Home
Teledyne 3000PA Oxygen Equipment User Manual
Contents
1. ANALYZE en SYSTEM un Alphanumeric SS ZERO Display ENTER Ea 8000p 8 NALYZE Sample System Flow Indicator Standby Switch Data Entry Buttons Function Buttons Figure 1 1 Model 3000PA Front Panel 1 5 Front Panel Operator Interface The standard 3000PA is housed in a rugged metal case with all controls and displays accessible from the front panel See Figure 1 1 The front panel has thirteen buttons for operating the analyzer a digital meter an alphanu meric display and a window for viewing the sample flowmeter Teledyne Analytical Instruments 1 3 1 Introduction Model 3000PA Function Keys Six touch sensitive membrane switches are used to change the specific function performed by the analyzer e Analyze Perform analysis for oxygen content of a sample gas e System Perform system related tasks described in detail in chapter 4 Operation e Span Span calibrate the analyzer e Zero Zero calibrate the analyzer e Alarms Setthe alarm setpoints and attributes e Range Set up the 3 user definable ranges for the instrument Data Entry Keys Six touch sensitive membrane switches are used to input data to the instrument via the alphanumeric VED display e Left amp Right Arrows Select between functions currently displayed on the VFD screen e Up amp Down Arrows Increment or decrement values of functions currently displayed e Enter Moves VFD display on to the next screen in a ser
2. Figure 3 2 Required Front Door Clearance 3 3 Rear Panel Connections Figure 3 3 shows the Model 3000PA rear panel It contains all of the gas and electrical inputs and outputs Some ports are optional equipment Refer to page iii in the front of this manual for options included in your instrument Be sure to note the instrument serial number 3 2 Teledyne Analytical Instruments Percent Oxygen Analyzer Installation 3 LOS TELEDYNE ANALYTICAL INSTRUMENTS REMOTE EE PROBE RS 232 of Jo ZERO IN SAMPLE IN SPAN N EXHAUST GUT Figure 3 3 Rear Panel of the Model 3000PA 3 3 1 Gas Connections Before using this instrument it should be determined if the unit will be used for pressurized service or vacuum service and low pressure applica tions Inspect the restrictor kit that came with the unit The kit consist of two restrictors and a union for 1 4 diameter tubing Notice that the two 1 3 4 long 1 4 diameter tubing are restrictors It has an open end and a closed end with a small circular orifice The restrictor without the blue sticker is for OW pressure and vacuum service For high pressure 5 to 50 psig applica tions use the restrictor that has a blue sticker on the body For pressurized service use the restrictor without the blue dot and union from the restrictor kit and attach it to the Sample In port The small circular orifice should face away from the back of the unit against the direction of
3. environmentally safe manner Teledyne Analytical Instruments 5 3 5 Maintenance Model 3000P Nylon Probe Micro Fuel Cell D cap O Rings Probe Receptacle Figure 5 1 Removing or Installing a Micro Fuel Cell 5 4 Teledyne Analytical Instruments Percent Oxygen Analyzer Maintenance 5 5 2 4 Installing a New Micro Fuel Cell CAUTION Do not touch the sensing surface of the cell It is covered with a delicate Teflon membrane that can leak if punctured The sensor must be replaced if the membrane is damaged 1 Place the Cell in the Probe with the sensing surface facing outward toward the screen in the Cap 2 Screw the Probe Cap onto the Probe until it stops 3 With the O rings in place push the assembled Probe down into the Cell Holder Cap Down with a slight rocking motion until it is seated on the bottom of the holder This forces the holder into position and forms a gas tight seal 5 2 5 Cell Warranty The Class B 1 Micro Fuel cell is standard in the Model 3000PA This cell is warranted for 6 months from the date of shipment Check the Spe cific Model Information and note any Addendum that might be attached to the front of this manual for special information applying to the Cell in your instrument The warranty period for spare cells begins on the date of shipment Do not purchase more than one spare cell per instrument Do not stockpile spare cells The B 1
4. Exact figures will depend on your process If greater flow is required for improved response time install a bypass in the sampling system upstream of the analyzer input Note If the unit is for vacuum service the above numbers apply instead to the vacuum at the EXHAUST OUT connector de scribed below with minus signs before the pressure readings EXHAUST OUT Exhaust connections must be consistent with the hazard level of the constituent gases Check Local State and Federal laws and ensure that the exhaust stream vents to an appropriately controlled area if required Note If the unit is for vacuum service see Sample In above for gas pressure flow considerations ZERO IN and SPAN IN Optional These are additional input ports for span gas and zero gas There are electrically operated valves inside for automatic switching between sample and calibration gases These valves are under control of the 3000P Electronics They can be externally controlled only indirectly through the Remote Cal Inputs described below Pressure flow and safety considerations are the same as prescribed for the SAMPLE IN inlet above 3 3 2 Electrical Connections For safe connections ensure that no uninsulated wire extends outside of the connectors they are attached to Stripped wire ends must insert com pletely into terminal blocks No uninsulated wiring should be able to come in contact with fingers tools or clothing during normal operation
5. OPERATING INSTRUCTIONS FOR Model 3000PA Percent Oxygen Analyzer ESCAPE HIGHLY TOXIC AND OR FLAMMABLE LIQUIDS OR GASES MAY BE PRESENT IN THIS MONITORING SYSTEM PERSONAL PROTECTIVE EQUIPMENT MAY BE REQUIRED WHEN SERVICING THIS SYSTEM HAZARDOUS VOLTAGES EXIST ON CERTAIN COMPONENTS INTERNALLY WHICH MAY PER P NM6457 SIST FOR A TIME EVEN AFTER THE POWER IS TURNED OFF AND DISCONNECTED 64573 ONLY AUTHORIZED PERSONNEL SHOULD CONDUCT MAINTENANCE AND OR SERVICING 08 06 99 BEFORE CONDUCTING ANY MAINTENANCE OR SERVICING CONSULT WITH AUTHORIZED ECO 99 0323 SUPERVISOR MANAGER Model 3000PA Copyright 1999 Teledyne Analytical Instruments All Rights Reserved No part of this manual may be reproduced transmitted tran scribed stored in a retrieval system or translated into any other language or computer language in whole or in part in any form or by any means whether it be electronic mechanical magnetic optical manual or otherwise without the prior written consent of Teledyne Analytical Instruments 16830 Chestnut Street City of Industry CA 91749 1580 Warranty This equipment is sold subject to the mutual agreement that it is warranted by us free from defects of material and of construction and that our liability shall be limited to replacing or repairing at our factory without charge except for transportation or at customer plant at our option any material or construction in which defects become appar
6. analyzer calibration See Note below e Calibration Contact To notify external equipment that instrument is being calibrated and readings are not monitoring sample e Range ID Contacts Four separate dedicated range relay contacts Low Medium High Cal e Network For future expansion Not implemented at this printing Optional e Calibration Gas Ports Separate fittings for zero span and sample gas input and internal valves for automatically switching the gases e Current Signal Output Additional isolated 4 20 mA dc plus 4 20 mA dc range ID Note If you require highly accurate Auto Cal timing use external Auto Cal control where possible The internal clock in the Model 3000PA is accurate to 2 3 Accordingly internally scheduled calibrations can vary 2 3 per day 1 6 Teledyne Analytical Instruments Percent Oxygen Analyzer Operational Theory 2 Operational Theory 2 1 Introduction The analyzer is composed of three subsystems 1 Micro Fuel Cell Sensor 2 Sample System 3 Electronic Signal Processing Display and Control The sample system 1s designed to accept the sample gas and transport it through the analyzer without contaminating or altering the sample prior to analysis The Micro Fuel Cell is an electrochemical galvanic device that translates the amount of oxygen present in the sample into an electrical current The electronic signal processing display and control subsystem simplifies operation of
7. e Both high high and high high alarms or e One high and one low alarm or e Both low low and low low alarms 2 Are either or both of the alarms to be configured as failsafe In failsafe mode the alarm relay de energizes in an alarm condition For non failsafe operation the relay is energized in an alarm condition You can set either or both of the concentration alarms to operate in failsafe or non failsafe mode 3 Are either of the alarms to be latching In latching mode once the alarm or alarms trigger they will remain in the alarm mode even if process conditions revert back to non alarm conditions This mode requires an alarm to be recognized before it can be reset In the non latching mode the alarm status will terminate when process conditions revert to non alarm conditions 4 Are either of the alarms to be defeated The defeat alarm mode is incorporated into the alarm circuit so that maintenance can be performed under conditions which would normally activate the alarms Teledyne Analytical Instruments 4 13 4 Operation Model 3000PA The defeat function can also be used to reset a latched alarm See procedures below If you are using password protection you will need to enter your password to access the alarm functions Follow the instructions in section 4 3 3 to enter your password Once you have clearance to proceed enter the Alarm function Press the A arm button on the front panel to enter the
8. 3 4 Teledyne Analytical Instruments Percent Oxygen Analyzer Installation 3 Primary Input Power The power cord receptacle and fuse block are located in the same assembly Insert the female plug end of the power cord into the power cord receptacle CAUTION Power is applied to the instrument s circuitry as long as the instrument is connected to the power source The switch on the front panel is for switching power on or off to the displays and out puts only The universal power supply requires a 85 250 V ac 47 63 Hz power source Fuse Installation The fuse block at the right of the power cord receptacle accepts US or European size fuses A jumper replaces the fuse in whichever fuse receptacle is not used The fuses are not installed at the factory Be sure to install the proper fuse as part of installation See Fuse Replacement in chapter 5 maintenance Analog Outputs There are four DC output signal connectors with spring terminals on the panel Two of them are optional as explained below There are two wires per output with the polarity noted See Figure 3 4 The outputs are 0 1 V de Range Voltage rises linearly with increasing oxygen con centration from 0 V at 0 percent to 1 V at full scale Full scale 100 of programmable range 0 1 V dc Range ID 0 25 V Low Range 0 5 V Medium Range 0 75 V High Range 1 V Air Cal Range 4 20 mA de Range M option only Current increases linearly with
9. Percent Oxygen Analyzer 4 3 3 2 Installing or Changing the Password 4 7 4 34 Logout a te eh ica ade E ch ols den testes 4 8 4 3 5 System Self Diagnostic Test 4 9 4 3 6 Version Screen reset ist 4 9 4 4 The Zero and Span Functions 4 10 4 4 1 Cell Faire coc sessions tentes 4 12 AAD Span OAI ant SR ne 4 11 4 4 2 1 Auto Mode Spanning 4 11 4 4 2 2 Manual Mode Spanning 4 12 4 5 The Alarms Function 4 12 4 6 The Range Function ia nanas 4 15 4 6 1 Setting the Analog Output Ranges 4 16 4 6 2 Autoranging ANAlVSIS icrierensssteteaveseetiadetenvereseacsae s 4 16 4 6 3 Fixed Range Analysis 4 16 4 7 The Analyze Function es ns une 4 17 4 8 Signal OPUS iea aaa raa aae AEE EEEa 4 17 Maintenance 5 1 Routine Maintenance 5 1 5 2 Cell Replacement cccccecceeeeeeeeeeeeeeeeeeeeeeeseeneeeeeees 5 1 5 2 1 Storing and Handling Replacement Cells 5 1 5 2 2 When to Replace a Cell 5 2 5 2 3 Removing the Micro Fuel Cell 5 3 5 2 4 Installing a New Micro Fuel Cell 5 5 5 2 5 Cell Warrants nes nan ete 5 5 5 3 FUSG REPIACOMONE ns rennes 5 6 5 4 System Self Diagnostic Test 5 6 5 5 Major Internal Component eeeeeeeeeeeeeeeeeeteeeeees 5 7 56 GIG AMIN ele toot na nr one neta cute 5 8 57 Troubleshooting Es eee the 5 9 Appendix A 1 Model 3000PA Speci
