Home
User Manual for HYPOSAT (including HYPOMOD) 1
Contents
1. Program Description PD 11 1 HYPOSAT HYPOMOD Johannes Schweitzer NORSAR P O Box 53 N 2027 Kjeller Fax 47 63818719 E mail johannes norsar no HYPOSAT 4 4 and HYPOMOD 1 1 as of October 2002 User Manual for HYPOSAT including HYPOMOD 1 Introduction HYPOSAT is a program package developed to locate seismic sources It utilizes travel time data backazimuth i e station to event azimuth values and ray parameter values Phases considered are those included in IASP91 type tables and reflections from the Conrad and from the Mohorovi i discontinuities if local models are used The program follows the phase name recommendations of the IASPEI Working Group on Standard Phase Names see IS 2 1 Additionally all possible travel time differences between different onsets at individual stations are estimated and can be included in the location process e g PcP P as an additional constraint for the source depth If amplitude and period measurements for P onsets or surface waves are available station magnitudes and an event magnitude can also be estimated More details about the general features of the program can be found in Schweitzer 1997 2001a The data files containing the global models e g iasp91 tbl and iasp91 hed the list of up to now defined seismo tectonic units REG_L3 DAT the attenuation curves for magnitude estimations MB_G R DAT and MB_V C DAT and the ellipticity corrections elcordir tbl mu
2. 3 0 file format Only these two formats are currently supported To get the location results faster the usage of a file containing only your usually used stations is recommended STATION CORRECTION FILE Name of the file for station corrections This file must contain the station name and then the local velocities for P and S waves below this station to calculate the best elevation correction for this station This value can also be used to correct for a known velocity anomaly below this station The input is format free If such information is not available leave it blank If one station is not in this list the default values as defined by the input parameters PPVELOCITY TO CORRECT ELEVATION and S VELOCITY TO CORRECT ELEVATION are used example for a file containing station corrections GEC2 532 32 in free format P VELOCITY TO CORRECT ELEVATION Local P velocity Vpl to correct for the station elevation default 5 8 km s if this parameter is not set in the STATION CORRECTION FILE If Vpl 99 a station elevation correction is not applied and the STATION CORRECTION FILE is not used S VELOCITY TO CORRECT ELEVATION Local S velocity Vsl to correct for the station elevation default Vpl sqrt 3 if not given in STATION CORRECTION FILE LG GROUP VELOCITY A group velocity for Lg can be defined the default value is 3 5 km s RG GROUP VELOCITY A group velocity for Rg can be defin
3. 81 71 03 02 PKPdf fe Fe re PrP reg bg a be a ha Pdif 88 PKPdf 82 PKPdf 09 PKPdf Travel time differences Sta WRA QIS ASAR ASAR ASAR WARB STKA t Delta 22 DN Dede 25 Ks 2t 36 556 353 916 916 916 346 063 Phases Obse s POP POP Se ae PcP PcP Maximum azimuthal Residuals of data 33 onset times 20 backazimuth values 17 ray parameters 7 travel time differences P 244 P 212 SP 208 P 268 PcP 60 SP 198 P 145 169 211 deg 965 deg 0 km R P Northern Molucca Sea Onset time 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 01 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 rved 000 000 300 400 100 200 200 41 45 42 45 42 45 46 42 45 42 43 57 43 43 43 43 04 43 46 43 46 47 48 48 49 49 49 49 49 50 50 55 55 55 56 56 44 48 12 44 16 45 45 31 49 42 OF 48 it Ly 25 46 25 5 46 22 51 47 Os y 8 1 17 St 51 aye 0 28 41 42 Ira kos 44 Res it ipt 0 As 0 O Fa 914 008 134 083 949 413 390 gap of defining observations Weighted RMS of onset times ISC ty Weighted misfit of input data onset times backazimuth values ray parameters travel time differences misfit over all end o 33 20 17 RMS 0 988 SSe OLI 3 151 0 681 pe Ll 217 e301
4. 90 50 60 188 80 10 70 10 20 00 30 00 80 60 60 10 90 Period cooo o o cooo 300 900 500 500 800 700 400 360 600 700 860 600 550 450 750 550 900 550 750 900 MAG 4 22 3 88 3 82 3 26 4 51 399 4 47 10 Pek 06 68 Bob obo Program Description PD 11 1 References Dziewonski A M and Anderson D L 1981 Preliminary reference Earth model Physics of the Earth and Planetary Interiors 25 297 356 Gutenberg B and Richter C F 1956a Magnitude and energy of earthquakes Annali di Geofisica 9 1 15 Gutenberg B and Richter C F 1956b Earthquake magnitude intensity energy and acceleration Bull Seism Soc Am 46 105 145 Jeffreys H and Bullen K E 1940 1948 1958 1967 and 1970 Seismological Tables British Association for the Advancement of Science Gray Milne Trust London 50 pp Kennett B L N Ed 1991 IASPEI 1991 Seismological Tables Research School of Earth Sciences Australian National University 167 pp Kennett B L N and Engdahl E R 1991 Traveltimes for global earthquake location and phase identification Geophys J Int 105 429 465 Kennett B L N Engdahl E R and Buland R 1995 Constraints on seismic velocities in the Earth from traveltimes Geophys J Int 122 108 124 Mooney W D Laske G and Masters T G 1998 CRUST 5 1 a
