Home

Hynix HMT41GR7AFR4C-RDT4 memory module

image

Contents

1. n a af 26 5555 2S eG RIESE i 8 i l a N x m HHE 28 BIN d ES i 94404441 i d l l l L RA VS W os VS Ws VSS pa SCH a 3 E g GR S g DO 3 0 D11 DQ 3 0 D10 DQ 3 0 D13 DQ 3 0 D42 v 82 8 92189 w 8 5 wile w 8 iiS ww 8 5 E E Ly t e La RA A D VSS WY Sds NS pp En DOS 5 DQS 5 DQS S DOs S EE z DM z DM Z z DO 3 0 D13 DQ 3 0 D12 DQ 3 0 D41 Boel D40 g w BI Is 8 w l 8 J w 5 95189 w 8 io 218 sis 8 E E La La La La e La DOs VS WI D imi VSS M SC S g ES g GR E g W DQ 3 0 D15 DQ 3 0 D14 DQ 3 0 D39 3 DQ 3 0 D38 z g w 2188 sw 5 I l I w 8 wile 8 io 218 g 8 5 La gt t La T e e RA Tan Bs VSS WY Das VSS pa SC MAI B
2. B lt lt o ER lt s oz 3 4 8 i 2 O 3 si 883052 s T s l l l 25 unis 28 Delgo 2 g d dani l i 9444441 i i l L 1 Ii ZW bas VS W os Minim ids M55 win B4 S E 3 GR g E g DO 3 0 D9 DQ 3 0 D8 DQ 3 0 D45 DQ 3 0 D44 g l l l sis 8 wie w 8 5 wesw B wesw 5 re t e e RA YA D VS W Os NS pp En DOS z DOS 5 DQS S DOs S z DM z DM z N DQ 3 0 D7 DQ 3 0 D6 DQ 3 0 D47 EI D46 g g w BIE Is 5 wesw 5 95189 w 8 8 amp 91999 w 8 5 E E La La e La e DOs VS WY D VSS WY Os VSS__ pa S md 7 p ES g GR E g N 0 3 0 D5 DQ 3 0 D4 3 DQ 3 0 D49 DQ 3 0 Dag Ei w 218 sw 5 we w 5 I l I 8 9999 8 5 e e e RA A Bs VS WY Sds NES pa SC SZ g BM g EN a pas g M 00 3 0 D3 DQ 3 0 D2 DQ 3 0 D51 Zare D50 E 8 8 8 8 w 2188 8 we w 5 wile 8 218 sw 8 5 L all La La La Gs Tag ds Maia VSS_ AI SE q g Bu g eu g pos g W DQ 3 0 D1 3
3. T S z S 1 l vi 2 ila 5 555 FF cm 0 0 ACT 0 O 1 1 0 0 0 0 0 1 2 DD 1 0 0 0 0 0 0 0 0 3 4 DD 1 1 1 1 0 0 0 0 0 0 0 ws repeat pattern 1 4 until nRCD 1 truncate if necessary nRCD RD 0 1 O 1 0 0 00 010 0 0 00000000 m repeat pattern 1 4 until nRAS 1 truncate if necessary nRAS PRE 0 0 1 0 0 0 00 010 0 0 D repeat pattern 1 4 until nRC 1 truncate if necessary 1 nRC 0 ACT 0 O 1 1 0 0 0 O 0 F 0 1 nRC 1 2 DD 1 O 0 0 0 0 0 0 0 F 0 2 1 nRC 3 4 IDD 1 1 1 1 0 0 l olololFfF o E tha repeat pattern nRC 1 4 until nRC nRCE 1 truncate if necessary 8 L 1 nRC nRCD RD 0 1 O 1 0 0 0 0 0 F 0 00110011 us repeat pattern nRC 1 4 until nRC nRAS 1 truncate if necessary 1 nRC nRAS PRE 0 0 1 0 0 0 00 010 F 0 Er repeat pattern nRC 1 4 until 2 nRC 1 truncate if necessary 1 2 nRC repeat Sub Loop 0 use BA 2 0 1 instead 2 4 nRC repeat Sub Loop 0 use BA 2 0 2 instead 3 6 nRC repeat Sub Loop 0 use BA 2 0 3 instead 4 8 nRC repeat Sub Loop 0 use BA 2 0 4 instead 5 10 nRC repeat Sub Loop 0 use BA 2 0 5 instead 6 12 nRC repeat Sub Loop 0 use BA 2 0 6 instead 7 14 nRC repeat Sub Loop 0 use BA 2 0 7 instead a DM must be driven LOW all the time DQS DQS are used according to RD Commands otherwise MID LEVEL b Burst Sequence driven on each DQ signal by Read Command Outside burst operation D
4. vss WwW as 2 lt i d E 20 Sle 81589 2s UE e z L s Lll I lI l 1 Li Doss w pQS zo DQS17 w DQS z DQS8 DOS D D957 ABC vss pM 2 vss DM z CB 3 0 A DQ 3 0 D8 H Al AADQ 13 01 D17 z 2 o o I l l JE t 5 I8 l l 8 5 La L La DQS3 DQS za DQS12 DQS zQ Doss DOS lt Dos wypas vss IDM z vss DM z DQ 27 244 gt DQ 3 0 D3 H DQ 31 28FA DQ 3 0 D12 2 2 o o w l l IE 5 I8 218 12 5 4 La e e DQS2 A DQS 70 posi wA DQS PQ5Z POS D Dos wypos 3 DM Z vss pM z DQ 19 16M DQ 3 0 D2 H Dpo23 20 A DO 13 01 D11 z 2 u I l l8 g RIRE Big p BIS RKE Ble La Ls e 1 e DQS1 DQS za DQS10 DOS zQ DOSI DOS DQS10 7w DOS DM DQL11 8 W DQ 3 0 D1 A O N BA O N i w 5 VSS DM DOLL Lal DQ 3 0 D10 DODERER vss y Ts ws vi peso oel pos ZO h poss lp 20 vs ier z vs om S DQ 3 0 dvl DQ 3 0 DO S DQ 7 4 df DQ 3 0 D9 S wie is
5. 30 20 46 46 lt gt Le 80 54 gt Le 119 64 gt Back k 57 2 gt 27 SCH LJ Cc C D Cc mu 15 36 22 00 Side 7 65mm max EIN N M 27 010mm max Note 1 0 13 tolerance on all dimensions unless otherwise stated 2 In order to uninstall FDHS please contact sales administrator Units millimeters Rev 1 0 Jun 2013 71
6. 5 Dos DQS DQ 3 0 D19 A N O BA N O A N O BA N O w 2812 s t 5 DQS9 A DQS BQS9 IDQS VSS DM DQI 7 4 A DQ 3 0 D9 wesw 85 pos DQS DQ 3 0 D27 A N O BALN O A N O BALN O l l I t 8 Vtt 17 SK ni 16GB 2Gx72 Module 2Rank of x4 page2 m o 9 2o m m m 95 IT elt z d PP g x L ID Jl E AH DQS14 DQS DQS514 IDQS VSS DM o DQ 47 44 A DQ 3 0 D14 a2 u io l l lE 5 SI n gg Y E PE l L L L L DQS DQS B i D32 iili we 8 A N O BA N O L DQS4 DOS DQS DQS4 wlDQS DQS E VSS DM DM DQ 35 32 DQ 3 0 D4 DQ 3 0 D22 willie 5 wie 8 8 L T DQS16 x DQS D95 DQS16 A DOS e DOS E vSS DM DM 9 DQ 63 60 A DQ 3 0 D16 DQ 3 0 D34 oe i l 8 Be l l 8 8 DST DOS es DQS7 Wy DOS i DQS x Vss DM DM DQI 59 56 A
7. DM E vss DM DQ 59 56F We DQ 3 0 D7 E H Mies emil DA 13 01 D16 2 2 y I l8 I 5 w l l l RIRE Ble I e e La e e Vtt 3 See the wiring diagrams for all resistors associated with the com mand address and control bus 4 ZQ resistors are 24096 Rdr all other resistor values refer to the appro priate wiring diagram Rev 1 0 Jun 2013 Plan to use SPD with Integrated TS of Class B and might be changed on customer s requests For more details of SPD and Thermal sensor please contact local SK hynix sales representative Vppspp 34 SPD VDD D0 D17 V 4 D0 D17 VREFCA D0 D17 VREFDQ D0 D17 Vss D0 D17 13 SK yi 8GB 1Gx72 Module 1Rank of x4 page2 S0 mw m SE ege BA N 0 R F AN EL SS G RAS L WE N E F CKE0 w DTD wWd CK0 CKO PAR IN GERRL RESET RST RSOA gt CS0 SDRAMs D 3 0 D 12 8 D17 RSOB CS0 SDRAMs D 7 4 D 16 13 RSIA CSI SDRAMs D 12 9 D17 RS1B CSI SDRAMs D 16 13 Ed gt BA N 0 SDRAMs D 3 0 RBA N 0 B BA N 0 SDRAMs D 7 4 BANS A gt A E SDRAMs E L D RA N 0 B A N 0 SDRAMs D 7 4 D RRASA RAS SDRAMs D 3 0 D 12 RRASB RAS SDRAMs D 7 4 D 16 8 1 RCASA gt CAS SDRAMs D 0J D I2 8 D17 T i i RWEA
8. g SES L Prlz g zg H P HIS Z KKL g zg KNS Q DQS8 Wy DUS DQS DQS4 NN DUS DQS Do8 up ee wa ube s E DM8 DQS17 W TDQS 3 TDQS e DM4 DQS13 TDQS TDQS c BOST WAITDQS D8 z Tos D17 E DOSIS WTbQS D4 E TI P D13 Z 70 DQ 7 0 DQ 7 0 DQ 39 32 W DQ 7 0 DQ 7 0 20 9 e 20 8 opgeet WELLLLLLL Meee MULITITIE E E mi a L4 T D03 AA DQS DQS D055 vE DoS EE SE S E o San AN E 8 3 TDQS TDQS DQ5I2 wWAlTD0S D3 TE D12 DOH vT D5 Toe D14 E DQ 31 24 M DQ 7 0 DQ 7 0 DQ 47 40 MDQ 7 0 00 7 0 20 Q EN 20 20 o u Ege swe 2 RRR nn 2 Tobe ve bs wHBEsubb T ll T posz MWMDOS DQS Dase A Dos el E g m 8 Ge m i d 8 TDQS S TDQS DQSli WMTDQS D2 ES D11 E DQSi5 W TDQS D6 The D15 z DQ 23 16 MM DQ 7 0 m DQ 7 0 DQ55 48 M DQ 7 0 E DQ 7 0 9 o o o a Perese MERE ewes RRR R RRR B21 TORR e s 655 2 I F N e Le en SE g n S eh m S ke 2 DEI TDS D1 Z TDOS D10 3 DS ToS D7 TDQS D16 Z DQ 15 8 M DQ 7 0 DQ 7 0 2 DQ 63 56 M DQ 7 0 DQ 7 0 2 2 2 MOETE Jia BB vw 9 5 Mee MOTE t i t Doso WADQS D05 vt DQSO RA 5 DOS DM0 DQS9 TDQS S TDQS SZ ERa TT POLL P 0d DQ 7 0 K DQ 7 0 s E zB 5 9 MOETE MULT vi I VDDSPD VDDSPD SAO SAO T EVENT EVENT SPD with SA1 n SA1 T VS SCL J SCL Ge
9. For specific Notes See Speed Bin Table Notes on page 48 Speed Bin DDR3 800E Unit Notes CL nRCD nRP 6 6 6 Parameter Symbol min max Internal read command to first data tna 15 20 ns ACT to internal read or write delay time cD 15 ns PRE command period tp 15 ns ACT to ACT or REF command period c 52 5 ns ACT to PRE command period ikas 37 5 9 tREFI ns CL 6 CWL 5 CK AVG 2 5 3 3 ns 133 Supported CL Settings 6 nck Supported CWL Settings 5 nck Rev 1 0 Jun 2013 43 SK nix DDR3 1066 Speed Bins For specific Notes See Speed Bin Table Notes on page 48 Speed Bin DDR3 1066F i Not CL nRCD nRP 7 7 7 ubi SE Parameter Symbol min max Internal read command to first data tan 13 125 20 ns ACT to internal read or write delay time RD odes i is PRE command period lap 13 125 ns ACT to ACT or REF command period fac 30 023 i ns ACT to PRE command Ki 37 5 9 tREFI e period CL 6 CWL 5 CK AVG 2 5 3 3 ns 1 2 3 6 CWL 6 CK AVG Reserved ns 1 2 3 4 oe CWL 5 CK AVG Reserved ns 4 7 CWL 6 ve 1 875 2 5 ns 1 2 3 4 mw CWL 5 CK AVG Reserved ns 4 7 CWL 6 favo 1 875 lt 2 5 ns 1 2 3 Supported CL Settings 6 7 8 NcK Supported CWL Settings 5 6 fcK Rev 1 0 Jun 2013 44 SK ni DDR3 1333 Speed Bins For specific Notes See Speed Bin Table Notes on
10. Is 5 wesw 5 E La W bas Sie S g Sr g W DQ 3 0 D23 DQ 3 0 32 g w 218 5 we w 5 E Weg e e TW b Sie MEn BM g W DQ 3 0 D21 DQ 3 0 D20 8 w 2188 I 5 we w 5 E all La e bos as ia g ERE g N pq 3 0 D19 DQ 3 0 Pis w 21848 I 5 wesw 5 e gt La e lt lt o Dt TTE ATH TEES db SI 5505 mo 5 gt J j j J uj u P qp I I zQ ZQ DOS DQS S j E DQ 3 0 D63 Bi te D62 015519 3 w lils w 8 E Ly t e zQ ZQ b s Dos S x DQ 3 0 D65 DQ 3 0 D64 E 8 w ie w 5 w l I 8 5 E La zQ ZQ nos Dos 5 DQ 3 0 D67 DQ 3 0 D66 z 3 2 I l l I 8 io 218 g 8 5 E La Le zQ ZQ Dos Dos 3 5 DQ 3 0 D69 3 DQ 3 0 D68 E 8 wile 8 io 218 1g 8 5 EE e La e ZQ ZQ pos Dos Gg g E D Fram 2A DQ 3 0 K E we w 5 io 218 sb 5 e Le Rev 1 0 Jun 2013 21 S CP ix K 32GB 4Gx72 Module 4Rank of x4 page3 vss DQS4 DQS4 DQ 35 32 vss DQS5 DQS5 DQ 43 40 vss DQS6 DQS6 DQ 51 48 vss DQS7 DQS7 VSS DO 59 56 ME
11. pM DQI23 20 A DQ 3 0 D11 we sb DOS DOS DM DQ 3 0 D29 A N O BALN O A N O BALN O w l I sss DQS10 DOS DQS10 DOS VSS DM DQ 15 12 A DQ 3 0 D10 wesw 5 Dos DQS DQ 3 0 D28 A N O BALN O A N O BALN O DODERER DQS0 xIDQS DQS0 wW DOS VSS DM DQ 3 0 A9 DQ 3 0 DO w l l g t pos DQS DQ 3 0 D18 w l l I ws 8 5 A N O BALN O A N O BALN O Vtt 34 Rev 1 0 Jun 2013 lt 4 2 HHE itii 9292 9 x 8 10 2 1 d L L 1 I DQS8 wx DQS Dos DQS8 w DQS Dos DQS vss DM DM 9 CB 3 0 AM DQ 3 0 D8 DQ 3 0 D26 8 I 2 8 ves 5 I BBB RIRE 5 DQs3 W DQS DOS3 W DOS vss DM DQI27 24 M9 DQ 3 0 D3 we 8 B Dos s S H DQ 3 0 D21 H 9 8 io 28g 5 DQS2 A DOS DQS2 W DOS VSS DM DQ 19 16 24M DQ 3 0 D2 w l l 8 5 DOS e 2 s DQ 3 0 D20 28g 5 DQS1 A DQS DQS1 W DQS VSS DM DQ 11 8 DQ 3 0 D1 w Sig w
12. se 0595 x Vtt A VDDSPD 4 VDDSPD SAO DAD EVENT 4 EVENT SPD with SAL SA1 sc scL Integrated s42 542 SDA SDA TS VSS VSS Note 1 DQ to 1 O wiring may be changed within a nibble 2 Unless otherwise noted resistor values are 15 5 vss vss Wwl vss w vss w m m oF D cs HUL Die z Z ER x Ll III L DQS4 N DOS ZO DQS13 N DOS 2 past w DOS DQS13 N DOS n vss DM e DQ 35 328 W DQ 3 0 D4 H Misa amd DQ 3 0 D13 z 2 wie 8 5 I BB RIRE Ble I Le La poss w pos 70 A posi wA DQS zs DQS5 d DOS _ DOS w D5Qs cc vss DM g vss DM E DQ 43 4044M DQ 3 0 D5 Z DOT DQ 3 0 D14 z 2 wes 8 5 I l l I RIRE Ble I La La e e e pose WA DQS 20 posis pos 2 R A DOS z DQS15 DQS DM ra VSS DM e DQ 51 488 A DQ 3 0 D6 E Miss aad Do 13 01 D15 S z 2 u 28 BE o BBE BIg I e e L e DQS7 dd DOS zQ DQS16 w oos za D I apos z H 09516 w pos S
13. x o lt rd c By i 8 legsshiiisbii S ren SER z lt lt lt lt 0 0 WR O 1 0 0 1 0 00 0 0 0 0 00000000 1 D 1 0 0 0 1 0 00 0 0 0 0 2 3 DD 1 1 1 1 1 0 0 0 oloo 4 WR O 1 0 0 1 0 00 0 0 F 0 00110011 F 5 D 1 0 0 0 1 0 00 0 0 F 0 S 2 6 7 DD 1 1 1 1 1 0 100 0 0 F 0 E 9 1 8 15 repeat Sub Loop 0 but BA 2 0 1 8 8 2 16 23 repeat Sub Loop 0 but BA 2 0 2 3 24 31 repeat Sub Loop 0 but BA 2 0 3 4 32 39 repeat Sub Loop 0 but BA 2 0 4 5 40 47 repeat Sub Loop 0 but BA 2 0 5 6 48 55 repeat Sub Loop 0 but BA 2 0 6 7 56 63 repeat Sub Loop 0 but BA 2 0 7 a DM must be driven LOW all the time DQS DQS are used according to WR Commands otherwise MID LEVEL b Burst Sequence driven on each DQ signal by Write Command Outside burst operation DQ signals are MID LEVEL Rev 1 0 Jun 2013 59 Ds SK hynix Table 9 IDD5B Measurement Loop Pattern a x kel m 8 28 2 E9odsgsknmi is 952 i fwg Bg ga om a z d lt 0 0 REF 0 0 0 1 0 0 0 0 1 12 D D 1 0 0 0 0 0 00 0 3 4 DD 1 1 1J J1 0 0 00 0 5 8 repeat cycles 1 4 but BA 2 0 1 2 5 9 12 repeat cycles 1 4 but BA 2 0 2 2 D 13 16 repeat cycles 1 4 but BA 2 0 3 8 17 20 repeat cycles 1 4 but BA 2 0 4 21 24 repeat cycles 1 4 but BA 2 0 5 25 28 repeat cycles 1 4 bu
