAM VEGTYPE 5 CFNAM VEGTYPE 6 _ 7 CFNAM_VEGTYPE 8 CFNAM VEGTYPE 9 CFNAM VEGTYPE 10 CFNAM VEGTYPE 11 CFNAM VEGTYPE 12 CFNAM_VEG 1 1 CFNAM_VEG 1 2 CFNAM_VEG 1 3 CFNAM_VEG 1 4 CFNAM_VEG 1 5 CFNAM_VEG 1 6 CFNAM_VEG 1 7 CFNAM_VEG 1 8 CFNAM_VEG 1 9 VEG 1 10 CFNAM VEG 1 11 CFNAM VEG 1 12 CFNAM LAI 1 1 CFNAM LAI 1 2 CFNAM LAI 1 3 CFNAM LAI 1 4 CFNAM LAI 1 5 CFNAM LAI 1 6 CFNAM LAI 1 7 CFNAM LAI 1 8 CFNAM LAI 1 9 CFNAM LAI 1 10 LAI 1 11 LAI 1 12 ZO 1 1 Z0 1 2 Z0 1 3 Z0 1 4 Z0 1 5 Z0 1 6 ZO 1 7 Z0 1 8 Z0 1 9 ZO 1 10 CFNAM Z0 1 11 CFNAM Z0 1 12 CFNAM EMIS 1 1 CFNAM_EMIS 1 2 CFNAM_EMIS 1 3 CFNAM_EMIS 1 4 CFNAM_EMIS 1 5 CFNAM_EMIS 1 6 CFNAM_EMIS 1 7 CFNAM_EMIS 1 8 VEGTYPE_12 Z0_11 DAT 220 12 DAT VEGTYPE 01 VEGTYPE_O2 VEGTYPE_03 VEGTYPE_04 VEGTYPE_O5 VEGTYPE 06 VEGTYPE 07 VEGTYPE 08 gt VEGTYPE 09 VEGTYPE 10 VEGTYPE 11 VEG_01 DAT VEG_02 DAT VEG_03 DAT VEG_O4 DAT VEG_05 DAT VEG_06 DAT VEG_07 DAT VEG_08 DAT VEG_09 DAT VEG_10 DAT VEG_11 DAT VEG_12 DAT LAI_01 DAT
80. OEF flag to save in the output file the transfer coefficients used in the computation of the surface energy fluxes for each scheme on the four separate tiles and aggregated for the whole surface The diagnosed fields are stands for the scheme considered nothing field aggregated on the whole surface name of a scheme field for this scheme drag coefficient for momentum CH_x drag coefficient for heat CE drag coefficient for evaporation differs from CH only over sea ZO_ roughness length ZOH_ thermal roughness length LSURF VARS flag to save in the output file the surface specific humidity for each scheme on the four separate tiles on each patch of the vegetation scheme if existing The diagnosed fields are stands for the scheme considered nothing field aggregated on the whole surface name of a scheme field for this scheme QS_ specific huidity 12 3 Diagnostics relative to the ISBA vegetation scheme Namelist NAM_DIAG_ISBAn LPGD logical LSURF_EVAP_BUDGET logical LSURF_MISC_BUDGET logical LSURF_BUDGETC logical LPGD flag to save in the output file the physiographic fields of ISBA scheme that computed from ecoclimap data from the ecosystem fractions LSURF EVAP BUDGET flag to save in the output file the detailed terms of the water vapor fluxes on each patch of the vegetation Scheme if existing and aggregated for the natural
81. OLn default value CCHEM SURF FILE string of 28 characters CCHEM SURF FILE name of general chemical purpose ASCII input file 11 2 Chemical anthropogenic emissions Namelist NAM CH SURFn values T default value LCH SURF EMIS sc FALSE LCH SURF EMIS flag to use anthropogenic emissions or not 11 3 Chemical deposition over ocean Namelist NAM_CH_SEAFLUXn Fortran name values default value CCH_DRY_DEP string of 6 characters NONE WES89 WES89 CCH_DRY_DEP type of deposition scheme NONE no chemical deposition scheme WES89 Wesley 1989 deposition scheme 11 4 Chemical deposition over lakes Namelist WATFLUXn Fortran name values default value CCH_DRY_DEP string of 6 characters NONE WES89 WES89 CCH_DRY_DEP type of deposition scheme NONE no chemical deposition scheme WES89 Wesley 1989 deposition scheme 71 11 5 Chemical deposition over towns Namelist NAM_CH_TEBn values default_value CCH DRY DEP string of 6 characters NONE WES89 WES89 CCH_DRY_DEP type of deposition scheme NONE no chemical deposition scheme WES89 Wesley 1989 deposition scheme 11 6 Chemical deposition and biogenic emissions over vege tation Namelist NAM CH ISBAn Fortran name default value CCH DRY DEP string of 6 characters NONE WES89 WES89 LCH_BIO_FLUX logical FA
82. P txt in subroutine ol read atm conf it concerns especially the run configuration time step for surface time step for the atmosphere dimension of the grid date etc It reads also latitude and longitude in FORCING nc file and realizes some check consistency between input information netcdf files and PREP txt file After that the atmospheric variables are initialized air temperature specific humidity wind speed and direction shortwave direct and scattered and longwave incoming radiation liquid and solid precipitation CO2 concentration and surface pressure Then the main part of the initialization init_surf_atm is called a description is given in Overview of SURFEX setup Le Moigne 5 2 Temporal loop DO JFORC 1 STEP read Forcing CALL OL READ ATM YPROGRAM JFORC_STEP amp ZTA ZQA ZWIND ZDIR SW ZSCA SW ZLW ZSNOW ZRAIN ZPS amp ZC02 ZDIR DO JSURF_STEP 1 INB_ATM time interpolation of the forcing CALL SUNPOS IYEAR IMONTH IDAY ZTIME ZLON ZLAT XTSUN XZENITH XAZIM CALL OL TIME INTERP ATM JSURF 5 amp ZTA ZQA ZWIND ZDIR SW ZSCA SW ZLW ZSNOW ZRAIN ZPS amp ZC02 ZDIR There are 2 main loops the external JFORC STEP concerns the atmosphere and the internal deals with the surface JSURF STEP For each atmospheric step the forcing variables are read from FORCING nc In fact 2 time steps are read because during the surface loop forcin
83. S and CFILE_TEB data XTI_ROAD uniform prescribed value of deep road temperature supposed at an altitude of Om mean sea level altitude The temperature is then modified for each point depending on its altitude following a uniform vertical gradient of 6 5 Kkm 1 This prescribed value if defined has priority on the use of CFILE_TS and CFILE_TEB data CFILE_TS name of the file used to define the soil temperature profile The use of a file or prescribed value of X TS ROAD XTS_ROOF XTS_WALL XTI BLD or XTI ROAD has priority on the data in CFILE_TS file CTYPE TS type of the CFILE TS file if the latter is provided CTYPE_TS must then be given The following values are currently usable MESONH the file type is a MESONH file GRIB the file type is GRIB file coming from any of these models 1 ECMWF european center forecast model 2 ARPEGE Arpege french forecast model 3 ALADIN Aladin french forecast local model 4 MOCAGE Mocage french research chemistry model CFILE_TEB name of the file used to define any TEB variable The use of a file or prescribed value XWS_ROAD XWS_ROOF XTS_ROAD XTS ROOF XTS WALL XTI_BLD XTI_ROAD CFILE_WS or CFILE_TS has priority on the data in CFILE_TEB file CTYPE type of the CFILE_TEB file if the latter is provided must then be given The following values are currently usable MESONH the file type is a MESONH file GRIB the file type is a
84. SURFEX OFF LINE User s Guide surfex version v3 P Le Moigne 10 janvier 2008 Table des matieres I How to install the software 7 1 Export off line version of SURFEX 9 II Off line guide 13 2 Using the externalized surface in off line mode 15 2 1 Dia Ee Pee QVE 15 2 2 1 Mes nase S Oud EUR Er Ww mete Be 15 3 Namelist options 17 namelistilor PD EE uut etes 17 3 2 mamelist Tor PREPS 42312230 c xke PERSE En RAE b bs 18 3 9 namelist for RUN us s ssp Rem DOE EGRE 18 4 Data input files 19 AL ne tedt format RGB ROLE ee A 19 AAT FORCING NES an ane ole Eu a 19 2 PARAMS 225 48 te Ae Uu E 20 4 2 sasc format files A E PUE RUE XS 20 dnd rid dy ed 22 4 22 vo ko vue ARE SS 23 4 23 Extractng 2d fields iuo XO PESE ae 23 424 I O diagr m us Remo LIA Ge a an ae 25 5 Architecture of the off line driver 27 Bul Initialization gt soute RAS EA ee 27 5 2 Temporal loops 2 4 ua an A a a ee EVA 27 5 2 1 coupling surface with the atmosphere 28 5 2 2 writing out prognostic variables 28 5
85. TYP_EMIS 1 6 CFTYP_EMIS 1 7 CFTYP_EMIS 1 8 FTYP_VEG 1 10 FTYP_VEG 1 11 FTYP_VEG 1 12 FTYP_LAI 1 10 FTYP_LAI 1 11 FTYP_LAI 1 12 gt ASCLLV gt ASCLLV gt ASCLLV gt ASCLLV gt ASCLLV gt ASCLLV gt ASCLLV gt ASCLLV gt ASCLLV gt ASCLLV gt ASCLLV gt ASCLLV ASCLLV ASCLLV gt ASCLLV gt ASCLLV ASCLLV ASCLLV ASCLLV gt ASCLLV gt ASCLLV gt ASCLLV gt ASCLLV gt ASCLLV gt ASCLLV ASCLLV gt ASCLLV gt ASCLLV gt ASCLLV gt ASCLLV gt ASCLLV gt ASCLLV ASCLLV ASCLLV ASCLLV ASCLLV gt ASCLLV ASCLLV ASCLLV gt ASCLLV gt ASCLLV gt ASCLLV gt ASCLLV gt ASCLLV gt ASCLLV gt ASCLLV gt ASCLLV gt ASCLLV gt ASCLLV ASCLLV gt ASCLLV gt ASCLLV gt ASCLLV gt ASCLLV gt ASCLLV gt ASCLLV amp NAM_DATA_TEB CFNAM_EMIS 1 9 CFNAM_EMIS 1 10 CFNAM_EMIS 1 11 CFNAM_EMIS 1 12 CFNAM_DG 1 1 CFNAM_DG 1 2 CFNAM_DG 1 3 CFNAM_ROOTFRAC 1 1 CFNAM_ROOTFRAC 1 2 CFNAM_ROOTFRAC 1 3 CFNAM_RSMIN 1 20 0 ZOH 1 GAMMA 1 CFNAM_WRMAX_CF 1 CFNAM_RGL 1 CFNAM_CV 1 CFNAM_ALBNIR_VEG 1 CFNAM_ALBVIS_VEG 1 CFNAM_ALBUV_VEG 1 CFNAM_ALBNIR_SOIL 1 CFNAM_ALBVIS_SOIL 1 CFNAM_ALBUV_SOIL 1 CFNAM_GMES 1 CFNAM_RE25 1 CFNAM_BSLAI 1 CFNAM_LAIMIN 1 CFNAM_SEFO
