Home
Hynix HMT42GR7BFR4A-PBT8 memory module
Contents
1. B lt lt o ER lt s oz 3 4 8 i 2 O 3 si 883052 s T s l l l 25 unis 28 Delgo 2 g d dani l i 9444441 i i l L 1 Ii ZW bas VS W os Minim ids M55 win B4 S E 3 GR g E g DO 3 0 D9 DQ 3 0 D8 DQ 3 0 D45 DQ 3 0 D44 g l l l vis 5 wie w 8 5 wesw B DOERNER re t e e Ze YA D VS WY Os NS pp En DOS z DOS 5 DQS S DOs S z DM z DM z N DQ 3 0 D7 DQ 3 0 D6 DQ 3 0 D47 Bean D46 g g w BIE Is 5 wesw 5 I l l J t6 8 91999 w 8 E E La La e La e DOs VS WY D VSS WY Os VSS__ pa p md 7 p ES g GR E g N 0 3 0 D5 DQ 3 0 D4 3 DQ 3 0 D49 DQ 3 0 Dag Ei w 218 sw 88 we w 5 I l I 8 9999 8 5 e e e Ze Tan Bs VS WY Os NES pa SC SZ g B g EN a pas g M 00 3 0 D3 DQ 3 0 D
2. lt 48 22 95 m lt 1 5 9 OE lt mim mamam o oz om d TITTEN TTE BESE y 8 s g 009 L Prlz g zg H P HIS Z KKL g zg KNS Q DQS8 Wy DUS DQS DQS4 NN DUS DQS Do8 up ee wa ube s E DM8 DQS17 W TDQS 3 TDQS e DM4 DQS13 TDQS TDQS c BOST WAITDQS D8 z Tos D17 E DOSIS WTbQS D4 E TI P D13 Z 70 DQ 7 0 DQ 7 0 DQ 39 32 W DQ 7 0 DQ 7 0 20 9 e 20 8 opgeet WELLLLLLL Meee MULITITIE E E mi a L4 T 9059 pos DOS D055 vE DoS EE SE S E o SE E 8 3 TDQS TDQS DQ5I2 wWAlTD0S D3 TE D12 DOH vT D5 e D14 E DQ 31 24 M DQ 7 0 DQ 7 0 DQ 47 40 MDQ 7 0 00 7 0 20 Q 20 20 20 o u Ege swe 2 T geet Tobe ve bs wHBEsubb T ll T posz MWMDOS DQS Dase A Dos Geer E g m 8 Ge t o d 8 TDQS S TDQS DQSli WMTDQS D2 ES D11 E DQSi5 W TDQS D6 The D15 z DQ 23 16 MM DQ 7 0 m DQ 7 0 DQ55 48 M DQ 7 0 E DQ 7 0 9 o o o a Perese MERE ewes Togpsseppzl T Zp eeett I F N e Le en SE g n S eh m S ke 2 DEI TDS D1 Z TDOS D10 3 DS ToS D7 TDQS D16 Z DQ 15 8 M DQ 7 0 DQ 7 0 a DQ 63 56 M DQ 7 0 DQ 7 0 2 2 2 MOETE Jia BB vw 9 5 Mee MOTE t i t Doso WADQS D05 vt DQ
3. Front lt 133 35 gt i 128 95 4 Detail B gt 2 10 0 15 Wl a sms z Detail A 05 2 DDP DDP DDP DDP DDP DDP DDP DDP DDP I 4X3 00 0 10 ES g M g 5 AIRS B DDP DDP DDP DDP DDP DDP DDP DDP DDP AP N A r4 2X3 00 0 T0 C v E 47 00 gt lt l Detail C 5 0 Detail D Back _SPD 5 J DDP DDP DDP DDP i DDP DDP DDP DDP DDP L 2g 5 SS DDP DDP DDP DDP DDP DDP DDP DDP DDP C Om mom lomo 9 2x R0 75 Max Side Detail of Contacts A Detail of Contacts B Detail of Contacts C Detail of Contacts D 3 64mm max 1 20 0 15 om dus gt d 14 90 gt lt 5 13 60 _ 3 S 8 d 3 0 1 SS i 2 d Y N zi 0 3 0 1 Wi 1 00 50 0 P 5 00 27 010mm max Note 1 0 13 tolerance on all dimensions unless otherwise stated Units millimeters Rev 1 0 May 2014 71 SK nix 4Gx72 HMT84GR7BMR4A Heat Spreader 22 00 30 20 46 46 lt gt Le 80 54 gt Le 119 64 gt Back k 57 2 gt 2 7 EM LJ Cc C D Cc mu 15 36 22 00 Side 7 65mm max EH N M
4. 27 010mm max Note 1 0 13 tolerance on all dimensions unless otherwise stated 2 In order to uninstall FDHS please contact sales administrator Units millimeters Rev 1 0 May 2014 72
5. Ts ws vi peso oel pos ZO h poss pas 20 vs ier z vs om z DQ 3 0 dvl DQ 3 0 DO S DQ 7 4 df DQ 3 0 D9 S wie is se 0595 95529 Vtt A VDDSPD 4 VDDSPD SAO DAD EVENT 4 EVENT SPD with SAL SA1 sc scL Integrated s42 542 SDA SDA TS VSS VSS Note 1 DQ to 1 O wiring may be changed within a nibble 2 Unless otherwise noted resistor values are 15 5 vss vss Wwl vss w vss w m m oF D cs HUL Die z Z ER x Ll III L DQS4 N DOS ZO DQS13 N pas 2 past w DOS DQS13 N DOS n vss DM e DQ 35 328 W DQ 3 0 D4 H Misa amd DQ 3 0 D13 z 2 wie 8 5 I BB RIRE Ble I Le La poss w pos 70 A posi w 09s zs DQS5 d DOS _ DOS w D5Qs cc vss DM g vss DM E DQ 43 4044M DQ 3 0 D5 Z DOT DQ 3 0 D14 z 2 wes 8 5 I l l I RIRE Ble I La La e e e pose WA DQS 20 posis pos 2 E A DOS z DQS15
6. A N 0 AINE SDRAMs D 3 0 A N 0 B A N 0 SDRAMs D 7 4 MN RAS SDRAMs D 3 0 D 12 RRASB RAS SDRAMs D 7 4 D 16 13 RCASA CAS SDRAMs D 3 0 D 12 8 D17 RCASB CAS SDRAMs D 7 4 D 16 13 RWEA gt WE SDRAMs D 3 0 D 12 8 D17 RWEB gt WE SDRAMs D 7 4 D 16 13 RCKE0A gt CKE0 SDRAMs D 3 0 D8 RCKEOB CKE0 SDRAMs D 7 4 RCKE1A gt CKEI SDRAMs D 12 9 D17 RCKE1B gt CKEI SDRAMs D 16 13 RODT0A_ gt ODT0 SDRAMs D 3 0 D8 RODTOB ODT0 SDRAMs D 7 4 RODT1A ODTI SDRAMs D 12 9 D17 RODT1A ODTI SDRAMs D 16 13 PCK0A CK SDRAMs D 3 0 D8 PCKOB CK SDRAMs D 7 4 PCK1A gt CK SDRAMs D 12 9 D17 PCK1B CK SDRAMs D 16 13 PCKOA CK SDRAMs D 3 0 D8 PCKOB CK SDRAMs D 7 4 PCK1A gt CK SDRAMs D 12 0 D17 PCK1B gt CK SDRAMs D 16 13 12 8 D17 16 13 Sg ES 2 D 16 EA 8 D17 Err_Out RST SDRAMs D 17 0 S 3 2 CK1 and CK1 are NC Rev 1 0 May 2014 16 SK uix 16GB 2Gx72 Module 2Rank of x4 pagel lt lt z lt 9 3 44 HHE dii ela e E agg lt H eked 1 Lig p 1 IL opo ob DQS17 WY Dos pos DQS17 W DQS on DQS vss DM M s CB 7 4 dd DQ 3 0 D17 DQ 3 0 D35 3 3 I I 8 5 I l l8 l si 82 DQS12 xIDQS DQ512 x DQS VSS DM DQ 31 2
7. ARRASB gt RAS SDRAMs D 17 10 D 35 28 BRRASB RAS SDRAMs D 43 36 D 6 1 54 CAS wr P L ARCASA gt GAS SDRAMs D 9 0 D 27 18 CAS wr P L BRCASA GAS SDRAMs D 53 44 D 71 62 L ARCASB CAS SDRAMs D 17 10 D 35 28 L BRCASB CAS SDRAMs D 43 36 D 61 54 WE L FARWEA WE SDRAMs D 9 0 D 27 18 WE L LBRWEA WE SDRAMs D 53 44 D 71 62 ARWEB WE SDRAMs D 17 10 D 35 28 BRWEB WE SDRAMs D 43 36 D 61 54 CKE0 y A ARCKEOA gt CKE1 SDRAMs DI D3 D5 D7 D9 CKE0 B L BRCKE0A gt CKEI SDRAMs D45 D47 D49 D51 D53 D19 D21 D23 D25 D27 D63 D65 D67 D69 D71 ARCKE0B gt CKE1 SDRAMs D11 D13 D15 D17 BRCKEOB gt CKE1 SDRAMs D37 D39 D41 D43 D29 D31 D33 D35 D55 D57 D59 D61 CKE1 L ARCKE1A gt CKE0 SDRAMs D0 D2 D4 D6 D8 CKE1 BRCKE1A CKE0 SDRAMs D44 D46 D48 D50 D52 D18 D20 D22 D24 D26 D62 D64 D66 D68 D70 ARCKE1B CKE0 SDRAMs D10 D12 D14 D16 BRCKE1B CKE0 SDRAMs D36 D38 D40 D42 D28 D30 D32 D34 D54 D56 D58 D60 0DT0 w L ARODT0A ODTI SDRAMs D1 D3 D5 D7 D9 ODT1 BRODT1A ODT1 SDRAMs D45 D47 D49 D51 D53 _ DI9 D21 D23 D25 D27 _ D63 D65 D67 D69 D71 ARODTOB ODT0 SDRAMs D11 D13 D15 D17 BRODT1B ODT0 SDRAMs D37 D39 D41 D43 D29 D31 D33 D35 D55 D57 D59 D61 CKO APCKOA gt CK SDRAMs D 9 0 CKO BPCKOA gt CK SDRAMs D 53 44 1209 APCKOB CK SDRAMs D 17 10 1209 BPCKOB CK SDRAMs D 43 36 z 459 APCK1A
8. Note Detail of Contacts C N D e 3 403 0 15 2 50 0 20 E CT 50 0 4 see P 5 00 1 0 13tolerance on all dimensions unless otherwise stated Rev 1 0 May 2014 Side 3 64mm max n 1 27 010mm ax Units millimeters 66 SK nix 1Gx72 HMT41GR7BFR4A Front P 133 35 128 95 lt gt p 2 10 0 15 SIDE A Detail A OD a E k min S 55 t E 9 8 dco ml i Detail B Detail C v Back U U t7 240 N 121 M 2x R0 75 Max Side 3 64mm max Detail of Contacts A Detail of Contacts B Detail of Contacts C 1 204 0 15 8030 0 2 50 lt t 3 n S 8 8 3 0 1 8 3 A E S 8 Y R Mi 1 00 PE is lt o KR 1 27 010mm max Note 1 0 13 tolerance on all dimensions unless otherwise stated Units millimeters Rev 1 0 May 2014 67 SK nix 1Gx72 HMT41GR7BFR8A Front P 133 35 128 95 lt gt p 2 10 0 15 SIDE A Detail A OD a E k min S 55 t E
9. i RCKE0A gt CKE0 SDRAMs D 3 0 D 12 8 D17 P RCKE0B CKE0 SDRAMs D 7 4 D 16 13 CKEL L F RCKE1A gt CKEI SDRAMs D 21 18 D 30 26 D35 L RCKE1B CKEI SDRAMs D 25 22 D 34 31 ODTO I RODT0A gt ODT0 SDRAMs D 3 0 D 12 8 D17 RODTOB ODTO SDRAMs D 7 4 D 16 13 ODTl J RODTIA ODTI SDRAMs D 21 18 D 30 26 D35 RODT1A gt ODTI SDRAMs D 25 22 D 34 31 CKO PCKOA CK SDRAMs D 3 0 D 12 8 D17 PCK0B CK SDRAMs D 7 4 D 16 13 PCK1A gt CK SDRAMs D 21 18 D 30 26 D35 uc PCK1B CK SDRAMs D 25 22 T n 31 CK0 PCK0A CK SDRAMs D 3 0 D 12 8 D17 PCKOB gt CK SDRAMs D 7 4 D 16 13 F PCK1A gt CK SDRAMs D 21 18 D 30 26 D35 CK1 PCK1B gt CK SDRAMs D 25 22 D 34 31 CK1 2 PAR IN F Err Out BRESET RST RST SDRAMs D 35 0 S 3 2 CK1 and CK1 are NC Rev 1 0 May 2014 S d K 32GB 4Gx72 Module 4Rank of x4 pagel vss DQS8 DQS8 VSS CB 3 0 vss DQS3 DQS3 vss DQ 27 24 VSS DQS2 DQS2 DQ 19 16 vss DQS1 DQS1 DQ 11 8 vss DQS0 DQS0 DQ 3 0 Vtt
10. 28 s 8 8 5 I 5 DQS6 DQS pos DQS6 w DOS DOS VSS DM e DM 9 DQ 51 48 MM DQ 3 0 D6 DQ 3 0 D24 8 2 RIR S RIR 5 I l l l l8 8 Vtt VW VDDSPD VDDSPD SA0 SA0 EVENT EVENT SPD with SA1 SA1 SCL SCL biam SA2 SA2 SDA SDA VSS VSS Plan to use SPD with Integrated TS of Class B and might be changed on customer s requests For more details of SPD and Thermal sensor please contact local SK hynix sales representative 18 SK yi 16GB 2Gx72 Module 2Rank of x4 page3 S0 w RS0A gt CS0 SDRAMs D 3 0 D 12 8 D17 B 1 2 RS0B CS0 SDRAMs D 7 4 D 16 13 S1 g RSIA gt CST SDRAMs D 21 18 D 3026 D35 RS1B gt CST SDRAMs D 25 22 D 34 31 BA N 0 A E L RBA N 0 A gt BAIN 0 SDRAMs D 3 0 D 12 8 D 21 17 D 30 26 D35 G R AINOIB BAINO SDRAMs DL DIR DE b 34 31 A N 0 RA N Q A gt A N 0 SE 21 17 Diode D35 RUE A N 0 B A N 0 SDRAMs D 7 4 D 16 1 JEE RS s F MN RAS SDRAMs D 3 0 D 12 8 D 21 17 D 30 26 D35 T RRASB RAS SDRAMs D 7 4 D 16 13 D 25 22 D 34 31 CAS W RCASA gt CAS SDRAMs D 3 0 D 12 8 D 21 17 D 30 26 D35 E RCASB CAS SDRAMs DI AL D 16 13 D 25 22 D 34 31 WE JN R RWEA gt WE SDRAMs D 3 0 D 12 8 D 21 17 D 30 26 D35 RWEB WE SDRAMs D 7 4 D 16 13 D 25 22 D 34 31 CKE0
11. Table below shows the output levels used for measurements of single ended signals Single ended AC and DC Output Levels DDR3L 800 1066 Symbol Parameter Unit Notes 1333 1600 1866 VoH DC DC output high measurement level for IV curve linearity 0 8 x Vppo V VoM pC DC output mid measurement level for IV curve linearity 0 5 x VDDQ V VoL DO DC output low measurement level for IV curve linearity 0 2 x Vppq V VOH AC AC output high measurement level for output SR Vrr 0 1 x Vppo V 1 VoL AC AC output low measurement level for output SR Vr 0 1 x Vppo V 1 Notes 1 The swing of 0 1 x Vppg is based on approximately 50 of the static single ended output high or low swing with a driver impedance of 40 9 and an effective test load of 252 to Vr Vppg 2 Differential AC and DC Output Levels Table below shows the output levels used for measurements of single ended signals Differential AC and DC Output Levels DDR3L 800 1066 Symbol Parameter Unit Notes 1333 1600 1866 VoHaiff aC AC differential output high measurement level for output SR 0 2 x Vppq V 1 Voudiff ac AC differential output low measurement level for output SR 0 2 x Vppq V 1 Notes 1 The swing of 0 2 x Vppq is based on approximately 50 of the static differential output high or low swing with a driver impedance of 402 and an effective test load of 25 Q to Vtr Vppo 2 at e
12. A DOS e DOS E vSS DM DM 9 DQ 63 60 A DQ 3 0 D16 DQ 3 0 D34 i l 8 Be l l 8 8 DQs7 W DOS pas DQS7 Wy DOS i DQS x Vss DM DM DQI 59 56 A DQ 3 0 D7 DQ 3 0 D25 I l l 8 w 8 i l 8 gt lll Vtt 4 WwW Vppspp SPD VDD ae T D0 D35 Vor i D0 D35 VREFCA A D0 D35 VREFDQ t D0 D35 Vss s s D0 D35 Note 1 DQ to I O wiring may be changed within a nibble 2 See wiring diagrams for all resistors values 3 ZQ pins of each SDRAM are connected to individual RZQ resistors 240 1 ohms Rev 1 0 May 2014 m n im n 28 S nana aU l 5 v2 a gig 5 SNE Hi 1 L L L L ji DQS13 DQS DOS DQS13 W DQS n DQs VSS DM 2 DM E DQ 39 36 DQ 3 0 D13 DQ 3 0 D31 9892 swe 5 i l sw 8 Des Alpe m hos DQS5 W DOS 2 DOS vsS DM DM 9 DQ43 40 MW DQ 3 0 D5 DQ 3 0 D23 E 8 S 28 is 5 iles 8 DQS15 x DQS p pos DQS15 W DOS DOS vsS DM DM B DQ 55 52 MM DQ 3 0 D15 DQ 3 0 D33 8 9 I