10. e Which alarms if any are tripped AL x ON Each status output is followed by a carriage return and line feed Four input functions using RS 232 have been implemented to date They are described in Table 3 1 Table 3 1 Commands via RS 232 Input Command Description as lt enter gt Immediately starts an autospan az lt enter gt Immediately starts an autozero co lt enter gt Reports Raw Cell Output current output of the sensor itself in LA For example Raw Cell Output 99 pA 3 8 Teledyne Analytical Instruments Percent Oxygen Analyzer Installation 3 st lt enter gt Toggling input Stops Starts any status message output from the RS 232 until st lt enter gt is sent again The RS 232 protocol allows some flexibility in its implementation Table 3 2 lists certain RS 232 values that are required by the 3000PA implementation Table 3 2 Required RS 232 Options Parameter Setting Baud 2400 Byte 8 bits Parity none Stop Bits 1 Message Interval 2 seconds 3 3 3 Remote Probe Connector The 3000PA is a single chassis instrument which has no Remote Probe Unit Instead the Remote Probe connector is used as another method for controlling external sample zero span gas valves See Figure 3 6 15 V de cn 15 V de 15Vd os Solenoids RENE Matching Circuitry SAMPLE re if H Solenoid 2 return ZERO return Necessary Solenoid 3 return 12 1
11. ee RS 232 Jo OT Gi EABLE PARTS INSIDE Y QUALIFIED PERSONNE 85 250Vac 47 63Hz 0 9 MAX USE 250V 1 0A T FUSE ZERO IN SAMPLE IN SPAN N Q X EXHAUST CUT Figure 5 4 Rear Panel Screws To detach the rear panel remove only the eight screws marked with an X 5 6 Cleaning If instrument is unmounted at time of cleaning disconnect the instru ment from the power source Close and latch the front panel access door Clean outside surfaces with a soft cloth dampened slightly with plain clean water Do not use any harsh solvents such as paint thinner or benzene For panel mounted instruments clean the front panel as prescribed in the above paragraph DO NOT wipe front panel while the instrument is controlling your process 5 8 Teledyne Analytical Instruments Percent Oxygen Analyzer Maintenance 5 5 7 Troubleshooting Problem Erratic readings of the Oxygen concentration as reported by the analyzer Possible Cause The analyzer may have been calibrated in an inaccurate fashion Solution Turn the analyzer off then back on again Press the System key when prompted by the analyzer Press System for default Values This will return the analyzer to its default settings in calibration and zero values If erratic behavior continues replace the sensor Possible Cause Atmospheric Oxygen may be diffusing in through the vent and affecting the oxygen level which the sensor sees Solution Increase flow rate a
12. response time is 45 s Expected life in flue gas is 8 months 2 2 6 2 Class A 5 Cell The class A 5 cell is for use in applications where it is exposed intermit tently to carbon dioxide concentrations up to 100 in the sample gas Teledyne Analytical Instruments 2 5 2 Operational Theory Model 3000PA Nominal output in air is 0 19 mA and 90 response time is 45 s Expected life in flue gas is 8 months 2 2 6 3 Class B 1 Cell The class B 1 cell is for use in applications where it is exposed to less than 0 1 of carbon dioxide and where fast response is important Nominal output in air is 0 50 mA and 90 response time is 7 s Expected life in air is 8 months 2 2 6 4 Class B 3 Cell The class B 3 cell is for use in applications where a slightly longer response time is acceptable in order to have a longer cell life Nominal output in air is 0 30 mA and 90 response time is 13 s Expected life in air is 12 months 2 2 6 5 Class C 3 Cell The class B 1 cell is for use in applications where it is exposed to less than 0 1 of carbon dioxide and where a longer response time is accept able in order to have a longer cell life Nominal output in air is 0 20 mA and 90 response time is 30 s Expected life in air is 18 months 2 2 6 6 Hydrogen and or Helium Service If the sample gas contains 10 or more hydrogen and or helium clamp cells are used These Micro Fuel cells are identified by the suffix C ad
13. 2 2 Micro Fuel Cell Sensor sun cee dccustcaccavacaaees 2 2 1 Principles of Operation 2 2 2 Anatomy of a Micro Fuel Cell 2 2 3 Electrochemical Reactions 2 2 4 The Effect Of PreSSure ann at erent 2 2 5 Calibration Characteristics 2 2 6 Micro Fuel Cell Class 2 3 Sample System 20 cccccccuecceccreerspelasseteccrdeeesseteenatyenteees 2 4 Electronics and Signal Processing eeeeeees Installation 3 1 Unpacking the Analyzer esessnneeeeneeennnnnseeernrrnnnnerenne 3 2 Mounting the Analyzer cccceeeeeeeeeeeeeeeeeeeeseeeeeeeees 3 3 Rear Pa l Conn ctons sen ns ae at 3 3 1 Gas Connections ire A is 3 3 2 Electrical Connections 4 3 3 3 Remote Probe Connector 3 4 Installing the Micro Fuel Cell 3 5 Testing the System Operation ALT WPOGUCUOM kss eiaeia mime eieaa 4 2 Using the Data Entry and Function Buttons s e000n 4 3 The System Function cc sdekccces sb ached Neiaekeeeencaetens 4 3 1 Setting the Display 4 3 2 Setting up an Auto Cal c cece eeeeeeeeeeeeeeeeeeees 4 3 3 Password Protection 4 3 3 1 Entering the Password ceseeeeeeeeeeeeees Teledyne Analytical Instruments
14. 232 communications port Power Universal power supply 85 250 V ac at 47 63 Hz Operating Temperature 0 50 C 32 122 F W Teledyne Analytical Instruments A 1 Appendix Model 3000PA Accuracy 2 of full scale at constant temperature 5 of full scale over operating temperature range on factory default analysis ranges once thermal equilibrium has been reached Analog outputs 0 1 V dc percent of range Standard 0 1 V dc range ID Standard 4 20 mA dc isolated percent of range Optional 4 20 mA dc isolated range ID Optional Dimensions 19 cm high x 24 9 cm wide x 31 cm deep 5 96 x 8 7 x 12 2 A 2 Teledyne Analytical Instruments Percent Oxygen Analyzer Appendix A 2 Recommended 2 Year Spare Parts List Qty PartNumber Description 1 C62374 Back Panel Board 1 C62371 B Front Panel Board 1 C62368 B Percent Preamplifier Board 1 C62365 C Main Computer Board std 1 C62365 A Main Computer Board 4 20 mA 3 F9 Fuse 1 A 250 V 3 AG Slow Blow 3 F1275 Fuse 1 A 250 V 5 x 20 mm Slow Blow 1 R1460 Molex Connector for Remote Probe 1 T976 Molex Crimp Terminals for Remote Probe Connector 2 038 O ring 1 C6689 B1 Micro Fuel Cell for options see Order B or C not both Check Specific Model Information for cell in your instrument A minimum charge of 20 00 US dollars is applicable to spare parts orders NOTE Orders for replacement parts should include
15. 4 4 3 5 System Self Diagnostic Test The Model 3000PA has a built in self diagnostic testing routine Pre programmed signals are sent through the power supply output board and sensor circuit The return signal is analyzed and at the end of the test the status of each function is displayed on the screen either as OK or as a number between 1 and 3 See System Self Diagnostic Test in chapter 5 for number code The self diagnostics are run automatically by the analyzer whenever the instrument is turned on but the test can also be run by the operator at will To initiate a self diagnostic test during operation Press the System button to start the System function Contrast Function is DISABLED Contrast Auto Cal Refer to Section 1 6 PSWD Logout More Use the lt gt arrow keys to blink More then press Enter Version Self Test Cell Output pA Use the lt gt arrow keys again to move the blinking to the Self Test function The screen will follow the running of the diagnostic RUNNING DIAGNOSTIC Testing Preamp 83 During preamp testing there is a countdown in the lower right corner of the screen When the testing is complete the results are displayed Power OK Analog OK Preamp 3 The module is functioning properly if it is followed by OK A number indicates a problem in a specific area of the instrument Refer to Chapter 5 Maintenance and Troubleshooting for number code information The results screen al
16. Instrument Serial Number QI 3000PA C LY 3000PA S LJ 3000PA M Q 19 Rack Mnt Q Cell Class includes the following options In addition to all standard features this model also has separate ports for zero and span gases and built in control valves The internal valves are entirely under the control of the 3000PA electronics to automatically switch between gases in synchronization with the analyzer s operations In models with this option all wetted parts are made from 316 stainless steel In models with this option the 4 20 mA Analog Current outputis active In the standard units itis not active The 19 Relay Rack Mount units are available with either one or two 3000 series analyzers installed ona 19 panel and ready to mount ina standard rack See Maintenance for Specs Enter Class Designation Teledyne Analytical Instruments iii Model 3000PA Table of Contents Introduction TT OVE EW Sirata nn RCA En NS Sn atte ee stents Typical Applisationssssssssss un nn hs ic Main Features of the Analyzer cccceeeceeeeteeeeeeeeees Model D signations sssssisunsinnnnenmieannsis nie Front Panel Operator Interface Recognizing Difference Between LCD amp VFD Rear Panel Equipment Interface h oe es es a NO OR amp D Operational Theory 2 1 Introduction A annee le italie leteren
17. It is measured and used to determine the oxygen concentration in the gas mixture The overall reaction for the fuel cell is the SUM of the half reactions above or 2Pb O gt 2PbO Teledyne Analytical Instruments 2 3 2 Operational Theory Model 3000PA These reactions will hold as long as no gaseous components capable of oxidizing lead such as iodine bromine chlorine and fluorine are present in the sample The output of the fuel cell is limited by 1 the amount of oxygen in the cell at the time and 2 the amount of stored anode material In the absence of oxygen no current is generated 2 2 4 The Effect of Pressure In order to state the amount of oxygen present in the sample as a per centage of the gas mixture it is necessary that the sample diffuse into the cell under constant pressure If the total pressure increases the rate that oxygen reaches the cathode through the diffusing membrane will also increase The electron transfer and therefore the external current will increase even though the oxygen concen tration of the sample has not changed It is therefore important that the sample pressure at the fuel cell usually vent pressure remain constant between calibrations 2 2 5 Calibration Characteristics Given that the total pressure of the sample gas at the surface of the Micro Fuel Cell input is constant a convenient characteristic of the cell is that the current produced in an external circuit
18. No Press Escape to move on or proceed as in Changing the Password below 4 3 3 2 Installing or Changing the Password If you want to install a password or change an existing password proceed as above in Entering the Password When you are given the oppor tunity to change the password Change Password lt ENT gt Yes lt ESC gt No Press Enter to change the password either the default TBEAI or the previously assigned password or press Escape to keep the existing pass word and move on If you chose Enter to change the password the password assignment screen appears TBEAI lt ENT gt To Proceed or AAAAA lt ENT gt To Proceed Enter the password using the lt gt arrow keys to move back and forth between the existing password letters and the AV arrow keys to change the letters to the new password The full set of 94 characters available for pass word use are shown in the table below Characters Available for Password Definition A B C D E F G H l J K L M N O P Q R S T U V W X Y Z A B a b c d e f g h i j k l m n o p q r S t u v Ww X y Zz gt K amp d 0 1 2 3 4 5 6 7 8 9 lt gt When you have finished typing the new password press Enter A verification screen appears The screen will prompt you to retype your password for verification ee Taladvna AnaluticalImetriimante A Teledyne Analytical Instruments 4 7 4 Operation Model 3000PA A