14. 0 150V is referenced VIL CA AC135 value is used when Vref 0 135V is referenced and VIL CA AC125 value is used when Vref 0 125V is referenced NO I Rev 1 0 Jun 2013 27 SK ni AC and DC Input Levels for Single Ended Signals DDR3 SDRAM will support two Vih Vil AC levels for DDR3 800 and DDR3 1066 as specified in the table below DDR3 SDRAM will also support corresponding tDS values Table 43 and Table 51 in DDR3 Device Operation as well as derating tables in Table 46 of DDR3 Device Operation depending on Vih Vil AC lev els Single Ended AC and DC Input Levels for DQ and DM DDR3 800 1066 DDR3 1333 1600 DDR3 1866 Symbol Parameter Unit Notes Min Max Min Max Min Max VIH DQ DC100 DC input logic high Vref 0 100 VDD Vref 0 100 VDD Mref 0 100 VDD 1 5 VIL DQ DC100 DC input logic low VSS Vref 0 100 VSS Vref 0 100 VSS Vref 0 100 1 6 VIH DQ AC175 AC input logic high Vref 0 175 Note 1 2 7 VIH DQ AC150 AC Input logic high Vref 0 150 Notez Mref 0 150 Notez Mref 0 150 Note2 1 2 7 V V V VIL DQ AC175 AC input logic low Note2 Vref 0 175 E V 1 2 8 V V VIL DQ AC150 AC input logic low Note Vref 0 150 Notez Vref 0 150 Note Vref 0 150 1 2 8 VIH CA AC135 AC input logic high S Vref 0 135 Note2 mV 1 2 7 VIL CA AC135 AC input logic low i Notez Vref 0 135 mV 1 2 8 Reference Voltage
15. 0 and BA 2 0 4 5 20 23 repeat Sub Loop 0 but ODT 0 and BA 2 0 5 6 24 17 repeat Sub Loop 0 but ODT 1 and BA 2 0 6 7 28 31 repeat Sub Loop 0 but ODT 1 and BA 2 0 7 a DM must be driven LOW all the time DQS DQS are MID LEVEL b DQ signals are MID LEVEL Rev 1 0 Jun 2013 58 SK ni Table 7 IDD4R and IDDQ4R Measurement Loop Pattern v s z SF amela v8 i 88 85 5 2s om F OS lt lt Z lt lt 0 10 RD 0 1 0 1 0 0 00 0 0 0 0 00000000 1 D 1 0 0 0 0 0 0010 0 0 0 2 3 DD 1 1 1 1 0 0 0 1 0 0 01 01 4 RD 0 1 0 1 0 0 00 0 0 F 0 00110011 5 D 1 0 0 0 0 0 00 O 0 F 0 Pp 6 7 DD 11 11 1 1 0 0 0 0 0 F o E 1 8 15 repeat Sub Loop 0 but BA 2 0 1 8 L 2 16 23 repeat Sub Loop 0 but BA 2 0 2 3 24 31 repeat Sub Loop 0 but BA 2 0 3 4 32 39 repeat Sub Loop 0 but BA 2 0 4 5 40 47 repeat Sub Loop 0 but BA 2 0 5 6 48 55 repeat Sub Loop 0 but BA 2 0 6 7 56 63 repeat Sub Loop 0 but BA 2 0 7 a DM must be driven LOW all the time DQS DQS are used according to RD Commands otherwise MID LEVEL b Burst Sequence driven on each DQ signal by Read Command Outside burst operation DQ signals are MID LEVEL Table 8 IDD4W Measurement Loop Pattern Q gt kel m
16. ACT to internal read or E 13 91 u ns write delay time 13 125 PRE command period tap ud ns 13 125 9 5 AUF V a tras 34 9 tREFI ns ACT to ACT or PRE lac 47 1 command period 47 125 CWL 5 CK AVG 2 5 3 3 ns 1 2 3 9 CL 6 CWL 6 CK AVG Reserved ns 1 2 3 4 9 CWL 7 8 9 aver Reserved ns 4 CWL 5 CK AVG Reserved ns 4 CL lt 7 CWL 6 CK AVG 1 875 2 5 ns 1 2 3 4 9 CWL 7 8 9 tekave Reserved ns 4 CWL 5 CK AVG Reserved ns 4 CL 8 CWL 6 CK AVG 1 875 lt 2 5 ns 1 2 3 9 CWL 7 CK AVG Reserved ns 1 2 3 4 9 CWL 8 9 aver Reserved ns 4 CWL 5 6 CK AvG Reserved ns 4 CL 9 CWL 7 CK AVG 1 5 lt 1 875 ns 1 2 3 4 9 CWL 8 CK AVG Reserved ns 1 2 3 4 9 CWL 9 CK AVG Reserved ns 4 CWL 5 6 ck avG Reserved ns 4 CL 10 CWL 7 CK AVG 1 5 lt 1 875 ns 1 2 3 9 CWL 8 CK AVG Reserved ns 1 2 3 4 9 CWL 5 6 7 aver Reserved ns 4 CL 11 CWL 8 CK AVG 1 25 lt 1 5 ns 1 2 3 4 9 CWL 9 CK AVG Reserved ns 1 2 3 4 CL 12 CWL 5 6 7 8 CK AVG Reserved ris 4 CWL 9 CK AVG Reserved ns 1 2 3 4 CL 13 CWL 5 6 7 8 CK AVG Reserved ns 4 CWL 9 CK AVG 1 07 lt 1 25 ns 1 2 3 Supported CL Settings 6 7 8 9 10 11 13 NCK Supported CWL Settings 5 6 7 8 9 NCK Rev 1 0 Jun 2013 47 w SK hynix Speed Bin Table Notes Absolute Specification ToPER Vppq Vpp 1 5V 0 075 V 1 10 11 The CL setting and CWL setting result in tCK AVG MIN and tCK AVG MAX requir
17. L x g SZ SIE b omia e bY ep m N 28 Ao N i j He 2X3 00 0 107 d v le gt 0 Detail D LJ UJ UV 240 Ym mm 2x R0 75 Max Side Detail of Contacts A Detail of Contacts B ail of Contacts C Detail of Contacts D See 1 20 0 15 80 0 05 58 t 5 14 90 4 0 4 13 60 3 8 3 0 1 8 3 E d i 3 n Y I N en 1 00 50 0 lt 500 P 27 010mm max 4 Note 1 0 13 tolerance on all dimensions unless otherwise stated Rev 1 0 Jun 2013 Units millimeters 68 SK ni 2Gx72 HMT42GR7AFR4C Heat Spreader 22 00 30 20 46 46 lt gt Le 80 54 gt Le 119 64 gt Back k 57 2 gt 2 7 EM LJ Cc C D Cc mu 15 36 22 00 Side 7 65mm max HD M 27 010mm max Note 1 0 13 tolerance on all dimensions
18. WE SDRAMs Dan DI12 8 pu RWEB gt WE SDRAMs DU AL D 16 1 RCKE0A CKE0 SDRAMs D 3 0 D RCKE0B CKE0 SDRAMs D 7 4 D RODT0A ODTO SDRAMs D 3 0 D 12 8 RODTOB ODTO SDRAMs D 7 4 D 16 1 PCKOA CK SDRAMs D 3 PCK0B CK SDRAMs D 7 0 DS 4 PCK0A CK SDRAMs D 3 0 D8 PCKOB CK SDRAMs D 7 4 Err_Out RST SDRAMs D 17 0 S 3 2 CKE1 ODT1 CK1 and CK1 are NC Unused register inputs ODT1 and CKE1 have a 3302 resistor to ground Rev 1 0 Jun 2013 14 SK ni 8GB 1Gx72 Module 2Rank of x8 page1 lt 48 22 95 m 4148 9 OE lt mim mamam o oz om d THE TTE BESE y 8 s
19. ose tee eteseee ses Differential Input Voltage i e DQS DQS CK CK VitIBEACMAX ee e eee eee N Foe ee cc sss Definition of differential ac swing and time above ac level tpvac Rev 1 0 Jun 2013 30 SK ni Differential swing requirements for clock CK CK and strobe DQS DQS Differential AC and DC I nput Levels DDR3 800 1066 1333 1600 Symbol Parameter Unit Notes Min Max VIHdiff Differential input high 0 180 Note 3 V 1 VILdiff Differential input logic low Note 3 0 180 V 1 VIHdiff ac Differential input high ac 2 x VIH ac Vref Note 3 V 2 VILdiff ac Differential input low ac Note 3 2 x VIL ac Vref V 2 Notes 1 Used to define a differential signal slew rate 2 For CK CK use VIH VIL ac of AADD CMD and VREFCA for DQS DQS DQSL DQSL DQSU DQSU use VIH VIL ac of DQs and VREFDQ if a reduced ac high or ac low levels is used for a signal group then the reduced level applies also here 3 These values are not defined however the single ended signals Ck CK DQS DQS DQSL DQSL DQSU DQSU need to be within the respective limits VIH dc max VIL dc min for single ended signals as well as the limita tions for overshoot and undershoot Refer to Overshoot and Undershoot Specifications on page 40 Allowed time before ringback tDVAC for CK CK and DQS DQS DDR3 800 1066 1333 1600
20. 13 75 NEC Po aa 13 125 5 10 S ACT to internal read or t ch 13 75 _ write delay time 13 125 5 10 PRE command period l p u ns ACT to ACT or REF fac 48 75 i command period 48 125 5 10 ACT to d bis 35 9 tREFI ns CWL 5 CK AVG 2 5 3 3 ns 1 2 3 8 CL 6 CWL 6 amp x ave Reserved ns 1 2 3 4 8 CWL 7 CK AVG Reserved ns 4 CWL 5 awe Reserved ns 4 1 875 lt 2 5 CL 7 CWL 6 CK AVG Optional 5 1 ns 1 2 3 4 8 CWL 7 Kk Ave Reserved ns 1 2 3 4 8 CWL 8 awe Reserved ns 4 CWL 5 Kk Ave Reserved ns 4 CL 8 CWL 6 CK AVG 1 875 lt 2 5 ns 1 2 3 8 CWL 7 CK AVG Reserved ns 1 2 3 4 8 CWL 8 tekave Reserved ns 1 2 3 4 CWL 5 6 cK AvG Reserved ns 4 1 5 lt 1 875 CL29 CWL 7 CK AVG Optional ns 1 2 3 4 8 CWL 8 tekave Reserved ns 1 2 3 4 CWL 5 6 CK Ave Reserved ns 4 CL 10 CWL 7 CK AVG 1 5 lt 1 875 ns 1 2 3 8 CWL 8 ck avG Reserved ns 1 2 3 4 CL 11 CWL 5 6 7 CK AVG Reserved ns 4 CWL 8 CK AVG 1 25 lt 1 5 ns 1 2 3 Supported CL Settings 5 6 7 8 9 10 11 ick Supported CWL Settings 5 6 7 8 ck Rev 1 0 Jun 2013 46 De SK hynix DDR3 1866 Speed Bins For specific Notes See Speed Bin Table Notes on page 48 Speed Bin DDR3 1866M CL nRCD nRP 13 13 13 unte Sote Parameter Symbol min max 13 91 e us n
21. Bank Activity all banks closed Output Buf fer and RTT Enabled in Mode RegistersP ODT Signal stable at 0 Ipp3N Active Standby Current CKE High External clock On tCK CL see Table 1 BL 88 AL 0 CS stable at 1 Command Address Bank Address Inputs partially toggling according to Table 5 Data IO MID LEVEL DM stable at 0 Bank Activity all banks open Output Buffer and RTT Enabled in Mode Registers ODT Signal stable at 0 Pattern Details see Table 5 Ipp3P Active Power Down Current CKE Low External clock On tCK CL see Table 1 BL 83 AL 0 CS stable at 1 Command Address Bank Address Inputs stable at 0 Data lO MID LEVEL DM stable at 0 Bank Activity all banks open Output Buffer and RTT Enabled in Mode RegistersP ODT Signal stable at 0 Rev 1 0 Jun 2013 53 SK ni Symbol Description Operating Burst Read Current CKE High External clock On tCK CL see Table 1 BL 83 AL 0 CS High between RD Command Address Bank Address Inputs partially toggling according to Table 7 Data IO seamless read data burst with different DD4R data between one burst and the next one according to Table 7 DM stable at 0 Bank Activity all banks open RD commands cycling through banks 0 0 1 1 2 2 see Table 7 Output Buffer and RTT Enabled in Mode Registers ODT Signal stable at 0 Pattern Details see Table 7 Operating Burst Write Current CKE Hi
22. D71 SDA SDA VSS VSS Vss DO D71 Plan to use SPD with Integrated TS of Class B and 23 SK yi 32GB 4Gx72 Module 4Rank of x4 page5 SU ARS0A gt CS1 SDRAMs DI D3 D5 D7 D9 BI wd BRS2A CS1 SDRAMs D45 D47 D49 D51 D53 1 2 D19 D21 D23 D25 D27 1 2 D63 D65 D67 D69 D71 ARSOB CS1 SDRAMs D11 D13 D15 D17 BRS2B CS1 SDRAMs D37 D39 D41 D43 R D29 D31 D33 D35 R D55 D57 D59 D6I SI d E L ARS1A CS0 SDRAMs D0 D2 D4 D6 D8 S3 wd E I BRS3A CS0 SDRAMs D44 D46 D48 D50 D52 G _ DI8 D20 D22 D24 D26 G D62 D64 D66 D68 D70 ARS1B CS0 SDRAMs D10 D12 D14 D16 BRS3B CS0 SDRAMs D36 D38 D40 D42 S D28 D30 D32 D34 S D54 D56 D58 D60 BA N 0 A L ARBA N 0 A gt BA N 0 SDRAMs D 9 0 D 27 18 _ BA N 0 A I L BRBA N 0 A BA N 0 SDRAMs D 53 44 D 71 62 T ARBA N 0IB BAIN SDRAM DIT TU D35281 T BRBAIN 018 BAIN 0 SDKAM Die EE A N 0 WwM L ARA N 0 A gt A N 0 SDRAMs D 9 0 D 27 A N 0 A BR 0 A gt A N 0 SDRAMs D 55 44 D 71 62 N 0 S ARAIN 0 B gt AN 0 SDRAMs D 17 a EE L N 0 P RAIN 01B gt A Nl SDRAMs p GERS RAS d L ARRASA RAS SDRAMs D 9 0 D 27 18 RAS Ad L BRRASA gt RAS SDRAMs D 53 44 D 71 62 ARRASB gt RAS SDRAMs D 17 10 D 35 28 BRRASB RAS SDRAMs D 43 36 D 6 1 54 CAS wr P L ARCASA gt GAS SDRAMs D 9 0 D 27 18 C
23. DDR3 1866 tDVAC ps Slew tDVAC ps tDVAC ps VIH Ldiff ac tDVAC ps tDVAC ps Rate VIH Ldiff ac VIH Ldiff ac 270mV VIH Ldiff ac VIH Ldiff ac V ns 350mV 300mV DQS DQS only 300mV CK CK only Optional min max min max min max min max min max gt 4 0 75 175 214 134 139 4 0 57 170 214 134 139 3 0 50 167 191 112 118 2 0 38 119 146 67 77 1 8 34 102 131 52 63 1 6 29 81 113 33 45 1 4 22 54 88 9 23 1 2 13 19 56 note lt note 1 0 0 note 11 note note 1 0 0 note note note note x note Rising input differential signal shall become equal to or greater than VIHdiff ac level and Falling input differential signal shall become equal to or less than VIL ac level Rev 1 0 Jun 2013 31 SK yi Single ended requirements for differential signals Each individual component of a differential signal CK DQS DQSL DQSU CK DQS DQSL of DQSU has also to comply with certain requirements for single ended signals CK and CK have to approximately reach VSEHmin VSELmax approximately equal to the ac levels VIH ac VIL ac for ADD CMD signals in every half cycle DQS DQSL DQSU DQS DQSL have to reach VSEHmin VSELmax approximately the ac levels VIH ac VIL ac for DQ signals in every half cycle preceding and following a valid transition Note that the applicable ac l