86. UE there 2 possibilities ideal physiographic fields These fields are either uniform fraction of each 215 ecoclimap ecosystem orography or any field needed by the surface schemes As mentionned above orography can be in the case of the coupling with an atmospheric model imposed as the atmospheric model non uniform field 37 realistic physiographic fields PGD can use files to build accurate physiographic fields from geographical information This is possible only if the grid chosen can be linked to geographical coordinates latitude and longitude i e if the grid type is LATLONREG or CONF PROJ The files that can be used are A file describing the type of cover of the surface This describes where are located the different cover types forests towns seas etc At the time being the file provided contains the ecoclimap data 215 land covers on the world with a resolution of 30 PGD computes the fraction of surface coverage occupied by each type in the grid mesh From this information the surface parameter convenient for the surface schemes such as building fraction leaf area index etc are deduced using correspondance arrays a parameter has always the same value for a given cover type anywhere in the world A file containing the orography The resolution of the file is 30 on the world This allows to compute the model orography and the following subgrid sca
87. UNIF XUNIF XUNIF XUNIF XUNIF XUNI r Tj Ij _LA LAI LAI LA LAI LAI LA LA LAI 20 20 20 20 20 20 20 20 20 20 20 20 _EM _EMI _EMI _EM _EM _EMI _EM _EM _EMI _EMI _EM _EM _VEG _VEG F_VEG _VEG _VEG _VEG _VEG _VEG _VEG _VEG _VEG _VEG _LA _LA LAI LAI LA LAI LAI LA LA LAI LAI LA 20 20 20 20 20 20 20 20 20 20 20 2 4 2 5 2 6 2 7 2 8 2 9 2 10 2511 2 12 2 1 2 2 2 3 2 4 2 5 2 6 2 7 2 8 2 9 2 10 2 11 2 12 2 1 2 2 2 3 2 4 2 5 2 6 s 2 7 2 8 2 9 2 10 s 2 11 8 2 12 3 1 3 2 3 3 3 4 3 5 3 6 3 7 3 8 3 9 3 10 3 11 3 12 3 1 3 2 3 3 3 4 3 5 3 6 3 7 3 8 3 9 3 10 3 11 3 12 3 1 3 2 3 3 3 4 3 5 3 6 3 7 3 8 3 9 3 10 3 11 une c 222222222222 22 2222242222 22222422 2 2 2 3 2 2 3 3 2 2 P4 P4
88. XUNIF_LAI XUNIF_LAI XUNIF_LAI XUNIF_ZO XUNIF_ZO XUNIF_ZO XUNIF_ZO XUNIF_ZO XUNIF_ZO XUNIF_ZO XUNIF_ZO XUNIF_ZO XUNIF_ZO XUNIF_ZO 9 11 XUNIF ZO 9 12 XUNIF EMIS 9 1 XUNIF_EMIS 9 2 XUNIF_EMIS 9 3 XUNIF_EMIS 9 4 XUNIF_EMIS 9 5 XUNIF_EMIS 9 6 XUNIF_EMIS 9 7 XUNIF_EMIS 9 8 XUNIF_EMIS 9 9 XUNIF_EMIS 9 10 XUNIF_EMIS 9 11 XUNIF_EMIS 9 12 XUNIF_VEG 10 1 XUNIF_VEG 10 2 XUNIF_VEG 10 3 XUNIF_VEG 10 4 XUNIF_VEG 10 5 XUNIF_VEG 10 6 XUNIF_VEG 10 7 XUNIF_VEG 10 8 XUNIF_VEG 10 9 XUNIF_VEG XUNIF_VEG XUNIF_VEG XUNIF_LAI XUNIF_LAI XUNIF_LAI 9 1 9 2 9 3 9 4 9 5 9 6 9 7 9 8 9 9 9 10 9 11 9 12 9 1 9 2 9 3 9 4 9 5 9 6 9 7 9 8 9 9 9 10 9 11 9 12 9 1 9 2 9 3 9 4 9 5 9 6 9 7 9 8 9 9 9 10 10 1 10 2 10 3 10 10 10 11 10 12 XUNI XUNI XUNI XUNI XUNI XUNI XUNI XUNI XUNI XUNIF XUNIF XUNIF XUNIF XUNIF XUNIF XUNIF XUNIF XUNIF XUNIF XUNIF XUNIF XUNIF XUNIF XUNIF XUNIF XUNIF XUNIF XUNIF XUNIF XUNIF XUNIF XUNIF XUNIF XUNIF XUNIF XUNI XUNIF XUNIF XUNIF XUNIF XUNIF XUNIF XUNIF XUNIF XUNIF XUNI XUNI XUNI XUNI XUNI XUNI XUNI XUNI XUNI XUNI XUNI XUNI XUNIF XUNIF XUNIF XUNIF XUNIF X
89. YEAR integer none NMONTH integer none NDAY integer none XTIME real none LWAT_SBL logical F XTS_WATER_UNIF uniform prescribed value of water surface temperature supposed at an altitude of Om mean sea level 1 titude The temperature is then modified for each point depending on its altitude following a uniform vertical gradient of 6 5 Kkm 1 This prescribed value if defined has priority on the use of CFILE_WATFLX data CFILE_WATFLX name of the file used to define the Sea surface Temperature The use of a file or prescribed value XTS_WATER_UNIF has priority on the data in CFILE_WATFLX file CTYPE type of the CFILE_WATFLX file if the latter is provided CTYPE must then be given The following values are currently usable MESONH the file type is MESONH file GRIB the file type is GRIB file coming from any of these models 1 ECMWF european center forecast model 2 ARPEGE Arpege french forecast model 3 ALADIN Aladin french forecast local model 4 MOCAGE Mocage french research chemistry model NYEAR year of surface UTC time It is used only if no atmospheric file or no surface file is given in those the date can be read NMONTH month of surface UTC time It is used only if no atmospheric file or no surface file is given in those the date can be read NDAY day of surface UTC time It is used only if no atmospheric file or no surface file is given in those the date
90. YP ALBNIR VEG XUNIF ALBVIS VEG CFNAM ALBVIS VEG CFTYP ALBVIS VEG XUNIF ALBUV VEG CFNAM ALBUV VEG CFTYP ALBUV VEG NIF ALBNIR SOIL NAM ALBNIR SOIL TYP ALBNIR SOIL NIF ALBVIS SOIL NAM ALBVIS SOIL TYP ALBVIS SOIL NIF_ALBUV_SOIL CFNAM_ALBUV_SOIL CFTYP_ALBUV_SOIL real character LEN 28 character LEN 6 real character LEN 28 character LEN 6 real character LEN 28 character LEN 6 real character LEN character LEN 6 real character LEN character LEN 6 real character LEN character LEN real character LEN character LEN 6 character LEN 28 character LEN 6 rea character LEN 28 cha rea character LEN 28 cha rea cha cha rea charac character LEN DIRECT BINLLF BINLLV ASCLLV DIRECT BINLLF BINLLV ASCLLV DIRECT BINLLF BINLLV ASCLLV DIRECT BINLLF BINLLV ASCLLV DIRECT BINLLF BINLLV ASCLLV DIRECT BINLLF BINLLV ASCLLV DIRECT BINLLF BINLLV ASCLLV DIRECT BINLLF BINLLV ASCLLV DIRECT BINLLF BINLLV ASCLLV DIRECT BINLLF BINLLV ASCLLV DIRECT BINLLF BINLLV ASCLLV DIRECT BINLLF BINLLV ASCLLV none
91. _DMAX 2 _CE_NITRO _CF_NITRO _CNA_NITRO _RSMIN _GAMMA _WRMAX_CF _RGL CV 200 ZOH _ALBNIR_VEG _ALBVIS_VEG _ALBUV_VEG _ALBNIR_SOIL _ALBVIS_SOIL _ALBUV_SOIL _GMES _RE25 _BSLA _LAIMIN _SEFOLD GC _DMAX _F21 _H_TREE _CE_NITRO _CF_NITRO _CNA_NITRO _RSMIN _GAMMA _WRMAX_CF 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0425 0 3 0 1 0 06 0 003 0 0000003 0 06 0 3 5184000 0 00025 0 0 EP 06 003 0000003 06 13 5184000 0 00025 Ot 0 3 20 3 79 9 84 1 3 40 2 P4 e eme c c c U U U c c Pd bd bhd Pd Pd bd i ei Bd fa fi Pd bd fi bd Dd fi fi d 54 en P P P P Pj Pj P Pj P3 Pj c P4 PS PS P4 a N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N F_DG 7 2 F_DG 7 3 F_DG 8 1 F_DG 8 2 F_DG 8 3 F_ROOTFRAC 5 1 F_ROOTFRAC 5 2 F_ROOTFRAC 5 3 F_ROOTFRAC 6 1 F_ROOTFRAC 6 2 F_ROOTFRAC 6 3 F_ROOTFRAC 7 1 F_ROOTFRAC 7 2 F_ROOTFRAC 7 3 F_ROOTFRAC 8 1 F_ROOTFRAC 8 2 F_ROOTFRAC 8 3
92. _WALL 285 XWS_ROAD 0 XWS_ROOF 0 NYEAR 2004 NMONTH NDAY 10 25 XTS_WATER_UNIF 285 NYEAR 2004 amp NAM_PREP_ISBA amp NAM_PREP_ISBA_SNOW 10 OFFLINE amp NAM_DIAG_SURFn amp NAM_DIAG_SURF_ATMn amp NAM_DIAG_ISBAn amp NAM_DIAG_TEBn amp NAM_SGH_ISBAn amp NAM_ISBAn amp NAM_CH_ISBAn amp NAM_SEAFLUXn amp NAM_CH_SEAFLUXn amp NAM_CH_WATFLUXn amp NAM_CH_TEBn XHUG XHUG XHUG XTG_ XTG_ XTG_ NYEA NMON NDAY XTIM A 2 2 Uniform amp NAM_DATA_ISBA E 21600 _SURF 0 2 _ROOT 0 2 _DEEP 0 2 SURF 285 ROOT 288 DEEP 292 R 2004 TH 10 25 E 21600 CSNOW 3 L YPROGRAM ASCII gt YCOUPLING E LSURF_BUDGET T N2M 1 LFRAC T LPGD LSURF_EVAP_BUDGET LSURF_MISC_BUDGET LSURF_BUDGETC LSURF_MISC_BUDGET CRUNOFF WSAT CROUGH 2040 CSCOND NP89 CALBEDO DRY CCiDRY DEF CSOILFRZ DEF CDIFSFCOND DEF CSNOWRES DEF CCPSURF DRY CCH_DRY_DEP WES89 CSEA ALB TA96 CCH DRY WES89 CCH_DRY_DEP WES89 CCH_DRY_DEP WES89 ududd Hd values prescribed NTIME 12 XUNIF_VEGTYPE 1 XUNIF VEGTYPE 2 XUNIF VEGTYPE 3 XUNIF_VEGTYPE 4 XUNIF_VEGTYPE 5 XUNIF_VEGTYPE 6 XUNIF_VEGTYPE 7 kB 1d example with patches Pj P3 Pj P
93. ables are done by reading a grib file Arpege file in the example amp NAM_PGDFILE CPGDFILE PGDFILE amp NAM_FRAC LECOCLIMAP T amp NAM_PGD_GRID CGRID LONLAT REG amp NAM_CONF_PROJ XLATO 90 XLONO 0 XRPK 1 0 amp NAM_CONF_PROJ_GRID NIMAX 200 NJMAX 200 XLATCEN 90 XLONCEN 0 XDX 25000 XDY 25000 LONLAT REG XLONMIN 4 5 XLONMAX 4 5 XLATMIN 48 5 XLATMAX 48 5 6 NLON 6 7 amp NAM_PGD_SCHEMES CNATURE ISBA gt j CSEA SEAFLX CTOWN TEB CWATER WATFLX amp NAM_COVER YCOVER ecoclimats_v2 2 YFILETYPE DIRECT amp NAM_ZS YZS gtopo30 YFILETYPE DIRECT amp NAM_ISBA YCLAY clay_fao YCLAYFILETYPE DIRECT 3 YSAND sand_fao YSANDFILETYPE DIRECT XUNIF_RUNOFFB 0 5 23 1 NON 1 NGROUND_LAYER 3 81 amp NAM_PREPFILE PREP SURF amp NAM PREP TEB amp NAM SEAFLUX amp NAM_PREP_WATFLUX amp NAM_PREP_ISBA amp NAM_PREP_ISBA_SNOW 10 OFFLINE amp NAM_DIAG_SURFn amp NAM_DIAG_SURF_ATMn amp NAM_DIAG_ISBAn amp NAM_DIAG_TEBn amp NAM_SGH_ISBAn amp NAM_ISBAn amp NAM_CH_ISBAn amp NAM_SEAFLUXn amp NAM_CH_SEAFLUXn a