19. a single predetermined range To switch from autoranging to fixed range analysis enter the range function by pressing the Range button on the front panel Use the lt gt arrow keys to move the blinking over AUTO Use the AV arrow keys to switch from AUTO to FX LO FX MED or FX HI to set the instrument on the desired fixed range low medium or high L 1 00 M 5 00 H 10 00 Mode FX LO or L 1 00 M 5 00 H 10 00 Mode FX MED or L 1 00 M 5 00 H 10 00 Mode FX HI 4 16 Teledyne Analytical Instruments Percent Oxygen Analyzer Operation 4 Press Escape to re enter the Analyze mode using the fixed range NOTE When performing analysis on a fixed range if the oxygen concentration rises above the upper limit or default value as established by the operator for that particular range the output saturates at 1 V dc However the digital readout and the RS 232 output continue to read the true value of the oxy gen concentration regardless of the analog output range 4 7 The Analyze Function Normally all of the functions automatically switch back to the Analyze function when they have completed their assigned operations Pressing the Escape button in many cases also switches the analyzer back to the Ana lyze function Alternatively you can press the Analyze button at any time to return to analyzing your sample 4 8 Signal Output The standard Model 3000PA Percent Oxygen Analyzer is equipped wit
20. cell is not designed for applications where CO is a major component in the sample however slight amounts will not adversely effect the cell performance Consult TAI for available options for either intermittent or continuous CO exposure If a cell was working satisfactorily but ceases to function before the watranty period expires the customer will receive credit toward the pur chase of a new cell If you have a warranty claim you must return the cell in question to the factory for evaluation If it is determined that failure is due to faulty workmanship or material the cell will be replaced at no cost to you NOTE Evidence of damage due to tampering or mishandling will render the cell warranty null and void UT Teledyne Analytical Instruments 5 5 5 Maintenance Model 3000P 5 3 Fuse Replacement 1 Place small screwdriver in notch and pry cover off as shown in Figure 5 2 Fuse Block Cover Figure 5 2 Removing Fuse Block from Housing 2 To change between American and European fuses remove the single retaining screw flip Fuse Block over 180 degrees and replace screw 3 Replace fuse as shown in Figure 5 3 4 Reassemble Housing as shown in Figure 5 2 Jumper Bar i a Fuse Block ee Fuse Fuse Block s t7 ites Ape Cover American Fuses European Fuses Figure 5 3 Installing Fuses 5 4 System Self Diagnostic Test 1 Press the System button to enter the system mode 2 Use the lt
21. gt arrow keys to move to More and press Enter 3 Use the lt gt arrow keys to move to Self Test and press Enter The following failure codes apply 5 6 Teledyne Analytical Instruments Percent Oxygen Analyzer Maintenance 5 Table 5 1 Self Test Failure Codes Power 0 OK 1 5 V Failure 2 15 V Failure 3 Both Failed Analog 0 OK 1 DAC A 0 1 V Concentration 2 DAC B 0 1 V Range ID 3 Both Failed Preamp 0 OK 1 Zero too high 2 Amplifier output doesn t match test input 3 Both Failed 5 5 Major Internal Components The Micro Fuel cell is accessed by unlatching and swinging open the front panel as described earlier Other internal components are accessed by removing the rear panel and sliding out the entire chassis See Figure 5 4 below The gas piping is illustrated in Figure 2 4 and the major electronic components locations are shown in Figure 2 5 in chapter 2 WARNINGS See warnings on the title page of this manual The 3000PA contains the following major components Analysis Section Micro Fuel Cell B 1 standard others available Nylon Probe and Holder Sample System Power Supply Microprocessor 5 digit LED meter 2 line 20 character alphanumeric VFD display RS 232 Communications Port See the drawings in the Drawings section in back of this manual for details Teledyne Analytical Instruments 5 7 5 Maintenance Model 3000P TELEDYNE ANALYTICAL INSTRUMENTS REMOTE PROBE
22. the Analyze mode NOTE The MSDS on this material is available upon request through the Teledyne Environmental Health and Safety Coordinator Contact at 626 934 1592 Teledyne Analytical Instruments A 9
23. zero calibration function Zero calibration can be performed in either the automatic or manual mode In the automatic mode an internal algorithm compares consecutive readings from the sensor to determine when the output is within the accept able range for zero In the manual mode the operator determines when the reading is within the acceptable range for zero Make sure the zero gas is connected to the instrument If zeroing is becoming more and more dificult skip to section 4 4 1 3 Cell Failure Auto Mode Zeroing Press Zero to enter the zero function mode The screen allows you to select whether the zero calibration is to be performed automatically or manu ally Use the AV arrow keys to toggle between AUTO and MAN zero settling Stop when AUTO appears blinking on the display Zero Settling AUTO lt ENT gt To Begin Press Enter to begin zeroing HH Zero Slope ppm s The beginning zero level is shown in the upper left corner of the dis play As the zero reading settles the screen displays and updates information on Jope unless the Slope starts within the acceptable zero range and does not need to settle further Then and whenever Slope is less than 0 08 for at least 3 minutes instead of Slope you will see a countdown 5 Left 4 Left and so fourth These are five steps in the zeroing process that the system must complete AFTER settling before it can go back to Analyze H HH Zero 4Left ppm s The zeroin
24. 1 10 9 8 7 SPAN etm Solenoid 1 return 6151413l2 EXHAUST re ae Solenoid 4 return Layout Schematic Figure 3 6 Remote Probe Connector Pinouts Due to power supply limits the maximum combined current that can be pulled from these output lines is 100 mA If two lines are ON at the same time each must be limited to 50 mA etc If more current and or a different voltage is required use a relay power amplifier or other matching circuitry to provide the actual driving current In addition each individual line has a series FET with a nominal ON resistance of 5 ohms 9 ohms worst case This could limit the obtainable voltage depending on the load impedance applied See Figure 3 7 Teledyne Analytical Instruments 3 9 3 Installation Model 3000PA LOAD 1 gt gt Figure 3 7 FET Series Resistance 3 4 Installing the Micro Fuel Cell The Micro Fuel Cell is not installed in the cell block when the instrument is shipped It must be installed before the analyzer is placed in service Once it is expended or if the cell is exposed to air for too long the Micro Fuel Cell will need to be replaced The cell could also require replace ment if the instrument has been idle for too long When the micro Fuel Cell needs to be installed or replaced follow the procedures in chapter 5 Maintenance for removing and installing cells 3 5 Testing the System Before plugging the instr
25. A arm function Make sure that AL 1 is blinking AL 1 AL 2 Choose Alarm Set up alarm 1 by moving the blinking over to AL 1 using the lt gt arrow keys Then press Enter to move to the next screen AL 11 00 HI Dft N Fs N Ltch N Five parameters can be changed on this screen e Value of the alarm setpoint AL 1 oxygen e Out of range direction HI or LO e Defeated Dft Y N Yes No e Failsafe Fs Y N Yes No e Latching Ltch Y N Yes No e To define the setpoint use the lt gt arrow keys to move the blinking over to AL 1 Then use the AV arrow keys to change the number Holding down the key speeds up the incrementing or decrementing Remember the setpoint units are percent of oxygen e To set the other parameters use the lt gt arrow keys to move the blinking over to the desired parameter Then use the AV arrow keys to change the parameter e Once the parameters for alarm 1 have been set press Alarms again and repeat this procedure for alarm 2 AL 2 e To reset a latched alarm go to Dft and then press either A two times or V two times Toggle it to Y and then back to N OR Go to Ltch and then press either A two times or V two times Toggle it to N and back to Y 4 14 Teledyne Analytical Instruments Percent Oxygen Analyzer Operation 4 4 6 The Range Function The Range function allows the operator to program up to three concen tration ranges to correlate
26. AAAA Retype PWD To Verify Wait a moment for the entry screen You will be given clearance to proceed AAAAA lt ENT gt TO Proceed Use the arrow keys to retype your password and press Enter when finished Your password will be stored in the microprocessor and the system will immediately switch to the Analyze screen and you now have access to allinstrument functions If all alarms are defeated the Analyze screen appears as 0 0 Aniz Range 0 10 If an alarm is tripped the second line will change to show which alarm itis 0 0 Aniz AL 1 Note If you log off the system using the logout function in the system menu you will now be required to re enter the password to gain access to Span Zero Alarm and Range functions 4 3 4 Logout The Logout function provides a convenient means of leaving the analyzer in a password protected mode without having to shut the instrument off By entering Logout you effectively log off the instrument leaving the system protected against use until the password is reentered To log out press the System button to enter the System function Contrast Auto Cal Contrast Function is DISABLED PSWD Logout More Refer to Section 1 6 Use the lt gt arrow keys to position the blinking over the Logout func tion and press Enter to Log out The screen will display the message Protected Until Password Reentered 4 8 Teledyne Analytical Instruments Percent Oxygen Analyzer Operation
27. IN HALED AVOID CONTACT WITH ANY FLUID OR POWDER IN OR AROUND THE UNIT WHAT MAY APPEAR TO BE PLAIN WATER COULD CONTAIN THESE TOXIC SUBSTANCES IN CASE OF EYE CONTACT IMMEDIATELY FLUSH EYES WITH WA TER FOR AT LEAST 15 MINUTES CALL PHYSICIAN SEE APPENDIX MATERIAL SAFETY DATA SHEET CAUTION Do not disturb the integrity of the cell package until the cell is to actually be used If the cell package is punctured and air is permitted to enter the cell will require a longer time to reach zero after installation 5 2 2 When to Replace a Cell When the sensor in the 3000PA begins to fail the analyzer usually requires more frequent calibration If the 3000PA analysis readings drift downward uncharacteristically try recalibration If recalibration raises the readings temporarily suspect the cell but first check for leaks downstream from the cell where gases may be leaking into the system You can check the output of the cell itself by going to the System function selecting More and pressing Enter The cell output reading will be on the second line of the display Version Self Test Cell Output uA The good cell output range depends on the class of cell your ana lyzer is using The B 1 cell is standard in the 3000PA but others can be specified Check Specific Model Information in the Front Matter in this manual for the class of cell you purchased Then check Table 5 1 the cell index table below and do the simple cal
28. Probe Connector The C option internal valves operate automatically Span Floating input A 5 to 24 V pulse input across the and terminals puts the analyzer into the Span mode Either side may be grounded at the source of the signal A synchronous signal must open and close external span valve appropriately See 3 3 3 Remote Probe Connector The C option internal valves operate automatically Cal Contact This relay contact is closed while analyzer is spanning and or zeroing See Remote Calibration Protocol below Remote Calibration Protocol To properly time the Digital Remote Cal Inputs to the Model 3000PA Analyzer the customer s controller must monitor the Cal Relay Contact When the contact is OPEN the analyzer is analyzing the Remote Cal Inputs are being polled and a zero or span command can be sent When the contact is CLOSED the analyzer is already calibrating It will ignore your request to calibrate and it will not remember that request Once a zero or span command is sent and acknowledged contact closes release it If the command is continued until after the zero or span is complete the calibration will repeat and the Cal Relay Contact CRC will close again For example 1 Test the CRC When the CRC is open Send a zero command until the CRC closes The CRC will quickly close 2 When the CRC closes remove the zero command 3 When CRC opens again send a span command until the CRC closes