5. Res WRA 22 534 SS P 244 000 4 530 QIS 25 328 PeP Pl 212 000 1 178 ASAR 25 895 PCP P 208 300 1 005 ASAR 29 895 S P 268 400 2 810 ASAR 25 895 S Pep 60 100 1 805 WARB 27 329 PcP P 198 200 1 490 STKA 36 040 PcP P 145 200 1 346 The azimuth range of the maximum gap without any observations is always given in clockwise direction Maximum azimuthal gap of defining observations 53 2 deg gt 137 1 deg 83 9 deg 2 Res gt Res yi Res se N sis N ee N F RMS is defined as MEAN ERROR is defined as and MEAN is defined as all with the listed residuals Res and the number of data N Residuals of defining data RMS MEAN ERROR MEAN 32 onset times 1 199 0 826 0 194 s 9 azimuth values 5 858 4 955 2 336 deg 10 ray parameters 0 812 0 709 0 040 s deg 7 travel time differences 22333 2 023 2 023 s The weighted RMS is here defined as hyposat in as used at the ISC Weighted RMS of onset times with the listed residuals Res and the data weight w used for the inversion i e here the standard deviations of the data from ISC type pea The weighted misfit is here defined for the L1 norm as 1 455 s gt Fe N and for the L2 norm as with N the number of data Input data also means data not used to locate the event In this case all backazimuth and ray parameter observations defined as usable by the switches in hyposat in were also included Weighted misfit of input data
6. calculate travel time differences and use them in the inversion Position 5 the onset time reading of this onset will be corrected R or r or not corrected _ for the crustal structure below a reflection point at the Earth s surface by calculating the travel time difference for the crustal path between the used global model as set with GLOBAL MODEL in hyposat parameter and CRUST 5 1 Position 6 if set to 2 3 or 4 the other global Earth model as set with GLOBAL MODEL 2 GLOBAL MODEL 3 or GLOBAL MODEL 4 in hyposat parameter will be used to calculate the theoretical onset time the ray parameter and their partial derivatives for this onset With any other character at this place the standard global Earth model see GLOBAL MODEL in hyposat parameter will be used Keeping all positions 1 6 blank the flag combination TASDR_ will be used as default value Program Description PD 11 1 If one also wishes to calculate magnitudes see MAGNITUDE CALCULATION in hyposat parameter this line can contain the following data in the following format a5 1x a8 1x 14 4 1x 12 1x f6 3 1x f5 3 1x f6 2 3 1x f5 2 1x a6 1x f6 3 1x f12 2 station name phase name year month day hour minute second standard deviation of the onset time backazimuth standard deviation of the backazimuth observation either ray parameter s deg or apparent velocity km s see SLOWNESS S DEG in the hyposat par
7. file you will get the following output file hyposat out This example was calculated on a UNIX system the results on a LINUX system might be slightly different Explanations are included in HYPOSAT Version 4 4 NORTHERN MOLUCCA SEA 1996 29 June from pIDC s Reviewed Event Bulletin REB Parameters of starting solution 1 standard deviation Not all backazimuth observation pairs are used if one station is more than 170 deg apart from the crossing point this crossing point is skipped Mean epicenter calculated from 165 backazimuth observation pairs Mean epicenter lat 29 4748 42 0082 deg Mean epicenter lon 121 5921 6 0977 deg type 1 S P or S1 P1 observation type 2 Sg Pg observation type 3 Sn Pn observation type 4 Sb Pb observation S P Travel time difference type 1 with 2 observation s Mean source time 836008582 700 11 636 s Mean vp vs 1 758 0 035 Iterations 6 i Number of defining 58 First reference model ak135 Second reference model iasp91 The new source parameters Confidence level of given uncertainties 68 27 Source time 1996 06 29 00 36 42 801 0 150 s or 836008602 801 0 150 s Epicenter lat 1 3045 0 0250 deg Epicenter lon 126 3165 0 0611 deg Source depth 0 00 km Fixed Epicenter error ellipse Major axes 5 98 km Minor axes 3 61 km Azimuth 62 0 deg Area 67 82 km 2 Flinn Engdahl Region 266 Northern Molucca Sea Magnitudes 4 39 mb G R 3 57 Ms R
8. global crustal model at 5 x 5 J Geophys Res 103 727 747 Morelli A and Dziewonski A M 1993 Body wave traveltimes and a spherically symmetric P and S wave velocity model Geophys J Int 112 178 194 Rezapour M and Pearce R G 1998 Bias in surface wave magnitude Ms due to inadaquate distance corrections Bull Seism Soc Am 88 1 43 61 Schweitzer J 1997 HYPOSAT a new routine to locate seismic events NORSAR Scientific Report 1 97 98 94 102 NORSAR Kjeller Norway November 1997 Schweitzer J 2001a HYPOSAT An enhanced routine to locate seismic events Pure and Appl Geophys 158 277 289 Veith K F and Clawson G E 1972 Magnitude from short period P wave data Bull Seism Soc Am 62 435 452 15 Program Description PD 11 1 16
9. km DEPTH FLAG f b d F B D STARTING SOURCE TIME STARTING TIME ERROR s MAXIMUM OF ITERATIONS TO SEARCH OSCILLATION DEF 4 LOCATION ACCURACY re epochal time ak135 iasp91 data stations dat 4 5 B23 stations cor 3 3 5 752 2 N eA oe Oo CONSTRAIN SOLUTION 0 1 CONFIDENCE LEVEL 68 3 99 99 EPICENTER ERROR ELLIPSE DEF 1 SLOWNESS S DEG 0 APP VEL km DEFAULT 1 Program Description PD 11 1 MAXIMUM AZIMUTH ERROR deg 3 0 MAXIMUM SLOWNESS ERROR s deg Ake FLAG USING TRAVEL TIME DIFFERENCES MAGNITUDE CALCULATION DEF 0 E P ATTENUATION MODEL G R or V C G R S ATTENUATION MODEL IASPEI or R P R P INPUT FILE NAME DEF hyposat in OUTPUT SWITCH YES 1 DEFAULT nae OUTPUT FILE NAME DEF hyposat out 2 OUTPUT LEVEL 4 The order in which these parameters are set is arbitrary The parameters must be identified with the above given description bold faced The parameters must be written in the file in capital letters The settings itself must follow after the 37th character of the line i e in this example two characters after the colon Whenever a line does not comply with this rule it will be ignored e g blank lines or lines starting with a This file is read only once at the beginning of a location run Each line can be repeated several times within the file with anot