13. 1333 1600 Symbol Parameter Unit Notes Min Max VIHdiff Differential input high 0 180 Note 3 V 1 VILdiff Differential input logic low Note 3 0 180 V 1 VIHdiff ac Differential input high ac 2 x VIH ac Vref Note 3 V 2 VILdiff ac Differential input low ac Note 3 2 x VIL ac Vref V 2 Notes 1 Used to define a differential signal slew rate 2 For CK CK use VIH VIL ac of AADD CMD and VREFCA for DQS DQS DQSL DQSL DQSU DQSU use VIH VIL ac of DQs and VREFDQ if a reduced ac high or ac low levels is used for a signal group then the reduced level applies also here 3 These values are not defined however the single ended signals Ck CK DQS DQS DQSL DQSL DQSU DQSU need to be within the respective limits VIH dc max VIL dc min for single ended signals as well as the limita tions for overshoot and undershoot Refer to Overshoot and Undershoot Specifications on page 41 Allowed time before ringback tDVAC for CK CK and DQS DQS DDR3L 800 1066 1333 1600 DDR3L 1866 Slew Rate tDVAC ps tDVAC ps tDVAC ps tDVAC ps tDVAC ps Vins VIH Ldiff VIH Ldiff VIH Ldiff VIH Ldiff VIH Ldiff ac 2 320mV ac 2270mV ac 270mV ac 2250mV ac 260mV min max min max min max min max min max gt 4 0 189 201 163 168 176 4 0 189 201 163 168 176 3 0 162 179 140 147 154 2 0 109 134 95 105 111 1 8 91 119 80 9
14. DM stable at 0 Bank Activity all banks open Output Buffer and RTT Enabled in Mode Registers ODT Signal stable at 0 Pattern Details see Table 5 Ipp3P Active Power Down Current CKE Low External clock On tCK CL see Table 1 BL 83 AL 0 CS stable at 1 Command Address Bank Address Inputs stable at 0 Data lO MID LEVEL DM stable at 0 Bank Activity all banks open Output Buffer and RTT Enabled in Mode RegistersP ODT Signal stable at 0 Rev 1 0 May 2014 54 sd Symbol Description Operating Burst Read Current CKE High External clock On tCK CL see Table 1 BL 83 AL 0 CS High between RD Command Address Bank Address Inputs partially toggling according to Table 7 Data IO seamless read data burst with different DD4R data between one burst and the next one according to Table 7 DM stable at 0 Bank Activity all banks open RD commands cycling through banks 0 0 1 1 2 2 see Table 7 Output Buffer and RTT Enabled in Mode Registers ODT Signal stable at 0 Pattern Details see Table 7 Operating Burst Write Current CKE High External clock On tCK CL see Table 1 BL 88 AL 0 CS High between WR Command Address Bank Address Inputs partially toggling according to Table 8 Data IO seamless read data burst with different DD4W data between one burst and the next one according to Table 8 DM stable at 0 Bank Activity all banks open WR
15. 1 1 0 0 00 0 0 1 2 DD 1 0 0 O 0 0 00 0 0 3 4 DD 1 1 1100 0 0 Oo ET repeat pattern 1 4 until nRAS 1 truncate if necessary nRAS PRE 0 0 1 0 0 0 00 0 0 0 0 ii repeat pattern 1 4 until nRC 1 truncate if necessary 1 nRC 0 ACT 0 O 1 1 0 0 00 0 0 F 0 1 nRC 1 2 DD 1 0 0 0 0 0 00 0 0 F 0 p 9 1 nRC 3 4 IDD 1 1 1 1 0 0 0 0 0 F o D 9 m repeat pattern 1 4 until 1 nRC nRAS 1 truncate if necessary 988 1 nRC nRAS PRE 0 0 1 0 O o 0 0 O E 0 sek repeat pattern 1 4 until 2 nRC 1 truncate if necessary 1 2 nRC repeat Sub Loop 0 use BA 2 0 1 instead 2 4 nRC repeat Sub Loop 0 use BA 2 0 2 instead 3 6 nRC repeat Sub Loop 0 use BA 2 0 3 instead 4 8 nRC repeat Sub Loop 0 use BA 2 0 4 instead 5 10 nRC repeat Sub Loop 0 use BA 2 0 5 instead 6 12 nRC repeat Sub Loop 0 use BA 2 0 6 instead 7 14 nRC repeat Sub Loop 0 use BA 2 0 7 instead a DM must be driven LOW all the time DQS DQS are MID LEVEL b DQ signals are MID LEVEL 57 Rev 1 0 May 2014 SK nix Table 4 IDD1 Measurement Loop Pattern T 8 z S 1 l vi 2 ila 5 555 H cm 0 0 ACT 0 O 1 1 0 0 0 0 0 1 2 DD 1 0 0 0 0 0 0 0 0 3 4 DD 1 1 1 1 0 0 0 0 0 0 0 ws repeat pattern 1 4 until nRCD 1 truncate if necessary nRCD RD 0 1 O 1 0 0 00 010 0 0 00000000 m repeat pattern 1 4
16. 8 28 FAHER l l l l l l l l l l l l DQS8 V DOS ZQ DQS4 V DDS ZQ DQS8 w DQS E DQS4 m DOS E DM8 DQS17 W TDQS o L DM4 DQS13 A TDQS z L DQS17 M TDOS D8 DQ wwlTDQS D4 CB 0 WMJDQ 7 0 S DQ 39 32 W DQ 7 0 g o 2 2 I l l J xe 5 lise 5 LIIILLLLI SES pP DQS3 WDQS ZQ DQS5 W DQS ZQ DQS3 wW DOS N DQS5 w IDQS DM3 DQS12 W4 TDQS o DM5 DQS14 A ITDQS o L DQS12 W TDQS D3 2 Du w TDQS D5 E DQ 31 24 W lt DQ 7 0 ES DQ 47 40 W DQ 7 0 a z E FHODEPDEIEEE I l l l E LIIILILLLLI Lp p EES DQS2 w ID9S ZQ DQS6 MD9S ZQ DQS2 w DQS es DQS6 wxDQS s DM2 DQS11 TDQS o DM6 DQS15 A TDQS Q SR DQSll A TDQS D2 DQSIS Jrpqs D6 DQ 23 16 W lt DQ 7 0 g DQ 55 48 W IDQ 7 0 a 2 r2 u 6 u ko I 28 5 ole I 5 LT tT tT 7 Tf fe a fi EE REIS DQS1 wlpQs zQ DQS7 MP DUS 20 DQS1 w ipQS A DQS7 w DQS ES DM1 DQS10 WY TDQS 9 _DM7 DQS16 TDQS 9 Vppsrp SPD DQS 10 TDQS D1 g DQSI6 TOS D7 T VDB f L D0 D8 E 4 B DQ 15 8 DQ 7 0 E DQ 63 56 W DQ 7 0 a kg rg Vrr 2 z WEZ 168 BE I 259 8 SEB Z VREFCA 1 P0 D8 L T T IT T LT T LI TT TT TT TT 1 VREFDQ D0 D8 paso d Dos ZQ Ke Vss D0 D8 DQSO m DOS DM0 DQS9 Wx TDQS 9 L DOSS W TDOS DO DQ 7 0 _ WMDQ 7 0 a Note o 1 DQ
17. 875 lt 2 5 CL 7 CWL 6 CK AVG Optional 5 1 ns 1 2 3 4 8 CWL 7 Kk Ave Reserved ns 1 2 3 4 8 CWL 8 amp xkave Reserved ns 4 CWL 5 Kk Ave Reserved ns 4 CL 8 CWL 6 CK AVG 1 875 lt 2 5 ns 1 2 3 8 CWL 7 CK AVG Reserved ns 1 2 3 4 8 CWL 8 tekave Reserved ns 1 2 3 4 CWL 5 6 cK AvG Reserved ns 4 1 5 lt 1 875 CL29 CWL 7 CK AVG Optional ns 1 2 3 4 8 CWL 8 tekave Reserved ns 1 2 3 4 CWL 5 6 CK Ave Reserved ns 4 CL 10 CWL 7 CK AVG 1 5 lt 1 875 ns 1 2 3 8 CWL 8 ck avG Reserved ns 1 2 3 4 CL 11 CWL 5 6 7 CK AVG Reserved ns 4 CWL 8 CK AVG 1 25 lt 1 5 ns 1 2 3 Supported CL Settings 5 6 7 8 9 10 11 ick Supported CWL Settings 5 6 7 8 ck Rev 1 0 May 2014 47 De SK hynix DDR3L 1866 Speed Bins For specific Notes See Speed Bin Table Notes on page 49 Speed Bin DDR3L 1866M CL nRCD nRP 13 13 13 unte Sote Parameter Symbol min max 13 91 Ge Ee n ACT to internal read or E 13 91 u ns write delay time 13 125 PRE command period tap ud ns 13 125 9 5 AUF V e lo tras 34 9 tREFI ns ACT to ACT or PRE lac 47 1 command period 47 125 CWL 5 CK AVG 2 5 3 3 ns 1 2 3 9 CL 6 CWL 6 CK AVG Reserved ns 1 2 3 4 9 CWL 7 8 9 aver Reserved ns 4 CWL 5 CK AVG Reserved ns 4 CL lt 7 CWL 6 CK
18. 9 8 dco ml i Detail B Detail C v Back U U t7 240 N 121 M 2x R0 75 Max Side 3 64mm max Detail of Contacts A Detail of Contacts B Detail of Contacts C 1 204 0 15 8030 0 2 50 lt t 3 n S 8 8 3 0 1 8 3 A E S 8 Y R Mi 1 00 PE is lt o KR 1 27 010mm max Note 1 0 13 tolerance on all dimensions unless otherwise stated Units millimeters Rev 1 0 May 2014 68 SK nix 2Gx72 HMT42GR7BFR4A lt 7 gt Detail B lt gt S A 2 10 0 15 pl gJ E Detail A C 4X3 00 0 10 L x g 2s SIE 35 olala l kh X i e N e 28 Ao N i j He 2X3 00 0 I0 d v Ta gt 0 Detail D LJ UJ UV 240 Ym mm 2x R0 75 Max Side Detail of Contacts A Detail of Contacts B ail
19. Bank Address Inputs partially toggling according to Table 3 Data IO MID LEVEL DM stable at 0 Bank Activity Cycling with one bank active at a time 0 0 1 1 2 2 see Table 3 Output Buf fer and RTT Enabled in Mode Registers ODT Signal stable at 0 Pattern Details see Table 3 fDD1 Operating One Bank Active Precharge Current CKE High External clock On tCK nRC nRAS nRCD CL see Table 1 BL 83 AL 0 CS High between ACT RD and PRE Command Address Bank Address Inputs Data IO partially toggling according to Table 4 DM stable at 0 Bank Activity Cycling with on bank active at a time 0 0 1 1 2 2 see Table 4 Output Buffer and RTT Enabled in Mode Registers ODT Signal stable at 0 Pattern Details see Table 4 Rev 1 0 May 2014 53 Ds SK hynix Symbol Description Ipp2N Precharge Standby Current CKE High External clock On tCK CL see Table 1 BL 88 AL 0 CS stable at 1 Command Address Bank Address Inputs partially toggling according to Table 5 Data IO MID_LEVEL DM stable at 0 Bank Activity all banks closed Output Buffer and RTT Enabled in Mode Registers ODT Signal stable at 0 Pattern Details see Table 5 fDD2NT Precharge Standby ODT Current CKE High External clock On tCK CL see Table 1 BL 83 AL 0 CS stable at 1 Command Address Bank Address Inputs partially toggling according to Table 6 Data IO MID_LEVEL DM st
20. IDD2P0 516 516 552 mA IDD2P1 516 516 552 mA IDD2Q 1196 1232 1268 mA IDD3N 1376 1376 1448 mA IDD3P 624 624 660 mA IDD4R 2078 2240 2510 mA IDD4W 2168 2330 2546 mA IDD5B 3248 3320 3356 mA IDD6 588 588 660 mA IDDGET 696 696 696 mA IDD7 3068 3230 3446 mA Rev 1 0 May 2014 64 SK nix 32GB 4G x 72 R DI MM HMT84GR7BMR4A Symbol DDR3L 1066 DDR3L 1333 DDR3L 1600 Unit note IDDO 1916 1934 2150 mA IDD1 2060 2078 2294 mA IDD2N 1700 1700 1772 mA IDD2NT 1916 1916 2060 mA IDD2P0 804 804 804 mA IDD2P1 804 804 804 mA IDD2Q 1628 1628 1700 mA IDD3N 1916 1988 1988 mA IDD3P 1020 1020 1020 mA IDD4R 2456 2546 2852 mA IDD4W 2546 2636 2942 mA IDD5B 3716 3716 3932 mA IDD6 948 948 948 mA IDDGET 1164 1164 1164 mA IDD7 3356 3536 3842 mA Rev 1 0 May 2014 65 SK nix Module Dimensions 512Mx72 HMT451R7BFR8A Front L 133 35 128 95 gt SPD IIS A AN 4 2 10 0 15 keo 4X3 00 0 10 zg D 4 4 8 8 Detail A Q Detail B Detail C Y 2X3 00 0 10 LJ U WV 240 Back 2x R0 75 Max Detail of Contacts A Detail of Contacts B 1 20 0 15 80 0 05 T lt 3 0 1 8 n N 1 00 lt
21. Pattern than Sub Loops 0 9 Q o R 8 og S u e d Sg EK mn e 5 28 2 SE Elel3l8lE 8S 8 8588 18 ren 0 0 ACT 0 0 1 1 0 0 00 0 0 0 0 1 RDA 0 1 0 1 0 0 00 1 0 0 0 00000000 2 D 1 0 0 0 0 0 00 0 0 0 Sas repeat above D Command until nRRD 1 nRRD ACT 0 0 1 1 0 1 00 0 0 F 0 1 nRRD 1 RDA 0 1 0 1 0 1 00 1 0 F 0 00110011 nRRD 2 D 1 0 0 0 0 1 00 0 0 F 0 ai repeat above D Command until 2 nRRD 1 2 2 nRRD repeat Sub Loop 0 but BA 2 0 2 3 3 nRRD repeat Sub Loop 1 but BA 2 0 3 4 4 nRRD D 1 0 0 0 0 3 00 0 0 F 0 Assert and repeat above D Command until nFAW 1 if necessary 5 nFAW repeat Sub Loop 0 but BA 2 0 4 6 nFAW nRRD repeat Sub Loop 1 but BA 2 0 5 7 nFAW 2 nRRD repeat Sub Loop 0 but BA 2 0 6 8 nFAW 3 nRRD repeat Sub Loop 1 but BA 2 0 7 T 5 9 nFAW 4 nRRD D 1 0 0 0 0 7 00 0 0 F 0 X Assert and repeat above D Command until 2 nFAW 1 if necessary S 2 2 nFAW 0 ACT 0 0 1 1 0 0 00 0 0 F 0 e 10 2 nFAW 1 RDA 0 1 0 1 0 0 00 1 0 F 0 00110011 D 1 0 0 0 0 0 00 0 0 F 0 EE Repeat above D Command until 2 nFAW nRRD 1 2 nFAW nRRD ACT 0 0 1 1 0 1 00 0 0 0 0 11 2 nFAW nRRD 1 RDA 0 1 0 1 0 1 00 1 0 0 0 00
22. Undershoot Specification for Address and Control Pins DDR3 DDR3 DDR3 DDR3 DDR3 Parameter Units L 800 L 1066L 1333L 16001L 1866 Maximum peak amplitude allowed for overshoot area See Figure below 0 4 0 4 0 4 0 4 0 4 V Maximum peak amplitude allowed for undershoot area See Figure below 0 4 0 4 0 4 0 4 0 4 V Maximum overshoot area above VDD See Figure below 0 67 0 5 0 4 0 33 0 28 V ns Maximum undershoot area below VSS See Figure below 0 67 05 0 4 0 33 0 28 V ns A0 A15 BA0 BA3 CS RAS CAS WE CKE ODT See figure below for each parameter definition Maximum Amplitude Overshoot Area VDD Volts II vss Undershoot Area Maximum Amplitude Time ns Address and Control Overshoot and Undershoot Definition Rev 1 0 May 2014 41 SK uix Clock Data Strobe and Mask Overshoot and Undershoot Specifications AC Overshoot Undershoot Specification for Clock Data Strobe and Mask DDR3 DDR3 DDR3 DDR3 DDR3 Parameter Units L 800 L 1066L 1333L 1600L 1866 Maximum peak amplitude allowed for overshoot area See Figure below 0 4 04 04 04 04 V Maximum peak amplitude allowed for undershoot area See Figure below 0 4 0 4 04 04 04 V Maximum overshoot area above VDD See Figure below 0 25 0 19 0 15 0 13 0 11 V ns Maximum undershoot area below VSS See Figure below 0 25 0 19 0 15 0 13 0 11 V