29. The CRC will quickly close 4 When the CRC closes remove the span command When CRC opens again zero and span are done and the sample is being analyzed Teledyne Analytical Instruments 3 3 Installation Model 3000PA Note The Remote Probe connector paragraph 3 3 3 provides signals to ensure that the zero and span gas valves will be controlled synchronously If you have the C Internal valve option which includes additional zero and span gas inputs the 3000P automatically regulates the zero span and sample gas flow Range ID Relays Four dedicated Range ID relay contacts The first three ranges are assigned to relays in ascending order Low range is as signed to Range 1 ID Medium range is assigned to Range 2 ID and High range is assigned to Range 3 ID The fourth range is reserved for the Air Cal Range 25 Network I O A serial digital input output for local network protocol At this printing this port is not yet functional RS 232 Port The digital signal output is a standard RS 232 serial communications port used to connect the analyzer to a computer terminal or other digital device It requires a standard 9 pin D connector The data is status information in digital form updated every two seconds Status is reported in the following order e The concentration in percent e The range in use HI MED LO e The span of the range 0 10 etc e Which alarms if any are disabled AL x DISABLED
30. a new password or change a previously installed password you must key in and ENTER the old password first If the default password is in effect pressing the ENTER button will enter the default TBEAI password for you Press System to enter the System mode Contrast Auto Cal Contrast Function is DISABLED PSWD Logout More Refer to Section 1 6 Use the lt gt arrow keys to scroll the blinking over to PSWD and press Enter to select the password function Either the default TBEAI password or AAAAA place holders for an existing password will appear on screen depending on whether or not a password has been previously installed TBEAI Enter PWD or AAAAA Enter PWD The screen prompts you to enter the current password If you are not using password protection press Enterto accept TBEAI as the default password If a password has been previously installed enter the password using the lt gt arrow keys to scroll back and forth between letters and the AV arrow keys to change the letters to the proper password Press Enter to enter the password If the password is accepted the screen will indicate that the password restrictions have been removed and you have clearance to proceed PSWD Restrictions Removed In a few seconds you will be given the opportunity to change this password or keep it and go on 4 6 Teledyne Analytical Instruments Percent Oxygen Analyzer Operation 4 Change Password lt ENT gt Yes lt ESC gt
31. alyzer Maintenance 5 Maintenance 5 1 Routine Maintenance Aside from normal cleaning and checking for leaks at the gas connec tions routine maintenance is limited to replacing Micro Fuel cells and fuses and recalibration For recalibration see Section 4 4 Calibration WARNING SEE WARNINGS ON THE TITLE PAGE OF THIS MANUAL 5 2 Cell Replacement The Micro Fuel Cell is a sealed electrochemical transducer with no electrolyte to change or electrodes to clean When the cell reaches the end of its useful life it is replaced The spent fuel cell should be discarded according to local regulations This section describes fuel cell care as well as when and how to replace it 5 2 1 Storing and Handling Replacement Cells To have a replacement cell available when it is needed TAI recom mends that one spare cell be purchased 4 5 months after commissioning the 3000PA or shortly before the end of the cell warranty period CAUTION Do not stockpile cells The warranty period starts on the day of shipment The spare cell should be carefully stored in an area that is not subject to large variations in ambient temperature 75 F nominal or to rough handling WARNING THE SENSOR USED IN THE MODEL 3000PA PER CENT OXYGEN ANALYZER USES ELECTROLYTES WHICH CONTAIN TOXIC SUBSTANCES MAINLY Teledyne Analytical Instruments 5 1 5 Maintenance Model 3000P LEAD AND POTASSIUM HYDROXIDE THAT CAN BE HARMFUL IF TOUCHED SWALLOWED OR
32. and determine whether each alarm will be active or defeated HI or LO acting latching and or failsafe e Range Used to set up three analysis ranges that can be switched automatically with auto ranging or used as individual fixed ranges Any function can be selected at any time by pressing the appropriate button unless password restrictions apply The order as presented in this manual is appropriate for an initial setup Each of these functions is described in greater detail in the following procedures The VFD screen text that accompanies each operation is repro 4 2 Teledyne Analytical Instruments Percent Oxygen Analyzer Operation 4 ANALYZE Perform Oxygen Analysis 0 Sample Contrast Function is DISABLED Se Display Refer to Section 1 6 Set Instrument Span Perform Self Diagnostic Test ZERO ALARMS Set Instrument Zero Initiate Automatic Set Alarm Calibration Setpoints Define Analysis Ranges Configure Mode Set Password igure M Operation Logout Figure 4 1 Hierarchy of Functions and Subfunctions duced at the appropriate point in the procedure in a Monospaced type style Pushbutton names are printed in Oblique type 4 3 The System Function The subfuctions of the System function are described below Specific procedures for their use follow the des
33. arefully unpack the analyzer and inspect it for damage Immediately report any damage to the shipping agent 3 2 Mounting the Analyzer The Model 3000PA is for indoor use in a general purpose area It is NOT for use in hazardous environments of any type The standard model is designed for flush panel mounting Figure 3 1 is an illustration of the 3000PA standard front panel and mounting bezel There are four mounting holes one in each corner of the rigid frame Drawing number D 62928 in the Drawings section in the rear of this manual con tains a panel cutout diagram On special order a 19 rack mounting panel can be provided For rack mounting one or two 3000 series analyzers are flush panel mounted on the rack panel See Appendix for dimensions of the mounting panel Teledyne Analytical Instruments 3 1 3 Installation Model 3000PA Latch lt 10 gt Figure 3 1 Front Panel of the Model 3000PA All operator controls are mounted on the control panel which is hinged on the left edge and doubles as the door that provides access to the sensor and cell block inside the instrument The door is spring loaded and will swing open when the button in the center of the latch upper right corner is pressed all the way in with a narrow gauge tool less than 0 18 inch wide such as a small hex wrench or screwdriver Allow clearance for the door to open in a 90 degree arc of radius 7 125 inches See Figure 3 2
34. ates when concen tration is above threshold or low actuates when concentration is below threshold e Can be configured as failsafe or nonfailsafe e Can be configured as latching or nonlatching e Can be configured out defeated Actuates when DC power supplied to circuits is unacceptable in one or more parameters Permanently configured as failsafe and latching Cannot be de feated Actuates if self test fails Reset by pressing button to remove power Then press O again and any other button EXCEPT Systemtoresume Further detail can be found in chapter 4 section 4 5 IR 7 Moving contact Normally open Normally closed T ee N Il Moving contact ly er Insert wire here Press here to insert vie gt l Release to hold E JL THRESHOLD RANGE 1 ALARM 1 ID CONTACT Figure 3 5 Types of Relay Contacts 3 6 Teledyne Analytical Instruments Percent Oxygen Analyzer Installation 3 Digital Remote Cal Inputs Accept 0 V off or 24 V dc on inputs for remote control of calibration See Remote Calibration Protocol below Zero Floating input A 5 to 24 V pulse input across the and terminals puts the analyzer into the Zero mode Either side may be grounded at the source of the signal A synchronous signal must open and close the external zero valve appropri ately See 3 3 3 Remote
35. ath The first function is to limit the flow rate of the sample through the analyzer A restrictor is chosen to operate over arange of pressures and provide a useable flow rate over that range The second function that the restriction device provides is a pressure drop This device is selected to provide the only significant pressure drop in the sample path Teledyne Analytical Instruments A 5 Appendix Model 3000PA RESTRICTORKIT The current revision of the 3000 series analyzers are supplied with a kit containing two restrictors anda union which are user installed These parts supplied to give the end user more flexibility when installing the analyzer The restrictor kitis suitable for high and low positive pressure applications as well as vacuum service atmospheric pressure sample applications see manual for installation instructions The standard restrictor BLUE DOT is recommended for pressures between 5 PSIG and 50 PSIG For positive low pressure application 5 psig or less the un marked restrictor is better suited For none pressurized sample applications the marked restrictor should be used and configured for vacuum service Note forextremely low positive pressure applications less then 2 psig the vacuum service configuration should provide higher performance higher flow rates For vacuum service the end user must supply a vacuum pump anda by pass valve for the pump A vacuum level of 5 10inches of mercury should pro
36. criptions e Auto Cal Used to define an automatic calibration sequence and or start an Auto Cal e PSWD Security can be established by choosing a 5 digit password PSWD from the standard ASCH character set See Installing or Changing a Password below for a table of ASCII characters available Once a unique password is assigned and activated the operator MUST enter the UNIQUE password to gain access to set up functions which alter the instrument s Teledyne Analytical Instruments 4 3 4 Operation Model 3000PA operation such as setting the instrument span or zero setting adjusting the alarm setpoints or defining analysis ranges After a password is assigned the operator must log out to activate it Until then anyone can continue to operate the instrument without entering the new password Only one password can be defined Before a unique password is assigned the system assigns TBEAI by default This allows access to anyone After a unique password is assigned to defeat the security the password must be changed back to TBEAI Logout Logging out prevents an unauthorized tampering with analyzer settings e More Select and enter More to get a new screen with additional subfunctions listed Self Test The instrument performs a self diagnostic test to check the integrity of the power supply output boards and amplifiers e Version Displays Manufacturer Model and Software Version of instrument 4 3 1 Se
37. culation If the resulting value is below the Cell Outputreading replace the cell To find out if your cell is too weak 1 Flow span gas through the analyzer and allow time to purge 2 With span gas flowing read the raw output of the cell from the System function display 5 2 Teledyne Analytical Instruments Percent Oxygen Analyzer Maintenance 5 3 Divide the raw output reading by the percent oxygen concentration of your span gas If the quotient is less than the Index value for the cell class you are using replace the cell Table 5 1 Cell Indices Cell Class Index A 3 1 818 A 5 1 818 B 1 4 545 B 3 3 716 B 5 1 244 B 7 1 515 C 3 2 488 C 5 0 606 5 2 3 Removing the Micro Fuel Cell The Micro Fuel cell is located inside the nylon Probe behind the front panel See Figure 5 1 To remove an existing cell 1 Remove power to the instrument by unplugging the power cord at the power source Open the front panel door by pressing the release button on the top right corner of the door all the way in and releasing it Pull up on the nylon Probe with a slight rocking motion to release it from the Probe Receptacle Do Not remove the O rings unless they are worn and no longer hold the Probe tightly If worn replace them When it is free unscrew the Cap from the nylon Probe Hold the Probe vertically to prevent dropping the cell out of the probe Remove the Cell from the Probe and dispose of it in an