24. DQSL DQSL DQSU DQSU use VIH VIL ac of DQs 2 VIH ac VIL ac for DQs is based on VREFDQ VIH ac VIL ac for ADD CMD is based on VREFCA if a reduced ac high or ac low level is used for a signal group then the reduced level applies also here 3 These values are not defined however the single ended signals Ck CK DQS DQS DQSL DQSL DQSU DQSU need to be within the respective limits VIH dc max VIL dc min for single ended signals as well as the limita tions for overshoot and undershoot Refer to on page 39 Rev 1 0 Jun 2013 33 SK yi Differential nput Cross Point Voltage To guarantee tight setup and hold times as well as output skew parameters with respect to clock and strobe each cross point voltage of differential input signals CK CK and DQS DQS must meet the requirements in table below The differential input cross point voltage VIX is measured from the actual cross point of true and complement signals to the midlevel between of VDD and VSS YDD m mmm m CK DQS d Vix goe geg 75 MP NENNEN CUR Reena e 7 VDDI2 Vix U v e zm d CK DQS VSEH VSEL VSS Vix Definition Cross point voltage for differential input signals CK DQS DDR3 800 1066 1333 1600 1866 Symbol Parameter Unit Notes Min Max Vx CK Differential Input Cross Point Voltage 150 150 mV 2 IX relative to VDD 2 for CK CK 175 175 mV 1 Differential Inp
25. Range Please refer to the DIMM SPD for option availability b Manual Self Refresh mode with Extended Temperature Range capability MR2 A6 0b and MR2 A7 1b DDR3 SDRAMs support Extended Temperature Range and please refer to component datasheet and or the DIMM SPD for tFEFI requirements in the Extended Temperature Range Rev 1 0 Jun 2013 25 SK uix AC amp DC Operating Conditions Recommended DC Operating Conditions Recommended DC Operating Conditions Rating Symbol Parameter Units Notes Min Typ Max VDDQ supply Voltage for Output 1 425 1 500 1 575 1 2 Notes 1 Under all conditions VDDQ must be less than or equal to VDD 2 VDDQ tracks with VDD AC parameters are measured with VDD and VDDQ tied together Rev 1 0 Jun 2013 26 SK ni AC amp DC Input Measurement Levels AC and DC Logic Input Levels for Single Ended Signals AC and DC Input Levels for Single Ended Command and Address Signals Single Ended AC and DC Input Levels for Command and ADDress DDR3 800 1066 1333 1600 DDR3 1866 Symbol Parameter Unit Notes Min Max Min Max VIH CA DC100 DC input logic high Vref 0 100 VDD Vref 0 100 VDD V 1 5 VIL CA DC100 DC input logic low VSS Vref 0 100 VSS Vref 0 100 V 1 6 VIH CA AC175 AC input logic high Vref 0 175 Note2 V 1 2 7 VIL CA AC175 AC input logic low Note2 Vref 0 175 S
26. Refresh Temperature Range SRT Extended IDD6ET CKE Low External clock Off CK and CK LOW CL see Table 1 BL 83 AL 0 CS Command Address Bank Address Inputs Data IO MID LEVEL DM stable at 0 Bank Activity Extended Temperature Self Refresh operation Output Buffer and RTT Enabled in Mode RegistersP ODT Signal MID LEVEL Rev 1 0 Jun 2013 54 SK yi Symbol Description Operating Bank Interleave Read Current CKE High External clock On tCK nRC nRAS nRCD NRRD nFAW CL see Table 1 BL 88 f AL CL 1 CS High between ACT and RDA Command Address Bank Address Inputs partially toggling according to Table Ipp7_ 10 Data IO read data burst with different data between one burst and the next one according to Table 10 DM stable at 0 Bank Activity two times interleaved cycling through banks 0 1 7 with different address ing wee Table 10 Output Buffer and RTT Enabled in Mode Registers ODT Signal stable at 0 Pattern Details see Table 10 a Burst Length BL8 fixed by MRS set MRO A 1 0 00B b Output Buffer Enable set MR1 A 12 0B set MR1 A 5 1 01B RTT Nom enable set MR1 A 9 6 2 0118 RTT_Wr enable set MR2 A 10 9 10B c Precharge Power Down Mode set MRO A12 0B for Slow Exit or MRO A12 1B for Fast Exit d Auto Self Refresh ASR set MR2 A6 0B to disable e Self Refresh Temperature Range SRT set MR2 A7 OB for normal or 1B for exte
27. Tests but verified by Design Characterization Any DDR3 1600 speed bin also supports functional operation at lower frequencies as shown in the table which are not subject to Production Tests but verified by Design Characterization Any DDR3 1866 speed bin also supports functional operation at lower frequencies as shown in the table which are not subject to Production Tests but verified by Design Characterization DDR3 SDRAM devices supporting optional down binning to CL 7 and CL 9 and tAA tRCD tRP must be 13 125 ns or lower SPD settings must be programmed to match For example DDR3 1333H devices supporting down binning to DDR3 1066F should program 13 125 ns in SPD bytes for tAAmin Byte 16 tRCDmin Byte 18 and tRPmin Byte 20 DDR3 1600K devices supporting down binning to DDR3 1333H or DDR3 1600F should program 13 125 ns in SPD bytes for tAAmin Byte 16 tRCDmin Byte 18 and tRPmin Byte 20 Once tRP Byte 20 is programmed to 13 125ns tRCmin Byte 21 23 also should be programmed accordingly For example 49 125ns tRASmin tRPmin 36 ns 13 125 ns for DDR3 1333H and 48 125ns tRASmin tRPmin 35 ns 13 125 ns for DDR3 1600K DDR3 SDRAM devices supporting optional down binning to CL 11 CL 9 and CL 7 tAA tRCD tRPmin must be 13 125ns SPD setting must be programed to match For example DDR3 1866 devices sup porting down binning to DDR3 1600 or DDR3 1333 or 1066 should program 13 125ns in SPD bytes for tAAmin byte 16 t
28. and RTT Enabled in Mode Registers ODT Signal stable at 0 Pattern Details see Table 5 fDD2NT Precharge Standby ODT Current CKE High External clock On tCK CL see Table 1 BL 83 AL 0 CS stable at 1 Command Address Bank Address Inputs partially toggling according to Table 6 Data IO MID_LEVEL DM stable at 0 Bank Activity all banks closed Output Buffer and RTT Enabled in Mode RegistersP ODT Signal toggling according to Table 6 Pattern Details see Table 6 Ipp2po Precharge Power Down Current Slow Exit CKE Low External clock On tCK CL see Table 1 BL 88 AL 0 CS stable at 1 Command Address Bank Address Inputs stable at 0 Data IO MID_LEVEL DM stable at 0 Bank Activity all banks closed Output Buf fer and RTT Enabled in Mode RegistersP ODT Signal stable at 0 Precharge Power Down Mode Slow Exit Ipp2p1 Precharge Power Down Current Fast Exit CKE Low External clock On tCK CL see Table 1 BL 88 AL 0 CS stable at 1 Command Address Bank Address Inputs stable at 0 Data IO MID LEVEL DM stable at 0 Bank Activity all banks closed Output Buf fer and RTT Enabled in Mode RegistersP ODT Signal stable at 0 Precharge Power Down Mode Fast Exit Ipp2q Precharge Quiet Standby Current CKE High External clock On tCK CL see Table 1 BL 88 AL 0 CS stable at 1 Command Address Bank Address Inputs stable at 0 Data IO MID LEVEL DM stable at 0
29. page 48 Speed Bin DDR3 1333H it N CL nRCD nRP 9 9 9 ent bra Parameter Symbol min max Internal read 13 5 L command to first data A 13 125 10 a i ACT to internal read or 13 5 ag write delay time RCD 13 125 510 13 5 PRE command period l p 13 125 5 10 ns ACT to ACT or REF 49 5 i c 510 ns command period 49 125 ACT to PRE command period RAS 36 9 tREFI ns CWL 5 CK AVG 2 5 3 3 ns 1 2 3 7 CL 6 CWL 6 amp xiave Reserved ns 1 2 3 4 7 CWL 7 CK AVG Reserved ns 4 CWL 5 ck AvG Reserved ns 4 1 875 lt 2 5 CL 7 CWL 6 CK AVG ns 1 2 3 4 7 Optional 2 10 CWL 7 CK AVG Reserved ns 1 2 3 4 CWL 5 Kk Ave Reserved ns 4 CL28 CWL 6 CK AVG 1 875 2 5 ns 1 2 3 7 CWL 7 CK AVG Reserved ns 1 2 3 4 CWL 5 6 fcK AVG Reserved ns 4 CWL 7 Kk Ave 1 5 lt 1 875 ns 1 2 3 4 CWL 5 6 amp kave Reserved ns 4 CL 10 1 5 1 875 ns 1 2 3 t CWL 7 tekave Optional ns 5 Supported CL Settings 6 7 8 9 10 Nk Supported CWL Settings 5 6 7 lick Rev 1 0 Jun 2013 45 SK ni DDR3 1600 Speed Bins For specific Notes See Speed Bin Table Notes on page 48 Speed Bin DDR3 1600K CL nRCD nRP 11 11 11 SE Note Parameter Symbol min max
30. unless otherwise stated 2 In order to uninstall FDHS please contact sales administrator Units millimeters Rev 1 0 Jun 2013 69 SK uix 4Gx72 HMT84GR7AMR4C Front 133 35 gt i 128 95 4 Detail B gt 2 10 0 15 Wl a sms z Detail A 05 c DDP DDP DDP DDP DDP DDP DDP DDP DDP I 4X3 00 0 10 ES g M g 5 AIRS B DDP DDP DDP DDP DDP DDP DDP DDP DDP AP N A r4 2X3 00 0 T0 C v E 47 00 gt lt l Detail C 5 0 Detail D Back _SPD H J DDP DDP DDP DDP i DDP DDP DDP DDP DDP L 2g 5 SS DDP DDP DDP DDP DDP DDP DDP DDP DDP C Om mom lomo 9 2x R0 75 Max Side Detail of Contacts A Detail of Contacts B Detail of Contacts C Detail of Contacts D 3 64mm max 1 20 0 15 om dus gt d 14 90 gt lt 5 13 60 _ 3 S 8 d 3 0 1 SS i 2 d Y N zi 0 3 0 1 Wi 1 00 50 0 P 5 00 27 010mm max Note 1 0 13 tolerance on all dimensions unless otherwise stated Units millimeters Rev 1 0 Jun 2013 70 SK ni 4Gx72 HMT84GR7AMRAC Heat Spreader
31. 1322 1340 mA IDD3P 588 606 606 mA IDD4R 1709 1898 2042 mA IDD4W 1754 1943 2087 mA IDD5B 2744 2843 2852 mA IDD6 498 498 498 mA IDD6ET 570 570 570 mA IDD7 2249 2393 2492 mA 16GB 2G x 72 R DIMM HMT42GR7AFR4C Symbol DDR3 1333 DDR3 1600 DDR3 1866 Unit note IDD0 1790 2006 2042 mA IDD1 1916 2150 2204 mA IDD2N 1484 1520 1556 mA IDD2NT 1628 1700 1736 mA IDD2P0 624 624 624 mA IDD2P1 696 696 732 mA IDD2Q 1520 1556 1520 mA IDD3N 1808 1880 1916 mA IDD3P 948 984 984 mA IDD4R 2654 3032 3320 mA IDD4W 2744 3122 3410 mA IDD5B 4724 4922 4940 mA IDD6 768 768 768 mA IDD6ET 912 912 912 mA IDD7 3734 4022 4220 mA Rev 1 0 Jun 2013 63 SK ni 32GB 4G x 72 R DIMM HMT84GR7AMR4C Symbol DDR3 1066 DDR3 1333 DDR3 1600 DDR3 1866 Unit note IDD0 2474 2510 3122 3194 mA IDD1 2618 2636 3266 3356 mA IDD2N 2204 2204 2276 2348 mA IDD2NT 2348 2492 2636 2708 mA IDD2P0 1020 1020 1020 1020 mA IDD2P1 1092 1164 1164 1236 mA IDD2Q 2204 2276 2348 2276 mA IDD3N 2780 2852 2996 3068 mA IDD3P 1668 1668 1740 1740 mA IDD4R 3104 3374 4148 4472 mA IDD4W 3194 3464 4238 4562 mA IDD5B 5444 5444 6038 6092 mA IDD6 1308 1308 1308 1308 mA IDDGET 1596 1596 1596 1596 mA IDD7 4004 4454 5138 5372 mA Rev 1 0 Jun 2013 64 SK niy Module Dimensions 512Mx72 HMT451R7AFR8C Front L
32. 133 35 128 95 gt SDTS LL AN 4 2 10 0 15 keo 4X3 00 0 10 EE Y 4 8 8 Detail A Q Detail B Detail C Y 2X3 00 0 10 LJ U WV 240 Back 2x R0 75 Max Detail of Contacts A Detail of Contacts B 1 20 0 15 80 0 05 T lt 3 0 1 8 n N 1 00 lt Note Detail of Contacts C N D e 3 403 0 15 2 50 0 20 E ere 50 0 d see P 5 00 1 0 13tolerance on all dimensions unless otherwise stated Rev 1 0 Jun 2013 Side 3 64mm max n 1 27 010mm ax Units millimeters 65 SK nix 1Gx72 HMT41GR7AFR4C Front P 133 35 128 95 lt gt p 2 10 0 15 SIDE A Detail A OD a E k min S SS t E 9 8 dco ml i e Detail B Detail C v Back U U t7 240 N 121 M 2x R0 75 Max Side 3 64mm max Detail of Contacts A Detail of Contacts B Detail of Contacts C 1 204 0 15 8030 0