23. WE TDQS TDQS A BA ODT ZQ Vss Figure 1 Measurement Setup and Test Load for IDD and IDDQ optional Measurements Note DIMM level Output test load condition may be different from above Application specific IDDQ memory channel Test Load Ul Channel IDDQ IDDQ lO Power Simulation Simulation Simulation a gt Correction Channel IO Power Number Figure 2 Correlation from simulated Channel IO Power to actual Channel 1O Power supported by IDDQ Measurement Rev 1 0 May 2014 52 SK nix Table 1 Timings used for IDD and I DDQ Measurement Loop Patterns DDR3L 1066 DDR3L 1333 DDR3L 1600 DDR3L 1866 Symbol Unit 7 7 7 9 9 9 11 11 11 13 13 13 lck 1 875 1 5 1 25 1 07 ns CL 7 9 11 13 nCK l RCD 7 9 11 13 nCK IRC 27 33 39 45 nCK IRAS 20 24 28 32 nCK Map 7 9 11 13 nCK 1KB page size 20 20 24 26 nCK FAW KB page size 27 30 32 33 nCK 1KB page size 4 4 5 5 nCK is 2KB page size 5 6 nCK Marc 512Mb 48 60 72 85 nCK lagc 1 Gb 59 74 88 103 nCK grc 2 Gb 86 107 128 150 nCK narc 4 Gb 139 174 208 243 nCK grc 8 Gb 187 234 280 328 nCK Table 2 Basic IDD and I DDQ Measurement Conditions Symbol Description Ippo Operating One Bank Active Precharge Current CKE High External clock On tCK nRC nRAS CL see Table 1 BL 83 AL 0 CS High between ACT and PRE Command Address
24. byte lane Case 1 is a defined for a single DQ signal within a byte lane which is switching into a certain direction either from high to low or low to high while all remaining DQ signals in the same byte lane are static i e they stay at either high or low Case 2 is a defined for a single DQ signal within a byte lane which is switching into a certain direction either from high to low or low to high while all remaining DQ signals in the same byte lane switching into the opposite direction i e from low to high of high to low respectively For the remaining DQ signal switching in to the opposite direction the regular maximum limite of 5 V ns applies Rev 1 0 May 2014 38 SK nix Differential Output Slew Rate With the reference load for timing measurements output slew rate for falling and rising edges is defined and measured between VOLdiff AC and VOHdiff AC for differential signals as shown in table and figure below Differential Output Slew Rate Definition Measured Description Defined by From To Differential output slew rate for rising edge VOI diff AC VoHaif Ac VoHaif aC Noto c DeltaTRditf Differential output slew rate for falling edge VOHdiff AC Voidit AC Vonditt Ac Votditt ac DeltaTFdiff Notes 1 Output slew rate is verified by design and characterization and may not be subject to production test g VOHdiff AC d T eJ 8 o gt s
25. of Contacts C Detail of Contacts D See 1 20 0 15 80 0 05 58 t 5 14 90 4 0 4 13 60 3 8 3 0 1 8 3 E d i 3 n Y I N en 1 00 50 0 lt 500 P 27 010mm max 4 Note 1 0 13 tolerance on all dimensions unless otherwise stated Rev 1 0 May 2014 Units millimeters 69 SK nix 2Gx72 HMT42GR7BFR4A Heat Spreader 22 00 30 20 46 46 lt gt Le 80 54 gt Le 119 64 gt Back k 57 2 gt 2 7 EM LJ Cc C D Cc mu 15 36 22 00 Side 7 65mm max HD M 27 010mm max Note 1 0 13 tolerance on all dimensions unless otherwise stated 2 In order to uninstall FDHS please contact sales administrator Units millimeters Rev 1 0 May 2014 70 SK nix 4Gx72 HMT84GR7BMR4A
26. on page 41 3 The ac peak noise on Vner may not allow Vge to deviate from Vgerpo pc by more than 1 VDD for reference approx 13 5 mV 4 For reference approx VDD 2 13 5 mV For reference approx VDD 2 13 5 mV 5 These levels apply for 1 35 volt table Single Ended AC and DC Input Levels for Command and Address on page 28 operation only If the device is operated at 1 5V table above the respective levels in J ESD79 3 VIH L DQ DC100 VIH L DQ AC175 VIH L DQ AC150 VIH L DQ AC135 etc apply The 1 5V levels VIH L DQ DC100 VIH L DQ AC175 VIH L DQ AC150 VIH L DQ AC135 etc do not apply when the device is operated in the 1 35 voltage range Rev 1 0 May 2014 29 SK yi Vref Tolerances The dc tolerance limits and ac noise limits for the reference voltages vnerca and Vnerpq are illustrated in figure below It shows a valid reference voltage Vnesi t as a function of time per stands for VpercA and Vnetpo likewise Vref DC is the linear average of Vge t over a very long period of time e g 1 sec This average has to meet the min max requirements in the table Differential Input Slew Rate Definition on page 36 Further more Vref t may temporarily deviate from Vger pc by no more than 1 VDD voltage VDD Vner t Vaar ac noise Ret VRef DC max VDD 2 VRef DC min VRef DC Illustration of Ver pc tolerance and Vref ac noise limits The voltage level
27. until nRAS 1 truncate if necessary nRAS PRE 0 0 1 0 0 0 00 010 0 0 D repeat pattern 1 4 until nRC 1 truncate if necessary 1 nRC 0 ACT 0 O 1 1 0 0 0 O 0 F 0 1 nRC 1 2 DD 1 O 0 0 0 0 0 0 0 F 0 2 1 nRC 3 4 IDD 1 1 1 1 0 0 l olololFfF o E tha repeat pattern nRC 1 4 until nRC nRCE 1 truncate if necessary 8 L 1 nRC nRCD RD 0 1 O 1 0 0 0 0 0 F 0 00110011 us repeat pattern nRC 1 4 until nRC nRAS 1 truncate if necessary 1 nRC nRAS PRE 0 0 1 0 0 0 00 010 F 0 Er repeat pattern nRC 1 4 until 2 nRC 1 truncate if necessary 1 2 nRC repeat Sub Loop 0 use BA 2 0 1 instead 2 4 nRC repeat Sub Loop 0 use BA 2 0 2 instead 3 6 nRC repeat Sub Loop 0 use BA 2 0 3 instead 4 8 nRC repeat Sub Loop 0 use BA 2 0 4 instead 5 10 nRC repeat Sub Loop 0 use BA 2 0 5 instead 6 12 nRC repeat Sub Loop 0 use BA 2 0 6 instead 7 14 nRC repeat Sub Loop 0 use BA 2 0 7 instead a DM must be driven LOW all the time DQS DQS are used according to RD Commands otherwise MID LEVEL b Burst Sequence driven on each DQ signal by Read Command Outside burst operation DQ signals are MID LEVEL Rev 1 0 May 2014 58 SK nix Table 5 IDD2N and I DD3N Measurement Loop Pattern 2 T el Le y ij
28. 0 ns ACT to ACT or REF 49 5 i c 510 ns command period 49 125 ACT to PRE command period RAS 36 9 tREFI ns CWL 5 CK AVG 2 5 3 3 ns 1 2 3 7 CL 6 CWL 6 amp xiave Reserved ns 1 2 3 4 7 CWL 7 CK AVG Reserved ns 4 CWL 5 ck AvG Reserved ns 4 1 875 lt 2 5 CL 7 CWL 6 CK AVG ns 1 2 3 4 7 Optional 2 10 CWL 7 CK AVG Reserved ns 1 2 3 4 CWL 5 Kk Ave Reserved ns 4 CL28 CWL 6 CK AVG 1 875 2 5 ns 1 2 3 7 CWL 7 CK AVG Reserved ns 1 2 3 4 EN CWL 5 6 fcK AVG Reserved ns 4 CWL 7 Kk Ave 1 5 lt 1 875 ns 1 2 3 4 CWL 5 6 amp kave Reserved ns 4 CL 10 1 5 1 875 ns 1 2 3 t CWL 7 tekave Optional ns 5 Supported CL Settings 6 7 8 9 10 Nk Supported CWL Settings 5 6 7 lick Rev 1 0 May 2014 46 SK nix DDR3L 1600 Speed Bins For specific Notes See Speed Bin Table Notes on page 49 Speed Bin DDR3L 1600K CL nRCD nRP 11 11 11 SE Note Parameter Symbol min max 13 75 NEC PUE aa 13 125 10 a ACT to internal read or t ch 13 75 _ write delay time 13 125 5 10 PRE command period fap n ns ACT to ACT or REF fac 48 75 i command period 48 125 5 10 ACT to d bis 35 9 tREFI ns CWL 5 CK AVG 2 5 3 3 ns 1 2 3 8 CL 6 CWL 6 amp x ave Reserved ns 1 2 3 4 8 CWL 7 CK AVG Reserved ns 4 CWL 5 awe Reserved ns 4 1
29. 0 D14 DQ 3 0 D39 3 DQ 3 0 D38 z g w 2188 sw 8B I l I w 5 wile 8 9999 8 5 La gt t La T e e Ze Tan Bs VSS WY Das VSS pa SC MAI BM g EN g pas g M 00 3 0 D17 S DQ 3 0 D16 DQ 3 0 D37 Zare D36 E 8 8 8 8 w 2188 8 5 I l I is 5 we 8 9999 sw 8 5 F La La La e A Rev 1 0 May 2014 22 S d K 32GB 4Gx72 Module 4Rank of x4 page4 vss DQS13 DQS13 VSS DQ 39 36 VSS DQS14 DQS14 VSS DQ 47 44 VSS DQS15 DQS15 VSS DQ 55 52 vss DQS16 DQS16 VSS DO 63 60 ME Note 1 DQ to 1 O wiring may be changed within a nibble 2 Unless otherwise noted resi
30. 000000 D 1 0 0 0 0 1 00 0 0 0 0 EES Repeat above D Command until 2 nFAW 2 nRRD 1 12 2 nFAW 2 nRRD repeat Sub Loop 10 but BA 2 0 2 13 2 nFAW 3 nRRD repeat Sub Loop 11 but BA 2 0 3 D 1 0 0 0 0 3 00 0 0 0 0 By eon er nRRD Assert and repeat above D Command until 3 nFAW 1 if necessary 15 3 nFAW repeat Sub Loop 10 but BA 2 0 4 16 3 nFAW nRRD repeat Sub Loop 11 but BA 2 0 5 17 3 nFAW 2 nRRD repeat Sub Loop 10 but BA 2 0 6 18 3 nFAW 3 nRRD repeat Sub Loop 11 but BA 2 0 7 D 1 0 0 0 0 7 00 0 0 0 0 19 IER Assert and repeat above D Command until 4 nFAW 1 if necessary a DM must be driven LOW all the time DQS DQS are used according to RD Commands otherwise MID LEVEL b Burst Sequence driven on each DQ signal by Read Command Outside burst operation DQ signals are MID LEVEL Rev 1 0 May 2014 62 SK nix IDD Specifications Tcase 0 to 95 C Module IDD values in the datasheet are only a calculation based on the component IDD spec and register power The actual measurements may vary according to DQ loading cap 4GB 512M x 72 R DIMM HMT451R7BFR8A Symbol DDR3L 1333 DDR3L 1600 DDR3L 1866 Unit note IDDO 998 998 1016 mA IDD1 1070 1070 1088 mA IDD2N 881 890 899 mA IDD2NT 908 926 935 mA IDD2P0 300 300 309 mA IDD2P1 300 300 309 mA IDD2Q
31. 1 97 1 6 69 100 62 74 78 1 4 40 76 37 52 56 1 2 note 44 5 22 24 1 0 note note note note note i lt 1 0 note note note note S note note Rising input signal shall become equal to or greater than VIH ac level and Falling input signal shall become equal to or less than VIL ac level Rev 1 0 May 2014 32 SK yi Single ended requirements for differential signals Each individual component of a differential signal CK DQS DQSL DQSU CK DQS DQSL of DQSU has also to comply with certain requirements for single ended signals CK and CK have to approximately reach VSEHmin VSELmax approximately equal to the ac levels VIH ac VIL ac for ADD CMD signals in every half cycle DQS DQSL DQSU DQS DQSL have to reach VSEHmin VSELmax approximately the ac levels VIH ac VIL ac for DQ signals in every half cycle preceding and following a valid transition Note that the applicable ac levels for ADD CMD and DQ s might be different per speed bin etc E g if VIH CA AC150 VIL CA AC150 is used for ADD CMD signals then these ac levels apply also for the single ended signals CK and CK Or E VDO e erm Ee Se ERES ERES Ree RUE uS VSEHmina m9 mc K eee eee Ge Ee Sie Es VDD 2 or NDDOI2 ee EE CK or DOS VSELmax Single ended requirements for differential signals Note that while ADD CMD and DQ signal requir
32. 1 VIT Termination Voltage 4 SA 2 0 SPD Address Inputs 3 Vppspp SPD Power 1 Parity bit for the Address and Par_In 1 7 Control bus Parity error found on the Err Out Address and Control bus Rev 1 0 May 2014 5 SK nix Input Output Functional Descriptions Symbol Type Polarity Function CKO IN Positive Positive line of the differential pair of system clock inputs that drives input to the on Line DIMM Clock Driver CKO IN Negative Negative line of the differential pair of system clock inputs that drives the input to the Line on DIMM Clock Driver CK1 IN id Terminated but not used on RDIMMs CK1 IN oou Terminated but not used on RDIMMs CKE HI GH activates and CKE LOW deactivates internal clock signals and device input CKE 1 0 IN Active buffers and output drivers of the SDRAMs Taking CKE LOW provides PRECHARGE i High POWER DOWN and SELF REFRESH operation all banks idle or ACTIVE POWER DOWN row ACTIVE in any bank Enables the command decoders for the associated rank of SDRAM when low and dis ables decoders when high When decoders are disabled new commands are ignored ST3 0 IN Active and previous operations continue Other combinations of these input signals perform Low unique functions including disabling all outputs except CKE and ODT of the register s on the DIMM or accessing internal control words in the register device s For modules wit