38. d on the password screen when you start up and you simply press Enter for access to all functions of the analyzer Teledyne Analytical Instruments 4 1 4 Operation Model 3000PA 4 2 Using the Data Entry and Function Buttons Data Entry Buttons The lt gt arrow buttons select options from the menu currently displayed on the VFD screen The selected option blinks When the selected option includes a modifiable item the AV arrow buttons can be used to increment or decrement that modifiable item The Enter button is used to accept any new entries on the VFD screen The Escape button is used to abort any new entries on the VFD screen that are not yet accepted by use of the Enterbutton Figure 4 1 shows the hierarchy of functions available to the operator via the function buttons The six function buttons on the analyzer are e Analyze This is the normal operating mode The analyzer monitors the oxygen content of the sample displays the percent of oxygen and warns of any alarm conditions e System The system function consists of six subfunctions that regulate the internal operations of the analyzer e SetLCD screen contrast Contrast Function is DISABLED A N e Setup Auto Cal Refer to Section 1 6 e Assign Password e Initiate Self Test e Check software version e View sensor output e Log out e Zero Used to setup azero calibration e Span Used to set up a span calibration e Alarms Used to set the alarm setpoints
39. de allows the user to lock onto a specific range of interest Two adjustable concentration alarms and a system failure alarm Extensive self diagnostic testing at startup and on demand with continuous power supply monitoring Two way RFI protection RS 232 serial digital port for use with a computer or other digital communication device Analog outputs for percent of range and for range identification 0 1 V dc Isolated 4 20 mA dc optional Convenient and versatile steel flush panel or rack mountable case with slide out electronics drawer 1 4 Model Designations 3000PA Standard model 3000PA C In addition to all standard features this model also has separate ports for zero and span gases and built in control valves The internal valves are entirely under the control of the 3000PA electronics to automatically switch between gases in synchronization with the analyzer s operations 3000PA M This model has current output signals 4 20 mA for percent of range and range ID in addition to voltage outputs 3000PA S A Stainless Steel Probe and Probe Holder are used in this 1 2 model for use where resistance to corrosion is important Teledyne Analytical Instruments Percent Oxygen Analyzer Introduction 1 All of the above options are available in combination For example the C and V options are combined as Model 3000PA C V Ter _ e dyne Analytical Instrument is Digital Meter
40. ded to the cell class number 2 3 Sample System The sample system delivers gases to the Micro Fuel Cell sensor from the analyzer rear panel inlet Depending on the mode of operation either sample or calibration gas is delivered The Model 3000P sample system is designed and fabricated to ensure that the oxygen concentration of the gas is not altered as it travels through the sample system The sample encounters almost no dead space This mini 2 6 Teledyne Analytical Instruments Percent Oxygen Analyzer Operational Theory 2 mizes residual gas pockets that can interfere with very low level oxygen analysis The sample system for the standard instrument incorporates inch tube fittings for sample inlet and outlet connections at the rear panel For metric system installations 6 mm adapters are supplied with each instrument The sample or calibration gas flow through the system is monitored by a flow meter downstream from the cell Figure 2 4 shows the piping layout for the standard model TOP RIGHT SIDE Tt Be ee ee Sample ee d S Exhaust In j Out o o O Flowmeter Figure 2 4 Piping Layout and Flow Diagram for Standard Model Figure 2 5 is the fl
41. designed to accommodate the internal volume changes that occur throughout the life of the cell This flexibility assures that the sensing mem brane remains in its proper position keeping the electrical output constant The entire space between the diffusion membrane above the cathode and the flexible rear membrane beneath the anode is filled with electrolyte Cathode and anode are submerged in this common pool They each have a conductor connecting them to one of the external contact rings on the contact plate which is on the bottom of the cell 2 2 3 Electrochemical Reactions The sample gas diffuses through the Teflon membrane Any oxygen in the sample gas is reduced on the surface of the cathode by the following HALF REACTION O 2H 0 4e 40H cathode Four electrons combine with one oxygen molecule in the presence of water from the electrolyte to produce four hydroxy ions When the oxygen is reduced at the cathode lead is simultaneously oxidized at the anode by the following HALF REACTION Pb 20H Ph H O 2e anode Two electrons are transferred for each atom of lead that is oxidized Therefore it takes two of the above anode reactions to balance one cathode reaction and transfer four electrons The electrons released at the surface of the anode flow to the cathode surface when an external electrical path is provided The current is propor tional to the amount of oxygen reaching the cathode
42. e sensor to determine when the output matches the span gas concentration Span cali bration can also be performed manual mode where the operator determines when the span concentration reading 1s acceptable and then manually exits the function 4 4 2 1 Auto Mode Spanning Press Span to enter the span function The screen that appears allows you to select whether the span calibration is to be performed automatically or manually Use the AV arrow keys to toggle between AUTO and MAN span settling Stop when AUTO appears blinking on the display Span Settling AUTO lt ENT gt For Next Press Enter to move to the next screen Span Val 20 90 lt ENT gt Span lt UP gt Mod Use the AV arrow keys to enter the oxygen concentration mode Use the lt gt arrow keys to blink the digit you are going to modify Use the AV arrow keys again to change the value of the selected digit When you have finished typing in the concentration of the span gas you are using 20 90 if you are using air press Enterto begin the Span calibration HHHH Span Slope ppm s The beginning span value is shown in the upper left corner of the display As the span reading settles the screen displays and updates informa tion on Slope Spanning automatically ends when the slope is less than 1 50 Teledyne Analytical Instruments 4 11 4 Operation Model 3000PA of the displayed value of the oxygen concentration in ppm for three min utes Then the in
43. en appears Span Every 0 d Start 0 h from now Use AV arrows to set an interval value then use lt gt arrows to move to the start time value Use AV arrows to set a start time value To turn ON the Span and or Zero cycles to activate Auto Cal Press System again choose Auto Cal and press Enter again When the Span Zero screen appears use the lt gt arrows to blink the Span or Zero OF F ON field Use AV arrows to set the OFF ON field to ON You can now turn these fields ON because there is a nonzero span interval defined 4 3 3 Password Protection If a password is assigned then setting the following system parameters can be done only after the password is entered span and zero settings alarm setpoints analysis range definitions switching between autoranging and manual override setting up an auto cal and assigning a new password However the instrument can still be used for analysis or for initiating a self test without entering the password Teledyne Analytical Instruments 4 Operation Model 3000PA If you have decided not to employ password security use the default password TBEAI This password will be displayed automatically by the microprocessor The operator just presses the Enter key to be allowed total access to the instrument s features NOTE If you use password security it is advisable to keep a copy of the password in a separate safe location 4 3 3 1 Entering the Password To install
44. endent resistance that changes the gain of the amplifier in proportion to the temperature changes in the block This change is inversely proportional to the change in the cell output due to the same temperature changes The result is a signal that is temperature independent The output from the second stage amplifier is sent to an 18 bit analog to digital converter controlled by the microprocessor The digital concentration signal along with input from the control panel is processed by the microprocessor and appropriate control signals are directed to the display alarms and communications port The same digital information is also sent to a 12 bit digital to analog converter that produces the 0 1 V dc analog percent of range signal output and the analog range ID output Models with the MA option also have a 4 20 mA dc percent of range signal output and analog range ID output Signals from the power supply are also monitored by the microproces sor and the system failure alarm is activated if a malfunction is detected 2 10 Teledyne Analytical Instruments Percent Oxygen Analyzer Installation 3 Installation EE Installation of the Model 3000PA Analyzer includes 1 Unpacking 2 Mounting 3 Gas connections 4 Electrical connections 5 Installing the Micro Fuel Cell 6 Testing the system 3 1 Unpacking the Analyzer The analyzer is shipped with all the materials you need to install and prepare the system for operation C
45. ent within one year from the date of shipment except in cases where quotations or acknowledgments provide for a shorter period Components manufactured by others bear the warranty of their manufacturer This warranty does not cover defects caused by wear accident misuse neglect or repairs other than those performed by Teledyne or an autho rized service center We assume no liability for direct or indirect damages of any kind and the purchaser by the acceptance of the equipment will assume all liability for any damage which may result from its use or misuse We reserve the right to employ any suitable material in the manufacture of our apparatus and to make any alterations in the dimensions shape or weight of any parts in so far as such alterations do not adversely affect our warranty Important Notice This instrument provides measurement readings to its user and serves as a tool by which valuable data can be gathered The information provided by the instrument may assist the user in eliminating potential hazards caused by his process however it is essential that all personnel involved in the use of the instrument or its interface with the process being measured be properly trained in the process itself as well as all instrumenta tion related to it The safety of personnel is ultimately the responsibility of those who control process conditions While this instrument may be able to provide early warning of imminent danger it has no co
46. esponse to O2 changes in the sample stream The span flow rate should be the approximately same as the sample flow rate CELL PRESSURE CONCERNS The sensors used in 3000 series analyzers are optimized to function at atmospheric pressure At pressures other than atmospheric the diffusion rate of O2 will be different than optimum value Higher pressures will produce faster O2 diffusion rates resulting in higher O2 reading and shorter cell life To use a 3000 series analyzer at acell pressure other than atmospheric the analyzer must be calibrated with a known calibration gas at the new cell pressure to adjust for the different diffusion rate Cell pressures below 2 3 atmospheric are not recommended because as they tend to cause excessive internal expansion which may resultin seal failure For operation at cell pressures other than atmospheric care must be taken not to change the sample pressure rapidly or cell damage may occur For cell pressures above atmospheric caution must be exercised to avoid over pressuring the cell holder percent analyzers will require some type of cell retainer to prevent the cell from being pushed out by the pressure For operation at pressures below atmospheric pressure a suffix C clamped cellis required RESTRICTION DEVICES For proper operation all 3000 series analyzers require a flow restriction device This device is typically arestrictor ora valve This restriction device serves two functions in the sample p