10. will be written default OUTPUT FILE NAME A file name can be given at this place if not the standard output file name hyposat out should be used OUTPUT LEVEL Verbosity level for output during the location process on screen 0 10 or on file gt 10 during the inversion the default value is 4 If OUTPUT LEVEL gt 10 the output level for the screen is internally calculated In addition the resolution covariance correlation and the information density matrix will then be written out in a file called hyposat gmi out This file contains always the named matrices for the last inversion OUTPUT LEVEL can be set to the following values Input Matrix Output Screen Output Level 0 10 None 0 10 11 the resolution matrix will be written out 0 12 the covariance matrix will be written out 1 13 the correlation matrix will be written out 3 14 all three matrices will be written out 5 15 7 7 16 9 17 19 7 10 20 plus the diagonal elements of information 0 density matrix will be written out 21 29 v as for 11 19 30 plus the whole information density matrix 0 Program Description PD 11 1 will be written out 31 39 4 as for 11 19 4 The File hyposat in HYPOSAT then needs a file with all the readings for a specific event This file has by default the name hyposat in but the name can be defined in the parameter file hyposat parameter The
11. 0 45 45 200 0 354 345 10 ATI 2230 0 00 TASD 2 20 0 500 ASAR 25 916 163 87 S 00 46 45 300 0 595 347 60 5 23 20 30 4 49 TA D 3 90 0 800 WARB 27 346 179 32 P 00 42 31 200 0 983 339 40 19 85 8 20 0 76 T SD 6 50 0 700 4 41 WARB 27 346 179 32 PcP 00 45 49 400 0 570 T D MEEK 28 767 194 40 P 00 42 42 700 0 210 T CMAR 31 783 304 10 P 00 43 9 000 0 659 109 70 9 59 7580 lt 0 99 TAS 0 60 0 400 3 79 CMAR 31 783 304 10 LR 00 57 48 700 18 251 110 00 9 29 39 450 0 45 A 188 80 19 360 3 88 FORT 31 966 177 13 P 00 43 11 300 0 247 T WOOL 32 514 187 39 P 00 43 15 600 0 284 7 90 S021 19 90 1 14 TAS 4 10 0 600 4 47 SHK 33 574 9 55 P 00 43 25 400 0 298 H KSAR 35 974 2 WO P 00 43 46 700 0 958 177 30 5 40 10 10 1 54 TA 1 70 0 700 4 03 KSAR 35 974 2 15 LR 01 04 25 000 251 344 160 00 22 70 46 00 6 96 40 10 19 860 3 26 STKA 36 063 157 58 P 00 43 46 800 0 192 323 20 10 18 9 00 0 45 T SD 7 20 0 600 4 72 STKA 36 063 157 58 PcP 00 46 12 000 0 198 T D MJAR 36 740 16 13 P 00 43 51 900 0 465 357 10 156 92 18 80 10 29 T 2 lt 0 0 y 0 930 40217 This P onset has now a larger residuum than in the first run and is therefore not longer defining for the solution PDY 59 108 352 00 P 00 46 47 000 ALES TINO se 5229 1660 lt 032 Ss 4 30 0 450 4 79 12 Program Description PD 11 1 ZAL 62 536 333 80 P 00 47 9 000 0 712 T ABKT 72 068 309 50 P 00 48 9 500 0 395 T NRI 72 600 346 76 x P 00 48 8 700 2 787 195 90 56 30 3 90 2 04 3 00 0750 MAW 81 360 2
12. 00 28 P 00 49 1 100 0 351 T KVAR 84 474 313 86 P 00 49 17 200 0 469 T NPO 87 451 25 36 P 00 49 31 000 0 748 T Note that the following P onset has now a smaller residuum but was still too large to be used as defining ARCES 92 544 339 77 P 00 49 51 700 3 787 94 50 15 07 4 10 0 52 S 0 80 0 550 SPITS 92 743 348 81 P 00 49 55 900 0 366 116 60 46 39 3 50 1 11 TS 3 60 0 900 FINES 93 735 331 71 P 00 50 0 000 1 073 111 20 30 81 5 90 1 30 TS 0 60 0 550 HFS 99 931 332 03 P Pdif 00 50 28 700 0 564 311 30 118 25 1 50 2 95 T 1 10 0 750 SCHQ 122 998 9 02 PKPdf 00 55 41 200 0 464 T TXAR 123 393 53 20 PKPdf 00 55 42 700 0 310 au DBIC 130 607 279 88 PKPdf 00 55 57 100 0 742 T PLCA 137 902 160 82 PKPdf 00 56 9 100 0 377 311 90 106 29 6 40 4 56 T 0 90 0 900 LPAZ 159 427 137 09 PKPdf 00 56 44 700 0 241 T Defining travel time differences Stat Delta Phases Observed Res WRA 22 996S P 244 000 0 914 QIS 293353 PCP PI 212 000 0 008 ASAR 25 916 PcP P 208 300 0 134 ASAR 29 916 9 P 268 400 1 083 ASAR 259165 PCP 60 100 0 949 WARB 27 346 PcP P 198 200 0 413 STKA 36 063 PcP P 145 200 0 390 Here we get the number of all iterations e g also including an earlier solution for fixed depth Total number of iterations 18 Maximum azimuthal gap of defining observations 53 2 deg gt 137 1 deg 83 9 deg Residuals of defining data RMS MEAN ERROR MEAN 31 onset times 0 658 0 558 0 049 s 9 azimuth values 5 862 4 957 2 316 deg 11 ra
13. 00 43 51 9 0 300 357 1 20 0 18 8 1 00 TASD__ 0 550 2 00 PDY P 996 06 29 00 46 47 0 04300 221 52 30 0 6 6 2 00 TASD__ 0 450 4 30 ZAL P 996 06 29 00 47 09 0 0 300 999 0 0 999 0 00 TASD__ ABKT P 996 06 29 00 48 09 5 0 300 999 0 0 999 0 00 TASD__ NRI P 1996 06 29 00 48 08 7 0 300 195 9 30 0 3 9 2 00 TASD__ 0 750 3 00 Note the following phase has an irregular phase name Therefore we will not use its onset time or slowness for inversion x NRI x 996 06 29 00 48 08 7 0 300 195 9 30 0 3 9 2 00 _A 0 750 3 00 MAW P 996 06 29 00 49 01 1 0 300 999 0 0 999 0 00 TASD__ KVAR P 996 06 29 00 49 17 2 0 300 999 0 0 999 0200 TASD NPO P 996 06 29 00 49 31 0 0 300 999 0 0 999 0 00 TASD__ ARCES P 996 06 29 00 49 51 7 0 300 94 5 20 0 4 1 1 00 TASD__ 0 550 0 80 SPITS P 996 06 29 00 49 55 9 0 300 116 6 30 0 3 5 2 00 TASD__ 0 900 3 60 FINES P 996 06 29 00 50 00 0 0 300 111 2 20 0 5 9 1 00 TASD__ 0 550 0 60 HFS P 996 06 29 00 50 28 7 0 300 311 3 30 0 1 5 2 00 TASD__ 0 750 1 10 TXAR PKPdf 996 06 29 00 55 42 7 0 300 999 0 0 999 0 00 TASD__ SCHQ PKPdf 996 06 29 00 55 41 2 0 300 999 0 0 999 0 00 TASD__ DBIC PKPdf 996 06 29 00 55 57 1 0 300 999 0 0 999 0 00 TASD__ PLCA PKPdf 996 06 29 00 56 09 1 0 300 311 9 30 0 6 4 2 00 TASD__ 0 900 0 90 LPAZ PKPdf 996 06 29 00 56 44 7 0 300 999 0 0 999 0 00 TASD__ 10 Program Description PD 11 1 5 The File hyposat out With the above example for a hyposat in