33. 199 w 5 LIIILLLLI Seana ae DQS3 dd DOS ZQ DQS5 W DQS ZQ DQS3 wW DOS N DQS5 w IDQS DM3 DQS12 TDQS o DM5 DQS14 A ITDQS o L DOSIZ TDQS D3 2 DOSIA w TDQS D5 E DQ 31 24 W4DQ 7 0 ES DQ 47 40 1 DQ 7 0 A Z E o FHODEPDEIEEE 0259 E L l ETH DQS2 w ID9S ZQ DQS6 MD9S ZQ DQS2 w DQS DQS6 wxDQS s DM2 DQS11 A 4 TDQS o DM6 DQS15 A TDQS Q SR DQSll W TDQS D2 DOSIS A4TDQS D6 DQ 23 16 W lt DQ 7 0 g DQ 55 48 W IDQ 7 0 a Z z u 6 u h Q I l l l 5 I l l 5 LILIILLLLI ERE EE ERE ERR ET EE REIS DQS1 W Das zQ DQS7 wr DUS 20 DQS1 w ipQS A DQS7 w IDQS DM1 DQS10 WY TDQS 9 _DM7 DQS16 TDQS 9 Vppsrp SPD DQS 10 TDQS D1 g DQ516 TOS D7 T VDB f L D0 D8 S B DQ 15 8 W4 DQ 7 0 E DQ 63 56 W DQ 7 0 kg rg Vrr z z WEZ 168 BE I 259 8 SEB Z VREFCA 1 P0 D8 L T T IT T LT T LI TT TT TT TT 1 VREFDQ D0 D8 Doso w DQS z9 Kamm Ee Vss C om DQSO m DOS DM0 DQS9 Wx TDQS 9 L DOSI TDQS DO DQ 7 0 _ WMDQ 7 0 a Note o 1 DQ to I O wiring may be changed within byte um 2 3 xxu 5 Z S E l 6 o lt 2 ZQ resistors are 240 Q 1 For all other resistor values refer to the IT rT TL TL 1 appropriate wiring diagram Vtt Ww S0 P L RS0A CS0 SDRAMs D 3 0 D8 SI i RS0
34. 2 0 SPD Address Inputs 3 Vppspp SPD Power 1 Parity bit for the Address and Par_In 1 7 Control bus Parity error found on the Err Out Address and Control bus Rev 1 0 Jun 2013 5 SK ni Input Output Functional Descriptions Symbol Type Polarity Function CKO IN Positive Positive line of the differential pair of system clock inputs that drives input to the on Line DIMM Clock Driver CKO IN Negative Negative line of the differential pair of system clock inputs that drives the input to the Line on DIMM Clock Driver CK1 IN id Terminated but not used on RDIMMs CK1 IN oou Terminated but not used on RDIMMs CKE HI GH activates and CKE LOW deactivates internal clock signals and device input CKE 1 0 IN Active buffers and output drivers of the SDRAMs Taking CKE LOW provides PRECHARGE i High POWER DOWN and SELF REFRESH operation all banks idle or ACTIVE POWER DOWN row ACTIVE in any bank Enables the command decoders for the associated rank of SDRAM when low and dis ables decoders when high When decoders are disabled new commands are ignored ST3 0 IN Active and previous operations continue Other combinations of these input signals perform Low unique functions including disabling all outputs except CKE and ODT of the register s on the DIMM or accessing internal control words in the register device s For modules with two registers S 3 2 operate s
35. 2 50 lt t 3 n S 8 8 3 0 1 8 3 k E S S Y R Mi 1 00 PE is lt o KR 1 27 010mm max Note 1 0 13 tolerance on all dimensions unless otherwise stated Units millimeters Rev 1 0 Jun 2013 66 SK nix 1Gx72 HMT41GR7AFRSC Front P 133 35 128 95 lt gt p 2 10 0 15 SIDE A Detail A OD a E k min S SS t E 9 8 dco ml i e Detail B Detail C v Back U U t7 240 N 121 M 2x R0 75 Max Side 3 64mm max Detail of Contacts A Detail of Contacts B Detail of Contacts C 1 204 0 15 8030 0 2 50 lt t 3 n S 8 8 3 0 1 8 3 k E S S Y R Mi 1 00 PE is lt o KR 1 27 010mm max Note 1 0 13 tolerance on all dimensions unless otherwise stated Units millimeters Rev 1 0 Jun 2013 67 SK ni 2Gx72 HMT42GR7AFR4C lt gt Detail B lt gt e A 2 10 0 15 gt 4 d E Detail A C 4X3 00 0 10
36. 229 Vss 49 VTT NC 169 CKE1 NC 110 Vss 230 K 7 50 CKE0 170 Vpp 111 DQS7 231 ai 51 VoD 171 A15 112 DQS7 232 Vss 52 BA2 172 A14 113 Vss 233 DQ62 53 Err_Out NC 173 VDD 114 DQ58 234 DQ63 54 VoD 174 A12 BC 115 DQ59 235 Vss 55 All 175 A9 116 Vss 236 VDDSPD 56 A7 176 VoD 117 SAO 237 SA1 57 VoD 177 A8 118 SCL 238 SDA 58 A5 178 A6 119 SA2 239 Vss 59 A4 179 VDD 120 VTT 240 VTT 60 VDD 180 A3 NC No Connect RFU Reserved Future Use Rev 1 0 Jun 2013 SK uix Registering Clock Driver Specifications Capacitance Values Symbol Parameter Conditions Min Typ Max Unit Input capacitance Data inputs 1 5 2 5 pF a Input capacitance CK CK FBIN FBIN 15 25 F up to DDR3 1600 i p CIR n RESET MIRROR V Vpp or GND Vpp 1 5v _ 3 oF Input amp Output Timing Requirements Dee i DDR3 1600 DDR3 1866 Symbol Parameter Conditions Unit Min Max Min Max Min Max fia Input clock fre Application fre 300 670 300 810 300 945 Mhz quency quency Input clock fre frEST ti Test frequency 70 300 70 300 70 300 Mhz Input valid before _ tsu Setup time CK CK 100 50 40 ps Input to remain_ tu Hold time valid after CK CK 175 125 75 ps Propagation tppu delay single bit CK CK to output 0 65 1 0 0 65 1 0 0 65 1 0 ns switching E dn eL Yn Yn to output 0 5 _ 0 5 _ 0 5 _ prelaunch float tQSK1 min tQSK1 min tQSK1 min te
37. 3 RWEA gt WE SDRAMs D 3 0 D 12 8 D17 RWEB gt WE SDRAMs D 7 4 D 16 13 RCKE0A gt CKE0 SDRAMs D 3 0 D8 RCKEOB CKE0 SDRAMs D 7 4 RCKE1A gt CKEI SDRAMs D 12 9 D17 RCKE1B gt CKEI SDRAMs D 16 13 RODT0A_ gt ODT0 SDRAMs D 3 0 D8 RODTOB ODT0 SDRAMs D 7 4 RODT1A ODTI SDRAMs D 12 9 D17 RODT1A ODTI SDRAMs D 16 13 PCK0A CK SDRAMs D 3 0 D8 PCKOB CK SDRAMs D 7 4 PCK1A gt CK SDRAMs D 12 9 D17 PCK1B CK SDRAMs D 16 13 PCKOA CK SDRAMs D 3 0 D8 PCKOB CK SDRAMs D 7 4 PCK1A gt CK SDRAMs D 12 0 D17 PCK1B gt CK SDRAMs D 16 13 12 8 D17 16 13 Sg ES 2 D 16 EA 8 D17 Err_Out RST SDRAMs D 17 0 S 3 2 CK1 and CK1 are NC Rev 1 0 Jun 2013 16 SK nh 16GB 2Gx72 Module 2Rank of x4 page1 lt z lt 9 3 44 HHE dii ela z E agg lt H VIS z 2 1 Lig p 1 IL opo ob DQS17 WY Dos pos DQS17 W DQS on DQS vss DM M s CB 7 4 DQ 3 0 D17 DQ 3 0 D35 3 3 I I 8 5 I l l8 l si 8 8 DQS12 xIDQS DQ512 x DQS VSS DM DQ 31 28 DQ 3 0 D12 we s B t Dos DOS DQ 13 01 D30 w l I 5 A N O BA N O A N O BA N O DQS11 A DOS DQSII W DOS VsS
38. 35 E 75 Von 195 ODT0 16 DQS1 136 Vss 76 S1 NC 196 A13 17 Vss 137 DQ14 77 ODT1 NC 197 VDD 18 DQ10 138 DQ15 78 VDD 198 S3 NC 19 DQ11 139 Vss 79 S2 NC 199 Vss 20 Vss 140 DQ20 80 Vss 200 DQ36 21 DQ16 141 DQ21 81 DQ32 201 DQ37 22 DQ17 142 Vss 82 DQ33 202 Vss 23 Vss 143 SEIL 83 Ver 203 x e WR a ma m WEE 25 DQS2 145 Vss 85 DQS4 205 Vss 26 Vss 146 DQ22 86 Vss 206 DQ38 27 DQ18 147 DQ23 87 DQ34 207 DQ39 28 DQ19 148 Vss 88 DQ35 208 Vss 29 Vss 149 DQ28 89 Vss 209 DQ44 30 DQ24 150 DQ29 90 DQ40 210 DQ45 31 DQ25 151 Vss 91 DQ41 211 Vss NC No Connect RFU Reserved Future Use Rev 1 0 Jun 2013 SK CP ix pa s area zy S Panera du ete Gi b u s isi o 32 Vss 152 ri 92 Vss 212 S 33 DQS3 153 C 93 DQS5 213 Es 34 DQS3 154 Vss 94 DQS5 214 Vss 35 Vss 155 DQ30 95 Vss 215 DQ46 36 DQ26 156 DQ31 96 DQ42 216 DQ47 37 DQ27 157 Vss 97 DQ43 217 Vss 38 Vss 158 CB4 NC 98 Vss 218 DQ52 39 CB0 NC 159 CB5 NC 99 DQ48 219 DQ53 40 CB1 NC 160 Vss 100 DQ49 220 Vss 41 Vss 161 ir d 101 Vss 221 RE 42 DQS8 162 aoe 102 DQS6 222 o 43 DQS8 163 Vss 103 DQS6 223 Vss 44 Vss 164 CB6 NC 104 Vss 224 DQ54 45 CB2 NC 165 CB7 NC 105 DQ50 225 DQ55 46 CB3 NC 166 Vss 106 DQ51 226 Vss 47 Vss 167 NC TEST 107 Vss 227 DQ60 48 VTT NC 168 RESET 108 DQ56 228 DQ61 KEY KEY 109 DQ57
39. 72 512Mx8 H5TQ4G83AFR 9 1 X HMT41GR7AFR8C H9 PB RD 8GB 1Gx72 512Mx8 H5TQ4G83AFR 18 2 X HMT41GR7AFR4C H9 PB RD 8GB 1Gx72 1Gx4 H5TQ4G43AFR 18 1 X HMT42GR7AFR4C H9 PB RD 16GB 2Gx72 1Gx4 H5TQ4G43AFR 36 2 O HMT84GR7AMR4C G7 H9 PB RD 32GB 4Gx72 DDP 2Gx4 H5TQ8G43AMR 36 4 O In order to uninstall FDHS please contact sales administrator Rev 1 0 Jun 2013 3 Ds SK hynix Key Parameters CAS RAS MI s Grade E Latency ice oan ERE CL tRCD tRP ns ns ns ns ns tCK DDR3 1066 G7 1 875 7 13 125 13 125 37 5 50 625 7 7 7 13 5 13 5 49 5 DDR3 1333 H9 1 5 9 13 125 13 125 36 49 125 9 9 9 13 75 13 75 48 75 DDR3 1600 PB 1 25 11 13 125 13 125 35 48 125 11 11 11 13 91 13 91 47 91 DDR3 1866 Rd 1 07 13 13 125 13 125 34 48 125 13 13 13 SK hynix DRAM devices support optional downbinning to CL11 CL9 and CL7 SPD setting is programmed to match Speed Grade Frequency MHz Grade Remark CL6 CL7 CL8 CL9 CL10 CL11 CL12 CL13 G7 800 1066 1066 H9 800 1066 1066 1333 1333 PB 800 1066 1066 1333 1333 1600 RD 800 1066 1066 1333 1333 1600 1866 Address Table 4GB 1Rx8 8GB 1Rx4 8GB 2Rx8 16GB 2Rx4 32GB 4Rx4 Refresh Method 8K 64ms 8K 64ms 8K 64ms 8K 64ms 8K 64ms Row Address A0 A15 A0 A15 A0 A15 A0 A15 A0 A15 Column Address A0 A9 A0 A9 A11 A0 A9 A0 A9 A11 A0 A9 A11 Bank Add
40. AS wr P L BRCASA GAS SDRAMs D 53 44 D 71 62 L ARCASB CAS SDRAMs D 17 10 D 35 28 L BRCASB CAS SDRAMs D 43 36 D 61 54 WE L FARWEA WE SDRAMs D 9 0 D 27 18 WE L LBRWEA WE SDRAMs D 53 44 D 71 62 ARWEB WE SDRAMs D 17 10 D 35 28 BRWEB WE SDRAMs D 43 36 D 61 54 CKE0 y A ARCKEOA gt CKE1 SDRAMs DI D3 D5 D7 D9 CKE0 B L BRCKE0A gt CKEI SDRAMs D45 D47 D49 D51 D53 D19 D21 D23 D25 D27 D63 D65 D67 D69 D71 ARCKE0B gt CKE1 SDRAMs D11 D13 D15 D17 BRCKEOB gt CKE1 SDRAMs D37 D39 D41 D43 D29 D31 D33 D35 D55 D57 D59 D61 CKE1 L ARCKE1A gt CKE0 SDRAMs D0 D2 D4 D6 D8 CKE1 BRCKE1A CKE0 SDRAMs D44 D46 D48 D50 D52 D18 D20 D22 D24 D26 D62 D64 D66 D68 D70 ARCKE1B CKE0 SDRAMs D10 D12 D14 D16 BRCKE1B CKE0 SDRAMs D36 D38 D40 D42 D28 D30 D32 D34 D54 D56 D58 D60 0DT0 w L ARODT0A ODTI SDRAMs D1 D3 D5 D7 D9 ODT1 BRODT1A ODT1 SDRAMs D45 D47 D49 D51 D53 _ DI9 D21 D23 D25 D27 _ D63 D65 D67 D69 D71 ARODTOB ODT0 SDRAMs D11 D13 D15 D17 BRODT1B ODT0 SDRAMs D37 D39 D41 D43 D29 D31 D33 D35 D55 D57 D59 D61 CKO APCKOA gt CK SDRAMs D 9 0 CKO BPCKOA gt CK SDRAMs D 53 44 1209 APCKOB CK SDRAMs D 17 10 1209 BPCKOB CK SDRAMs D 43 36 z 459 APCK1A gt CK SDRAMs D 27 18 459 BPCK1A CK SDRAMs D 71 62 m CET APCK1B gt CK SDRAMs D 35 28 a d BPCK1B CK SDRAMs D 61 54 CKO APCKOA CK SDRA
41. AW 4 nRRD D 1 0 0 0 0 7 00 0 0 F 0 X Assert and repeat above D Command until 2 nFAW 1 if necessary S 2 2 nFAW 0 ACT 0 0 1 1 0 0 00 0 0 F 0 e 10 2 nFAW 1 RDA 0 1 0 1 0 0 00 1 0 F 0 00110011 D 1 0 0 0 0 0 00 0 0 F 0 EE Repeat above D Command until 2 nFAW nRRD 1 2 nFAW nRRD ACT 0 0 1 1 0 1 00 0 0 0 0 11 2 nFAW nRRD 1 RDA 0 1 0 1 0 1 00 1 0 0 0 00000000 D 1 0 0 0 0 1 00 0 0 0 0 ees Repeat above D Command until 2 nFAW 2 nRRD 1 12 2 nFAW 2 nRRD repeat Sub Loop 10 but BA 2 0 2 13 2 nFAW 3 nRRD repeat Sub Loop 11 but BA 2 0 3 D 1 0 0 0 0 3 00 0 0 0 0 By eon er nRRD Assert and repeat above D Command until 3 nFAW 1 if necessary 15 3 nFAW repeat Sub Loop 10 but BA 2 0 4 16 3 nFAW nRRD repeat Sub Loop 11 but BA 2 0 5 17 3 nFAW 2 nRRD repeat Sub Loop 10 but BA 2 0 6 18 3 nFAW 3 nRRD repeat Sub Loop 11 but BA 2 0 7 D 1 0 0 0 0 7 00 0 0 0 0 19 IER Assert and repeat above D Command until 4 nFAW 1 if necessary a DM must be driven LOW all the time DQS DQS are used according to RD Commands otherwise MID LEVEL b Burst Sequence driven on each DQ signal by Read Command Outside burst operation DQ signals are MID LEVEL Rev 1 0 Jun 2013 61 SK nix IDD Specifications Tcase 0 to 95 C Module IDD values in the datasheet are only a calculation based on the component IDD spec and register power The actual measurements may vary according to DQ loading cap 4