47. fications A 1 A 2 Recommended 2 Year Spare Parts List A 3 A 3 Dr WINdLISEs SSSR Rte rent A 4 A 4 19 Inch Relay Rack Panel Mount A 4 A 5 Application Notes on Restrictors Pressures amp Flow A 5 A 6 Zero FUNCTIONS cick Chee ie es a nr ea A 8 Teledyne Analytical Instruments V Model 3000PA DANGER COMBUSTIBLE GAS USAGE WARNING This is a general purpose instrument designed for usage in a nonhazardous area It is the customer s responsibility to ensure safety especially when combustible gases are being analyzed since the potential of gas leaks always exist The customer should ensure that the principles of operating of this equipment is well understood by the user Misuse of this product in any manner tampering with its components or unau thorized substitution of any component may adversely affect the safety of this instrument Since the use of this instrument is beyond the control of Teledyne no responsibility by Teledyne its affiliates and agents for damage or injury from misuse or neglect of this equipment is implied or assumed vi Teledyne Analytical Instruments Percent Oxygen Analyzer Introduction 1 Introduction 1 1 Overview The Teledyne Analytical Instruments Model 3000PA Percent Oxygen Analyzer is a versatile microprocessor based instrument for detecting the percentage of oxygen in a variety of background gases This
48. g process will automatically conclude when the output is within the acceptable range for a good zero Then the analyzer automatically returns to the Analyze mode Manual Mode Zeroing Press Zero to enter the Zero function The screen that appears allows you to select between automatic or manual zero calibration Use the AV keys A 8 Teledyne Analytical Instruments Percent Oxygen Analyzer Appendix to toggle between AUTO and MAN zero settling Stop when MAN appears blinking on the display Zero Settling Man lt ENT gt To Begin Press Enter to begin the zero calibration After a few seconds the first of five zeroing screens appears The number in the upper left hand corner is the first stage zero offset The microprocessor samples the output at a prede termined rate It calculates the differences between successive samplings and displays the rate of change as Sope a value in parts per million per second ppm s HHH Zero Slope ppm s NOTE It takes several seconds for the true Sope value to display Wait about 10 seconds Then wait until Sope is sufficiently close to zero before pressing Enter to finish zeroing Generally you have a good zero when Slope is less than 0 05 ppm s for about 30 seconds When Slope is close enough to zero press Enter In a few seconds the screen will update Once span settling completes the information is stored in the microprocessor and the instrument automatically returns to
49. gas flow Use the restrictor without the blue dot sticker in the same manner for low pressure applications less than 5 psig For vacuum service 5 10 in Hg use the restrictor without the blue dot sticker and union but attach it to the Exhaust Out port The small circular orifice should face toward the back of the unit against the direction of gas flow Remove the blue sticker from the restrictor before using WARNING Operating the unit without restrictors can cause damage to t the micro fuel cell Teledyne Analytical Instruments 3 3 3 Installation Model 3000PA The unit is manufactured with 4inch tube fittings Six millimeter adapters are supplied for metric system installations For a safe connection 1 Insert the tube into the tube fitting and finger tighten the nut until the tubing cannot be rotated freely by hand in the fitting This may require an additional s turn beyond finger tight 2 Hold the fitting body steady with a backup wrench and with another wrench rotate the nut another 1 4 turns SAMPLE IN In the standard model gas connections are made at the SAMPLE IN and EXHAUST OUT connections Calibration gases must be Tee d into the Sample inlet with appropriate valves Ensure that the gas pressure is reasonably regulated Pressures between 3 and 40 psig are acceptable as long as the pressure once established will keep the front panel flowmeter reading in an acceptable range 0 1 to 2 4 SLPM
50. ges begin at 0 Repeat for each range you want to set Press Enter to accept the values and return to Analyze mode See note below Note The ranges must be increasing from low to high For example if range 1 is set as 0 1 and range 2 is set as 0 10 range 3 cannot be set as 0 5 since it is lower than range 2 Teledyne Analytical Instruments 4 15 4 Operation Model 3000PA 4 6 2 Autoranging Analysis Set your analysis ranges as in 4 6 1 above Leave Mode in Auto or use the arrow buttons to change back to Auto When operating in autoranging if the oxygen concentration in your sample goes ABOVE your HIGHEST range setting the analyzer will go into the special 25 cal range However if one of your range settings is below 0 25 and another is set above 0 25 the special 0 25 Air Cal range will NOT activate as the oxygen level goes through 25 Nevertheless if the oxygen concentration in your sample goes ABOVE your HIGHEST range setting the analyzer will THEN drop back down into the special 25 cal range Once the oxygen concentration drops back down into your highest range setting the analyzer will automatically switch back to that range CAUTION While the analyzer is in the Air Cal range the oxygen reading cannot go over 25 even if the oxygen concentration Is higher than 25 4 6 3 Fixed Range Analysis The autoranging mode of the instrument can be overridden forcing the analyzer DC outputs to stay in
51. h two 0 1 V dc analog output terminals accessible on the back panel one concentration and one range ID The MA option also has two isolated 4 20 mA dc current outputs one concentration and one range ID See Rear Panel in Chapter 3 Installation for illustration The signal output for concentration is linear over the currently selected analysis range For example if the analyzer is set on range that was defined as 0 10 O then the output would be Voltage Signal Current Signal O Output V dc Output mA dc 2 0 0 0 4 0 1 0 1 5 6 2 0 2 7 2 3 0 3 8 8 4 0 4 10 4 5 0 5 12 0 6 0 6 13 6 7 0 7 15 2 8 0 8 16 8 9 0 9 18 4 10 1 0 20 0 Teledyne Analytical Instruments 4 17 4 Operation Model 3000PA The analog output signal has a voltage which depends on the oxygen concentration AND the currently activated analysis range To relate the signal output to the actual concentration it is necessary to know what range the instrument is currently on especially when the analyzer is in the autoranging mode To provide an indication of the range a second pair of analog output terminals are used They generate a steady preset voltage or current if you have current outputs to represent a particular range The following table gives the range ID output for each analysis range Range Voltage V Current mA LO 0 25 8 MED 0 50 12 HI 0 75 16 CAL 0 25 1 00 20 4 18 Teledyne Analytical Instruments Percent Oxygen An
52. he case 1 6 Recognizing Difference Between LCD amp VFD LCD has GREEN background with BLACK characters VFD has DARK background with GREEN characters In the case of VFD NO CONTRAST ADJUSTMENT IS NEEDED 1 7 Rear Panel Equipment Interface The rear panel shown in Figure 1 2 contains the gas and electrical connectors for external inlets and outlets The Zero and Span gas connectors and the Current signal outputs are optional and may not appear on your instrument The connectors are described briefly here and in detail in the Installation chapter of this manual e W TELEDYNE ANALYTICAL INSTRUMENTS REMOTE FH PROBE CAUTIONS EEE ES sza Of Jo NO USER SERVICEABLE PARTS INSIDE jl SERVICE ONLY BY QUALIFIED PERSONNEL 85 250Vac 47 63Hz SA 0 9 MAX USE 250V 1 0A T FUSE ZERO IN SAMFLE IN SPAN IN EXHAUST OUT Figure 1 2 Model 3000PA Rear Panel e Power Connection Universal AC power source e Gas Inlet and Outlet One inlet must be externally valved and one exhaust out e Analog Outputs 0 1 V dc concentration output plus 0 1 V dc range ID Teledyne Analytical Instruments 1 5 1 Introduction Model 3000PA e Alarm Connections 2 concentration alarms and 1 system alarm e RS 232 Port Serial digital concentration signal output and control input e Remote Probe Used in the 3000PA for controlling external solenoid valves only e Remote Span Zero Digital inputs allow external control of
53. ies If none remains returns to the Analyze screen e Escape Moves VFD display back to the previous screen in a series If none remains returns to the Analyze screen Digital Meter Display The meter display is a LED device that produces large bright 7 segment numbers that are legible in any lighting environment It produces a continuous readout from 0 100 It is accurate across all ranges without the discontinuity of analog range switching Alphanumeric Interface Screen The VFD screen is an easy to use interface from operator to analyzer It displays values options and messages that give the operator immediate feedback Flowmeter Monitors the flow of gas past the sensor Readout is 0 2 to 2 4 standard liters per minute SLPM Standby Button The Standby turns off the display and outputs but circuitry is still operating CAUTION The power cable must be unplugged to fully disconnect power from the instrument When chassis is exposed or when access door is open and power cable is connected use extra care to avoid contact with live electrical circuits 1 4 Teledyne Analytical Instruments Percent Oxygen Analyzer Introduction 1 Access Door To provide access to the Micro Fuel Cell the front panel swings open When the latch in the upper right corner of the panel is pressed all the way in with a narrow gauge tool Accessing the main circuit board requires unfastening the rear panel screws and sliding the unit out of t
54. increasing oxygen concentration from 4 mA at 0 percent to 20 mA at full scale Full scale 100 of programmable range 4 20 mA dc Range ID M option only 8 mA Low Range 12 mA Medium Range 16 mA High Range 20 mA Air Cal Range r CURRENT 4 m VOLTAGE 4 Floating a Negative gt gt gt ground Insert wire ME EE EE HE KE Press here to insert wire gt Release to hold Ge SF 4 20mA O P 4 20mA O P 0 1 V O P 0 1 V O P Teledyne Analytical Instruments 3 5 3 Installation Model 3000PA Figure 3 4 Analog Output Connections Alarm Relays The three alarm circuit connectors are spring terminals for making connections to internal alarm relay contacts Each provides a set of Form C contacts for each type of alarm Each has both normally open and normally closed contact connections The contact connections are indicated by diagrams on the rear panel They are capable of switching up to 3 am peres at 250 V ac into a resistive load See Figure 3 5 The connectors are Threshold Alarm 1 Threshold Alarm 2 System Alarm e Can be configured as high actuates when concen tration is above threshold or low actuates when concentration is below threshold e Can be configured as failsafe or nonfailsafe e Can be configured as latching or nonlatching e Can be configured out defeated e Can be configured as high actu
55. is directly proportional to the rate at which oxygen molecules reach the cathode and this rate is directly proportional to the concentration of oxygen in the gaseous mixture In other words it has a linear characteristic curve as shown in Figure 2 3 Measuring circuits do not have to compensate for nonlinearities In addition since there is zero output in the absence oxygen the charac teristic curve has close to an absolute zero In the percent ranges the cell itself does not need to be zeroed In practical application zeroing is still used to compensate for zero offsets in the electronics The electronics is zeroed automatically when the instrument power is turned on 2 4 Teledyne Analytical Instruments Percent Oxygen Analyzer Operational Theory 2 800 600 Cell Output A 400 200 10 20 30 Oxygen Concentration percent Figure 2 3 Characteristic Input Output Curve for a Micro Fuel Cell 2 2 6 Micro Fuel Cell Class TBE manufactures Micro Fuel Cells with a variety of characteristics to give the best possible performance for any given sample conditions few typical Micro Fuel Cells are listed below with their typical use and electrical specifications 2 2 6 1 Class A 3 Cell The class A 3 cell is for use in applications where it is exposed continu ously to carbon dioxide concentrations between 1 and 100 in the sample gas Nominal output in air is 0 20 mA and 90