14. 3F10 3 10 000 5 800 3 200 20 000 5 800 3 200CONR mark for the Conrad 20 000 6 500 3 600 in format 3F10 3 A4 30 000 6 800 3 900MOHO mark for the Moho 30 000 8 100 4 500 77 500 8 050 4 400 120 000 8 100 4 500 PHASE INDEX FOR LOCAL MODEL This parameter allows the user to specify the set of seismic phases for which travel times and their partial derivatives will be calculated in the local regional model The parameter is a 4 digit number The position of a digit defines the phase type for which the value of the digit defines the action for this phase dxxx the digit d at this place is the flag for surface reflections e g pP or sS xdxx the digit d at this place is the flag for surface multiples e g PP or SS xxdx the digit d at this place is the flag for reflections at the Conrad or the Mohorovicic discontinuity e g PbP or SmS Note that the here used name PbP to indicate reflection from the Conrad discontinuity is not a regular phase name as recommanded by the IASPEI Working Group on Standard Phase Names see IS 2 1 xxxd the digit d at this place is the flag for converted phases e g sP or PmS d itself can have the following values d 1 only P type onsets will be calculated d 2 only S type onsets will be calculated d 3 both phase types P and S will be calculated e g 1320 means the phases pP PP SS SbS and SmS will be calculated but no conversions 000 or simply 0 means none of thes
15. 429 946 703 FOREN f the example TAF HENNO 700 TOQ lt 800 800 900 200 300 200 400 700 000 700 1 300 600 400 700 000 25 800 000 900 000 000 500 FOO 100 200 000 700 900 000 1007 200 700 100 100 700 53 2 MEAN ERROR 0 703 34 014 L973 0 556 8 s L2 140 282 726 093 763 Res 1 002 1 916 0 540 0 532 0 488 0 354 0 595 0 983 0 570 0 210 0 659 8 252 0 247 0 284 0 298 0 958 1 343 0 192 0 198 0 465 2 112 0 712 0 395 2 787 0 351 0 469 0 748 3 787 0 370 1 073 0 564 0 464 0 310 0 742 0 377 0 241 deg Baz Res 331 50 ft heel 338 00 0 260 346 30 3 93 345 10 2 T3 347 60 5 23 339 40 19 85 109 70 9 59 110 00 9 29 TA 0 71 177 30 5 40 160 00 22 70 323 20 10 18 357 10 156 92 DLT AZO s 5 2 97 195 90 56 30 94 50 15 07 116 60 46 39 111 20 30 81 311 30 118 25 311 90 106 29 gt 137 1 deg MEAN 0 097 s 8 352 deg 0 963 s deg 0 063 s 14 Used TASD TASD TD T AD TASD TASD TASD TASD T D TD TASD TASD T D REB Rayp Res ATs 1 0 0 51 17 00 0 65 Er Se dye 95 2 30 0 00 20 30 4 49 8 20 0 76 7 80 0 99 39 50 0 45 9 90 1 14 10 10 1 54 46 00 6 96 9 00 0 45 18 80 10 29 6 60 0 32 3 90 2 04 4 10 0 52 350 1 01 5 90 1 30 Trago 2 95 6 40 4 56 83 9 deg Amplitude N AWNW rovo a0 00 40 20 lt
16. 62 559 333 79 P 00 47 9 000 0 523 T ABKT 72 094 309 51 P 00 48 9 500 0 098 T The unknown phase x was associated as P and the corresponding residuals were calculated NRI 72 621 346 75 x P 00 48 8 700 3 059 195 90 26031 3490 2205 3 MAW 81 351 200 29 P 00 49 1 100 0 155 F KVAR 84 499 313 86 P 00 49 17 200 0 871 ue NPO 87 457 25 36 FP 00 49 31 000 1 079 uy This P onset does not at all fit in the location with a fixed depth at 0 km ARCES 92 567 339 77 P 00 49 51 700 4 215 94 50 15 08 4 10 0 52 S 0 SPITS 92 763 348 81 P 00 49 55 900 0 784 116 60 46 40 3 50 1 11 TS 3 FINES 93 759 331 71 P 00 50 0 000 1 509 111 20 30 82 5 90 3020S 0 HFS 99 955 FIZ UIP Pdif 00 50 28 700 1 003 311 30 118 24 1 50 2 95 T 1 SCHQ 123 011 9 03 PKPdf 00 55 41 200 0 098 T TXAR 123 387 53 22 PKPdf 00 55 42 700 0 215 T DBIC 130 629 279 87 PKPdf 00 55 57 100 0 161 T PLCA 137 880 160 81 PKPdf 00 56 9 100 0 877 311 90 106 27 6 40 4 56 T 0 11 50 00 40 20 90 50 60 80 10 70 10 20 00 30 00 80 60 60 bO 90 Period DODO 1 9 5 ocooo 300 900 500 500 800 700 400 360 600 700 860 600 950 450 750 550 900 550 750 900 MAG Sadh 3 26 4 68 4 09 4 78 32 78 16 ee ob oso Program Description PD 11 1 LPAZ 159 401 137 08 PKPdf 00 56 44 700 0 776 T Defining travel time differences Stat Delta Phases Observed
17. L1 L2 33 onset times 2 744 0 450 20 azimuth values 1351 2 282 17 ray parameters 1 475 2 736 7 travel time differences 3 637 3 893 77 misfit over all 2 183 2 114 TO LAT LON Z VPVS DLAT DLON DZ DTO DVPVS DEF RMS 1996 06 29 00 36 42 801 1 305 126 317 0 00 ITG 0 0250 0 0611 Fixed 0 150 0 04 58 1 199 However we have still a fixed depth Let us now try to fit the data better with another depth see DEPTH FLAG is set to b Iterations 4 Number of defining 58 First reference model ak135 Second reference model iasp91 The new source parameters Confidence level of given uncertainties 68 27 Source time 1996 06 29 00 36 49 169 0 478 s or 836008609 169 0 478 s Epicenter lat 1 3211 0 0147 deg Epicenter lon 126 2965 0 0348 deg Source depth 44 50 4 28 km Note the now much smaller error ellipse Epicenter error ellipse Major axes 3 40 km Minor axes 1 94 km Azimuth Tiag deg Area 20 75 km 2 Flinn Engdahl Region 266 Northern Molucca Sea Magnitudes 4 36 mb G R 3 57 Ms R P Stat Delta Azi Phase used Onset time Res Baz Res Rayp Res Used Amplitude Period MAG WRA 22 556 159 93 P 00 41 44 700 1 002 331 50 SRA DY S 0 51 TASD 4 50 0 300 4 36 WRA 225596 199 93 S 00 45 48 700 1 916 338 00 0 61 17 00 0 65 TASD 2 00 0 900 QIS 25 353 149 75 Pl P 00 42 12 800 0 540 y D QIS 25 353 149 75 PoP 00 45 44 800 0 532 T D ASAR 25 916 163 87 P 00 42 16 900 0 488 346 30 3 93 7 10 1 95 TAD 3 40 0 500 4 19 ASAR 25 916 163 87 Pek 0