42. B CS0 SDRAMs D 7 4 BA N 0 WY F RBA N 0 A BA N 0 SDRAMs D 3 0 D8 2 RBA N 0 A BA N 0 SDRAMs D 7 4 A N0 R F RAIN 0JA gt A N 0 SDRAMs D 3 0 D8 m E RA N 0 A A Nook SDRAMs pp RAS wWl RRASA gt RAS WW G Ge VDDSPD VDDSPD SAO SA0 th RCASA gt CAS SDRAMs D 3 0 D8 EVENT EVENT SPD with SA1 SA1 MP S RCASA gt CAS SDRAMs D 7 4 WE ir RWEA WE SDRAMs D 3 0 D scL scL Integrated sa A7 RWEA WE SDRAMs D 7 4 TS CKE0 Mw E L RCKE0A gt CKE0 SDRAMs D 3 0 D8 SDA SDA VSS VSS R RCKEOB gt CKE0 SDRAMs D 7 4 0DT0 VV RODT0A gt ODTO SDRAMs D 3 0 D8 Plan to use SPD with Integrated TS of Class B and RODTOB ODT0 SDRAMs D 7 4 CK0 P L pekoa might be changed on customer s requests For more S CK SDRAMs D 3 0 D8 m m L PCKOB CK SDRAMs D 7 4 details of SPD and Thermal sensor please contact CKO L F PCKOA CK SDRAMs D 3 0 D8 local SK hynix sales representative CKO sme PCK0B CK SDRAMs D 7 4 CKO t1 PAR_IN W _0ERRE_ Err Out RESET RST m RST SDRAMs D 8 0 S 3 2 CKE1 ODT1 are NC Unused register inputs ODT1 and CKE1 have a 3302 resistor to ground Rev 1 0 Jun 2013 12 SK uix 8GB 1Gx72 Module 1Rank of x4 pagel vss WI vss
43. DQ 3 0 D7 DQ 3 0 D25 I l l 8 w 8 i l 8 gt lll Vtt 4 WwW Vppspp SPD VDD ae T D0 D35 Vu i D0 D35 VREFCA A D0 D35 VREFDQ t D0 D35 Vss s s D0 D35 Note 1 DQ to I O wiring may be changed within a nibble 2 See wiring diagrams for all resistors values 3 ZQ pins of each SDRAM are connected to individual RZQ resistors 240 1 ohms Rev 1 0 Jun 2013 m n im n on 8 S nana aU l 5 v2 a gig 5 SNE Hi 1 1 L L L ji DQS13 DQS DOS DQS13 W DQS n DQs VSS DM 2 DM E DQ 39 36 DQ 3 0 D13 DQ 3 0 D31 S88 swe 5 i l sw 8 Des Alpe m hos DQS5 W DOS 2 DOS vsS DM DM 9 DQ43 40 MW DQ 3 0 D5 DQ 3 0 D23 E 8 S 28 is 5 iles 8 DQS15 x DQS p pos DQS15 W DOS DOS vsS DM DM B DQ 55 52 MM DQ 3 0 D15 DQ 3 0 D33 8 9 I 28 s 8 8 5 I 5 DQS6 DQS pos DQS6 w DOS DOS VSS DM e DM 9 DQ 51 48 MM DQ 3 0 D6 DQ 3 0 D24 8 2 RIR S RIR 5 i BB l8 8 Vtt VW VDDSPD VDDSPD
44. DQ 3 0 DO 3 DQ 3 0 BES GEN D32 z 8 8 8 8 w 2184 5 882 we w 5 wile 8 io 218 8 5 d x x e e Rev 1 0 Jun 2013 20 S de 32GB 4Gx72 Module 4Rank of x4 page2 vss DQS17 DQS17 VSS CB 7 4 VSS DQS12 DQS12 VSS DQ 31 28 VSS DQS11 DQS11 VSS DQ 23 20 VSS DQS10 DQS10 VSS DQ 11 8 VSS DQS9 DQS9 DQ 7 4 Vtt m o 0z d i F TE J i 9 5a HHH E g i5 1 L Mi bas Ze Ed 3 E Z DO 3 0 D27 DQ 3 0 D26 g l l l vis 5 w ke w 8 5 E re La W b Das DOS 8 DQS S ZW re D25 poo D24 g w Be
45. DT0A gt ODT0 SDRAMs D 3 0 D 12 8 D17 RODTOB ODTO SDRAMs D 7 4 D 16 13 ODTl J RODTIA ODTI SDRAMs D 21 18 D 30 26 D35 RODT1A gt ODTI SDRAMs D 25 22 D 34 31 CKO PCKOA CK SDRAMs D 3 0 D 12 8 D17 PCK0B CK SDRAMs D 7 4 D 16 13 PCK1A gt CK SDRAMs D 21 18 D 30 26 D35 uc PCK1B CK SDRAMs D 25 22 T n 31 CK0 PCK0A CK SDRAMs D 3 0 D 12 8 D17 PCKOB gt CK SDRAMs D 7 4 D 16 13 F PCK1A gt CK SDRAMs D 21 18 D 30 26 D35 CK1 PCK1B gt CK SDRAMs D 25 22 D 34 31 CK1 2 PAR IN F Err Out BRESET RST RST SDRAMs D 35 0 S 3 2 CK1 and CK1 are NC Rev 1 0 Jun 2013 S CP ix K 32GB 4Gx72 Module 4Rank of x4 pagel vss DQS8 DQS8 VSS CB 3 0 vss DQS3 DQS3 vss DQ 27 24 vss DQS2 DQS2 DQ 19 16 vss DQS1 DQS1 DQ 11 8 vss DQS0 DQS0 DQ 3 0 Vtt
46. Differential output slew rate for rising edge VOI diff AC VoHaif Ac VoHaif aC Noto c DeltaTRditf Differential output slew rate for falling edge VOHdiff AC Voidit AC Vonditt AC Voan ac DeltaTFdiff Notes 1 Output slew rate is verified by design and characterization and may not be subject to production test g VOHdiff AC d T eJ 8 o gt s Oo D E O T 2 c VOLdiff AC S Differential Output slew Rate Definition Differential Output Slew Rate DDR3 800 DDR3 1066 DDR3 1333 DDR3 1600 DDR3 1866 Parameter Symbol Min Max Min Max Min Max Min Max Min Max Differential Output Slew Rate SRQdiff 5 10 5 10 5 10 5 10 5 12 V ns Description SR Slew Rate Q Query Output like in DQ which stands for Data in Query Output se Single ended Signals For Ron RZQ 7 setting Units Rev 1 0 Jun 2013 38 SK yi Reference Load for AC Timing and Output Slew Rate Figure below represents the effective reference load of 25 ohms used in defining the relevant AC timing parameters of the device as well as output slew rate measurements It is not intended as a precise representation of any particular system environment or a depiction of the actual load presented by a production tester System designers should use IBIS or other simulation tools to correlate the timing reference load to a system environ
47. GB 512M x 72 R DI MM HMT451R7AFRSC Symbol DDR3 1333 DDR3 1600 DDR3 1866 Unit note IDD0 1097 1106 1115 mA IDD1 1160 1178 1196 mA IDD2N 944 953 962 mA IDD2NT 980 998 1007 mA IDD2P0 327 327 327 mA IDD2P1 345 345 354 mA IDD2Q 953 962 953 mA IDD3N 1025 1043 1052 mA IDD3P 408 417 417 mA IDD4R 1529 1619 1754 mA IDD4W 1574 1664 1799 mA IDD5B 2564 2564 2564 mA IDD6 363 363 363 mA IDDGET 399 399 399 mA IDD7 2069 2114 2204 mA 8GB 1G x 72 R DIMM HMT41GR7AFR4C Symbol DDR3 1333 DDR3 1600 DDR3 1866 Unit note IDD0 1430 1448 1466 mA IDD1 1556 1592 1628 mA IDD2N 1124 1142 1160 mA IDD2NT 1196 1232 1250 mA IDD2P0 426 426 426 mA IDD2P1 462 462 480 mA IDD2Q 1142 1160 1142 mA IDD3N 1286 1322 1340 mA IDD3P 588 606 606 mA IDD4R 2294 2474 2744 mA IDD4W 2384 2564 2834 mA IDD5B 4364 4364 4364 mA IDD6 498 498 498 mA IDD6ET 570 570 570 mA IDD7 3374 3464 3644 mA Rev 1 0 Jun 2013 62 SK ni 8GB 1G x 72 R DIMM HMT41GR7AFR8C Symbol DDR3 1333 DDR3 1600 DDR3 1866 Unit note IDD0 1277 1385 1403 mA IDD1 1340 1457 1484 mA IDD2N 1124 1142 1160 mA IDD2NT 1196 1232 1250 mA IDD2P0 426 426 426 mA IDD2P1 462 462 480 mA IDD2Q 1142 1160 1142 mA IDD3N 1286
48. M g EN g pas g M 00 3 0 D17 S DQ 3 0 D16 DQ 3 0 D37 Zare D36 E 8 8 8 8 w 2188 8 5 I l I is 5 we 8 218 sw 8 5 F La La La e A Rev 1 0 Jun 2013 22 S CP ix K 32GB 4Gx72 Module 4Rank of x4 page4 vss DQS13 DQS13 VSS DQ 39 36 VSS DQS14 DQS14 VSS DQ 47 44 VSS DQS15 DQS15 VSS DQ 55 52 vss DQS16 DQS16 VSS DO 63 60 ME Note 1 DQ to 1 O wiring may be changed within a nibble 2 Unless otherwise noted resistor values are 15 Ohms 5 3 See the wiring diagrams for all resistors associated with the command address and control bus might be changed on customer s requests For mor
49. Ms D 9 0 CKO BPCK0A gt CK SDRAMs D 53 44 APCK0B CK SDRAMs D 17 10 BPCK0B CK SDRAMs D 43 36 APCK1A gt CK SDRAMs D 27 18 BPCK1A gt CK SDRAMs D 71 62 APCK1B CK SDRAMs D 35 28 BPCK1B CK SDRAMs D 61 54 PAR IN w Err Out PAR IN W Err Out BRESET RST RESET J RST RST SDRAMs D 35 0 CK1 1202 5 1 CKO and CKO are differentially terminated with a single 120 Ohms 5 resistor 2 CK1 and CK1 are differentially terminated with a single 120 Ohms 3 Unused register inputs ODT1 for Register A and ODTO for Register B are tied to ground 4 The module drawing on this page is not drawn to scale Rev 1 0 Jun 2013 t5 resistor but is not used 24 SK ni Absolute Maximum Ratings Absolute Maximum DC Ratings Absolute Maximum DC Ratings Symbol Parameter Rating Units Notes VDD Voltage on VDD pin relative to Vss 0 4 V 1 80 V V 1 3 VDDQ Voltage on VDDQ pin relative to Vss 0 4 V 1 80 V V 1 3 Vin Vout Voltage on any pin relative to Vss 0 4 V 1 80 V V 1 Tstg Storage Temperature 55 to 100 S 1 2 Notes 1 Stresses greater than those listed under Absolute Maximum Ratings may cause permanent damage to the device This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied Exposure to absolute maximum rat i
50. Q signals are MID LEVEL Rev 1 0 Jun 2013 57 SK ni Table 5 IDD2N and IDD3N Measurement Loop Pattern 2 T el a y ij Pei 8 8 5 B S S S aa 3 OS lt lt lt lt 0 0 D 1 0 0 0 0 0 0 0 0 0 0 d D 1 0 0 0 0 0 0 0 0 0 0 2 B 1 1 1 1 0 0 01 01 1 0 00 F O 3 D 1 1 11 1 01 01 01 10 10 0Fl ER 2 5 1 47 repeat Sub Loop 0 use BA 2 0 1 instead D 2 8 11 repeat Sub Loop 0 use BA 2 0 2 instead E 3 12 15 repeat Sub Loop 0 use BA 2 0 3 instead 4 16 19 repeat Sub Loop 0 use BA 2 0 4 instead 5 20 23 repeat Sub Loop 0 use BA 2 0 5 instead 6 24 17 repeat Sub Loop 0 use BA 2 0 6 instead 7 28 31 repeat Sub Loop 0 use BA 2 0 7 instead a DM must be driven LOW all the time DQS DQS are MID LEVEL b DQ signals are MID LEVEL Table 6 IDD2NT and IDDQ2NT Measurement Loop Pattern S E Z II Xu 3 2 lug Bass 25 SS ss SR C2 Clg s lt q lt lt 0 0 D 1 0 0 0 0 0 0 0 0 0 0 1 D 1 0 0 0 0 0 0 0 0 0 0 2 D 1 1 1 1 0 0 0 0 0 RE 3 D 1 1 1 1 0 0 0 0 0 F 0 2 1 47 repeat Sub Loop 0 but ODT 0 and BA 2 0 1 8 2 8 11 repeat Sub Loop 0 but ODT 1 and BA 2 0 2 8 3 12 15 repeat Sub Loop 0 but ODT 1 and BA 2 0 3 4 16 19 repeat Sub Loop 0 but ODT
51. RCDmin byte 18 and tRPmin byte 20 is programmed to 13 125ns tRCmin byte 21 23 also should be programmed accordingly For example 47 125ns tRASmin tRPmin 34ns 13 125ns Rev 1 0 Jun 2013 48 SK uix Environmental Parameters Symbol Parameter Rating Units Notes Topr Operating temperature See Note 3 Hopr Operating humidity relative 10 to 90 1 TsrG Storage temperature 50 to 100 oc 1 Herc Storage humidity without condensation 5 to 95 K 1 PBAn Barometric Pressure operating amp storage 105 to 69 K Pascal 4 2 Note 1 Stress greater than those listed may cause permanent damage to the device This is a stress rating only and device functional operation at or above the conditions indicated is not implied Expousure to absolute maximum rating conditions for extended periods may affect reliablility 2 Up to 9850 ft 3 The designer must meet the case temperature specifications for individual module components Rev 1 0 Jun 2013 49 SK yi IDD and I DDQ Specification Parameters and Test Conditions IDD and I DDQ Measurement Conditions In this chapter IDD and IDDQ measurement conditions such as test load and patterns are defined Figure 1 shows the setup and test load for IDD and IDDQ measurements IDD currents such as IDDO IDD1 IDD2N IDD2NT IDD2PO IDD2P1 IDD2Q IDD3N IDD3P IDD4R IDD4W IDD5B IDD6 IDD6ET and IDD7 are measured as time averaged curr
52. SA0 SA0 EVENT EVENT SPD with SA1 SA1 SCL SCL biam SA2 SA2 SDA SDA VSS VSS Plan to use SPD with Integrated TS of Class B and might be changed on customer s requests For more details of SPD and Thermal sensor please contact local SK hynix sales representative 18 SK yi 16GB 2Gx72 Module 2Rank of x4 page3 S0 w RS0A gt C50 SDRAMs D 3 0 D 12 8 D17 sa 1 2 RS0B CS0 SDRAMs D 7 4 D 16 13 S1 g RSIA gt CST SDRAMs D 21 18 D 3026 D35 RS1B gt CST SDRAMs D 25 22 D 34 31 BA N 0 A E L RBA N 0 A gt BAIN 0 SDRAMs D 3 0 D 12 8 D 21 17 D 30 26 D35 G R AINOIB BAINO SDRAMs DL DIR 25 22 b 34 31 A N 0 RA N Q A gt A N 0 SE 21 17 Diode D35 RUE A N 0 B A N 0 SDRAMs D 7 4 D 16 1 JEE RS s F MN RAS SDRAMs D 3 0 D 12 8 D 21 17 D 30 26 D35 T RRASB RAS SDRAMs D 7 4 D 16 13 D 25 22 D 34 31 CAS W RCASA gt CAS SDRAMs D 3 0 D 12 8 D 21 17 D 30 26 D35 E RCASB CAS SDRAMs DI AL D 16 13 D 25 22 D 34 31 WE JN R RWEA gt WE SDRAMs D 3 0 D 12 8 D 21 17 D 30 26 D35 RWEB WE SDRAMs D 7 4 D 16 13 D 25 22 D 34 31 CKE0 i RCKE0A gt CKE0 SDRAMs D 3 0 D 12 8 D17 P RCKE0B CKE0 SDRAMs D 7 4 D 16 13 DR I L F RCKE1A gt CKEI SDRAMs D 21 18 D 30 26 D35 L RCKE1B CKEI SDRAMs D 25 22 D 34 31 ODTO I RO