94. al temperature Fortran type default valuc XWS ROAD real none XWS ROOF real none CFILE WS string of 28 characters CFILE_TEB in this namelist CTYPE WS string of 6 characters MESONH CTYPE in this namelist GRIB XTS ROAD real none XTS ROOF real none XTS WALL real none XTI BLD real none XTI ROAD real none CFILE_TS string of 28 characters CFILE_TEB in this namelist CTYPE_TS string of 6 characters MESONH CTYPE in this namelist GRIB CFILE_TEB string of 28 characters CFILE in NAM_PREP_SURF_ATM CTYPE string of 6 characters MESONH CFILETYPE in NAM_PREP_SURF_ATM GRIB NYEAR integer none NMONTH integer none NDAY integer none XTIME real none LTEB_CANOPY logical F XWS ROAD uniform prescribed value of soil water interception for the road reservoir This prescribed value if defined has priority on the use of CFILE_WS and CFILE_TEB data XWS_ROOF uniform prescribed value of soil water interception for the roof reservoir This prescribed value if defined has priority on the use of CFILE_WS and CFILE_TEB data CFILE WS name of the file used to define the soil water reservoirs The use of a file or prescribed value of XWS_ROAD and XWS ROOF has priority on the data in CFILE_WS file CTYPE WS type of the CFILE_WS file if the latter is provided CTYPE_WS must then be given The following values are currently usable MESONH the file type is a MESONH file GRIB the fil
95. aracter LEN 28 CFTYP_NATURE character LEN 6 DIRECT BINLLF BINLLV ASCLLV XUNIF_TOWN real between 0 and 1 CFNAM_TOWN character LEN 28 CFTYP TOWN character LEN 6 DIRECT BINLLF BINLLV ASCLLV XUNIF SEA uniform prescribed value of sea fraction If XUNIF_SEA is set file CFNAM_SEA is not used CFNAM_SEA sea fraction data file name If XUNIF SEA is set file CFNAM_SEA is not used CFTYP_SEA type of sea data file DIRECT BINLLF BINLLV ASCLLV XUNIF WATER uniform prescribed value of water fraction If XUNIF_WATER is set file CFNAM_WATER is not used CFNAM WATER water fraction data file name If XUNIF_WATER is set file CFNAM_WATER is not used CFTYP WATER type of water data file DIRECT BINLLF BINLLV ASCLLV XUNIF NATURE uniform prescribed value of nature fraction If XUNIF_NATURE is set file CFNAM NATURE is not used CFNAM_NATURE nature fraction data file name If XUNIF_NATURE is set file CFNAM NATURE is not used CFTYP_NATURE type of nature data file DIRECT BINLLF BINLLV ASCLLV XUNIF_TOWN uniform prescribed value of town fraction If XUNIF_TOWN is set file CFNAM_TOWN is not used CFNAM_TOWN town fraction data file name If XUNIF_TOWN is set file CFNAM_TOWN is not used CFTYP_TOWN type of town data file DIRECT BINLLF BINLLV ASCLLV If flag LECOCLIMAP is set to TR
96. d maximum values of longitudes and latitudes as well as the number of grid points in each direction XLONMIN XLONMAX XLATMIN XLATMAX NLON NLAT NAM_COVER YCOVER is the name of the file which contains the ECOCLIMAP database for the definition of the cover present in the working area YFILETYPE is the type of file NAM ZS YZS is the name of the file which contains the mnt at 30 resolution nearly 1km YFILETYPE is the type of file NAM ISBA YCLAY is the name of the file which contains the clay percentage for the time being its taken from FAO at 10 km resolution YSAND is the name of the file which contains the sand percentage for the time being its taken from FAO at 10 km resolution XUNIF RUNOFFB 0 5 sets a uniform value for the slope of the runoff curve CISBA 3 L corresponds to the standard 3 layers force restore isba scheme CPHOTO NON no specific photosynthesis used in this experiment NPATCH 1 single patch for vegetation NGROUND_LAYER 3 number of soil layers 17 3 2 namelist for PREP NAM_PREP_SURF_ATM CFILE and CFILETYPE are respectively the name and the type of the atmospheric file where fields are read at the level of full surface NAM_PREP_TEB CFILE_TEB and CTYPE are respectively the name and the type of the atmospheric file where fields are read for TEB Town Energy Balance scheme NAM PREP SEAFLUX CFILE_SEAFLX and CTYPE are respectively the name an
97. d the type of the atmospheric file where fields are read for SEAFLUX scheme NAM_PREP_WATFLUX CFILE_WATFLX and CTYPE are respectively the name and the type of the atmospheric file where fields are read for WATERFLUX scheme NAM PREP ISBA CFILE_ISBA and CTYPE are respectively the name and the type of the atmospheric file where fields are read for ISBA Interaction between Soil Biosphere and Atmosphere scheme NAM_PREP_ISBASNOW CSNOW defines the snow scheme used in ISBA 3 3 for RUN NAM IO OFFLINE ASCII means that IO will be treated in ascii format and so PGD and PREP facilities will be used to prepare physiography and surface initial state Ascii file PREP txt is expected to initialize physiography and initial values of prognostic fields The other possibility is YPROGRAM OFFLIN in that case output of simulations will be written in netcdf files YCOUPLING allows to choose between explicit E and implicit coupling It doesn t matter in an off line simulation since there s no effective coupling YWRPRGM ascii output format if YWRPRGM TEXTE netcdf format if YWRPRGM OFFLIN default Usefull for 1d experiments LPRINT shows the time evolution of your simulation LRESTART is used to save the surface state at the end of the simulation The file that is produced is named SURFOUT txt like for PGD and has to be renamed into PREP txt to start a new
98. deep soil layer s This prescribed value if defined has priority on the use of CFILE_WG and CFILE ISBA data CFILE_WG name of the file used to define the soil water profiles The use of a file or prescribed value of XHUG_SURF XHUG ROOT and XHUG DEEP has priority on the data in CFILE_WG file CTYPE WG type of the CFILE_WG file if the latter is provided CTYPE_WG must then be given The following values are currently usable MESONH the file type is a MESONH file GRIB the file type is a GRIB file coming from any of these models 1 ECMWF european center forecast model 2 ARPEGE Arpege french forecast model 3 ALADIN Aladin french forecast local model 4 MOCAGE Mocage french research chemistry model XTG_SURF uniform prescribed value of temperature for the surface soil layer supposed at an altitude of Om mean sea level altitude The temperature is then modified for each point depending on its altitude following a uniform vertical gradient of 6 5 Kkm 1 This prescribed value if defined has priority on the use of CFILE_TG and CFILE ISBA data XTG ROOT uniform prescribed value of temperature for the root zone soil layer s supposed at an altitude of Om mean sea level altitude The temperature is then modified for each point depending on its altitude following a uniform vertical gradient of 6 5 Kkm 1 This prescribed value if defined has priority on the use of CFILE_TG and CFILE_ISBA data XTG DEEP uniform p
99. e fraction of land covers contained in each gridbox These fractions are computed from ECOCLIMAP database amp FULL DIM FULL 1280 amp FULL DIM SEA amp FULL DIM_NATURE 1279 amp FULL 1 amp FULL DIM_TOWN 240 amp FULL ECOCLIMAP 2 T amp NATURE ISBA ISBA 3 L amp NATURE PHOTO PHOTO NON amp NATURE GROUND_LAYER GROUND_LAYER 3 amp NATURE PATCH_NUMBER PATCH_NUMBER 1 Value of DIM_FULL indicates that this is a 2D exercise and the gridbox contains a non zero fraction of nature of water lake and of town but there s no fraction of sea because the number of points with a non zero fraction of sea DIM_SEA is zero 1279 gridboxes contain vegetation and 240 gridboxes contain a fraction of town onmly one gridbow contains a fraction ok inland water lake Surface scheme to treat vegetation is Isba 3 L which means that soil is represented with 3 layers The number of patches is 1 it indicates that the vegetation is not splitted into patches like it could this should be the case for the A gs option of Isba that treats explicitly photosynthesis GDS COLAAGES 2007 01 24 14 33 Fic 4 5 Orography field taken from PGD txt file 4 2 2 PREP txt This file contains the information related to physiography and orography read from PGD txt file and rewritten as well as initial values of prognostic variables of the different schemes contained in SURFEX amp NATURE