18. P Stat Delta Azi Phase used Onset time Res Baz Res Rayp Res Used Amplitude WRA 22 534 159 96 P 00 41 44 700 0 167 331 50 Seky ALO 0 47 TASD 4 WRA 22 534 159 96 38 00 45 48 700 4 364 338 00 0 65 17 00 2 34 TA D z QIS 25 328 149 77 Pl P 00 42 12 800 1 244 ToD QIS 25 328 149 77 PcP 00 45 44 800 0 066 T D ASAR 25895 163 91 P 00 42 16 900 0 181 346 30 3 89 710 1 96 TAD 3 ASAR 25 895 163 91 PcP 00 45 45 200 0 823 345 10 269 2 30 0 01 TASD 2 ASAR 25 895 163 91 S 00 46 45 300 2 629 347 60 5 19 20 30 4 48 TAD 3 WARB 27 329 179 36 P 00 42 31 200 1 588 339 40 19 89 8 20 0 78 T SD 6 WARB 27 329 179 36 PoP 00 45 49 400 0 097 T D MEEK 28 756 194 44 P 00 42 42 700 0 321 T CMAR 31 809 304 11 P 00 43 9 000 0 476 109 70 9 60 7 80 0 99 TAS Oo The following LR onset was only used with its backazimuth observation CMAR 31 809 304 11 LR 00 57 48 700 23 611 110 00 9 30 39 50 0 45 A 188 FORT 31 949 177 17 P 00 43 11 300 0 807 T WOOL 32 500 187 42 P 00 43 15 600 0 239 7 90 O sTS 949 0 1 13 TAS 4 SHK 33 587 9 52 P 00 43 25 400 0 573 Ei KSAR 35 990 Zea 00 43 46 700 1 176 177 30 5 37 10 10 1 53 TA F KSAR 35 990 2 12 LR 01 04 25 000 257 097 160 00 22 67 46 00 6 96 40 STKA 36 040 157 60 P 00 43 46 800 0 740 323 20 10 20 9 00 0 43 T SD vi STKA 36 040 157 60 PcP 00 46 12 000 0 606 T D MJAR 36 750 16 10 P 00 43 51 900 0 210 357 10 156 96 18 80 10 28 T 2 PDY 59 127 351 99 P 00 46 47 000 1 992 111 20 52 89 6 60 gt 0 33 T S 4 ZAL
19. ameter file standard deviation of the slowness observation in s deg or km s the six character long combination of controlling flags see above the period of the observed onset and finally the amplitude of the signal in nm S type onsets must always be listed after the corresponding P type onsets if not the travel time difference between these two onsets S P cannot be used for calculating a starting solution for source time and distance from the corresponding station If it is unknown of which type the P or S onsets are you can choose the names P1 or S1 to tell the program that you know it is the first P or the first S onset at this station Then the program itself chooses the right phase name depending on the distance of the observation Onsets with a station name starting with a and lines starting with a blank character are not used The values for backazimuth slowness period and amplitude are optional If backazimuth or slowness values are not available they must be set to 999 or 1 the amplitude period information is only used if both values are larger than 0 For each phase name not defined by the applied travel time model s the program searches for the best fitting phase However onset time and ray parameter of such a phase are not used in the inversion but eventually the backazimuth information When using the correct format an input file can look like the following example example for a hypos
20. arted and executed The simplest way to use the program for own locations is to start from one of the following examples and modify input data and parameters for your needs The meaning and format of the input is described in the following sections Installation of HYPOSAT 1 Make a sub directory for HYPOSAT copy the compressed tar file containing the hyposat software package from the NORSAR s ftp site tp norsar no decompress it and run tar xvf hyposat version tar or tar xvf hyposat_u version tar or tar xvf hyposat_l version tar depending on the module you have downloaded Then you will have a directory containing the following files and subdirectories in the UNIX Solaris case bin data examples man README u src or in the LINUX bin_l data l examples_l man README l src_l or all together if you had downloaded the full version The file README_u or README_ contains a complete list of all files following with the installed hyposat software package and a explanation of these files 2 If needed re compile the software in the src or src_l subdirectory by running make and or make f Makefile hypomod Executing HYPOSAT Change to the subdirectory examples or examples_l Here you will find input file examples for four different cases an event observed with a network of stations net a single array single_array a set of local and regional stations regional and a teleseismically observed even
21. at in file NORTHERN MOLUCCA SEA 1996 29 June from pIDC s Reviewed Event Bulletin REB WRA P 996 06 29 00 41 44 700 0 300 331 50 20 00 11 10 1 00 TASD__ 0 300 4 50 WRA 996 06 29 00 45 48 7 0 600 338 0 20 0 17 0 2 00 TASD__ 0 900 2 00 QIS P1 996 06 29 00 42 12 8 0 300 999 0 0 999 0 00 TASD__ QIS PcP 996 06 29 00 45 44 8 0 300 999 0 0 999 0 00 TASD__ ASAR P 996 06 29 00 42 16 9 0 300 346 3 20 0 Eri 1 00 TASD__ 0 500 3 40 ASAR PcP 996 06 29 00 45 45 2 0 300 345 1 20 0 Div 1 00 TASD__ 0 500 2 20 ASAR S 996 06 29 00 46 45 3 0 600 347 6 20 0 20 3 2 00 TASD__ 0 800 3 90 WARB P 996 06 29 00 42 31 2 0 300 339 4 30 0 8 2 2 00 TASD__ 0 700 6 50 WARB PcP 996 06 29 00 45 49 4 0 300 999 0 0 999 0 00 TASD__ MEEK P 996 06 29 00 42 42 7 0 300 999 0 0 999 0 00 TASD__ CMAR P 996 06 29 00 43 09 0 0 300 109 7 30 0 7 8 2 00 TASD__ 0 400 0 60 CMAR LR 996 06 29 00 57 48 7 50 000 110 0 30 0 39 5 2 00 _A 19 360 188 80 FORT P 996 06 29 00 43 11 3 0 300 999 0 0 999 0 00 TASD__ WOOL P 996 06 29 00 43 15 6 0 300 7 9 30 0 99 2 00 TASD__ 0 600 4 10 SHK P 996 06 29 00 43 25 4 0 300 999 0 0 999 0 00 TASD__ STKA P 996 06 29 00 43 46 8 0 300 323 2 20 0 9 0 1 00 TASD__ 0 600 P20 STKA PcP 996 06 29 00 46 12 0 0 300 999 0 0 999 0 00 TASD__ KSAR P 996 06 29 00 43 46 7 02300 177 3 2N 10 1 2 00 TASD__ 0 700 1 70 KSAR LR 996 06 29 01 04 25 0 50 000 160 0 20 0 46 0 2 00 A 19 860 40 10 MJAR P 996 06 29