53. SKE ni red DIMM DDR3 SDRAM Registered DI MM Based on 4Gb A die HMT451R7AFR8C HMT41GR7AFR8C HMT41GR7AFR4C HMT42GR7AFR4C HMT84GR7AMR4C SK hynix reserves the right to change products or specifications without notice Rev 1 0 Jun 2013 1 SK ni Revision History Revision No History Draft Date Remark 0 1 Initial Release Jul 2012 1 0 Added 1866Mbps for 4Rx4 amp Jun 2012 Change module maximum thickness to reflect the measured maximum Rev 1 0 Jun 2013 SK ni Description Registered DDR3 SDRAM DIMMs Registered Double Data Rate Synchronous DRAM Dual In Line Memory Modules are low power high speed operation memory modules that use DDR3 SDRAM devices These Registered SDRAM DIMMs are intended for use as main memory when installed in systems such as servers and workstations Features Power Supply VDD 1 5V 1 425V to 1 575V VDDQ 1 5V 1 425V to 1 575V VDDSPD 3 0V to 3 6V 8 internal banks Data transfer rates PC3 14900 PC3 12800 PC3 10600 PC3 8500 Bi Directional Differential Data Strobe 8 bit pre fetch Burst Length BL switch on the fly BL8 or BC4 Burst Chop Supports ECC error correction and detection On Die Termination ODT Temperature sensor with integrated SPD This product is in compliance with the RoHS directive Ordering Information Part Number Density Organization Component Composition oo FDHS HMT451R7AFR8C H9 PB RD 4GB 512Mx
54. V 1 2 8 VIH CA AC150 AC Input logic high Vref 0 150 Note2 V 1 2 7 VIL CA AC150 AC input logic low Note2 Vref 0 150 V 1 2 8 VIH CA AC135 AC input logic high Vref 0 135 Note2 V 1 2 7 VIL CA AC135 AC input logic low Note2 Vref 0 135 V 1 2 8 VIH CA AC125 AC Input logic high Vref 0 125 Note2 V 1 2 7 VIL CA AC125 AC input logic low Note2 Vref 0 125 V 1 2 8 VRefCA DC eer real 0 49 VDD 0 51 VDD 0 49 VDD 051 VDD V 8 4 Notes 1 For input only pins except RESET Vref VrefCA DC 2 Refer to Overshoot and Undershoot Specifications on page 40 3 The ac peak noise on Vref may not allow Vref to deviate from VgercA pc by more than 1 VDD for refer ence approx 15 mV For reference approx VDD 2 15 mV VIH dc is used as a simplified symbol for VIH CA DC100 VIL dc is used as a simplified symbol for VIL CA DC100 VIH ac is used as simplified symbol for VIH CA AC175 VIH CA AC150 VIH CA AC135 and VIH CA AC125 VIH CA AC175 value is used when Vref 0 175V is referenced VIH CA AC150 value is used when Vref 0 150V is referenced VIH CA AC135 value is used when Vref 0 135V is referenced and VIH CA AC125 value is used when Vref 0 125V is referenced 8 VIL ac is used as simplified symbol for VI L CA AC175 VIL CA AC150 VIL CA AC135 and VIL CA AC125 VIL CA AC175 value is used when Vref 0 175V is referenced VIL CA AC150 value is used when Vref
55. VRaetDQ DC for DQ DM inputs 0 49 VDD 0 51 VDD 0 49 VDD 0 51 VDD 0 489 VDD 0 51 VDD V 3 4 Notes 1 Vref VrefDQ DO 2 Refer to Overshoot and Undershoot Specifications on page 40 LA The ac peak noise on Vger may not allow Ver to deviate from Vrerpaipc by more than 1 VDD for reference approx 15 mV For reference approx VDD 2 15 mV VIH dc is used as a simplified symbol for VIH DQ DC100 VIL dc is used as a simplified symbol for VIL DQ DC100 VIH ac is used as simplified symbol for VIH DQ AC175 VIH DQ AC150 and VIH DQ AC135 VIH DQ AC175 value is used when Vref 0 175V is referenced VIH DQ AC150 value is used when Vref 0 150V is referenced and VIH DQ AC135 value is used when Vref 0 135V is referenced 8 VIL ac is used as simplified symbol for VIL DQ AC175 VIL DQ AC150 and VIL DQ AC135 VIL DQ AC175 value is used when Vref 0 175V is referenced VIL DQ AC150 value is used when Vref 0 150V is referenced and VIL DQ AC135 value is used when Vref 0 135V is referenced uy Oo LI Rev 1 0 Jun 2013 28 SK yi Vref Tolerances The dc tolerance limits and ac noise limits for the reference voltages vnerca and Vnerpq are illustrated in figure below It shows a valid reference voltage Vnesi t as a function of time per stands for VpercA and Vnetpo likewise Vref DC is the linear average of Vner t over a very long per
56. ameter Unit Notes 1333 1600 1866 VoHaiff aC AC differential output high measurement level for output SR 0 2 x Vppo V 1 Voidit AC AC differential output low measurement level for output SR 0 2 x VDDQ V 1 Notes 1 The swing of 0 2 x Vppq is based on approximately 50 of the static differential output high or low swing with a driver impedance of 402 and an effective test load of 25 Q to Vtr Vppo 2 at each of the differential outputs Rev 1 0 Jun 2013 36 SK ni Single Ended Output Slew Rate When the Reference load for timing measurements output slew rate for falling and rising edges is defined and measured between Vo ac and Vouac for single ended signals are shown in table and figure below Single ended Output slew Rate Definition Measured Description Defined by From To Single ended output slew rate for rising edge VOL AC VOH AC Von Ao Vot Ao l DeltaTRse Single ended output slew rate for falling edge VoH AC VoL AC Vou acy VoL Ac l DeltaTFse Notes 1 Output slew rate is verified by design and characterisation and may not be subject to production test Single Ended Output Voltage l e DQ Von Vir Delta TFse Voitac Single Ended Output slew Rate Definition Output Slew Rate single ended AC DDR3 800 DDR3 1066 DDR3 1333 DDR3 1600 DDR3 1866 Unit nits Parame
57. e details of SPD and Thermal sensor please contact local Hynix sales representative 4 ZQ resistors are 240 Ohms 1 For all other resistor values refer to the appropriate wiring diagram Rev 1 0 Jun 2013 22 2 8 55555 ee METETE 8 i 2 x TETTERE i8 3 EL i d ESS il 94404441 i db l L l l M RA YA os VS w Sds VSS pa SCH M DQS s DQS s DQS g DQS g E 3 0 D29 EAEOI D28 See D61 Bi te D60 92 8 wie w 8 5 wiki g w 8 w 88 8 5 La Las L m RA VSS yal RA VSS AA RA VSS A SS W DOS S8 DOS s DOS S8 DQS s z DM z DM Z z DO 3 0 D31 DQ 3 0 D30 DQ 3 0 D59 EG D58 w klag s is 8 wie w 5 95189 w 8 8 amp 91999 8 5 E E Ly e La DOs VSS jal Dos VSS AW RA VSS A S EE 7 j 5 z 2 W DQ 3 0 D33 DQ 3 0 D32 A DQ 3 0 D57 DQ 3 0 Do6 z w 218 sw 5 I l I sw 5 wikis 8 9999 8 5 Ly Ly 1 RA VSS jal RA VSS_ Das VSS pa SC E W DQ 3 0 D35 S DQ 3 0 D34 DQ 3 0 D55 ERG D54 E w 2188 4 8 I l I 8 we 8 218 8 5 x x La Le e La e V SPD DDSPD VDDSPD VDDSPD SAO SAO VDD D0 D71 x EE EVENT EVENT SPD with SA1 SA1 Vrr Integrated EEGA T SCL SCL SA2 SA2 VREFDQ D0
58. ements When mak ing a selection of tCK AVG both need to be fulfilled Requirements from CL setting as well as require ments from CWL setting tCK AVG MIN limits Since CAS Latency is not purely analog data and strobe output are synchro nized by the DLL all possible intermediate frequencies may not be guaranteed An application should use the next smaller JEDEC standard tCK AVG value 3 0 2 5 1 875 1 5 or 1 25 ns when calculat ing CL nCK tAA ns tCK AVG ns rounding up to the next Supported CL where tCK AVG 3 0 ns should only be used for CL 5 calculation tCK AVG MAX limits Calculate tCK AVG tAA MAX CL SELECTED and round the resulting tCK AVG down to the next valid speed bin i e 3 3ns or 2 5ns or 1 875 ns or 1 25 ns This result is tCK AVG MAX corresponding to CL SELECTED Reserved settings are not allowed User must program a different value Optional settings allow certain devices in the industry to support this setting however it is not a man datory feature Refer to DIMM data sheet and or the DIMM SPD information if and how this setting is supported Any DDR3 1066 speed bin also supports functional operation at lower frequencies as shown in the table which are not subject to Production Tests but verified by Design Characterization Any DDR3 1333 speed bin also supports functional operation at lower frequencies as shown in the table which are not subject to Production
59. ents with all VDD balls of the DDR3 SDRAM under test tied together Any IDDQ current is not included in IDD currents DDQ currents such as IDDQ2NT and IDDQ4R are measured as time averaged currents with all VDDQ balls of the DDR3 SDRAM under test tied together Any IDD current is not included in IDDQ cur rents Attention IDDQ values cannot be directly used to calculate IO power of the DDR3 SDRAM They can be used to support correlation of simulated IO power to actual IO power as outlined in Figure 2 In DRAM module application IDDQ cannot be measured separately since VDD and VDDQ are using one merged power layer in Module PCB Fo A IDD and IDDQ measurements the following definitions apply 0 and LOW is defined as VIN lt Vii AC max LU and HIGH is defined as VIN gt Vinac may MID LEVEL is defined as inputs are VREF VDD 2 Timing used for IDD and IDDQ Measurement Loop Patterns are provided in Table 1 Basic IDD and IDDQ Measurement Conditions are described in Table 2 Detailed IDD and IDDQ Measurement Loop Patterns are described in Table 3 through Table 10 IDD Measurements are done after properly initializing the DDR3 SDRAM This includes but is not lim ited to setting RON RZQ 7 34 Ohm in MR1 Qoff 0g Output Buffer enabled in MR1 RTT Nom RZQ 6 40 Ohm in MR1 RTT Wr RZQ 2 120 Ohm in MR2 TDQS Feature disabled in MR1 Attention The IDD and IDDQ Measurement Loop Pattern
60. erential signal i e CK CK and DQS DQS must be linear between these thresholds ViHdiffmn B ViLdifmax Differential Input Voltage i e DQS DQS CK CK Differential Input Slew Rate Definition for DQS DQS and CK CK Rev 1 0 Jun 2013 35 SK nix AC amp DC Output Measurement Levels Single Ended AC and DC Output Levels Table below shows the output levels used for measurements of single ended signals Single ended AC and DC Output Levels DDR3 800 1066 Symbol Parameter Unit Notes 1333 1600 1866 VoH DC DC output high measurement level for IV curve linearity 0 8 x VDDQ V VoM pC DC output mid measurement level for IV curve linearity 0 5 x VDDQ V VoL DO DC output low measurement level for IV curve linearity 0 2 x Vppq V VOH AC AC output high measurement level for output SR Vrr 0 1 x Vppo V 1 VoL AC AC output low measurement level for output SR Vr 0 1 x Vppo V 1 Notes 1 The swing of 0 1 x Vppg is based on approximately 50 of the static single ended output high or low swing with a driver impedance of 40 9 and an effective test load of 252 to Vr Vppg 2 Differential AC and DC Output Levels Table below shows the output levels used for measurements of single ended signals Differential AC and DC Output Levels DDR3 800 1066 Symbol Par
61. es SA2 SA2 SDA SDA VSS VSS Plan to use SPD with Integrated TS of Class B and Note might be changed on customer s requests For more 1 DQ to 1 O wiring may be changed within a byte 2 Unless otherwise noted resistor values are 15 Q 5 3 ZQ resistors are 240 2 1 For all other resistor values refer to the appropriate wiring diagram 4 See the wiring diagrams for all resistors associated with the command address and control bus Rev 1 0 Jun 2013 details of SPD and Thermal sensor please contact local SK hynix sales representative Vppspp gus Serial PD VDD n D0 D17 V D0 D17 VREFCA A D0 D17 VREFDQ D0 D17 Vss D0 D17 15 SK yi 8GB 1Gx72 2Rank of x8 page2 S0 L 1 2 S1 S 3 2 NC R BA N 0 wM E L AN 0 GE GE RAS s F WE RF CKE0 M L CKEL dd LL L ODIO dV e ODTI WY am CK0 1209 EN 5 CKO CK1 1209 CK1 2 PAR IN wW OERR RESET RST RS0A CS0 SDRAMs D 3 0 D8 RSOB CS0 SDRAMs D 7 4 RSIA gt CSI SDRAMs D 12 9 D17 RS1B CSI SDRAMs D 16 13 RBA N 0 A BA N 0 SDRAMs D 3 b n N 0 B BA N 0 SDRAMs D A N 0 AINE SDRAMs D 3 0 A N 0 B A N 0 SDRAMs D 7 4 MN RAS SDRAMs D 3 0 D 12 RRASB RAS SDRAMs D 7 4 D 16 13 RCASA CAS SDRAMs D 3 0 D 12 8 D17 RCASB CAS SDRAMs D 7 4 D 16 1