100. e type is a GRIB file coming from any of these models 1 ECMWF european center forecast model 2 ARPEGE Arpege french forecast model 3 ALADIN Aladin french forecast local model 4 MOCAGE Mocage french research chemistry model XTS ROAD uniform prescribed value of surface temperature for road supposed at an altitude of Om mean sea level altitude The temperature is then modified for each point depending on its altitude following a uniform vertical gradient of 6 5 Kkm 1 This prescribed value if defined has priority on the use of CFILE_TS and CFILE_TEB data XTS_ROOF uniform prescribed value of surface temperature for roof supposed at an altitude of Om mean sea level altitude The temperature is then modified for each point depending on its altitude following a uniform vertical gradient of 6 5 Kkm 1 This prescribed value if defined has priority on the use of CFILE_TS and CFILE_TEB data XTS_WALL uniform prescribed value of surface temperature for wall supposed at an altitude of Om mean sea level altitude The temperature is then modified for each point depending on its altitude following a uniform vertical gradient of 6 5 Kkm 1 This prescribed value if defined has priority on the use of CFILE_TS and CFILE_TEB data XTI_BLD uniform prescribed value of internal building temperature This temperature is not dependent on altitude This prescribed value if defined has priority on the use of CFILE_T
101. edo WET wet bare soil albedo MEAN albedo for bare soil half wet half dry EVOL albedo of bare soil evolving with soil humidity CROUGH type of orographic roughness length The following options are currently available ZO1D orographic roughness length does not depend on wind direction Z04D orographic roughness length depends on wind direction CCPSURF type of specific heat at surface The following options are currently available DRY specific heat does not depend on humidity at surface HUM specific heat depends on humidity at surface XTSTEP time step for ISBA Default is to use the time step given by the atmospheric coupling seconds XCGMAX maximum value for soil heat capacity Namelist SURF DST Fortran type default_value CEMISPARAM string of 5 characters Dal87 Dal87 CVERMOD string of 6 characters CEMISPARAM parameterization type Chapitre 11 How to run the externalized surface chemical schemes Here are described the options available during the run of the several schemes for emission and deposition of chemical species Note that all the schemes for deposition and emission of chemical species do activate only if chemical species are present i e if the coupling between atmosphere and surface include the chemical species concentrations and fluxes 11 1 Chemical settings control Namelist NAM CH CONTR
102. er produced or read from a file Then the prognostic surface variables either ideal or realistic can be computed by PREP If you use MESONH atmospheric model the input and output surface files are the same as the atmospheric ones so there is no need to specify via surface namelists any information about the input or output file names Namelist NAM_PGDFILE Note however that in PREP_PGD just before the call to the surface physiographic computation in PGD for which the namelists are described in the next chapter there is a namelist to define the output physiographic file Fortran type CPGDFILE string of 28 characters MESONH run and diagnostics Then the MESONH run can be done During this one the diagnostics can be or not be computed In DIAG the surface diagnostics can also be recomputed 7 2 3 in AROME In this case MESONH FM files are also used for the surface only The parallelization of the surface fields is done during the reading or writing of the fields by parallelization routines of ALADIN atmospheric model Chapitre 8 The physiographic fields 8 1 Overview of physiographic fields computation The physiographic fields are averaged or interpolated on the specified grid by the program PGD They are stored in a file called PGD file but only with the physiographic 2D fields the geographic and grid data written in it During the PGD facility 1 You choose the surface schemes you will use You choose
103. ference latitude for conformal projection real decimal degrees XLONO reference longitude for conformal projection real decimal degrees XRPK cone factor for the projection real XRPK 1 polar stereographic projection from south pole 1 gt XRPK gt 0 Lambert projection from south pole XRPK 0 Mercator projection from earth center 1 lt XRPK lt O Lambert projection from north pole XRPK 1 polar stereographic projection from north pole XBETA rotation angle of the simulation domain around the reference longitude real Namelist NAM CONF PROJ GRID This namelists defines the horizontal domain in case CGRID CONF PROJ XLATCEN real XLONCEN real NIMAX integer NJMAX integer XDX real XDY real XLATCEN latitude of the point of the center of the domain real decimal degrees XLONCEN longitude of the point of the center of the domain real decimal degrees NIMAX number of surface points of the grid in direction NJMAX number of surface points of the grid in direction y XDX grid mesh size on the conformal plane in x direction real meters XDY grid mesh size on the conformal plane in y direction real meters Namelist INIFILE CONF PROJ This namelists defines the horizontal domain from an existing surface file in which grid type is PROJ If nothing is set in the namelist a grid identical as the one in the file is chosen Fortran
104. fraction_of_vegetation_type_9 VEGTYPE_PATCH_10 fraction of vegetation type 10 PATCH 11 fraction of vegetation type 11 PATCH 12 fraction of vegetation type 12 ISBA PHYSIOGRAPHIC VARIABLES VEG Output vegetation fraction ZO ISBA Output 20 ISBA LAI Output LAI ISBA ALBNIR SOIL Output ALBNIR SOIL ALBVIS_SOIL Output ALBVIS SOIL PROGNOSTIC VARIABLES T_ROOF1 Roof_Temperature_Layer_1 Roof_Temperature_Layer_2 Roof_Temperature_Layer_3 Road_Temperature_Layer_1 Road Temperature Layer 2 T_ROAD3 Road Temperature Layer 3 T_WALL1 Wall Temperature Layer 1 T_WALL2 Wall Temperature Layer 2 T_WALL3 Wall Temperature Layer 3 TI BLD Internal Building Temperature TI ROAD Deep Road Temperature WS ROOFi Roof Water Content Layer 1 WS_ROOF2 Roof Water Content Layer 2 WS ROOF3 Roof Water Content Layer 3 WS ROADi Road Water Content Layer 1 WS ROAD2 Road Water Content Layer 2 WS ROAD3 Road Water Content Layer 3 T_CANYON Canyon Air Temperature Q_CANYON Canyon Air Humidity TEB DIAGNOSTIC VARIABLES RI Averaged Richardson Number CD TEB Averaged Drag Momentum Coef CDN_TEB Averaged Neutral Drag Coef CH TEB Averaged Drag Thermal Coef RESA TEB Averaged Aerodyn Resistance RN_TEB Averaged Net Radiation _ Averaged Sensible Heat Flu
105. g are linearly in terpolated in time ol time interp atm because the surface time step is shorter than the atmosphere one Once all forcing are known for a given surface step physical computation may begin 27 5 2 1 coupling surface with the atmosphere CALL COUPLING_SURF_ATM_n YPROGRAM YCOUPLING amp ZTSTEP_ISBA IYEAR IMONTH IDAY ZTIME INI ISCAL IBANDS XTSUN XZENITH XAZIM XZREF XUREF XZS XU XV XQA XTA XRHOA XSV XCO2 CSV XRAIN XSNOW XLW XDIR SW XSCA SW XSW BANDS XPS XPA XSFTQ XSFTH XSFTS XSFCO2 XSFU XSFV XTSRAD XDIR ALB XSCA ALB XEMIS XPEW A COEF XPEW B COEF XPET A COEF XPEQ A COEF XPET B COEF XPEQ B COEF YTEST RP gt coupling surf atm is the subroutine that realizes the interface between the surface and the atmos phere It receives the atmospheric forcing some configuration parameters time step dimensions and returns the fluxes computed at surface aggregated for each gridbox 5 2 2 writing out prognostic variables CALL WRITE n OFFLIN ALL This subroutine writes out the prognostic variables of the different schemes In off line mode they will be written out into netcdf files named ISBA PROGNOSTIC OUT nc TEB PROGNOSTIC OUT nc SEAFLUX PROGNOSTIC OUT nc WATFLUX_PROGNOSTIC OUT nc Some diagnostics may also be written depending on activated switch in namelist OPTIONS nam 5 2 3 compute diagnostics CALL DIAG_SURF_ATM_