33. 100 50 40 ps Input to remain_ tu Hold time valid after CK CK 175 125 75 ps Propagation tppu delay single bit CK CK to output 0 65 1 0 0 65 1 0 0 65 1 0 ns switching E dn eL Yn Yn to output 0 5 _ 0 5 _ 0 5 _ prelaunch float tQSK1 min tQSK1 min tQSK1 min ten a ee Output driving to 0 5 I 0 5 I 0 5 I D prelaunch Yn Yn tQSK1 max tQSK1 max tQSK1 max 10 Rev 1 0 May 2014 sd On DIMM Thermal Sensor The DDR3 SDRAM DIMM temperature is monitored by integrated thermal sensor The integrated thermal sensor comply with JEDEC TSE2002av Serial Presence Detect with Temperature Sensor Connection of Thermal Sensor SA0 S SPD with sA1 SCL Integrated c SDA TS Temperature to Digital Conversion Performance Parameter Condition Min Typ Max Unit Active Range 75 C lt Ty lt 95 C Temperature Sensor Accuracy Grade B Monitor Range I 40 C lt Ty lt 125 C SON EE E 20 C lt T lt 125 C 2 0 3 0 C Resolution 0 25 RS Rev 1 0 May 2014 11 S d Functional Block Diagram 4GB 512Mx72 Module 1Rank of x8 a gg amp o m8 20 THEE TEHE B l l leg
34. 2 DQ 3 0 D51 Zare D50 E 8 8 8 8 w 2188 I 8 we w 5 DEIER 9999 8 5 L all La La La Gs Tag ds Maia VSS_ AI SE q g Bu g eu g pos g W DQ 3 0 D1 3 DQ 3 0 DO 3 DQ 3 0 D53 GEN D32 z 8 8 8 8 w Rsg s I 5 w l w 5 we sws8 io 218 I 8 5 J x x e e Rev 1 0 May 2014 20 S de 32GB 4Gx72 Module 4Rank of x4 page2 vss DQS17 DQS17 VSS CB 7 4 VSS DQS12 DQS12 VSS DQ 31 28 VSS DQS11 DQS11 VSS DQ 23 20 VSS DQS10 DQS10 VSS DQ 11 8 VSS DQS9 DQS9 DQ 7 4 Vtt m o 0z d i
35. 22 TDQS15 43 DQS8 163 Vss 103 DQS6 223 Vss 44 Vss 164 CB6 NC 104 Vss 224 DQ54 45 CB2 NC 165 CB7 NC 105 DQ50 225 DQ55 46 CB3 NC 166 Vss 106 DQ51 226 Vss 47 Vss 167 NC TEST 107 Vss 227 DQ60 48 VTT NC 168 RESET 108 DQ56 228 DQ61 KEY KEY 109 DQ57 229 Vss DM7 DQS16 49 VTT NC 169 CKE1 NC 110 Vss 230 TDQS16 NC DQS16 50 CKE0 170 VDD 111 DQS7 231 TDOSI6 51 VDD 171 A15 112 DQS7 232 Vss 52 BA2 172 Al4 113 Vss 233 DQ62 53 Err_Out NC 173 VDD 114 DQ58 234 DQ63 54 VDD 174 A12 BC 115 DQ59 235 Vss 55 A11 175 A9 116 Vss 236 VDDSPD 56 A7 176 VDD 117 SAO 237 SA1 57 VDD 177 A8 118 SCL 238 SDA 58 A5 178 A6 119 SA2 239 Vss 59 A4 179 VDD 120 VTT 240 VTT 60 VDD 180 A3 NC No Connect RFU Reserved Future Use Rev 1 0 May 2014 De SK hynix Registering Clock Driver Specifications Capacitance Values Symbol Parameter Conditions Min Typ Max Unit Input capacitance Data inputs 1 5 2 5 pF a Input capacitance CK CK FBIN FBIN 15 25 F up to DDR3 1600 I p CIR GE RESET MIRROR V Vpp or GND Vpp 1 5v _ 3 oF Input amp Output Timing Requirements is ss DDR3L 1600 DDR3L 1866 Symbol Parameter Conditions Unit Min Max Min Max Min Max fia Input clock fre Application fre 300 670 300 810 300 945 Mhz quency quency Input clock fre frEST ti Test frequency 70 300 70 300 70 300 Mhz Input valid before _ tsu Setup time CK CK
36. 24M DQ 3 0 D2 w l l 8 5 DOS e 2 s DQ 3 0 D20 28g ow B DQS1 A DQS DQS1 W DQS VSS pm DO Side DQ 3 0 D1 w Sig w 5 Dos DQS DQ 3 0 D19 A N O BA N O A N O BA N O w 2812 s t 5 DQS9 A DQS BQS9 IDQS VSS DM DQI 7 4 A DQ 3 0 D9 wesw 85 pos DQS DQ 3 0 D27 A N O BALN O A N O BALN O BSE t 8B Vtt 34 17 SK nix 16GB 2Gx72 Module 2Rank of x4 page2 m o 9 2o m m m 95 IT elt z d PP g x L ID Jl E AH DQS14 DQS DQS514 IDQS VSS DM o DQ 47 44 W DQ 3 0 D14 a2 u io l l lE 5 m mn n gg Y E PE l L L L L DQS DQS B i D32 iili sus A N O BA N O L DQS4 DOS DQS DQS4 wlDQS DQS E VSS DM DM DQ 35 32 DQ 3 0 D4 DQ 3 0 D22 w RE 5 wie 8 8 L T DQS16 x DQS D95 DQS16
37. 8 DQ 3 0 D12 w lsg s B t Dos DOS DQ 13 01 D30 w l I s is 5 A N O BA N O A N O BA N O DQS11 A DOS DQSII W DOS VsS pM DQI23 20 A DQ 3 0 D11 we sb DOS DOS DM DQ 3 0 D29 A N O BALN O A N O BALN O w l I sss DQS10 DOS DQS10 DOS VSS DM DQ 15 12 A DQ 3 0 D10 wesw 5 Dos DQS DQ 3 0 D28 A N O BALN O A N O BALN O w l g vi 8 DQS0 xIDQS DQS0 wW DOS VSS pm DQ 3 0 A9 DQ 3 0 DO w l l g t pos DQS DQ 3 0 D18 w l l I ws 8 5 A N O BALN O A N O BALN O Vtt 34 Rev 1 0 May 2014 lt 4 2 HHE itii 9292 9 x 8 10 2 1 d L L 1 I DQS8 wx DQS Dos DQS8 w DQS Dos DQS vss DM DM 9 CB 3 0 AM DO 3 0 D8 DQ 3 0 D26 8 I 28 RIRE 5 I BBB x8 8 DQsS3 W DOS DOS3 W DOS vss DM DQI27 24 M9 DQ 3 0 D3 we 8 B Dos s S H DQ 3 0 D21 H 9 8 91999 5 DQS2 A DOS DQS2 W DOS VSS pm DQ 19 16
38. 872 881 890 mA IDD3N 917 917 935 mA IDD3P 327 327 336 mA IDD4R 1349 1394 1502 mA IDD4W 1394 1439 1529 mA IDD5B 1889 1889 1889 mA IDD6 318 318 318 mA IDDGET 345 345 345 mA IDD7 1799 1844 1934 mA 8GB 1G x 72 R DIMM HMT41GR7BFR4A Symbol DDR3L 1333 DDR3L 1600 DDR3L 1866 Unit note IDD0 1232 1232 1268 mA IDD1 1376 1376 1412 mA IDD2N 998 1016 1034 mA IDD2NT 1052 1088 1106 mA IDD2P0 372 372 390 mA IDD2P1 372 372 390 mA IDD2Q 980 998 1016 mA IDD3N 1070 1070 1106 mA IDD3P 426 426 444 mA IDD4R 1844 1934 2168 mA IDD4W 1934 2024 2204 mA IDD5B 3014 3014 3014 mA IDD6 408 408 408 mA IDDGET 462 462 462 mA IDD7 2834 2924 3104 mA Rev 1 0 May 2014 63 SK uix 8GB 1G x 72 R DI MM HMT41GR7BFR8A Symbol DDR3L 1333 DDR3L 1600 DDR3L 1866 Unit note IDDO 1115 1151 1187 mA IDD1 1187 1223 1259 mA IDD2N 998 1016 1034 mA IDD2NT 1052 1088 1106 mA IDD2PO 372 372 390 mA IDD2P1 372 372 390 mA IDD2Q 980 998 1016 mA IDD3N 1070 1070 1106 mA IDD3P 426 426 444 mA IDDAR 1466 1547 1673 mA IDDAW 1511 1592 1700 mA IDD5B 2006 2042 2060 mA IDD6 408 408 408 mA IDDGET 462 462 462 mA IDD7 1916 1997 2105 mA 16GB 2G x 72 R DIMM HMT42GR7BFR4A Symbol DDR3L 1333 DDR3L 1600 DDR3L 1866 Unit note IDD0 1466 1538 1610 mA IDD1 1610 1682 1754 mA IDD2N 1232 1268 1304 mA IDD2NT 1340 1412 1448 mA
39. A0 A9 A11 A0 A9 A11 Bank Address BA0 BA2 BA0 BA2 BA0 BA2 BA0 BA2 BA0 BA2 Page Size 1KB 1KB 1KB 1KB 1KB Rev 1 0 May 2014 Ds SK hynix Pin Descriptions Num SE Num Pin Name Description ber Pin Name Description ber CKO Clock Input positive line 1 ODT 1 0 On Die Termination Inputs 2 CK0 Clock Input negative line 1 DQ 63 0 Data Input Output 64 CK1 Clock Input positive line 1 CB 7 0 Data check bits Input Output 8 CK1 Clock Input negative line 1 DQS 8 0 Data strobes 9 CKE 1 0 Clock Enables 2 DQS 8 0 Data strobes negative line 9 DM 8 0 C Data Masks Data strobes RAS Row Address Strobe 1 DQS 17 9 Ternet 3 SET 9 TDQS 17 9 ermination data strobes ARG DQS 17 9 Data strobes negative line CAS Column Address Strobe 1 9 TDQS 17 9 Termination data strobes Reserved for optional hardware WE Write Enable 1 EVENT 1 temperature sensing I Memory bus test tool Not Con SIS Cp Selects i TEST nected and Not Usable on DIMMs 1 A 9 0 A11 a s A 15 13 Address Inputs 14 RESET Register and SDRAM control pin 1 A10 AP Address Input Autoprecharge 1 Vpp Power Supply 22 A12 BC Address Input Burst chop 1 Vss Ground 59 BA 2 0 SDRAM Bank Addresses 3 VREFDQ Reference Voltage for DQ 1 Serial Presence Detect SPD V SCL Clock Input 1 REFCA Reference Voltage for CA 1 SDA SPD Data Input Output
40. AVG 1 875 2 5 ns 1 2 3 4 9 CWL 7 8 9 tekave Reserved ns 4 CWL 5 CK AVG Reserved ns 4 CL 8 CWL 6 CK AVG 1 875 lt 2 5 ns 1 2 3 9 CWL 7 CK AVG Reserved ns 1 2 3 4 9 CWL 8 9 aver Reserved ns 4 CWL 5 6 CK AvG Reserved ns 4 CL 9 CWL 7 CK AVG 1 5 lt 1 875 ns 1 2 3 4 9 CWL 8 CK AVG Reserved ns 1 2 3 4 9 CWL 9 CK AVG Reserved ns 4 CWL 5 6 ck avG Reserved ns 4 CL 10 CWL 7 CK AVG 1 5 lt 1 875 ns 1 2 3 9 CWL 8 CK AVG Reserved ns 1 2 3 4 9 CWL 5 6 7 fck ave Reserved ns 4 CL 11 CWL 8 CK AVG 1 25 lt 1 5 ns 1 2 3 4 9 CWL 9 CK AVG Reserved ns 1 2 3 4 CL 12 CWL 5 6 7 8 CK AVG Reserved ris 4 CWL 9 CK AVG Reserved ns 1 2 3 4 CL 13 CWL 5 6 7 8 CK AVG Reserved ns 4 CWL 9 CK AVG 1 07 lt 1 25 ns 1 2 3 Supported CL Settings 6 7 8 9 10 11 13 NCK Supported CWL Settings 5 6 7 8 9 NCK Rev 1 0 May 2014 48 w SK hynix Speed Bin Table Notes Absolute Specification Toper Vppo Vpp 1 35V 0 100 0 067 V 1 10 11 The CL setting and CWL setting result in tCK AVG MIN and tCK AVG MAX requirements When mak ing a selection of tCK AVG both need to be fulfilled Requirements from CL setting as well as require ments from CWL setting tCK AVG MIN limits Since CAS Latency is not purely analog data and strobe output are synchro nized by the DLL all possible intermediate frequencies may not be guaranteed An application should use the ne
41. D 7 4 BANS A gt A E SDRAMs E L D RA N 0 B A N 0 SDRAMs D 7 4 D RRASA RAS SDRAMs D 3 0 D 12 RRASB RAS SDRAMs D 7 4 D 16 8 1 RCASA gt CAS SDRAMs D 0J D I2 8 D17 T i i RWEA WE SDRAMs Dan DI12 8 pu RWEB gt WE SDRAMs DU AL D 16 1 RCKE0A CKE0 SDRAMs D 3 0 D RCKE0B CKE0 SDRAMs D 7 4 D RODT0A ODTO SDRAMs D 3 0 D 12 8 RODTOB ODTO SDRAMs D 7 4 D 16 1 PCKOA CK SDRAMs D 3 PCK0B CK SDRAMs D 7 0 DS 4 PCK0A CK SDRAMs D 3 0 D8 PCKOB CK SDRAMs D 7 4 Err_Out RST SDRAMs D 17 0 S 3 2 CKE1 ODT1 CK1 and CK1 are NC Unused register inputs ODT1 and CKE1 have a 3302 resistor to ground Rev 1 0 May 2014 14 SK nix 8GB 1Gx72 Module 2Rank of x8 pagel
42. DQS DM ra VSS DM e DQ 51 488 A DQ 3 0 D6 E Miss aad Do 13 01 D15 S z 2 u 2 ws BE o BBE BIg I e e L e DQS7 dd DOS zQ DQS16 w oos za D I apos z H 09516 w pos S DM E VSS DM DQ 59 56F We DQ 3 0 D7 E H Mies el DA 13 01 D16 2 2 y I l8 I 5 I l l l RIRE Ble I e e La e e Vtt 3 See the wiring diagrams for all resistors associated with the com mand address and control bus 4 ZQ resistors are 24096 Rdr all other resistor values refer to the appro priate wiring diagram Rev 1 0 May 2014 Plan to use SPD with Integrated TS of Class B and might be changed on customer s requests For more details of SPD and Thermal sensor please contact local SK hynix sales representative Vppspp 34 SPD VDD D0 D17 V 4 D0 D17 VREFCA D0 D17 VREFDQ D0 D17 Vss D0 D17 13 SK yi 8GB 1Gx72 Module 1Rank of x4 page2 S0 mw m SE ege BA N 0 R F AN EL G RAS Wy L WE N E F CKE0 d DTD wWd CK0 CKO PAR IN GERRL RESET RST RSOA gt CS0 SDRAMs D 3 0 D 12 8 D17 RSOB CS0 SDRAMs D 7 4 D 16 13 RSIA CSI SDRAMs D 12 9 D17 RS1B CSI SDRAMs D 16 13 Ed gt BA N 0 SDRAMs D 3 0 RBA N 0 B BA N 0 SDRAMs
43. F TE J i 9 5a HHH E g i5 1 L Mi bas Ze Ed 3 E g DO 3 0 D27 DQ 3 0 D26 g l l l vis 5 w ke w 8 5 E re La W b Das DOS 8 DQS S ZW re D25 poo D24 g w Be Is 5 wesw 5 E La W bas Sie S g Sr g W DQ 3 0 D23 DQ 3 0 32 g w 218 5882 we w 5 E Weg e e TW b Sie MEn BM g W DQ 3 0 D21 DQ 3 0 D20 8 w 2188 I 5 we w 5 E all La e bos as ia g ERE g N pq 3 0 D19 DQ 3 0 Pis w Rsg s I 5 w l w 5 e gt La e lt lt o Dt TTE ATH TEES db SI 5505 mo 5 gt J j j J uj u P qp I I zQ ZQ DOS DQS S j E DQ 3 0 D63 Bi te D62 015519 3 w lils w 8 E e t e zQ ZQ b s Dos S x DQ 3 0 D65 DQ 3 0 D64 E 8 w ie w 5 ille sssBE E La zQ ZQ nos Dos 5 DQ 3 0 D67 DQ 3 0 D66 z 3 2 I l l I 8 9999 8 5 E La Le zQ ZQ Dos Dos 3 5 DQ 3 0 D69 3 DQ 3 0 D68 E 8 DEIER 9999 8 5 EE e La e ZQ ZQ pos Dos Gg g E D Geen 2A DQ 3 0 D E we w 5 io 218 sb BE e Le Rev 1 0 May 2014 21 S d K 32GB 4Gx72 Module 4Rank of x4 page3 vss DQS4 DQS4 DQ 35 32 VS