56. manual covers the Model 3000PA General Purpose flush panel and or rack mount units only These units are for indoor use in a nonhazardous environment 1 2 Typical Applications A few typical applications of the Model 3000PA are e Monitoring inert gas blanketing e Air separation and liquefaction e Chemical reaction monitoring e Semiconductor manufacturing e Petrochemical process control e Quality assurance e Gasanalysis certification 1 3 Main Features of the Analyzer The Model 3000PA Percent Oxygen Analyzer is sophisticated yet simple to use The main features of the analyzer include e A2 line alphanumeric display screen driven by microprocessor electronics that continuously prompts and informs the operator e High resolution accurate readings of oxygen content from low percent levels through 100 Large bright meter readout Teledyne Analytical Instruments 1 1 1 Introduction Model 3000PA Advanced Micro Fuel Cell designed for percent oxygen analysis Several options are available Versatile analysis over a wide range of applications Microprocessor based electronics 8 bit CMOS microprocessor with 32 kB RAM and 128 kB ROM Three user definable output ranges from 0 1 through 0 100 allow best match to users process and equipment Air calibration range for convenient spanning at 20 9 Auto Ranging allows analyzer to automatically select the proper preset range for a given measurement Manual overri
57. nd or length or vent tubing in order to dilute of mini mize the diffusion of oxygen from the vent back to the sensor Problem Inaccurate zero operation i e the user has zeroed the analyzer accidentally on gas much higher than one would normally use for a zero gas Solution Turn the analyzer off then back on again Press the System key when prompted by the analyzer Press System for default Values This will return the analyzer to its default settings in calibration and zero values Now proceed to carefully calibrate and zero the analyzer Teledyne Analytical Instruments 9 9 5 Maintenance Model 3000P 5 10 Teledyne Analytical Instruments Percent Oxygen Analyzer Appendix Appendix A 1 Model 3000PA Specifications Packaging General Purpose e Flush panel mount Standard e Rack mount Relay rack mounted to contain either one or two instruments in one 19 relay rack mountable plate Optional Sensor Class B 1 Micro Fuel Cell standard Others available Cell Block Nylon 90 Response Time 10 seconds at 25 C 77 F Ranges Three user definable ranges from 0 1 to 0 100 plus air calibration range of 0 25 Alarms One system failure alarm contact to detect power failure Two adjustable concentration threshold alarms with fully programmable setpoints Displays 2 line by 20 character alphanumeric VFD screen One 5 digit LED display Digital Interface Full duplex RS
58. ntrol over process conditions and it can be misused In particular any alarm or control systems installed must be tested and understood both as to how they operate and as to how they can be defeated Any safeguards required such as locks labels or redun dancy must be provided by the user or specifically requested of Teledyne at the time the order is placed Therefore the purchaser must be aware of the hazardous process conditions The purchaser is responsible for the training of personnel for providing hazard warning methods and instrumentation per the appropriate standards and for ensuring that hazard warning devices and instrumentation are maintained and operated properly Teledyne Analytical Instruments the manufacturer of this instrument cannot accept responsibility for conditions beyond its knowledge and control No statement expressed or implied by this document or any information disseminated by the manufactur er or its agents is to be construed as a warranty of adequate safety control under the user s process conditions Teledyne Analytical Instruments Percent Oxygen Analyzer Specific Model Information The instrument for which this manual was supplied may incorporate one or more options not included with the standard instrument Commonly available options are listed below with check boxes Any that are incorporated in the instrument for which this manual is supplied are indicated by acheck mark in the box
59. o improve the system response a by pass can be added to increase the sample flow rate to the analyzer by a factor of ten A by pass provides a sample flow path around the analyzer of 2 18 SCFH typically CALIBRATION GAS 3000 series analyzer requirements for units with Auto Cal options The A 6 Teledyne Analytical Instruments Percent Oxygen Analyzer Appendix customer must supply a control valves or restrictors for any SPAN or ZERO gas source which is attached to the Auto Cal ports The valve should be adjusted to the same flow rate as the sample gas When restrictors are used the gas pressure must be adjusted to achieve the proper flow rate OPERATION WITHOUT A RESTRICTOR DEVICE Operation without a restrictor device is notrecommend as mentioned above A 3000PA without any flow restrictor device was tested on 11 19 97 This results in a flow rate of 2 4 SLPM 1 PSIG This is a cv of 0 023 for the standard sample sys REFERENCE FLOW_1 XLS amp FLOW_2 XLS for information on flow rates at various pressures TAI PART NUMBERS RESTRICTORKIT A68729 UNION SS U11 LP RESTRICTOR R2323 LOW PRESSURE VAC SERVICE STD RESTRICTOR R2324 BLUE DOT NUT N73 FERRULE F73 FERRULE F74 BOTHFERRULES ARE REQUIRED CONVERSIONS 1 PSI 2 04 INCHES OF MERCURY in Hg 1 SCFH 0 476 SLPM W Teledyne Analytical Instruments A 7 Appendix Model 3000PA A 6 Zero Cal The Zero button on the front panel is used to enter the
60. ow diagram for the sampling system In the standard instrument calibration gases zero and span can be connected directly to the Sample In port by teeing to the port with appropriate valves The shaded portion of the diagram shows the components added when the C option is ordered The valving is installed inside the 3000PA C enclosure and is regulated by the instrument s internal electronics s Teledyne Analytical Instruments 2 7 2 Operational Theory Model 3000PA Span In gt lt lt u Components in the shaded area are in the C option internal control valves only and are not shown in the piping Zero In gt gt lt diagram above Sample In gt gt lt cat Solenoid Valves In vacuum service the restrictor should be In normal service the Flowmeter A placed here restrictor should be N placed here we Exhaust Out gt Restrictor Figure 2 5 Flow Diagram 2 4 Electronics and Signal Processing The Model 3000P Percent Oxygen Analyzer uses an 8031 microcon troller with 32 kB of RAM and 128 kB of ROM to control all signal pro cessing input output and display functions for the analyzer System power is supplied from a universal power supply module designed to be compatible with any international power source Figure 2 6 shows the location of the power supply and the main electronic PC boards Universal Power Supply Front Panel Display Boa
61. ple stream It is effectively sealed although one end is permeable to oxygen in the sample gas The other end of the cell is a contact plate consisting of two concentric foil rings The rings mate with spring loaded contacts in the sensor block assembly and provide the electrical connection to the rest of the analyzer Figure 2 1 illustrates the external features Top View Bottom View Concentric Sensing AA FoilContact Surface Rings I Figure 2 1 Micro Fuel Cell Refer to Figure 2 2 Cross Section of a Micro Fuel Cell which illus trates the following internal description Dress Ring Diffusion Membrane Electrolyte Cathode Anode Contact Plate Flexible Membrane Figure 2 2 Cross Section of a Micro Fuel Cell not to scale At the top end of the cell is a diffusion membrane of Teflon whose thickness is very accurately controlled Beneath the diffusion membrane lies 2 2 Teledyne Analytical Instruments Percent Oxygen Analyzer Operational Theory 2 the oxygen sensing element the cathode with a surface area almost 4 cm The cathode has many perforations to ensure sufficient wetting of the upper surface with electrolyte and it is plated with an inert metal The anode structure is below the cathode It is made of lead and has a proprietary design which is meant to maximize the amount of metal available for chemical reaction At the rear of the cell just below the anode structure is a flexible membrane
62. protection you will need to enter your password to gain access to either of these functions Follow the instructions in section 4 3 3 to enter your password Once you have gained clearance to proceed you can enter the Zero or Span function 4 4 1 Cell Failure When the sensor in the 3000PA begins to fail the analyzer will usually require more and more frequent calibration If the 3000PA analysis readings drift downward uncharacteristically try recalibration Ifrecalibration raises the readings temporarily the cell may be failing You can check the output of the cell itself by going to the System function selecting More and pressing Enter The cell output reading will be on the second line of the display Version Self Test Cell Output pA The good reading depends on the class of cell your analyzer is using 4 10 Teledyne Analytical Instruments Percent Oxygen Analyzer Operation 4 Although the B 1 cell is standard in the 3000PA check Specific Model Information in the Front Matter in this manual for the class of cell you purchased Then check Cell Replacement in chapter 5 Maintenance and do the prescribed calculations If a weak cell is indicated replace the cell as described there in chapter 4 4 2 Span Cal The Span button on the front panel is used to span calibrate the ana lyzer Span calibration can be performed using the automatic mode where an internal algorithm compares consecutive readings from th
63. rd Slide out Electronics Drawer Motherboard Preamplifier PCB Figure 2 6 Location of Electronic Components 2 8 Teledyne Analytical Instruments Percent Oxygen Analyzer Operational Theory 2 The signal processing electronics including the microprocessor analog to digital and digital to analog converters are located on the motherboard at the bottom of the case The preamplifier board is mounted on top of the motherboard as shown in the figure These boards are accessible after re moving the back panel Figure 2 7 is a block diagram of the Analyzer electronics Current Second to Voltage Stage Amplifier Amplifier AtoD Converter e Power r Supply Cast remah L System Micro ailure Processor Alarm Displays f Processing Self Test Signal Concentration D to A 0 1V lt Converter Range 0 1V lt Figure 2 7 Block Diagram of the Model 3000P Electronics Teledyne Analytical Instruments 2 9 2 Operational Theory Model 3000PA In the presence of oxygen the cell generates a current A current to voltage amplifier converts this current to a voltage and then the voltage is amplified in the second stage amplifier The second stage amplifier also supplies temperature compensation for the oxygen sensor output This amplifier circuit incorporates a thermistor which is physically located in the cell block The thermistor is a temperature dep