22. ata input file GLOBAL MODEL 4 Here one can give the name of any other fourth global model to be used for specific ray paths indicated in the data input file LOCAL OR REGIONAL MODEL Name of the file with a local or regional velocity model Travel times will be estimated for the following seismic phases as far as they can be observed with respect to distance and source depth Pg Pb Pn P pPg pPb pPn pP Program Description PD 11 1 PbP i e in this program upper side reflection from the Conrad PmP PgPg PbPb PnPn PP and the converted phases sPg sPb sPn sP SbP and SmP The same phase set is used for S type phases respectively This parameter file name must only be set if a special local or regional model is to be used instead of the global one The velocity model must contain the following information In the first line maxdis maximum distance in deg for which this model shall be used It is followed by the depth in km the P phase velocity Vp in km s and the S phase velocity Vs in km s The model may contain layers with a constant velocity or with velocity gradients First order discontinuities must be specified with two lines for the same depth Additionally the Conrad and the Mohorovici discontinuities should be marked as shown in the following example Otherwise all calculated phases would be called Pg or Sg maxdis in free format 0 000 5 400 3 100 depth vp vs in format
23. data input file must have the following format 1 line any title for event identification of maximum 80 characters used also in the output file hyposat out 2 n 1 th line with the n observed onsets This line must be compatible with the following format FORTRAN If we don t wish to calculate magnitudes see MAGNITUDE CALCULATION in the hyposat parameter file this line can contain the following data with the following format a5 1x a8 1x 14 4 1x 12 1x f6 3 1x f5 3 1x f6 2 3 1x f5 2 1x a6 station name phase name year month day hour minute second standard deviation of the onset time backazimuth standard deviation of the backazimuth observation either ray parameter s deg or apparent velocity km s see SLOWNESS S DEG in the hyposat parameter file standard deviation of the slowness observation in s deg or km s and a six character long combination of controlling flags These steering flags 123456 have the following meanings and options Position 1 the time reading of this onset can be used T or t or not used _ for the inversion Position 2 the backazimuth reading of this onset can be used A or a or not used _ for the inversion Position 3 the slowness reading of this onset can be used S or s or not used _ for the inversion Position 4 the time reading of this onset can be used D or d or not used _ to
24. e phases will be calculated The direct phases Pg Pb Pn P or the same for S will always be calculated as long as the PHASE INDEX FOR LOCAL MODEL is not set to a negative value CRUST 5 1 PATH The path to the directory where the CRUST 5 1 data files Mooney et al 1998 reside CRUST 5 1 This parameter controls the usage of the model CRUST 5 1 0 CRUST 5 1 is not used at all 1 CRUST 5 1 is used to calculate station corrections with respect to the local crustal structure below the station Program Description PD 11 1 2 CRUST 5 1 is used to define a local regional velocity model between the source and stations up to a distance of 6 deg 3 CRUST 5 1 is used to define a local regional velocity and to correct for local crustal structures at the stations and at reflection points at the Earth s surface If this parameter is set to any value larger than 0 and the model CRUST 5 1 is available a time correction for the crustal structure at the reflection point of phases reflected at the Earth s surface will be calculated e g PnPn sS PP OUTPUT OF REGIONAL MODEL This flag defines if the local regional model used for the final inversion is to be printed out in the output file hyposat out This option is particularly interesting whenever this velocity model was interpolated from CRUST 5 1 0 no model output default 1 model output STATION FILE Name of the file with station coordinates either in NEIC or in CSS
25. ed the default value is 2 5 km s LQ GROUP VELOCITY A global group velocity for Love wave LQ can be defined the default value is 4 4 km s LR GROUP VELOCITY A global group velocity for Rayleigh waves LR can be defined the default value is 3 95 km s STARTING SOURCE LATITUDE Initial value for event latitude no default value an initial latitude will be estimated or chosen from the input data Valid range 90 deg lt value lt 90 deg An initial solution must be set for both latitude and longitude STARTING LATITUDE ERROR Its standard deviation default 10 deg STARTING SOURCE LONGITUDE Initial value for event longitude no default value a start longitude will be estimated or chosen from the given data Valid range 180 deg lt value lt 180 deg An initial solution must be set for both latitude and longitude Program Description PD 11 1 STARTING LONGITUDE ERROR Its standard deviation default 10 deg STARTING SOURCE DEPTH Starting value for the event depth default 0 km STARTING DEPTH ERROR Its standard deviation default 50 km DEPTH FLAG Flag to handle the source depth forF the hypocenters depth is fixed for this inversion as defined by STARTING SOURCE DEPTH dorD the depth will be inverted from the beginning borB means both i e the inversion begins with the fixed depth from STARTING SOURCE DEPTH and after reaching a stable solution the routine also tries to invert for the source d