44. Oo D E O T 2 c VOLdiff AC S Differential Output slew Rate Definition Differential Output Slew Rate DDR3L 800 DDR3L 1066 DDR3L 1333 DDR3L 1600 DDR3L 1866 Parameter Symbol Min Max Min Max Min Max Min Max Min Max Differential Output Slew Rate SRQdiffl 3 5 12 35 12 35 12 35 12 35 12 V ns Description SR Slew Rate Q Query Output like in DQ which stands for Data in Query Output se Single ended Signals For Ron RZQ 7 setting Units Rev 1 0 May 2014 39 SK yi Reference Load for AC Timing and Output Slew Rate Figure below represents the effective reference load of 25 ohms used in defining the relevant AC timing parameters of the device as well as output slew rate measurements It is not intended as a precise representation of any particular system environment or a depiction of the actual load presented by a production tester System designers should use IBIS or other simulation tools to correlate the timing reference load to a system environment Manufacturers correlate to their production test conditions generally one or more coaxial transmission lines terminated at the tester electronics VDDQ VTT VDDQ 2 Reference Load for AC Timing and Output Slew Rate Rev 1 0 May 2014 40 SK nix Overshoot and Undershoot Specifications Address and Control Overshoot and Undershoot Specifications AC Overshoot
45. P ODT Signal MID LEVEL Rev 1 0 May 2014 55 SK yi Symbol Description Operating Bank Interleave Read Current CKE High External clock On tCK nRC nRAS nRCD NRRD nFAW CL see Table 1 BL 88 f AL CL 1 CS High between ACT and RDA Command Address Bank Address Inputs partially toggling according to Table Ipp7_ 10 Data IO read data burst with different data between one burst and the next one according to Table 10 DM stable at 0 Bank Activity two times interleaved cycling through banks 0 1 7 with different address ing wee Table 10 Output Buffer and RTT Enabled in Mode Registers ODT Signal stable at 0 Pattern Details see Table 10 a Burst Length BL8 fixed by MRS set MRO A 1 0 00B b Output Buffer Enable set MR1 A 12 0B set MR1 A 5 1 01B RTT Nom enable set MR1 A 9 6 2 0118 RTT_Wr enable set MR2 A 10 9 10B c Precharge Power Down Mode set MRO A12 0B for Slow Exit or MRO A12 1B for Fast Exit d Auto Self Refresh ASR set MR2 A6 0B to disable e Self Refresh Temperature Range SRT set MR2 A7 OB for normal or 1B for extended temperature range f Read Burst Type Nibble Sequential set MRO A 3 0B Rev 1 0 May 2014 56 SK nix Table 3 IDD0 Measurement Loop Pattern T S o z 8 F elle 582 iH PeBBEBIIBLLi 0 0 AT 0 O
46. Pei 8 8 5 B S S S aa 3 OS lt lt lt lt 0 0 D 1 0 0 0 0 0 0 0 0 0 0 d D 1 0 0 0 0 0 0 0 0 0 0 2 B 1 1 1 1 0 0 01 01 1 0 00 F O 3 D 1 1 11 1 01 01 01 10 10 0Fl F 19 2 5 1 47 repeat Sub Loop 0 use BA 2 0 1 instead D 2 8 11 repeat Sub Loop 0 use BA 2 0 2 instead E 3 12 15 repeat Sub Loop 0 use BA 2 0 3 instead 4 16 19 repeat Sub Loop 0 use BA 2 0 4 instead 5 20 23 repeat Sub Loop 0 use BA 2 0 5 instead 6 24 17 repeat Sub Loop 0 use BA 2 0 6 instead 7 28 31 repeat Sub Loop 0 use BA 2 0 7 instead a DM must be driven LOW all the time DQS DQS are MID LEVEL b DQ signals are MID LEVEL Table 6 IDD2NT and IDDQ2NT Measurement Loop Pattern S E Z II Xu 3 2 lug Bass 25 SS ss 6 3 C2 Clg s lt q lt lt 0 0 D 1 0 0 0 0 0 0 0 0 0 0 1 D 1 0 0 0 0 0 0 0 0 0 0 2 D 1 1 1 1 0 0 0 0 0 E l 0 3 D 1 1 1 1 0 0 0 0 0 F 0 2 1 47 repeat Sub Loop 0 but ODT 0 and BA 2 0 1 8 2 8 11 repeat Sub Loop 0 but ODT 1 and BA 2 0 2 8 3 12 15 repeat Sub Loop 0 but ODT 1 and BA 2 0 3 4 16 19 repeat Sub Loop 0 but ODT 0 and BA 2 0 4 5 20 23 repeat Sub Loop 0 but ODT 0 and BA 2 0 5 6 24 17 repeat Sub Loop 0 but ODT 1 and BA 2 0 6 7 28 31 repeat Sub Loop 0 but ODT 1 and BA 2 0 7 a DM must be driven LOW all the time DQS DQS are MID LEVEL b DQ signals are MID LEVEL Rev 1 0 May 2014 59 SK nix T
47. S DQS5 DQS5 DQ 43 40 vss DQS6 DQS6 DQ 51 48 vss DQS7 DQS7 VSS DO 59 56 VU emm n a af 26 5555 2S 555557 i 8 i l a N x m HHE 28 BIN d ES i 94404441 i d l l l L RA VS W os VS Ws VSS pa SCH a 3 E g GR S g DO 3 0 D11 DQ 3 0 D10 DQ 3 0 D13 DQ 3 0 D42 v 82 8 92189 w 8 5 wile w 8 iiS ww 8 5 E E e t e La Ze A D VSS WY Os NS pp En DOS 5 DQS 5 DQS S DOs S kae 7 z DM z DM Z z DO 3 0 D13 DQ 3 0 D12 DQ 3 0 D41 Gs D40 g w BI Is 8 w l 8 w 5 I l J t6 8 91999 si 8 E E La La La La e La DOs VS WI D imi VSS M SC S g ES g GR E g W DQ 3 0 D15 DQ 3
48. S HMT451R7BFR8A H9 PB RD 4GB 512Mx72 512Mx8 H5TC4G83BFR 9 1 X HMT41GR7BFR8A H9 PB RD 8GB 16x72 512Mx8 H5TC4G83BFR 18 2 X HMT41GR7BFR4A H9 PB RD 8GB 1Gx72 1Gx4 H5TC4G43BFR 18 1 X HMT42GR7BFR4A H9 PB RD 16GB 26x72 1Gx4 H5TC4G43BFR 36 2 O HMT84GR7BMR4A G7 H9 PB 32GB 4Gx72 DDP 2Gx4 H5TC8G43BMR 36 4 0 Rev 1 0 May 2014 In order to uninstall FDHS please contact sales administrator SK nix Key Parameters CAS RAS MT s Grade E Latency ice oan ERE CL tRCD tRP ns ns ns ns ns tCK DDR3L 1066 G7 1 875 7 13 125 13 125 37 5 50 625 7 7 7 13 5 13 5 49 5 DDR3L 1333 H9 1 5 9 13 125 13 125 3 49 125 9 9 9 13 75 13 75 48 75 DDR3L 1600 PB 1 25 11 13 125 13 125 35 48 125 11 11 11 13 91 13 91 47 91 DDR3L 1866 Rd 1 07 13 13 125 13 125 34 48 125 13 13 13 SK hynix DRAM devices support optional downbinning to CL11 CL9 and CL7 SPD setting is programmed to match Speed Grade Frequency MHz Grade Remark CL6 CL7 CL8 CL9 CL10 CL11 CL12 CL13 G7 800 1066 1066 H9 800 1066 1066 1333 1333 PB 800 1066 1066 1333 1333 1600 RD 800 1066 1066 1333 1333 1600 1866 Address Table 4GB 1Rx8 8GB 1Rx4 8GB 2Rx8 16GB 2Rx4 32GB 4Rx4 Refresh Method 8K 64ms 8K 64ms 8K 64ms 8K 64ms 8K 64ms Row Address A0 A15 A0 A15 A0 A15 A0 A15 A0 A15 Column Address A0 A9 A0 A9 A11 A0 A9
49. SO RA 5 DOS DM0 DQS9 TDQS TDQS Min M TT POLL P 0d DQ 7 0 K DQ 7 0 s 20 E 5 9 MOETE MULT vi I VDDSPD VDDSPD SAO SAO T EVENT EVENT SPD with SA1 n SA1 is VS SCL J SCL Gees SA2 SA2 SDA SDA VSS VSS Plan to use SPD with Integrated TS of Class B and Note might be changed on customer s requests For more 1 DQ to 1 O wiring may be changed within a byte 2 Unless otherwise noted resistor values are 15 Q 5 3 ZQ resistors are 240 2 1 For all other resistor values refer to the appropriate wiring diagram 4 See the wiring diagrams for all resistors associated with the command address and control bus Rev 1 0 May 2014 details of SPD and Thermal sensor please contact local SK hynix sales representative Vppspp gus Serial PD VDD n D0 D17 V D0 D17 VREFCA A D0 D17 VREFDQ D0 D17 Vss D0 D17 15 SK yi 8GB 1Gx72 2Rank of x8 page2 S0 L 1 2 S1 S 3 2 NC R DAIN DI wM E L AN 0 GE GE RAS s F WE RF CKE0 M L CKEL dd LL L ODIO e ODTI WY am CK0 1209 EN 5 CKO CK1 1209 CK1 2 PAR IN wW OERR RESET RST RS0A CS0 SDRAMs D 3 0 D8 RSOB CS0 SDRAMs D 7 4 RSIA gt CSI SDRAMs D 12 9 D17 RS1B CSI SDRAMs D 16 13 RBA N 0 A BA N 0 SDRAMs D 3 b n N 0 B BA N 0 SDRAMs D
50. SPD VDDSPD VDDSPD SAO SAO VDD D0 D71 x EE EVENT EVENT SPD with SA1 SA1 Vrr Integrated Ve T SCL SCL SA2 SA2 VREFDQ D0 D71 SDA SDA VSS VSS Vss DO D71 Plan to use SPD with Integrated TS of Class B and 23 SK yi 32GB 4Gx72 Module 4Rank of x4 page5 ED ARS0A gt CS1 SDRAMs DI D3 D5 D7 D9 BI wd BRS2A CS1 SDRAMs D45 D47 D49 D51 D53 1 2 D19 D21 D23 D25 D27 1 2 D63 D65 D67 D69 D71 ARSOB CS1 SDRAMs D11 D13 D15 D17 BRS2B CS1 SDRAMs D37 D39 D41 D43 R D29 D31 D33 D35 R D55 D57 D59 D6I SI d E L ARS1A CS0 SDRAMs D0 D2 D4 D6 D8 S3 wd E I BRS3A CS0 SDRAMs D44 D46 D48 D50 D52 G _ DI8 D20 D22 D24 D26 G D62 D64 D66 D68 D70 ARS1B CS0 SDRAMs D10 D12 D14 D16 BRS3B CS0 SDRAMs D36 D38 D40 D42 S D28 D30 D32 D34 S D54 D56 D58 D60 BA N 0 A L ARBA N 0 A gt BA N 0 SDRAMs D 9 0 D 27 18 _ BA N 0 A I L BRBA N 0 A BA N 0 SDRAMs D 53 44 D 71 62 T ARBA N 0IB BAIN SDRAM DIT TU D35281 T BRBAIN 018 BAIN 0 SDKAM Die EE A N 0 WwM L ARA N 0 A gt A N 0 SDRAMs D 9 0 D 27 A N 0 A BR 0 A gt A N 0 SDRAMs D 55 44 D 71 62 N 0 S ARAIN 0 B gt AN 0 SDRAMs D 17 N EE L N 0 P RAIN 01B gt A Nl SDRAMs p GERS RAS d ARRASA RAS SDRAMs D 9 0 D 27 18 RAS Ad L BRRASA gt RAS SDRAMs D 53 44 D 71 62
51. Vix Min VSEL gt 25mV VSEH VDD 2 Vix Max gt 25mV Rev 1 0 May 2014 35 SK uix Slew Rate Definitions for Single Ended I nput Signals See 7 5 Address Command Setup Hold and Derating in DDR3 Device Operation for single ended slew rate definitions for address and command signals See 7 6 Data Setup Hold and Slew Rate Derating in DDR3 Device Operation for single ended slew rate definition for data signals Slew Rate Definitions for Differential nput Signals Input slew rate for differential signals CK CK and DQS DQS are defined and measured as shown in table and figure below Differential I nput Slew Rate Definition Measured Description x Defined by Min ax Differential input slew rate for rising edge CK CK and DOS DOS SC VIdifmax Vinaittmin ViHaittmin ViLdittmax Delta T Rdiff Differential input slew rate for falling edge CK CK and DOS DAS qo Vindiftmin ViLdifmax Vindittmin Vivaittmax Delta TFdiff Notes The differential signal i e CK CK and DQS DQS must be linear between these thresholds Differential Input Voltage i e DQS DQS CK CK ViHdiffmn B ViLdifmax Differential Input Slew Rate Definition for DQS DQS and CK CK Rev 1 0 May 2014 36 SK nix AC amp DC Output Measurement Levels Single Ended AC and DC Output Levels
52. able 7 IDD4R and IDDQ4R Measurement Loop Pattern v s z SF amela v8 i 2 85 5 2s om F OS lt lt Z lt lt 0 10 RD 0 1 0 1 0 0 00 0 0 0 0 00000000 1 D 1 0 0 0 0 0 0010 0 0 0 2 3 DD 1 1 1 1 0 0 0 1 0 0 01 01 4 RD 0 1 0 1 0 0 00 0 0 F 0 00110011 5 D 1 0 0 0 0 0 00 O 0 F 0 Pp 6 7 DD 11 11 1 1 0 0 0 0 0 F o E 1 8 15 repeat Sub Loop 0 but BA 2 0 1 8 L 2 16 23 repeat Sub Loop 0 but BA 2 0 2 3 24 31 repeat Sub Loop 0 but BA 2 0 3 4 32 39 repeat Sub Loop 0 but BA 2 0 4 5 40 47 repeat Sub Loop 0 but BA 2 0 5 6 48 55 repeat Sub Loop 0 but BA 2 0 6 7 56 63 repeat Sub Loop 0 but BA 2 0 7 a DM must be driven LOW all the time DQS DQS are used according to RD Commands otherwise MID LEVEL b Burst Sequence driven on each DQ signal by Read Command Outside burst operation DQ signals are MID LEVEL Table 8 IDD4W Measurement Loop Pattern Q gt kel m x o lt EI c By i 8 legsshiiisbii S ren SER z lt lt lt lt 0 0 WR O 1 0 0 1 0 00 0 0 0 0 00000000 1 D 1 0 0 0 1 0 00 0 0 0 0 2 3 DD 1 1 1 1 1 0 0 0 oloo 4 WR O 1 0 0 1 0 00 0 0 F 0 00110011 F 5 D 1 0 0 0 1 0 00 0 0 F 0 S 2 6 7 DD 1 1 1 1 1 0 100 0 0 F 0 E 9 1 8 15 rep
53. able at 0 Bank Activity all banks closed Output Buffer and RTT Enabled in Mode RegistersP ODT Signal toggling according to Table 6 Pattern Details see Table 6 Ipp2po Precharge Power Down Current Slow Exit CKE Low External clock On tCK CL see Table 1 BL 88 AL 0 CS stable at 1 Command Address Bank Address Inputs stable at 0 Data IO MID LEVEL DM stable at 0 Bank Activity all banks closed Output Buf fer and RTT Enabled in Mode RegistersP ODT Signal stable at 0 Precharge Power Down Mode Slow Exit Ipp2p1 Precharge Power Down Current Fast Exit CKE Low External clock On tCK CL see Table 1 BL 88 AL 0 CS stable at 1 Command Address Bank Address Inputs stable at 0 Data IO MID LEVEL DM stable at 0 Bank Activity all banks closed Output Buf fer and RTT Enabled in Mode RegistersP ODT Signal stable at 0 Precharge Power Down Mode Fast Exit Ipp2q Precharge Quiet Standby Current CKE High External clock On tCK CL see Table 1 BL 88 AL 0 CS stable at 1 Command Address Bank Address Inputs stable at 0 Data IO MID LEVEL DM stable at 0 Bank Activity all banks closed Output Buf fer and RTT Enabled in Mode RegistersP ODT Signal stable at 0 Ipp3N Active Standby Current CKE High External clock On tCK CL see Table 1 BL 88 AL 0 CS stable at 1 Command Address Bank Address Inputs partially toggling according to Table 5 Data IO MID LEVEL