106. genic emissions 11 3 Chemical deposition over ocean 11 4 Chemical deposition over lakes 11 5 Chemical deposition over towns e a 11 6 Chemical deposition and biogenic emissions over vegetation 12 Externalized surface diagnostics 12 1 Diagnostics relative to the general surface monitor 12 2 Diagnostics relative to the general surface monitor and to each surface scheme 12 3 Diagnostics relative to the ISBA vegetation scheme 12 4 Diagnostics relative to TEB town scheme 13 Externalized surface model output fields 13 1 Prognostic model output fields ISBA Gk Soke due ara ceat fee he e ec a 13122 SEAEBUX ue Le de ose eee ee eas 13 1 3 TED 2222 22 ae Ie Dr ana s 1814 WATEEEUX 4 5 bee Be hr ed 135 kou eA DE utto epe A Example of namelist surface parameters defined from A 2 user defined surface parameters A 2 1 Uniform values prescribed 1d example without patches A 2 2 Uniform values prescribed 1d example with patches A 2 3 Surface parameters read from external files 67 67 68 69 70 71 71 71 71 71 72 72
107. he files containing the data for the fields you have specified in CEMIS_PGD_NAME CEMIS_PGD_COMMENT list of the comments associated to each emission field NEMIS_PGD_TIME list of the time of the files containing the data for the fields you have specified in CEMIS_PGD_NAME CEMIS_PGD_FILETYPE list of the types of the files containing the data for the fields you have specified in CEMIS_PGD_NAME DIRECT BINLLF BINLLV ASCLLV CEMIS PGD AREA area of meaningfullness of the fields you have specified in CEMIS_PGD_NAME CALL NAT SEA respectively for everywhere natural areas town areas sea inland waters land natural cover town For example oceanic emission of DNS is relevant on SEA CEMIS PGD ATYPE type of averaging during PGD for the fields you have specified in CEMIS_PGD_NAME CARI INV respectively for arithmetic inverse and logarithmic averaging Example amp NAM_CH_EMIS_PGD NEMIS_PGD_NBR 2 CEMIS_PGD_NAME 1 COE NEMIS_PGD_TIME 1 0 CEMIS_PGD_COMMENT 1 CO_00h00 CEMIS_PGD_AREA 1 LAN CEMIS_PGD_ATYPE 1 ARI CEMIS_PGD_FILE 1 co_00 asc CEMIS_PGD_FILETYPE 1 ASCLLV CEMIS_PGD_NAME 2 COE NEMIS_PGD_TIME 2 43200 CEMIS_PGD_COMMENT 2 lt 0 12 00 CEMIS_PGD_AREA 2 LAN CEMIS_PGD_ATYPE 2 ARI CEMIS_PGD_FILE 2 c
108. hose the date can be read seconds LFLK_SBL activates surface boundary multi layer scheme over inland water 9 6 Vegetation scheme ISBA Namelist NAM_PREP_ISBA This namelist information is used to initialize the ISBA vegetation scheme variables soil temperature profile soil water and ice profiles water intercepted by leaves snow XHUG SURF real none XHUG_ROOT real none XHUG_DEEP real none CFILE_WG string of 28 characters CFILE_ISBA in this namelist CTYPE WG string of 6 characters MESONH CTYPE in this namelist GRIB XTG_SURF real none XTG ROOT real none XTG_DEEP real none CFILE TG string of 28 characters in this namelist CTYPE TG string of 6 characters MESONH CTYPE in this namelist GRIB CFILE_ISBA string of 28 characters CFILE in NAM_PREP_SURF_ATM CTYPE string of 6 characters MESONH CFILETYPE in NAM_PREP_SURF_ATM GRIB NYEAR integer none NMONTH integer none NDAY integer none XTIME real none LISBA_CANOPY logical F XHUG_SURF uniform prescribed value of soil water index SWI for the surface soil layer This prescribed value if defined has priority on the use of CFILE_WG and CFILE_ISBA data XHUG_ROOT uniform prescribed value of soil water index SWI for the root zone soil layer s This prescribed value if defined has priority on the use of CFILE_WG and CFILE_ISBA data XHUG DEEP uniform prescribed value of soil water index SWI for the
109. ialize chemistry components emissions You can treat up to 999 such fields These fields will be written on all the files you will use later after prognostic fields initialization or during and after run etc Their name in the files are EMIS GRnnn where nnn goes from 001 to 999 During the execution of the programs these fields are stored in the XEMIS_GR_FIELDS first dimension spatial dimension second dimension total number of fields in the module MODD_EMIS_GR_FIELD n The temporal evolution the aggregation of prescribed emissions and the link with the corresponding chemical prognostic variables are handled by the subroutine CH_EMISSION_FLUXn f90 Fortran type default valuc NEMIS_PGD_NBR integer CEMIS_PGD_NAME 1000 character LEN 20 CEMIS PGD FILE 1000 character LEN 28 CEMIS PGD COMMENT 1000 character LEN 40 NEMIS_PGD_TIME integer CEMIS_PGD_FILETYPE 1000 character LEN 6 DIRECT CEMIS PGD AREA 1000 character LEN 3 ALL CEMIS PGD ATYPE 1000 character LEN 3 ARD Only the first NEMIS_PGD_NBR values in these arrays are meaningfull NEMIS_PGD_NBR number of dummy fields CEMIS_PGD_NAME list of the dummy fields you want to initialize with your own data You can give any name you want This is way to describe what is the field This information is not used by the program It is just written in the FM files CEMIS PGD FILE list of the names of t
110. ile for all schemes Namelist NAM_PREP_SURF_ATM This namelist information is used to possibly initialize the date of all surface schemes The namelist information is used only if no input data file is used either from namelist or by fortran code as in MESONH programs If a file is used the date is read in it define the default file in which each scheme can read the needed data e g temperature Note that all the information given in this namelist can be erased for each scheme by the namelist corresponding to this scheme as the information in the shceme namelists have priority on namelist NAM PREP SURF ATM Fortran type default value CFILE string of 28 characters atmospheric file used in the program calling the surface facilities if any none otherwise CFILETYPE string of 6 characters MESONH type of the atmospheric file if any GRIB none otherwise NYEAR integer none NMONTH integer none NDAY integer none XTIME real none CFILE name of the file used to define 1 the date 2 the file in which to read the needed data e g temperature The use of a file or prescribed value in each scheme namelist has priority on the data in CFILE file of namelist NAM PREP SURF ATM CFILETYPE type of the CFILE file if the latter is provided CTYPE must then be given The following values are currently usable MESONH the file type is a MESONH file GRIB the file type is GRIB file coming from
111. irection real meters Namelist INIFILE CARTESIAN This namelists defines the horizontal domain from an existing surface file in which grid type is CARTESIAN If nothing is set in the namelist a grid identical as the one in the file is chosen Fortran type default value integer 1 integer 1 integer YINIFILE size integer YINIFILE size IDXRATIO integer T IDYRATIO integer 1 IXOR first point I index according to the YINIFILE grid left to and out of the new physical domain IYOR first point J index according to the YINIFILE grid under and out of the new physical domain IXSIZE number of grid points in I direction according to YINIFILE grid recovered by the new domain If to be used in MESONH it must only be factor of 2 3 or 5 IYSIZE number of grid points in J direction according to YINIFILE grid recovered by the new domain If to be used in MESONH it must only be factor of 2 3 or 5 IDXRATIO resolution factor in I direction between the YINIFILE grid and the new grid If to be used in MESONH it must only be factor of 2 3 or 5 IDYRATIO resolution factor in J direction between the YINIFILE grid and the new grid If to be used in MESONH it must only be factor of 2 3 or 5 8 3 4 Regular longitude latitude grids Namelist NAM LONLAT REG This namelist defines the projection in case CGRID LONLAT REG default_value XLONMIN real XLONMAX real XLATMIN real XLATMAX real