26. epth Both solutions fixed and free depth will be listed in hyposat out see example STARTING SOURCE TIME Initial value for source time in epochal time format The initial source time can be given in three different formats as epochal time i e the number of seconds after 01 January 1970 00 00 00 and in two human readable formats yyyy doy hh mm ss sss DOY day of year and yyyy mo dd hh mm ss sss For example the 1 October 2002 at 3 o clock in the afternoon can be written as 1033484400 0 epochal time or as 2002 274 15 00 00 000 or as 2002 10 01 15 00 00 000 If this value is not set an initial source time will be estimated from travel time differences between direct S type and direct P type observations by using Wadati s approach For this the program calculates a Vp Vs relation for each phase type and estimate a source time respectively The initial source time is then the mean value of all estimated source times In the case of only one S P observation Vp Vs is set to sqrt 3 If no S P time observation is available the source time is set to the earliest observed onset time STARTING TIME ERROR its standard deviation default 120 s MAXIMUM OF ITERATIONS To avoid indefinite iterations to find a solution a maximum number of iterations must be defined default 80 TO SEARCH OSCILLATION Here the number of solutions from older iterations can be defined with which the newest solution will be compared to identify iteration
27. her setting In this case the last set value is used for the location process For file names the full path name can be given In the following all the parameters are explained in more detail GLOBAL MODEL Type of the reference model used to calculate all travel time related theoretical data This package contains the following models ak135 AK135 model Kennett et al 1995 iasp91 IASP91 model Kennett 1991 Kennett amp Engdahl 1991 jb Jeffreys Bullen model Jeffreys amp Bullen 1940 and later prem PREM model Dziewonski amp Anderson 1981 sp6 SP6 model Morelli amp Dziewonski 1993 The directory where these travel time tables reside must be specified with the environment variable HYPOSAT_DATA before the program is started The travel time tables are based on the libtau software package written by Ray Buland and distributed as IASP91 software If you use an own version of the libtau software you will have to exchange the libtau_h f file see Makefile in the source code directory and to exchange the corresponding data files hed and tbl because for the version included here some parameter and dimension settings were changed in the include file ttlim h GLOBAL MODEL 2 Here one can give the name of any other second global model to be used for specific ray paths indicated in the data input file GLOBAL MODEL 3 Here one can give the name of any other third global model to be used for specific ray paths indicated in the d
28. m Description PD 11 1 Then run HYPOMOD and you will get an output file hypomod out which will look like HYPOMOD Version 1 1 NORTHERN MOLUCCA SEA 1996 29 June The source parameters Source time or Epicenter lat Epicenter lon Source depth Flinn Engdahl Magnitudes 4 Sta WRA WRA QIS QIS ASAR ASAR ASAR WARB WARB MEEK CMAR CMAR FORT WOOL SHK KSAR KSAR STKA STKA MJAR PDY ZAL ABKT NRI MAW KVAR NPO ARCE SPIT FINE HFS SCHQ TXAR DBIC PLCA LPAZ t S S S Delta 22 22 ASi 25 s Dore DD Di Deo 27 2t 28 31 31 31 32 335 35 35 36 36 36 59 62 72 Tar 81 84 87 92 92 93 99 122 123 130 137 139 556 556 353 353 916 916 916 346 346 767 783 783 966 514 574 974 974 063 063 740 108 536 068 600 360 474 451 544 743 735 931 998 393 606 902 427 from pIDC s Reviewed Event Bulletin 1996 06 29 00 36 49 169 Region 266 221 Azi Phase EASA 159 149 149 163 163 163 179 LTI 194 304 304 ANT 187 9 2 2a LOT 157 16 352 333 309 346 28 313 29s 339 348 33 17 332 9 20 PKPdf 279 160 TIT 200 53 836008609 153 126 2 44 5 mb V C 3 57 Ms used 93 P 93 5 7S FPI P 75 PcP 87 P 87 PcP 87S 32 P 32 PcP 40 P 10 P 10 LR 13 F 39 P 55 15 P 15 LR 58 58 13 00 80 50 76 Q ari 86 36 RF
29. s between very similar solutions oscillating solutions The default value is 4 and the maximum number is 10 LOCATION ACCURACY If we calculate the distance between the solutions of two consecutive iterations in km this value gives the maximum vector length to stop the iteration process The default value is 1 km also if LOCATION ACCURACY is set to 0 CONSTRAIN SOLUTION If this flag is set to 1 default value all used observations are checked for their residuals and only the data with relatively small residuals are used for a final inversion 0 no final restriction of data 1 final restriction of data default CONFIDENCE LEVEL Level of confidence for the output of uncertainties in percent the default uncertainty is one standard deviation i e ca 68 3 EPICENTER ERROR ELLIPSE The setting of this flag defines whether an error ellipse for the final solution will be calculated or not The size of the error ellipse corresponds to the chosen confidence level 0 no error ellipses 1 error ellipses will be calculated default SLOWNESS S DEG The slowness of a seismic phase can be given as input value in two different units apparent velocity or ray parameter All slowness values must have the same unit in the data input file hyposat in 0 the slowness input values are apparent velocities in km s Program Description PD 11 1 1 the slowness input values are ray parameters in s deg MAXIMUM AZIMUTH ERROR Maxim