54. ach of the differential outputs Rev 1 0 May 2014 37 SK uix Single Ended Output Slew Rate When the Reference load for timing measurements output slew rate for falling and rising edges is defined and measured between Vo ac and Vouac for single ended signals are shown in table and figure below Single ended Output slew Rate Definition Measured Description Defined by From To Single ended output slew rate for rising edge VOL AC VOH AC Von Ao Vot Ao l DeltaTRse Single ended output slew rate for falling edge VoH AC VoL AC Vou acy VoL Ac l DeltaTFse Notes 1 Output slew rate is verified by design and characterisation and may not be subject to production test mim di E E Eeer E Von ac Vir Single Ended Output Voltage l e DQ Voitac Delta TFse Single Ended Output slew Rate Definition Output Slew Rate single ended DDR3L 800 DDR3L 1066DDR3L 1333DDR3L 1600DDR3L 1866 Parameter Symbol Min Max Min Max Min Max Min Max Min Max Units Single ended Output Slew Rate SRQse 1 75 51 1 75 51 1 75 51 1 75 51 1 75 51 V ns Description SR Slew Rate Q Query Output like in DQ which stands for Data in Query Output se Single ended Signals For Ron RZQ 7 setting Note 1 In two cases a maximum slew rate of 6V ns applies for a single DQ signal within a
55. as well as the limita tions for overshoot and undershoot Refer to Overshoot and Undershoot Specifications on page 41 Rev 1 0 May 2014 34 SK yi Differential nput Cross Point Voltage To guarantee tight setup and hold times as well as output skew parameters with respect to clock and strobe each cross point voltage of differential input signals CK CK and DQS DQS must meet the requirements in table below The differential input cross point voltage VIX is measured from the actual cross point of true and complement signals to the midlevel between of VDD and VSS YDD m mmm m CK DQS d Vix goe geg 8 MP NENNEN wawww Vix CK DQS VSEH VSEL VSS Vix Definition Cross point voltage for differential input signals CK DQS DDR3L 800 1066 1333 1600 1866 Symbol Parameter Unit Notes Min Max Vx CK Differential Input Cross Point Voltage 150 150 mV 2 IX relative to VDD 2 for CK CK 175 175 mV 1 Differential Input Cross Point Voltage _ Vade relative to VDD 2 for DQS DOS bs b HI P Notes 1 Extended range for Vy is only allowed for clock and if single ended clock input signals CK and CK are monotonic with a single ended swing VSEL VSEH of at least VDD 2 250 mV and when the differential slew rate of CK CK is larger than 3 V ns 2 The relation between Vix Min Max and VSEL VSEH should satisfy following VDD 2
56. ated in the 1 35 voltage range Rev 1 0 May 2014 28 Ds SK hynix AC and DC Input Levels for Single Ended Signals DDR3 SDRAM will support two Vih Vil AC levels for DDR3 800 and DDR3 1066s specified in table below DDR3 SDRAM will also support corresponding tDS values Table 43 and Table 50 in DDR3L Device Opera tion as well as derating tables Table 46 in DDR3L Device Operation depending on Vih Vil AC levels Single Ended AC and DC I nput Levels for DQ and DM DDR3L 800 1066 DDR3L 1333 1600 DDR3L 1866 Symbol Parameter Unit Notes Min Max Min Max Min Max VIH DQ DC90 DC input logic high Vref 0 09 VDD Vref 0 09 VDD Vref 0 09 VDD V 1 VIL DQ DC90 DC input logic low VSS Vref 0 09 VSS Vref 0 09 VSS Vref 0 09 V 1 VIH DQ AC160 AC input logic high Vref 0 160 Notez V 11 2 5 VIL DQ AC160 AC input logic low Note2 Vref 0 160 V 11 2 5 VIH DQ AC135 AC Input logic high Vref 0 135 Note2 Vref 0 135 Note V 1 2 5 VIL DQ AC135 AC input logic low Note2 Vref 0 135 Note2 Vref 0 135 V 11 2 5 VIH DQ AC130 AC Input logic high Vref 0 130 Note V 1 2 5 VIL DQ AC130 AC input logic low Note Vref 0 130 V 1 2 5 VRefDQ DC 11 0 49 VDD 0 51 VDD 0 49 VDD 0 51 VDD 0 49 VDD 0 51 VDD V 3 4 Notes 1 Vref VrefDQ DC 2 Refer to Overshoot and Undershoot Specifications
57. commands cycling through banks 0 0 1 1 2 2 see Table 8 Output Buffer and RTT Enabled in Mode RegistersP ODT Signal stable at HIGH Pattern Details see Table 8 Burst Refresh Current CKE High External clock On tCK CL nRFC see Table 1 BL 83 AL 0 CS High between REF Command IppsB Address Bank Address Inputs partially toggling according to Table 9 Data IO MID LEVEL DM stable at 0 Bank Activity REF command every nREF see Table 9 Output Buffer and RTT Enabled in Mode RegistersP ODT Signal stable at 0 Pattern Details see Table 9 Self Refresh Current Normal Temperature Range Tease 0 85 C Auto Self Refresh ASR Disabled Self Refresh Temperature Range SRT Normal CKE Tope Low External clock Off CK and CK LOW CL see Table 1 BL 88 AL 0 CS Command Address Bank Address Inputs Data lO MID LEVEL DM stable at 0 Bank Activity Self Refresh operation Output Buffer and RTT Enabled in Mode RegistersP ODT Signal MID LEVEL Self Refresh Current Extended Temperature Range optional Tease 0 95 C Auto Self Refresh ASR Disabled Self Refresh Temperature Range SRT Extended IDD6ET CKE Low External clock Off CK and CK LOW CL see Table 1 BL 83 AL 0 CS Command Address Bank Address Inputs Data IO MID LEVEL DM stable at 0 Bank Activity Extended Temperature Self Refresh operation Output Buffer and RTT Enabled in Mode Registers
58. ctly used to calculate IO power of the DDR3 SDRAM They can be used to support correlation of simulated IO power to actual IO power as outlined in Figure 2 In DRAM module application IDDQ cannot be measured separately since VDD and VDDQ are using one merged power layer in Module PCB Fo A IDD and IDDQ measurements the following definitions apply 0 and LOW is defined as VIN lt Vii AC max 1 and HIGH is defined as VIN gt Vinac may MID LEVEL is defined as inputs are VREF VDD 2 Timing used for IDD and IDDQ Measurement Loop Patterns are provided in Table 1 Basic IDD and IDDQ Measurement Conditions are described in Table 2 Detailed IDD and IDDQ Measurement Loop Patterns are described in Table 3 through Table 10 IDD Measurements are done after properly initializing the DDR3 SDRAM This includes but is not lim ited to setting RON RZQ 7 34 Ohm in MR1 Qoff 0g Output Buffer enabled in MR1 RTT Nom RZQ 6 40 Ohm in MR1 RTT Wr RZQ 2 120 Ohm in MR2 TDQS Feature disabled in MR1 Attention The IDD and IDDQ Measurement Loop Patterns need to be executed at least one time before actual IDD or IDDQ measurement is started Define D CS RAS CAS WE HIGH LOW LOW LOW Define D CS RAS CAS WE HIGH HIGH HIGH HIGH Rev 1 0 May 2014 51 Y Jop Y DDQ optional C i DDR3L SDRAM CKE pos Das Att 25 Ohm CS RENS DQ DM L Vppo 2 RAS CAS
59. e 3 Hopr Operating humidity relative 10 to 90 1 TsrG Storage temperature 50 to 100 oc 1 Herc Storage humidity without condensation 5 to 95 K 1 PBAn Barometric Pressure operating amp storage 105 to 69 K Pascal 4 2 Note 1 Stress greater than those listed may cause permanent damage to the device This is a stress rating only and device functional operation at or above the conditions indicated is not implied Expousure to absolute maximum rating conditions for extended periods may affect reliablility 2 Up to 9850 ft 3 The designer must meet the case temperature specifications for individual module components Rev 1 0 May 2014 50 SK yi IDD and I DDQ Specification Parameters and Test Conditions IDD and I DDQ Measurement Conditions In this chapter IDD and IDDQ measurement conditions such as test load and patterns are defined Figure 1 shows the setup and test load for IDD and IDDQ measurements IDD currents such as IDDO IDD1 IDD2N IDD2NT IDD2PO IDD2P1 IDD2Q IDD3N IDD3P IDD4R IDD4W IDD5B IDD6 IDD6ET and IDD7 are measured as time averaged currents with all VDD balls of the DDR3 SDRAM under test tied together Any IDDQ current is not included in IDD currents DDQ currents such as IDDQ2NT and IDDQ4R are measured as time averaged currents with all VDDQ balls of the DDR3 SDRAM under test tied together Any IDD current is not included in IDDQ cur rents Attention IDDQ values cannot be dire
60. eat Sub Loop 0 but BA 2 0 1 8 8 2 16 23 repeat Sub Loop 0 but BA 2 0 2 3 24 31 repeat Sub Loop 0 but BA 2 0 3 4 32 39 repeat Sub Loop 0 but BA 2 0 4 5 40 47 repeat Sub Loop 0 but BA 2 0 5 6 48 55 repeat Sub Loop 0 but BA 2 0 6 7 56 63 repeat Sub Loop 0 but BA 2 0 7 a DM must be driven LOW all the time DQS DQS are used according to WR Commands otherwise MID LEVEL b Burst Sequence driven on each DQ signal by Write Command Outside burst operation DQ signals are MID LEVEL Rev 1 0 May 2014 60 SK nix Table 9 IDD5B Measurement Loop Pattern S D SD x Dei i 688 5g 28 e 0 0 REF 0 0 0 1 0 0 0 0 1 12 D D 1 0 0 0 0 0 00 0 3 4 DD 1 1 1J J1 0 0 00 0 5 8 repeat cycles 1 4 but BA 2 0 1 2 5 9 12 repeat cycles 1 4 but BA 2 0 2 2 D 13 16 repeat cycles 1 4 but BA 2 0 3 8 17 20 repeat cycles 1 4 but BA 2 0 4 21 24 repeat cycles 1 4 but BA 2 0 5 25 28 repeat cycles 1 4 but BA 2 0 6 29 32 repeat cycles 1 4 but BA 2 0 7 2 33 nRFC 1 repeat Sub Loop 1 until nRFC 1 Truncate if necessary a DM must be driven LOW all the time DQS DQS are MID LEVEL b DQ signals are MID LEVEL Rev 1 0 May 2014 61 SK nix Table 10 IDD7 Measurement Loop Pattern ATTENTION Sub Loops 10 19 have inverse A 6 3 Pattern and Data
61. ements are with respect to Vref the single ended compo nents of differential signals have a requirement with respect to VDD 2 this is nominally the same the transition of single ended signals through the ac levels is used to measure setup time For single ended components of differential signals the requirement to reach VSELmax VSEHmin has no bearing on timing but adds a restriction on the common mode characteristics of these signals Rev 1 0 May 2014 33 SK nix Single ended levels for CK DQS DQSL DQSU CK DQS DQSL or DQSU DDR3L 800 1066 1333 1600 1866 Symbol Parameter Unit Notes Min Max VSEH Single ended high level for strobes VDD 2 0 175 Note 3 V 1 2 Single ended high level for Ck CK VDD 2 0 175 Note 3 V 1 2 VSEL Single ended low level for strobes Note 3 VDD 2 0 175 V 1 2 Single ended low level for CK CK Note 3 VDD 2 0 175 V 1 2 Notes 1 For CK CK use VIH VIL ac of ADD CMD for strobes DQS DOS DQSL DQSL DQSU DQSU use VIH VIL ac of DQs 2 VIH ac VIL ac for DQs is based on VREFDQ VIH ac VIL ac for ADD CMD is based on VREFCA if a reduced ac high or ac low level is used for a signal group then the reduced level applies also here 3 These values are not defined however the single ended signals Ck CK DQS DQS DQSL DQSL DQSU DQSU need to be within the respective limits VIH dc max VIL dc min for single ended signals
62. event has been detected in the thermal sensing EVENT Active L device The system should guarantee the electrical level requirement is met for the Uem CuVe LOW EVENT pin on TS SPD part No pull up resister is provided on DI MM V Suppl Serial EEPROM positive power supply wired to a separate power pin at the connector DDSPD HDN which supports from 3 0 Volt to 3 6 Volt nominal 3 3V operation The RESET pin is connected to the RESET pin on the register and to the RESET pin on RESET IN the DRAM Par_In IN Parity bit for the Address and Control bus 1 Odd 0 Even Er Out OUT Parity error detected on the Address and Control bus A resistor may be connected from in ezer Err Out bus line to Vpp on the system planar to act as a pull up TEST Used by memory bus analysis tools unused NC on memory DIMMs Rev 1 0 May 2014 SK nix Pin Assignments EE eae 50 CH EE SE left A E EE b n 1 VREFDQ 121 Vss 61 A2 181 A1 2 Vss 122 DQ4 62 VDD 182 VDD 3 DQ0 123 DQ5 63 NC CK1 183 VDD 4 DQ1 124 Vss 64 NC CK1 184 CK0 5 Vss 125 k 65 Von 185 TKO 6 DQS0 126 66 Von 186 Vpp 7 DQS0 127 Vss 67 VREFCA 187 EVENT NC 8 Vss 128 DQ6 68 Par In NC 188 A0 9 DQ2 129 DQ7 69 VDD 189 VDD 10 DQ3 130 Vss 70 A10 AP 190 BA1 11 Vss 131 DQ12 71 BA0 191 VDD 12 DQ8 132 DQ13 72 VDD 192 RAS 13 DQ9 133 V