62. evels for ADD CMD and DQ s might be different per speed bin etc E g if VIH CA AC150 VIL CA AC150 is used for ADD CMD signals then these ac levels apply also for the single ended signals CK and CK Or E VDO e erm Ee Se ERES ERES Ree RUE uS VSEHmina m9 mc K m e S Ber mk m RR T S K Es VDD 2 or NDDOI2 ee EE CK or DOS VSELmax Single ended requirements for differential signals Note that while ADD CMD and DQ signal requirements are with respect to Vref the single ended compo nents of differential signals have a requirement with respect to VDD 2 this is nominally the same the transition of single ended signals through the ac levels is used to measure setup time For single ended components of differential signals the requirement to reach VSELmax VSEHmin has no bearing on timing but adds a restriction on the common mode characteristics of these signals Rev 1 0 Jun 2013 32 SK ni Single ended levels for CK DQS DQSL DQSU CK DQS DQSL or DQSU DDR3 800 1066 1333 1600 1866 Symbol Parameter Unit Notes Min Max VSEH Single ended high level for strobes VDD 2 0 175 Note 3 V 1 2 Single ended high level for Ck CK VDD 2 0 175 Note 3 V 1 2 VSEL Single ended low level for strobes Note 3 VDD 2 0 175 V 1 2 Single ended low level for CK CK Note 3 VDD 2 0 175 V 1 2 Notes 1 For CK CK use VIH VIL ac of ADD CMD for strobes DQS DOS
63. gh External clock On tCK CL see Table 1 BL 88 AL 0 CS High between WR Command Address Bank Address Inputs partially toggling according to Table 8 Data IO seamless read data burst with different DD4W data between one burst and the next one according to Table 8 DM stable at 0 Bank Activity all banks open WR commands cycling through banks 0 0 1 1 2 2 see Table 8 Output Buffer and RTT Enabled in Mode RegistersP ODT Signal stable at HIGH Pattern Details see Table 8 Burst Refresh Current CKE High External clock On tCK CL nRFC see Table 1 BL 83 AL 0 CS High between REF Command IppsB Address Bank Address Inputs partially toggling according to Table 9 Data IO MID LEVEL DM stable at 0 Bank Activity REF command every nREF see Table 9 Output Buffer and RTT Enabled in Mode RegistersP ODT Signal stable at 0 Pattern Details see Table 9 Self Refresh Current Normal Temperature Range Tease 0 85 C Auto Self Refresh ASR Disabled Self Refresh Temperature Range SRT Normal CKE Tope Low External clock Off CK and CK LOW CL see Table 1 BL 88 AL 0 CS Command Address Bank Address Inputs Data lO MID LEVEL DM stable at 0 Bank Activity Self Refresh operation Output Buffer and RTT Enabled in Mode RegistersP ODT Signal MID LEVEL Self Refresh Current Extended Temperature Range optional Tease 0 95 C Auto Self Refresh ASR Disabled Self
64. grc 2 Gb 86 107 128 128 nCK narc 4 Gb 139 174 208 208 nCK grc 8 Gb 187 234 280 280 nCK Table 2 Basic IDD and I DDQ Measurement Conditions Symbol Description Operating One Bank Active Precharge Current CKE High External clock On tCK nRC nRAS CL see Table 1 BL 83 AL 0 CS High between ACT and ppo PRE Command Address Bank Address Inputs partially toggling according to Table 3 Data 10 MID LEVEL DM stable at 0 Bank Activity Cycling with one bank active at a time 0 0 1 1 2 2 see Table 3 Output Buf fer and RTT Enabled in Mode Registers ODT Signal stable at 0 Pattern Details see Table 3 Operating One Bank Active Precharge Current CKE High External clock On tCK nRC nRAS nRCD CL see Table 1 BL 83 AL 0 CS High between ACT Ippi RD and PRE Command Address Bank Address Inputs Data IO partially toggling according to Table 4 DM stable at 0 Bank Activity Cycling with on bank active at a time 0 0 1 1 2 2 see Table 4 Output Buffer and RTT Enabled in Mode Registers ODT Signal stable at 0 Pattern Details see Table 4 Rev 1 0 J un 2013 52 Ds SK hynix Symbol Description Ipp2N Precharge Standby Current CKE High External clock On tCK CL see Table 1 BL 88 AL 0 CS stable at 1 Command Address Bank Address Inputs partially toggling according to Table 5 Data IO MID_LEVEL DM stable at 0 Bank Activity all banks closed Output Buffer
65. hermal sensing EVENT Active L device The system should guarantee the electrical level requirement is met for the Uem CuVe LOW EVENT pin on TS SPD part No pull up resister is provided on DI MM V Suppl Serial EEPROM positive power supply wired to a separate power pin at the connector DDSPD HDN which supports from 3 0 Volt to 3 6 Volt nominal 3 3V operation The RESET pin is connected to the RESET pin on the register and to the RESET pin on RESET IN the DRAM Par_In IN Parity bit for the Address and Control bus 1 Odd 0 Even Er Out OUT Parity error detected on the Address and Control bus A resistor may be connected from in ezer Err_Out bus line to Vpp on the system planar to act as a pull up TEST Used by memory bus analysis tools unused NC on memory DIMMs Rev 1 0 Jun 2013 SK ni Pin Assignments EE eae 50 CH EE SE left A E EE b n 1 VREFDQ 121 Vss 61 A2 181 A1 2 Vss 122 DQ4 62 VDD 182 VDD 3 DQ0 123 DQ5 63 NC CK1 183 VDD 4 DQ1 124 Vss 64 NC CK1 184 CK0 5 Vss 125 k 65 Von 185 TKO 6 DQS0 126 66 Von 186 Vpp 7 DQS0 127 Vss 67 VREFCA 187 EVENT NC 8 Vss 128 DQ6 68 Par In NC 188 A0 9 DQ2 129 DQ7 69 VDD 189 VDD 10 DQ3 130 Vss 70 A10 AP 190 BA1 11 Vss 131 DQ12 71 BA0 191 VDD 12 DQ8 132 DQ13 72 VDD 192 RAS 13 DQ9 133 Vss 73 WE 193 S0 14 Vss 134 EOS 74 CAS 194 VoD 15 DOST 1
66. imilarly to S 1 0 for the second set of register out puts or register control words ODT 1 0 IN du On Die Termination control signals RAS CAS WE IN Active When sampled at the positive rising edge of the clock CAS RAS and WE define the I Low operation to be executed by the SDRAM VREEpq Supply Reference voltage for DQ0 DQ63 and CB0 CB7 V Suppl Reference voltage for A0 A15 BA0 BA2 RAS CAS WE S0 S1 CKE0 CKE1 Par_In REFCA pp y ODTO and ODT1 Selects which SDRAM bank of eight is activated BA 2 0 IN _ BAO BA2 define to which bank an Active Read Write or Precharge command is being applied Bank address also determines mode register is to be accessed during an MRS cycle Provided the row address for Active commands and the column address and Auto Precharge bit for Read Write commands to select one location out of the mem A 15 13 ory array in the respective bank A10 is sampled during a Precharge command to deter 12 BC 11 IN mine whether the Precharge applies to one bank A10 LOW or all banks A10 HIGH If 10 AP 9 0 only one bank is to be precharged the bank is selected by BA A12 is also utilized for BL 4 8 identification for BL on the fly during CAS command The address inputs also pro vide the op code during Mode Register Set commands DQ 63 0 CB 7 0 1 0 Data and Check Bit Input Output pins Active ra T DM 8 0 IN High Masks write data when high issued concurrently with input data Vpp Vss Supply Po
67. iod of time e g 1 sec This average has to meet the min max requirements in the table Differential Input Slew Rate Definition on page 35 Further more Vref t may temporarily deviate from Vger pc by no more than 1 VDD voltage VDD Vner t Ver ac noise Ret VRef DC max VDD 2 VRef DC min VRef DC Illustration of Ver pc tolerance and Vref ac noise limits The voltage levels for setup and hold time measurements Viu ac Viu pc Vit Ac and Vii pc are depen dent on Vger Vner shall be understood as Vger pc as defined in figure above This clarifies that dc variations of Vger affect the absolute voltage a signal has to reach to achieve a valid high or low level and therefore the time to which setup and hold is measured System timing and voltage budgets need to account for Vger pc deviations from the optimum position within the data eye of the input signals This also clarifies that the DRAM setup hold specification and derating values need to include time and voltage associated with Vgerac noise Timing and voltage effects due to ac noise on Vp up to the speci fied limit 196 of VDD are included in DRAM timings and their associated deratings Rev 1 0 Jun 2013 29 SK ni AC and DC Logic I nput Levels for Differential Signals Differential signal definition VILDIFFACMIN c c Of I fee O O oe Stee cd WIEBIFENIN 222 o u a ee ccce Ln tt Bl as ce at bala half cycle mr
68. k amplitude allowed for overshoot area See Figure below 04 04 04 04 04 V Maximum peak amplitude allowed for undershoot area See Figure below 0 4 0 4 04 04 04 V Maximum overshoot area above VDD See Figure below 0 25 0 19 0 15 0 13 0 11 V ns Maximum undershoot area below VSS See Figure below 0 25 0 19 0 15 0 13 0 11 V ns CK CK DQ DQS DQS DM See figure below for each parameter definition Maximum Amplitude Overshoot Area VDDQ Volts V veen Undershoot Area Maximum Amplitude Time ns Clock Data Strobe and Mask Overshoot and Undershoot Definition Rev 1 0 Jun 2013 41 SK ni Refresh parameters by device density Refresh parameters by device density Parameter RTT_Nom Setting 512Mb 1Gb 2Gb 4Gb 8Gb Units Notes PET command ro tRFC 90 110 160 260 350 ns REF command time Average periodic tREFI 0 C lt TcAsES85 C 7 8 7 8 7 8 7 8 7 8 us refresh interval 85 C lt TcAsg lt 95 C 3 9 3 9 3 9 3 9 3 9 us 1 Notes 1 Users should refer to the DRAM supplier data sheet and or the DIMM SPD to determine if DDR3 SDRAM devices support the following options or requirements referred to in this materia Rev 1 0 Jun 2013 42 SK uix Standard Speed Bins DDR3 SDRAM Standard Speed Bins include tCK tRCD tRP tRAS and tRC for each corresponding bin DDR3 800 Speed Bins
69. ment Manufacturers correlate to their production test conditions generally one or more coaxial transmission lines terminated at the tester electronics VDDQ VTT VDDQ 2 Reference Load for AC Timing and Output Slew Rate Rev 1 0 Jun 2013 39 SK ni Overshoot and Undershoot Specifications Address and Control Overshoot and Undershoot Specifications AC Overshoot Undershoot Specification for Address and Control Pins DDR3 DDR3 DDR3 DDR3 DDR3 Parameter Units 800 1066 1333 1600 1866 Maximum peak amplitude allowed for overshoot area See Figure below 0 4 0 4 0 4 0 4 0 4 V Maximum peak amplitude allowed for undershoot area See Figure below 0 4 0 4 0 4 0 4 0 4 V Maximum overshoot area above VDD See Figure below 0 67 0 5 0 4 0 33 0 28 V ns Maximum undershoot area below VSS See Figure below 0 67 05 0 4 0 33 0 28 V ns A0 A15 BA0 BA3 CS RAS CAS WE CKE ODT See figure below for each parameter definition Maximum Amplitude Overshoot Area VDD Volts ME yee Undershoot Area Maximum Amplitude Time ns Address and Control Overshoot and Undershoot Definition Rev 1 0 Jun 2013 40 SK ni Clock Data Strobe and Mask Overshoot and Undershoot Specifications AC Overshoot Undershoot Specification for Clock Data Strobe and Mask DDR3 DDR3 DDR3 DDR3 DDR3 Parameter Units 800 1066 1333 1600 1866 Maximum pea
70. n a ee Output driving to 0 5 I 0 5 I 0 5 I D prelaunch Yn Yn tQSK1 max tQSK1 max tQSK1 max Rev 1 0 Jun 2013 10 SK ni On DIMM Thermal Sensor The DDR3 SDRAM DIMM temperature is monitored by integrated thermal sensor The integrated thermal sensor comply with JEDEC TSE2002av Serial Presence Detect with Temperature Sensor Connection of Thermal Sensor SA0 S SPD with sA1 SCL Integrated c SDA TS Temperature to Digital Conversion Performance Parameter Condition Min Typ Max Unit Active Range 75 C lt Ty lt 95 C Temperature Sensor Accuracy Grade B Monitor Range I 40 C lt Ty lt 125 C SON EE E 20 C lt T lt 125 C 2 0 3 0 C Resolution 0 25 RS Rev 1 0 Jun 2013 11 S de Functional Block Diagram 4GB 512Mx72 Module 1Rank of x8 a gg lt o 28 29 THEE TEHE B l l leg 8 28 FAHER j DQS8 V DOS ZQ DQS4 V DDS ZQ DQS8 w DQS E DQS4 m DOS E DM8 DQS17 TDQS o L DM4 DQS13 A TDQS z L DQS17 TDQS D8 Z DQ wrbos D4 EB CB 0 WMJDQ 7 0 S DQ 39 32 W DQ 7 0 g o 2 2 02199 Is 5 02