64. strument automatically returns to the analyze mode 4 4 2 2 Manual Mode Spanning Press Span to start the Span function The screen that appears allows you to select whether the span calibration is to be performed automatically or manually Span Settling MAN lt ENT gt For Next Use the AV keys to toggle between AUTO and MAN span settling Stop when MAN appears blinking on the display Press Enter to move to the next screen Span Val 20 90 lt ENT gt Span lt UP gt Mod Press A lt UP gt to permit modification Mod of span value Use the arrow keys to enter the oxygen concentration of the span gas you are using 20 90 if you are using air The lt gt arrows chose the digit and the AV arrows choose the value of the digit Press Enter to enter the span value into the system and begin the span calibration Once the span has begun the microprocessor samples the output at a predetermined rate It calculates the difference between successive samplings and displays this difference as Slope on the screen It takes several seconds for the first Slope value to display Slope indicates rate of change of the Span reading It is a sensitive indicator of stability HHHH Span Slope ppm s When the Span value displayed on the screen is sufficiently stable press Enter Generally when the Span reading changes by 1 or less of the full scale of the range being calibrated for a period of five minutes it is sufficiently s
65. table Once Enteris pressed the Span reading changes to the correct value The instrument then automatically enters the Analyze func tion 4 5 The Alarms Function The Model 3000PA is equipped with 2 fully adjustable concentration alarms and a system failure alarm Each alarm has a relay with a set of form 4 12 Teledyne Analytical Instruments Percent Oxygen Analyzer Operation 4 C contacts rated for 3 amperes resistive load at 250 V ac See Figure in Chapter 3 Installation and or the Interconnection Diagram included at the back of this manual for relay terminal connections The system failure alarm has a fixed configuration described in chapter 3 Installation The concentration alarms can be configured from the front panel as either high or low alarms by the operator The alarm modes can be set as latching or non latching and either failsafe or non failsafe or they can be defeated altogether The setpoints for the alarms are also established using this function Decide how your alarms should be configured The choice will depend upon your process Consider the following four points 1 Which if any of the alarms are to be high alarms and which if any are to be low alarms Setting an alarm as HIGH triggers the alarm when the oxygen concentration rises above the setpoint Setting an alarm as LOW triggers the alarm when the oxygen concentration falls below the setpoint Decide whether you want the alarms to be set as
66. ternates for a time with Press Any Key To Continue Then the analyzer returns to the initial System screen 4 3 6 Version Screen Move the lt gt arrow key to More and press Enter With Version blinking press Enter The screen displays the manufacturer model and software version information Teledyne Analytical Instruments 4 9 4 Operation Model 3000PA 4 4 The Span Functions The analyzer is calibrated using span gas NOTE Zero is not necessary for Percent level measurements Additional information on Zero functions is provided in the Appendix A 6 of this manual Although the instrument can be spanned using air a span gas witha known oxygen concentration in the range of 70 90 of full scale of the range of interest is recommended Since the oxygen concentration in air is 20 9 the cell can take longer to recover if the instrument is used for less than 1 oxygen analysis immediately following calibration in air Connect the calibration gases to the analyzer according to the instruc tions given in Section 3 4 1 Gas Connections observing all the prescribed precautions Shut off the gas pressure before connecting it to the analyzer and be sure to limit the pressure to 40 psig or less when turning it back on Readjust the gas pressure into the analyzer until the flowrate as read on the analyzer s SLPM flowmeter settles between 0 5 and 2 4 SLPM ap proximately 1 5 scfh If you are using password
67. the analyzer and accurately processes the sampled data The microprocessor controls all signal processing input output and display functions for the analyzer 2 2 Micro Fuel Cell Sensor 2 2 1 Principles of Operation The oxygen sensor used in the Model 3000P series is a Micro Fuel Cell designed and manufactured by Analytical Instruments It is a sealed plastic disposable electrochemical transducer The active components of the Micro Fuel Cell are a cathode an anode and the 15 aqueous KOH electrolyte in which they are immersed The cell converts the energy from a chemical reaction into an electrical current in an external electrical circuit Its action is similar to that of a battery There is however an important difference in the operation of a battery as compared to the Micro Fuel Cell In the battery all reactants are stored within the cell whereas in the Micro Fuel Cell one of the reactants oxygen comes from outside the device as a constituent of the sample gas being Teledyne Analytical Instruments 2 1 2 Operational Theory Model 3000PA analyzed The Micro Fuel Cell is therefore a hybrid between a battery and a true fuel cell All of the reactants are stored externally in a true fuel cell 2 2 2 Anatomy of a Micro Fuel Cell The Micro Fuel Cell is a cylinder only 1 inches in diameter and 1 inch thick It is made of extremely inert plastic which can be placed confi dently in practically any environment or sam
68. the part number if available and the model and serial number of the instrument for which the parts are intended Orders should be sent to TELEDYNE Analytical Instruments 16830 Chestnut Street City of Industry CA 91749 1580 Phone 626 934 1500 Fax 626 961 2538 TWX 910 584 1887 TDYANYL COID Web www teledyne ai com or your local representative Teledyne Analytical Instruments A 3 Appendix Model 3000PA A 3 Drawing List D 64573 Final Assembly Outline Drawing A 4 19 inch Relay Rack Panel Mount en vee were ee ao Q wwa MOS CRVEEAGAAICES Figure A 1 Single and Dual 19 Rack Mounts A 4 Teledyne Analytical Instruments Percent Oxygen Analyzer Appendix A 5 3000 SERIES ANALYZERS APPLICATION NOTES ON RESTRICTORS PRESSURES AND FLOW RECOMMENDATIONS 3000 series analyzers require reasonably regulated sample pressures While the 3000 analyzers are not sensitive to variations of incoming pressure provided they are properly vented to atmospheric pressure The pressure must be maintained as to provide auseable flow rate trough the analyzer Any line attached to sample vent should be 1 4 or larger in diameter FLOW RATE RECOMMENDATIONS Ausable flow rate for a 3000 series analyzer is one which can be measured on the flowmeter This is basically 2 2 4SLPM The optimum flow rate is 1 SLPM mid scale Note response time is dependent on flow rate a low flow rate will result in slow r
69. tting the Display Contrast Function is DISABLED Refer to Section 1 6 Ifyou cannotread anything on the display after first powering up 1 Observe LED readout a If LED meter reads all eights and periods go to step 3 b IfLED meter displays anything else go to step 2 2 Press button twice to turn Analyzer OFF and ON again LED meter should now read all eights and periods Go to step 3 4 4 Teledyne Analytical Instruments Percent Oxygen Analyzer Operation 4 4 3 2 Setting up an Auto Cal When proper automatic valving is connected see chapter 3 installa tion the Analyzer can cycle itself through a sequence of steps that automati cally zero and span the instrument Note If you require highly accurate Auto Cal timing use external Auto Cal control where possible The internal clock in the Model 3000PA is accurate to 2 3 Accordingly internally scheduled calibrations can vary 2 3 per day To setup an Auto Cal cycle Choose System from the Function buttons The VFD will display five subfunctions Contrast Function is DISABLED Contrast Auto Cal Refer to Section 1 6 PSWD Logout More Use lt gt arrows to blink Auto Cal and press Enter A new screen for Span Zero set appears Span OFF Nxt Od Oh Zero OFF Nxt Od Oh Press lt gt arrows to blink Span or Zero then press Enter again You won t be able to set OFF to ON if a zero interval is entered A Span Every or Zero Every scre
70. ument into the power source e Check the integrity and accuracy of the gas connections Make sure there are no leaks e Check the integrity and accuracy of the electrical connections Make sure there are no exposed conductors e Check that sample pressure is between 3 and 40 psig according to the requirements of your process Power up the system and test it by performing the following operations 1 Repeat the Self Diagnostic Test as described in chapter 4 section 4 3 5 3 10 Teledyne Analytical Instruments Percent Oxygen Analyzer Operation 4 Operation 4 1 Introduction Once the analyzer has been installed it can be configured for your application To do this you will e Setsystem parameters e Establish a security password if desired requiring Operator to log in e Establish and start an automatic calibration cycle if desired e Calibrate the instrument e Define the three user selectable analysis ranges Then choose autoranging or select a fixed range of analysis as required e Set alarm setpoints and modes of alarm operation latching failsafe etc Before you configure your 3000PA these default values are in effect Ranges LO 1 MED 5 HI 10 Auto Ranging ON Alarm Relays Defeated 10 HI Not failsafe Not latching Zero Auto every 0 days at 0 hours Span Auto at 20 9 every 0 days at 0 hours If you choose not to use password protection the default password is automatically displaye
71. vide the optimum flow rate CAUTION flow restrictors have very small orifices and may be plugged by small particles 005 dia or larger A sample filter must be included in the sample line prior to the restrictor a 60 micron filter is recommended 3000PA EXAMPLES Example 1 with aincoming pressure of 10 psig the std restrictor blue dot will provide a flow rate of 76 SLPM Up stream of the restrictor the sample line pressure will be 10 psig while down stream including the cell the pressure will be at atmospheric pressure analyzer vented to atmospheric pressure Note all other pressure drops in the sample path are insignificant at these flow rates This insures that the cell operates at atmospheric pressure At very high flow rates off scale of flow meter pressure drops other than the restriction device could become significant and result in pressurizing the cell Example 2 A3000PA is configured for vacuum service as follows The un marked restrictor is placed in the sample vent port The down stream end of the restrictor is then connected to a vacuum pump and by pass valve The by pass valve is adjusted to provide a flow rate of 1 SLPM The sample pressure between the pump and the restrictor will be approximately 7 inches of mercury while the pressure in the balance of the sample system including the cell will be approximately at atmospheric pressure provided the sample flow into the analyzer is not blocked BY PASS T
72. with the DC analog outputs If no custom ranges are defined by the user the instrument defaults to Low 0 1 00 Med 0 5 00 High 0 10 00 The Model 3000PA is set at the factory to default to autoranging In this mode the microprocessor automatically responds to concentration changes by switching ranges for optimum readout sensitivity If the current range limits are exceeded the instrument will automatically shift to the next higher range If the concentration falls slightly below full scale of the next lower range the instrument will switch to that range A corresponding shift in the DC percent of range output and in the range ID outputs will be noticed The autoranging feature can be overridden so that analog output stays on a fixed range regardless of the oxygen concentration detected If the concentration exceeds the upper limit of the range the DC output will saturate at 1 V dc However the digital readout and the RS 232 output of the concentra tion are unaffected by the fixed range They continue to read accurately with full precision See Front Panel description in Chapter 1 4 6 1 Setting the Analog Output Ranges To set the ranges enter the range function mode by pressing the Range button on the front panel L 1 00 M 5 00 H 10 00 Mode AUTO Use the lt gt arrow keys to blink the range to be set low L medium M or high H Use the AV arrow keys to enter the upper value of the range all ran
Download Pdf Manuals
Related Search
Related Contents
伊勢広域環境組合 火葬業務委託 仕様書 PG5 User Manual - Automation Products Group, Inc. dossier de presse ProEtching User Manual Maytag MGR8600DS Dimension Guide Descriptions des champs de données 取扱説明書 - 株式会社メイコーテック Let`s note M1 の主な仕様 JVC RX-6012VSL User's Manual Copyright © All rights reserved.
Failed to retrieve file