63. f 0 09 VDD V 1 VIL CA DC90 DC input logic low VSS Vref 0 09 VSS Vref 0 09 VSS Vref 0 09 V 1 VIH CA AC160 AC input logic high Vref 0 160 Note2 Vref 0 160 Note2 V 1 2 5 VIL CA AC160 AC input logic low Notez Vref 0 160 Notez Vref 0 160 F V 1 2 5 VIH CA AC135 AC Input logic high Vref 0 135 Notez Vref 0 135 Note2 WMref 0 135 Notez V 1 2 5 VIL CA AC135 AC input logic low Note2 Vref 0 135 Note2 Vref 0 135 Note2 Vref 0 135 V 1 2 5 VIH CA AC125 AC Input logic high Vref 0 125 Note2 V 1 25 VIL CA AC125 AC input logic low Note Vref 0 125 V 1 2 5 VReICA DC cac 0 49 VDD 0 51 VDD 0 49 VDD 0 51 VDD 0 49 VDD 0 51 gt VDD V 34 Notes 1 For input only pins except RESET Vref VrefCA DC 2 Refer to Overshoot and Undershoot Specifications on page 41 3 The ac peak noise on Vner may not allow Vner to deviate from Vne cA pc by more than 1 VDD for refer ence approx 13 5 mV 4 For reference approx VDD 2 13 5 mV 5 These levels apply for 1 35 volt see table above operation only If the device is operated at 1 5V table Single Ended AC and DC Input Levels for DQ and DM on page 29 the respective levels in JESD79 3 VIH L CA DC100 VIH L CA AC175 VIH L CA AC150 VIH L CA AC135 VIH L CA AC125 etc apply The 1 5V levels VIH L CA DC100 VIH L CA AC175 VIH L CA AC150 VIH L CA AC135 VIH L CA AC125 etc do not apply when the device is oper
64. gt CK SDRAMs D 27 18 459 BPCK1A CK SDRAMs D 71 62 m CET APCK1B gt CK SDRAMs D 35 28 a d BPCK1B CK SDRAMs D 61 54 CKO APCKOA CK SDRAMs D 9 0 CKO BPCK0A gt CK SDRAMs D 53 44 APCK0B CK SDRAMs D 17 10 BPCK0B CK SDRAMs D 43 36 APCK1A gt CK SDRAMs D 27 18 BPCK1A gt CK SDRAMs D 71 62 APCK1B CK SDRAMs D 35 28 BPCK1B CK SDRAMs D 61 54 PAR IN w Err Out PAR IN W Err Out BRESET RST RESET J RST RST SDRAMs D 35 0 CK1 1202 5 1 CKO and CKO are differentially terminated with a single 120 Ohms 5 resistor 2 CK1 and CK1 are differentially terminated with a single 120 Ohms 3 Unused register inputs ODT1 for Register A and ODTO for Register B are tied to ground 4 The module drawing on this page is not drawn to scale Rev 1 0 May 2014 t5 resistor but is not used 24 SK nix Absolute Maximum Ratings Absolute Maximum DC Ratings Absolute Maximum DC Ratings Symbol Parameter Rating Units Notes VDD Voltage on VDD pin relative to Vss 0 4 V 1 80 V V 1 3 VDDQ Voltage on VDDQ pin relative to Vss 0 4 V 1 80 V V 1 3 Vin Vout Voltage on any pin relative to Vss 0 4 V 1 80 V V 1 Tstg Storage Temperature 55 to 100 S 1 2 Notes 1 Stresses greater than those listed under Absolute Maximum Ratings may cause permanent damage to the device This is a stress rating only and functional operation of the device a
65. h input data Vpp Vss Supply Power and ground for the DDR SDRAM input buffers and core logic Vit Supply Termination Voltage for Address Command Control Clock nets Rev 1 0 May 2014 sd Symbol Type Polarity Function Positive TT DQS 17 0 1 0 Edge Positive line of the differential data strobe for input and output data OP anil Negative poc DQS 17 0 1 0 Edge Negative line of the differential data strobe for input and output data ITDQS TDQS is applicable for X8 DRAMs only When enabled via Mode Register A11 1 in TDQS 17 9 MR1 DRAM will enable the same termination resistance function on TDQS TDQS that is TDQS 17 9 OUT applied to DQS DQS When disabled via mode register A11 0 in MR1 DM TDQS will provide the data mask function and TDQS is not used X4 X16 DRAMs must disable the ITDQS function via mode register A11 0 in MR1 SA 2 0 IN These signals are tied at the system planar to either Vss or Vppspp to configure the serial SPD EEPROM address range This bidirectional pin is used to transfer data into or out of the SPD EEPROM A resistor SDA 1 0 must be connected from the SDA bus line to Vppspp on the system planar to act as a pullup SCL IN This signal is used to clock data into and out of the SPD EEPROM A resistor may be con B nected from the SCL bus time to Vppspp on the system planar to act as a pullup OUT This signal indicates that a thermal
66. h two registers S 3 2 operate similarly to S 1 0 for the second set of register out puts or register control words ODT 1 0 IN du On Die Termination control signals RAS CAS WE IN Active When sampled at the positive rising edge of the clock CAS RAS and WE define the I Low operation to be executed by the SDRAM VREEpq Supply Reference voltage for DQ0 DQ63 and CB0 CB7 V Suppl Reference voltage for A0 A15 BA0 BA2 RAS CAS WE S0 S1 CKE0 CKE1 Par_In REFCA pp y ODTO and ODT1 Selects which SDRAM bank of eight is activated BA 2 0 IN _ BAO BA2 define to which bank an Active Read Write or Precharge command is being applied Bank address also determines mode register is to be accessed during an MRS cycle Provided the row address for Active commands and the column address and Auto Precharge bit for Read Write commands to select one location out of the mem A 15 13 ory array in the respective bank A10 is sampled during a Precharge command to deter 12 BC 11 IN mine whether the Precharge applies to one bank A10 LOW or all banks A10 HIGH If 10 AP 9 0 only one bank is to be precharged the bank is selected by BA A12 is also utilized for BL 4 8 identification for BL on the fly during CAS command The address inputs also pro vide the op code during Mode Register Set commands DQ 63 0 CB 7 0 1 0 Data and Check Bit Input Output pins Active ra T DM 8 0 IN High Masks write data when high issued concurrently wit
67. ion Rating Symbol Parameter Units Notes Min Typ Max VDDQ Supply Voltage for Output 1 425 1 5 1 575 1 2 3 Notes 1 If minimum limit is exceeded input levels shall be governed by DDR3L specifications 2 Under 1 5V operation this DDR3L device operates to the DDR3 specifications under the same speed timings as defined for this device Once initialized for DDR3 operation DDR3L operation may only be used if the device is in reset while VDD and VDDQ are changed for DDR3L operation see Figure 0 Rev 1 0 May 2014 26 CK CK VDD VDDQ DDR3 VDD VDDQ DDR3L RESET CKE COMMAND ODT IS Static LOW in case RTT_Nom is enabled at time Tg otherwise static HIGH or LOW 5 ele HIT NOTE 1 From time point Td until Tk NOP or DES commands must be applied between MRS and ZQCL commands N TIME BREAK Figure 0 VDD VDDQ Voltage Switch Between DDR3L and DDR3 DONT CARE Rev 1 0 May 2014 27 SK uix AC amp DC I nput Measurement Levels AC and DC Logic I nput Levels for Single Ended Signals AC and DC Input Levels for Single Ended Command and Address Signals Single Ended AC and DC Input Levels for Command and Address DDR3L 800 1066 DDR3L 1333 1600 DDR3L 1866 Symbol Parameter Unit Notes Min Max Min Max Min Max VIH CA DC90 DC input logic high Vref 0 09 VDD Vref 0 09 VDD Vre
68. ns CK CK DQ DQS DQS DM See figure below for each parameter definition Maximum Amplitude VDDQ Volts V vssQ Maximum Amplitude Time ns Overshoot Area Undershoot Area Clock Data Strobe and Mask Overshoot and Undershoot Definition Rev 1 0 May 2014 42 SK nix Refresh parameters by device density Refresh parameters by device density Parameter RTT_Nom Setting 512Mb 1Gb 2Gb 4Gb 8Gb Units Notes PET command ro tRFC 90 110 160 260 350 ns REF command time Average periodic tREFI 0 C lt TcAsES85 C 7 8 7 8 7 8 7 8 7 8 us refresh interval 85 C lt TcAsg lt 95 C 3 9 3 9 3 9 3 9 3 9 us 1 Notes 1 Users should refer to the DRAM supplier data sheet and or the DIMM SPD to determine if DDR3 SDRAM devices support the following options or requirements referred to in this materia Rev 1 0 May 2014 43 sd Standard Speed Bins DDR3 SDRAM Standard Speed Bins include tCK tRCD tRP tRAS and tRC for each corresponding bin DDR3L 800 Speed Bins For specific Notes See Speed Bin Table Notes on page 49 Speed Bin DDR3L 800E Unit Notes CL nRCD nRP 6 6 6 Parameter Symbol min max Internal read command to first data tna 15 20 ns ACT to internal read or write delay time cD 15 ns PRE command period tp 15 ns ACT to ACT or REF command period c 52 5 n
69. s ACT to PRE command period ikas 37 5 9 tREFI ns CL 6 CWL 5 CK AVG 2 5 3 3 ns 133 Supported CL Settings 6 nck Supported CWL Settings 5 nck Rev 1 0 May 2014 44 SK nix DDR3L 1066 Speed Bins For specific Notes See Speed Bin Table Notes on page 49 Speed Bin DDR3L 1066F i t CL nRCD nRP 7 73 ubi noe Parameter Symbol min max Internal read command to first data AA 13 125 20 ns ACT to internal read or write delay time bon 13 125 HS PRE command period lap 13 125 ns ACT to ACT or REF command period fac 30 023 i ns ACT to PRE command Ki 37 5 9 tREFI e period CL 6 CWL 5 CK AVG 2 5 3 3 ns 1 2 3 6 CWL 6 CK AVG Reserved ns 1 2 3 4 BS CWL 5 CK AVG Reserved ns 4 7 CWL 6 ve 1 875 2 5 ns 1 2 3 4 mw CNL lt 5 CK AVG Reserved ns 4 7 CWL 6 favo 1 875 lt 2 5 ns 1 2 3 Supported CL Settings 6 7 8 NcK Supported CWL Settings 5 6 fcK Rev 1 0 May 2014 45 SK nix DDR3L 1333 Speed Bins For specific Notes See Speed Bin Table Notes on page 49 Speed Bin DDR3L 1333H it N CL nRCD nRP 9 9 9 eni ES Parameter Symbol min max Internal read 13 5 L command to first data A 13 125 10 E i ACT to internal read or 13 5 ag write delay time RCD 13 125 510 13 5 PRE command period l p 13 125 5 1
70. s for setup and hold time measurements Viu ac Viu pc Vit Ac and Vii pc are depen dent on Vger Vner shall be understood as Vger pc as defined in figure above This clarifies that dc variations of Vger affect the absolute voltage a signal has to reach to achieve a valid high or low level and therefore the time to which setup and hold is measured System timing and voltage budgets need to account for Vger pc deviations from the optimum position within the data eye of the input signals This also clarifies that the DRAM setup hold specification and derating values need to include time and voltage associated with Vgerac noise Timing and voltage effects due to ac noise on Vp up to the speci fied limit 196 of VDD are included in DRAM timings and their associated deratings Rev 1 0 May 2014 30 SK nix AC and DC Logic I nput Levels for Differential Signals Differential signal definition VILDIFFACMIN c c Of I fee O O oe Stee cd WIEBIFENIN 222 o u a ee ccce Ln tt Bl as ce at bala half cycle mr ose tee eteseee ses Differential Input Voltage i e DQS DQS CK CK VitIBEACMAX Hoe eee eee N Foe ee cc sss Definition of differential ac swing and time above ac level tpvac Rev 1 0 May 2014 31 sd Differential swing requirements for clock CK CK and strobe DQS DQS Differential AC and DC I nput Levels DDR3L 800 1066