71. nded temperature range f Read Burst Type Nibble Sequential set MRO A 3 0B Rev 1 0 Jun 2013 55 SK ni Table 3 IDD0 Measurement Loop Pattern T S o S 8 F elle 582 iH Ewe ee 88s SS SS s 0 0 AT 0 O 1 1 0 0 00 0 0 1 2 DD 1 0 0 O 0 0 00 0 0 3 4 DD 1 1 1100 0 0 Oo ET repeat pattern 1 4 until nRAS 1 truncate if necessary nRAS PRE 0 0 1 0 0 0 00 0 0 0 0 ii repeat pattern 1 4 until nRC 1 truncate if necessary 1 nRC 0 ACT 0 O 1 1 0 0 00 0 0 F 0 1 nRC 1 2 DD 1 0 0 0 0 0 00 0 0 F 0 p 9 1 nRC 3 4 IDD 1 1 1 1 0 0 0 0 0 F o D 9 m repeat pattern 1 4 until 1 nRC nRAS 1 truncate if necessary 988 1 nRC nRAS PRE 0 0 1 0 O o 0 0 O E 0 sek repeat pattern 1 4 until 2 nRC 1 truncate if necessary 1 2 nRC repeat Sub Loop 0 use BA 2 0 1 instead 2 4 nRC repeat Sub Loop 0 use BA 2 0 2 instead 3 6 nRC repeat Sub Loop 0 use BA 2 0 3 instead 4 8 nRC repeat Sub Loop 0 use BA 2 0 4 instead 5 10 nRC repeat Sub Loop 0 use BA 2 0 5 instead 6 12 nRC repeat Sub Loop 0 use BA 2 0 6 instead 7 14 nRC repeat Sub Loop 0 use BA 2 0 7 instead a DM must be driven LOW all the time DQS DQS are MID LEVEL b DQ signals are MID LEVEL 56 Rev 1 0 Jun 2013 SK ni Table 4 IDD1 Measurement Loop Pattern
72. ng conditions for extended periods may affect reliability 2 Storage Temperature is the case surface temperature on the center top side of the DRAM For the measurement conditions please refer to JESD51 2 standard 3 VDD and VDDQ must be within 300mV of each other at all times and VREF must not be greater than 0 6XVDDQ When VDD and VDDQ are less than 500mV VREF may be equal to or less than 300mV DRAM Component Operating Temperature Range Temperature Range Symbol Parameter Rating Units Notes Toper Normal Operating Temperature Range 0 to 85 G 1 2 Extended Temperature Range 85 to 95 DC 1 3 Notes 1 Operating Temperature TOPER is the case surface temperature on the center top side of the DRAM For mea surement conditions please refer to the JEDEC document JESD51 2 2 The Normal Temperature Range specifies the temperatures where all DRAM specifications will be supported Dur ing operation the DRAM case temperature must be maintained between 0 85 C under all operating conditions 3 Some applications require operation of the DRAM in the Extended Temperature Range between 85 C and 95 C case temperature Full specifications are guaranteed in this range but the following additional conditions apply a Refresh commands must be doubled in frequency therefore reducing the Refresh interval tREFI to 3 9 us It is also possible to specify a component with 1X refresh tREFI to 7 8us in the Extended Temperature
73. ress BA0 BA2 BA0 BA2 BA0 BA2 BA0 BA2 BA0 BA2 Page Size 1KB 1KB 1KB 1KB 1KB Rev 1 0 Jun 2013 Ds SK hynix Pin Descriptions Num ee Num Pin Name Description ber Pin Name Description ber CKO Clock Input positive line 1 ODT 1 0 On Die Termination Inputs 2 CK0 Clock Input negative line 1 DQ 63 0 Data Input Output 64 CK1 Clock Input positive line 1 CB 7 0 Data check bits Input Output 8 CK1 Clock Input negative line 1 DQS 8 0 Data strobes 9 CKE 1 0 Clock Enables 2 DQS 8 0 Data strobes negative line 9 DM 8 0 Data Masks Data strobes RAS Row Address Strobe 1 DQS 17 9 TE 3 ee 9 TDQS 17 9 ermination data strobes ARG DQS 17 9 Data strobes negative line CAS Column Address Strobe 1 9 TDQS 17 9 Termination data strobes Reserved for optional hardware WE Write Enable 1 EVENT 1 temperature sensing I Memory bus test tool Not Con SIS Cp Selects i TEST nected and Not Usable on DIMMs 1 A 9 0 A11 a s A 15 13 Address Inputs 14 RESET Register and SDRAM control pin 1 A10 AP Address Input Autoprecharge 1 Vpp Power Supply 22 A12 BC Address Input Burst chop 1 Vss Ground 59 BA 2 0 SDRAM Bank Addresses 3 VREFDQ Reference Voltage for DQ 1 Serial Presence Detect SPD V SCL Clock Input 1 REFCA Reference Voltage for CA 1 SDA SPD Data Input Output 1 VIT Termination Voltage 4 SA
74. s need to be executed at least one time before actual IDD or IDDQ measurement is started Define D CS RAS CAS WE HIGH LOW LOW LOW Define D CS RAS CAS WE HIGH HIGH HIGH HIGH Rev 1 0 Jun 2013 50 Y Jop Y DDQ optional C i DDR3 SDRAM CKE pos Das Att 25 Ohm CS RENS DQ DM L Vppo 2 RAS CAS WE TDQS TDQS A BA ODT ZQ Vss Figure 1 Measurement Setup and Test Load for IDD and IDDQ optional Measurements Note DIMM level Output test load condition may be different from above Application specific IDDQ memory channel Test Load Ul Channel IDDQ IDDQ lO Power Simulation Simulation Simulation a gt Correction Channel IO Power Number Figure 2 Correlation from simulated Channel IO Power to actual Channel 1O Power supported by IDDQ Measurement Rev 1 0 Jun 2013 51 SK ni Table 1 Timings used for IDD and I DDQ Measurement Loop Patterns DDR3 1066 DDR3 1333 DDR3 1600 DDR3 1866 Symbol Unit 7 7 7 9 9 9 11 11 11 13 13 13 Ex 1 875 1 5 1 25 1 25 ns CL 7 9 11 11 nCK l RCD 7 9 11 11 nCK Nac 27 33 39 39 nCK IRAS 20 24 28 28 nCK Map 7 9 11 11 nCK 1KB page size 20 20 24 24 nCK FAW KB page size 27 30 32 32 nCK 1KB page size 4 4 5 5 nCK is 2KB page size 5 6 nCK Marc 512Mb 48 60 72 72 nCK Dgrc 1 Gb 59 74 88 88 nCK I
75. t BA 2 0 6 29 32 repeat cycles 1 4 but BA 2 0 7 2 33 nRFC 1 repeat Sub Loop 1 until nRFC 1 Truncate if necessary a DM must be driven LOW all the time DQS DQS are MID LEVEL b DQ signals are MID LEVEL Rev 1 0 Jun 2013 60 SK ni Table 10 IDD7 Measurement Loop Pattern ATTENTION Sub Loops 10 19 have inverse A 6 3 Pattern and Data Pattern than Sub Loops 0 9 Q o R 8 og S u e d Sg EK mn e 5 28 2 SE Elel3l8lE 8S 8 8588 18 ren 0 0 ACT 0 0 1 1 0 0 00 0 0 0 0 1 RDA 0 1 0 1 0 0 00 1 0 0 0 00000000 2 D 1 0 0 0 0 0 00 0 0 0 Sas repeat above D Command until nRRD 1 nRRD ACT 0 0 1 1 0 1 00 0 0 F 0 1 nRRD 1 RDA 0 1 0 1 0 1 00 1 0 F 0 00110011 nRRD 2 D 1 0 0 0 0 1 00 0 0 F 0 ai repeat above D Command until 2 nRRD 1 2 2 nRRD repeat Sub Loop 0 but BA 2 0 2 3 3 nRRD repeat Sub Loop 1 but BA 2 0 3 4 4 nRRD D 1 0 0 0 0 3 00 0 0 F 0 Assert and repeat above D Command until nFAW 1 if necessary 5 nFAW repeat Sub Loop 0 but BA 2 0 4 6 nFAW nRRD repeat Sub Loop 1 but BA 2 0 5 7 nFAW 2 nRRD repeat Sub Loop 0 but BA 2 0 6 8 nFAW 3 nRRD repeat Sub Loop 1 but BA 2 0 7 T 5 9 nF
76. ter Symbol Min Max Min Max Min Max Min Max Min Max Single ended Output Slew Rate SRQse 2 5 5 2 5 5 2 5 5 2 5 5 2 5 5 Vins Description SR Slew Rate Q Query Output like in DQ which stands for Data in Query Output se Single ended Signals For Ron RZQ 7 setting Note 1 In two cases a maximum slew rate of 6V ns applies for a single DQ signal within a byte lane Case 1 is a defined for a single DQ signal within a byte lane which is switching into a certain direction either from high to low or low to high while all remaining DQ signals in the same byte lane are static i e they stay at either high or low Case 2 is a defined for a single DQ signal within a byte lane which is switching into a certain direction either from high to low or low to high while all remaining DQ signals in the same byte lane switching into the opposite direction i e from low to high of high to low respectively For the remaining DQ signal switching in to the opposite direction the regular maximum limite of 5 V ns applies Rev 1 0 Jun 2013 37 SK ni Differential Output Slew Rate With the reference load for timing measurements output slew rate for falling and rising edges is defined and measured between VOLdiff AC and VOHdiff AC for differential signals as shown in table and figure below Differential Output Slew Rate Definition Measured Description Defined by From To
77. ut Cross Point Voltage _ Vade relative to VDD 2 for DQS DAS bs b HI P Notes 1 Extended range for Vy is only allowed for clock and if single ended clock input signals CK and CK are monotonic with a single ended swing VSEL VSEH of at least VDD 2 250 mV and when the differential slew rate of CK CK is larger than 3 V ns 2 The relation between Vix Min Max and VSEL VSEH should satisfy following VDD 2 Vix Min VSEL gt 25mV VSEH VDD 2 Vix Max gt 25mV Rev 1 0 Jun 2013 34 SK uix Slew Rate Definitions for Single Ended I nput Signals See 7 5 Address Command Setup Hold and Derating in DDR3 Device Operation for single ended slew rate definitions for address and command signals See 7 6 Data Setup Hold and Slew Rate Derating in DDR3 Device Operation for single ended slew rate definition for data signals Slew Rate Definitions for Differential nput Signals Input slew rate for differential signals CK CK and DQS DQS are defined and measured as shown in table and figure below Differential I nput Slew Rate Definition Measured Description E Defined by Min ax Differential input slew rate for rising edge CK CK and DOS DOS S VIdifmax Vingifmin ViHaittmin ViLdittmax Delta T Rdiff Differential input slew rate for falling edge CK CK and DOS DOS SET se Vindiftmin ViLdifmax ViHdiffmin V ILaiftmax Delta TFdiff Notes The diff
78. wer and ground for the DDR SDRAM input buffers and core logic Vit Supply Termination Voltage for Address Command Control Clock nets Rev 1 0 Jun 2013 SK uix Symbol Type Polarity Function Positive TT DQS 17 0 1 0 Edge Positive line of the differential data strobe for input and output data OP anil Negative poc DQS 17 0 1 0 Edge Negative line of the differential data strobe for input and output data ITDQS TDQS is applicable for X8 DRAMs only When enabled via Mode Register A11 1 in TDQS 17 9 MR1 DRAM will enable the same termination resistance function on TDQS TDQS that is TDQS 17 9 OUT applied to DQS DQS When disabled via mode register A11 0 in MR1 DM TDQS will provide the data mask function and TDQS is not used X4 X16 DRAMs must disable the ITDQS function via mode register A11 0 in MR1 SA 2 0 IN These signals are tied at the system planar to either Vss or Vppspp to configure the serial SPD EEPROM address range This bidirectional pin is used to transfer data into or out of the SPD EEPROM A resistor SDA 1 0 must be connected from the SDA bus line to Vppspp on the system planar to act as a pullup SCL IN This signal is used to clock data into and out of the SPD EEPROM A resistor may be con B nected from the SCL bus time to Vppspp on the system planar to act as a pullup OUT This signal indicates that a thermal event has been detected in the t

Download Pdf Manuals

image

Related Search

Related Contents

Apple Computer VCR 3.8 User's Manual  GA 05.201 Gebrauchsanweisung Operating Instructions  NH310H_S User's Manual ver_D1  0 sommaire.tif - Club Corrado Technicité  Ai-je lu le mode d`emploi de mon appareil avant de l`utiliser ? Est  ネットワーク監視システム取扱説明書    reactor h-xp2  Cabled UV - User Manual  RÁDIO DIGITAL KFT1500 MANUAL TÉCNICO  

Copyright © All rights reserved.
Failed to retrieve file