112. le orographic characteristics the surface of frontal obstacle A over the surface of the grid mesh S in each direction 8 D Ai 8 D 5 4 S used to compute the directional Zoeff the half height of these obstacles ht 2 2 nt 2 7 2 used to compute the directional Zoeff 2 t These 8 parameters are used to compute the total roughness length in the four directions given by the model axis 4 20 TEL gt 20 DE eff eff 0eff the Subgrid Scale Orography SSO parameters standard deviation anisotropy 725 direction of the small main axis 02 and slope 27 For ISBA scheme a file with the clay fraction of the near surface soil The resolution of the file provided is 5 on the world For ISBA scheme a file with the sand fraction of the near surface soil The resolution of the file provided is 5 on the world If LECOCLIMAP flag is set to FALSE user defined physiographic fields ISBA scheme Over natural areas all surface parameters for each patch at a given frequency have to be specified by the user in namelist NAM_DATA_ISBA parameters depending on the number of vegetation types default value XUNIF_VEGTYPE real between 0 and 1 vegetation type CFNAM_VEGTYPE character LEN 28 file name CFTYP_VEGTYPE character LEN 6 DIRECT BINLLF file type BINLLV ASCLLV parameters depending on the number of patches a
113. memo to take into account effect of atmospheric convection precipitation and gustiness on fluxes improvement of surface exchange coefficients representation LPWG correction of fluxes due to gustiness LPRECIP correction of fluxes due to precipitation LPWEBB correction of fluxes due to convection Webb effect CSEAL ALB type of albedo formula The following options are currently available UNIF a uniform value of 0 135 is used for water albedo 96 Taylor et al 1996 formula for water direct albedo depending on solar zenith angle 6 agjr 0 037 0 15 10 3 FLAKE lake scheme options Namelist NAM_FLAKEn LSEDIMENTS logical CFLAKE_SNOW string of 6 characters NON FLAKE ISBAES T NON CFLAKE_FLUX string of 6 characters FLAKE ISBA FLAKE CFLAKE_SNOW snow scheme to be used For the time being only option FLAKE is active CFLAKE_FLUX scheme to be used to compute surface fluxes of moment energy and water vapor For the time being only option FLAKE is active LSEDIMENTS to use the bottom sediments scheme of Flake default 10 4 ISBA vegetation scheme options Namelist NAM_SGH_ISBAn string characters WSAT DT92 SGH string characters NON string characters DEF SGH string characters DEF SGH string characters DEF CRU
114. mp NAM_CH_WATFLUXn amp NAM_CH_TEBn CPREPFILE PREP CFILE CFILETYPE GRIB CFILE_TEB CTYPE GRIB CFILE_SEAFLX CTYPE GRIB CFILE_WATFLX CTYPE GRIB CFILE_ISBA CTYPE GRIB CSNOW 3 L YPROGRAM ASCII YCOUPLING E LSURF_BUDGET T N2M 1 LCOEF T LFRAC T LPGD LSURF_EVAP_BUDGET LSURF_MISC_BUDGET LSURF_BUDGETC LSURF_MISC_BUDGET CRUNOFF WSAT CROUGH 2040 CSCOND NP89 CALBEDO DRY CC1DRY DEF CSOILFRZ DEF CDIFSFCOND DEF CCPSURF DRY CSNOWRES DEF CCH DRY DEP WES89 CSEA ALB TA96 CSEA FLUX COARE2 LPWG T LPRECIP T LPWEBB T CCH_DRY_DEP WES89 CCH_DRY_DEP WES89 CCH_DRY_DEP WES89 1444 4 arpifs AN 20030101 00 gt arpifs AN 20030101 00 gt arpifs AN 20030101 00 2 arpifs AN 20030101 00 2 arpifs AN 20030101 00 2 A 2 user defined surface parameters Ecoclimap is not used LECOCLIMAP Information is not read from databases but the usern defines his own surface parameters Uniform field is used in this 1D case A 2 1 Uniform values prescribed 1d example without patches amp NAM ISBA NTIME 12 UNIF_VEGTYPE 1 _ 2 _ 3 _ 4 _ 5 _ 6 _ 7 _ 8 _ 9 _
115. n OFFLIN This subroutine computes diagnostics that have not been computed during the the time step evolu tion coupling surf atm computes automatically some diagnostics 2 meters parameters 10 meter wind and all fluxes that will be return to the atmosphere when running in a coupled way These computation is decided through namelist OPTIONS nam see User s guide for full description 5 2 4 writing out diagnostics variables CALL WRITE_DIAG_SURF_ATM_n OFFLIN ALL Once these diagnostics have been computed they are stored in modules and will be effectively written to files when calling write diag surf atmn subroutine The possible diagnostic files are ISBA DIAGNOSTICS OUT nc TEB DIAGNOSTICS OUT nc SEAFLUX DAIGNOSTICS OUT nc WATFLUX_DIAGNOSTICS OUT nc and SURF_ATM_DIAGNOSTICS OUT nc This last file contains aggregated fields over the whole gridbox 5 3 writing out restart file 1 Ix 3 write restart file ee IA 1 IF LRESTART CALL WRITE_SURF_ATM_n ASCII ALL This file will be name SURFOUT txt and will content the surface state at the end of the off line run It ishould replace the PREP txt file in case of restart of the model Chapitre 6 Some output of off line simulation 6 1 Examples of prognostic variables output gt 285 bn fr E T ss P Fic 6 2 Root layer water content after 12 hours of integration pa AN los FIG 6 3 Interception b
116. nd time NTIME integer 12 or 36 36 time dimension XUNIF_VEG real between 0 and 1 none vegetation fraction CFNAM_VEG character CFTYP_VEG character DIRECT BINLLF none file type BINLLV ASCLLV NIF LAI real leaf area index NAM LAI character file name TYP LAI character DIRECT BINLLF file type BINLLV ASCLLV NIF Z0 real none roughness length NAM_ZO character 23 TYP_Z0 character DIRECT BINLLF none file type BINLLV ASCLLV NIF EMIS real none emissivity CFNAM_EMIS character ne file name CFTYP_EMIS character DIRECT BINLLF none file type BINLLV ASCLLV parameters depending on the number of patches and soil levels default value XUNIF_DG real soil layer thickness CFNAM DG character LEN 28 CFTYP DG character LEN 6 DIRECT BINLLF BINLLV ASCLLV XUNIF_ROOTFRAC real root fraction CFNAM ROOTFRAC character LEN 28 CFTYP_ROOTFRAC character LEN 6 DIRECT BINLLF BINLLV ASCLLV parameters depending on number of patches only Fortran type default value XUNIF RSMIN CFNAM RSMIN CFTYP RSMIN XUNIF GAMMA CFNAM GAMMA CFTYP GAMMA XUNIF_WRMAX_CF CFNAM WRMAX CF CFTYP WRMAX CF XUNIF_RGL CFNAM RGL CFTYP RGL XUNIF_CV CFNAM CV CFTYP CV XUNIF_Z0 0 Z0H CFNAM Z0 0 20H CFTYP_Z0_O Z0H XUNIF_ALBNIR_VEG CFNAM ALBNIR VEG CFT
117. nge coefficient used only if LALDTHRES XVMODMIN minimum wind speed to compute turbulent exchange coefficient used only if LALDTHRES LALDZOH to take into account orography in heat roughness length XEDB XEDC XEDD XEDK coefficients used in Richardson critical numbers computation XUSURIC XUSURID XUSURICL Richardson critical numbers XVCHRNK XVZOCM Charnock s constant and minimal neutral roughness length over sea formulation of roughness length over sea 67 10 2 SEAFLX sea scheme options Namelist NAM SEAFLUXn CSEA FLUX string of 6 characters DIRECT ITERAT COARES ECUME CSEA_ALB string of 4 characters UNIF TA96 LPWG logical LPRECIP logical LPWEBB logical CSEA_FLUX type of flux computation physics The following option is currently available DIRECT direct Charnock computation No effect of convection in the the boundary layer on the fluxes formulae TERAT iterative method proposed by Fairall et al 1996 from TOGA COARE experiment amended by Mondon and Re delsperger 1998 to take into account effect of atmospheric convection on fluxes COARE3 iterative method proposed by Fairall et al 1996 from TOGA COARE experiment amended by cnrm memo to take into account effect of atmospheric convection precipitation and gustiness on fluxes ECUME iterative method proposed by Fairall et al 1996 from TOGA COARE experiment amended by cnrm
118. ory and launch successively i pgd exe ii iii offline exe 7 to view output 14 you can use vespa tool Type vespa to get available fields and then vespa FIELDNAME to plot FIELDNAME 8 How to rerun your own experiment 8 1 modify SURFEX EXPERIMENT hapex rundir OPTIONS nam to define new characteristics of PGD and PREP and run pgd exe and prep exe be carefull that diagnostics must be off for PREP application for surfex versions before v3 0 modify SURFEX_EXPERIMENT hapex netcdf my_forcing f90 to define your own forcing and parameters of the experiment Compile the program with Sc input experiment and run it with prep input experiment Netcdf files PARAMS nc and FORCING nc will be created and need to be placed into SURFEX EXPERIMENT hapex rundir directory go to SURFEX EXPERIMENT hapex rundir to rerun offline exe COMPILING MY OWN SOURCES If you want to compile your own sources the preferable way is to edit the file Makefile SURFEX mk in SURFEX EXPORT src in the rubric Source MYSRC for examples if your sources in the directory MY OWN SRC put DIR_MYSRC MYSRC DIR MYSRC OWN cb OH Gb Gb Gb OH Gb For the moment by default your sources will be integrated in the original version of the already compile librairies with the same name Not yet BIBUSER management coming soon If you want to compile an entire new librarie with a new suffix for examples