71. sd DDR3L SDRAM Registered DI MM Based on 4Gb B die HMT451R7BFR8A HMT41GR7BFR8A HMT41GR7BFR4A HMT42GR7BFR4A HMT84GR7BMR4A SK hynix reserves the right to change products or specifications without notice Rev 1 0 May 2014 1 sd Revision History Revision No History Draft Date Remark 0 1 Initial Release Mar 2014 1 0 Revision 1 0 Release May 2014 Rev 1 0 May 2014 Ds SK hynix Description SK hynix Registered DDR3L SDRAM DIMMs Registered Double Data Rate Synchronous DRAM Dual In Line Memory Modules are low power high speed operation memory modules that use DDR3L SDRAM devices These Registered SDRAM DIMMs are intended for use as main memory when installed in systems such as servers and workstations Features Power Supply VDD 1 35V 1 283V to 1 45V VDDQ 1 35V 1 283V to 1 45V VDDSPD 3 0V to 3 6V Backward Compatible with 1 5V DDR3 Memory Module 8 internal banks Data transfer rates PC3 14900 PC3 12800 PC3 10600 PC3 8500 Bi Directional Differential Data Strobe 8 bit pre fetch Burst Length BL switch on the fly BL8 or BC4 Burst Chop Supports ECC error correction and detection On Die Termination ODT Temperature sensor with integrated SPD Backward compatible with 1 5V DDR3 Memory module This product is in compliance with the RoHS directive Ordering I nformation Part Number Density Organization Component Composition of FDH
72. sistor to ground Rev 1 0 May 2014 12 sd 8GB 1Gx72 Module 1Rank of x4 pagel vss WI vss vss WwW as 2 lt i d E 20 He 81589 2s UE e z L s Lll I lI l 1 Li Doss w pQS zo DQS17 w DQS z DQS8 DOS D D957 ABC vss pM 2 vss DM z CB 3 0 A DQ 3 0 D8 H Al AADQ 13 01 D17 z 2 o o I l l JE t 5 I8 l l 8 5 La L La DQS3 DQS za DQS12 DQS zQ Doss DOS D Dos wypas vss IDM z vss DM z DQ 27 244 gt DQ 3 0 D3 H DQ 31 28FA DQ 3 0 D12 2 2 o o w kls 5 3 218 12 8 BE 4 La e e DQS2 A DQS 70 posi w pas PQ5Z POS D Dos wypos 3 DM Z vss pM z DQ 19 16M DQ 3 0 D2 H Dpo23 20 A DO 13 01 D11 z 2 u I l l8 g RIRE Big p BIS RKE Ble La Ls e 1 e DQS1 DQS za DQS10 DOS zQ DOSI DOS DQS10 7w DOS DM DQL11 8 W DQ 3 0 D1 A O N BA O N i w 5 VSS DM DQL15 12s DQ 3 0 D10 DODERER VSS MT
73. ss 73 WE 193 S0 14 Vss 134 EOS 74 CAS 194 VoD 15 DOSI 135 E 75 VoD 195 ODT0 16 DQS1 136 Vss 76 S1 NC 196 A13 17 Vss 137 DQ14 77 ODT1 NC 197 VDD 18 DQ10 138 DQ15 78 VDD 198 S3 NC 19 DQ11 139 Vss 79 S2 NC 199 Vss 20 Vss 140 DQ20 80 Vss 200 DQ36 21 DQ16 141 DQ21 81 DQ32 201 DQ37 22 DQ17 142 Vss 82 DQ33 202 Vss 23 Vss 143 SEIL 83 Ver 203 x e WR a ma m WEE 25 DQS2 145 Vss 85 DQS4 205 Vss 26 Vss 146 DQ22 86 Vss 206 DQ38 27 DQ18 147 DQ23 87 DQ34 207 DQ39 28 DQ19 148 Vss 88 DQ35 208 Vss 29 Vss 149 DQ28 89 Vss 209 DQ44 30 DQ24 150 DQ29 90 DQ40 210 DQ45 31 DQ25 151 Vss 91 DQ41 211 Vss NC No Connect RFU Reserved Future Use Rev 1 0 May 2014 SK nix S Front Side Back Side c Front Side Back Side Pin left1 60 P n right 121 180 P Z left 61 120 Pin right 181 240 DM3 DQS12 DM5 DQS14 32 Vss 152 TDQS12 92 Vss 212 TDQS14 A NC DQS12 CE NC DQS14 33 DQS3 153 TDQS12 93 DQS5 213 TDQS14 34 DQS3 154 Vss 94 DQS5 214 Vss 35 Vss 155 DQ30 95 Vss 215 DQ46 36 DQ26 156 DQ31 96 DQ42 216 DQ47 37 DQ27 157 Vss 97 DQ43 217 Vss 38 Vss 158 CB4 NC 98 Vss 218 DQ52 39 CBO NC 159 CB5 NC 99 DQ48 219 DQ53 40 CB1 NC 160 Vss 100 DQ49 220 Vss NC DM8 DQS17 DM6 DQS15 41 Vss 161 TDQS17 101 Vss 221 TDQS15 Amen NC DQS17 Eme NC DQS15 42 DQS8 162 TDQS17 102 DQS6 2
74. stor values are 15 Ohms 5 3 See the wiring diagrams for all resistors associated with the command address and control bus might be changed on customer s requests For more details of SPD and Thermal sensor please contact local Hynix sales representative 4 ZQ resistors are 240 Ohms 1 For all other resistor values refer to the appropriate wiring diagram Rev 1 0 May 2014 22 2 8 55555 2i METETE 8 i 2 x TETTERE g i8 BER EL x i d ESS il 94404441 i db l L l l M RA YA os VS w Sds VSS pa SCH M DQS s DQS s DQS g DQS g E 3 0 D29 S D28 See D61 SE D60 92 8 wie w 8 5 wiki g w 8 w 88 8 5 La Las Ly m RA VSS__ yal RA VSS AA RA VSS A SS W DOS S8 DOS s DOS S8 DQS s z DM z DM Z z DO 3 0 D31 DQ 3 0 D30 DQ 3 0 D59 EG D58 w klag s is 8 wie w 5 DEIER 91999 8 5 E E Ly e La DOs VSS jal Dos VSS AW RA VSS A SC 7 j 5 z 2 W DQ 3 0 D33 DQ 3 0 D32 A DQ 3 0 D57 DQ 3 0 Do6 z w 218 sw 8B I l I sw 5 wikis 8 9999 8 5 Ly Ly 1 Ze VSS__ jal Ze VSS LW Das VSS pa SC E W DQ 3 0 D35 DQ 3 0 D34 DQ 3 0 D55 ERG D54 E w 2188 swg 8 2 wesw 5 we 8 9999 8 5 x x La Le e La e V SPD DD
75. subject to Production Tests but verified by Design Characterization DDR3 SDRAM devices supporting optional down binning to CL 7 and CL 9 and tAA tRCD tRP must be 13 125 ns or lower SPD settings must be programmed to match For example DDR3 1333H devices supporting down binning to DDR3 1066F should program 13 125 ns in SPD bytes for tAAmin Byte 16 tRCDmin Byte 18 and tRPmin Byte 20 DDR3 1600K devices supporting down binning to DDR3 1333H or DDR3 1600F should program 13 125 ns in SPD bytes for tAAmin Byte 16 tRCDmin Byte 18 and tRPmin Byte 20 Once tRP Byte 20 is programmed to 13 125ns tRCmin Byte 21 23 also should be programmed accordingly For example 49 125ns tRASmin tRPmin 36 ns 13 125 ns for DDR3 1333H and 48 125ns tRASmin tRPmin 35 ns 13 125 ns for DDR3 1600K DDR3 SDRAM devices supporting optional down binning to CL 11 CL 9 and CL 7 tAA tRCD tRPmin must be 13 125ns SPD setting must be programed to match For example DDR3 1866 devices sup porting down binning to DDR3 1600 or DDR3 1333 or 1066 should program 13 125ns in SPD bytes for tAAmin byte 16 tRCDmin byte 18 and tRPmin byte 20 is programmed to 13 125ns tRCmin byte 21 23 also should be programmed accordingly For example 47 125ns tRASmin tRPmin 34ns 13 125ns Rev 1 0 May 2014 49 SK uix Environmental Parameters Symbol Parameter Rating Units Notes Topr Operating temperature See Not
76. t these or any other conditions above those indicated in the operational sections of this specification is not implied Exposure to absolute maximum rat ing conditions for extended periods may affect reliability 2 Storage Temperature is the case surface temperature on the center top side of the DRAM For the measurement conditions please refer to JESD51 2 standard 3 VDD and VDDQ must be within 300mV of each other at all times and VREF must not be greater than 0 6XVDDQ When VDD and VDDQ are less than 500mV VREF may be equal to or less than 300mV DRAM Component Operating Temperature Range Temperature Range Symbol Parameter Rating Units Notes Toper Normal Operating Temperature Range 0 to 85 G 1 2 Extended Temperature Range 85 to 95 DC 1 3 Notes 1 Operating Temperature TOPER is the case surface temperature on the center top side of the DRAM For mea surement conditions please refer to the JEDEC document JESD51 2 2 The Normal Temperature Range specifies the temperatures where all DRAM specifications will be supported Dur ing operation the DRAM case temperature must be maintained between 0 85 C under all operating conditions 3 Some applications require operation of the DRAM in the Extended Temperature Range between 85 C and 95 C case temperature Full specifications are guaranteed in this range but the following additional conditions apply a Refresh commands must be doubled in frequency
77. therefore reducing the Refresh interval tREFI to 3 9 us It is also possible to specify a component with 1X refresh tREFI to 7 8us in the Extended Temperature Range Please refer to the DIMM SPD for option availability b If Self Refresh operation is required in the Extended Temperature Range then it is mandatory to use the Manual Self Refresh mode with Extended Temperature Range capability MR2 A6 0b and MR2 A7 1b DDR3 SDRAMs support Extended Temperature Range and please refer to component datasheet and or the DIMM SPD for tFEFI requirements in the Extended Temperature Range Rev 1 0 May 2014 25 Ds SK hynix AC amp DC Operating Conditions Recommended DC Operating Conditions Recommended DC Operating Conditions DDR3L 1 35V operation Rating Symbol Parameter Units Notes Min Typ Max VDDQ Supply Voltage for Output 1 283 1 35 1 45 1 2 3 4 Notes 1 Maximum DC value may not be greater than 1 425V The DC value is the linear average of VDD VDDQ t over a very long period of time e g 1 sec If maximum limit is exceeded input levels shall be governed by DDR3 specifications Under these supply voltages the device operates to this DDR3L specification Once initialized for DDR3L operation DDR3 operation may only be used if the device is in reset while VDD and VDDQ are changed for DDR3 operation see Figure 0 Recommended DC Operating Conditions DDR3 1 5V operat
78. to I O wiring may be changed within byte pR 9 B lt E N E l 6 o lt 2 ZQ resistors are 240 Q 1 For all other resistor values refer to the IT rT TL TL 1 appropriate wiring diagram Vtt Ww S0 L RS0A CS0 SDRAMs D 3 0 D8 SI i RS0B CS0 SDRAMs D 7 4 BA N 0 WY F RBA N 0 A BA N 0 SDRAMs D 3 0 D8 2 RBA N O A BA N 0 SDRAMs D 7 4 A N0 R F RAIN 0JA gt A N 0 SDRAMs D 3 0 D8 m E RA N 0 A A Nook SDRAMs pp RAS wWwl RRASA gt RAS WW G Ge VDDSPD VDDSPD SAO SA0 th RCASA gt CAS SDRAMs D 3 0 D8 EVENT EVENT SPDwith SA1 SA1 MP S RCASA gt CAS SDRAMs D 7 4 WE ir RWEA WE SDRAMs D 3 0 D scL scL Integrated sa sa RWEA WE SDRAMs D 7 4 TS CKEO E RCKE0A gt CKE0 SDRAMs D 3 0 D8 SDA SDA VSS VSS R RCKEOB gt CKE0 SDRAMs D 7 4 0DT0 VV RODT0A gt ODTO SDRAMs D 3 0 D8 Plan to use SPD with Integrated TS of Class B and RODTOB ODT0 SDRAMs D 7 4 CK0 P L pcgpA gt ex po might be changed on customer s requests For more noo L PCKOB See 5 SCH ve details of SPD and Thermal sensor please contact oo x16 s D 7 4 i Na CK0 L PCKOA CK SDRAMs D 3 0 D8 local SK hynix sales representative CKO sme PCK0B CK SDRAMs D 7 4 CKO t1 PAR IN OERRF Err Out RESET RST m RST SDRAMs D 8 0 S 3 2 CKE1 ODT1 are NC Unused register inputs ODT1 and CKE1 have a 3302 re
79. xt smaller J EDEC standard tCK AVG value 3 0 2 5 1 875 1 5 or 1 25 ns when calculat ing CL nCK tAA ns tCK AVG ns rounding up to the next Supported CL where tCK AVG 3 0 ns should only be used for CL 5 calculation tCK AVG MAX limits Calculate tCK AVG tAA MAX CL SELECTED and round the resulting tCK AVG down to the next valid speed bin i e 3 3ns or 2 5ns or 1 875 ns or 1 25 ns This result is tCK AVG MAX corresponding to CL SELECTED Reserved settings are not allowed User must program a different value Optional settings allow certain devices in the industry to support this setting however it is not a man datory feature Refer to DIMM data sheet and or the DIMM SPD information if and how this setting is supported Any DDR3 1066 speed bin also supports functional operation at lower frequencies as shown in the table which are not subject to Production Tests but verified by Design Characterization Any DDR3 1333 speed bin also supports functional operation at lower frequencies as shown in the table which are not subject to Production Tests but verified by Design Characterization Any DDR3 1600 speed bin also supports functional operation at lower frequencies as shown in the table which are not subject to Production Tests but verified by Design Characterization Any DDR3 1866 speed bin also supports functional operation at lower frequencies as shown in the table which are not
Download Pdf Manuals
Related Search
Related Contents
HERMA Labels signalling hard-wearing A4 Ø 30 mm round yellow strong adhesion film matt weatherpr. 1200 pcs Built for Touring Instructions de montage et d`utilisation RS 4S EN 1004 - gsg SPL31 User Manual 7-2014 V8 VoiceLive 3 - TC EasyView Light Meter with Memory Model EA33 Marais de la vallée des Baux et marais - Pôle Copyright © All rights reserved.
Failed to retrieve file