30. st all be located in the same directory The path to this directory must be set by the environment variable HYPOSAT_DATA The program needs two input files in ASCII format One file contains the general parameters to steer the inversion process hyposat parameter and the other file contains the observed data for the event to be localized hyposat in Contents and structure of these files will be explained in the following sections The program HYPOMOD uses the same input files as HYPOSAT but it only calculates all residuals for a given hypocenter without any inversion The newest versions of the programs including source code this manual the PDF version of Schweitzer 1997 data files containing travel time models and station parameters and several examples are located in six compressed tar files all versions in hyposat version tar Z or hyposat version tar gz the UNIX version in hyposat_u version tar Z or hyposat_u version tar gz and the LINUX version in hyposat_l version tar Z or hyposat_l version tar gz for free download from NORSAR s anonymous ftp address ftp norsar no under the directory pub outgoing johannes hyposat The address when using your web browser is ftp ftp norsar no pub outgoing johannes hyposat Questions related to program updates and maintenance should be directed to the author Program Description PD 11 1 2 Getting Started This section describes how some simple examples for HYPOSAT can be st
31. t tele HYPOSAT runs with two input files To check your installation try the following cp hyposat in net hyposat in cp hyposat parameter net hyposat parameter setenv HYPOSAT_DATA path hyposat data or setenv HYPOSAT_DATA path hyposat data_l where path is the actual path to the subdirectory hyposat and run bin hyposat or bin_l hyposat You will then get an output file hyposat out which should be identical to the file hyposat out net distributed with the hyposat software package Program Description PD 11 1 3 The File hyposat parameter The file containing the inversion steering parameters must have the name hyposat parameter and must reside in the actual directory where the program is executed The structure and contents of hyposat parameter is as follows hyposat parameter file for hyposat 4 4 GLOBAL MODEL GLOBAL MODEL 2 GLOBAL MODEL 3 GLOBAL MODEL 4 LOCAL OR REGIONAL MODEL PHASE INDEX FOR LOCAL MODEL CRUST 5 1 PATH CRUST 5 1 OUTPUT OF REGIONAL MODEL DEF 0 STATION FILE P VELOCITY TO CORRECT ELEVATION S VELOCITY TO CORRECT ELEVATION STATION CORRECTION FILE LG GROUP VELOCITY DEF 3 5 km s RG GROUP VELOCITY DEF 2 5 km s LQ GROUP VELOCITY DEF 4 4 km s LR GROUP VELOCITY DEF 3 95 km s STARTING SOURCE LATITUDE deg STARTING LATITUDE ERROR deg STARTING SOURCE LONGITUDE deg STARTING LONGITUDE ERROR deg STARTING SOURCE DEPTH km STARTING DEPTH ERROR
32. um value of a backazimuth residual to use this observation as a defining phase in deg MAXIMUM SLOWNESS ERROR Maximum value of a slowness residual to use this observation as a defining phase in s deg FLAG USING TRAVEL TIME DIFFERENCES By default the program uses the travel time differences between all phases observed at one station to estimate a hypocenter This can be switched off 0 travel time differences are not used 1 travel time differences are used default MAGNITUDE CALCULATION Flag if body wave mb or surface wave Ms magnitudes are calculated for this event 0 magnitudes are not calculated default 1 magnitudes are calculated P ATTENUATION MODEL With this parameter the attenuation model used for mb calculations can be chosen The two possibilities are G R for Gutenberg Richter Gutenberg and Richter 1956a b or V C for Veith Clawson Veith and Clawson 1972 No default model is defined S ATTENUATION MODEL With this parameter the attenuation model used for Ms calculations can be chosen The two possibilities are IASPEI for the IASPEI 1967 formula often also called Praha formula or R P for the Rezapour and Pearce 1998 formula No default model is defined INPUT FILE NAME A file name can be defined at this place if not the standard input file name hyposat in should be used OUTPUT SWITCH This flag determines whether any output file see also OUTPUT FILE NAME will be written 0 no output file 1 output file
33. y parameters 0 801 0 706 0 033 s deg 7 travel time differences 0 681 0 556 0 063 s Weighted RMS of onset times ISC type OTTES Weighted misfit of input data L1 L2 33 onset times 2 217 0 140 20 azimuth values 1 351 2 282 17 ray parameters 1 429 2 726 7 travel time differences 0 946 1 093 77 misfit over all 1 702 1 763 TO LAT LON Z VPVS DLAT DLON DZ DTO DVPVS DEF RMS 1996 06 29 00 36 49 169 1 321 126 297 44 50 176 0 0147 0 0348 4 28 0 478 0 04 58 0 658 6 The Program HYPOMOD and the File hypomod out For a given seismic hypocenter solution the program HYPOMOD calculates the residuals for all observed data the travel times the backazimuths and slowness values With the example given here for a hypocenter inversion with HYPOSAT one has only to modify slightly the hyposat parameter file and then one can apply the program HYPOMOD The modifications needed in hyposat parameter are to set for the starting source parameters the inversion results Then you will get an output file called hypomod out which has in principle the same format as hyposat out example for changes in hyposat parameter STARTING SOURCE LATITUDE deg E a3 2a STARTING SOURCE LONGITUDE deg 126 2965 STARTING SOURCE DEPTH km 44 50 STARTING SOURCE TIME epochal time 836008609 169 or STARTING SOURCE TIME DOY 2 2996 181 00 36 49 169 or STARTING SOURCE TIME HUMAN gt 1996 06 29 00 36 49 169 13 SSH Progra
Download Pdf Manuals
Related Search
Related Contents
MOUNTAIN BIKE OWNERS MANUAL Minka Lavery 8840-94 Installation Guide Télécharger cette fiche au format PDF PC-ACE Pro32 User`s Manual digi nv monocular user manual Philips 15PT6807 15" real flat TV - DVD combi Million Color Marine LED Lighting Kit Samsung WF8702LSW User Manual Copyright © All rights reserved.
Failed to retrieve file