119. rescribed value of temperature for the deep soil layer s supposed at an altitude of Om mean sea level altitude The temperature is then modified for each point depending on its altitude following a uniform vertical gradient of 6 5 Kkm 1 This prescribed value if defined has priority on the use of CFILE_TG and CFILE ISBA data CFILE TG name of the file used to define the soil temperature profile The use of a file or prescribed value of XTG SURF XTG_ROOT and XTG_DEEP has priority on the data in CFILE TG file CTYPE TG type of the CFILE TG file if the latter is provided CTYPE_TG must then be given The following values are currently usable MESONH the file type is MESONH file GRIB the file type is GRIB file coming from any of these models 1 european center forecast model 2 ARPEGE Arpege french forecast model 3 ALADIN Aladin french forecast local model 4 MOCAGE Mocage french research chemistry model CFILE ISBA name of the file used to define any ISBA variable The use of a file or prescribed value XHUG_SURF XHUG ROOT XHUG DEEP XTG SURF XTG ROOT XTG DEEP CFILE WG and CFILE TG has priority on the data in CFILE ISBA file CTYPE type of the CFILE ISBA file if the latter is provided CTYPE must then be given The following values are currently usable MESONH the file type is a MESONH file GRIB the file type is a GRIB file coming from any of these models 1 ECMWF
120. s FLUX SEAFLX SEAFLX characters FLUX WATFLX FLAKE WATFLX characters FLUX TEB TEB CNATURE scheme used for vegegation and natural soil covers The different possibilities are 1 NONE no scheme used No fluxes will be cmputed at the surface 2 FLUX ideal fluxes are prescribed The have to be set in the fortran routine init_ideal_flux f90 3 TSZO In this cheme the fluxes are computed according to the ISBA physics but the surface characteristics temperature humidity etc remain constant with time 4 ISBA this is the full ISBA scheme Noilhan and Planton 1989 with all options developped since this initial paper CSEA scheme used for sea and ocean The different possibilities are 1 NONE no scheme used No fluxes will be cmputed at the surface 2 FLUX ideal fluxes are prescribed The have to be set in the fortran routine init_ideal_flux f90 3 SEAFLX this is a relatively simple scheme using the Charnock formula CWATER scheme used for inland water The different possibilities are 1 NONE no scheme used No fluxes will be cmputed at the surface 2 FLUX ideal fluxes are prescribed The have to be set in the fortran routine init_ideal_flux f90 3 WATFLX this is a relatively simple scheme using the Charnock formula 4 FLAKE this is lake scheme from Mironov 2005 CTOWN scheme used for towns The different po
121. ssibilities are 1 NONE no scheme used No fluxes will be cmputed at the surface 2 FLUX ideal fluxes are prescribed The have to be set in the fortran routine init_ideal_flux f90 3 TEB this is the Town Energy Balance scheme Masson 2000 with all the susequent ameliorations of the scheme 8 3 Definition of the grid Note that all the namelists presented in this section are ignored if the grid is imposed in the fortran code from an atmospheric model This is the case when one already have defined the atmospheric grid and one want to be sure that the surface has the same grid For example this is what happens in the MESONH program PREP_IDEAL_CASE when no physiographic surface file is used If you are in this case ignore all the namelists presented in this section and only the namelists for cover and the following ones have to be used 8 3 1 Choice of the grid type Namelist NAM_PGD_GRID This namelist defines the grid type either specified or from an existing surface file default_value CGRID string of 10 characters PROJ YINIFILE string of 28 characters none YFILETYPE string of 6 characters none CGRID type of grid and projection It is used only if a file is not prescribed see below The different grid possibilities are Le 2 3 4 5 6 GAUSS this grid is a gaussian grid global grid that may be stretched rotated CONF PROJ this grid is a regular
122. string characters DEF CDIFSFCOND string characters MLCH CSNOWRES string characters DEF RIL CALBEDO string characters MEAN DRY WET EVOL CROUGH string characters Z01D Z04D CCPSURF string characters DRY HUM XTSTEP real XCGMAX real CC1DRY type of C1 formulation for dry soils The following options are currently available DEF Giard Bazile formulation GB93 Giordani 1993 Braud 1993 CSCOND type of thermal conductivity The following options are currently available NP89 Noilhan and Planton 1989 formula PL98 Peters Lidard et al 1998 formula CSOILFRZ type of soil freezing physics option The following options are currently available DEF Boone et al 2000 Giard and Bazile 2000 LWT Phase changes as above but relation between unfrozen water and temperature considered CDIFSFCOND type of Mulch effects following options are currently available DEF no mulch effect MLCH include the insulating effect of leaf litter mulch on the surf thermal cond CSNOWRES type of turbulent exchanges over snow The following options are currently available DEF Louis RIL Maximum Richardson number limit for stable conditions ISBA SNOW3L turbulent exchange option CALBEDO type of bare soil albedo The following options are currently available DRY dry bare soil alb
123. surface The diagnosed fields are LSURF_MISC_BUDGET flag to save in the output file miscelleaneous fields The diagnosed fields are HV Halstead coefficient SNG snow fraction over bare ground SNV snow fraction over vegetation SN total snow fraction SWI soil wetness index for each ground layer wg wwilt wfe Wyilt where wg is the volumic water content w fc is the porosity and w jj corresponds to the plant wilting point Gross primary production RDK Dark respiration LSURF_BUDGETC flag to save in the output file the time integrated values of all budget terms that have been activated either with LSURF_BUDGET flag in NAM_DIAG_SURFn or LSURF_EVAP_BUDGET in the present namelist 12 4 Diagnostics relative to the TEB town scheme Namelist NAM DIAG TEBn default valuc LSURF_MISC_BUDGET FALSE LSURF_MISC_BUDGET flag to save in the output file miscelleaneous fields The diagnosed fields are ZO TOWN roughness length for town QF BLD domestic heating QF_BLDWFR domestic heating FLX BLD heat flux from bld TI BLD EQ internal temperature without heating TI BLDWEFR internal temperature without heating QF_TOWN total anthropogenic heat DQS TOWN storage inside building H WALL wall sensible heat flux H ROOF roof sensible heat flux H ROAD road sensible heat flux RN_WALL net radiation at wall RN ROOF
124. t etc It can be used either during the run adding these diagnostics in the output file s of the run or independantly from the run for a given surface state still an instantaneous atmospheric forcing is necessary for this evaluation In addition in order to read or write the prognostic variables or the diagnostics variables respectively in the surface files the following subroutines are used init_surf_atm_n f90 write_surf_atm_n f90 and write_diag_surf_atm_n f90 7 2 atmospheric models using the externalized surface The externalized surface can presently be used in 1 in offline mode MESONH 3 AROME For each model additionnal possibilities of the surface especially the ability to read and write in files with particular formats are added 7 21 in offline mode In this case 2 types of files can be used ASCII files not efficient in term of storage but completely portable netcdf files that can be used by the program code OFFLIN currently PGD and PREP steps are done using ASCII files while the run produces time series of each variable prognostic or diag nostic in netcdf files and the output instant of the run again in an ASCII file The nameists are all included in the namelist file named OPTIONS nam 7 2 2 in MESONH In this case MESONH FM files are used The parallelization of the surface fields is done during the reading or writing of the fields by the FMREAD and FMWRIT routines
125. ter LEN 40 CDUMMY PGD FILETYPE character LEN 6 CDUMMY PGD AREA character LEN 3 CDUMMY PGD ATYPE character LEN 3 Only the first NDUMMY_PGD_NBR values in these arrays are meaningfull NDUMMY PGD NBR number of dummy fields CDUMMY_PGD_NAME list of the dummy fields you want to initialize with your own data You can give any name you want This is a way to describe what is the field This information is not used by the program It is just written in the FM files CDUMMY PGD FILE list of the names of the files containing the data for the fields you have specified in CDUMMY_PGD_NAME CDUMMY_PGD_FILETYPE list of the types of the files containing the data for the fields you have specified in CDUMMY_PGD_NAME DIRECT LATLON BINLLF BINLLV ASCLLV CDUMMY PGD AREA area of meaningfullness of the fields you have specified in CDUMMY_PGD_NAME CALL UDWN SEA WAT LAN respectively for everywhere natural areas town areas sea inland waters land natural cover town For example oceanic emission of DNS is relevant on SEA CDUMMY PGD ATYPEN type of averaging during PGD for the fields you have specified in CDUMMY PGD NAMEY INV respectively for arithmetic inverse and logarithmic averaging 8 8 Namelist for chemistry anthropogenic emissions Namelist NAM EMIS PGD This namelist is used to init
126. water and momentum fluxes N2M 2 computes temperature at 2 m specific humidity at 2 m relative humidity zonal and meridian wind at 10 m and Richardson number 2m and 10m quantities are calculated interpolating between atmospheric forcing variables and surface tem perature and humidity LSURF_BUDGET flag to save in the output file the terms of the surface energy balance net radiation sensible heat flux latent heat flux ground flux for each scheme on the four separate tiles on each patch of the vegetation scheme if existing and aggregated for the whole surface The diagnosed fields are stands for the scheme considered nothing field aggregated on the whole surface name of a scheme field for this scheme RN net radiation H turbulent sensible heat flux LE_ turbulent latent heat flux GFLUX ground or storage heat flux SWD_x downward short wave radiation SWU upward short wave radiation SWBD x downward short wave radiation for each spectral band SWBU_x upward short wave radiation for each spectral band LWD_x downward long wave radiation LWU_x upward long wave radiation FMU_x zonal wind stress FMV meridian wind stress ZOEFF effective roughness length vegetation and orography LRAD BUDGET flag used to write downward and upward shortwave radiation per spectral band into output file they re computed even if LRAD_BUDGET is false LC
127. x LE TEB Averaged Latent Heat Flux GFLUX TEB Averaged Ground Heat Flux WATER PROGNOSTIC VARIABLES TS WATER Averaged Water Temperature ZO WATER Roughness length WATER DIAGNOSTIC VARIABLES Averaged Richardson Number CD_WAT Averaged Drag Momentum Coef CDN_WAT Averaged Neutral Drag Coef CH WAT Averaged Drag Thermal Coef RESA WAT Averaged Aerodyn Resistance RN WAT Averaged Net Radiation H_WAT Averaged Sensible Heat Flux LE WAT Averaged Latent Heat Flux GFLUX WAT Averaged Ground Heat Flux DIAGNOSTICS VARIABLES RI Averaged Richardson Number RN Averaged Net Radiation H Averaged Sensible Heat Flux LE Averaged Latent Heat Flux GFLUX Averaged Ground Heat Flux SURF_ATM FRACTIONS FRAC SEA Fraction of sea FRAC WATER Fraction of water FRAC TOWN Fraction of town FRAC NATURE Fraction of nature FORCING FIELDS TA air temperature QA air specific humidity WIND wind speed DIR SW downward direct shortwave radiation SCA SW downward diffuse shortwave radiation LW downward longwave radiation PS surface pressure RAIN rainfall rate SNOW snowfall rate C02 C02 concentration DIR SW downward direct shortwave radiation DIR wind direction Troisieme partie Users guide 33 Chapitre 7 Overview of the externalized surface sequence The externalized
128. y the name of the field is ZS in SURFEX the mask over which it s defined can be FULL total gridbox To extract surface temperature over vegetation the name will be TG1 and the mask NATURE grep amp PGD txt returns all variables of this file To distinguish variables defined or not over patches a flag is used if the variable is patch dependant the flag must be set to in the contrary it should be For example orography ZS doesn t depend patches but surface temperature TG1 does If the simulation uses patches and the flag is then only the first patch will be treated bare ground namelist SXPOST nam looks like 2 FULL ZS NATURE TG1 Running SXPOST will return a file per variable which will contain the longitude the latitude and the value of the field for each gridbox over which the field is defined For example TG1 which is known only over nature won t have a value for each gridbox of the domain 4 2 4 I O diagram optional FIG 4 8 Surfex diagram showing the input output files produced by the different tools the list of produced variables in case YWRPRGM TEXTE is obviously not exhaustive Chapitre 5 Architecture of the off line driver 5 1 Initialization At first the driver makes some initializations For example physics constants geoide description etc are initialized through ini csts subroutine Then information is read from input files PARAMS nc and PRE
129. y vegetation water content after 12 hours of integration Fic 6 1 Initial surface temperature field 29 6 2 list of available variables This list has been made by using vespa which is a tool that has been used to realize the plots of this document This is not the complete possible list since only the fileds that are present in netcdf ouput files are listed RER RER oe ini icc S P V aluable m E xternalized S urface P lot A pplication e ISBA PROGNOSTIC VARIABLES Soil_temp_layer_1 Soil liquid layer 1 Soil ice Soil temp layer 2 Soil liquid layer 2 Soil ice2 Soil temp layer 3 Soil liquid layer 3 WGI3 Soil ice3 WR Interception reservoir RESA Aerodynamic resistance WSNOW VEG1 Snow Water Equivelent layer 1 RSNOW_VEG1 Snow density layer 1 TSNOW VEG1 Snow temperature layeri HSNOW_VEG1 Snow heat layeri WSNOW VEG2 Snow Water Equivelent layer 2 RSNOW_VEG2 Snow density layer 2 TSNOW Snow temperature layer2 HSNOW_VEG2 Snow heat layer2 WSNOW VEG3 Snow Water Equivelent layer 3 RSNOW VEG3 Snow density layer 3 TSNOW VEG3 Snow temperature layer3 HSNOW_VEG3 Snow heat layer3 ASNOW VEG Snow albedo ISBA DIAGNOSTIC VARIABLES RI ISBA Averaged Richardson Number RN ISBA
130. zero YFILETYPE type of data file DIRECT BINLLF BINLLV ASCLLV COROGTYPE type of orography string of 3 characters mean orography 25 envelope relief defined from mean orography and the subgrid orography standard deviation as 25 XENV Oz SIL silhouette relief defined as the mean of the two subgrid silhouettes in directions x and y if two main directions can be defined for the grid chosen XENV enhance factor in envelope orography definition real NZSFILTER number of iterations of the spatial filter applied to smooth the orography integer 1 iteration removes the 24 signal 50 of the 442 signal 25 of the 6Ax signal etcl I The amplitude of the filtered signal for each wavelength AA is i 2 1 8 6 Namelist for ISBA scheme Namelist NAM ISBA integer between 1 and 12 character LEN 3 2 L 3 L DIF string of 3 characters NON AGS AST LST NIT NGROUND_LAYER integer gt 0 XUNIF CLAY real between 0 and 1 YCLAY character LEN 28 YCLAYFILETYPE character LEN 6 DIRECT BINLLF BINLLV ASCLLV XUNIF SAND real between 0 and 1 YSAND character LEN 28 YSANDFILETYPE character LEN 6 DIRECT BINLLF BINLLV ASCLLV XUNIF RUNOFFB real between 0 and 1 NPATCH number of patches used in ISBA One patch corresponds to aggregated parameters
Download Pdf Manuals
Related Search
Related Contents
製品マニュアル Vega - Atlas Lexmark CS410dtn 1-877-855-0196 or www.tpg-info Philips Economy Twister Twisted energy saving bulb 871829121801200 Copyright © All rights reserved.
Failed to retrieve file